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The quasi-Gaussian entropy~QGE! theory employs the fact that a free-energy change can be written
as the moment-generating function of the appropriate probability distribution function of
macroscopic fluctuations of an extensive property. By modeling this distribution, one obtains a
model of free energy and resulting thermodynamics as a function of one state variable. In this paper
the QGE theory has been extended towards theoretical models or equations of state~EOS’s! of the
thermodynamics of semiclassical systems as a function of two state variables. Two ‘‘monovariate’’
QGE models are combined in the canonical ensemble: one based on fluctuations of the excess
energy ~the confined gamma state giving the temperature dependence! and the other based on
fluctuations of the reduced electromagnetic moment@various models as derived in the preceding
paper@Apol, Amadei, and Di Nola, J. Chem. Phys.116, 4426 ~2002!#, giving the external field
dependence#. This provides theoretical EOS’s for fluid systems as a function of both temperature
and electromagnetic field. Special limits of these EOS’s are considered: the general weak-field EOS
and the limit to a Curie’s law behavior. Based on experimental data of water and simulation data
using the extended simple point charge~SPC/E! water model at 45.0 and 55.51 mol/dm3, the specific
EOS based on a relatively simple combination of the confined gamma state model with a discrete
uniform state field model accurately reproduces the dielectric properties of water at constant density,
as the temperature dependence of the weak-field dielectric constant for gases and liquids, and the
field dependence of the dielectric constant of liquids. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1448291#

I. INTRODUCTION

The development of reliable and relatively workable
equations of state~EOS’s! for real systems, based on statis-
tical mechanics, is still a challenging problem in chemistry
and physics. Many successful and unsuccessful attempts
have been made to derive general theoretical descriptions for
the statistical mechanics and thermodynamics as a function
of one or more state variables, e.g., temperature~T!, pressure
~p!, volume~V!, etc. Examples of EOS’s that depend only on
one state variable are ‘‘thermal’’~T! and ‘‘mechanical’’~V!
equations of state. One of the statistical-mechanical ap-
proaches towards such general ‘‘monovariate’’ EOS’s is the
quasi-Gaussian entropy~QGE! theory.

So far the QGE theory provided theoretical models for
the thermodynamics as a function of temperature,1–4

density,5 pressure,5 and external field,6 by modeling the dis-

tributions of appropriate macroscopic fluctuations by ‘‘quasi-
Gaussian’’ distributions, i.e., via the convolution of distribu-
tions corresponding to identical and statistically independent
subsystems.1,6 Application of the QGE theory to many dif-
ferent systems showed that relatively simple models can de-
scribe with high accuracy the thermodynamics of both
solids3 and fluids.1,4,7,8

In this paper we will illustrate how the QGE theory can
be extended towards theoretical models that describe the
thermodynamics as a function of two state variables~‘‘bi-
variate’’ models!. Such bivariate equations of state are im-
plicitly based on specific assumptions on the underlying bi-
variate distribution of fluctuations of two macroscopic
properties, e.g., excess energy and volume, or excess energy
and the electromagnetic moment. In this paper, however, we
do not use any direct modeling of such a bivariate distribu-
tion, but instead use a specific combination of two monova-
riate QGE models. In this case we present the combination of
fluctuations of the excess energy and the electromagnetic
moment in the canonical ensemble, to derive theoretical

a!Author to whom correspondence should be addressed. Electronic mail:
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JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 11 15 MARCH 2002

44370021-9606/2002/116(11)/4437/13/$19.00 © 2002 American Institute of Physics



equations of state that provide the thermodynamics of fluid
systems at fixed density as a function of both temperature
and electromagnetic field.

An EOS, based on a specific combination of a confined
gamma state for the excess energy fluctuations with a dis-
crete uniform state for fluctuations of the electromagnetic
moment, will be tested on~experimental and simulated! data
of fluid water.

II. THEORY

A. Basic definitions and derivations

In this article we will use the same general notation of
electromagnetic~em! properties as in Ref. 6~hereafter re-
ferred to as I!. For an ellipsoidal system containingN mol-
ecules at temperatureT and volumeV, with a homogeneous
external electromagnetic fieldF0 aligned along one of the
ellipsoidal axes, the canonical partition function is given by6

Q5(
n

e2b@En
~0!

2Mn8F01
1
2AF0

2
#, ~1!

where En
(0) is the unperturbed energy of thenth quantum

state without external field.Mn5Mn82AF0 is the total em
moment in the direction of the field, andb51/kT. Within
the approximation used in I,A is a pure constant, indepen-
dent of field and temperature. In the Appendix an explicit
expression ofA in terms of susceptibility is derived. We
exclude systems that exhibit hysteresis effects.

Since in the present paper we are interested in the prop-
erties of fluids, we can take the most general expression for
the semiclassical limit ofQ, giving1,9

Q5
1

N!hd~11g!N (
i
E*

e2bUidj dp

5
~2pkT!d/2

N!hd~11g!N (
i
E*

e2b@F1C1Ei1Mi8F01
1
2AF0

2
#

3)
j 51

N

~detM̃ j !
1/2dj, ~2!

whereU is the Hamiltonian of the system, which is a func-
tion of the generalized coordinatesj and their conjugated
momentap, and the star on the integrals denotes as usual
that we integrate only in the accessible part of configura-
tional space.1 All symbols have their usual meaning:1,9 F and
C are the classical intermolecular and intramolecular poten-
tial energy, andEi is the possible quantum-mechanical vibra-
tional energy of the bond lengths and angles. detM̃j is the
determinant of the mass tensor of thej th molecule,d is the
total number of classical degrees of freedom,h is the Planck
constant, and (11g) the symmetry coefficient per
molecule.10,11The electronic energy is considered to be com-
pletely confined within the ground state. Moreover,Mi8 now
depends on the coordinates and in principle on the quantum
vibrational state.12

Similarly to what was done in a previous paper for sys-
tems without an external field@cf. Eq. ~5! of Ref. 1#, we can

use a rather general approximation to simplify Eq.~2!. As-
suming that, at least for most of the quantum states,

E*
e2b@F1C1Ei2^Ei &2~Mi82^Mi8&!F0#)

j 51

N

~detM̃ j !
1/2dj

>E*
e2b@F1C1E02^E0&2~M082^M08&!F0#)

j 51

N

~detM̃ j !
1/2dj,

~3!

where^Ei& and ^Mi8& are the coordinate-averaged values in
the i th quantum state, with the zero subscript indicating the
ground-state properties, we obtain

(
i

E*
e2b@F1C1Ei2Mi8F01

1
2AF0

2
#)
j 51

N

~detM̃ j !
1/2dj

>S (
i

e2b@^Ei &2^E0&2~^Mi8&2^M08&!F01
1
2AF0

2
#D

3E*
e2b@F1C1E02M08F0#)

j 51

N

~detM̃ j !
1/2dj. ~4!

Furthermore, introducing the abbreviation

Qref
qm5e2b@Eref,02Mref,08 F01

1
2AF0

2
#

3(
i

e2b@^Ei &2^E0&2~^Mi8&2^M08&!F0#, ~5!

with Eref,0 andMref,08 some reference ground-state vibrational
energy and em ‘‘moment,’’ both independent of the coordi-
nates, the partition function can be written as

Q5
~2pkT!d/2Qref

qm

N!hd~11g!N E*
e2b@F1C1E02Eref,02~M082Mref,08 !F0#

3)
j 51

N

~detM̃ j !
1/2dj. ~6!

Note that in generalMref,08 can be set to zero without reduc-
ing the generality of the expressions, and thatQref

qm reduces in
the absence of an external field and for semirigid molecules
to the ideal-gas vibrational partition function.1

If we define a reference state of the system with corre-
sponding partition function

Qref5
~2pkT!d/2Qref

qm

N!hd~11g!N E )
j 51

N

~detM̃ j !
1/2dj, ~7!

we readily obtain the ideal reduced~or excess! free energy1

A8(T,F0):

A8~T,F0![A~T,F0!2Aref~T,F0!

52kT lnS ** e2bU8P j 51
N ~detM̃ j !

1/2dj

** P j 51
N ~detM̃ j !

1/2dj
D

2kT ln e

5kT ln^ebU8&2kT ln e. ~8!
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HereU8 is the excess or ideal reduced~or, loosely speaking,
‘‘potential’’ ! energy,

U85F1C1E02Eref,02~M082Mref,08 !F0 ~9!

and

^ebU8&5
** e2bU8ebU8P j 51

N ~detM̃ j !
1/2dj

** e2bU8P j 51
N ~detM̃ j !

1/2dj

5E r~U8!ebU8dU8 ~10!

is the moment generating function13,14of the probability den-
sity r(U8) of the excess energyU8, which in the QGE theory
is modeled as a ‘‘quasi-Gaussian’’ distribution, i.e., via the
convolution of the distributions of identical and statistically
independent subsystems. Finally,

e5
** P j 51

N ~detM̃ j !
1/2dj

*P j 51
N ~detM̃ j !

1/2dj
~11!

is the fraction of phase space that is accessible to the system,
due to, e.g., hard-body interactions.1

The free-energy change due to the field, at fixed tem-
perature and density, is

DA~T,F0!5A~T,F0!2A~T,0!

5A8~T,F0!2A8~T,0!1Aref~T,F0!2Aref~T,0!

5DA8~T,F0!1DAref~T,F0!. ~12!

In the case that̂Mi8&>^M08&, i.e., if the electromagnetic
moment is basically independent of the bond quantum vibra-
tional state, and settingMref,08 50, we have

DAref~T,F0!5DAref~F0!5 1
2AF0

2. ~13!

For simplicity, in this paper we will adopt such an assump-
tion that proves to be a rather good approximation for the
system studied. Hence, the free energy changeDA, the av-
erage em momentM52]DA/]F0 and its field derivative
are related to the excess properties via

DA~T,F0!5DA8~T,F0!1 1
2AF0

2, ~14!

M ~T,F0!5M 8~T,F0!2AF0 , ~15!

]M ~T,F0!

]F0
5

]M 8~T,F0!

]F0
2A, ~16!

whereM 85^M8& is the average reduced em moment.

B. Construction of bivariate QGE models

In this section we show how two ‘‘monovariate’’ QGE
models, one for the temperature and one for the field depen-
dence, can be combined in the canonical ensemble to obtain
a complete solution for the thermodynamics at fixed density
as a function of temperature and field, a ‘‘bivariate’’ QGE
model.

The two monovariate QGE models are the following.
First, at fixed field and varying temperature, Eq.~8! provides
the excess free energy as a function of~the moment gener-

ating function of! the distribution of the ‘‘potential’’ energy.
Previously we have shown that at zero field a gamma distri-
bution ~yielding the confined gamma state! is an excellent
model distribution for r(U8), both for water1,4 and the
Lennard-Jones fluid.8

Second, from Eqs.~14! and ~13! of I it follows that at
fixed temperatureT0 and varying field,

DA8~T0 ,F0!52kT^ebM8F0&F050 . ~17!

Hence, the field dependence of the free energy is given by
~the moment generating function of! the distribution of the
reduced electromagnetic momentM8 at zero field. In I vari-
ous models have been derived based on different~continuous
and discrete! model distributions ofM8.

The theoretical equations of state we present in this pa-
per are based on the following assumptions.

First, we assume that at least for one ellipsoidal geom-
etry f d the confined gamma state model is valid for describ-
ing the temperature dependence at any possible external
field, aligned along one ellipsoidal axis. This confined
gamma state is at zero field defined by the parametersU08 ,
CV08 , andd0 .

Second, we assume that at one isothermT0 we can use a
given QGE model for the field dependence, as described in I.

The previous two assumptions are based on the great
generality and accuracy of the gamma state model, at least at
zero field, and of some of the models described in I. To
proceed further, we must consider that we are interested es-
sentially in weak- to medium-field conditions, as the high-
field conditions are not only very difficult to be realized ex-
perimentally, but are also likely to determine relevant
electronic rearrangements15,16 and even chemical reactions
that cannot be described by the present model based on sec-
ond order perturbation expansion in the field; see I. This
implies that in the field range of interest, simple first-order
expansions could be used. Hence, noting that at zero field all
fluctuations are close to zero~except at a critical point! and
that the application of an external field provides in general an
increase of the second central moment of the energy, we can
further assume that atT0 the ~field dependence of the! third
central moment of the excess energy fluctuationM3@U8# can
be well approximated~in the field range of interest! by a
first-order expansion in the second central momentM2@U8#:

M3@U8#~T0 ,F0!>S ]M3@U8#

]M2@U8# D
M2@U8#50

M2@U8#~T0 ,F0!,

~18!

where Mn@U8#5^(U82^U8&)n& and we setM3@U8# for
M2@U8#50 equal to zero, since a distribution with zero sec-
ond central moment must have all central moments equal to
zero. Using the previous equation in the definition of the
gamma state parameterd0 ~see, e.g., Ref. 1!,

d0~F0!5
M3~U8!~T0 ,F0!

2kT0M2@U8#~T0 ,F0!
, ~19!

we readily see that

]d0

]F0
>0. ~20!
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This means thatd0 , which characterizes the asymmetry of
the gamma distributionr(U8), is independent of the field~a
‘‘stationary’’ condition!.

Finally, as a very good approximation, the accessible
phase-space fractione can be considered independent of the
field.

The use of these assumptions with the explicit expres-
sions of the confined gamma state1 means that at least for
one geometry, defined by the geometry coefficientf d , the
ideal reduced or excess free energy change due to a change
of the external applied field is

DA8~T,F0!5DU08~F0!2T0DCV08 ~F0!L~T!, ~21!

with

L~T!5
1

d0
1

1

d0
2 S T

T0
D ln@12d~T!#, ~22!

d~T!5
T0d0

T~12d0!1T0d0
, ~23!

and, obviously,

DU08~F0!5U08~F0!2U08~0!, ~24!

DCV08 ~F0!5CV08 ~F0!2CV08 ~0!. ~25!

U08 andCV08 are the ideal reduced~or excess! internal energy
and isochoric heat capacity atT0 , respectively.

Expressing atT0 the free energy change with a given
QGE model for the field dependence~second assumption!,
we have

DCV08 ~F0!5
DU08~F0!2DA08~F0!

T0L0
, ~26!

with

L0[L~T0!5
1

d0
1

1

d0
2 ln~12d0!, ~27!

and where@cf. Eq. ~14!# DA08(F0)5DA0(F0)2 1
2AF0

2 is the
excess free-energy change atT0 due to the field, with
DA0(F0) described by a given QGE model for the field de-
pendence as derived in I. Hence

DA8~T,F0!5DA08~F0!FDU08~F0!

DA08~F0!

1S 12
DU08~F0!

DA08~F0!
D L~T!

L0
G . ~28!

Equation~28! is completely defined if we have an expression
for DU08(F0)/DA08(F0). One of the simplest and most rea-
sonable ways to express such a ratio is to expandDU08(F0)
in a Taylor series in terms ofDA08(F0), using the fact that
DU08 for DA0850 is zero, and retaining again only the first-
order term:

DU08~F0!>C1DA08~F0!. ~29!

Hence we obtain

DA8~T,F0!5DA08~F0!FC11~12C1!
L~T!

L0
G . ~30!

We can eliminateC1 by considering the ‘‘infinite’’ tempera-
ture limit of M /F0 @cf. Eq. ~1! of I#, obtained by differenti-
ating the total free-energy change@Eqs.~14! and~30!#, yield-
ing

A5
M08~F0!

F0
FC11~12C1!

L`

L0
G2

V

z0

x`

11 f dx`
, ~31!

wherex` is the ‘‘infinite’’ temperature limit of the suscepti-
bility and L`521/(12d0) is the infinite temperature limit
of L(T). In the last equationC11(12C1)L` /L050 is the
necessary and sufficient condition to match the results of Eq.
~A4!,

A52
V

z0

x`

11 f dx`
, ~32!

leading to

C15
L`

L`2L0
. ~33!

At this point we have a completely analytical equation of
state for the temperature and field dependence for a specific
geometry of the system, defined as the reference geometry.
Clearly, any model forDA0(F0) as given in I@and hence via
Eq. ~14! for DA08(F0)# yields a different equation of state.
The explicit expressions at the reference geometry0f d of free
energy, electromagnetic moment, entropy and heat capacity
~with a still unspecified field model! are

0A8~T,F0![A8~T,F0 ,0f d!

5A8~T,0!1D0A8~T,F0!

5A8~T,0!1D0A08~F0!
L`2L~T!

L`2L0
, ~34!

0M ~T,F0![M ~T,F0 ,0f d!

50M08~F0!
L`2L~T!

L`2L0

1
V

z0

x`

110f dx`
F0 , ~35!

0S8~T,F0![S8~T,F0 ,0f d!

5S8~T,0!1D0S8~T,F0!

5S8~T,0!

1
D0A08~F0!

T0

1

L`2L0
$d~T!1 ln@12d~T!#%,

~36!

0CV8 ~T,F0![CV8 ~T,F0 ,0f d!

5CV8 ~T,0!1D0CV8 ~T,F0!

5CV8 ~T,0!1
D0A08~F0!

T0

1

L`2L0
S d~T!

d0
D 2

, ~37!

where, obviously,0M08(F0)52]D0A08(F0)/]F0 .
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For fluid dielectric systemsx`>nopt
2 21, with nopt typi-

cally the optical refractive index, since this corresponds to
the situation where the contribution tox from molecular ro-
tations, librations, and vibrations is zero.17,18 In practice,nopt

only weakly depends on temperature and frequency in the
optical range and hence can be used to evaluateA. For mag-
netic systems,A reflects the effect of both diamagnetism and
Van Vleck ~or temperature-independent! paramagnetism,6

andx` is approximately given by the Pascal constants.19

The expressions above can be generalized to a system
with a geometry coefficientf d different from the reference
geometry0f d using Eq.~4! of I:

M ~T,F0 , f d!5
0M ~T,F0!

11~ f d20f d!z0
0M ~T,F0!/~VF0!

, ~38!

and hence

A8~T,F0 , f d!5A8~T,0!2E
0

F0
M ~T,F08 , f d!dF082 1

2AF0
2.

~39!

Note that at zero field the free energy and any thermody-
namic property that is not obtained by derivatives of free
energy in the field are independent of the shape factor and
hence, as indicated,A8(T,0) is not a function off d . From
Eq. ~39! the whole ideal reduced thermodynamics follows,
e.g.,

S8~T,F0 , f d!5S8~T,0!1E
0

F0S ]M ~T,F08 , f d!

]T DdF08 ,

~40!

CV8 ~T,F0 , f d!5CV8 ~T,0!1TE
0

F0S ]2M ~T,F08 , f d!

]T2 DdF08 ,

~41!

etc., and so a complete theoretical equation of state in tem-
perature, field, and geometrical shape is obtained. However,
for shape-independent properties such asx, the EOS needs
only to be evaluated at the reference geometry0f d . Note that
this whole derivation can be readily generalized to ellipsoi-
dal systems where the external field in not aligned along one
of the ellipsoidal axes.20

C. Special conditions

1. Weak-field limit: Gamma [ U8]¿Gaussian [M8]
EOS

First we will investigate the weak-field limit of the gen-
eral EOS, Eq.~34!. From Eq.~A1! we have atT0

]0M08~F0!

]F0
5

]0M ~T0 ,F0!

]F0
1A5b0

0K0 , ~42!

where 0K05Š(M82^M8&)2
‹ with the ensemble average

taken atT0 and f d50f d . Hence in the limit of weak field we
can express0M08 using a Taylor expansion in the field up to
the first order,

0M08~F0!>b0
0K0

0F0 , ~43!

with 0K0
050k0

0@M8# the second central moment ofM8
evaluated atT0 , f d50f d , andF050. So from Eq.~35! we
have

0M ~T,F0!5b0
0K0

0F0

L`2L~T!

L`2L0
1

V

z0

x`

110f dx`
F0 ,

~44!

which is exactly the expression obtained whenD0A08(F0) is
modeled by a Gaussian distribution for the fluctuations of
M8 @see Eq.~27! of I#: a gamma@U8#1Gaussian@M8#
EOS. This clearly means that any model ofD0A08(F0) tends
to the Gaussian one in the limit of weak field, and so Eq.~44!
is always valid in the weak-field limit, regardless of the spe-
cific field model used for the general EOS.

Moreover, in this limit we can expressb0
0K0

0 in terms of
x0

0 ~i.e., x at T0 , F050! andx` via Eq. ~A5!,

b0
0K0

05
V

z0

x0
02x`

~110f dx0
0!~110f dx`!

, ~45!

so that the weak-field EOS is completely defined in terms of
the parametersd0 , x0

0, x` , and0f d at T0 . Specifically, com-
bining Eq.~2! of I and Eqs.~44! and ~45! we obtain for the
weak-field susceptibility

x0~T!5
~x0

02x`!z~T!1x`~110f dx0
0!

120f d@~x0
02x`!z~T!2x0

0#
, ~46!

with z(T)5@L`2L(T)#/(L`2L0).

2. Curie’s law: Gaussian [ U8]¿Gaussian [M8] EOS

The well-known Curie’s law,x0(T)5C/T1a with C
the Curie constant, reflects the fact that for many systems the
weak-field susceptibility is basically inversely proportional
to the temperature. Usually, Curie’s law is derived for para-
magnetic systems, where the effect of shape is unimportant,
so that@cf. Eq. ~3! of I# x0>z0

0M0/(VF0). Using Eqs.~44!
and~45! with the explicit expressions ofL(T), L0 , andL`

we thus obtain

x0~T!>~x0
02x`!

T~12d0!ln$12d~T!%1T0d0

T~12d0!ln$12d0%1T0d0
1x` .

~47!

This expression has a 1/T dependence only in the limitd0

→0, which corresponds to a Gaussian state1 for the energy
fluctuationsU8. In that limit we have

x0~T!>~x0
02x`!

T0

T
1x` , ~48!

which is Curie’s law. The interesting point is that usually this
law is derived for a set of ideal noninteracting classical or
quantum spins, where in the absence of an external field the
energy distributionr(U8) is a Dirac d function. Since ad
function is just a Gaussian with variance tending to zero, it is
not surprising that to obtain Curie’s law from the distribution
point of view, one has to couple a Gaussian@U8# state~see,
e.g., Ref. 1! to a Gaussian@ M8# state, yielding a Gaussian
@U8#1Gaussian@M8# EOS.21
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3. Gamma [ U8]¿discrete uniform [ M8] EOS

In Sec. III we illustrate the behavior of a complete equa-
tion of state modelingD0A08(F0) beyond the Gaussian ap-
proximation. As a field model we use the discrete uniform
statistical state,6 modeling the distribution ofM8 as the con-
volution of discrete uniform ones. For this statistical state we
have

D0A08~F0!

5
Ms8

~n/2!b0Dm8
lnH ~n11!sinh$ 1

2b0Dm8F0%

sinh$@~n11!/2#b0Dm8F0%
J , ~49!

0M08~F0!5Ms8Bn/2S n

2
b0Dm8F0D , ~50!

where n, Dm8, and Ms8 are parameters related to physical
properties of the system andBJ(x) is the Brillouin function.6

Inserting this into the general equations~34!–~37!, we ob-
tain, e.g., for the electromagnetic moment:

0M ~T,F0!5Ms8Bn/2S n

2
b0Dm8F0D L`2L~T!

L`2L0

1
V

z0

x`

110f dx`
F0. ~51!

This specific EOS will be referred to as theG @U8#
1discrete uniform@M8# EOS.

III. RESULTS AND DISCUSSION

In this section we will first test the general weak-field
limit of the EOS on the thermal behavior of the weak-field
dielectric constant of water at different isochores~densities!,
ranging from gas to liquid. Second, we will analyze at two
specific isochores~rN545.0 and 55.51 mol/dm3! the field
dependence of the dielectric constant of water atT05550
and 300 K, respectively, using both experimental data and
simulations of the SPC/E water model.22 Third, at the same
two isochores the behavior of theG @U8#1discrete uniform
@M8# EOS will be investigated.

A. Weak-field temperature dependence of e r

First, we analyzed the thermal behavior of the weak-field
dielectric constante r(T,0) of water at different isochores. In
this weak-field limit all possible EOS converge towards
the gamma@U8#1Gaussian@M8# EOS, wheree r(T,0)
511x0(T) with x0(T) given by Eq.~46!.

We investigated a range of densities, varying from 0.5 to
55 mol/dm3. At each density we used experimentale r(T,0)
data from the temperature–density regression of Fernandez
et al.23 and Wagner and Kruse,24 which is based on a com-
piled experimental database.25 For all isochores the tempera-
ture ranges from the coexistence line up to 873 K, except for
the two highest densities~773 K for 50 mol/dm3; 603 K for
55 mol/dm3!. Error bars ine r(T,0) were taken from Figs.
6–10 and Table 9 of Ref. 23. Note that especially at low
density ~and high temperature! the uncertainties are rela-
tively large, due to the lack of sufficient experimental data.
At each density we setT0 about 20 K above the coexistence

line, and the corresponding gamma state parameterd0 was
obtained from the previously developed QGE water equation
of state,4,26 based on an analysis ofA8(T,0) vs T along iso-
chores. The optical refractive indexnopt was taken atT0 and
l5589 nm from the temperature–density–wavelength cor-
relation of Wagner and Kruse24 and Schiebeneret al.27,28Us-
ing these data, at each density the gamma@U8#1Gaussian
@M8# EOS expression ofe r(T,0) was fitted with a nonlinear
least-square procedure to the experimental data, yielding the
optimal value of the reference geometry factor0f d . Note that
instead of a least-square fit, we could also obtain the value of
0f d at each isochore from just one value ofe r at a tempera-
ture different fromT0 .

Results fore r are given in Figs. 1–3. At all densities the
gamma@U8#1Gaussian@M8# EOS provides an accurate de-
scription of the thermal behavior of the weak-field dielectric
constant of water, indicating that at every isochore there is at
least one reference geometry0f d where the assumptions of
the EOS are valid. In Fig. 4 these optimal values of0f d are
given as a function of density. Also indicated is the ‘‘al-
lowed’’ range of0f d values, which provide still an acceptable
description ofe r(T,0), i.e., within the experimental error
bars, roughly corresponding to a 90% confidence interval of
the statisticalx2 test. In general the values of0f d are small
~&0.03!. This corresponds to very elongated ellipsoidal
samples with very small depolarizing field6 20f d

0Me /Ve0 ,
meaning that the system is not very much ‘‘perturbed’’ by the
external field, and might react in a rather ‘‘simple’’ way to
field. This is in agreement with one of the assumptions, the
‘‘stationary’’ condition @Eq. ~20!#, which assumes that both
the second and the third central energy moments react in a
similar way to the field. As can also be seen from Fig. 4, at
very low density~with virtually no correlation within the
system! the model provides the same accuracy for every
sample shape. However, with increasing density the allowed
range of 0f d values becomes more narrow, until at 55.51

FIG. 1. Weak-field dielectric constante r(T,0) of water as a function of
temperature; experimental data~l! with uncertainties, gamma@U8#
1Gaussian@M8# EOS @Eq. ~46!, —#, Curie’s law@Eq. ~48!, -•-•#, and the
Booth equation@Eq. ~53!, ---#.
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mol/dm3 ~51.0 g/cm3! a specific value of0f d50.015 has
been reached.

For comparison, also two other models are presented in
Figs. 1–3, first, the Curie’s law expression ofx0(T), Eq.
~48!, based on a Gaussian@U8#1Gaussian@M8# EOS. It is
clear that this model is less accurate than the gamma@U8#
1Gaussian@M8# expression, Eq.~46!, except for lower
densities (rN&15 mol/dm3!, where both models are compa-
rable. Deviations are more pronounced at high density. Sec-
ond, in the 1950s, Booth29–31extended the Onsager theory to
water at high field strengths and obtained

e r~T,E!5nopt
2 1

7rNm~nopt
2 12!

3e0A73E
LS A73m~nopt

2 12!E

6kT D ,

~52!

with L(x)5coth(x)21/x the Langevin function andm
51.85 D the dipole moment of an ideal-gas water molecule.
The weak-field limit is

e r~T,0!5nopt
2 1

7rNm2~nopt
2 12!2

54e0kT
. ~53!

From the figures it is clear that the Booth equation@Eq. ~53!#
only gives reasonable results at the two highest densities,
although not as accurate as Eq.~46!, at all other densities its
predictions of the weak-field dielectric constant are signifi-
cantly larger than experimental values.

B. Field dependence of e r

Second, we analyzed the field dependence of the polar-
ization of water at two specific liquid isochores at the corre-
sponding optimal reference geometry0f d as obtained above:
rN545.0 mol/dm3, T05550 K, 0f d50.025 and rN

555.51 mol/dm3, T05300 K, 0f d50.015. Using the experi-
mental values ofnopt and hence a nonzero value ofA @see
Eq. ~32!#, we assessed the optimal QGE field models that can
be combined further on with the gamma state temperature
model.

To observe clear saturation of the polarization one has to
reach fields of the order of 1010 V/m ~5 1 V/Å!; however, in
practice only fields up to;1023 V/Å can be reached due to
experimental difficulties because of the relatively large con-
ductivity of water,32 promoting currents through the sample
at high field strength. At fields of;1023 V/Å, however, one
can observe the first deviations from the linear~Gaussian!
response, the so-called nonlinear dielectric effect~NDE!:33,34

e r~E!'e r~0!1bNDEE2, ~54!

with bNDE521080310218m2/V2 the NDE coefficient of
water34 at 55 mol/dm3 and 300 K. No values ofbNDE are

FIG. 2. Weak-field dielectric constante r(T,0) of water as a function of
temperature; experimental data~l! with uncertainties, gamma@U8#
1Gaussian@M8# EOS @Eq. ~46!, —#, Curie’s law@Eq. ~48!, -•-•#, and the
Booth equation@Eq. ~53!, ---#.

FIG. 3. Weak-field dielectric constante r(T,0) of water as a function of
temperature; experimental data~l! with uncertainties, gamma@U8#
1Gaussian@M8# EOS @Eq. ~46!, —#, Curie’s law@Eq. ~48!, -•-•#, and the
Booth equation@Eq. ~53!, ---#.

FIG. 4. Optimal values of the geometry factor0f d for water as a function of
density; optimal value~l! with acceptable variations~error bars! for the
gamma@U8#1Gaussian@M8# EOS.
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available at other conditions. Therefore, additional data at
higher field strength and/or other densities may come from
molecular simulations.

Recently, Yeh and Berkowitz35 calculatede r(E) at 300
K from molecular dynamics simulation using the extended
simple point charge~SPC/E! water model22 with Ewald sum-
mation. This model reproduces in the best way, among the
different ~nonpolarizable! water models, various static and
dynamic properties of water.36,37 Yeh and Berkowitz ob-
served thate r(E) of SPC/E agrees rather well with the Booth
equation@Eq. ~52!#, suggesting that SPC/E might be used as
a reasonable model for real water. To obtain values of
e r(T0 ,E) for water at both densities, we performed molecu-
lar dynamics simulations of the SPC/E model with an exter-
nal electric field using particle mesh Ewald38,39 ~PME! with
conducting boundary conditions for the long-range electro-
static interactions. For nonzero fieldE, the dielectric constant
was determined from the average polarization of the
system;35 the zero-field values were determined from the
variance of the total dipole moment of the system,k2@M8#,
using the appropriate Ewald fluctuation formula40,41 e r51
1k2@M8#/(3e0kTV). Simulations were performed using
the GROMACS 3.0 software package,42–44 with periodic
boundary conditions and a leapfrog Verlet algorithm using a
time stepDt51 fs ~45 mol/dm3! and 2 fs~55.51 mol/dm3!,
respectively. The temperature was kept constant~at 550 and
300 K, respectively! by a Berendsen thermostat45 with cou-

pling time tT5Dt mimicking a Gaussian thermostat.46,47

Constraints were handled bySETTLE.48 Each state point was
equilibrated for 50 ps, and the total length of the production
runs (tsim) is given in Table I, as well as the values ofe r(E).
Error bars were determined by the block-average
method.49–51

The values in Table I at 55 mol/dm3 agree perfectly with
the values of Yeh and Berkowitz, and the zero-field limit is in
agreement with the value of Svishchev and Kusalik52 (69.6
61.5). At 45 mol/dm3 the SPC/E value ofe r(T0,0) matches
the experimental value very well~25.83!; at 55 mol/dm3 it is
lower than experiment~78.03!. To have reasonable high-field
data for water, we scalede r ,SPC/E(T0 ,E)2nopt

2 at both densi-
ties to match the experimental zero-field limit: for the
two densities the scaling factor c5@e r ,exp(T0,0)
2nopt

2 #/@e r ,SPC/E(T0,0)2nopt
2 # was 1.01 and 1.11, respec-

tively.
For both densities, we calculated at the optimal geom-

etry 0f d the values ofM /(Ve0)5P/e0 versusE0 based on
the ~scaled! SPC/E data. For the analysis of the polarization
we excluded the NDE data, since they are measured at rela-
tively weak field and hence do not affect the analysis. For the
parametrization of the various QGE field models as derived
in I we used the values of the initial slope,

]0M0
0/~Ve0!

]E0
5

]0P0
0/e0

]E0
5

e r~T0,0!21

110f d@e r~T0,0!21#

TABLE I. Dielectric constante r of SPC/E water as a function of electric fieldE at two different densities,
obtained by molecular dynamics simulations.

E ~V/Å !

rN545.0 mol/dm3 rN555.51 mol/dm3

T5550 K T5300 K
e r(E) tsim ~ps! e r(E) tsim ~ps!

0 25.4360.63 600 70.1862.24 5000
0.004 25.6561.38 300 71.8964.95 1200
0.008 24.2860.61 300 68.7462.40 1200
0.0167 25.2560.42 300 60.9660.58 300
0.03 23.7660.15 300 52.3860.28 300
0.0525 20.8160.08 300 38.3660.11 300
0.085 17.1060.03 300 27.2560.04 300
0.122 14.0160.01 300 20.6660.03 300
0.186 10.60060.005 300 14.6760.01 300
0.325 7.09960.002 300 9.27260.004 300
0.5 5.18860.001 300 6.54360.002 300

TABLE II. Root-mean-square deviations~RMSD! normalized byMs8 of different statistical states~QGE field
models! from the ~scaled! SPC/E data. Equation numbers refer to the expressions given in Ref. 6.

Statistical state
rN545.0 mol/dm3

RMSD/Ms8
rN555.51 mol/dm3

RMSD/Ms8

Gaussian~Eq. I-27! 1.279 2.284
Continuous uniform~Eq. I-37! 0.061 0.061
Beta ~Eq. I-34! 0.007 (a50.06) 0.008 (a50.08)
Binomial ~Eq. I-46! 0.013 0.018
Symmetrized binomial~Eq. I-49! 0.013 (p50.50) 0.018 (p50.50)
Double binomial~Eq. I-52! 0.006 (p50.451) 0.014 (p50.449)
Discrete uniform~Eq. I-41! 0.004 (n52) 0.010 (n53)
Ndata 11 11
f d 0.025 0.015
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and Ms8/(Ve0)5Ps8/e051.80 and 2.70 V/Å forrN545 and
55 mol/dm3, respectively. For some models~beta, symme-
trized binomial, double binomial, and discrete uniform! we
used a nonlinear fit to obtain the third parameter~see I!.

For all field models~statistical states! the root mean
square deviations~RMSD’s! from the scaled SPC/E data,
divided by the maximum reduced em momentMs8 , are given
in Table II. For both densities the two most accurate models
are the beta state and the discrete uniform state with
RMSD/Ms8<1%. As expected, the Gaussian model is only
valid for weak fields (E0&0.03 V/Å). Two other models
with a small RMSD value are the binomial~5symmetrized

binomial with p50.5! and double binomial states with
RMSD/Ms8,2%.

In Figs. 5 and 6 we present for both densitiese r(T0 ,E)
as a function ofE, independent of shape~i.e., f d!. Clearly,
the discrete uniform model, Eq.~50!, gives for both isoch-
ores a very accurate description of the ‘‘experimental’’~i.e.,
scaled SPC/E! data. The same is true for the beta model, Eq.
~34! of I ~not shown!. The Booth equation@Eq. ~52!# gives a
reasonable description, especially at 45 mol/dm3, although
the weak-field limit is not correct. For comparison, we also
included the ‘‘ideal-gas’’ model@Eq. ~58! of I#, the nonpolar-
izable Onsager@Eq. ~59! of I#, and polarizable Onsager
model,53

e r215
rNm

e0E

~2e r11!~nopt
2 12!

2e r1nopt
2 LS bmE

e r~nopt
2 12!

2e r1nopt
2 D

1
3e r~nopt

2 21!

2e r1nopt
2 , ~55!

using m51.85 D as the experimental ideal-gas dipole mo-
ment. All three models fail to describe the experimental data,
including the weak-field limit. At 55 mol/dm3 ~Fig. 6!, we
also include the NDE expression@Eq. ~54!#, which fails
aboveE'1023 V/Å. Marcus and Hefter34 and Grahame54

have proposed an empirical formula for the differential di-
electric constant,ed(E)[](P/e0)/]E, based on similarity

FIG. 5. Dielectric constante r of water atrN545.0 mol/dm3, T05550 K as
a function of electric fieldE: scaled SPC/E data, the QGE discrete uniform
~dU! state@Eq. ~50!#, the Booth equation@Eq. ~52!#, the ‘‘ideal gas’’ @Eq.
~58! of I#, nonpolarizable Onsager@Eq. ~59! of I#, and polarizable Onsager
models@Eq. ~55!#.

FIG. 6. Dielectric constante r of water atrN555.51 mol/dm3, T05300 K as
a function of electric fieldE: scaled SPC/E data, the QGE discrete uniform
~dU! state@Eq. ~50!#, the Booth equation@Eq. ~52!#, the ‘‘ideal gas’’ @Eq.
~58! of I#, nonpolarizable Onsager@Eq. ~59! of I#, and polarizable Onsager
models@Eq. ~55!#. Also included are the NDE expression@Eq. ~54!# and
Grahame’s empirical function@Eq. ~56!#.

FIG. 7. Basic polarization distributions of water at 55.51 mol/dm3 for vari-
ous states:~A! Beta and binomial states with;0.85 water molecules per
basic distribution; see Table III.~B! Discrete uniform and binomial states
with ;1.35 water molecules per basic distribution.
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with the Booth equation:ed(E)5nopt
2 1@e r(0)2nopt

2 #/(1
1bE2). Upon integrating this expression, we obtain for the
~integral! dielectric constante r(E)[(P/e0)/E that is used in
I and this paper:

e r~E!5nopt
2 1

e r~0!2nopt
2

AbE
arctan~AbE!. ~56!

Expanding this expression inE and comparing with Eq.~54!,
we see thatb523bNDE/@e r(0)2nopt

2 #. Although the trend
of Eq. ~56! is correct, there are rather large discrepancies
with the ‘‘experimental’’ data and the Booth equation.

Interestingly, at both densities the optimal beta distribu-
tions with parameter valuesa50.06 and 0.08 are continuous
but strongly peaked at the two end points of their domain
~‘‘ U shaped’’!; see Fig. 7~A!. Hence the two optimal field
models~beta and discrete uniform! suggest that the distribu-
tion of the electric moment is discretelike and defined by the
convolution of ‘‘simple’’ independent distributions~basic
distributions! with only a few possible values. However, the
‘‘experimental’’ polarization curves do not allow one to
evaluate the exact number of such discretelike polarization
states. The same holds, for example, when one wants to ob-
tain the frequency spectrum of a solid by ‘‘inversion’’ of the
heat-capacity curve.3 To investigate this point, we varied the
parametera or n of the beta and discrete uniform models,
respectively, in such a way that the RMSD/Ms8 value re-
mained below 1%. Results are given in Table III, and the
corresponding basic distributions forrN555.51 mol/dm3 are
shown in Fig. 7. Note that ratio between the number of water
moleculesN and the total number of basic distributionsN is
not identical for the various models and parameter values,
but is always about 1 at both densities. For comparison re-
sults are also presented for the binomial state, which gives a
good description as well (RMSD/Ms8,2%). Note that since
the binomial distribution is closed under convolution,6,55 the
binomial parametern ~see Ref. 6! is in fact redundant: any
subsystem size is described by a binomial distribution if the
elementary system distribution is defined by a binomial or a
convolution of binomial distributions. A two- or three-state
binomial model~n51 or 2! also provides a ratioN/N of
about 1. Interestingly, at 55 mol/dm3 the basic distributions
of the models withN/N;0.85 ~beta and binomial models
with n51; see Fig. 7~A!# are very similar, with only two

discretelike polarization states. The basic distributions corre-
sponding to models withN/N;1.35 ~discrete uniform and
binomial models withn52! are also rather similar, with
three to four discrete polarization states. At 45 mol/dm3 we
have a very similar situation.

From this we can conclude that, within the uncertainty of
the ‘‘experimental’’ polarization data, the electric moment
distribution of a water sample~at densities 45.0 and 55.51
mol/dm3 and at reference geometries0f d50.025 and 0.015,
respectively! can be modeled by the convolution of a very
large number of basic distributions, each describing approxi-
mately the behavior of one water molecule with two to four
discretelike polarization states. These few discretelike polar-
ization states are likely to be connected with the strongly
directional hydrogen bonding network in water, which favors
only some orientations per water molecule with respect to
the external field. Note that the fact that each basic distribu-
tion describes approximately one water molecule does not
necessarily imply that each water molecule in the system is
statistically independent from the other ones; it only implies
that in each independent~thermodynamic! subsystem, used
to decompose the overall macroscopic distribution and to
define the intensive thermodynamic properties, the distribu-
tion of the electric moment can be mathematically further
decomposed into identical and independent ‘‘simple’’ distri-
butions. When such basic distributions do not coincide with
the fluctuation distributions of physically independent sub-
systems~which are never smaller than a single elementary
system!, they clearly cannot correspond to independent
physical subparts of the system. In this case the basic distri-

FIG. 8. Excess free energyDA8(T,E0) of water atrN555.51 mol/dm3 and
0f d50.015 as a function of temperature and external electric field, based on
the gamma@U8#1discrete uniform@M8# EOS.

TABLE III. Allowed range of parameter values for the beta and discrete uniform statistical states with
RMSD/Ms8<1%. Optimal parameter values are indicated with an asterisk.N/N is the number of water mol-
ecules corresponding to a basic distribution. For comparison also the binomial state is presented. Note that since
the binomial distribution is closed under convolution, the parametern is in that case redundant.

Statistical state

rN545.0 mol/dm3 rN555.51 mol/dm3

Parameter RMSD/Ms8 N/N Parameter RMSD/Ms8 N/N

a50.02 0.010 1.10 a50.04 0.010 0.81
Beta a50.06* 0.007 1.18 a50.08* 0.006 0.87

a50.10 0.010 1.27 a50.12 0.010 0.93
Discrete uniform n52* 0.004 1.58

n53 0.006 1.90 n53* 0.010 1.35
Binomial n51* 0.013 1.06 n51* 0.018 0.75

n52* 0.013 2.11 n52* 0.018 1.50
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butions simply provide via their convolution a mathematical
model of the elementary system’s distribution.

C. Total EOS’s

The best EOS, as a function ofE0 and T, is for both
densities given by a combination atT0 of the discrete uni-
form field model@Eqs. ~49! and ~50! with n52 and 3, re-
spectively; see Table II# with the confined gamma state tem-
perature model, the gamma@U8#1discrete uniform@M8#
EOS. At 55.51 mol/dm3 we illustrate the behavior of this
EOS via DA8(T,E0), M (T,E0), DS8(T,E0), and
DCV8 (T,E0) at geometry f d50f d50.015 @Eqs. ~34!–~37!,
~49!, and ~50!#; see Figs. 8–11. Note that the effect of the
field on these thermodynamic properties is appreciable, es-
pecially on the heat capacity, considering that at 300 K and
zero field A85223.9, S85258.5, andCV8548.7 J/mol K
~from the Saul–Wagner56 water EOS!. The effect of sample
shape can be seen by~numerically! evaluating Eqs.~38!–
~41! for f dÞ0f d ; however, the surfaces inT andE0 are very
similar to Figs. 8–11 and are therefore not shown. In Figs.
12 and 13 we plot the predictions ofe r(T,E) from the
gamma@U8#1discrete uniform@M8# EOS at 45.0 and 55.51
mol/dm3, along with the~scaled! SPC/E data atT0 and ex-
perimental weak-field data for various isotherms. The EOS
describes all available data very accurately. Unfortunately, it
is difficult to check the behavior of the complete EOS be-
cause of the lack of additional ‘‘experimental’’ data, e.g., the
field dependence forT.T0 .

IV. CONCLUSIONS

In this paper we extended the quasi-Gaussian entropy
~QGE! theory in order to construct models providing the
thermodynamic behavior of dielectric fluids as a function of
temperature and electric field. This is achieved by combining
a QGE model for energy fluctuations with a QGE model for
fluctuations of the electromagnetic moment~as derived in the
preceding paper!. Results show that a specific ‘‘bivariate’’
EOS, the gamma@U8#1discrete uniform@M8# EOS, can de-
scribe the thermodynamics of polarized water within a wide
range of temperature, density, and field. This EOS is based
on the combination of a gamma state for the energy fluctua-
tions ~providing the temperature dependence! with a discrete
uniform state for the electric moment fluctuations~providing
the field dependence!. The EOS is able to describe with high
accuracy~1! the thermal behavior of the experimental weak-
field dielectric constant of water at fixed density, ranging
from dilute gas to dense liquid, and~2! the field dependence
of water at fixed temperature for two liquid isochores~45.0
and 55.51 mol/dm3! using a combination of experimental
data and simulation data of the SPC/E water model.

Interestingly, in the field model the distribution of the
macroscopic electric moment is constructed by the convolu-
tion of discrete uniform distributions, each describing ap-

FIG. 9. Total electric momentM (T,E0) of water atrN555.51 mol/dm3 and
0f d50.015 as a function of temperature and external electric field, based on
the gamma@U8#1discrete uniform@M8# EOS.

FIG. 10. Excess entropyDS8(T,E0) of water atrN555.51 mol/dm3 and
0f d50.015 as a function of temperature and external electric field, based on
the gamma@U8#1discrete uniform@M8# EOS.

FIG. 11. Excess heat capacityDCV8 (T,E0) of water atrN555.51 mol/dm3

and 0f d50.015 as a function of temperature and external electric field,
based on the gamma@U8#1discrete uniform@M8# EOS.

FIG. 12. Dielectric constant of water atrN545.0 mol/dm3 as a function of
temperature and electric field: scaled SPC/E data, experimental weak-field
data and gamma@U8#1discrete uniform@M8# EOS predictions.
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proximately one water molecule with only a very limited set
of possible polarization states~two to four!. This is supported
by the fact that for another accurate model, the beta state, the
corresponding beta distribution is stronglyU-shaped, imply-
ing only two discretelike polarization states. Such a result is
probably due to the strong hydrogen bonding network of
water molecules and implies that the electric moment distri-
bution of each elementary system~which is the smallest
physically independent thermodynamic subsystem! can be
described by the convolution of a set of independent discrete
uniform distributions.

It is also worth to remark that in our derivation the ge-
ometry of the sample becomes quite naturally a real state
variable, with rather relevant effects in the liquid state. Note
that the thermodynamics of dielectric fluids is very complex
as it is dictated by the long-range molecular interactions and
no simplifications based on a restricted available phase space
can be used as in solids~such as cell theory and harmonic
approximation!. For this reason statistical mechanical calcu-
lations based on molecular Hamiltonian models are difficult,
especially because of the polarization effects. A comparison
between the QGE models and common mean-field models
~the ‘‘ideal-gas’’ model, the polarizable and nonpolarizable
Onsager models, and the Booth equation! shows that the
physical trend for the first three models is acceptable. How-
ever, neither the weak-field limit nor the temperature and
field dependence is correct. The Booth equation describes at
45.0 and 55.51 mol/dm3 the field dependence rather well,
although the weak-field limit and its thermal behavior are
incorrect at all densities~gas to liquid!. The use of fluctua-
tion distribution models seems once again to be very useful
and efficient in providing largely analytical EOS’s based on
physical principles.

Finally, we expect that the combination of monovariate
models to obtain multivariate EOS’s, as introduced in this
paper, will be of great interest for modeling the thermody-

namic behavior as a function of many different state vari-
ables.
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APPENDIX: EXPLICIT EXPRESSION OF A
From the thermodynamic definition of the average elec-

tromagnetic moment in the direction of the field,M
52]A/]F0 and Eqs.~1! or ~2!, we find

S ]M

]F0
D52A1bk2@M8#, ~A1!

with k2@M8#5Š(M82^M8&)2
‹ the second central moment

of M8. From Eq.~1! of I we obtain that in the limit of zero
field, where]M /]F05M /F0 ,

V

z0
S x

11 f dx D52A1bk2@M8#. ~A2!

The last equations can be used to obtain an explicit expres-
sion of A. From Eq.~6!, in the case wherêMi8&>^M08&,
i.e., the electromagnetic moment is basically independent of
the bond quantum vibrational state. Assuming that at high
temperature the system is still largely confined within the
electronic ground state, although the exponential value in the
integral of the partition function is virtually the unity because
of the high temperature, we obtain that in such an ‘‘infinite’’
temperature limit the second central moment ofM8 con-
verges to a constant. Hence from Eq.~A1! it follows that
]M /]F052A. Using this result in the field derivative of
Eq. ~1! of I in the ‘‘infinite’’ temperature limit, we have

dV

dF0
52

V

F0
2

A
F0

, ~A3!

where we defined for convenienceV5(V/z0)@x` /(1
1 f dx`)# with x` the ‘‘infinite’’ temperature limit of x.
Equation~A3! is an ordinary linear differential equation with
the general solution V(F0)5@V(F0

0)1A#(F0
0/F0)2A,

whereF0
0 is the arbitrary initial field value used to solve the

equation. In order to obtain the result that at ‘‘infinite’’ tem-
perature the zero-field limit ofV converges to the value pro-
vided by Eq.~A2!, we must setV(F0

0)52A, and so at any
field

A52
V

z0
S x`

11 f dx`
D , ~A4!

meaning thatx` is independent of the field and thatA is, in
contrast tox, in general dependent on the geometry of the
system. Moreover, from Eq.~A2! we have

bk2@M8#5
V

z0

x2x`

~11 f dx!~11 f dx`!
. ~A5!

FIG. 13. Dielectric constant of water atrN555.51 mol/dm3 as a function of
temperature and electric field: scaled SPC/E data, experimental weak-field
data and gamma@U8#1discrete uniform@M8# EOS predictions.
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