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The quasi-Gaussian entrof@GE) theory employs the fact that a free-energy change can be written
as the moment-generating function of the appropriate probability distribution function of
macroscopic fluctuations of an extensive property. In this article we derive the relation between the
free energy of a system in an external magnetic or electric field and the distribution of the
“instantaneous” magnetization or polarization at zero field. The physical-mathematical conditions
of these distributions are discussed, and for several continuous and discrete model distributions the
corresponding thermodynamics, or “statistical state,” is derived. Some of these statistical states
correspond to well-known descriptions, such as the Langevin and Brillouin models. All statistical
states have been tested on several magnetic and dielectric systems: antiferromagnetictidnCl
two-dimensional Ising spin model, and the simulated extended simple point di&®P@#B8 water

under an electric field. The results indicate that discrete modeling of magnetization and polarization
is rather essential for all systems. For the Ising model the “discrete uniform” gtateesponding

to a Brillouin function gives the best description. MnCis best described by a “symmetrized
binomial state,” which reflects the two opposing magnetic sublattices. For simulated water it is
found that the polarization, as well as the type of distribution of the fluctuations, is strongly affected
by the shape of the system. @002 American Institute of Physic§DOI: 10.1063/1.1448290

I. INTRODUCTION all available physical-mathematical constraints and require-
. o ments on the distribution. Each model distribution yields a

In recent articles we demonstrated that it is actuallyynique and complete set of thermodynamic functions, the
rather fruitful to approach statistical mechanics from thes«giatistical state” of the system. It must be stressed that,

point (_Jf_\;iew of macroscopic fluctuations, as initiated by eycept for simplified model systems, it Ggery) difficult to
Einsteirt* and further developed by Landau and Lifshitz qpyain from “first principles” the exact distribution. How-

and by Greene and Callérinstead of the usual microscopic
Hamiltonian point of view, as proposed by Gibbs.

It is well known that many free energy changes with
respect to a proper reference state can be written in terms

the moment-generating functibil of some macroscopic . .
probability distributionp(X), where X’ corresponds to some EQGE)_ theory_ W? .ther_efore simply a_ssume thattt) is
guasi-Gaussian,” i.e., it can be described by the convolu-

fluctuating macroscopic extensive property, e.g., the internal R . . . .
energy, enthalpy, volume, or number of particieall infor- tion of distributions corresponding to identical, statistically

mation to evaluate the free-energy difference as a function dhdependent subsystems. These subsystem distributions may
the intensive parameter, e.g., temperature or pressure, is cdi¢ Unimodal-like and are likely to be of relatively low math-
tained inp(X). So, instead of modeling the molecular Hamil- ematical complexity. In general, the information available on
tonian and trying to evaluate by some means the partitio® macroscopic system provides several requirements or re-
function which is usually only possible with severe approxi-strictions that are essential in modeling the distribution func-
mations, we can directly model the distributip¥), using  tion. Unfortunately, such restrictions are insufficient to pro-
vide a unique choice of the model distribution, but the

dAuthor to whom correspondence should be addressed. Electronic mail.nves_tlgatlon qn man_y dlﬁerent system; IS. clgarly showing
andrea.amadei@uniroma2.it that it is possible to identify a typical distribution for each

ever, because of the macroscopic character of thermody-
namic systems, the central limit theoreoan be invoked to
s]how thatp(X) is close to a Gaussian distribution, at least in
e vicinity of the mode. In the “quasi-Gaussian entropy”

0021-9606/2002/116(11)/4426/11/$19.00 4426 © 2002 American Institute of Physics
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instantaneous property’ that is a good model for a very ity (xm Or xo) is defined vial = y,H or P/ey= x.E with
large class of systems. xm=M;—1 andy.=¢€,— 1, whereu, ande, are the relative

Using this formalism for fluctuations of the “potential” permeability and dielectric constant of the sample. The sus-
energy of the system, we were able to derive a relativelyceptibility is independent of the volume and shape of the
simple and general, yet very accurate model, the confinedample®®3! From this follows thatl = y,,/(1+ fgxm)Ho.
gamma state, for describing the temperature dependence Bfeg= xo/(1+fyxe)Eg, H=Hy/(1+fyxm), and E
thermodynamic properties at constant denSify. It also  =Eq/(1+fg4xe). To express the magnetic energy in the SI
forms the basis of complete equations of state for thesystem, it is actually more convenient to Bg= ugoHq as
Lennard-Jones fluid and watet*!® The potential power of the external field, wherg, is the vacuum permeability.
the method is indicated by the fact the same model is appli- We introduce at this stage a general notation for both
cable to systems that differ so much in polarity. magnetic and electric systems, wig={By,E} the exter-

In this article we will use the QGE theory to describe thenal field, M ={M,,M.} the total em momenty={xmn.xe}
statistical mechanics and thermodynamics of macroscopithe susceptibility, andy={uq,1/ep}. Hence, the total mo-
systems as a function of an external magnetic or electrienent is given by
field. The effect of an external magnetic field is not only

interesting by itself. Because of the strong analogy between M (F,)= X _X Fo. (1
magnetization and density fluctuatiofsee, for instance, the ol 1+fax

isomorphism between the Ising magnet and the latticey vice versa

gas®l) this effect may also point to new ways of obtaining

improved descriptions of the density dependence of thermo- ¥(3o)= £oM/(VSo) _ )
dynamic propertie&? In the following paper® we will inves- O 1 f4LoMI (Vo)

tigate in more detail the construction of complete equation§\|Ote that for small y (where {M/V<F,) we have
of state as a function of external field and temperature, bas proximatel§?

on the QGE models derived in this article. Another interest-
ing point of magnetic and electric systems is the effect of the 3~ @ M 3)
shape of the sample on thermodynamics and statistical me- X(o

V 3o
chanics, especially on the spontaneous fluctuations that a L . .
of central interest in the QGE theory. %Elnce the susceptibility is shape independent, it follows that

by reversibly deforming the sample at constant external field
from a shape with factotf 4 and magnetization or polariza-

Il. THEORY tion °M to a shape with factof,, we obtain
A. General electromagnetic definitions M (3o, 1) M (Fo) @
In this article we will use the Sl formulation of the elec- 0T 14 (f4=2f9) 40 "M (30)/ (Vo)

tromagnetic relation&~*? We consider a macroscopic Sys- j o  the total em moment is a function of the shape of the
tem on which a constant and uniform external magnedig)(  sample, which in fact must be considered a state variable.

or electric field €o) is applied. The system is assumed 10 Thjs suggests that also higher-order moments of fluctuations

have an ellipsoidal shapgncluding limiting cases like a f the instantaneous em moment are a function of the shape.
needle, sphere, and diskso that the resulting electromag- gince the em moment is given by the field derivative of the
netic (em) momentM =1V or M =PV (with V the sample  aimnholiz free energA(N,V, T, 5o)

volume andl and P the magnetization and polarization, re-
spectively inside the system is also homogene&tig? For A

simplicity, and without loss of generality, we align the exter- %o N’V‘T'

nal field along thez axis, which coincides with one of the ] )

ellipsoidal axes. We also assume, for mathematical convel follows that free-energy difference with respect to a refer-
nience, that the system reacts isotropically; often this is £Nce System with the same volume, temperature, and number
good approximatioR? and the general tensorial relations be- of particles at zero external field is thus given as a general

come the scalar equations that we use in this paper. We efdnction of the shape by
plicitly exclude systems that exhibit hysteresis effd@%., AA(F,,f)=A(N,V,T.30.fa) —AN,V,T,0.f9)
ferromagnets and ferroelectrjoshere the em moment is not
a single-valued function of the external fieff*~2’ B J% "M (Fo)

The external fieldH, or Ey) creates a homogeneous o 14+ (fg="F9) {0 "M (5 (VF))
field (H or E) inside the sample, which are related¥ig*2®
H=Ho—fyl or E=Ey—f(Pleo), wheref4l and f4P/e, ©®)
are thedemagnetizingand depolarizingfields, respectively, Clearly, only for very special functional relationships be-
€, is the vacuum permittivity, antl is a factor depending on tween the momerftM (F,) and the fieldg,, such as a linear
the shape of the sample: for a thin needle aligned with th@ne (i.e., linear response in the weak-field limithe free
field f4=0, for a spherical samplg,;= 3, and for a flat disk energy expressioAA(F,,f4) has the same functional form
perpendicular to the fieldy=1 (see Refs. 23 and 29 for for each value ofy, see, e.g., the expressions of the Gauss-
general formulas of 3). The magnetic or electric susceptibil- ian statistical statgEqgs.(29)—(31)].

M(Fo) = —( ®

435,
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B. Free energy mined by the distribution of thénstantaneoysmagnetiza-
tion or polarizationM’ at zero field. Hence modeling of this
distribution directly provides aranalytica) expression of
the free energy and related thermodynamic functions: the
“statistical state” of the system.

Following Davidsor?® the Helmholtz free energy
A(N,V,T,F,) of the total system is statistical-mechanically
defined as

A(N,V,T,50)=—kTINnQ(N,V,T,5o), (7)

where the quantum-mechanical partition function is given by
C. Double-state model

= 7Bgn(g )
Q(N,V,T,5o) ; € o ®) Instead of modeling the distribution ¢¢1’ at zero field

, o ) within the total available configurational space to obtain ex-
The summation runs over all the Hamiltonian elgenstatespressionS fo\A, we may think of configurational space to

andg,”(%) is the total energy O,f t_he system in stat@s a o “naturally” divided into two subspaces. At zero external
function of the external field. It is important to note that thefield there must be some symmetry in phase space, because
field used inotsr(l)ese expressions is the external field, not thge o symmetry of magnetization or polarization when
internal oné’ _ ) changing(for nonferromagnetic or nonferroelectric systems

For the energy as a function @ we use an expansion e girection of the field 180°, and because of the symmetry
of the energy to second order in the external_fleld_,3t7)ased OBreaking of ferromagnetic or ferroelectric systems: i.e., with-
second-order quantum perturbation theory, gitg out a small external field, the remanent moment has no pref-

En(Fo) = EQ— M| Fo+ AT, (9)  erence for the positive or negative directidri** Using

i , . such a division, which is by definition independent of the

Here, the first term is the unperturbed enefgg., at zero g a4 field, we obtain a double-state md8tas follows.

external field, including all possible “internal” interactions, Both the actual and reference partition functions can be
like spin—orbit coupling, electron correlations, and eXChangG\’Nritten as the sum of subspaces 1 and 2, and hence
interactions. The second term is the linear Zeeman or Stark '

effect, and the third term the quadratic Zeeman or Stark ef-  AA(Fo) = —KkTIn{e,(T)e A4 E0)

fect. The coefficient4 is customarily considered to be a _ — BAAL (o)

constant, independent of the quantum st@ed hence of F1-e(T)]e b (14)
temperaturg®3*38 |n the magnetic case, for examplg,  where
represents both the diamagnetic and temperature-

_ 50
independent paramagnetic effétuhich is usually positive ~Qu(0)  Zn.€ B

(except when there are low-lying energy levels, in which )= Q(0) 2ne‘55510) (19
caseA might be negative In the dielectric cased is nega-
tive and can be related to the optical refractive indgy via and
A=—Ve(nZy—1)/[1+f4(nZ2,—1)]; see also Ref. 19. Qi(30) , ,
Hence the free energy and total moment are given by e~ PAAIGY = w=e’(l’2)[“‘30<eﬁM §0); 5o=0-  (16)
I
A(Fo) = BAFZ—KTIN' S, e Aler -~ Migol, (10 Since BAA(3,) is of the orderO(N~10%), with AA; the
n free energy differencéwith respect to zero external figldf
M (3o) = — ATo+ M’ (o), (1  thewholesystem in subspade we find thate ™ #2Ai(0) will

therefore for any macroscopic system behave like a step
where the “reduced” momenM’ (excluding the second- function. Already a small difference INAAA(Fo)
order field effectis =AAL(Fo) — AAL(Fo) is very large with respect thT; so if

AAA(T,) <0 for §<0, say, subspace 1 is virtually the only
o _ (12) populated part, and vice versa. Moreover, if we require that
zne—ﬁ[“fn ~MnSo at zero external field both subspaces have identical thermo-
dynamics as a function df, and, because of symmetry, the
distributions of M’ in both subspaces are therefore each
other’s mirror images, we find simply that;(T)=e,(T)
AA(Fo) =A(Fo) —A(0)= %A,’gé—len G%,(Bgo), = 1 independent of temperature. Hence, the free energy and
(13 total moment are

s

M’ (o) =(M")=

Using Eq.(10), the free energy differenc&A(J,) [see Eq.
(6)] is thus given by

whereG(/)W(,BSO):<eﬁMr'130>SO:0 is the moment generating ., |KTIn Gl 1(BF0)  (§0<0)

function’® (MGF) of the probability distribution function at AAS0) = 240~ KTING®,,, »(B30) (§o=0) (a7

zero external field of the em momemt’ evaluated a3y . M '

The zero superscript denotes that the MGF is to be evaluated M1(To) (F0<0)

at zero external field. In general, the MGF of the distribution =~ M(Fo) = — ASo+ M (18
2(Fo)  (30>0),

of a random variableY' is the expectation valu&s (t)
=(e'Y). The change in Helmholtz free eneryA when ap-  with, obviously, M/(go)=(M’); the average “reduced”
plying an external field is via Eq(13) completely deter- magnetization or polarization of subspdce
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D. Model distribution functions and likewise the distribution of subspace 2 must have an
There are several general remarks to make about mod&PPEr limit but may be formally defined from m_inus infinity.

distributionsp (o). Flna}lly, because of t.he _quaptum—mechanlf:al origen of
First, because of the macroscopic nature, the system Céﬁ]agnet!sm,_thg magnet|z§1t|on 'S .als.o quanﬂzed, and we

be subdivided into a large numb&g, of identical and inde- should in p.rmuple use a discrete 'd|str|but|on. H_owgver, for

pendent thermodynamic subsystems, where such subsystefﬂécro.scomc systems the separation of magnetization or po-

can never be smaller than the elementary systertae arization levels may be soosssmall that one could use a con-

minimal independent thermodynamic subsysterete that tinuous model d'St_”b““Oﬁ-’ . u

since the magnetization and polarization are a function of the. ”V\/_e W'" f_ocus in general on t,he descr_lptlon OT th_e ba-

sample shapESec. Il A, Eqg.(4)], the elementary systems, as sic d|ostr|t3ut|'on of the mome”m ' A. cont|nuou§d|str|t?u-

well as the subsystems, must have the same shape as #n P (m’) is thus defined on the intervgl-mo, +m],

overall sample, i.e., an ellipsoid. Since the subsystems al%nd S0

statistically independent, with the total momewt’ equal to 0 oo

the sum of the moments per subsystem, the distribution of @mf(ﬁﬁo)ZJ’ 0ePm SopO(m’)dm'. (20)

M’ is theNg-fold convolution of the distribution of the sub- ~Mo

system moment, and the MCII}OM,(t) is simply the product For discretemagnetization or polarization levels within the

of the corresponding subsystem moment generatingame interval —m(,+m(], the simplest assumption we can

functions’~® As we did for the quantum energy distribution make is to express the moment in thk level as

of solids*? we assume that the distribution of each of the

subsystems can be mathematically decomposed Mto

simple “basic” distributions of “basic” momentsn’, with  with Am’ the separation between two magnetization or po-

corresponding MGF@?H,('[). Hence the total MGF is given larization levels. Hence

by

m/=-my+IAm’, 1=0,1,..n, n=2m{/Am’, (21

G (BFo) =€ Pmo3sGY( BAM' Fy)
Gl (BF0)=[{Tn (BF0)} <1"e={Tn (B0}, (19 L
:efﬁmogoz eﬁAm Solplo, (22)

with N=N.Ng the total number of “basic” distributions and =0
MGF'’s used to model the system. Note that for distributionswhere p,O is the “basic” discrete probability distribution of
that are closed under convolutfBrii.e., the distribution after the magnetization or polarization levélat zero external
convolution is of the same type as the original distributions field.
which is the case for a Gaussian, gamma, or binomial distri-  Finally, note that an elegant method to obtain symmetric
bution, to mention a feyy it is the same to model the distri- distributions is described by Fell&tLet X; and X, be two
bution of m’ or directly that of M’, andN is a redundant identical and independent random variables from a distribu-
quantity. Because of the central limit theoréfi{it also fol-  tion with MGF G ,(t). The new variableY; — X, has a sym-
lows from Eq.(19) that the overall distribution o’ must ~ metric distribution around zero with MGFGY"(t)
be very close to a Gaussian, at least in the vicinity of itSEle,Xz(t):GX(t)GX(—t), which is called the “symme-
mode (maximum). In the QGE theory we model such mac- trized” distribution of X. This procedure can be used for any
roscopic fluctuation distributions as “quasi-Gaussian” distri- sujtable continuous or discrete distribution. Note that for an
butions, i.e., via the convolution of relatively simple analyti- ajready symmetric distribution, the procedure basically
cal “basic” distributions which may be unimodal-like. yields the same statistical state. Also note thattifis a

Second, if at zero field the distribution ¢f1" or m’ is  discrete variable defined di®,n], obviously X;— X, is de-
symmetric around zero, there is no spontaneous magnetizéined on[ —n,n]. When we apply this to the distribution of
tion or polarization, which is the case for the systems undethe indexl, since in that casen/ =IAm’, we should there-

consideration. fore slightly adapt Eq(22) to
Third, since the free energ}A(J,) is finite for any 0 -
finite external field, the moment generating funct@ﬁy,(t) G (BT0)=T™1BAM' Fo)
or"@&,(t) of any suitable model distribution must converge =5 BAM' Fo)GO(— BAM' o). (23)

for any finitet= BF,.

Fourth, it is very reasonable to assume that the domain The appropriate continuous or discrete model distribu-
of M’ orm’ is finite and is symmetric around zero. How- tionsp®(m’) or p{ may be taken from any suitable system or
ever, if the mode of the distribution is very far from one of family of distributions. For continuous distributions, we can
the borders of the domain, the distribution on that side mayise the Pearsdti * or generalized Pearstr® system; for
be well approximated by a distribution that is analytically discrete distributions we can invoke the KatzOrd,"
defined up to infinity. This may be the case with the doubleKemp’s generalized hypergeometric probability distributions
state model, Eq(17), where for physical reasons the distri- (GHPD) or generalized hypergeometric factorial moment
bution of subspace 13(<0) has necessarily a lower limit, distributions(GHFD)®*?515%amilies. The use of a system or
but may be formally defined up to infinitigince this limitis  family of distributions allows one to increase the complexity
only important for§,>0, where in any casdaA;>AA,), of the model distribution in a rather systematic way.
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E. Parameter estimation IMO

——=—A+BKP, 28
Via Egs. (13) and(19) the free energAA is expressed 80 Arh 8

in terms of the parameteed of the “basic” model distribu-
tion of the instantaneous momeant at zero field)N, and for

) o , f .
discrete distributions alsm, andAm’. To obtain tt]e values Taylor expansion of the free energy3g around zero, yield-
of these parameters, we can use the “method

7253+ Ofng a linear relation between magnetization or polarization
moments,”"**

i.e., equating the f_|rst. few theoretical MO- and external field. The Gaussian state is the weak-field limit
ments(or cumulants of the model distributioriexpressed in of all statistical states. IK° is a temperature-independent

terms of the parametees), and the corresponding “experi- constant, we obtain Curie’s law for the usual paramagnetic

mental” or Sa{“P'e mome,nﬂsﬂmﬁ'm of the tolta' Magne  suscepiibilinf2* v, = C/T with C= g */kV the Curie
tization or 8]0] arizationM (W Ich via statistical mechanics Constant; see also Ref. 19.

can be expressed in terms of derivatives of the magnetization From Eq.(6) it follows that if for a certain shape’fy)

or polarization with respect to the external fieldhis is  yho system is described by a Gaussian state, this is actually
equivalent to equating the first few derivatives of the theo'true for all shapegi.e., values off), since

retical free energy expression in the external figlsl a func-
tion of the parametera®, N, mj, andAm’) at zero field to AA(o,fo) = 3A(f0)F5— 28K (o) 5, (29
the corresponding experimental values. Note that the experjz;,

mental cumulants depend on the shape of the saiisele

Sec. Il A). °A

with K°=Ng2. Note that for§,— * % no saturation occurs.
The Gaussian state actually corresponds to a second-order

However, we find it more useful to express the param- Alfa)= 1+ (fg—2F ) (—%A+ BOKO) oIV’ (20
eters of the model distributioni@nd the corresponding ther- 0L 0
modynamic mode)s in terms of the saturation KO(fg)= K . (31)
magnetization/polarizatioft;? V1 (Fg— O ) (=P A+ BOKO) £ IV
Mi= lim M(Fo)+AZo= lim M'(3o) (24) It can be easily derivedicf. Eq. (A1) of Ref. 19 that K°
Fo— So— =«kJ[M'] is the variance of the instantaneous “reduced”

momentM' at zero field. Hence for the systems under con-
sideration where|3°K°>|%A4|, the variance and so the
magnitude of fluctuations are largest fég=0 (a thin
needle and least foif ;=1 (a flat disK. Since for small fields

In this section we will derive several statistical states,all statistical states converge to the Gaussian one, this is a
based both on continuous and discrete magnetization or pgeneral feature of all states: fluctuations are suppressed by
larization distributions, which fulfill the general requirementsthe demagnetizing/depolarizing field.
discussed in Sec. Il D. Throughout, we will model the “ba-
sic” distribution of the momenin’. After evaluating the mo-
ment generating function of the model distributio>*%® 2. Beta state
Eq. (20) or (22), we obtain the free energy via E4.3) [or The simplest symmetric continuous Pearson distribution

for the double-state model E(¢L7)] and (19). To relate pa- on a finite domain is the beta distributi®
rameters via the method of moments to thermodynamic de- ’

and the domain quantities; andAm’.

F. Statistical states

. . . . PN ry1-2a

rlvatl\ges, we will also prgwde the I|m|t_I|r§10ﬂ0(9M/0§0 (M) = (2myg) (m’+m6)a’1(m()—m’)a’l

=JdM"/dF,. For all statistical states(0)=0, and, except B(a,a)

for the Gaussian state, the limit of the reduced moment at

infinite field isM¢, i.e., the magnetization and polarization (a=0) (32

saturate because of the finite domainnof. with B(a,a) the beta functioi® The thermodynamics is
given by

1. Gaussian state

!

The Gaussian or normal distributiéfi;>* AA(o) = BAZZ+ M Fo— Ms

m!
()= — p[ mlz} (25) o
p(m')= SexXp — 5—
2mo 20 xln[l"(aJr 3
with zero average ana? the variance, is closed under con-
—a+1/2

a physically acceptable distribution. However, as it is the 2

volution and is defined from-< to «; hence it is not strictly (ﬁmégo
X [ —
prototypical example of a fluctuation distribution and is often

ePmoSol a—1/2(,3m(')§0)] . (33

used to model fluctuations within a mean-field description, B , It 12 BMyTo)
we include it here. The thermodynamics is given by M(So) =~ Ao+ Mg Lo 12 BMET0) | (34)
AA(Fo) = 3455~ 38K TS, (26) o m;
—=—A+ M (35

M (o) = — AFo+ BK S0, (27 o s2a+1’
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with M.=Nmg; |,(x) andT'(x) are the modified Bessel
function of the first kind of order and the gamma function,
respectively® Note that for some specific values af the
beta state reduces to the following well-known models:
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atoms with spinJ=n/2 where M{=NgugJ and Am’

=gug With g the Landeg factor. Since in the absence of an
external field all quantum states with quantum numbers
—J,...,J are equally probable, the distribution df and

Fora=1 the beta distribution degenerates to a continunence of| is discrete uniform. This is the second example

ous uniform distributionp(m’) =1/2m{, yielding thecon-
tinuous uniform state

1 a2 Mg [sin(BmgSo)

AA(SO)_ ZAS:O Bm(,) Ir]| IBm(,)SO ’ (36)
M(Jo) = — AFo+ M L(BMTo), (37
amM° , Bmg

19_50 —A+M{ 3 (39

with M /=Nm{ and £(x) = cothf)—1/x the Langevin func-

where, for a very simple system, the distribution can be
known from first principles. Note that fan—o~ and Am’

—0 with nAm’/2=m(, Egs.(40)—(42) transform into Egs.
(36)—(39), i.e., the continuous uniform state. This is the well-
known classical limit of the Brillouin functiof®
lim;_.. B;(x)=L(x), corresponding to the discrete uniform
distribution tending to a continuous uniform distribution. For
n=1 we haveB;,(x)=tanh{), and the distribution con-
verges to a binomial; see the next subsection.

tion. Interestingly, the continuous uniform state corresponds

to the Langevin modé?2¢3557of an independent “classical”

magnetic or electric dipole momept that can assume any
orientation in space and interacts with an external fi&jd
For N independent moments, we havey=x and M
=Nu. Feller® shows that the projection of a three-
dimensional random vector on a line is uniformly distributed
(see also Amadei, Ceruso, and Di NtJa so this is an ex-

ample where, based on a very simple Hamiltonian, one ca

determine the distributiop(,M") and hence the free energy
from first principles.

For a—0 the beta distribution tends to a two-state dis-
crete uniform distributionEq. (39), n=1] or a (symme-
trized) binomial distributionEq. (44), p=13, n=1]. The cor-
responding thermodynamics is given by EG)—(47).

3. Discrete uniform state

The simplest symmetric discrete distribution on a finite
domain is the(discret@ uniform distribution’*

=7 (=01..n)

P (39

4. Binomial state

The simplest discrete unimodal distribution on a finite
domain is the binomial distributioft;’

=<

=

pIZ(T)pI(l_p)n' (1=01,...n, 0<p<1). (49

It is the simplest acceptable member of the Katz family and
Beneralized hypergeometric probability family of discrete
distributions**? and is closed under convolution. To obtain a
symmetric distribution, we must uge=3. The thermody-
namics is then given by

!
S

AA(Fo) = 34T~ 2 g IncoSHZAAM o), (49)
M (o) = — Ao+ M¢ tanh(38Am’ Fo), (46)
am° , BAm'

&_So__A+ MST, 47

whereM {=Nm{=NnAm'/2.

and is the discrete counterpart of the continuous uniform

distribution (Sec. Il F 2. The thermodynamics is given by

!
S

AA(Fo) = 3ATS—

(n/2) BAM’
inh[3(n+1)]BAm’
“in Smh{[z(n. )1BAM’ o} | 40
(n+1)sinh{38Am’ 3o}
n
M(So)=—ASo+ MéBn/z(EﬂAmlgo), (41
amM°  (n+2)pAm’
a—%——AJrMST, (42
whereM {=Nm{=NnAm'/2 and
2J+1 2J+1 1 X
BJ(X)=< >3 )cotr( 3 X —ﬁcot%ﬁ) (43

is the Brillouin function?®33 This is the exact descriptiéh
of a system ofN ideal (i.e., noninteracting paramagnetic

5. Symmetrized binomial state

As described in Sec. 11 D, the MGF of a “symmetrized”
binomial distribution is given by Eq(23) with g2(t) the
MGF of the binomial distribution, Eq44). The distribution
is defined from—n to +n, and is closed under convolution.
The thermodynamics is given by

!
S

BAM’
+2p(1—p)cosi BAM'Fy)},
M(Fo)=— Ao+ Mg

y 2p(1—p)sinh(BAM'Fo)
p?+(1—p)*+2p(1—p)cosh BAM' o) |’
(49

= %A:Sg—

AA(So) In{p?+(1-p)?

(48)

- A+2M{p(1-p)BAmM’, (50
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with M,=Nm{=NnAm’. Note that forp= 3 we retrieve the
binomial state, Eq945)—(47). Also observe that Eq$48)—
(50) are symmetric irp and (1-p), so we can restrict the
range ofp to [0, 3.

6. Double binomial state
Using for each subspace a binomial distribution, Eq.

(44), we can obtain a double-state model, where for subspaci

1 (Fo<0) we havemy, Am’>0 andmj, Am’<0 for sub-
space 2. The resulting thermodynamics is given by

!

S

AA(Fo) = 3AF— M| ol —

+pe AAm'ISoly, (51

(1—p)(1—e”PamiS)

1—p+pe AAm' ISl
(52

M(Fo)=— AFo+sgn(Fo)M

0

3o

with M{=Nmj=NnAm’p and sgn)=-1, 0, or +1 for x
negative, zero, or positive, respectively. Note that in thes
expressionsimn, and Am’ are defined to be positive. In the
limit p—0 andn—o with pn= 6 a constant, the binomial
distribution tends to the Poisson distribution,p,
=(e"?¢'/11), so for any nonzerd! Eqgs.(51)—(53) tend for
p—0 to the double Poisson statewith M=Nm]
=N6HAm’, and where

- A+M{(1-p)BAM’, (53

!
S

BAM’

AA(Fo) = 3AF5— Mol — (e~ BAMI%0ol 1)
(54)

is the corresponding nontrivial limit of E¢51).

IIl. RESULTS AND DISCUSSION

In this section we will present results of three different
systems: experimental measurements on antiferromagne
MnCl,, Monte Carlo results of the paramagnetic two-
dimensional(2D) Ising model above the Curie temperature,

and molecular dynamics results of the extended simple point

charge(SPC/B water model in the presence of an electric
field.

Apol, Amadei, and Di Nola

25 -
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:/ . —
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‘ < MFM
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FIG. 1. MagnetizationM, of MnCl, vs external magnetic fiel®, at T
=1.33 K; experimental date¢ ) and some QGE statistical states: Gaussian
(G, ---+), discrete uniform(dU, ---), double binomial(DB, —), and symme-
trized binomial(SB, —). Also included is the mean-field model, EG5)
(MFM, ---).

of 10 T, aligned along thé magnetic axis(or a crystallo-

%raphic axi$. MnCl, is a classical example of an antiferro-

magnetic substance, showing no hysteresis effects within that
temperature range. We analyzed dataTat1.33K in the
experimental setupf(=3).

For this sample, the value ofl was smaller than the
experimental noi$¢ and hence could be set to zero. The
maximum moment M{ was measured(being 2.227
Am?mol), as well as the initial slopeM®/dB,. The zero-
field susceptibility y,,=1.88<10 2 differs only ~0.6%
from the estimate using Ed3). Hence the effect of shape
(i.e., f4) on the magnetization curve is in this case negligible.

In Fig. 1 we present the experimental data, along with
the results of some statistical states. Clearly visible is the
sigmoidal behavior of the experimental curve, which is char-
acteristic of an antiferromagnetic systémin Table | we

tgcive the root mean square deviatiGRMSD) values of the

various models, normalized bW/, i.e.,

- \/1 Nf{M(B) M e}
Mé Ndatai iltPo exptis -

The Gaussian stateone parameteris only applicable

RMSD/M,

Since for all systems the remanent magnetization or poever a limited rangeB,=<0.5T), where linear magnetization

larization M| is zero, and the value ofl is known before-
hand, the knowledge d¥l; anddM®/ 33, is for many statis-
tical states (Gaussian, continuous uniform, binomial
sufficient to obtain all parameters. In other cadesta, sym-

is present. From the graph and the table it is clear that the
best models are the double binomial and, especially, the sym-
metrized binomial state®ach with three parametérgor an
antiferromagnetic system this latter fact might be physically

metrized binomial, double binomial, and discrete unifprm explained by supposing that the magnetization of each of the
we used a nonlinear fit to obtain the third parameter. In doingwo magnetic sublattices is approximately described by a
that the parameters were restricted to physically meaningfutinomial state, and hence the total magnetization, being the
values, in order to retain physically consistent models. difference between the two sublattice magnetizations, by a

symmetrized binomial state. The symmetrized binomial state
A. MnCl, . N : .

also gives the correct sigmoidal behavior. Interestingly, the

Giauqueet al%*®! have measured the magnetic momentoptimal beta state has=0 and is therefore identical to the

of a spherical sample of Mnght low temperatur¢l.3—4.2  binomial state. This indicates that the magnetization distribu-
K) in an external homogeneous magnetic field, up to valuesion is discretelike instead of continuous.
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TABLE I. Root mean square deviatioiRMSD) normalized byM for different statistical states and various

systems.
Statistical state No. par. Mngl 2D Ising

GaussianEq. (27)] 1 0.512 1.60
Cont. uniform[Eq. (37)] 2 0.168 0.043
Beta[Eq. (34)] 3 0.109 @=0.0) 0.019 4=0.28)
Binomial [Eq. (46)] 2 0.109 0.048
Symm. binomialEqg. (49)] 3 0.008 p=0.130) 0.048 p=0.5)
Double binomiallEq. (52)] 3 0.021 p=0.719) 0.014 p=0.282)
Discrete uniform Eq. (41)] 3 0.109 f=1) 0.008 (=8)
N gata 62 15
fy 3 0

For comparison, in Fig. 1 also an antiferromagnetic ~ Results are given in Fig. 2 and Table I. Again, the Gauss-
Weiss-like mean-field mod&?*%3is presented, ian state is only applicable for small fieldB{=<0.7). The
T , best model is the discrete uniform state witi 8. Note that
Ma=2MBa(Bguel Bo~AMel), if there would be no interactions between the spids Q)
M 5= 3M . B;(Bgus[Bo—AMA]), and hence no correlation, the magnetization would be given
, , i o , by an “ideal gas” model based on elementary systems con-
where M, and Mg are the sublattice magnetizationd”  (aining only one spin, described by a two-state=(L) dis-
=M +Mj, and® g=2.004,J=5/2. The least-square fitted
value of the exchange coupling parameker 0.44 yields

(59

crete uniform distribution, giving

RMSD/M=0.056; the mean-field model is clearly worse s B
than the symmetrized binomial state. M*(Bo) = Buz| 57+ |- (57
B. Two-dimensional Ising magnet However, from Fig. 2 it is clear that such a model is not

h . idealized del th appropriate, even at such a relatively high temperature. Fur-
The next system is an idealized model, the tWo'thermore, of the other QGE models the double binomial and

_d|men3|_onal Is_mg spin SYSt%W'th o_nIy neargst-naghbor beta states also provide a good description of the magnetiza-
interactions. Since there is no analytical solution for the parqn

tition function in the presence of an external field, we used
standard Metropolis Monte CarleMC) simulations®®® to
obtain values of the magnetization as a function of extern
field. Since as usual in these simulations periodic boundar
conditions were employed, no demagnetizing field can buil
up, sof 3=0 andHy=H is the field used in the Hamiltonian
description. In reduced units, the Hamiltonian is

For the beta state the parameder 0.28 is rather close to
ero, suggesting that there is some discretelike clustering in
he magnetization distribution. From the Hamiltonian it is
lear that the distribution must be discrete. Note also that the
umberN of “basic” distributions connected to the discrete
uniform and beta state may keery) different; in fact, we

£ (By)=—2 oi0;—By > o, (56)

) ' 10 - ===
with & =£/J and B} =gugBo/J, wherel is the exchange G S8BT o Re=ETTTTTT Be
coupling constant between neighboring spims and o os | i g
==*1. The reduced temperature, free energy, and magneti ! / 4
moment areT* =kT/J, A*=A/NJ, and M* =M ,/Ngug // / a /./’_g
with N the number of spins in the system. From this follows o6 - Y 06 //,AQ dU&Be
that xm=[ pnio(guee)?/I] x5, with py the spin density and -, / 7 2 DB
x¥=M*/Bt . Clearly, to analyze the system at a geometry = y 04 | >
different fromf 4= 0, the values o8, J, andpy are required. 041 %

Therefore, the simulation geometfy=0 was used. 02-r I A
For each state point we used a square lattice of 32 oz | D Y

spins with periodic boundary conditions, and production runs 7 00 L=l : :

of 10° MC cycles. The temperature was set Té =6.0, //' 00 05 10 20

which is well above the criticalCurie) temperatur® TS 00 . . ” L L -

=2.269, and hence the system is in the paramagnetic regime B+

Obviously, M{*=1.0 and A=0, and the numerical
slopedM ?n*/(yBg =0.381 matched within the accuracy of the FIG. 2. MagnetizatioM;, of the 2D Ising system vs external magnetic field
1 1 1 * * = - 1 1 .
simulations the value obtained from the second moment ofo 21" =6.0; MC data #) and some QGE statistical states: Gausé@n
L . . -.--), beta(Be, ---), discrete uniform{dU, ---), double binomialDB, —) and
the magnetization fluctuations at zero external fle|d!symmetrized binomialSB,—). Also included is the “ideal-gas” model, Eqg.

KINM*J/(NT*). (57) (IG, --).



4434 J. Chem. Phys., Vol. 116, No. 11, 15 March 2002 Apol, Amadei, and Di Nola

Ple, (V/A)
Ple, (V/A)

f,=0.015

O 2 1 n 1 n 1 0 1 Il 1
0 0.2 0.4 0.6 0 1 2 3 4

E, (V/A) E, (V/A)

FIG. 3. PolarizationP/e, of SPC/E water vs external electric fiek, at FIG. 4. PolarizationP/e, of SPC/E water vs external electric fiele,, at
T=300 K and geometnf,=0.015; simulation dat&4) and some QGE T=300 K and geometr§,=1; simulation datd ¢ ) and some QGE statis-
statistical states: Gaussié@, ----), discrete unifornm(dU, ---), double bino- tical states: GaussiaiG, ----), discrete uniform(dU, ---), double binomial
mial (DB, —), and symmetrized binomidEB, —). (DB, —), and symmetrized binomiabB, —).

find that a discrete uniform “basic” distribution corresponds P{/e, changed slightly from 2.91f(~0) to 3.01 V/A (f4

to approximately 5.5 spins, whereas a beta distribution te=1), which may be connected to the phase transition.

about 3.6 spins. For smallf 4 (f4=0.015), where the depolarizing field is
relatively small, the best description is given by the beta and
continuous and discrete uniform states. Since for the latter

C. SPCIE water n=356, it is basically a continuous uniform state; for the
The last example consists of a system of SPC/E watebeta statea=0.89 is very close to 1 and hence also approxi-
molecule&® in the presence of an external electric figlg. ~ mately a continuous uniform state. The Gaussian description

Yeh and Berkowit! performed molecular dynamics simula- is only applicable up tdE,~0.05 V/A.

tions of this system at 300 K using Ewald summation in two  For largerfy values(f4=3 and 1 with large depolariz-
different setups: a water layer between explicit charged solidng fields, the Gaussian state is applicable up to much larger
Pt walls, and 3D periodic bulk water in the presence of sexternal fields, e.gE,=<2 V/A; see Fig. 4. Also the type of

field. Both methods gave identical results for the dielectricoptimal statistical state changes rather dramatically to the
constante, as a function of the field. Since for watgf, double binomial and especially symmetrized binomial states,

=¢,—1~0(10'-10) is very large, there is a significant indicating that the polarization becomes more discretelike.

effect of the shape of the sample on the polarization curveThis is also supported by the fact tret 0 for the beta state

Hence the system has been analyzed for three different géLe., equal to the binomial stateThe discretelike character

ometries:f4=0.015(a thin cigar with length to width ratio Of the polarization distribution can be interpreted as a

~12), f4=1 (a spherg andf4=1 (a flat disk, perpendicular “grouping” of the possible polarizations, which physically

to the field. may be caused, for example, by collective reorientations of
Yeh and Berkowitz used water with a density of 1.0the hydrogen-bonding network relative to the external field.

g/cnt, which together with the permanent molecular dipole  In Fig. 5 we preseng, as a function of internal fiel,

w=2.39D gives a maximum possible polarization independent of shape. As can be seen, the continuous uni-

Mg/(VeO)=P;/eo=3.01V/A. Note, however, that for very form state €4=0.015) perfectly describes the simulation

large external fields a phase transition to an icelike structuréata. The Gaussian state provides a constant valeg. ¢for

has been observed:; this phase transition likely depends dipmparison, also an “ideal gas” modéf®

the geometry, so in fact we can only say thaf/e,

<3.01V/A. Moreover, s_ince the SPC/E m(_)IecuIes_ have no ¢ (E)=1+ pN—Mﬁ(,B,uE) (58)

molecular polarizability, it follows that for this classical sys- €k

tem by definitionA=0. For a given geometrf, the slope

d[P% eo]/ JEo with P°=P(F,=0) can be obtained from the

zero-field estimate ofe,=69.6-1.5 by Svishchev and PNM

Kusalik’ and Eq.(1). &(B)=1+—2L
Results are given in Figs. 3 and 4 and Table Il. For 0

different geometries we observed that the optimal value oare shown, which clearly fail to describe the data.

and the nonpolarizable Onsager mG&&é?

€r

Proe1E

(59
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TABLE Il. Root mean square deviatiot®RMSD) normalized byM/ for different statistical states applied to
SPCIE data at various geometrigg values.

Statistical state f4=0.015 fq=1/3 fq=1
Gaussian 2.367 0.198 0.067
Cont. uniform 0.009 0.152 0.172
Beta 0.008 §=0.89) 0.075 &=0.0) 0.106 6=0.0)
Binomial 0.092 0.075 0.106
Symm. binomial 0.0921=0.5) 0.007 p=0.187) 0.013 p=0.162)
Double binomial 0.049§=0.0) 0.012 p=0.640) 0.024 p=0.672)
Discrete uniform 0.0091(=356) 0.075 6=1) 0.106 o=1)
Ndata 8 8 8
M 291 2.95 3.01

IV. CONCLUSIONS Gaussian model, which just yields the usual linear response

of the system to the external field, all models describe satu-
]ration effects. Some correspond to well-known models: the
continuous uniform distribution yields a Langevin model, the

In this paper we used the quasi-Gaussian ent(QIyE)
theory to derive statistical-mechanical models of the effect o
an external electric or magnetic fieg}) on the thermody- ~: : S . oS
namics of macroscopic systems. General eIectromagnetf%'scﬁ]te unlgorlmhdlstnlgunon y|ell_dzzti Bﬂr:lloug_frrnodetl.t ¢
(em) theory shows that the em moment, its higher-order cen- € models have been applied 1o three difierent test Sys-

tral moments, and the free energy are in general a function (}Fms: anufgrromagnehc Mng the .two—dlmensmnal Ising
the (ellipsoida) shape of the sample in the form of the ge- spin model in the paramagnetic regime, and the SPC/E water

ometry factorfy . model with an external electric field. In general, discrete

Using second-order quantum perturbation theory. thénodel distributionsp(m’) provide the best description of
Helmholtz free energy is related to the moment gener,atin§hese systems; in particular, the discrete uniform distribution

function of the probability distributiomp(AM") of the total s a rather good and general model for systems in the

“reduced” em momentM’ (the total moment minus the “n_eedle_z” or _“cigar" geometry, i.e.,f4=~0. Int_eres_tingly, the
second-order field effectBy modeling this distribution at (sigmoida) field dependence of the magnetization of MaCl

zero external field as the many fold convolution of “basic” is best described by the symmetrized binomial distribution,
distributionsp(m’) that are supposed to be rather “simple,” which may reflect the fact that the magnetization fluctuations
one obtains exact expressions of the free energy and reIat%’é eat? gfbthe t;\{o OPF’?Z'.“? lr)n att_gnetllc fﬁ blattices farsep\év;aél
thermodynamicq“statistical state’) as a function of field. escribed by a binomial distribution. In the case o

The physical requirements of these “basic” distributions arewater, since the sample shape is important because of the

discussed, and various continuous and discrete models wi!ﬁrget §uscept(|jllalllty, tr?e syste dm dwats anal¥zed dutshmtg,thiﬁe ge-
corresponding statistical states have been derived. Also etries(needle, sphere, and djskt was found that in the

additional two-state model is presented. Apart from thellfst case the best model distributions are more continu-
' ouslike (betg, whereas in the other cases the distribution

becomes more discretelikeymmetrized binomial Hence,
80 . . . . . apart from the magnitude, also the type of fluctuations
changes as a function of sample shape. For all systems the
indicated QGE statistical states give a significantly better
description of the data than other common mean-field ex-
pressions, such as the antiferromagnetic Weiss model, the
“ideal gas” model, and the Onsager model.

In the following papel® we will describe a method of
combining the field models, as derived in this paper, with a
general QGE temperature model, to obtain a complete equa-
tion of state in temperature and external field for fluid sys-
tems.

60

Dielectric constant e,
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(=)
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