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Abstract

The amplitude of an EMG and the temporal pattern can be used when considering if an EMG profile is normal or not. In the method
described in this paper a gain factor of the complete EMG profile was determined and then the profile normalised with this gain factor. This
normalised individual profile was then compared with a standard profile, predicted on the basis of walking speed. Deviating profiles were
identified when they fell outside the upper and lower 95% limits range for the average profiles of 14 leg muscles. The amount of deviation
from the normal profile can be quantified with the normalised mean square differenceD2. Gain factors varied over a factor of 4 within a group
of 10 normal subjects. For a normal populationD2 was below 1. Most muscles had consistent profiles but some patterns could be discerned
which showed marked variability among muscles and subjects.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Electromyography (EMG) has proved to be a valuable
tool in the evaluation of gait disorders. To assess deviations
from the normal pattern, the ‘normal’ pattern should first be
defined. In a previous study[1], we have presented average
EMG profiles of young normal subjects and shown how to
take the influence of walking speed into account. The present
paper tries to answer the question when the EMG profile
from a subject or patient is to be classified as non-standard
and to give a quantitative measure of this deviation of the
standard.

Two aspects should be considered: firstly thetiming
pattern, which is directly related to the neural control of
the muscle and secondly theamplitudeof the EMG sig-
nal, which is known to be influenced by a great number
of factors, e.g. electrode positioning, muscle fibre orien-
tation and thickness of the subcutaneous fat layer[2,3].
When possible, it is good practice to calibrate the rectified
EMG against muscle force, but this is impractical in patient

� Data related to this paper can be downloaded from the CGA Nor-
mative Gait Database,http://www.univie.ac.at/cga/data/index.html.

∗ Corresponding author. Tel.:+31-50-363-2645;
fax: +31-50-363-2750.

E-mail address:a.l.hof@med.rug.nl (A.L. Hof).

recordings of many EMGs and it poses difficult problems in
case several synergistic muscles are active simultaneously
[4].

2. Methods

2.1. Subjects, EMG recording

The experimental data were the same as used in the study
[1] on averaged profiles. The starting material for the pro-
posed procedure was the average EMG profiles of our con-
trol group of 10 healthy subjects. InFig. 1aa grand average
was computed (thick line) for 10 individual profiles. Next,
a gain factor equal to the ratio between individual and mean
profile was determined for each individual curve. By divid-
ing by this gain factor, each individual profile had about the
same amplitude as the mean profile (Fig. 1b). From these
normalised curves a high and a low limit was assessed (thick
lines). A patient profile was processed in a similar way and
was normalised firstly. If the normalised profile fitted be-
tween the high and low limits, the timing was normal. If
not, some measure of the deviation from normal can be eval-
uated. Secondly the gain factor can be evaluated. A very
low gain factor, for example, suggests that the muscle is
paretic.

0966-6362/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.gaitpost.2004.01.015
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Fig. 1. (a) Average EMG profiles of vastus medialis muscle in 10 normal subjects (thin lines) with the average profile (thick line). (b) Average EMG
profiles of vastus medialis muscle after normalising with the gain factor. Also shown low and high limits, as obtained from the basic patternsF0(k) and
F1(k). Time is given as a percentage of stride, starting at heel contact, but in a scale running 0–100–50%, in order to represent better the activity around
heel strike.

Surface EMGs of 14 leg muscles (Table 1) were recorded
from two homogeneous groups (n = 9 and 11, respectively)
of young healthy male subjects (mean age 22 years (S.D.
1.5), stature 1.85 m (S.D. 0.05), leg length 0.98 m (S.D.
0.04), body mass 73 kg S.D. 8). The division in two groups

was made for practical reasons, but care had been taken to
match the average personal data of both groups. Electrode
placements were in accordance with the recommendations
of Perotto[5] and of SENIAM[6]. Subjects walked barefoot
on a 10 m indoor walkway at speeds of 0.75, 1.00, 1.25, 1.50,
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Table 1
List of muscles, their abbreviations as used in the text, the contributing
basic patternsF0(k) and F1(k), seeFig. 1, expressed as the weighting
coefficients for the low, average and high limits,L, D andH, respectively

Muscle F0/F1/F2 k L D H

Soleus (SO) F0 1 0.7 1 1.47
F1 1 0.75 1 1
F1 5 0 0.39 0.63
F1 8 0 1 1.88

Gastrocnemius
medialis (GM)

F0 1 1 1.50 2.00
F1 1 0.51 0.83 1.27
F1 2 0 0 0.37

Gastrocnemius
lateralis (GL)

F0 1 0 0.25 0.65
F1 1 0.32 0.64 1.10
F1 2 0 0 0.33

Peroneus longus (PL) F0 1 0 0.61 1.19
F0 6 0 0 0.32
F1 1 0.65 0.91 1.15
F1 5 0 1 1.23
F1 8 0 1.10 3.28

Tibialis anterior (TA) F0 3 0 0.50 0
F0 4 0 0.94 2.66
F0 6 0.56 1 1.46
F1 5 1.12 1.72 2.39
F1 6 0.54 1 1.50

Vastus medialis (VM) F0 2 0 1 2.09
F1 2 0.76 1 1.38

Vastus lateralis (VL) F0 2 0.57 1.19 2.74
F1 2 0.7 0.84 1.22

Rectus femoris (RF) F0 2 0.44 1.31 2.30
F1 2 0.30 0.78 1.48
F2 9 0.30 1 1.78

Biceps femoris (BF) F0 3 0.17 0.55 1.16
F1 3 0.26 0.44 0.64

Semitendinosus (ST) F0 2 0 0 2.40
F0 3 0.39 1 1.63
F0 5 0 0 0.77
F1 3 0.48 1 1.36

Semimembranosus (SM) F0 3 0.20 0.30 0.80
F1 3 0.30 0.58 0.90
F1 5 0 0 1.20
F1 9 0.20 1 1.18

Gluteus maximus (GX) F0 4 0 0 0.25
F0 5 0 0 0.73
F1 4 0.50 1 1.37

Gluteus medius (GD) F0 4 0.64 1 1.44
F0 6 0 0 0.42
F1 2 0 0.60 0.60
F1 4 0.75 1 2.40
F1 5 0 0.50 1.20

Adductor magnus (AM) F0 3 0.20 0.22 0.60
F0 5 0.54 1 1.88
F1 7 0 1 1.70

and 1.75 m s−1. Average walking speed was assessed from
the interval between passing two light beams at both ends of
the walkway, 7 m apart. To accommodate differences in leg
length, speedv will be expressed in non-dimensional form as

v̂ = v/
√

gl0, in which l0 is the leg length andg the accelera-
tion of gravity. The EMGs were high-pass filtered at 20 Hz,
rectified and smoothed with a 25 Hz third order Butterworth
low-pass filter. Smoothed rectified EMGs were, after A/D
conversion with a sample frequency of 100 Hz, linearly in-
terpolated to 100 points per stride, triggered by heel contact
of the leg of interest. The recorded steps were screened to
exclude those with obvious artefacts or incorrect foot con-
tacts. In this way for every individuali, normalised speed̂v,
and musclem, average individual profilese(p, m, v̂, i) were
determined from at least 10 steps overp = 1−100% of the
gait cycle.

2.2. Gain factor

The individual gain factorsg(m, i) were determined
by linear regression (without intercept) with the average
profile

g(m, i) =
∑

p (e(p, m, v̂, i)E(p, m, v̂))
∑

p E2(p, m, v̂)
(1)

in which E(p, m) is the grand average profile, obtained from
the basic patternsF0 and F1, as described previously[1].
This was done at a single speed, 1.25 m/s. It was assumed
that the gain factor was constant at all speeds in the same
session.

2.3. Limits

The upper limith(p, m, v̂) and lower limitl(p, m, v̂) were
obtained from the set of individual profiles. First the profiles
were normalised by dividing with the appropriate gain fac-
tor: e∗(p, m, v̂, i) = e(p, m, v̂, i)/g(m, i), cf. Fig. 1b. From
this set of normalised profiles the upper and lower limit of
the range were estimated for everyp. A simple choice would
have been to take the maximum and minimum of the set
of e∗(p, m, v̂, i) for everyp. To minimise the influence of
possible outliers, an estimate based on fractiles was used
assuming that the profiles had a uniform distribution. To
this end then samplese∗(p, m, v̂, i) were sorted for every
p in ascending order and the limits were estimated from the
two-but-lowest and two-but-highest samplese∗(p, m, v̂, 3)

ande∗(p, m, v̂, n − 2):

l(p, m, v̂) = e∗(p, m, v̂, 3) − mar(p, m, v̂),

h(p, m, v̂) = e∗(p, m, v̂, n − 2) + mar(p, m, v̂),

mar(p, m, v̂) = 2.5

n − 5
(e∗(p, m, v̂, n − 2) − e∗(p, m, v̂, 3))

(2)

In addition,l(p, m, v̂) is limited to be above zero.
In a manner identical with the procedure for average data

[1] the h(p, m, v̂) and l(p, m, v̂) functions were fitted by a
linear plus quadratic dependency with speed and assembled
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from three sets of basic patternsF0, F1, F2:

l∗(p, m, v̂) = F0L′
0 + (v̂ − 0.16)F1L′

1 + (v̂ − 0.16)2F2L′
2,

h∗(p, m, v̂) = F0H′
0 + (v̂ − 0.16)F1H′

1 + (v̂ − 0.16)2F2H′
2

(3)

Next to this,h∗ was limited to be above 10�V. In (3) F0 is
a 6× 100 matrix containing the six basicF0(k, p) patterns,
similarly F1 is a 9× 100 matrix containing the nine basic
F1(k, p) patterns, andF2 is a 1× 100 matrix containing
the single basicF2(p) pattern. All these basic patterns were
the same as in the previous study,Fig. 2 of L0 andH0 are
14× 6 matrixes containing weighting coefficients, similarly
for L1, H1, andL2, H2. These coefficients were determined
from the experimentall(p, m, v̂) and h(p, m, v̂) functions
in a similar way as described for the average profiles[1], by
first determining the speed independent and speed dependent
parts, and then fitting these parts to theF0(k, p) andF1(k,
p) functions, respectively, by a linear regression (1).

Fig. 2. Mean EMG profiles (solid lines) and lower and upper limits (dotted lines) for all 14 muscles and a walking speed of 1.25 m s−1 (normalised
speed 0.40). For abbreviations of muscle names, seeTable 1. As a comparison data from Winter have been included (dashed line). The amplitudes of
Winter’s profiles have been normalised, cf.Eq. (1). The gain values were: SO 2.6, GM 2.2, GL 3.6, PL 1.5, TA 1.8, VM 2.4, VL 3.2, RF 1.0, BF 3.1,
ST 2.2, SM not available, GX 1.1, GD 0.7, AM 2.0. Winter’s data show a delay of 4–7% due to low-pass filtering at 3 Hz.

2.4. Deviation

To obtain a measure for the ‘non-standardness’ of an in-
dividual averaged EMG profile, first thep’s were obtained
for which the patient’se∗(p, m) is outside the range between
l(p, m) andh(p, m) for the relevant̂v. Then the difference
between the individual normalised EMG and the standard
profile were squared over these outlying pointspout, summed
and divided by the summed square of the standard profile:

D2
m =

∑
pout

(e∗
mi − Em)2

∑100
1 E2

m

(4)

3. Results

The gain factors for all nine or 11 subjects and 14 mus-
cles varied within a range of 0.2–5. InFig. 3 they are
given in a logarithmic normal probability plot, which sug-
gests that their distribution could be fitted by a log-normal
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Fig. 3. log-normal probability plot of all gain values of 9 (11)subjects× 14 muscles. Horizontal scale: logarithm of gain factorg, vertical scale: normal
probability, 0: mean,+2: mean+ 2 standard deviation in a normal distribution, etc. The straight line suggests that gains have a log-normal probability
distribution. Percentiles 2.5% (−2 S.D.) and 97.5% (+2 S.D.) can be read from the fitted straight line, and are 0.25 and 4, respectively.

distribution with a mean of 1 (as could be expected from the
procedure) and a S.D. of log(g) = 0.30. By extrapolation,
the 2.5–97.5% confidence interval ranged fromg = 0.25 to
g = 4. The lowestg-values referred to GL, the highest to
GX (the outlierg = 4.7) and RF.

The weighting coefficients for theL, andH matrices have
been given inTable 1. For comparison the coefficients of

Fig. 4. Histogram of the normalised mean square differenceD2 in 9 (11) normal subjects×14 muscles at a speed of 1.25 m s−1. Gain was also determined
at 1.25 m s−1. The 95% percentile was 0.42 in this case, cf.Table 2.

the D matrix, relating to the average, which were reported
in the previous paper, have been included as well. As an
exampleFig. 2 gives the average, lower and upper limits as
calculated by (3) for a walking speed of 1.25 m s−1. As a
comparison Winter’s[7] data have been included. It should
be noted that in the latter data a low-pass filter of only 3 Hz
had been used, resulting in a considerable delay.
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Table 2
The 95% percentile values for normalised mean square differenceD2 for
individual profiles in our normal subject group

Speed (m s−1) Gain same speed Gain 1.25 m s−1 Gain 1.75 m s−1

0.75 1.10 1.35 1.38
1.00 0.51 0.73 0.79
1.25 0.42 0.42 0.70
1.50 0.43 0.93 0.45
1.75 0.48 2.18 0.48

Gain factors were fitted, from left to right, for the same speed as the
measured profiles, for the middle speed 1.25 m s−1, and for the highest
speed, 1.75 m s−1.

To give an idea of the properties of theD2 measure of
deviation, it was determined for the individual profiles of
our subject group.Fig. 4 shows the distribution ofD2 for
the speed of 1.25 m s−1. In this case the 95% percentile was
determined as 0.42. In principle the gain factors do not de-
pend on walking speed as speed dependent effects have al-
ready been discounted in (3). When measurements are done
at several speeds, it is thus sufficient to fit the gain factors
only once for each muscle, preferably at the highest speed.
When a recording at a single speed is evaluated it is, of
course, only possible to fit at this one speed. For the devi-
ation this makes a difference; when gain and deviation are
determined for the same profile the fit will be better and
the deviation lower. This can be seen inTable 2, where
95% percentiles ofD2 have been given three times: for this
case the gain was determined at the same speed as eval-
uated, for this case the gain was determined at 1.25 and
1.75 m s−1.

4. Discussion

When an average profile from a patient is subjected to
the method described here, two questions can be answered.
The first question is: how much does the form of this pro-
file agree with the standard profile, predicted for the relevant
walking speed and the patient’s leg length from a set of as-
sumedly normal walkers? A deviation can be expressed in
the normalised mean square differenceD2. WhenD2 is zero
this indicates perfect agreement; when it is above 1.0 the
profile is certainly non-standard, when it is between 0.5 and
1.0 it is doubtful (cf.Table 2). Our group of subjects con-
sisted of young healthy subjects, with age and stature within
a narrow range. When the profile of a subject or patient is
different from our ‘standard profile’, this should not, there-
fore, be interpreted as ‘abnormal’ or ‘pathological’ without
further interpretation, but only as ‘not in agreement with the
present group of young healthy male subjects’. If EMG pro-
files for patients of other age or sex are to be investigated,
this requires, in principle, that data from a corresponding
healthy control group should be used as a reference. When,
on the other hand, a patient’s profile of a particular muscle is
in agreement with the presented ‘young healthy male’ stan-

dard profile, this is certainly an indication that the profile is
normal.

In Fig. 2 the profiles found in this study have been pre-
sented for a moderate walking speed of 1.25 m s−1. Data
from Winter have been included as a comparison, after nor-
malisation for amplitude (seeSection 2). Winter’s data were
filtered with a low-pass filter of 3 Hz, whereas ours were fil-
tered at 25 Hz, and therefore show a delay between 4 and
7%. If this effect is considered, all profiles are very sim-
ilar. The amplitudes are not: Winter’s ‘gain factors’ range
between 0.7 and 3.6 (average 2.1); seeFig. 2.

The second question regards the amplitude of the EMG,
expressed in the gain factorg. It is assumed that this factor
depends on details of the electrode placement (seeSection 1)
but that the effects of speed are completely accounted for by
theD, L andH factors. With a proper electrode placement,
it is not to be expected thatg will change when walking
at different speeds. Wheng is around 1, the amplitude is
comparable to the average of our normal group, but can vary
over a factor of 4 (i.e. it can be between 0.25 and 4.0) within
perfectly normal subjects. An anecdotal example is the high
gain values once found in a young, very lean child. On the
other hand, a gain markedly below 0.25 might well indicate a
paresis. If EMG gains are followed within the same subject,
the random error is considerably less[8–10].

An example how the present method may be applied has
been given by Boerboom et al.[11]. Anterior cruciate lig-
ament deficiency causes in some patients a functional in-
stability of the knee (‘non-copers’), but other patients are
able, after considerable rehabilitation, to function normally
(‘copers’). In contrast to non-copers, many copers showed an
atypical activity of semitendinosus or biceps femoris during
stance. Values ofD2 for these two muscles have been given
in Table 3. This atypical hamstring activity may be a com-
pensatory mechanism by which copers have learnt to func-
tion on a normal level. Ironically, in this case the ‘healthy’
subjects have an ‘abnormal’ profile.

The D2-deviation, as defined in (4), is more or less the
logical form of a mean squared error measure. It is only
slightly different from the variation ratio (VR)[12,13]. In
the VR the denominator term contains(Em − Ēm)2 in-
stead ofE2

m. Subtracting the means in this way does not
seem useful for EMG profiles, for which the mean over the

Table 3
Patients without anterior cruciate ligament

Semitendinosus Biceps femoris

Median Range Median Range

Copers 0.54∗ 0.30–0.66 0.48 0.02–0.96
Non-copers 0.14 0.08–0.29 0.27 0.07–0.57

D2 values for two hamstring muscles in five patients able to function
normally (‘copers’) and five with persistent knee instability (‘non-copers’).
From Boerboom et al. the non-copers have a normal EMG pattern, while
many of the copers have adopted a typical non-standard pattern, with
hamstring activity around midstance.
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complete profile has no special meaning. Including only
the data points outside the lower–upper interval does in-
fluence theD2-deviation only mildly, but the situation in
which D2 = 0 has now a special significance: the profile
lies entirely between the lower and upper limits.

The entries inTable 1give some clue as to whether the in-
dividual EMG profiles were constant among subjects, when
theL, D andH values are relatively close together, or when
the profiles were variable, which is the case whenL = 0
andH has a high value.

For theplantarflexor group, GM and GL show quite con-
stant profiles, although it should be noted that in a few sub-
jects theF0(1) pattern had zero weight in GL. In these cases
GL activity was thus confined to a single burst at push-off,
F1(1). SO had, above a stereotypical pattern similar to GM,
rather variable activity before and around heel strike,F1(8).
In the individual subjects this activity could vary between 0
and 100�V, about 2/3 of the peak activity at push-off. PL
shows this activity even more so. Here EMG at heel con-
tact could be very high, up to twice the push-off peak. Next
to this, PL can show marked activity during swing. TA had
a constant profile in swing and early stance,F0(6), F1(5),
and F1(6). Activity in stance,F0(4), was variable from 0
to some 100�V (1/3 of peak). It thus seems that there was
sometimes co-contraction activity of TA and PL or SO dur-
ing stance. This was verified by comparing profiles of in-
dividual subjects. The co-contraction might have a role in
the control of foot positioning. It may have been prominent
here because our subjects walked barefoot.

Profiles of thevastiwere constant among subjects. In RF
theF2 peak around toe was very variable in height. For this
muscle, Nene et al.[14] have reported a remarkable find-
ing. With intramuscular electrodes Nene et al.[14] showed
that theF0(2) andF1(2) patterns are in fact crosstalk, prob-
ably originating from vastus intermedius. Only theF2 peak
corresponds to real RF activity.

Profiles in thehamstringsare similar, with the exception
that in several subjects SM showed a definite activity in
stance. Four out of 10 subjects showed a peak around 40%,
also four, but not the same subjects, had a peak around
65% and two had no stance phase activity after the regular
hamstring profile.

In all muscles where they were manifest, PL, SM, GX,
GD and AM, the adductor and abductor swing phase ac-
tivities, F0(5) andF1(5), respectively, were very variable.
In AM versus GD the activities were to some extent recip-
rocal. Our interpretation is that these patterns are related
to the foot placement after swing, which seems a ma-
jor control mechanism to ensure stability during walking

[15,16]. To study this interesting mechanism further,
step-to-step variability should be studied in longer series of
steps.

References

[1] Hof AL, Elzinga H, Grimmius W, Halbertsma JPK. Speed de-
pendency of averaged EMG profiles in walking. Gait Posture
2002;16:78–86.

[2] Van der Glas HW, Lobbezoo F, Van der Bilt A, Bosman F. In-
fluence of the thickness of soft tissues overlying human masseter
and temporalis muscles on the electromyographic maximal voluntary
contraction level. Eur J Oral Sci 1996;104:87–95.

[3] Farina D, Cescon C, Merletti R. Influence of anatomical, physical,
and detection-system parameters on surface EMG. Biol Cybernet
2002;86:445–56.

[4] Hof AL, Berg Jw van den, Linearity between the weighted sum of
the EMGs of the human triceps surae and the total torque. J Biomech
1977;10:529–539.

[5] Perotto A. Anatomical guide for the electromyographer. In: The
limbs and the trunk. Springfield, IL: CC Thomas, 1994.

[6] Freriks B, Hermens H, Disselhorst-Klug C, Rau G. The recom-
mendations for sensors and sensor placement procedures for surface
electromyography. In: Hermens HJ, editor. European recommenda-
tions for surface electromyography. Enschede: Roessingh Research
and Development, 1999. p. 15–53.

[7] Winter DA. The biomechanics and motor control of human gait. 2nd
ed. Waterloo, Canada: University of Waterloo Press, 1991.

[8] Kadaba MP, Wootten ME, Gainey J, Cochran GVB. Repeatability
of phasic muscle activity: performance of surface and intramuscular
wire electrodes in gait analysis. J Orthop Res 1985;3:350–9.

[9] Winter DA, Yack HJ. EMG profiles during normal human walk-
ing: stride to stride and inter-subject variability. Electroenceph Clin
Neurophysiol 1987;67:402–11.

[10] Kleissen R, Litjens M, Baten C, Harlaar J, Hof A. Consistency
of surface EMG patterns obtained during gait in three laboratories
using standardized measurement technique. Gait Posture 1997;6:
200–9.

[11] Boerboom AL, Hof AL, Halbertsma JPK, van Raaij JJAM, Schenk W,
Diercks RL, et al. Atypical hamstrings electromyographic activity as
a compensatory mechanism in anterior cruciate ligament deficiency.
Knee Surg Sports Traumatol Arthrosc 2001;9:211–6.

[12] Hershler C, Milner M. An optimality criterion for processing elec-
tromyographic (EMG) signals related to human locomotion. IEEE
Trans BME 1978;25:412–20.

[13] Erni T, Colombo G. Locomotor training in paraplegic patients: a
new approach to assess changes in leg muscle EMG patterns. Elec-
troenceph Clin Neurophysiol 1998;109:135–9.

[14] Nene A, Byrne C, Hermens H. Is rectus femoris really a part of
quadriceps? Assessment of rectus femoris function during gait in
able-bodied adults. Gait Posture, in press.

[15] Kuo A. Stabilization of lateral motion in passive dynamic walking.
Int J Robot Res 1999;18:917–30.

[16] Hof AL, Pijlman J, Otten E. Control of lateral balance in walking.
Simulations and experiments on an instrumented treadmill. In: Duy-
sens J, Smits-Engelsman B, Kingma H, editors. Proceedings of the
ISPG 2001, Maastricht, 2001. p. 853–7.


	Detection of non-standard EMG profiles in walking
	Introduction
	Methods
	Subjects, EMG recording
	Gain factor
	Limits
	Deviation

	Results
	Discussion
	References


