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In classical molecular simulations chemical bonds and bond angles have been modeled either as
rigid constraints, or as nearly harmonic oscillators. However, neither model is a good description of
a chemical bond, which is a quantum oscillator that in most cases occupies the ground state only. A
quantum oscillator in the ground state can be represented more faithfully by a flexible constraint.
This means that the constraint length adapts itself, in time, to the environment, such that the
rotational and potential forces on the constraint cancel out. An accurate algorithm for flexible
constraints is presented in this work and applied to study liquid water with the flexible and the
polarizable “mobile charge densities in harmonic oscillators” model. The iterations for the flexible
constraints are done simultaneously with those for the electronic polarization, resulting in negligible
additional computational costs. A comparison with fully flexible and rigidly constrained simulations
shows little effect on structure and energetics of the liquid, while the dynamics is somewhat faster
with flexible constraints. ©€2002 American Institute of Physic§DOI: 10.1063/1.1478056

I. INTRODUCTION The explicit inclusion of flexibility brings about several
problems? (1) Because intramolecular vibrations are much
The theoretical description of large molecular systemgaster than translations and rotations, numerical simulations
with atomic detail is now routinely done by means of nu-have to be refined with shorter time steps in molecular dy-
merical simulations, using molecular dynami®4D) with  namics, and with a more frequent sampling of deformations
classical equations of motion, or the Monte CafMC) in Monte Carlo;(2) the presence of weakly coupled modes
method with classical statistical thermodynamiiéswithin  of different frequencies makes the redistribution of energy
this context, chemical bonds and bond angles have beesmong them a very slow process, thus requiring a long
properly treatetlas rigidly constrained to some equilibrium equilibration period; and3) the quantum nature of fast in-
value;~® and the possible effects of flexibility, as well as tramolecular vibrations cannot be neglected because their
those of polarizability, have been included in an average wayrequencies’ are in a range wherer>kgT for a wide range
(or “parametrized away)’ by fitting the analytical interac- of temperatured, h being Planck’s constant arig; Boltz-
tion potentials to reproduce bulk properties. This has allowegnann’s constant. One way to deal with these problems in
for very simple expressions that are cheap to evaluate, andD is to use a multistep approach, where the quantum de-
have shown their ability to perform rather well, in some grees of freedom are treated with a path-integral formulation
cases even for thermodynamic states quite different fromPIMD),2%?!following classical trajectories of quasiparticles
those used in the fitting of the parameters. However, therghvolved in those degrees of freeddA12° This approach has
are cases where the flexibility of even small molecules, aslready been applied in studies of liquid wat&r>°however,
water, is likely to be relevarft) such as the hydration of it is computationally expensive, thus preventing the possibil-
ions*** especially under narrow confinement as in the fil-ity of longer simulations for larger systems that would be
ters of ion channel¥>'3Therefore, there is a number of wa- needed to compute properties that are slow to converge.
ter models that include specific terms for the stretching and'herefore, an alternative method is needed, which over-
compressing of bond lengths and angles, with varying deeomes the problems of short time steps and long equilibra-

grees of complexity:4~1° tion period, and allows quantum corrections to be applied
afterwards.

dAuthor to whom correspondence should be addressed; electronic mail: In this paper we ShOW that quam_um degrees of freedom

hess@chem.rug.nl can be replaced by flexible constrairite., these degrees
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of freedom are constrained at values where the net general- Simultaneously, we impose an extra condition, described
ized forces acting on them vanjstnder the conditions that below[Eq. (7)], which allows us to derivq? as a function of
the quantum oscillators remain in their ground state andhe state point in phase space of the classical system. Thus
have constant zero-point energies. A formulation to treathe total number of DOFs does not change.
self-consistent flexible constraints has recently been pro- We define the following column vectors:
posed by Zhowet al3! However, the two methods derived -
from it are limited to harmonic bond potentials and consider 4=(01,02, - - Gan) 2
only linear intermolecular effects on the bonds and bond 0_ 40 T

.. . . . q (QZL!QZ! "!qSN) . (3)
angles, thus providing approximate solutions to the equations
of motion®? In this paper we present a similar, but more The Lagrangian of the system reads
general method, that works for any combination of coupled L Tans
constraints and includes the total force acting in the direction L(g.a)=20"Mq—V(q) )
of the bond, with the additional asset that the evaluation of 1 "o SO\ % 100ThAS0 0
rotational forces does not require complicated mathematics, =2Mug™+(MaT) 16+ 207 MaT=V(EqD), ()
because they are calculated from constraint displacementahereM is the symmetric 81X 3N mass-metric tensor, de-
The theoretical background and the derivation of the methodined in terms of particle masses;, and Cartesian coordi-
are presented in Sec. Il. In Sec. Ill, we show the algorithm asatesx; as
implemented in thecRoMAcs® package. In Sec. IV, we
present the performance of the method for a simple two- MH:E

mi—— .

dimensional test system, and in Sec. V, we apply the method T 90 da

:jo M?. smulal}]tmns OT ||qu|q”vvtat3|\\/|/vgg|:r§) moglllta34cha(rjge In order to uncouple the quantum and classical motions, we
ensities in harmonic osciiiator : model,™ and  ow impose the condition that at all times

compare the results to a recent path-integral MD made with

IXj IX;
(6)

the same modef’ It should be stressed, though, that the aim (M%), =c, )
of this work is not to refine the MCDHO model, but to use it ) ) ) -
for the application of the flexible constraints method. where c is an arbitrary constant. Under this condition the
conjugate momenta are defined by
JL .
IIl. THE METHOD Pe= = My .é+c, (8)

Because chemical bonds have vibrational frequencies
well abovekgT/#, they are best described by quantum os- o oL
cillators in their respective ground states. In this section we P =
show that a faithful, i.e., thermodynamically correct, classi-
cal description can be obtained by replacing such quanturNote that condition(7) makesp‘l’ constant.
degrees of freedom by flexible constraints. In the Hamiltonian representation, and imposing the con-
We consider a conservative systemNbfnteracting par-  dition with a Lagrange multipliex, we obtain the following
ticles described by generalized coordinaies. . . ,gzy, for modified Hamiltonian
which the motion in the first coordinatg; has quantum—
mechanical character, while motion in the other coordinates H'=H+Ap?=3(M1) ~*pZ—35(Myy) ~'c?
is classical. For simplicity we consider only one quantum L OTer—1.0 o 0
degree of freedontDOF), but the derivation can be easily 2P M V(E,G7) T APy (10
extended to a multidimensional quantum subsystem. It is asgith the conditionpd=c. Therefore
sumed that the quantum DOF behaves as an oscillator with
frequency much higher thagT/h, so that it is continuously .o OH
in its ground state, and adjusts adiabatically to the change in ql:&_po A (19
classical coordinates. This is equivalent to treating the quan- !
tum DOF in the Born—Oppenheimer approximation, usuallyThus the Lagrange multiplier allows to set the velocit)qﬁf
assumed to be valid for electronic degrees of freedom. to any value and thus manipulag§. A sufficient and neces-
The quantum degree of freedom does not necessarilgary condition for the time derivative @f to vanish is the
coincide with a generalized coordinatg, which would following:
typically be the length of a covalent bond. The quantum
degree of freedom would then represent the deviation from 'o_ﬁ_oﬁﬁ_ aH
the position of minimum energy, which by itself is a function Vaq® dap 0E
of the classical environment. In order to separate the quan-
tum DOF it is therefore necessary to introduce an extra delhis means thati; is the value ofg, for which the general-
gree of freedom by splitting; into a classical parg® and a  ized force ong, vanishes; i.e.;-dH/9q,=0; thus,
quantum par¢ oML Py,

—p°T 0— —=0. 13
qi=05+¢&. (1) P 00 P G 13

_7:Mq0. (9)
dJq

(12
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As seen in this equation, the generalized force is the sum of The multidimensional case with quantum DOFsg;

the velocity-dependent forcee.g., a centrifugal forgeand =qi°+ &,i=1,...n, leads to a straightforward extension.

the potential force. In practice an iterative procedure isin that case there amadditional degrees of freedom and

needed in each integration step to q%tto the value ofg, conditions requiring thatoH/dqg; vanishes atqizqio, i

where the generalized force vanishes. For this valugjof =1, ...n. The conditionsp?=c; remove the coupling be-

the partial derivative t& of the Hamiltonian Eq(10) also  tween quantum and classical degrees of freedom. The quan-

vanishes. Therefore the Hamiltonian§rcontains only qua- tum subsystem now contains coupling terms betwéeand

dratic and higher-order terms gand has the form represents a system of coupled harmonic oscillators. In the

1 1.2 L en case of ground state occupation with fixed frequencies, only
H(pg &) =2(My) P+ Ho+zH"E+ ..., (14 3 constant term is added to the classical Hamiltonian.

where Ho is the value of the classical Hamiltonian ~ VWe now consider the practical case that theuantum

159TM~1p0+ V(q) (disregarding the irrelevant constant degrees of freedom concern distances between particles. This

term) at the value ofg; where the generalized force van- @pplies directly to bond constraints, but additional bond

ishes, which is the energy of the classical system. Solving th@ngle constraints can also be formulated in terms of a dis-

time-independent Schdinger equation foré we can con- fance between two particles

struct the ground state solution, which has an energy equalto g, =| IFaiy= oyl |, 1= 1,0 (19

Hy plus the zero-point energy of the quantum oscillator. The

: 0 —
quantum solution depends parametrically on the classical co-'€ NOW classical DOFg+ &, k=1,...n can be treated

ordinates and momentﬁ p° as flexible constraints. At each point in time the length of
We now wish to trea,t tﬁe total system as a reduced dyghe constraints is such that conditi¢iB) holds. This means
namic systemd®) with flexible constraint, i.e., with the con- that the total potential force and the centripetal force working
dition p®=c, omitting the quantum deg}ees, of freedom. In N the direction of the constraint cancel out. Such a constraint
1— ™ .

order to preserve the correctness of thermodynamic quant{€€PS the ggrlva}tlve of :']Ie total hemlaé@‘y zero in then |
ties, the potential of the reduced system must be replaced Pnstraint directions, while it should conserve angular
a potential of mean forc&™ with respect to the omitted omentum:

degree of freedom d J (1 s o
g V)= 2| SmiGi o +V(r) =0

JQ; Jq;
V(%)= —kgTINQIM= —kzTInY, e En'keT ~ (15) p
i ¥ 0_(IhMi Qiz ;=0

whereE,, are the solutions oA ¢,=E,¢,,. For a harmonic )
oscillator with frequencyr the potential of mean force be- i1=1..n, (20
comes wherev are the velocities ang; is the reduced mass of the

VM =ho+ thv+kgT In(1— e 7/keT). (16) two particles in constrainit
Since v is a function of the state of the system in phase MizM (21)
space,dv/dq° leads to classical forces and to energy ex- Magiy + Mo
change between the quantum oscillator and the classical syand w; is the angular velocity of constraint
tem. These forces are rather difficult to evaluate. However, in V= Vi |
the case wherdv>kgT, only the zero-point energy sur- L OERLOLY (22)
vives. If theq dependence of can be neglected, the quan- ai
tum degree of freedom adds a constant term that has n@ Eg. (20) we have substituted the total kinetic energy by
influence on the dynamics of the classical system. the rotational energy of constraiint using condition(18).

So, for this case the effective Hamiltonian for the clas-The gradient of the potential can be evaluated using(E9).
sical flexible-constraint dynamics is

d H _ 2+ 2 &wi f ar -0
H(p°,q°) = £p°™ ~1p°+V(qP) (17) 70 (r,V)= pi 0 of + 1 0 o; 70, (r)- i
under the condition d )
. g, A G =0
pP1=¢C, l
. . i=1,.n, (23
implying
wheref(r)=—VV(r) is the force. The derivativdw;/Jq;
JH ~0 (18) can be obtained from the condition of conserved angular
9, qO_ ' momentum and substituted to arrive at the constraint
1
ar
Note that this dynamic preserves the correctness of ensemble — u; q; 0?—f(r)- —=0 i=1,...n. (249)
averages. There is no need for metric tensor corrections that 94

have been discussed when hard degrees of freedom are Edis means the total potential force and the centrifugal force
placed by constraint&. working in the direction of the constraint cancel out. When
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the potential in the direction of the constraint is narrow, such CONSTRAII\(r‘ NI ) (31)
as a bond potential, the major difference with a rigid con- L el Aelh

straint is that the latter does not take up energy, while for a _ 1 . '

flexible constraint energy is divided equally between rota- ¢y, 1=—(2r;, ;=X ;=X\ 4). (32
tional kinetic energy and potential energy in the constraint h

direction. a1 , Note thatd], , ; will also contain a component that is perpen-
Zhouet al*"introduced two different methods that solve gicyjar to the constraints, but this component will be re-

the equations of motion with flexible constraints. However,;,5ed in the next step. The important point is thagjf, ,
O ; : .

both methods only solve the equations in an approximatgny contains the rotational acceleration and no other terms

way, because only a harmonic bond potential is considered iyt work in the direction of the constraints. To conserve

the adjustment of the bond lengths at each integration SteRngular momentum we should move the particles in the di-
This assumes the other contributions to the second derivatig.ction of the old constraints, just like in a normal leap-frog
of the potential in the bond directions are negligible. It is .qnstraint step:

also limited to harmonic bond potentials. Method | of Zhou ' _ '

et al. uses a second set of Lagrange multipliers at each inte- PROJECTr,, ¢}, 1+ M ~1f hi1r @) (33
gration step. The result is a non-Hamiltonian set of equa- . .

tions. Method Il ignores the kinetic contributions. This leads"Where PROJECT(s;t) means thasis projected on the con-

to a Hamiltonian system with a symplectic integration straints inr and the result is written tbd. For this we also
scheme. Both methods are time reversible and conserve litS€d ithe LINCS algorithm. We now have the total accelera-
ear and angular momentum. tion a,, ; that works in the direction of the old constraints.
We propose a method that is similar to method I of ZhouThe magnitude of the acceleration almost does not change
et al, but which works for any combination of coupled con- when using the old instead of the new constraint direction,
straints and with the full potential that works in the direction

since the constraints rotate over a very small angle in one
of the bond. It does not require complicated mathematics folP StéP- The minimization has converged when the average
evaluating the rotational forces, since these are calculat

ef&rce in the direction of the constraints is smaller than a
from constraint displacements. predefined tolerance:

1 .
M||Maln+1||<ftol- (34
IIl. THE ALGORITHM _ _ o
When it has not converged we do a step in the direction of
The algorithm is written for a leap-frog integrator, but it the acceleration
also works for a velocity Verlet integrator. First we do a

; . ) ) 1 .
normal constrained update step: r.n++11: o Ea:wl, (35)
M 1=rn+th(Vo_ 1+ M), (25 , . . .
, wherek is a constant with unit one over time squared. For
CONSTRAINT,, r2+1, rﬂ+1), (26) rapid convergence, this constant should be chosen as
1 1 9%V
Vot =g (Ms1= ), 27 k=— . (36)
Mi 9q;

i i i X i i .
whereh is the time stepM is a 3NX3N diagonal matrix If the value ofk is not equal for allg;’s, a reasonable value

containing the masses of the particles, a subscript denotes the . . ; :
. . . can be obtained by trying several intermediate values. When
MD step number, and a prime unconstrained coordinate

CONSTRAIN(,s,t) means that coordinates are con- ’the minimization has converged, the new coordinates, the

strained using the directions and the lengths of the con\—/GIOCItIes at the half step, and the new forces are given by

straints inr and the result is written to For this we used the Foo1= rinﬂ, (37)
LINCS algorithm®® These coordinates and velocities are
used to start an iterative minimization. In iteratioof the

minimization we need to calculate the kinetic and the poten- Vn+<l/2>:ﬁ(rﬂ+1_ o), (38)
tial forces working in the direction of the constraints. The ‘
rotational acceleration in the direction of the constraints  f . 1=f} ;. (39

¢in+1 is calculated by doing one step backward and another

31
one forward in time: L,

Just like method | of Zhowet al.>* this method is time
reversible and conserves linear and angular momentum. The

o 1, method is computationally much more expensive than nor-

X_1=Mh+a™ ﬁVn+<1/2>’ (28) mal MD, because all the forces need to be evaluated once
) L during each iteration of the minimization, the computational
CONSTRAINr 1, X_ 1, X_1), (29 cost of the rest of the algorithm being negligible. But when

” : 0 1 used in combination with a model requiring a minimization
Xp1=Tpeat h(Vn+(1/z>+ M), (30 procedure for polarization, it can be done almost for free,
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FIG. 1. The distance between the particles in first dumhbfselid line) and ) o . o
between the particles in the secofthshed ling dumbbell. FIG. 2. The totaldashed lingand kinetic energiessolid line) of the dumb-
bell system.

since both minimizations can be done at the same time. For % APPLICATIONS

polarizable model using shells, the forces on the shells cap Liquid water with the MCDHO model

be added to the forces in the constrained directions in the ) . ) . o
convergence criterion Eq34). The shells are displaced by In this section we show a more interesting application of

adding the forces on the shells divided by the shell Sprindlexible constraints. In the liquid, the intramolecular DOFs of
constant to the right of Eq35). the water molecules are in their respective ground states; but

the molecules are deformed with respect to the gas-phase
geometry’® 38 where the protons should adiabatically reach
the positions that minimize the potential energy of the in-
tramolecular DOFs, subject to the interactions with the other
A. Collision of two rotating dumbbells molecules and to Centrifuga| forces.

As a simple two-dimensional test system we used two When in_tramoleculgr_ DOFs are included expliciFIy, it is
rotating dumbbells, which is analogous to systéfy of also convenient to explicitly account for the electronic polar-
Zhou et al®* Each dumbbell consists of two Lennard-Jonesizability, because the effects are of similar magnittftie.
(LJ) particles connected by a spring with a force constant 0ﬂ'hese features should not be superimposed on an empirically
10000 kJmot*nm™. The bond lengths and the sigmas of fitted model, that has “parametrized them away” and thus
the LJ potential are 0.1 nm. The depth of the LJ potential ig/vo_uld be overcorrected. Instead, a moo_lel is required that can
0.25 kJmoT . The two dumbbells are initially separated by a '€liably reproduce the water molecule in the gas phase, and

small distance and one is rotating twice as fast as the otheficludes polarizability and flexibility. One such model is
Because of the Lennard-Jones attraction they collide after ¥CDHO,™ whose intramolecular parameters were fitted to a

few rotations and the direction of rotation of the fastest ro-high-quality surface of the energetic cost of deformatfon.

tating dumbbell is inverted. The distances between the par- 1he MCDHO model consists of three cores or particles
ticles in each dumbbell are shown in Fig. 1. and a shell, which models the electron cloud of the oxygen

Initially the springs are stretched due to the centrifuga@S @ Spherical, exponentially decaying charge der(sie
force. Because the first dumbbell rotates twice as fast as tHg9- 4- Each core has a positive charge and interacts elec-
second, the kinetic force is four times as large and the spring
stretches four times as much. The collision and change of 1.280
direction of rotation occur just after 0.8 ps. There the springs
contract due to the repulsive interaction at short distance
with a particle of the other dumbbell. The total and kinetic
energies of the system are shown in Fig. 2. The collision and
change of direction of rotation occur just after 0.8 ps. The
energy conservation at the collision can be seen in more
detail in Fig. 3. The fluctuations in the energy are of the
order of the accuracy of the kinetic energy in the leap-frog
algorithm. The actual accuracy of the integrator can be de-
termined from the difference in the total energy at time 0 and
1 ps, where the kinetic and potential energies are almost 1'2740_7 08 0.9
constant. This difference is>310™° kJmol L. Also shown Time (ps)
in Fig. 3 !S the tOta_l ,e”,erQY for the algo-n}?m W,h&#&“l IS FIG. 3. The total energy of the dumbbell system with the rotational force
used during the minimization instead ¢, ;. This leads t0  getermined at each step of the minimizatisolid line) or only determined
a jump in the energy, thus losing time reversibility. at the first step of the minimizatiofashed ling

IV. TEST CASE

1.278

E (kJ mol™)

1.276
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FIG. 4. The MCDHO water model with the charges on the four sites. 0 |
3 .
0 B \\A ,//- TR m‘“‘“"“ RS
trostatically with all the other cores in the system. Core—core ‘, 7
Lennard-Jones terms are used for intermolecular interactions I "\.‘ !
only, whereas within the same molecule the oxygen is con- W
nected to the hydrogens with Morse potentials, and a fourth 4 ¢ o
order expression is used for the bending potential of the 0 0.02 0.04 0.06 0.08 0.1
H—O-H angle. The shell is massless and it adiabatically Time (ps)

reaches the position that minimizes its contribution to the

. . FIG. 5. The velocity autocorrelation function of the hydrogens in the
potential energy of the system. The shell has a negativ veoo & o yelouens |

A . ; : MCDHO model for the MD-FRsolid line), the MD—RC(dotted ling, and
charge and interacts electrostatically with all the cores in théne MD—FC(dashed ling simulations.

system, apart from the oxygen in the same molecule, to

which it is attached by a harmonic spring. Because the shell

is a charge density, the shell-core electrostatic interactionsm and of the H—H distance, 0.1538 nm, with standard de-

are screened. However, the shell-shell interactions are neiations of 0.0026 and 0.0053 nm, respectively. However, the

screened, but instead have Lennard-Jones terms. The int@enters of Gaussian fits to their distributions were 0.1 pm

molecular parameters of the model were fitted to reproducshorter, 0.0984 nm for O—H and 0.1537 for H—H.

the interaction energy and the geometry of the optimum wa- In the second simulation, the intramolecular DOFs

ter dimer?®4! were constrained to the two latter values and a time step of
Thus, the potential in the direction of an O—H bond con-2 fs was used. This is the rigidly constrainéRIC) simula-

sists of a Morse potential, intramolecular electrostatic intertion MD—RC. Finally, flexible constraint&~C9 were used

actions, and intermolecular interactions. Although the firsin the third simulation, hereafter denominated MD-FC,

two mainly determine the distribution of O—H distances, thealso with a time step of 2 fs. The force tolerance for the

external contribution cannot be neglected, as shown by thginimization of the FCs was the same as that for the shells,

experimentally observed lengthening of the O—H bonds 0.1 kImol*nm™*. Both simulations with constraints were

the liquid¢—3® The H-O—-Hangle is also a fast degree of equilibrated for 10 ps after starting from an equilibrated con-

freedom with quantum nature, whose value is modified byformation from the first one.

the intermolecular interactions. Hence, in the following MD

simulations both the O—H and the H—H distances are treateg past dynamics

similarly: as classical DOFs, in a first one; as rigid con- ) )

straints, in a second one, and as flexible constraints in a third 10 100k at fast dynamics we performed three short simu-

one. The ground state assumption is quite satisfied witfptions of 2 ps each. The fastest motions can be found by

hw/ksT=17 for bond vibrations antiv/kgT=8 for angle- looking at the velocity autocorrelation function of the Carte-

bending vibrations. sian velocities of the hydrogerisee Fig. 5. In MD—FF, the
first peak appears at 9 fs, which corresponds to one period of
B. Simulations the bond vibrations. The velocity autocorrelation functions

. . for MD—RC and MD-FC are almost identical, with the first
We performed three simulations of 1000 MCDHO mol- peak at 50 fs, which corresponds to the libration of the mol-

ecules in a periodic cubic box at a fixed density of 997gcyle. The integration is accurate for all three simulations,
kgm°. A Berendsen thermosfatwith a coupling time of  MD—_FF having 18 integration steps per period of the fastest
0.1 ps was used to maintain the temperaturd @298 K.  ggcillation, whereas for MD—RC and MD—FC this number is
The cutoff for the particle—particle interactions was 1 nm,25 The average number of force evaluations per step is 14
the long-range electrostatics were treated with the particlgor MD—FF simulation, 16 for MD—RC and 19 for MD—FC.
mesh Ewald methodPME)** and a dispersion correction The constrained simulations are computationally much more
was applied for the Lennard-Jones interactions. The neighbqitficient than the flexible one, because the time step can be
list was updated at each integration step. The force tolerancghosen four or five times as large.

for the minimization of the shells was 0.1 kJ mbhm™* for

all three simulations.

The first simulation produced classical trajectories for aIID' Thermodynamics and structure

the DOFs of the nuclei, including bond, and bond angle vi-  To obtain thermodynamic properties and the slow dy-
brations, so it required a short time step of 0.5 fs. This wenamics we extended the three simulations to 80 ps. One
call the fully flexible (FF) simulation and denote it as MD— check for the integration accuracy is the temperature of the
FF. The average value of the O—H distance resulted 0.0988ystem. The Berendsen thermostat tries to keep the tempera-
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ture constant at 298 K, but if heat is continuously flowing in
or out of the system, this will cause a temperature difference
proportional to the heat flow. The temperature is 298.0,
297.8, and 297.4 K for MD—FF, MD—-RC and MD-FC, re-
spectively. All deviations are relatively small. We also
checked for equipartition, which was completely fulfilled in
the three simulations.

The potential energy per molecule in the liqusibtract-
ing the energy of a monomeof MD—FF resulted in—43.3
kdmol ™%, slightly different from that previously reportéd,
—43.5 kImol L. This latter value was obtained from a MC

400

200

Hess, Saint-Martin, and Berendsen

A

0.09

0.1
O-H distance (nm)

0.11

simulation, without using a dispersion correction, that should
have lowered the energy t643.8 kd moll. The small dif- . . . .
ference of 0.5 kJ mott with the MD—FF energy is probably
due to an error in the treatment of the screening in the PME 200 - i
algorithm in the MC code. I Py

The value that resulted from MD-RC was46.8 P
kdmol %, and from MD—FC was-46.9 kJmol . The dif-
ference relative to the flexible simulation corresponds to the
loss of the thermal motion in the three constrained degrees of
freedom, which contributes B T/2=3.7 kJ mol'! to the
potential energy. Our results can be compared to the value
—47.4 kImol* from a recent simulation with 125 MCDHO
water molecule€? The small difference is due to the smaller
number Of,m0|eCUIeS; In tlhe S_ame work, the result fo_r 51jtjistributions of the MCDHO water model for the MD-K8&olid lineg and
molecules is-47.0 kJ mol ~. Using the quantum corrections he Mp—FC (dotted lines simulations.
reported from the PIMD simulatiot?, together with the com-
mon assumptiodf§ that the gas behaves ideally and that the
liquid is incompressible, the vaporization enthalpy predictedhe liquid observed in the PIMD simulatidhare due exclu-
from our simulations isAH,,,=43.2 kJmol*, which falls ~ sively to quantum effects.
somewhat short from the experimental vdfuaH,,,=44.0
kJ mol L.

The O-H and H-H distance distributions in both
MD-FF and MD-FC are almost perfect Gaussiésee Fig.

100 | -

015 0.16 017

H-H distance (nm)

0.14

IG. 6. The O—H distancé&op graph and H—H distance€bottom graph

E. Slow dynamics

In contrast to the static behavior and the fast dynamics,
the slow dynamic properties do change significantly, as can
S , i ) ) rlfe seen from the rotational correlation times and the diffu-
distributions are 'der}}r']gal to those of the Gaussian fitSjo, coefficients in Table II. The latter were determined from
<rOH>=%?982 nm,Argf=0.0009 nm, andry,)=0.1534 4,0 maan square displacement by fitting a straight line from

nm, Ary;=0.0019 nm. Both distances are slightly shorteryje 5 15 50 ps. The error was determined by the difference
(~0.3 pm than in the former case, and the widths of their ¢ 11,4 fits over the two halves of the interval.

distributions are three times smaller. Theoaverl_igeO—H All dynamical quantities reported in Table Il scale con-
angle predicted from this values is 102.7°, which matcheg;giently hetween the simulations. MD—RC yielded the slow-

quite well the experimental data of Thiessen and Naifen, est dynamics, followed by MD—FF; the use of flexible con-
but is smaller than the more recent experimental data of

Ichikawaet al’ (see Table)l This discrepancy is common
to other flexible potential®1%?°Because the same widening TABLE I. Geometry of the water molecule in the liquid.
of the H-O—Hangle of the water molecule in the liquid has

. . - Method r nm r nm /HOH? (de
been predicted with quantum calculatiéfig’ and the {row () (") (1) (deg
MCDHO model consistently producedi—O—H angles MD—FF® 0.0985 0.1538 102.7°

MD-FC? 0.0982 0.1534 102.7°
smaller than, as well as O—H bond lengths longer tharathe _
s | f I th | ith hich i Experimentdl 0.09666) 0.1513) 102.8°
initio reSLit_s or all the clusters with which it was g ciments 0.097a5) 0.1551) 106.1°
compared? it seems to exaggerate the intermolecular O—H Qme 0.0941 106.2°
attraction and the H—H repulsion. Q™' 0.0988 106.7°

The goo(r) radial distribution functions for the three _
. . . . ®The angles were computed from the reported distances.
simulations are shown in Fig. 7. It can be seen that they argis work.
almost identical, with a 2% variation in the height of the first sNeutron diffraction experiment with mixtures of light and heavy wéser
maximum and the depth of the first minimum, overestimatedRef. 3. _ _
for MD—RC, and underestimated for MD—FC. The differ- .Neutron diffraction experiment with heavy watesee Ref. 3\
. . Simulation of a quantum molecule in a classical liqsée Ref. 45
ence resulted in being even smaller %H(_r) and gyu(r) fCalculation of a quantum molecule in an average reaction fsse Ref.
(data not shown Therefore, the changes in the structure of 47). The number in parentheses denotes the uncertainty in the last digit.
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3r straints. The algorithm is time reversible and conserves en-
i ergy and linear and angular momenta, as shown by a simple
test case.

The application of the method to the study of liquid wa-
ter under ambient conditions showed that the thermodynamic
properties and the structure of the liquid were not sensitive to
whether the simulation included the intramolecular degrees
of freedom, or if they were treated as rigid or flexible con-
straints.

The dynamics, however, differs considerably: Flexible
constraints resulted in a 10% speedup with regard to the

J flexible simulation, and a 25% speedup with respect to the

rigidly constrained one. As a flexible constraint is a better
, ) . , , , , , , approximation of a chemical bond, the other two representa-
0 0.2 0.4 0.6 0.8 1 tions significantly underestimate the rate of the dynamic

r(nm) quantities in small molecules.

FIG. 7. The radial distribution function of the oxygens in MCDHO water T 0f Nonpolarizable models the algorithm is computation-
for the MD—FF (solid line), the MD—RC (dotted ling, and the MD—FC  ally expensive, because all forces on the constraints need to
(dashed lingsimulations. be evaluated in each iteration of the minimization; but when
used in combination with a polarizable model having shells
whose positions need to be optimized in each step, there is

straints produced a speedup of 25% with respect 10 thg gt ng extra computational cost. In this case both flexible
former, and of 11% with respect to the latter. Nevertheless

: - ~~>%and rigid bond constraints can speed up simulations signifi-
the classical prediction of the MCDHO model dynamics is

. cantly, as larger time steps can be used. As the number of
Si“" SlO\_Ner thqn real _Water bY a factor of 2 Howev_er, PIMD iterations for the rigidly constrained and flexibly constrained
simulations with flexible versions of the simple point charge

; o simulations is comparable, flexible constraints can be used
($PQ_ model have shown an increase g{ up to 73% in th%ithout extra cost.
diffusion constant, due to quantum effe€tdf quantum ef- The replacement of hard quantum degrees of freedom by

fects on diffusion, which are mainly due to shifts in zero fe,inje constraints neglects the configuration dependence of
point energy in translational and librational modes, were th he zero-point energy, which in the case of water is not van-
strong the value for the MCDHO model would becoe jspingiy small. It is possible to correct for zero-point ener-

=2x10 ° m’s™*, which is much closer to experimental gioq "4t least within the harmonic approximation and to first
values. The experimental diffusion constant fofCDis in- ey if the three fundamental vibrational frequencies of the
deed lower than for KO, but the difference is less than 10%, water molecule are computed at each step, based on the
indicating a much smaller quantum effect. A study of thesaKnowledge of the Hessian for the internal degrees of free-
quantum effects for the MCDHO model has not been dongy,m,  This has the additional advantage that the spectral
and is beyond the aim of the present work. shapes for the intramolecular vibrational bands of the liquid

are obtained as well, but it adds considerably to the complex-
VI. DISCUSSION ity of the simulation.

We showed that flexible constraints are the thermody-  With regard to the MCDHO model, we found its dynam-
namically correct replacements for hard quantum degrees d¢s to be slow compared to that of real water. Quantum ef-
freedom, and presented an algorithm for flexible constraintéects, though, are expected to yield faster dynarfi@ppo-
that works for any combination of coupled distance con-Site to experimental data and quantum calculations, the

H—O—-Hangle of the MCDHO model in the liquid is smaller

than in the gas. We hint that this might be corrected by a
TABLE II. Dynamical properties for the three different MD simulations refinement in the intermolecular O—H and H—H interactions.
with the MCDHO model. From left to right, the rotational correlation times This might also correct the deviations relative to the experi-

using cos for averaging, for the H—H vectorr{"), the dipole moment . . . .
(), and the normal to the water plane{. 7" is the correlation time mental data of the radial distribution function that have been

using 3 co&6—1 for averaging and is the diffusion constant. The rota- reported®®3*However, such a refinement is well beyond the
tional correlation times were obtained by integrating the rotation autocorreqajms of the present work.

lation function with an exponential fit for the tail. The experimental values

for 7™ andD are from Refs. 48 and 49, respectively. The number in paren-

theses denotes the uncertainty in the last digit. VIl. CONCLUSIONS

As the computational capacities and the understanding
of molecular interactions increase, so does the possibility of
using more complex models in numerical simulations of
MD-FF 87 86 58 43 1.049) large molecular systems. Care must be taken, though, that the

A D

Method P P9 (P9 (9 (X107 m2sY

mg:sg 12'3 1;2 57$ g'g f'fg; inclusion of fast degrees of freedom is done properly. This
Experimental ' ' ' 20 24 requires new methods that are theoretically sound and, pref-

erably, simple and easy to implement.
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