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Abstract—Mixtures of chiral and achiral monodentate phosphoramidite ligands lead to improved enantioselectivity in the rhodium-
catalyzed boronic acid addition.
� 2005 Published by Elsevier Ltd.

1. Introduction

The monodentate ligand combination approach is a new
concept in asymmetric catalysis, in which a catalyst,
based on a combination of two different monodentate
ligands (hetero-complex), leads to improved results
compared to catalysts based on only one of the two li-
gands (homo-complexes) (Scheme 1).1 The hetero-com-
plexes are formed in situ by mixing the metal
precursor with the ligands. This means that the overall
activity and selectivity of the reaction depends on the ra-
tio of the complexes and their corresponding activities
and selectivities.

The success of this concept has been shown for asym-
metric carbon–hydrogen2 as well as carbon–carbon
bond formation3 employing a combination of two chiral
monodentate ligands, such as phosphoramidites, phos-
phites and phosphonites. In addition, the combination
of chiral and achiral monodentate ligands has been
shown by Reetz and Mehler to lead in some cases to a
reversal of enantioselectivity.4

Herein, we report the first case of improved enantio-
selectivity in asymmetric C–C bond formation by the
use of a combination of a chiral and an achiral monod-
entate ligand compared to catalysts based solely on the
chiral ligand.

2. Results and discussion

A set of six monodentate ligands, consisting of three
achiral ligands L1–3 with different electronic properties
and three chiral phosphoramidite ligands L4–6, was
used as a basis for the ligand combinations (Fig. 1).5

The monodentate ligand combination approach was ap-
plied in the rhodium-catalyzed asymmetric conjugate
addition of phenylboronic acid.6 We have shown that
in addition to BINAP as the most commonly used li-
gand, also monodentate phosphoramidites are also very
effective ligands in this type of C–C bond formation.7

p-Methylnitrostyrene 1 was chosen as a substrate (Table
1).3a The product of this reaction, containing a benz-
hydrylic stereocentre, is important from a synthetic
point of view, in particular due to the presence of this
structural unit in a number of pharmaceutical intermedi-
ates. Nevertheless, nitrostyrenes are challenging sub-
strates for this reaction and high ees have not yet been
reported. The reaction conditions, in which phenyl-
boronic acid is formed in situ from phenyl boroxine 2
and 1 equiv of water per boron, results in this case in
higher conversions than the commonly used Hayashi–
Miyaura conditions with phenylboronic acid and water
as a cosolvent.
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Scheme 1. The monodentate ligand combination approach.
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The use of triphenylphosphine L1 leads to catalysts with
a very low activity, in the homo- as well as the hetero-
combinations. The less basic triphenylphosphite L2 is
an efficient ligand for this reaction, but unfortunately
the hetero-combinations with chiral phosphoramidites
L4–6 resulted in racemic products. This indicates that
the homo-complex of L2 might be the most active cata-
lyst in the mixture. Achiral phosphoramidite L3 proved
to be the most suitable achiral ligand, resulting in com-
plete conversion to racemic 3 in the case of the homo-
combination. In contrast, the homo-combinations of
the relatively bulky chiral phosphoramidites L4–6 gave
rise to catalysts with a very low activity, a trend which
has been observed previously.3a The result of the hetero-
combination of L5 with L3 clearly demonstrates that the
hetero-complex is formed, since it leads to a drastic
improvement of conversion from 4% to 83%, a reversal
in absolute configuration and a slightly higher ee value
of �30% for product 3.

This concept of using a small achiral ligand as an activa-
tor for a more bulky chiral ligand was subsequently
applied in the asymmetric conjugate addition of phenyl-
boroxine 2 to 2-cyclohexenone 4 (Table 2).

As for p-methylnitrostyrene 1, the homo-combination of
the small achiral phosphoramidite L3 led to an active
catalyst for the addition to 4, whereas the homo-combi-
nations of the bulky phosphoramidites L4–6 gave enan-

tioselective catalysts, although with a very low activity.
The hetero-combinations of L3 with L4–6 lead to cata-
lysts that possess both positive characteristics; they are
as active as the achiral catalyst based on L3 but at the
same time show enantioselectivities such as the ones
based on L4–6. For the hetero-combinations of L3 with
L4 and L5, a reversal of enantioselectivity is observed,
and in the case of the latter there is even an increase
in ee from 16% to 31%. The most striking results, how-
ever, were obtained with the combination of L3 with L6.
Whereas the homo-complex of L6 is inactive and the
homo-complex of L3 not enantioselective, the hetero-
complex of L3 with L6 is both an active and enantio-
selective catalyst.

Information about the relative amounts of the homo-
and hetero-complex formed when two different phos-
phoramidite ligands are added to the catalyst precursor
Rh(acac)(eth)2, was obtained by integration of their sig-
nals in the corresponding 31P NMR spectra. Whereas
the homo-complexes appear as doublets (JRh–P �
300 Hz), the hetero-complexes were observed as two
double doublets (JRh–P � 300 Hz, JP–P � 90 Hz) (Table 3).

These data demonstrate that the lack of enantioselectivity
obtained with mixtures of L2 and L4, L5 is not due to
the absence of a hetero-complex, but most likely due
to the fact that the homo-complex of L2 is a much more
active catalyst. This also shows that the most successful
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Figure 1. Monodentate ligands used for the ligand combination approach.

Table 1. Rh-catalyzed asymmetric conjugate addition to p-methylnitrostyrene8

NO2
+ (PhBO)3 + H2O

2% Rh(acac)(eth)2
2.5 % Lx + 2.5% Ly
dioxane, 60oC, 3 h

NO2

1 2 3

Lx/Lx Conv. (%) ee (%) Lx/Ly Conv. (%) ee (%)

L1/L1 8 0 L1/L5 12 5

L2/L2 83 0 L2/L4 97 0

L3/L3 100 0 L2/L5 73 0

L4/L4 11 23 L2/L6 78 0

L5/L5 4 28 L3/L4 94 7

L6/L6 0 — L3/L5 83 �30
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combinations of ligands, L3 with L5 and L6, correspond
with a high proportion of the hetero-complex.9

3. Conclusion

It has been shown for the first time that a catalyst based
on a combination of a chiral and an achiral monoden-
tate ligand leads to a higher enantioselectivity compared
to the corresponding homo-complexes in asymmetric
C–C bond formation. Reversal of enantioselectivity,
improved enantioselectivity and maintenance of activity
were observed when a relatively small achiral phospho-
ramidite ligand was combined with a bulky chiral
phosphoramidite ligand. 31P NMR spectra showed that
the hetero-complexes are formed as the major species.
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Table 2. Rh-catalyzed asymmetric conjugate addition to 2-cyclohexenone8

+ (PhBO)3 + H2O

2% Rh(acac)(eth)2
2.5 % Lx + 2.5% Ly
dioxane, 60oC, 3 h

4
2

5

O O

Lx/Lx Conv. (%) ee (%) Lx/Ly Conv. (%) ee (%)

L3/L3 100 0

L4/L4 22 27 L3/L4 100 �5

L5/L5 18 16 L3/L5 79 �31

L6/L6 0 — L3/L6 98 22

Table 3. Relative amounts of homo- and hetero-complexes based on
31P NMR

Lx/Ly Rh(Lx)2 Rh(Lx)(Ly) Rh(Ly)2

L2/L4 13 49 38

L2/L5 14 61 25

L3/L4 13 69 18

L3/L5 5 92 3

L3/L6 8 86 6
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aqueous NaHCO3 (1/1). After a few minutes, the organic
layer was decanted, filtered over Na2SO4, and subjected to
GC and HPLC analysis. For 3: enantiomer separation by
HPLC on a Chiralpak OD column, heptanes–isopropanol
99/1, 210 nm, 12.7/14.3 min. For 5: Enantiomer separation

by GC on a Chiraldex A-TA column, 30 m · 0.25 mm ·
0.12 lm, 120 �C isothermic, 58.0/60.1 min. For spectro-
scopic data of 3 and 5 see Ref. 7a.

9. Imbalance in homo-complex ratios is due to errors in
weighing.

1904 A. Duursma et al. / Tetrahedron: Asymmetry 16 (2005) 1901–1904


	Improved catalytic asymmetric carbon -- carbon bond formation using combinations of chiral and achiral monodentate ligands
	Introduction
	Results and discussion
	Conclusion
	Acknowledgements
	References


