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In classical molecular simulations chemical bonds and bond angles have been modeled either as
rigid constraints, or as nearly harmonic oscillators. However, neither model is a good description of
a chemical bond, which is a quantum oscillator that in most cases occupies the ground state only. A
quantum oscillator in the ground state can be represented more faithfully by a flexible constraint.
This means that the constraint length adapts itself, in time, to the environment, such that the
rotational and potential forces on the constraint cancel out. An accurate algorithm for flexible
constraints is presented in this work and applied to study liquid water with the flexible and the
polarizable ‘‘mobile charge densities in harmonic oscillators’’ model. The iterations for the flexible
constraints are done simultaneously with those for the electronic polarization, resulting in negligible
additional computational costs. A comparison with fully flexible and rigidly constrained simulations
shows little effect on structure and energetics of the liquid, while the dynamics is somewhat faster
with flexible constraints. ©2002 American Institute of Physics.@DOI: 10.1063/1.1478056#

I. INTRODUCTION

The theoretical description of large molecular systems
with atomic detail is now routinely done by means of nu-
merical simulations, using molecular dynamics~MD! with
classical equations of motion, or the Monte Carlo~MC!
method with classical statistical thermodynamics.1,2 Within
this context, chemical bonds and bond angles have been
properly treated3 as rigidly constrained to some equilibrium
value,4–6 and the possible effects of flexibility, as well as
those of polarizability, have been included in an average way
~or ‘‘parametrized away’’!7 by fitting the analytical interac-
tion potentials to reproduce bulk properties. This has allowed
for very simple expressions that are cheap to evaluate, and
have shown their ability to perform rather well, in some
cases even for thermodynamic states quite different from
those used in the fitting of the parameters. However, there
are cases where the flexibility of even small molecules, as
water, is likely to be relevant,8,9 such as the hydration of
ions,10,11 especially under narrow confinement as in the fil-
ters of ion channels.12,13Therefore, there is a number of wa-
ter models that include specific terms for the stretching and
compressing of bond lengths and angles, with varying de-
grees of complexity.9,14–19

The explicit inclusion of flexibility brings about several
problems:3 ~1! Because intramolecular vibrations are much
faster than translations and rotations, numerical simulations
have to be refined with shorter time steps in molecular dy-
namics, and with a more frequent sampling of deformations
in Monte Carlo;~2! the presence of weakly coupled modes
of different frequencies makes the redistribution of energy
among them a very slow process, thus requiring a long
equilibration period; and~3! the quantum nature of fast in-
tramolecular vibrations cannot be neglected because their
frequenciesn are in a range wherehn@kBT for a wide range
of temperaturesT, h being Planck’s constant andkB Boltz-
mann’s constant. One way to deal with these problems in
MD is to use a multistep approach, where the quantum de-
grees of freedom are treated with a path-integral formulation
~PIMD!,20,21 following classical trajectories of quasiparticles
involved in those degrees of freedom.22–25This approach has
already been applied in studies of liquid water;26–30however,
it is computationally expensive, thus preventing the possibil-
ity of longer simulations for larger systems that would be
needed to compute properties that are slow to converge.
Therefore, an alternative method is needed, which over-
comes the problems of short time steps and long equilibra-
tion period, and allows quantum corrections to be applied
afterwards.

In this paper we show that quantum degrees of freedom
can be replaced by flexible constraints~i.e., these degrees
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of freedom are constrained at values where the net general-
ized forces acting on them vanish! under the conditions that
the quantum oscillators remain in their ground state and
have constant zero-point energies. A formulation to treat
self-consistent flexible constraints has recently been pro-
posed by Zhouet al.31 However, the two methods derived
from it are limited to harmonic bond potentials and consider
only linear intermolecular effects on the bonds and bond
angles, thus providing approximate solutions to the equations
of motion.32 In this paper we present a similar, but more
general method, that works for any combination of coupled
constraints and includes the total force acting in the direction
of the bond, with the additional asset that the evaluation of
rotational forces does not require complicated mathematics,
because they are calculated from constraint displacements.
The theoretical background and the derivation of the method
are presented in Sec. II. In Sec. III, we show the algorithm as
implemented in theGROMACS33 package. In Sec. IV, we
present the performance of the method for a simple two-
dimensional test system, and in Sec. V, we apply the method
to MD simulations of liquid water with the ‘‘mobile charge
densities in harmonic oscillators’’~MCDHO! model,34 and
compare the results to a recent path-integral MD made with
the same model.30 It should be stressed, though, that the aim
of this work is not to refine the MCDHO model, but to use it
for the application of the flexible constraints method.

II. THE METHOD

Because chemical bonds have vibrational frequencies
well abovekBT/\, they are best described by quantum os-
cillators in their respective ground states. In this section we
show that a faithful, i.e., thermodynamically correct, classi-
cal description can be obtained by replacing such quantum
degrees of freedom by flexible constraints.

We consider a conservative system ofN interacting par-
ticles described by generalized coordinatesq1 , . . . ,q3N , for
which the motion in the first coordinateq1 has quantum–
mechanical character, while motion in the other coordinates
is classical. For simplicity we consider only one quantum
degree of freedom~DOF!, but the derivation can be easily
extended to a multidimensional quantum subsystem. It is as-
sumed that the quantum DOF behaves as an oscillator with
frequency much higher thankBT/h, so that it is continuously
in its ground state, and adjusts adiabatically to the change in
classical coordinates. This is equivalent to treating the quan-
tum DOF in the Born–Oppenheimer approximation, usually
assumed to be valid for electronic degrees of freedom.

The quantum degree of freedom does not necessarily
coincide with a generalized coordinateq1 , which would
typically be the length of a covalent bond. The quantum
degree of freedom would then represent the deviation from
the position of minimum energy, which by itself is a function
of the classical environment. In order to separate the quan-
tum DOF it is therefore necessary to introduce an extra de-
gree of freedom by splittingq1 into a classical partq1

0 and a
quantum partj

q15q1
01j. ~1!

Simultaneously, we impose an extra condition, described
below@Eq. ~7!#, which allows us to deriveq1

0 as a function of
the state point in phase space of the classical system. Thus
the total number of DOFs does not change.

We define the following column vectors:

q5~q1 ,q2 , . . . ,q3N!T, ~2!

q05~q1
0 ,q2 , . . . ,q3N!T. ~3!

The Lagrangian of the system reads

L~q,q̇!5 1
2q̇

TMq̇2V~q! ~4!

5 1
2M11j̇

21~Mq̇0!1j̇1 1
2q̇

0TMq̇02V~j,q0!, ~5!

whereM is the symmetric 3N33N mass-metric tensor, de-
fined in terms of particle massesmi and Cartesian coordi-
natesxi as

Mkl5(
i

mi

]xi

]qk

]xi

]ql
. ~6!

In order to uncouple the quantum and classical motions, we
now impose the condition that at all times

~Mq̇0!1[c, ~7!

where c is an arbitrary constant. Under this condition the
conjugate momenta are defined by

pj5
]L

]j̇
5M11j̇1c, ~8!

p05
]L

]q̇0
5Mq̇0. ~9!

Note that condition~7! makesp1
0 constant.

In the Hamiltonian representation, and imposing the con-
dition with a Lagrange multiplierl, we obtain the following
modified Hamiltonian

H85H1lp1
05 1

2~M11!
21pj

22 1
2~M11!

21c2

1 1
2p

0TM21p01V~j,q0!1lp1
0 ~10!

with the conditionp1
0[c. Therefore

q̇1
05

]H

]p1
0

1l. ~11!

Thus the Lagrange multiplier allows to set the velocity ofq1
0

to any value and thus manipulateq1
0. A sufficient and neces-

sary condition for the time derivative ofp1
0 to vanish is the

following:

ṗ1
05

]H

]q1
0

50⇔ ]H

]q1
5

]H

]j
50. ~12!

This means thatq1
0 is the value ofq1 for which the general-

ized force onq1 vanishes; i.e.,2]H/]q150; thus,

2p0T
]M21

]q1
p02

]V

]q1
50. ~13!
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As seen in this equation, the generalized force is the sum of
the velocity-dependent force~e.g., a centrifugal force! and
the potential force. In practice an iterative procedure is
needed in each integration step to setq1

0 to the value ofq1

where the generalized force vanishes. For this value ofq1
0,

the partial derivative toj of the Hamiltonian Eq.~10! also
vanishes. Therefore the Hamiltonian inj contains only qua-
dratic and higher-order terms inj and has the form

H~pj ,j!5 1
2~M11!

21pj
21H01 1

2H9j21 . . . , ~14!

where H0 is the value of the classical Hamiltonian
1
2p

0TM21p01V(q) ~disregarding the irrelevant constant
term! at the value ofq1 where the generalized force van-
ishes, which is the energy of the classical system. Solving the
time-independent Schro¨dinger equation forj we can con-
struct the ground state solution, which has an energy equal to
H0 plus the zero-point energy of the quantum oscillator. The
quantum solution depends parametrically on the classical co-
ordinates and momentaq0,p0.

We now wish to treat the total system as a reduced dy-
namic system (q0) with flexible constraint, i.e., with the con-
dition p1

0[c, omitting the quantum degrees of freedom. In
order to preserve the correctness of thermodynamic quanti-
ties, the potential of the reduced system must be replaced by
a potential of mean forceVmf with respect to the omitted
degree of freedom

Vmf~q0!52kBT ln Qqm52kBT ln(
n

e2En /kBT, ~15!

whereEn are the solutions ofĤcn5Encn . For a harmonic
oscillator with frequencyn the potential of mean force be-
comes

Vmf5h01 1
2hn1kBT ln~12e2hn/kBT!. ~16!

Since n is a function of the state of the system in phase
space,]n/]q0 leads to classical forces and to energy ex-
change between the quantum oscillator and the classical sys-
tem. These forces are rather difficult to evaluate. However, in
the case wherehn@kBT, only the zero-point energy sur-
vives. If theq dependence ofn can be neglected, the quan-
tum degree of freedom adds a constant term that has no
influence on the dynamics of the classical system.

So, for this case the effective Hamiltonian for the clas-
sical flexible-constraint dynamics is

H~p0,q0!5 1
2p

0TM21p01V~q0! ~17!

under the condition

p1
0[c,

implying

S ]H

]q1
D

q
1
0
[0. ~18!

Note that this dynamic preserves the correctness of ensemble
averages. There is no need for metric tensor corrections that
have been discussed when hard degrees of freedom are re-
placed by constraints.32

The multidimensional case withn quantum DOFsqi

5qi
01j i , i 51, . . . ,n, leads to a straightforward extension.

In that case there aren additional degrees of freedom andn
conditions requiring that]H/]qi vanishes atqi5qi

0 , i
51, . . . ,n. The conditionspi

0[ci remove the coupling be-
tween quantum and classical degrees of freedom. The quan-
tum subsystem now contains coupling terms betweenjs and
represents a system of coupled harmonic oscillators. In the
case of ground state occupation with fixed frequencies, only
a constant term is added to the classical Hamiltonian.

We now consider the practical case that then quantum
degrees of freedom concern distances between particles. This
applies directly to bond constraints, but additional bond
angle constraints can also be formulated in terms of a dis-
tance between two particles

qi5uura( i )2rb( i )uu, i 51,...,n. ~19!

The now classical DOFsqk
01jk , k51,...,n can be treated

as flexible constraints. At each point in time the length of
the constraints is such that condition~18! holds. This means
that the total potential force and the centripetal force working
in the direction of the constraint cancel out. Such a constraint
keeps the derivative of the total energyH zero in then
constraint directions, while it should conserve angular
momentum:

H ]

]qi
H~r ,v!5

]

]qi
S 1

2
m i qi

2 v i
21V~r ! D50

]

]qi
m i qi

2 v i50

i 51,...,n, ~20!

wherev are the velocities andm i is the reduced mass of the
two particles in constrainti

m i5
ma( i ) mb( i )

ma( i )1mb( i )
~21!

andv i is the angular velocity of constrainti

v i5
uuva( i )2vb( i )uu

qi
. ~22!

In Eq. ~20! we have substituted the total kinetic energy by
the rotational energy of constrainti, using condition~18!.
The gradient of the potential can be evaluated using Eq.~19!

H ]

]qi
H~r ,v!5m i qi v i

21m i qi
2v i

]v i

]qi
2f~r !•

]r

]qi
50

]

]qi
m i qi

2 v i50

i 51,...,n, ~23!

where f(r )52¹V(r ) is the force. The derivative]v i /]qi

can be obtained from the condition of conserved angular
momentum and substituted to arrive at the constraint

2m i qi v i
22f~r !•

]r

]qi
50 i 51, . . . ,n. ~24!

This means the total potential force and the centrifugal force
working in the direction of the constraint cancel out. When
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the potential in the direction of the constraint is narrow, such
as a bond potential, the major difference with a rigid con-
straint is that the latter does not take up energy, while for a
flexible constraint energy is divided equally between rota-
tional kinetic energy and potential energy in the constraint
direction.

Zhouet al.31 introduced two different methods that solve
the equations of motion with flexible constraints. However,
both methods only solve the equations in an approximate
way, because only a harmonic bond potential is considered in
the adjustment of the bond lengths at each integration step.
This assumes the other contributions to the second derivative
of the potential in the bond directions are negligible. It is
also limited to harmonic bond potentials. Method I of Zhou
et al. uses a second set of Lagrange multipliers at each inte-
gration step. The result is a non-Hamiltonian set of equa-
tions. Method II ignores the kinetic contributions. This leads
to a Hamiltonian system with a symplectic integration
scheme. Both methods are time reversible and conserve lin-
ear and angular momentum.

We propose a method that is similar to method I of Zhou
et al., but which works for any combination of coupled con-
straints and with the full potential that works in the direction
of the bond. It does not require complicated mathematics for
evaluating the rotational forces, since these are calculated
from constraint displacements.

III. THE ALGORITHM

The algorithm is written for a leap-frog integrator, but it
also works for a velocity Verlet integrator. First we do a
normal constrained update step:

rn11
08 5rn1h~vn2~1/2!1hM21fn!, ~25!

CONSTRAIN~rn , rn11
08 , rn11

0 !, ~26!

vn1~1/2!
0 5

1

h
~rn11

0 2rn!, ~27!

whereh is the time step,M is a 3N33N diagonal matrix
containing the masses of the particles, a subscript denotes the
MD step number, and a prime unconstrained coordinates.
CONSTRAIN(r ,s,t) means that coordinatess are con-
strained using the directions and the lengths of the con-
straints inr and the result is written tot. For this we used the
LINCS algorithm.35 These coordinates and velocities are
used to start an iterative minimization. In iterationi of the
minimization we need to calculate the kinetic and the poten-
tial forces working in the direction of the constraints. The
rotational acceleration in the direction of the constraints
fn11

i is calculated by doing one step backward and another
one forward in time:

x21
i 8 5rn11

i 2
1

h
vn1~1/2!

0 , ~28!

CONSTRAIN~rn11
i , x21

i 8 , x21
i !, ~29!

x11
i 8 5rn11

i 1h~ vn1~1/2!
0 1hM21f n11

i ! , ~30!

CONSTRAIN~rn11
i , x11

i 8 , x11
i !, ~31!

fn11
i 5

1

h2
~2rn11

i 2x21
i 2x11

i !. ~32!

Note thatfn11
i will also contain a component that is perpen-

dicular to the constraints, but this component will be re-
moved in the next step. The important point is thatfn11

i

only contains the rotational acceleration and no other terms
that work in the direction of the constraints. To conserve
angular momentum we should move the particles in the di-
rection of the old constraints, just like in a normal leap-frog
constraint step:

PROJECT~rn , fn11
i 1M21f n11

i , an11
i !, ~33!

where PROJECT(r ,s,t) means thats is projected on the con-
straints inr and the result is written tot. For this we also
used the LINCS algorithm. We now have the total accelera-
tion an11

i that works in the direction of the old constraints.
The magnitude of the acceleration almost does not change
when using the old instead of the new constraint direction,
since the constraints rotate over a very small angle in one
MD step. The minimization has converged when the average
force in the direction of the constraints is smaller than a
predefined tolerance:

1

M
uuM an11

i uu, f tol . ~34!

When it has not converged we do a step in the direction of
the acceleration

rn11
i 11 5rn11

i 1
1

k
an11

i , ~35!

wherek is a constant with unit one over time squared. For
rapid convergence, this constant should be chosen as

k5
1

m i

]2V

]qi
2

. ~36!

If the value ofk is not equal for allqi ’s, a reasonable value
can be obtained by trying several intermediate values. When
the minimization has converged, the new coordinates, the
velocities at the half step, and the new forces are given by

rn115rn11
i , ~37!

vn1~1/2!5
1

h
~rn112rn!, ~38!

fn115f n11
i . ~39!

Just like method I of Zhouet al.,31 this method is time
reversible and conserves linear and angular momentum. The
method is computationally much more expensive than nor-
mal MD, because all the forces need to be evaluated once
during each iteration of the minimization, the computational
cost of the rest of the algorithm being negligible. But when
used in combination with a model requiring a minimization
procedure for polarization, it can be done almost for free,
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since both minimizations can be done at the same time. For a
polarizable model using shells, the forces on the shells can
be added to the forces in the constrained directions in the
convergence criterion Eq.~34!. The shells are displaced by
adding the forces on the shells divided by the shell spring
constant to the right of Eq.~35!.

IV. TEST CASE

A. Collision of two rotating dumbbells

As a simple two-dimensional test system we used two
rotating dumbbells, which is analogous to system~A! of
Zhou et al.31 Each dumbbell consists of two Lennard-Jones
~LJ! particles connected by a spring with a force constant of
10 000 kJ mol21 nm21. The bond lengths and the sigmas of
the LJ potential are 0.1 nm. The depth of the LJ potential is
0.25 kJ mol21. The two dumbbells are initially separated by a
small distance and one is rotating twice as fast as the other.
Because of the Lennard-Jones attraction they collide after a
few rotations and the direction of rotation of the fastest ro-
tating dumbbell is inverted. The distances between the par-
ticles in each dumbbell are shown in Fig. 1.

Initially the springs are stretched due to the centrifugal
force. Because the first dumbbell rotates twice as fast as the
second, the kinetic force is four times as large and the spring
stretches four times as much. The collision and change of
direction of rotation occur just after 0.8 ps. There the springs
contract due to the repulsive interaction at short distance
with a particle of the other dumbbell. The total and kinetic
energies of the system are shown in Fig. 2. The collision and
change of direction of rotation occur just after 0.8 ps. The
energy conservation at the collision can be seen in more
detail in Fig. 3. The fluctuations in the energy are of the
order of the accuracy of the kinetic energy in the leap-frog
algorithm. The actual accuracy of the integrator can be de-
termined from the difference in the total energy at time 0 and
1 ps, where the kinetic and potential energies are almost
constant. This difference is 331025 kJ mol21. Also shown
in Fig. 3 is the total energy for the algorithm wherefn11

0 is
used during the minimization instead offn11

i 11 . This leads to
a jump in the energy, thus losing time reversibility.

V. APPLICATIONS

A. Liquid water with the MCDHO model

In this section we show a more interesting application of
flexible constraints. In the liquid, the intramolecular DOFs of
the water molecules are in their respective ground states; but
the molecules are deformed with respect to the gas-phase
geometry,36–38 where the protons should adiabatically reach
the positions that minimize the potential energy of the in-
tramolecular DOFs, subject to the interactions with the other
molecules and to centrifugal forces.

When intramolecular DOFs are included explicitly, it is
also convenient to explicitly account for the electronic polar-
izability, because the effects are of similar magnitude.18

These features should not be superimposed on an empirically
fitted model, that has ‘‘parametrized them away’’ and thus
would be overcorrected. Instead, a model is required that can
reliably reproduce the water molecule in the gas phase, and
includes polarizability and flexibility. One such model is
MCDHO,34 whose intramolecular parameters were fitted to a
high-quality surface of the energetic cost of deformation.39

The MCDHO model consists of three cores or particles
and a shell, which models the electron cloud of the oxygen
as a spherical, exponentially decaying charge density~see
Fig. 4!. Each core has a positive charge and interacts elec-

FIG. 1. The distance between the particles in first dumbbell~solid line! and
between the particles in the second~dashed line! dumbbell. FIG. 2. The total~dashed line! and kinetic energies~solid line! of the dumb-

bell system.

FIG. 3. The total energy of the dumbbell system with the rotational force
determined at each step of the minimization~solid line! or only determined
at the first step of the minimization~dashed line!.
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trostatically with all the other cores in the system. Core–core
Lennard-Jones terms are used for intermolecular interactions
only, whereas within the same molecule the oxygen is con-
nected to the hydrogens with Morse potentials, and a fourth
order expression is used for the bending potential of the
H–O–H angle. The shell is massless and it adiabatically
reaches the position that minimizes its contribution to the
potential energy of the system. The shell has a negative
charge and interacts electrostatically with all the cores in the
system, apart from the oxygen in the same molecule, to
which it is attached by a harmonic spring. Because the shell
is a charge density, the shell–core electrostatic interactions
are screened. However, the shell–shell interactions are not
screened, but instead have Lennard-Jones terms. The inter-
molecular parameters of the model were fitted to reproduce
the interaction energy and the geometry of the optimum wa-
ter dimer.40,41

Thus, the potential in the direction of an O–H bond con-
sists of a Morse potential, intramolecular electrostatic inter-
actions, and intermolecular interactions. Although the first
two mainly determine the distribution of O–H distances, the
external contribution cannot be neglected, as shown by the
experimentally observed lengthening of the O–H bonds in
the liquid.36–38 The H–O–Hangle is also a fast degree of
freedom with quantum nature, whose value is modified by
the intermolecular interactions. Hence, in the following MD
simulations both the O–H and the H–H distances are treated
similarly: as classical DOFs, in a first one; as rigid con-
straints, in a second one, and as flexible constraints in a third
one. The ground state assumption is quite satisfied with
hn/kBT517 for bond vibrations andhn/kBT58 for angle-
bending vibrations.

B. Simulations

We performed three simulations of 1000 MCDHO mol-
ecules in a periodic cubic box at a fixed density of 997
kg m23. A Berendsen thermostat42 with a coupling time of
0.1 ps was used to maintain the temperature atT5298 K.
The cutoff for the particle–particle interactions was 1 nm,
the long-range electrostatics were treated with the particle
mesh Ewald method~PME!43 and a dispersion correction
was applied for the Lennard-Jones interactions. The neighbor
list was updated at each integration step. The force tolerance
for the minimization of the shells was 0.1 kJ mol21 nm21 for
all three simulations.

The first simulation produced classical trajectories for all
the DOFs of the nuclei, including bond, and bond angle vi-
brations, so it required a short time step of 0.5 fs. This we
call the fully flexible ~FF! simulation and denote it as MD–
FF. The average value of the O–H distance resulted 0.0985

nm and of the H–H distance, 0.1538 nm, with standard de-
viations of 0.0026 and 0.0053 nm, respectively. However, the
centers of Gaussian fits to their distributions were 0.1 pm
shorter, 0.0984 nm for O–H and 0.1537 for H–H.

In the second simulation, the intramolecular DOFs
were constrained to the two latter values and a time step of
2 fs was used. This is the rigidly constrained~RC! simula-
tion MD–RC. Finally, flexible constraints~FCs! were used
in the third simulation, hereafter denominated MD–FC,
also with a time step of 2 fs. The force tolerance for the
minimization of the FCs was the same as that for the shells,
0.1 kJ mol21 nm21. Both simulations with constraints were
equilibrated for 10 ps after starting from an equilibrated con-
formation from the first one.

C. Fast dynamics

To look at fast dynamics we performed three short simu-
lations of 2 ps each. The fastest motions can be found by
looking at the velocity autocorrelation function of the Carte-
sian velocities of the hydrogens~see Fig. 5!. In MD–FF, the
first peak appears at 9 fs, which corresponds to one period of
the bond vibrations. The velocity autocorrelation functions
for MD–RC and MD–FC are almost identical, with the first
peak at 50 fs, which corresponds to the libration of the mol-
ecule. The integration is accurate for all three simulations,
MD–FF having 18 integration steps per period of the fastest
oscillation, whereas for MD–RC and MD–FC this number is
25. The average number of force evaluations per step is 14
for MD–FF simulation, 16 for MD–RC and 19 for MD–FC.
The constrained simulations are computationally much more
efficient than the flexible one, because the time step can be
chosen four or five times as large.

D. Thermodynamics and structure

To obtain thermodynamic properties and the slow dy-
namics we extended the three simulations to 80 ps. One
check for the integration accuracy is the temperature of the
system. The Berendsen thermostat tries to keep the tempera-

FIG. 4. The MCDHO water model with the charges on the four sites.

FIG. 5. The velocity autocorrelation function of the hydrogens in the
MCDHO model for the MD–FF~solid line!, the MD–RC~dotted line!, and
the MD–FC~dashed line! simulations.
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ture constant at 298 K, but if heat is continuously flowing in
or out of the system, this will cause a temperature difference
proportional to the heat flow. The temperature is 298.0,
297.8, and 297.4 K for MD–FF, MD–RC and MD–FC, re-
spectively. All deviations are relatively small. We also
checked for equipartition, which was completely fulfilled in
the three simulations.

The potential energy per molecule in the liquid~subtract-
ing the energy of a monomer! of MD–FF resulted in243.3
kJ mol21, slightly different from that previously reported,34

243.5 kJ mol21. This latter value was obtained from a MC
simulation, without using a dispersion correction, that should
have lowered the energy to243.8 kJ mol21. The small dif-
ference of 0.5 kJ mol21 with the MD–FF energy is probably
due to an error in the treatment of the screening in the PME
algorithm in the MC code.

The value that resulted from MD–RC was246.8
kJ mol21, and from MD–FC was246.9 kJ mol21. The dif-
ference relative to the flexible simulation corresponds to the
loss of the thermal motion in the three constrained degrees of
freedom, which contributes 3kBT/253.7 kJ mol21 to the
potential energy. Our results can be compared to the value
247.4 kJ mol21 from a recent simulation with 125 MCDHO
water molecules.30 The small difference is due to the smaller
number of molecules; in the same work, the result for 512
molecules is247.0 kJ mol21. Using the quantum corrections
reported from the PIMD simulation,30 together with the com-
mon assumptions44 that the gas behaves ideally and that the
liquid is incompressible, the vaporization enthalpy predicted
from our simulations isDHvap543.2 kJ mol21, which falls
somewhat short from the experimental value45 DHvap544.0
kJ mol21.

The O–H and H–H distance distributions in both
MD–FF and MD–FC are almost perfect Gaussians~see Fig.
6!. In the latter case the average and standard deviation of the
distributions are identical to those of the Gaussian fits:
^r OH&50.0982 nm,Dr OH

rms50.0009 nm, and̂ r HH&50.1534
nm, Dr HH

rms50.0019 nm. Both distances are slightly shorter
(;0.3 pm! than in the former case, and the widths of their
distributions are three times smaller. The averageH–O–H
angle predicted from this values is 102.7°, which matches
quite well the experimental data of Thiessen and Narten,36

but is smaller than the more recent experimental data of
Ichikawaet al.37 ~see Table I!. This discrepancy is common
to other flexible potentials.18,19,29Because the same widening
of the H–O–Hangle of the water molecule in the liquid has
been predicted with quantum calculations,46,47 and the
MCDHO model consistently producedH–O–H angles
smaller than, as well as O–H bond lengths longer than theab
initio results for all the clusters with which it was
compared,34 it seems to exaggerate the intermolecular O–H
attraction and the H–H repulsion.

The gOO(r ) radial distribution functions for the three
simulations are shown in Fig. 7. It can be seen that they are
almost identical, with a 2% variation in the height of the first
maximum and the depth of the first minimum, overestimated
for MD–RC, and underestimated for MD–FC. The differ-
ence resulted in being even smaller forgOH(r ) and gHH(r )
~data not shown!. Therefore, the changes in the structure of

the liquid observed in the PIMD simulation30 are due exclu-
sively to quantum effects.

E. Slow dynamics

In contrast to the static behavior and the fast dynamics,
the slow dynamic properties do change significantly, as can
be seen from the rotational correlation times and the diffu-
sion coefficients in Table II. The latter were determined from
the mean square displacement by fitting a straight line from
time 5 to 50 ps. The error was determined by the difference
of the fits over the two halves of the interval.

All dynamical quantities reported in Table II scale con-
sistently between the simulations. MD–RC yielded the slow-
est dynamics, followed by MD–FF; the use of flexible con-

FIG. 6. The O–H distance~top graph! and H–H distance~bottom graph!
distributions of the MCDHO water model for the MD–FF~solid lines! and
the MD–FC~dotted lines! simulations.

TABLE I. Geometry of the water molecule in the liquid.

Method ^r OH& ~nm! ^r HH& ~nm! /HOHa ~deg!

MD–FFb 0.0985 0.1538 102.7°
MD–FCb 0.0982 0.1534 102.7°
Experimentalc 0.0966~6! 0.151~3! 102.8°
Experimentald 0.0970~5! 0.155~1! 106.1°
QMe 0.0941 ••• 106.2°
QMf 0.0988 ••• 106.7°

aThe angles were computed from the reported distances.
bThis work.
cNeutron diffraction experiment with mixtures of light and heavy water~see
Ref. 36!.

dNeutron diffraction experiment with heavy water~see Ref. 37!.
eSimulation of a quantum molecule in a classical liquid~see Ref. 46!.
fCalculation of a quantum molecule in an average reaction field~see Ref.
47!. The number in parentheses denotes the uncertainty in the last digit.

9608 J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 Hess, Saint-Martin, and Berendsen



straints produced a speedup of 25% with respect to the
former, and of 11% with respect to the latter. Nevertheless,
the classical prediction of the MCDHO model dynamics is
still slower than real water by a factor of 2. However, PIMD
simulations with flexible versions of the simple point charge
~SPC! model have shown an increase of up to 73% in the
diffusion constant, due to quantum effects.29 If quantum ef-
fects on diffusion, which are mainly due to shifts in zero
point energy in translational and librational modes, were that
strong the value for the MCDHO model would becomeD
5231029 m2 s21, which is much closer to experimental
values. The experimental diffusion constant for D2O is in-
deed lower than for H2O, but the difference is less than 10%,
indicating a much smaller quantum effect. A study of these
quantum effects for the MCDHO model has not been done
and is beyond the aim of the present work.

VI. DISCUSSION

We showed that flexible constraints are the thermody-
namically correct replacements for hard quantum degrees of
freedom, and presented an algorithm for flexible constraints
that works for any combination of coupled distance con-

straints. The algorithm is time reversible and conserves en-
ergy and linear and angular momenta, as shown by a simple
test case.

The application of the method to the study of liquid wa-
ter under ambient conditions showed that the thermodynamic
properties and the structure of the liquid were not sensitive to
whether the simulation included the intramolecular degrees
of freedom, or if they were treated as rigid or flexible con-
straints.

The dynamics, however, differs considerably: Flexible
constraints resulted in a 10% speedup with regard to the
flexible simulation, and a 25% speedup with respect to the
rigidly constrained one. As a flexible constraint is a better
approximation of a chemical bond, the other two representa-
tions significantly underestimate the rate of the dynamic
quantities in small molecules.

For nonpolarizable models the algorithm is computation-
ally expensive, because all forces on the constraints need to
be evaluated in each iteration of the minimization; but when
used in combination with a polarizable model having shells
whose positions need to be optimized in each step, there is
almost no extra computational cost. In this case both flexible
and rigid bond constraints can speed up simulations signifi-
cantly, as larger time steps can be used. As the number of
iterations for the rigidly constrained and flexibly constrained
simulations is comparable, flexible constraints can be used
without extra cost.

The replacement of hard quantum degrees of freedom by
flexible constraints neglects the configuration dependence of
the zero-point energy, which in the case of water is not van-
ishingly small. It is possible to correct for zero-point ener-
gies, at least within the harmonic approximation and to first
order, if the three fundamental vibrational frequencies of the
water molecule are computed at each step, based on the
knowledge of the Hessian for the internal degrees of free-
dom. This has the additional advantage that the spectral
shapes for the intramolecular vibrational bands of the liquid
are obtained as well, but it adds considerably to the complex-
ity of the simulation.

With regard to the MCDHO model, we found its dynam-
ics to be slow compared to that of real water. Quantum ef-
fects, though, are expected to yield faster dynamics.29 Oppo-
site to experimental data and quantum calculations, the
H–O–Hangle of the MCDHO model in the liquid is smaller
than in the gas. We hint that this might be corrected by a
refinement in the intermolecular O–H and H–H interactions.
This might also correct the deviations relative to the experi-
mental data of the radial distribution function that have been
reported.30,34 However, such a refinement is well beyond the
aims of the present work.

VII. CONCLUSIONS

As the computational capacities and the understanding
of molecular interactions increase, so does the possibility of
using more complex models in numerical simulations of
large molecular systems. Care must be taken, though, that the
inclusion of fast degrees of freedom is done properly. This
requires new methods that are theoretically sound and, pref-
erably, simple and easy to implement.

FIG. 7. The radial distribution function of the oxygens in MCDHO water
for the MD–FF ~solid line!, the MD–RC ~dotted line!, and the MD–FC
~dashed line! simulations.

TABLE II. Dynamical properties for the three different MD simulations
with the MCDHO model. From left to right, the rotational correlation times
using cosu for averaging, for the H–H vector (t1

HH), the dipole moment
(t1

m), and the normal to the water plane (t1
'). t2

HH is the correlation time
using 3 cos2 u21 for averaging andD is the diffusion constant. The rota-
tional correlation times were obtained by integrating the rotation autocorre-
lation function with an exponential fit for the tail. The experimental values
for t2

HH andD are from Refs. 48 and 49, respectively. The number in paren-
theses denotes the uncertainty in the last digit.

Method
t1

HH

~ps!
t1

m

~ps!
t1

'

~ps!
t2

HH

~ps!
D

(31029 m2 s21!

MD–FF 8.7 8.6 5.8 4.3 1.09~2!
MD–RC 10.1 11.0 7.0 4.8 0.92~3!
MD–FC 8.0 8.4 5.7 3.6 1.16~2!
Experimental 2.0 2.4
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In this work we have addressed the problem of decou-
pling the intramolecular vibrations, which should be treated
quantum mechanically, from other molecular motions that
are adequately described with classical mechanics, but with-
out losing the advantages of a flexible model that includes
the effects of molecular deformations. We showed that the
assumption of high frequencies for the quantum DOFs al-
lows the derivation of Hamiltonian equations of motion for
the classical DOFs, as long as the quantum DOFs adiabati-
cally reach their equilibrium values, which are determined by
the intramolecular and intermolecular interactions. Then we
presented an algorithm that can easily be implemented in a
MD program, and has very good conservation properties, as
shown from its application to a simple test case. Finally, we
used the method in a study of liquid water under ambient
conditions, with a flexible and polarizable model, from
which we show the effects of flexible constraints in the dy-
namical properties. The analysis of the structural data pro-
vides basis to hint at possible refinements of the MCDHO
model.
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