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The quasi-Gaussian entrof@GE) theory employs the fact that a free-energy change can be written

as the moment-generating function of the appropriate probability distribution function of
macroscopic fluctuations of an extensive property. By modeling this distribution, one obtains a
model of free energy and resulting thermodynamics as a function of one state variable. In this paper
the QGE theory has been extended towards theoretical models or equations (E®@&® of the
thermodynamics of semiclassical systems as a function of two state variables. Two “monovariate”
QGE models are combined in the canonical ensemble: one based on fluctuations of the excess
energy (the confined gamma state giving the temperature dependenckthe other based on
fluctuations of the reduced electromagnetic monjeatious models as derived in the preceding
paper[Apol, Amadei, and Di Nola, J. Chem. Phykl6, 4426 (2002], giving the external field
dependence This provides theoretical EOS's for fluid systems as a function of both temperature
and electromagnetic field. Special limits of these EOS’s are considered: the general weak-field EOS
and the limit to a Curie’s law behavior. Based on experimental data of water and simulation data
using the extended simple point chat§®C/B water model at 45.0 and 55.51 mol/girthe specific

EOS based on a relatively simple combination of the confined gamma state model with a discrete
uniform state field model accurately reproduces the dielectric properties of water at constant density,
as the temperature dependence of the weak-field dielectric constant for gases and liquids, and the
field dependence of the dielectric constant of liquids. 2@02 American Institute of Physics.

[DOI: 10.1063/1.1448291

I. INTRODUCTION tributions of appropriate macroscopic fluctuations by “quasi-
Gaussian” distributions, i.e., via the convolution of distribu-
The development of reliable and relatively workable tions corresponding to identical and statistically independent
equations of statéEOS’y for real systems, based on statis- subsystem&® Application of the QGE theory to many dif-
tical mechanics, is still a challenging problem in chemistryferent systems showed that relatively simple models can de-
and physics. Many successful and unsuccessful attemptgribe with high accuracy the thermodynamics of both
have been made to derive general theoretical descriptions feplids and fluidst*’8

the statistical mechanics and thermodynamics as a function In this paper we will illustrate how the QGE theory can
of one or more state variables, e.g., temperatlijepressure  be extended towards theoretical models that describe the
(p), volume(V), etc. Examples of EOS'’s that depend only onthermodynamics as a function of two state variatffts-
one state variable are “thermalT) and “mechanical’(V)  variate” model$. Such bivariate equations of state are im-
equations of state. One of the statistical-mechanical applicitly based on specific assumptions on the underlying bi-
proaches towards such general “monovariate” EOS's is thesariate distribution of fluctuations of two macroscopic
quasi-Gaussian entrog@GE) theory. properties, e.g., excess energy and volume, or excess energy
So far the QGE theory provided theoretical models forand the electromagnetic moment. In this paper, however, we
the thermodynamics as a function of temperatufe, do not use any direct modeling of such a bivariate distribu-
density? pressuré, and external field,by modeling the dis- tion, but instead use a specific combination of two monova-
riate QGE models. In this case we present the combination of
dAuthor to whom correspondence should be addressed. Electronic maiﬂl'lCtl"atior‘S of the excess energy and the electromagnetic
andrea.amadei@uniromaz2.it moment in the canonical ensemble, to derive theoretical

0021-9606/2002/116(11)/4437/13/$19.00 4437 © 2002 American Institute of Physics
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equations of state that provide the thermodynamics of fluiduse a rather general approximation to simplify E2). As-
systems at fixed density as a function of both temperatursuming that, at least for most of the quantum states,
and electromagnetic field. N

An EOS, based on a specific comb|nat|o_n of a ponfme_d *e—ﬁ[d>+\lf+£if(£i)f(/vli’%M{))&O]H (detlT/Ij)l’zdg
gamma state for the excess energy fluctuations with a dis j=1
crete uniform state for fluctuations of the electromagnetic N
moment, will be tested ofexperimental and simulatedata ~ * efﬁ[(IJJr‘I’+€0*<50>*(M67<M6>)80]H (detM )Y g,
of fluid water. =1 !

)
Il THEORY where(&;) and(M; ) are the coordinate-averaged values in
' theith quantum state, with the zero subscript indicating the
A. Basic definitions and derivations ground-state propertiesi we obtain
In this article we will use the same general notation of . ) N
electromagnetidem) properties as in Ref. ghereafter re- > f e BlO+W+E— M Fo+ 5«435]1‘[ (detMJ)l’zdg
ferred to as ). For an ellipsoidal system containiig mol- [ j=1
ecules at temperatufeand volumeV, with a homogeneous , L
external electromagnetic fiel§, aligned along one of the E(Z e~ BL(E)~ (€)= (M) = (Mg))Fo+ AT
ellipsoidal axes, the canonical partition function is givefi by :
N
* ’ ~
Q=" e A& - Mg+ 2ATH (1) X f e AP+ V&~ MoSol [T (det,;)dé. 4
n =1
where &9 is the unperturbed energy of theh quantum  Furthermore, introducing the abbreviation
state without external field\,= M — A3, is the total em o BlE o ML 50t LAT
moment in the direction of the field, an8l=1/kT. Within Qftf=e ™ Aléeto™ MietoSo* 2/450]
the approximation used in |4 is a pure constant, indepen-
dent of field and temperature. In the Appendix an explicit xz e~ ALE) ~(E0) = (M)~ (Mo))Fol (5)
|

expression ofA in terms of susceptibility is derived. We

exclude systems that exhibit hysteresis effects. with & oand. M/ , Some reference ground-state vibrational
Since in the present paper we are interested in the PrORsnergy and em “moment,” both independent of the coordi-

erties of fluids, we can take the most general expression fQt o< the partition function can be written as

the semiclassical limit o), giving™® ’

(27kT)92QY [+

1 . _ = BLO + W+ Eg— Eref,0~ (Mg My 9 0]
Q= N1+ " > f e Mdgdam NI+ ) © e
: i
N
(27kT) 92 - (e L AR2 x [ (detM)¥2d (6)
_ —BlO+W+E+ M, Fot+ 3AFS] . &
__d—N!h (1+'y)N§i: J' e 0" 2 0 j=1 J

N Note that in generalM,, can be set to zero without reduc-
% H (detIT/Ij)l’ng, 2) ing the generality of the exprt_assions, and 1@5;‘ _re_duces in
j=1 the absence of an external field and for semirigid molecules
to the ideal-gas vibrational partition function.
If we define a reference state of the system with corre-
aﬁponding partition function

wherel/ is the Hamiltonian of the system, which is a func-
tion of the generalized coordinatésand their conjugated
momentasr, and the star on the integrals denotes as usu

that we integrate only in the accessible part of configura- (27kT)92Qun N _
tional spacé.All symbols have their usual meanifdd:® and Qre=NiF YL f Hl (detM ) ¥d¢, (7)
! i=

V¥ are the classical intermolecular and intramolecular poten-

tial energy, and; is the possible quantum-mechanical vibra- we readily obtain the ideal reducédr excessfree energy
tional energy of the bond lengths and angles.lei,ets the A'(T,30):
determinant of the mass tensor of tit moleculed is the
total number of classical degrees of freeddmis the Planck A'(T, o) =A(T,To) — Ared T.30)
constant, and (*vy) the symmetry coefficient per
molecule!® The electronic energy is considered to be com-
pletely confined within the ground state. Moreovét, now
depends on the coordinates and in principle on the quantum
vibrational staté? —kTIne

Similarly to what was done in a previous paper for sys-
tems without an external fielgtf. Eq. (5) of Ref. 1], we can =kTIn(e’y—kTIne. (8)

J*e PUTIN (detM)) Y2dé
J*IIL (detM ) 2d &

=—kTIn
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Herel!' is the excess or ideal reducéat, loosely speaking,
“potential”) energy,

U =D+W+E—Erero— (Mo— Mgt 0 To0 )
and
[*e  PUPUTIN. | (detM )Y€
J*e PUTIN. (detM ) Y2 g

(e8)=

= f p(U)eP dur’ (10)

is the moment generating functirt*of the probability den-
sity p(U") of the excess enerdy’, which in the QGE theory

is modeled as a “quasi-Gaussian” distribution, i.e., via the
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ating function of the distribution of the “potential” energy.
Previously we have shown that at zero field a gamma distri-
bution (yielding the confined gamma states an excellent
model distribution forp(i’), both for watet* and the
Lennard-Jones fluitl.

Second, from Eqgs(14) and (13) of | it follows that at
fixed temperatur@  and varying field,

AA'(To,To)=—kT(eAMTo), . 17

Hence, the field dependence of the free energy is given by
(the moment generating function)ahe distribution of the
reduced electromagnetic momekt’ at zero field. In | vari-
ous models have been derived based on diffgi@nitinuous
and discretemodel distributions ofAM’.

The theoretical equations of state we present in this pa-

independent subsystems. Finally,
J*IIL (detM) M2 &
ST (detM) Y2 g

(11)

€

is the fraction of phase space that is accessible to the syste@/ .

due to, e.g., hard-body interactiohs.

First, we assume that at least for one ellipsoidal geom-
etry f4 the confined gamma state model is valid for describ-
ing the temperature dependence at any possible external
field, aligned along one ellipsoidal axis. This confined
gamma state is at zero field defined by the paraméigrs
, and &g .

Second, we assume that at one isoth&gmve can use a

The free-energy change due to the field, at fixed teMyiyen QGE model for the field dependence, as described in |.

perature and density, is
AA(T,Fo) =A(T,To) —A(T,0)
=A"(T,30) —A(T,0)+ A T,50) —Ared T,0)

=AA'(T,To) + AAwA T,S0). (12

The previous two assumptions are based on the great
generality and accuracy of the gamma state model, at least at
zero field, and of some of the models described in I. To
proceed further, we must consider that we are interested es-
sentially in weak- to medium-field conditions, as the high-
field conditions are not only very difficult to be realized ex-

In the case tha{M;)=(My), i.e., if the electromagnetic perimentally, but are also likely to determine relevant
moment is basically independent of the bond quantum vibrag|ectronic rearrangements® and even chemical reactions

tional state, and setting; =0, we have

AAd T,30) = AA e Fo) = 3AT?. (13

that cannot be described by the present model based on sec-
ond order perturbation expansion in the field; see I. This
implies that in the field range of interest, simple first-order

For simplicity, in this paper we will adopt such an assump-expansions could be used. Hence, noting that at zero field all
tion that proves to be a rather good approximation for thejyctuations are close to zefexcept at a critical pointand

system studied. Hence, the free energy chakge the av-
erage em momentl = —JAA/JF, and its field derivative
are related to the excess properties via

AA(T,Fo)=AA(T,Fo) + 3AFS, (14)
M(T,o)=M"(T,F0) — Ao, (15)
M(T.50) _M'(TSo) 6

o d5o
whereM’=(M") is the average reduced em moment.

B. Construction of bivariate QGE models

that the application of an external field provides in general an
increase of the second central moment of the energy, we can
further assume that &t the (field dependence of thehird
central moment of the excess energy fluctuatibgiZ/' | can
be well approximatedin the field range of interesty a
first-order expansion in the second central momafi/’ |:
ML) M, [U' (T
C7M2[Z/{’] 2[ ]( O!‘SO)!
(18)

where M [U']=((U' —(U'))") and we setMj[U/'] for
M,[U']=0 equal to zero, since a distribution with zero sec-
ond central moment must have all central moments equal to

Ms[u/](To,So)E( )
M[U]=0

In this section we show how two “monovariate” QGE zero. Using the previous equation in the definition of the
models, one for the temperature and one for the field depeyamma state parametéy (see, e.g., Ref.)1
dence, can be combined in the canonical ensemble to obtain

a complete solution for the thermodynamics at fixed density
as a function of temperature and field, a “bivariate” QGE

model.

The two monovariate QGE models are the following.

First, at fixed field and varying temperature, E8). provides

the excess free energy as a function(thie moment gener-

M3(U")(To,80)

20(80) = BT 1(To.50) 19
we readily see that

35,

79 _o. 2

80 0 20
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This means thab,, which characterizes the asymmetry of We can eliminateC; by considering the “infinite” tempera-
the gamma distributiop(4('), is independent of the fielth  ture limit of M/, [cf. Eq. (1) of I], obtained by differenti-
“stationary” condition). ating the total free-energy changegs.(14) and(30)], yield-
Finally, as a very good approximation, the accessiblang
phase-space fractioncan be considered independent of the .
field. A= Mo(So)
The use of these assumptions with the explicit expres- So
sions of the confined gamma stat@eans that at least for , e . ,
one geometry, defined by the geometry coefficient the wherey., is the “infinite” temperature limit of the suscepti-

ideal reduced or excess free energy change due to a chang%iy and Awh:_lll(l_ 50)_ is the infinite[iemﬁer_ature ILmit
of the external applied field is (T). In the last equatio, +(1-Cq)A../A(=0 is the

necessary and sufficient condition to match the results of Eq.

Aoc
Ao

Y X
Co 1+fgxs’

[C1+(1—C1) (31

AA'(T,80)=AU(To) — ToACyo(To) A(T), (21  (A4g),
with vV Yoo

T A:_g_01+fdxm' (32

A(T):6_+EZ T—)In[l—é(T)], (22
0 %170 leading to
B Todo A
= T30+ Todo' R (33
g 0

and, obviously, . . . .
¥ At this point we have a completely analytical equation of

AU(F0)=Ug(To) —Ug(0), (24)  state for the temperature and field dependence for a specific
, . o~ geometry of the system, defined as the reference geometry.
ACo(80) = CyolFo) = Cuo(0)- (29 Clearly, any model foh Ay(Fo) as given in lland hence via
Ug andCy, are the ideal reduce@r excessinternal energy  EQq. (14) for AAy(Fo)] yields a different equation of state.
and isochoric heat capacity @, respectively. The explicit expressions at the reference geonfdigyof free

Expressing afl, the free energy change with a given energy, electromagnetic moment, entropy and heat capacity
QGE model for the field dependenc¢second assumption  (with a still unspecified field modgkre

we have
N AN A (T, )=A"(T,50.%f0)
U(So) —AANT
ACyo(Fo) = o (;- A = ) (26) =A'(T,00+A°A' (T, o)
0420
. A—A(T
with =A'(T,00+A°A)(Fo) A" MDD ), (34)
11 A= Ao
AOEA(TO)=5—O+5—S|H(1—5O), (27) OM(T'gO)EM(T’SO'Ofd)
and wherdcf. EqQ. (14)] AAL(Fo) =AAo(Fo) — 3AT3 is the _oy” A—A(T)
excess free-energy change & due to the field, with ="My(So) Ae—Ag
AAq(Fo) described by a given QGE model for the field de-
pendence as derived in |. Hence I X Xoo 3, (35)
AU’(S) 50 1+Ode°C 0
’ — 4 —O 0
AA'(T,80) AAO(&O)[AA{)(SO) ' (T,§0) =5 (T,50. )
( AU{)(SO)) A(T) 08 =S/'(T,00+A°S'(T,3o)
AAY(To) | Ao =S'(T,0)
Equation(28) is completely defined if we have an expression AOA(Fo) 1
for AU,(T0)/AA(T0). One of the simplest and most rea- +— W {8(T)+In[1-8&(T)]},
sonable ways to express such a ratio is to exp&bid(Fo) 0 = 0
in a Taylor series in terms akA((F,), using the fact that (36)
AU, for AA;=0 is zero, and retaining again only the first- , _, , 0
order term: CUT.8o)=Cu(T.So. fa)
AUY(F0)=C1AAL(0).- (29) =Cy(T,0+A°CY(T,Fo)
Hence we obtain A%Ay(To) 1 (5(1'))2
=Cy(T,0+ , (3
A(T) V( ) TO Aoo_Ao 50 ( 7)
AA'(T,Fo)=AA(F0)| C1+(1-Cy) (30)

Ao | where, obviously’M§(Fo) = — dA°AL(Fo)/ 350 .
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For fluid dielectric systemg..=nj,— 1, with g, typi-  with °Kg=C«J[M’'] the second central moment o%1’
cally the optical refractive index, since this corresponds teevaluated afl, f4=°f4, and§,=0. So from Eq.(35) we
the situation where the contribution jofrom molecular ro- have

tations, librations, and vibrations is zero'®1 tice,
atons, lipratuons, and viprations IS z n pracuce nopt AM—A(T) v Xeo

only weakly depends on temperature and frequency in the OM(T,50)=2 K93, — 3o,
optical range and hence can be used to evaldateéor mag- ° 000 AL—Ag Lo 1+%gx. 0
netic systemsd reflects the effect of both diamagnetism and (44)

Van Vleck (or temperature-independgnparamagnetisti,  which is exactly the expression obtained whe?A)(Fo) is
and .. is approximately given by the Pascal constdfits.  modeled by a Gaussian distribution for the fluctuations of
The expressions above can be generalized to a systepn’ [see Eq.(27) of I]: a gamma[l/’ ]+ Gaussian M ']

with a geometry coefficienty different from the reference EQS. This clearly means that any modelAtAj(F,) tends

geometry®f4 using Eq.(4) of I: to the Gaussian one in the limit of weak field, and so @¢)
OM (T, o) is always valid in the weak-field limit, regardless of the spe-
M(T,Fo.fq)= —95 . , (38 cific field model used for the general EOS.
1+ (fg—"fq) {o"M(T,T0)/ (Vo) Moreover, in this limit we can expreg,°K in terms of
and hence X (i.e., x at Ty, §o=0) and x.. via Eq. (A5),
%o \ X0~ X
A’(T,So,fd)=A’(T,0)—J M(T, 55, f) 5, — LAG2. ooV 0 X , 4
0 Bo o T T on ) L+ ax) 9

(39 . . o
i so that the weak-field EOS is completely defined in terms of
Note that at zero field the free energy and any thermodyihe parameters,, Xg, X.., and®f4 atT,. Specifically, com-

namic property that is not obtained by derivatives of freebinin Eq.(2) of | and Eas.(44) and (45 we obtain for the
energy in the field are independent of the shape factor an\ﬂ/eakgfie?d.(SL)JsceptibiIityq 44 49

hence, as indicatedy’(T,0) is not a function off ;. From

Eqg. (39) the whole ideal reduced thermodynamics follows, (XS—Xw)z(T)+XW(1+°de8)

°T)= , 46
eg. X o B x 2 10 (49
3o/ IM(T,3,.f ; _ _ _
S’(T,So,fd)=8’(T,0)+f o( (aTO d))d%’ with Z(T)=[A.— A(T)J/(A.—Ap).
0
(40)
30 aZM(T,g(’) ) , 2. Curie’s law: Gaussian [ U' ]+ Gaussian [ M'] EOS
C\'/(T,So,fd):C\'/(T,O)JrTf — 7z |9So. _ 0 _
0 d The well-known Curie’s law,x°(T)=C/T+a with C

(41) the Curie constant, reflects the fact that for many systems the
etc., and so a complete theoretical equation of state in temveak-field susceptibility is basically inversely proportional
perature, field, and geometrical shape is obtained. Howevet0 the temperature. Usually, Curie’s law is derived for para-
for shape-independent properties suchyashe EOS needs magnetic systems, where the effect of shape is unimportant,
only to be evaluated at the reference geom@fgy Note that SO that[cf. Eq. (3) of 1] x°=¢,°M%/ (Vo). Using Eqs.(44)
this whole derivation can be readily generalized to ellipsoi-2nd(45) with the explicit expressions of(T), Ag, andA..
dal systems where the external field in not aligned along on&€ thus obtain

of the ellipsoidal axe&’ _ _
xo(T)E(xo—xm)T(l 5o)In{1 6(T)}+T050+Xx'
0 T(1—8p)In{1— 8} + Ty
(47)

This expression has aTl/dependence only in the limif,
—0, which corresponds to a Gaussian stdte the energy

C. Special conditions

1. Weak-field limit: Gamma [ U' [+ Gaussian [ M'] fluctuationsl/. In that limit we have
EOS -
0
First we will investigate the weak-field limit of the gen- X°(T)=(x0— X-) T X (48)

eral EOS, Eq(34). From Eq.(Al) we have afT

oM oM (T which is Curie’s law. The interesting point is that usually this

o(So) _Y (To,0) + A= B,°K (42) law is derived for a set of ideal noninteracting classical or
o 980 oo quantum spins, where in the absence of an external field the

where °Ko=((M’' —(M’'))?) with the ensemble average €Nergy QisFributionp(u’) is a Dirac é function. Since a5
taken afT, andf4="f4. Hence in the limit of weak field we function is just a Gaussian with variance tending to zero, it is
can expres8M, using a Taylor expansion in the field up to NOt surprising that to obtain Curie's law from the distribution
the first order, point of view, one has to couple a Gaussjafi] state(see,

onr 7 - e.g., Ref. 1 to a Gaussiafi M'] state, yielding a Gaussian

Mo(Fo)=Bo KoSo. (43 [1']+ GaussiafM’'] EOS?!




4442 J. Chem. Phys., Vol. 116, No. 11, 15 March 2002 Amadei et al.

3. Gamma [U' ]+discrete uniform [ M'] EOS 15 . w w 09 [ w
=1.0 molidm® T~ =5.0 mol/dm’
In Sec. Ill we illustrate the behavior of a complete equa- 14T \\\p e 26 [ \p\\mo "]
tion of state modelingA°A}(F,) beyond the Gaussian ap- 13} ‘\\\\\\ 1 a3l T
proximation. As a field model we use the discrete uniform « so | ]
statistical stat€ modeling the distribution of1’ as the con- E '
volution of discrete uniform ones. For this statistical state we ! 17 I%ggm ]
haVe 1.0 1.4 I T
‘500 600 700 800 900 600 700 800 900
A°AH(So) 5.0 : : 70 :
M. (n+1)sinh{38,Am’ Fo} 45 T petomien 6.0 s b’
s 2 =~ Al IR ]
= ny = 4 40 - - ~
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Inserting this into the general equatio(®4)—(37), we ob-  FIG. 1. Weak-field dielectric constar(T,0) of water as a function of

n
OM§(Fo) = MéBn/z( EﬂoAm'% ,

tain, e.g., for the electromagnetic moment: temperature; experimental data#) with uncertainties, gammdi/’]
+ Gaussiarf M'] EOS|[Eq. (46), —], Curie’s law[Eq. (48), ----], and the
0 , n , A—A(T) Booth equatiofEq. (53), ---].
M(T,8o) =MsBu2| 5 BoAM'So | —— 73—
o0 0
\Y Xoo
+ éTo—lJrode So- (51) line, and the corresponding gamma state param&jexas

obtained from the previously developed QGE water equation

This specific EOS will be referred to as the [U']  of state®?® based on an analysis & (T,0) vs T along iso-
+discrete uniforn{ M’] EOS. chores. The optical refractive inde,, was taken afy and
N=589 nm from the temperature—density—wavelength cor-
relation of Wagner and Kruétand Schiebeneet al?"?Us-
ing these data, at each density the ganj@#al + Gaussian

In this section we will first test the general weak-field [M'] EOS expression of,(T,0) was fitted with a nonlinear
limit of the EOS on the thermal behavior of the weak-field least-square procedure to the experimental data, yielding the
dielectric constant of water at different isochofdensities,  optimal value of the reference geometry facthy. Note that
ranging from gas to liquid. Second, we will analyze at twoinstead of a least-square fit, we could also obtain the value of
specific isochoregpy=45.0 and 55.51 mol/di the field  °fg4 at each isochore from just one value gfat a tempera-
dependence of the dielectric constant of wategt550  ture different fromT,.
and 300 K, respectively, using both experimental data and Results fore, are given in Figs. 1-3. At all densities the
simulations of the SPC/E water mod@IThird, at the same gammg i/’ ]+ Gaussia M’ ] EOS provides an accurate de-
two isochores the behavior of tHe[2(' ]+ discrete uniform  scription of the thermal behavior of the weak-field dielectric
[M'] EOS will be investigated. constant of water, indicating that at every isochore there is at
least one reference geomefty, where the assumptions of
the EOS are valid. In Fig. 4 these optimal valueSff are

First, we analyzed the thermal behavior of the weak-fieldgiven as a function of density. Also indicated is the “al-
dielectric constang,(T,0) of water at different isochores. In lowed” range of’f4 values, which provide still an acceptable
this weak-field limit all possible EOS converge towardsdescription ofe,(T,0), i.e., within the experimental error
the gammall/' ]+ Gaussian[ M'] EOS, wheree,(T,0) bars, roughly corresponding to a 90% confidence interval of
=1+ x%T) with x°(T) given by Eq.(46). the statisticaly? test. In general the values Bf, are small

We investigated a range of densities, varying from 0.5 to(<0.03.. This corresponds to very elongated ellipsoidal
55 mol/dn?. At each density we used experimen&{T,0)  samples with very small depolarizing fifle-°f,°M/Ve,,
data from the temperature—density regression of Fernandemeaning that the system is not very much “perturbed” by the
et al?® and Wagner and Krusé,which is based on a com- external field, and might react in a rather “simple” way to
piled experimental databa$eFor all isochores the tempera- field. This is in agreement with one of the assumptions, the
ture ranges from the coexistence line up to 873 K, except fofstationary” condition [Eq. (20)], which assumes that both
the two highest densitie§73 K for 50 mol/dni; 603 K for  the second and the third central energy moments react in a
55 mol/dn?). Error bars ine (T,0) were taken from Figs. similar way to the field. As can also be seen from Fig. 4, at
6—10 and Table 9 of Ref. 23. Note that especially at lowvery low density(with virtually no correlation within the
density (and high temperatuyethe uncertainties are rela- system the model provides the same accuracy for every
tively large, due to the lack of sufficient experimental data.sample shape. However, with increasing density the allowed
At each density we séf, about 20 K above the coexistence range of°f, values becomes more narrow, until at 55.51

IIl. RESULTS AND DISCUSSION

A. Weak-field temperature dependence of €,



J. Chem. Phys., Vol. 116, No. 11, 15 March 2002

10 . 12 — ;
«_ Py=20 mokdm’ < py=25 molidm’
8 el 1 10t e 1
W o i}; T~
i IIEEEEE 18T EEEK ]
== S
%600 700 800 900 ‘600 700 800 900
15 — . 19 ;
ol \‘\\\ py=30 molidm® 1w R o py=35 molidm®
o 11 _IE \\\\\\\ 15 %% e _ ]
EE:E _ 13 | EEE ~ ]
or == e |
g =SS
600 700 800 900 600 700 800 900
T(K) T(K)

FIG. 2. Weak-field dielectric constar (T,0) of water as a function of
temperature; experimental date#) with uncertainties, gammdi(’']
+ Gaussiarf M'] EOS|[Eg. (46), —], Curie’s law[Eq. (48), ----], and the
Booth equatiorfEq. (53), ---].

mol/dn? (=1.0 g/cni) a specific value off4=0.015 has
been reached.
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FIG. 4. Optimal values of the geometry facfdy for water as a function of
density; optimal valug 4) with acceptable variationgrror bar$ for the
gamma[ U/’ ]+ Gaussiaff M'] EOS.

2 2
e (T.E)=n2 4 (Pus(ot 2) V73u(nd,+2)E
CE et g VT3 6kT ’
(52

with £(x)=coth)—1/x the Langevin function andu

For comparison, also two other models are presented ifF 1.85D the dipole moment of an ideal-gas water molecule.

Figs. 1-3, first, the Curie’s law expression gf(T), Eq.
(48), based on a Gaussidty' |+ Gaussiajf M'] EOS. It is
clear that this model is less accurate than the garfiitia
+Gaussian[ M’ ] expression, Eq(46), except for lower

The weak-field limit is

7pnp’(Nopt2)?

= 2 —+
€(T.0)= NGy 5deokT

(53

densities py=15 mol/dn?), where both models are compa- From the figures it is clear that the Booth equatiga. (53)]
rable. Deviations are more pronounced at high density. Seanly gives reasonable results at the two highest densities,
ond, in the 1950s, Booti—*'extended the Onsager theory to although not as accurate as E46), at all other densities its

water at high field strengths and obtained

— ; ; 30 ; ;

M. py=40 molidm’ py=45 molidm®

25 1
W 20 q
15 s
10 -
500 600 700 800 900
90 e T
A py=55 molidm®
A
70 L \\ i B
w” \Q§=
50 - . AN q

30 : * N
200 300 400 500 600 700
T(K)

400 500 600 700 800

T(K)

FIG. 3. Weak-field dielectric constart (T,0) of water as a function of
temperature; experimental date#) with uncertainties, gammdi(’']
+ Gaussiaff M'] EOS|[Eg. (46), —], Curie’s law[Eq. (48), ----], and the
Booth equatiorfEq. (53), ---].

predictions of the weak-field dielectric constant are signifi-
cantly larger than experimental values.

B. Field dependence of e,

Second, we analyzed the field dependence of the polar-
ization of water at two specific liquid isochores at the corre-
sponding optimal reference geomefiy, as obtained above:
pn=45.0mol/dni, T,=550K, °f4=0.025 and py
=55.51 mol/dm, To=300 K, °f4=0.015. Using the experi-
mental values o, and hence a nonzero value df [see
Eqg.(32)], we assessed the optimal QGE field models that can
be combined further on with the gamma state temperature
model.

To observe clear saturation of the polarization one has to
reach fields of the order of 1dV/m (= 1 V/IA); however, in
practice only fields up te-10"2 V/A can be reached due to
experimental difficulties because of the relatively large con-
ductivity of water’? promoting currents through the sample
at high field strength. At fields of 10”2 V/A, however, one
can observe the first deviations from the liné&aussian

response, the so-called nonlinear dielectric effBdE):>33

€(E)~€:(0)+ BupeE?, (54)

with Bnpe= —1080x 10™ ¥ m?/V? the NDE coefficient of
water* at 55 mol/dni and 300 K. No values oBype are
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TABLE |. Dielectric constante, of SPC/E water as a function of electric fiellat two different densities,
obtained by molecular dynamics simulations.

pn=45.0 mol/dni pn=55.51 mol/drd
T=550K T=300K
E (V/A) Er(E) Lsim (pS) fr(E) tsim (DS)
0 25.43+0.63 600 70.1&2.24 5000
0.004 25.651.38 300 71.894.95 1200
0.008 24.2&0.61 300 68.742.40 1200
0.0167 25.250.42 300 60.96:0.58 300
0.03 23.76:0.15 300 52.380.28 300
0.0525 20.8%0.08 300 38.36:0.11 300
0.085 17.1@:0.03 300 27.250.04 300
0.122 14.0%0.01 300 20.66:0.03 300
0.186 10.608:0.005 300 14.670.01 300
0.325 7.0990.002 300 9.2720.004 300
0.5 5.188-0.001 300 6.5430.002 300

available at other conditions. Therefore, additional data apling time 7r=At mimicking a Gaussian thermost&t}’

higher field strength and/or other densities may come fronConstraints were handled seTTLE*® Each state point was

molecular simulations. equilibrated for 50 ps, and the total length of the production
Recently, Yeh and Berkowit2 calculatede, (E) at 300  runs () is given in Table |, as well as the values{E).

K from molecular dynamics simulation using the extendedError bars were determined by the block-average

simple point chargéSPC/B water model? with Ewald sum-  method?®~5?

mation. This model reproduces in the best way, among the The values in Table | at 55 mol/dhagree perfectly with

different (nonpolarizablg water models, various static and the values of Yeh and Berkowitz, and the zero-field limit is in

dynamic properties of watéf:*” Yeh and Berkowitz ob- agreement with the value of Svishchev and Kusal{69.6

served that, (E) of SPC/E agrees rather well with the Booth *+1.5). At 45 mol/dni the SPC/E value o, (T,,0) matches

equation[Eq. (52)], suggesting that SPC/E might be used asthe experimental value very we5.83; at 55 mol/dni it is

a reasonable model for real water. To obtain values ofower than experimen(78.03. To have reasonable high-field

€(Ty,E) for water at both densities, we performed molecu-data for water, we scale¢} spc/To,E) — nﬁpt at both densi-

lar dynamics simulations of the SPC/E model with an exterties to match the experimental zero-field limit: for the

nal electric field using particle mesh Ew#ld® (PME) with  two  densities the scaling factor c=[ € exs(To.0)

conducting boundary conditions for the long-range electro— ngpt]/[eryspc,E(To,O)—ngpt] was 1.01 and 1.11, respec-

static interactions. For nonzero fidid the dielectric constant tively.

was determined from the average polarization of the For both densities, we calculated at the optimal geom-

system:° the zero-field values were determined from theetry °f, the values ofM/(Ve,) = P/e, versusE, based on

variance of the total dipole moment of the systety|, M’ ], the (scaled SPC/E data. For the analysis of the polarization

using the appropriate Ewald fluctuation formftii&' ¢, =1  we excluded the NDE data, since they are measured at rela-

+ 1o M']/(3€kTV). Simulations were performed using tively weak field and hence do not affect the analysis. For the

the GROMACS 3.0 software packag® ** with periodic  parametrization of the various QGE field models as derived

boundary conditions and a leapfrog Verlet algorithm using dan | we used the values of the initial slope,

time stepAt=1fs (45 mol/dn?) and 2 fs(55.51 mol/dn), - 000

respectively. The temperature was kept constan50 and F"Mol(Veg) "Poleg  €(To0)—1

300 K, respectivelyby a Berendsen thermostawith cou- dEy  JEg  1+%4[€(To,00—1]

TABLE Il. Root-mean-square deviatiofRMSD) normalized byM of different statistical state€GE field
models from the (scaled SPC/E data. Equation numbers refer to the expressions given in Ref. 6.

pn="45.0 mol/dnd pn="55.51 mol/dm
Statistical state RMSD/M/ RMSD/M

Gaussiar(Eq. 1-27) 1.279 2.284
Continuous uniform(Eq. 1-37) 0.061 0.061
Beta(Eq. 1-34) 0.007 @=0.06) 0.008 &=0.08)
Binomial (Eq. 1-46) 0.013 0.018
Symmetrized binomialEq. 1-49 0.013 (p=0.50) 0.018 p=0.50)
Double binomial(Eg. 1-52 0.006 (p=0.451) 0.014 p=0.449)
Discrete uniform(Eq. 1-41) 0.004 h=2) 0.010 =3)
Nata 11 11

fy 0.025 0.015
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FIG. 5. Dielectric constant, of water atpy=45.0 mol/dni, T,=550 K as

a function of electric fielde: scaled SPC/E data, the QGE discrete uniform
(dV) state[Eq. (50)], the Booth equatiohEq. (52)], the “ideal gas”[Eq.
(58) of 1], nonpolarizable Onsag¢Eq. (59) of I], and polarizable Onsager
models[Eg. (55)].

andM//(Vep)=P./e,=1.80 and 2.70 V/A forpy=45 and
55 mol/dn?, respectively. For some mode(beta, symme-
trized binomial, double binomial, and discrete unifgrme
used a nonlinear fit to obtain the third paramdteze ).

For all field models(statistical statesthe root mean
square deviation§RMSD’s) from the scaled SPC/E data,
divided by the maximum reduced em moméh, are given

Theoretical equations of state 4445
binomial with p=0.5 and double binomial states with
RMSD/M{<2%.

In Figs. 5 and 6 we present for both densit&éT,E)
as a function ofg, independent of shapge., fq). Clearly,
the discrete uniform model, E@50), gives for both isoch-
ores a very accurate description of the “experimen{ai.,
scaled SPC/Edata. The same is true for the beta model, Eq.
(34) of | (not shown. The Booth equatiohEq. (52)] gives a
reasonable description, especially at 45 mofidaithough
the weak-field limit is not correct. For comparison, we also
included the “ideal-gas” moddlEq. (58) of I], the nonpolar-
izable OnsagefEq. (59 of I], and polarizable Onsager
model>®

o (2 + 1)t 2)

EoE 2€r+ngpt

e—1

2

. € (N5yt2)
26,+nopt

36r(n§pr 1)

7 ,
2€,+Ngy

(55)
using ©=1.85D as the experimental ideal-gas dipole mo-
ment. All three models fail to describe the experimental data,
including the weak-field limit. At 55 mol/df(Fig. 6), we
also include the NDE expressidiEq. (54)], which fails
aboveE~10"3 V/A. Marcus and Hefte¥ and Grahant
have proposed an empirical formula for the differential di-
electric constantey(E)=d(P/ey)/JE, based on similarity

in Table Il. For both densities the two most accurate models
are the beta state and the discrete uniform state witk 96| A
RMSD/M{<1%. As expected, the Gaussian model is only
valid for weak fields E,<0.03 VVA). Two other models
with a small RMSD value are the binomi&F symmetrized 3 04
] —— - Beta (a=0.04)
Beta (a=0.08)
0.2 —-— Beta(a=0.12)
90 --—= Bin (n=1)
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FIG. 6. Dielectric constan, of water atpy=55.51 mol/dm, T,=300 K as m’ (D)

a function of electric fielc: scaled SPC/E data, the QGE discrete uniform
(dV) state[Eqg. (50)], the Booth equatiofEqg. (52)], the “ideal gas”[Eq.
(58) of 1], nonpolarizable OnsagéEq. (59) of I], and polarizable Onsager
models[Eg. (55)]. Also included are the NDE expressi¢gqg. (54)] and
Grahame’s empirical functiofEg. (56)].

FIG. 7. Basic polarization distributions of water at 55.51 mofidar vari-
ous states(A) Beta and binomial states withr0.85 water molecules per
basic distribution; see Table I1[B) Discrete uniform and binomial states
with ~1.35 water molecules per basic distribution.
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TABLE Ill. Allowed range of parameter values for the beta and discrete uniform statistical states with
RMSD/M <1%. Optimal parameter values are indicated with an asteNsK.is the number of water mol-

ecules corresponding to a basic distribution. For comparison also the binomial state is presented. Note that since
the binomial distribution is closed under convolution, the paranteterin that case redundant.

pn=45.0 mol/dni pn="55.51 mol/dm

Statistical state Parameter RMSD/M¢ N/N Parameter RMSD/M N/N

a=0.02 0.010 1.10 a=0.04 0.010 0.81
Beta a=0.06" 0.007 1.18 a=0.08 0.006 0.87

a=0.10 0.010 1.27 a=0.12 0.010 0.93
Discrete uniform n=2* 0.004 1.58

n=3 0.006 1.90 n=23* 0.010 1.35
Binomial n=1* 0.013 1.06 n=1* 0.018 0.75

n=2* 0.013 2.11 n=2* 0.018 1.50

with the Booth equation:ey(E)= nﬁpt+[er(0)— n?,pt]/(l discretelike polarization states. The basic distributions corre-

+bE?). Upon integrating this expression, we obtain for thesponding to models wittN/N~1.35 (discrete uniform and

(integra) dielectric constan, (E)=(P/e,)/E that is used in binomial models withn=2) are also rather similar, with
| and this paper: three to four discrete polarization states. At 45 moffdne

have a very similar situation.

€(0)— oy From this we can conclude that, within the uncertainty of

JbE the “experimental” polarization data, the electric moment

_ _ ) ) ) distribution of a water samplét densities 45.0 and 55.51

Expanding this expression Band comparing with Eq54),  mol/dn? and at reference geometrie=0.025 and 0.015,
we see thab=—3Bype/[ (0)—Ngyl. Although the trend  regpectively can be modeled by the convolution of a very
of Eq. (56) is correct, there are rather large discrepancie§arge number of basic distributions, each describing approxi-
with the “experimental” data and the Booth equation.  mately the behavior of one water molecule with two to four
~ Interestingly, at both densities the optimal beta distribu-yiscretelike polarization states. These few discretelike polar-
tions with parameter values=0.06 and 0.08 are continuous ization states are likely to be connected with the strongly
but strongly peaked at the two end points of their domaingjrectional hydrogen bonding network in water, which favors
(“U shaped); see Fig. 7A). Hence the two optimal field onjy some orientations per water molecule with respect to
models(beta and discrete unifomsuggest that the distribu- the external field. Note that the fact that each basic distribu-
tion of the electric moment is discretelike and defined by thejon describes approximately one water molecule does not
convolution of “simple” independent distributiongbasic  necessarily imply that each water molecule in the system is
distributions with only a few possible values. However, the giagistically independent from the other ones; it only implies
“experimental” polarization curves do not allow one to tnat in each independefithermodynamit subsystem, used
evaluate the exact number of such discretelike polarizatiog, decompose the overall macroscopic distribution and to
states. The same holds, for example, when one wants 10 OBefine the intensive thermodynamic properties, the distribu-
tain the frequency spectrum of a solid by “inversion” of the oy of the electric moment can be mathematically further
heat-capacity curv&To investigate this point, we varied the gecomposed into identical and independent “simple” distri-
parametera or n of the beta and discrete uniform models, ytions. When such basic distributions do not coincide with
respectively, in such a way that the RM3W/ value re-  the fluctuation distributions of physically independent sub-
mained below 1%. Results are given in Table lll, and thesystems(which are never smaller than a single elementary
corresponding basic distributions fpg=55.51 mol/dri are system, they clearly cannot correspond to independent

shown in Fig. 7. Note that ratio between the number of watephysical subparts of the system. In this case the basic distri-
moleculesN and the total number of basic distributiohss

not identical for the various models and parameter values,
but is always about 1 at both densities. For comparison re-
sults are also presented for the binomial state, which gives a
good description as well (RMSM .<2%). Note that since

the binomial distribution is closed under convolutfoi,the
binomial parameten (see Ref. Bis in fact redundant: any
subsystem size is described by a binomial distribution if the
elementary system distribution is defined by a binomial or a
convolution of binomial distributions. A two- or three-state
binomial model(n=1 or 2 also provides a ratidN/IN of
about 1. Interestl_ngly, at 55 mol/dnthe baS_IC d|§tr|butlons FIG. 8. Excess free energyA’(T,E,) of water atpy=55.51 mol/dm and

of the models withN/N~0.85 (beta and binomial models ot -0 015 as a function of temperature and external electric field, based on
with n=1; see Fig. 7A)] are very similar, with only two the gammg/ ]+ discrete uniforn{ M’] EOS.

€(E)=nZ,+ arctari\bE). (56)

AR’ (kJ/mol) .
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Ho (WAA) FIG. 11. Excess heat capacityCy(T,E,) of water atpy=55.51 mol/dm

FIG. 9. Total electric momer (T,E,) of water atpy=55.51 mol/dn and and °f4=0.015 as a function of temperature and external electric field,
0f ,=0.015 as a function of temperature and external electric field, based oR@sed on the gamnja/' ]+ discrete uniforn{ M'] EOS.
the gammd /' ]+ discrete unifornf M'] EOS.

IV. CONCLUSIONS

In this paper we extended the quasi-Gaussian entropy
(QGE) theory in order to construct models providing the
thermodynamic behavior of dielectric fluids as a function of
temperature and electric field. This is achieved by combining
C. Total EOS’s a QGE model for energy fluctuations with a QGE model for

The best EOS, as a function &, and T, is for both fluctuations of the electromagnetic moméas derived in the
densities given by a combination @ of the discrete uni- preceding papgr R’esuIFs show that a sp’ecific “bivariate™
form field model[Egs. (49) and (50) with n=2 and 3, re- EO,S’ the gamm@/ ]+d|§crete unlforn[/\/l ] EOS’_ can de-.
spectively; see TableJlwith the confined gamma state tem- scribe the thermodynamics _Of polarlz_ed watt_ar W|th|n_a wide
perature model, the gammas']+discrete uniform[M'] range of tem_per_ature, density, and field. This EOS is based
EOS. At 55.51 mol/dm we illustrate the behavior of this ©" the comp|nat|on of a gamma state for th? energy fluctua-
EOS via AA(T,E)), M(T.,E)), AS(T.,E), and t|ons(prOV|d|ng the temperfature depende)mﬂat.h a dlgcrete
AC/(T,Eo) at geometryfy=2f,=0.015 [Egs. (34)—(37), uniform state for the electric moment fluctuaticipsoviding

(49), and (50)]; see Figs. 8—11. Note that the effect of thethe field dependengeThe EOS is able to describe with high

field on these thermodynamic properties is appreciable, ejl_ccuracy(l) the thermal behavior of the experimental weak-

butions simply provide via their convolution a mathematical
model of the elementary system'’s distribution.

pecially on the heat capacity, considering that at 300 K an ield dielectric constant of water at fixed density, ranging
zero field A'=—23.9 S = —,58 5. andC/.=48.7 JmolK  rom dilute gas to dense liquid, arid) the field dependence
- Ty - o,y AV .

(from the Saul-Wagn&$ water EOS. The effect of sample of water at fixed tempgrature for two I_iquid isochon(_éﬁ.o
shape can be seen tigumerically evaluating Eqs(38)— and 55.51_mo|/d_ﬁ) using a combination of experimental
(41) for f4#°f4; however, the surfaces handE, are very data and S|_mulat|9n data_ of the SPC/E W"?‘ter_ mo_del.

similar to Figs. 8—11 and are therefore not shown. In Figs. Interest_mgly, n the field model the distribution of the
12 and 13 we plot the predictions af(T,E) from the macroscopic electn_c mom(_entlls qonstructed by thg gonvolu—
gammali/']+discrete uniforn{.M'] EOS at 45.0 and 55.51 tion of discrete uniform distributions, each describing ap-
mol/dn?, along with the(scaled SPC/E data aT, and ex-
perimental weak-field data for various isotherms. The EOS 39
describes all available data very accurately. Unfortunately, it

is difficult to check the behavior of the complete EOS be-

—— Gamma[U']+dUM?] EOS (T=550 K)

cause of the lack of additional “experimental” data, e.g., the P e Gamma[U’]+dU[M’] EOS (T=650 K)
field dependence foF > T,,. -~~~ Gamma[U]+dUIM1] EOS (T=750 K)
o 20 .. — —- Gamma[U’]+dU[M’] EOS (T=850 K)
= S # scaled SPC/E (T=550 K) )
g e - ® experimental
§ :
£
8
o
o

AS’ (T/mol K) _

0 0.1 0.2 0.3 0.4 0.5 0.6
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FIG. 10. Excess entropnS'(T,E,) of water atpy=55.51 mol/dmi and FIG. 12. Dielectric constant of water af,=45.0 mol/dni as a function of
9f4=0.015 as a function of temperature and external electric field, based otemperature and electric field: scaled SPC/E data, experimental weak-field
the gammd /' ]+ discrete uniforn{ M'] EOS. data and gammgl/’ ] +discrete uniform{ M’] EOS predictions.
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namic behavior as a function of many different state vari-
80 | ables.
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S o experimental Technology Foundation STW. The hospitality of Professor
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20
APPENDIX: EXPLICIT EXPRESSION OF A
From the thermodynamic definition of the average elec-

0 0.1 0.2 0.3 04 0.5 0.6 tromagnetic moment in the direction of the field
Electric fleld E (V/A) =—9AldF, and Eqgs(1) or (2), we find
FIG. 13. Dielectric constant of water a=55.51 mol/dr as a function of IM
temperature and electric field: scaled SPC/E data, experimental weak-field — | =— A+ Bry[ M'], (A1)
data and gammpl/’ ]+ discrete uniformr{ M'] EOS predictions. 0

with k[ M']={(M’'—(M'}))?) the second central moment
of M'. From Eq.(1) of | we obtain that in the limit of zero
field, wheredM/oF,=M/3Fy,

proximately one water molecule with only a very limited set \Vi X
of possible polarization statésvo to fourn. This is supported g“_ m
by the fact that for another accurate model, the beta state, the 0 d
Corresponding beta distribution is strongl}yshaped, |mp|y_ The last equations can be used to obtain an explicit expres-
ing only two discretelike polarization states. Such a result igsion of A. From Eq.(6), in the case wheréM;)=(Mo),
probably due to the strong hydrogen bonding network of.-€., the electromagnetic moment is basically independent of
water molecules and implies that the electric moment distrithe bond quantum vibrational state. Assuming that at high
bution of each elementary systefwhich is the smallest temperature the system is still largely confined within the
phys|ca||y independent thermodynamic Subsygt@m be electronic ground state, although the exponential value in the

described by the convolution of a set of independent discretiéitegral of the partition function is virtually the unity because
uniform distributions. of the high temperature, we obtain that in such an “infinite”

It is also worth to remark that in our derivation the ge- temperature limit the second central moment.ef con-
ometry of the sample becomes quite naturally a real statéerges to a constant. Hence from H#1) it follows that
variable, with rather relevant effects in the liquid state. NotedM/dFo=—.A. Using this result in the field derivative of
that the thermodynamics of dielectric fluids is very complexEd. (1) of I in the “infinite” temperature limit, we have
as it is dictated by the long-range molecular interactions and 4 QO A
no simplifications based on a restricted available phase space a30 =— 3 5
can be used as in solidsuch as cell theory and harmonic 0 o vo
approximation. For this reason statistical mechanical calcu-where we defined for convenienc€ = (V/{y)[x-/(1
lations based on molecular Hamiltonian models are difficult,+ fyx..)] with x.. the “infinite” temperature limit of y.
especially because of the polarization effects. A comparisofquation(A3) is an ordinary linear differential equation with
between the QGE models and common mean-field modelthe general solution Q(SO)=[Q(38)+A](38/30)—A,
(the “ideal-gas” model, the polarizable and nonpolarizablewheregg is the arbitrary initial field value used to solve the
Onsager models, and the Booth equatishows that the equation. In order to obtain the result that at “infinite” tem-
physical trend for the first three models is acceptable. Howperature the zero-field limit a2 converges to the value pro-
ever, neither the weak-field limit nor the temperature andvided by Eq.(A2), we must sef2(F9)=— .4, and so at any
field dependence is correct. The Booth equation describes &eld
45.0 and 55.51 mol/dinthe field dependence rather well,
although the weak-field limit and its thermal behavior are  g4=— —
incorrect at all densitieggas to liquid. The use of fluctua- ¢o
tion distribution models seems once again to be very usefuheaning thaiy.. is independent of the field and thaitis, in
and efficient in providing largely analytical EOS’s based oncontrast toy, in general dependent on the geometry of the

=—A+ Bk [ M']. (A2)

(A3)

\Y

X:)c
i) A

physical principles. system. Moreover, from EGA2) we have
Finally, we expect that the combination of monovariate Vv
models to obtain multivariate EOS's, as introduced in this 5, r \(1]= X~ X (A5)

paper, will be of great interest for modeling the thermody- Lo (1+Tgx)(1+Taxe)
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