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1 Introduction 

This paper has its origin in notes of the second author and remarks in [P]. Its 
purpose is to clarify the various concepts of points of an aflinoid space and 
topologies on sets of points which can be found in []3, D, H, P, S]. 

The set of ordinary points of an affinoid space X over a complete non- 
archimedean valued field k is too small for the collection of abelian sheaves 
on X. The family of stalks in the ordinary points does not detect the vanishing 
of a sheaf. One introduces the notion of a prime filter p on X to remedy this. 
The collection of  all prime filters is called ~(X) .  For every p E ~ ( X )  and 
every abelian sheafF  on X one can form a stalk Fp which is an abelian group. 
The functor F ~-+ Fp is exact and F = 0 if  all Fp are zero. 

The set ~ '(X) has a natural topology on it. For this topology ~ ( X )  is quasi- 
compact but not Hausdorff. The topological space #~(X) can be identified with 
the projective limit of a certain family of schemes of  finite type over the residue 
field of  k. For a field k with a discrete valuation this family consists of the 
special fibers of  all formal schemes 5f of finite type and fiat over the valuation 
ring k ~ of  k such that the "generic fiber" s | k is isomorphic to X. 

The set # ( X )  is shown to be isomorphic to a collection of valuations 
VaI(X) on the affinoid algebra r  of X. The latter space is the building 
block in Huber's approach to analytic spaces. The valuations of (real) rank 
1 correspond to a certain subset ~r of  ~(X) .  This subset consists of the 
maximal filters on X. There is a natural retraction map r : ~ ( X )  ~ ,/r 
Let ,Z[(X)qr denote the set , / ((X) provided with the quotient topology. It turns 
out to be a compact Hausdorff space. The set ~/r plays a central role in 
Berkovich theory of analytic spaces. He provides Me(X) with a certain topology 
which we will show to coincide with the quotient topology. This answers a 
question in [D]. 
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The category of abelian sheaves on X turns out to be equivalent to the 
category of abelian sheaves on the topological space ~(X).  Using the retraction 
map r : ~ ( X )  --~ .it'(X) and the nice topological structure of ~gt(X)qr one finds 
that the category of overconvergent sheaves on X coincides with the category 
of abelian sheaves o n  ~ ( X ) q  t. This fact was already proven in [S] and led to 
an easy proof of a base change theorem for rigid analytic spaces. 

For part of our results about the spaces ~ (X)  and Val(X) one can find 
brief indications already in [H]. 

In the last section we extend our results to general rigid spaces. 

2 Points and valuations 

Let X be an affinoid space over a complete non-archimedean valued field k. 
We will use the notations k ~ := {2 E k :121 < 1} and Ic for the residue field 
of k. Further n denotes some element in k with 0 < l nl < 1. The algebra 
of functions on X will be denoted by do(X). This algebra has a presentation 

: k(T1,.. . ,  Tra} --~ (DO() which induces a norm I I~ on do(X) (compare [BGR] 
6.1.1). The subring of elements with norm < 1 is denoted by d~(X) ~ The 
subring of the elements with spectral (semi-)norm < 1 ([BGR] 6.2.1.2) is 
denoted by do(X) ~ One defines d~(X) ~176 c_C_ do(X) ~ to consist of the elements f 
such that limn-+oo Ifnl~ = O. An f E do(X) belongs to do(X) ~176 if and only if 
its spectral (semi- )norm is < 1 ([BGR] 6.2.3.2). The ring do(X)~ ~176 is a 
finitely generated reduced k-algebra and is called the canonical reduction of 
do(X). The corresponding affine scheme over k is denoted by X and its set of 
closed points by f:ct. The dimension of J? is equal to the dimension of X. 

The space X as a set consists of the maximal ideals in d0(X). The finite 
unions of affinoid subdomains in X are called special subsets. We always give 
X the following Grothendieck topology: 

(1) The admissible subsets of X are the special subsets. 
(2) For a special subset U the family Coy(U) consists of the coverings by 

speeiat subsets which have a finite subcovering. 
A rational set R ( f o , . . . , f n )  in X is given by elements f 0 , . . . , f ,  E do(X) 

generating the unit ideal and is defined to be 

R(fo,... ,fn) := Rx(fo,... ,fn) 
:= {x ~ X : If0(x)l >_ Ifi(x)l  for all 1 < i < n} .  

For any rational set U _ X the coverings of the form 

U = 13 Ru( f i ,  f o , . . . , f i - l , f i + l , . . . , f n )  
O<i~_n 

are called rational coverings. The rational sets together with their rational cov- 
erings generate the Grothendieck topology o f X  ([BGR] 8.2.2.2). This has two 
simple consequences for abelian sheaves on X. Firstly a sheaf is determined 
by its sections in rational sets. Secondly let P be a presheaf on X and let F 
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be its sheafification; if  P satisfies the sheaf axiom for rational coverings then 
we have P(U)  = F(U)  for any rational set U. 

A filter f on X is a collection of special subsets of X satisfying: 
(p l )  X E f  a n d r  
(p2) if U1, U2 E f then U1 N U2 E f ;  
(p3) if U E f and the special subset V contains U then V E f .  
A prime filter p is a filter which in addition fulfills: 
(p4) If  U E p  and U = U t O U 2  with special subsets U/ then Ul or 

U2e p. 
This is, of  course, equivalent to the condition: 

(p4)' If  U = Ui~s u / i s  an admissible covering of  U E p then Uio E p for 
some i0 E I. 

Let ~ ( X )  denote the set of  all prime filters on X. The filters on X are 
ordered with respect to inclusion. Let JC(X) be the set of maximal filters. We 
have ..r ~(X) .  This is a special case of  the following basic argument 
which later on will be used several times. 

Remark 1. Let s be any family of special subsets of X which is closed with 
respect to finite unions. Assume that there is a filter f on X such that f fq s = 
0. Then there is a filter p on X containing f which is maximal with respect 
to p M s = 0 and any such filter is a prime filter. 

Proof The existence of p follows by Zom's lemma. It remains to verify (p4) 
for p. Let U, Ul, [/2 be special subsets in X such that U E p and U = Ul U U2. 
If Ul r p then the collection P1 of special subsets of X defined by V E pl if  V 
contains some W N U1 with W E p still satisfies X E Pl, (p2), and (p3). Since 
pl is larger than p we must have, by the maximality of p, that Pl contains a 
member ofs  U {0}. Assume now that neither U1 nor U2 belong to p. Then there 
are V/E s U {0} and Wi E p such that W/M Ui C_ Vi. Hence W := W1 A W2 E p 
satisfies W M U C Vi U V2 E s U {0}. This is a contradiction. 

A valuation (p,A) on X is a pair consisting of a prime ideal p C_ r  
and a valuation ring A in the field of  fractions of O(X)/p such that: 

(v l )  r  ~ + p/p C_ A; 
(v2) the intersection of all nnA is 0. 
Usually we will denote by ~b the residue class map from (~(X) into the 

field of fractions K of (~(X)/p. Let Val(X) be the set of all valuations on X. 
We note that one can replace (v l )  by the weaker condition 
(vl)' r ~ c_ A. 
Indeed, by Noether normalization we have a finite monomorphism k(Tl , . . . ,  

Ta) '--4 O(X) such that the Ti are mapped into O(X) ~ An element f E ~(X) 
with spectral (semi-)norm =< 1 is integral over k~ ([BGR] 6.3.4.1). 
This last ring is mapped by ~b into A. Hence ~b(f) is integral over A and 
therefore lies in A. 

Also note that (v2) means that the valuation topology on A is the rc-adic 
topology. It is sometimes convenient to replace A by its completion ,4, the 
projective limit of  the A/nnA. It follows from (v2) that A is a subring of ,~. 
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One easily verifies that .4 has no zero divisors and is in fact a valuation ring. 
The field of  fractions of ,4 will be denoted by /~. Let ma be the maximal 
ideal in A. The map A --4 A /mA extends to a map .4 ~ A/mA and therefore the 
maximal ideal m~- contains mA. Suppose now that a E K \ A .  Then a - l  E mA. 
Hence a -  l E mA and a ~ A. This shows that ,4 M K = A. More general, for any 
a E K one has aA tq K = aA. 

The aim of this section is to find a natural bijection VaI(X) ~ ~(X) .  Let 
a valuation (p,A) be given. Define a family p = p(p,A) of special subsets of  
X as follows: 

U belongs to p if it contains a rational set R ( f o , . . . ,  f n )  such that ~( f i )  E 
~b(fo).4 for all 1 < i < n. 

Proposition 2. i) I f  R ( f  o . . . . .  f n) c_ R(go . . . . .  gin) and  ( 9 ( f  i) E qS(fo)A f o r  all  
i then ~b(gj) E q~(go)A f o r  al l  j ;  
ii) p is a p r i m e  f i l t er  on X.  

Proof .  i. The homomorphism ~b : t~(X) ~ ~ A extends to the homomorphism 

~bl : r176 . . . . .  Tn] ~ A 

r 
r  

By taking limits q~l extends uniquely to a homomorphism ~b2 : • ( X ) ~  ,Tn) 
,'1. The corresponding homomorphism t~(X)(T1,..., T n ) ~ / ~  factors over 

q~3 : R := O(X)(Tt . . . . .  T n ) / ( f l  - f o T o , . . . , f ~  - f o T n )  --~ I~. We have R = 
O ( R ( f o , . . . , f n ) ) .  Let us note here that since the image of q~3 is not {0} it 
follows that R ( f o , . . . , f n )  is not empty. By construction ~b3(R~)C_~ where 
I I/~ is the norm on R induced by the given presentations of R and O(X). As 
noted before, this implies that also ~b3(R ~ C_ .4. 

We consider now the restriction map r  R(go, . . . , gin)) -- '  O( R(  f o . . . .  , f ~ ) ). 

The images of the elements _q2 have spectral (semi-)norm < 1 in R. Hence go = 

~(~o) 

ii. We have already seen that the empty set does not belong to p. Fur- 
ther X = R ( 1 , 0 )  obviously belongs to p. This proves (pl).  The formula 
R ( f  o, . . . , f n ) f') R(go . . . . .  gin) = R(  . . . .  f igj, . . . ) proves (p2). The condition (p3) 
holds by construction. For (p4) we first consider the case of a rational cov- 
ering of X given by g o , . . . ,  gm E d~(X) generating the unit ideal. The frac- 
tional ideal ~(go)A  + . . .  + q~(#m)A in K is generated by some ~P(gio). Hence 
R(gio, go . . . .  , gin) E p.  In order to prove (p4) in general it suffices, by the defi- 
nition of  p, to consider a rational set U = R ( f o  . . . . .  f m ) .  Because p is already 
known to be a filter (p4) for U is a consequence of (p4) for X by the follow- 
ing fact: For any admissible covering of  U there exists a rational covering of  
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X whose restriction to U is finer than the given coveting. This is well-known 
but for the convenience of  the reader we include the argument. 

First we refine the given covering into a rational coveting 

U = U UI where Uj =Ru(gj ,  go, . . . ,gj-bgj+l, . . .grn) 
O~j~m 

with go . . . . .  gm E d2(U) generating the unit ideal. Since gj is invertible on Uy 
we find an e > 0 such that 

[gAx)l > ~ for any x E uj and any 0 < j < m.  

Now we choose elements g~,... ,g~ E d2(X)[fo i] such that 

[g j (x) -q) (x) l  < ~  for a n y x E U a n d a n y 0 < j  < m .  

Then the gj cannot have a common zero in U and therefore generate the unit 
ideal in d~(U); also by construction we have 

U j  / / / t = Ru(gj, go, " = j = m.  g]+l, .,g~,) for any 0 < " ' ' , g ) - - l ,  < 

Moreover we may multiply all the gj by an appropriate power of f o  without 
changing the Uj. This shows that from the start we may assume without chang- 
ing the given rational covering that the go . . . . .  gm extend to functions on X. In 
this situation we choose a 2 E k • such that 121 < e. The rational coveting of  
X given by the functions 2, go . . . .  ,gm then has the wanted property. 

We next construct a map ~ ( X )  ~ VaI(X). Let p be a prime filter on X. 
We put 

d~p := lim d2(U) = li_mm{O(U) : U E p rational} and 
UEp 

0 d~, := li__m dP(U) = li_m{dP(U) : U E p rational}. 
UEp 

Define 
I lf l lp :=  inf Ilfllu for f E Op ; 

here tl IIu denotes the spectral (semi-)norm on U and the infimum is taken 
over all U E p such that f is defined on U. Let 

m e := { f  E (-0 v : [If lip = 0}.  

Clearly mp is an ideal in both tings ~0p and ~o. Put 

kp :=  dmp and k ~ := 

Proposition 3. i. mp is the unique maximal ideal o f  Op; 
ii. k ~ is a valuation ring with fieM of  fractions kp; 
iii. let p be the kernel o f  the homomorphism O(X) ~ kp and let A be the 
preimage o f  k ~ in the fieM of  fractions of  d2(X)/p; then v a l ( p ) : =  (p ,A) /s  a 
valuation on X. 
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ProoJ: i. Let f E d~p be defined on some U E p. If  for some E E Ikl, e > 0, 
the set {x E U : If(x)t _~ e} belongs to p then f is an invertible element of 
r I f  not then {x E U : If(x)l ~ e) ~ p for all ~ and so f E me. 

ii. We will not distinguish in notation between f E r and its image in kp. 
Suppose that f E kp does not lie in k g. Let f be defined on some U E p. Then 
{x ~ U: l f ( x ) l  ~_ 1} does not belong to p. Hence the set {x E U : If(x)l > 
1} ~ p and so f - l  ~ kp0. 

m."" The only non-trivial item to verify is (v2). But nnA _C nnkp.O Let f E ~p 
represent an element in the intersection of all " 0 n kp. Then clearly Ilfllp = 0 and 
the image of f in k ~ is 0. 

Theorem 4. The maps p(.)  and val(-) between VaI(X) and ~ ( X )  are each 
others inverses. 

Proof Let (p,A) be given and let p := p(p,A). In the proof of Proposition 2 
we have seen that, for any U = R( fo , . . . ,  f , )  E p, there is a unique continuous 
extension ~bv : ~(U)--*/~ of ~ satisfying ~bv(d~(U) ~ C_ A. This induces a 
homomorphism ~bp : d~p ~ / ~  such that ~bp(d~ ~ C_ A. For f E mp one has 

f e n  n ~  ep and so $ p ( f )  E N n n A = { O } -  
nEN nEN 

Hence ~bp induces an injection kp C/~  such that k ~ _C A. Let f E kp n A. 
One can represent f by some element g E d~(U) with U E p. The condition 
~bv(ff) s 2 implies that {x E U : Ig(x)l _-< 1} p and therefore f E k ~ Hence 

k ~ = kpMA. This implies k ~  and we have proved that v a l ( p ) =  
(p,A). Let a prime filter p be given and let (p ,A) :=  val(p). The filter in- 
duces a homomorphism $ : d~(X) --~ kp. It is easily seen that a rational subset 
U = R ( f 0  . . . .  , f n )  is contained in p if  and only if  $ ( f i ) E  ~/(fo)k ~ for all 
1 < i < n. Since A = K Nk ~ it follows that p(p,A) = p. 

Corollary 5. Let p be a prime filter on X and let (p,A) be the corresponding 
valuation; we then have: 
i. Or is a Henselian local ring; 

ii. k ~ is Henselian with respect to its prime ideal V ~ p ;  

iii. ,~ = lj__mk~176 in general A 4=k~ 

iv. there is a chain o f  subfields I~ 2 M ~_ L such that 
- I~ is finite over M, 
- L = k (Tb . . . ,  Ta) is purely transcendental over k with d <= dim(X), and 
- L is re-dense in M, i.e.,for any m E M there is a E E L with f - m E ~7; 

v. Krull dim(A) ~ d im(X)+  1. 

Proof. i. First of all we observe that by Hensel's lemma Op is Henselian if  
(d~p)red is Henselian. Hence we may assume that X is reduced. According to 
one of the equivalent conditions for being Henselian we have to show that 
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any finite free tPp-algebra R is a product of local rings. In other words we 
have to show that any idempotent 6 in R ~ ,  kp lifts to an idempotent in R. 

We clearly find an U E p and a finite free tP(U)-algebra R' such that R = 
Rr~t~(u)(Pp. Since X is reduced [[ [[u is a complete norm on ~P(U) ([BGR] 
6.2.4.1). According to [BGR] 6.1.1.6 and 6.1.3.3 there is a Banach algebra 
norm [[ [[ on R' such that (R ~, I[ [[) is a normed (r  [[ [[u)-algebra. After 
replacing U by a smaller set in p we may assume that 6 lifts to an element 
e0 E R ~ such that [leo 2 - eo[ [<  1. Define a sequence (en)n>o of elements in R' 
by 

e,,+l := 3en 2 - 2en 3 �9 

By construction one has 

en+l - en = (en: - en)(1 - 2e.) and 

2 4(en 2 - en)3 _ 3(e: n _ en)2 e n +  1 - -  e n + l  = 

It follows that the sequence (e,)n>__o converges to an idempotent e E R ~ which 
lifts 4. 

ii. This is proved in a similar way as the first assertion. 
iii. The first statement is easily verified. An example for the inequal- 

ity is provided by X := Sp(k (T ) )  and the valuation ring A := { ~ :  f , #  E 

k(T),g~=O, and Ilfllx < Ilgllx}. 
iv. After dividing d~(X) by a prime ideal we may suppose that ~b is injec- 

tive. The field of  fractions K of ~(X)  is re-dense in/~.  The algebra O(X) is 
finite over some R := k(Ti , . . . ,  Ta) with d equal to the dimension of X. Let 
M C_/~ denote the 7t-completion (in the obvious sense) of  the field of fractions 
of  R. Then/~ is finite over M and M has k(Tl . . . . .  Ta) as u-dense subfield. 

v. In the valuation ring A the smallest non-zero prime ideal is I := v/--~. 
Indeed, let J C 1 be a prime ideal which is smaller than I .  Choose a E J .  
Let n E N and suppose that aA + unA : aA. Then ~n E aA and rc E J and 
one finds the contradiction I C_ J .  Hence aA + rcnA = r for all n E N,  hence 
a E nne~q nnA = {0}, and hence J = 0. 

We will show that Krull dim(A~1) < dim(X). The map ~b : d~(X) ~ K has 
the properties ~b(d~(X) ~ C_ A and ~b(0(X) ~176 C_ 1. The kernel of  the induced 
homomorphism d~(37) -~ Ai := A/I  is a prime ideal corresponding to a closed 
irreducible (and reduced) subset Y C_ _~. It can be seen that the induced injec- 
tire map ~(Y) ~ A1 gives a bijection between the fields of fractions of  the 
two rings. In other terms: Al is a valuation ring of the field of  fractions of 
~P(Y) containing dg(Y). It is well known that the Krull dimension of such a 
valuation ring is < the dimension of Y. 

An ordinary point x E X can be identified with the prime filter {U : x E U}. 
The valuation corresponding to x is given by the homomorphism d~(X) 
~P(X)/mx where mx denotes the maximal ideal corresponding to x. In this way 
X can be embedded in ~ ( X )  and VaI(X), respectively. 

A valuation (p,A) on X is called an analytic point of X if the valuation 
ring A has rank 1. Recall that a valuation ring has rank 1 if  and only if its 
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Krull dimension is 1 ([M] 10.7). Obviously any ordinary point gives rise to 
an analytic point. Let pl and p2 be two prime filters on X with corresponding 
valuations (pi,,Ai). Then Pl C_ P2 if  and only if Pl = P2 and A2 is a localization 
of A! with respect to some prime ideal of A1. This follows easily from Theorem 
4. In particular the prime filter p is maximal if  and only if the corresponding 
valuation ring A has rank 1. In other words: The subset of analytic points 
corresponds to the subset , ,g(X) of maximal filters. 

The analytic points of X can also be described in the following way. An 
analytic point a of X is a semi-norm I la : ~(X) --~ IR>0 on the affinoid algebra 
t~(X) of X satisfying: 

(a l )  [ f + g l ~  <-- max([fla, lgla) for all f , #  �9 d~(X); 
(a2) Ifgla = Iflolgla for all f ,  g �9 d~(X); 
(a3) I-~la = IAI for any 2 E k; 
(a4) I [a : O(X) ~ IR___0 is continuous with respect to the norm topology 

on tP(X). 
Still another characterization of analytic points will be given in Lemma 6. 

As an example we give an explicit description of the prime filters on the 
disk D = Sp(k(T)). For convenience we suppose that k is algebraically closed. 
For any d E D and any p E [kXl with 0 < p _~ 1 we write D(d,p) := {x E 
D : Ix - d[ < p}. This is a closed disk. We will write D(d,p)* for any subset 
of  D of the form 

{x E D(d,p) : tx - all = P for i = 1, . . . ,m} with al,...,am �9 D(d,p).  

This is a formal open subset of D(d,p). We start by describing the analytic 
points of  D (compare also [B] 1.4.4). 

Let [ [a be an analytic point. For every d �9 D one defines the real number 
p(d) := IT-dl,,. Then D(d,p) belongs to a if  and only if  p(d) < p. This 
follows from the definition of the filter attached to t ]a. 

For convenience we extend the notation, namely D(d,p) := {x �9 D : 
Ix-  dl < p) for any p E ~,, 0 ~ p ~ 1. 

For two points dbdz E D one has 

D(dh p(dl )) C_ O(d2, p(d2)) or O(d2, p(d2)) c_ O(dt, p(dl )) 

because Idl - d21 = [(T - d l )  - (T - d2)ia s max(IT - dl [,, IT - d~la). Now 
there are several possibilities: If  N(D(d, p(d)) : d E D} is 

(1) an (ordinary) point x E D then a is the filter of all special subsets 
containing x; 

(2) equal to D(do, Po) with P0 �9 Ik• then a consists of the special subsets 
containing some D(do, po)*; further I I~ is the spectral norm (or supremum 
norm) on D(do, Po); 

(3) equal to D(do, po) with P0 • Ik• then I [a still is the supremum norm 
on D(do, Po); further D(d,p)* belongs to a if and only if D(d,p)* D {x �9 D : 
Pt ~ I x - d o [  --< P2} with Pl < Po < P2 and Pl,P2 E Ik•  

(4) empty then I la is the infimum of the supremum norms taken over the 
sets D(d,p(d)); a special subset belongs to a if  and only if it contains some 
D(d, p(d)); this ease can only occur if  the field k is not maximally complete. 
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The description of  the prime filters p which are not maximal is more 
complicated. We will use the results and notations of  the subsequent paragraph 
for this. Let a :=  r(p). For an a of  the type (1), (3), or (4) above one sees 
that c~ = a; hence p = a. For a of  type (2), we take for notational convenience 
D = (do, P0). For any 2 E k one chooses a 2 E k ~ with residue )~. Define p~ 
to be the family of  special subsets of  D containing for some p E I kx I, P < 1, 
the ring domain {x E D : p < I x - AI < 1}. This is in fact a prime filter and 
r(px) = a. Using Lemma 6 one can show that any p:#a with r ( p ) =  a is 

equal to p~ for a unique 2 E k. This finishes the description of  all prime filters 
on D. 

Coming back to the general situation we finally describe a natural retraction 
map 

r : ~ ( X )  ~ ..r 

Let p be any prime filter on X.  The map f ~ Ilfllp satisfies ( a l ) - ( a 4 ) ,  as 
is easily seen. We denote by r(p)  the analytic point of  X (resp. the maximal 
filter) which corresponds to [[ lip. One has that R(f l  .... , f , , )  belongs to r(p) 
i f  and only i f  IIf0iIp => [[fillp for all 1 _< i N n. Moreover, this is equivalent 

to R(pfo, f t , . . . , f ~ )  E p for every p E v / Ik •  > 1. The notation which we 
use here and in the sequel is 

R(pfo, f , , . . . , f , , )  := {x EX:p[fo(x)]  > I f i (x)  I for all 1 _< i < n} ; 

this is a rational subset ([BGR] 7.2.3). 

L e m m a  6. i. A prime filter p is maximal i f  and only if it has the property 
that R ( fo , . . . , f ~ )  E p if R(pfo, f j , . . . , f , )  E p for every p E x/[kX[, p > 1; 

ii. Jor a prime filter p the filter r(p) is the unique maximal filter con- 
taining p; 

iii. if  A is the valuation ring corresponding to the prime filter p then the 
valuation ring corresponding to r(p) is the localization of  A at the prime 
ideal v/-~. 

Proof Obvious. 
We will need some further properties of  this retraction map. 

L e m m a  7. Let a be an analytic point o f  X with corresponding valuation 
(p,A);  we have: 

i. define ~ to be the family of all special subsets oJ'X which contain 
R(pfo, f l , . . . , f n )  for some R ( f o , . . . , f n ) E  a and some p E v/lkX[, p > 1; 
then ~ is equal to the intersection of  all prime filters p with r(p) = a; 

ii. the set r - l ( { a } )  can be identified with the set of  all valuation rings in 
the residue field A/mA of  A which contain the image of the map (9(X)~ ~ 

A/m . 

Proof i. We know already that the prime filters p containing ~ are precisely 
those with r ( p )  = a. In particular ~ is contained in the intersection of  all those 
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prime filters. In order to see the reverse inclusion observe first that ~ is a 
filter. If U ~ ~ is any special subset then applying Remark 1 to the family 
s := {U} we obtain a prime filter containing ~ but not U. ii. This follows 
from Lemma 6.iii and [M] 10.1. 

3 Topologies on ~'(X) and .A/(X) 

Let Z be a scheme of finite type over a field F. We denote by Zcl the variety 
over F consisting of the closed points of Z. A prime filter o n  Zcl is a collection 
of Zariski open subsets of Zr having the properties (p l ) - (p4 )  as in Sect. 2. 
Let ~(Zcl) be the set of  all those prime filters. Every point z E Z defines an 
irreducible closed subset {z) and a prime filter Pz consisting of the open subsets 
U C_ Zcl such that U n {z} 4= 0. We want to prove the following amusing fact. 

Lemma 1. The map Z ~ ~(Zct) given by z ~ Pz is a bijection. 

Proof. The injectivity of  the map is clear. For the surjectivity it suffices to 
consider an affme scheme Z. Let p be a prime filter on Zcl and define 

~Pp := li_.m ~(U)  and mp := li__m{f E r : {y E U ' f ( y ) + O }  ~ p} .  
UEp UEp 

Here tP denotes the structure sheaf of Z as well as its inverse image on Zct. 
Clearly mp is an ideal in d~p. If  f E ~e\rrtp is defined on U E p then the 
set {y E U : f ( y ) 4 : 0 }  belongs to p and so f is invertible in r Hence d~ e 
is a local ring. The kernel of  q~ : dg(Z) --+ 0p --o ~p/m e is some prime ideal 
1 of  O(Z). For f E iV(Z) put Zf := {y E Z : f (y)4=0} which is Zariski open 
in Z; then Zf n Zcl E p if  and only if f ~ I. Since the Zf form a basis of the 
Zariski topology it follows from (p4) that d~ e is the direct limit of all ~)(Zf) 
with f ~ 1. Therefore d~p is the localization of r with respect to the prime 
ideal I. The prime ideal I is a point z of Z and p = pz. 

On ~(Zct) we put the topology induced by its bijection with Z. One can 
verify that the open sets in ~(Zcl) are the sets {p E ~(Zcl) : U E p} where 
U C__ Zct is a Zariski open set. 

We return now to the a~-moid space X over k and its set of prime filters 
~ (X) .  On this set we define a topology by taking as a basis for the open 
sets the sets 0 := {p E ~ ( X )  : U E p} where U C_ X is a special subset. If 
U is an afflnoid subdomain of X then the obvious bijection ~ ( U )  --% 0 is a 
homeomorphism. The next fact is a central result in [HI. 

Lennna 2. i. The space ~ ( X )  is quasi-compact; 
ii. for any analytic point a E .,el(X) C_ ~ ( X )  the closure of {a} is the set 
r - l ({a}) ,  where r is the retraction map. 

Proof. i. Let {Oj}jej be a covering of  ~(X) .  Assume that this covering has 
no finite subeovering. By (p4) this means that X does not belong to the family 
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s of  all finite unions of sets U:. Applying Remark 2.1 to the filter {X} we 
obtain a prime filter p such that p N s = 0. On the other hand we have p E 0:o 
for some jo ~ J and hence Uj0 ~ p n s. This is a contradiction, ii. Let a prime 
filter p be given. By the definition of the topology we have 

~ ( X ) \ { p }  = { p ' :  p '  contains some special subset U ~ p} 

and hence {p}  = {p~ : p' C_ p}. The assertion follows now from Lemma 2.6.ii. 
The maximal ideal corresponding to a point in X is the kernel of a surjective 

k-algebra homomorphism ~b : r  ~ where : is a finite extension of k. 
There is an induced i-algebra homomorphism ~ : (9(~-) -+ : .  The kernel of 
is a maximal ideal of r  This defines a map 

red : X --* Xcl 

which is called the canonical reduction map. It is surjective and for every 
Zariski open V C_ Xct the preimage red -1V is a special subset in X ([BGR] 
7.1.5.2 and 4). 

Lemma 3. There is a natural surjective continuous map red : ~ ( X )  -~ ~(X~t) 
~-2.  

Pro@' For p E ~ ( X )  define 

red(p) := {V C_?(r open : red- iV  E p } .  

It is clear that red(p) is a prime filter on Rc~. The continui_ty of red follows 
from the definition of the topologies. Let a prime filter q on Xcl be given. The 
family 

f := all special subsets U C_ X such that U D_ red- l V for some V E q 

is a filter on X. The family 

s := all special subsets U C_ X such that U C_ red - lW 

for some open W c_ -~ct with W ~ q 

is closed with respect to finite unions and fulfills f M s = 0. Applying the 
Remark 2.1 we obtain a prime filter p on X such that p _D f and p N s = 0. 
The former property implies that q C_ red(p) and the latter that red(p) C_ q. 

These considerations can be generalized in the following way. Consider 
the rational covering {U0,... ,  U~} of X given by elements f o , . . . , f n  E (~(X) 
generating the unit ideal. For every i , j  one has that Ui N Uy is an open affine 
subscheme of  U/ ([BGR] 7.2.6.3). The affine schemes O/ are glued together 
over these open subschemes. The result is a reduced scheme of finite type over 
k which we denote by (X , f . ) .  The canonical reduction maps U,. --* (@), /g lue  
to a m a p  

r e d ( f . ) : X  ~ (X, f . )~ t 

which is called the reduction map of the rational covering, given by 
f -  = {f0 , . . .  , f~}.  Again it is surjective and for every open V C_ (X , f . )c  ! the 
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preimage red( f  . ) - IV  is a special subset in X. As in Lemma 3 one can prove 
that this map extends naturally to a surjective continuous map 

red(f  .) : ~ (X)  --* ~ ( ( X , f  .)cl) "~ (X , f  .) .  

This leads to a continuous map 

~ ( X )  ~ lim (X, f . )  
4-----.- 

in which the last space is provided with the topology of the projective limit. 

Theorem 4. ~ ( X )  -% li,__m (X, f .  ) is a (bijective) homeomorphism. 

Proof. First note that for any rational set U =R(g0, . . . ,gm) in X the subset 
Oct in (X,g,)c 1 is open and U = red(g. )-l Oct. This immediately implies that 
the map in question is injective. But it also shows that for any {p( f . ) } f .  in 
the projective limit on the tight hand side the filter 

p := all special subsets U ___ X such that U D_ red( f . ) -  1V 
for some f .  and some V E p ( f . )  

on X is a prime filter. One easily checks that p is a preimage of { p( f . ) ) f . .  
Hence our map is bijective. In order to see that the map is open let U = 
R(go,...,gm) be again a rational set in X. The image of 0 C_ ~ ( X )  consists 
of the elements {p( f . ) } f .  in the projective limit such that p(g.)  contains the 

open set Oct C_ (X, g.)c~. 
Assume the valuation of  k to be discrete and let n generate the maximal 

ideal of  k ~ The Raynaud functor associates to every formal scheme ~ of finite 
type and fiat over k ~ a rigid analytic space X := Ar | k called the "generic 
fiber" of ~ .  If  the formal scheme is affine, i.e., ~ is the formal spectrum of 
a fiat k~ of the type R = k~ Tn)/1 then X is the affinoid space 
with algebra d~(X) = R ~)k0 k. One finds a reduction map red : X --o ff~j where 
~" := Spec(R ~ko lc). In the general case one has a similar reduction map where 

:= Ar ~k0 k is the special fiber of ~ .  Blowing ups of ~ with respect to an 
ideal with support in the special fiber do not change X but change the reduction 
map. 

Let X be a reduced affinoid space over k. The ring ~0(X) ~ is noetherian, rr- 
adically complete and (9(X)~ is of finite type over k ([BGR] 6.4.1.6). This 
makes ~ := Sp f (~ (X)  ~ into a formal scheme of finite type and fiat over k ~ 
with genetic fiber X. The reduction map corresponding to 5f is what we have 
called the canonical reduction map. For any rational coveting {Ub... ,  Un} of 
X given by elements f o , . . . , f n  the glueing of the Spf(dg(Ui) ~ gives a formal 
scheme ~e( f . )  of finite type and flat over k ~ with generic fiber X and with 
reduction as explained before Theorem 4. This new formal scheme can be 
obtained from ~ by blowing up some ideal supported in the special fiber. 
One can show that the family ~ ( f . )  is cofinal in the collection of all formal 
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schemes q / o f  the type above with X as generic fiber. This is the interpretation 
of Theorem 4 in terms of  formal schemes. 

For more general fields this interpretation remains valid but the formula- 
tion is more complicated due to the fact that the rings k~ In) are not 
noetherian. 

Definition. The Berkovich topology on .tg(X) is the coarsest topolooy such 
that,/'or every f E O(X), the/unction a ~-+ [fla on .If(X) is continuous. 

The description of analytic points in terms of semi-norms on @(X) shows 
that the functions in the above Definition separate points in ./r Hence the 
Berkovich topology is Hausdorff. In the following ./r always is equipped 
with the Berkovich topology. 

Theorem 5. The Berkovich topology on ~ ' (X)  coincides with the quo- 
tient topolooy derived from the topology on ~ ( X )  and the retraction map 
r : ~ ( X )  ~ . / /(X);  r162 is compact. 

Proof We temporarily write .//(X)B for ~r equipped with the Berkovich 
topology. It suffices to show that the map r : ~ ( X )  --o r162 is continuous. 
Since the first space is quasi-compact and hence the second one is compact 
the map then must be a quotient map. It is easy to see that the open subsets 

M ( f o , . . . , f n )  := {a E ,~r If01a > If, la for all 1 < i < n} 

for any fo ... .  , fn  E dT(X) generating the unit ideal form a basis of the topology 
of r162 Let p be prime filter on X. We have r (p )E  M(fo  . . . . .  fn )  if  
and only i fR(p fo ,  f b . . . , f n ) E  r(p) for some p E I x / ' ~ ,  P < 1, which by 
Lemma 2.7.i is equivalent to R(ptfo, f b . . . , f n )  E p for all p' > p. It follows 
that 

(*) r - l M ( f o  ....  , f n )  = U{R(pfo ,  f l  . . . .  , fn )  ~ : p E [V/~I  and p < 1}. 

The right hand side is open in ~(X) .  
The second statement in the above Theorem is due to Berkovich ([B]). But 

our proof is completely different. 

4 Sheaves on X, ..~'(X), and ~ (X)  

The inclusion X C_ ~ ( X )  is not very useful for comparing sheaves on the two 
spaces. But viewing X with its Grothendieck topology as well as the topological 
space ~ ( X )  as sites the functor U ~ 0 defines a morphism of sites 

a :~)(X) -+ X .  

The following result was proved in [H]. 



94 M. van der Put, P. Schneider 

Theorem 1. The functors ~, and a* are quasi-inverse equivalences between 
the categories of abelian sheaves on ~ (X)  and on X. 

Proof. Let F be an abelian sheaf on X. Then a*F is the sheaf associated with 
the presheaf P given by 

P(N) = li.__m F(U) for any open N C_ ~ ( X ) .  
N__qo 

Consider the case where N is of  the form N = I~ for some special subset 
V _C X. A special subset U such that P _ 0 satisfies V _c U. Indeed, suppose 
there is a point x E V\U. Its neighbourhood filter lies in I 7" but does not 
contain U which is a contradiction. It follows that p ( l ? ) =  F(V). In particular 
P already satisfies the sheaf axiom for coverings consisting of open sets of  the 
form I?. Since the latter form a basis of  the topology of ~ ( X )  sheafification 
leaves the sections in such a set V unchanged: We have 

(a,a*F)(V) = (~*F)(I  7) = P ( I  7) = F(V) and hence ~r,a*F = F .  

Also for an abelian sheaf S on ~ ( X )  we obtain 

(a*~r,S)(I 7") = (a,S)(V) = S(I?) and hence cr*a,S = S .  

This proof in particular shows that for any abelian sheaf F on X and any 
special subset U C X we have 

It follows that 

( , 7 * F ) ( O )  = F ( U )  . 

Fp := li__m F(U) = (a*F)p for any p E ~ ( X )  
UEp 

where the right hand side is the stalk in the usual sense of the sheaf ~r*F in 
the point p. As a consequence we obtain that the functors F H Fp are exact 
and that F = 0 if  all Fp = O. 

An abelian (pre)sheaf F on X is called overconvergent if, for all f 0 , - . . ,  fn  
E O(X) generating the unit ideal, we have 

F(R(fo ... .  , fn))  = lim F(R(pfo, f b . . . ,  fn)) 

where the limit is taken over all p E [ V " ~ ,  P > 1. One can verify that this is 
the same notion as that of  a conservative sheaf in [S] as well as that of a con- 
structible sheaf in [P]. We note that the sheaf associated to an overconvergent 
presheaf is also overconvergent. A sheaf on t~(X) will be called overconver- 
gent if  the corresponding sheaf on X is overconvergent. The following theorem 
is one of  the main results in [S]. The proof given here is however more direct. 

Theorem 2. The retraction map r : ~ (X)  --* ,4[(X) gives rise to quasi-inverse 
equivalences r, and r* between the category of overconvergent sheaves on 
~ ( X )  (or on X)  and the category of all abelian sheaves on ~r 
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Proof  (1) First we show that for any abelian sheaf T on Jg(X) the sheaf 
r*T is overconvergent. Since sheafification preserves the property of  being 
overconvergent it suffices to check that the presheaf inverse image of T is 
overconvergent. This is the presheaf P on ~ (X)  given by 

P(N)  = li__.m T ( M ) .  
NC_r-IM 

Let U = R( fo  . . . .  , f n )  be a rational subset of X. Then 

r ( ( I )  = {a E J / ( X )  : U E a} = {a E . / / (X) :  If0l~ >-- I f ~ l .  . . . . .  If,[~} 

is a closed subset in ~r A fundamental system of open neighbourhoods of 
r (O)  is given by {M(e) : ~ > 0} with 

M(e)  := {a E J t ' (X) :  (1 + E)lf01~ > I f l l ~  . . . . .  I f , , [=}  �9 

We have P ( O)  = lira T(M(e))  and this implies that 

P (U)  = li__m P ( R ( p f  o, f b . . . ,  f ,,)~) 

where the direct limit is taken over all p E 1 ~ - ~ ,  P > 1. The presheaf P 
therefore is overconvergent. 

(2) Next we show that for any overconvergent sheaf S on ~ ( X )  and any 
analytic point a of X the natural map 

(r ,S)~ , s~ 

is bijective. By the construction of the topology Sa is the direct limit of all 
S(O) with U = R ( f o , . . . , f n )  E a. Since S is overconvergent Sa is also the 
direct limit of all S(O) where U = R(pfo,  f l  . . . . .  f , )  with R ( f o , . . . , f n )  E a 
and p E ~ [, p > 1. Our claim follows since the open subset 

M := {b E J t ( X ) ' p l f o l b  > I f l lo , . . . , i fn l6}  

in . / / (X)  satisfies r - l M  C_ R(pfo,  f t , . . .  , f n )  ~ by the formula ( , )  in the proof 
of Theorem 3.5. 

(3) A homomorphism of overconvergent sheaves S + S' is an isomorphism 
----4, I if  for any analytic point a E ~ ( X )  the homomorphism S~ S~ is bijective. 

Indeed, let p be any prime filter contained in the maximal filter a. Then the 
natural map Sp ~ S~ is an isomorphism for any overconvergent sheaf S. 

(4) For any abelian sheaf T on ~//(X) we have (r,r*T)~ = (r*T)a by (1) 
and (2) and (r*T)a = T~ since r(a) = a. Hence r,r*T = T. 

For any overconvergent sheaf S on ~ ( X )  and any analytic point a E ~ ( X )  
we have (r*r,S)~ = (r,S)a = Sa according to (2). Because of (1) and (3) this 
proves that r*r,S = S. 

Corollary 3. Let  S be a sheaf on ~ ( X )  and a an analytic point o f  X;  we 
have 
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(r* r ,S)a  = (r ,S)a  = Sa := l im S(U) .  
UE# 

P r o o f  (~ was defined in Lemma 2.7.) Consider the two families 

and 

{ r - l M ( f  o . . . .  , f n) : f o , . . . ,  f n E • (X)  generating the unit ideal 

such that a E M ( f o . . . . .  f n ) } 

of  open subsets in ~ (X) .  It is an immediate consequence of the formula (*) 
in the proof of  Theorem 3.5 that every member of the second family con- 
tains a member of the first family. The same formula ( , )  also shows, as 
noted already in the previous proof, the following: If R ( f o  . . . .  , f n )  E a so 
that R ( p f o ,  f b . . . , f n )  E ~ for any p E IX/~],  P > 1, then 

r - ' { b  E ~g(X):plfolb > [filb for all 1 < i < n} c R ( p f o ,  f l  . . . . .  f n )  ~ �9 

Hence any set in the first family contains a set in the second family. 

5 General rigid spaces 

In this section X is an arbitrary rigid space over k. The definition of  the sets 
~t'(X) C ~ ( X )  and VaI(X) together with the natural bijection between Val(X) 
and ~ ( X )  generalizes in a straightforward way. Of course filters on X now 
have to be formed among all admissible open subsets of X and prime filters 
have to be defined by the condition (p4) ~. For any affinoid open subset U _C X 
there are obvious bijections 

and 

The retraction map 

0 := {p E : U e p} 

,.r162 --% U := (a E ..r : U E a} .  

rx - .   e(x) 

unique maximal filter 
P ~-~ containing p 

still is defined. We equip ~ ( X )  with the topology for which the subsets 0 for 
U __ X affmoid open form a base. Then ~ ( U )  & C r is a homeomorphism. We 
have 

r~l({a})  = closure of {a} in ~ ( X )  for any a E ~ ( (X ) .  

R remains true in general that the categories of abelian sheaves on ~ ( X )  and 
on X are naturally equivalent. We always give .~ (X)  the quotient topology 
with respect to the map rx.  



Points and topologies in rigid geometry 97 

Lemma 1. Assume X to be affinoid; then the subsets , I t(X)\  U_ with U running 
through the affinoid subdomains of X are open and 9enerate the topology of  
~ ( X ) .  

Proof Clearly the natural map e/I(U) ~ ,/t'(X) is continuous. Since both sides 
are compact its image _U is closed. Using the Berkovich topology we know that 
the sets {a E .//t'(X) : [fla < p} and {a E . / t (X) : If[~ > p} with f E (9(X) 
and p E v/[k • ] generate the topology of  ./r Those sets obviously are of 
the form ~t (X) \  _t:. 

Lemma 2. Assume X to be quasi-separated and let U C_ X be affinoid open; 
then the natural map ~g/(U) --. ,g (X)  is a homeomorphism onto its image U_ 
which is closed in ,Ig(X). 

Proof Let X = Ui~l Ui be an admissible affinoid open coveting. Making ob- 
vious identifications we have 

~(X) \ rx~U = U~(U,.)\rx I U = U~(u;)\rS'[_~n~) 
iEI iEI 

= U r j )  (~(U,.)\( _U n U,.)). 

Since X is quasi-separated it follows from Lemma 1 that ~[(Ui)\(U_NUi) is 
open in ,/[(Ui). This implies that U is closed in d/(X).  In this way we see that 
the natural continuous map r ~ ~r162 has the property that the image 
V of  ~t'(V) for any affinoid subdomain V _c U is closed in ,/g(X). Again by 

Lemma 1 this map therefore is closed. 

Lemma 3. Let  X = OiEl Ui be an admissible affinoid open covering; we then 
have: A subset M of  JI (X)  is open (closed) if and only if the preimage of  
M in ,At(Ui) is open (closed) for any i E I. 

Proof The direct implication is trivial. Also the assertion about closedness 
follows from the one about openness. Therefore assume that the preimage of 
M in ,g(U/)  is open for any i E I. We have to show that rxlM is open. But 
(again with the obvious identifications) 

rxlM = U ( r x t M  M Ui) = Urui~(M M/,#(Ui)), 
iEl iEl 

The next results should be compared with [Be] Sect. 1.6. They say that as far 
as quasi-separated spaces X with the subsequent condition (*) are concerned 
the theory of Berkovich is the theory of the space ,/r In the following we 
extend the notations t) and _U in the obvious way to arbitrary admissible open 
subsets U C_ X. 

Proposition 4. Suppose that X is quasi-separated and that it has an admissible 
affinoid open covering X = Ui~r ui such that 
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(*) for any i E I there are only finitely many j E I with Ui fq Uj 4:0 ; 

then ~/f(X) is a locally compact and paracompact Hausdorff space. Moreover 
any point in J / ( X )  has a fundamental system of compact neighbourhoods oJ" 
the form V_ for some quasi-compact admissible open subset V C_ X. 

Proof Let a, b denote distinct points in J / (X) .  Since the Jt(Ui) are Hausdorff 
it follows from Lemma 2 that we can choose, for any i E 1, closed subsets 
Mi, Ni C Ui with union Ui and such that a ~ Mi, b ~( N~.. Define M := [.Ji~i Mi 
and N := Ui~tNi. The condition ( , )  implies that the intersections of M and 
N with Ui axe closed. Therefore M and N are closed in M/(X) by Lemma 3; 
their union is ~/t'(X) and a r M, b ~/N. This shows that ~//(X) is Hausdorff. 
By a similar reasoning the union of U,- with i running through any subset of 
I is closed in ,/r Applying this to those U~ which do not contain a given 
point a E acf(X) we see that the union of  the finitely many other U/which do 
contain a is a compact neighbourhood of a. Hence ~r is locally compact. It 
is also clear now that the U_Ai for i E 1 form a locally finite coveting of ./t'(X) 
by compact subsets. This implies that . / / (X) is paracompact ([E] 5.1.34). The 
above argument showed that a point a E J / ( X )  has at least one neighbourhood 
of  the form _V for some quasi-compact admissible open subset V _C X. Using 
a finite affinoid open covering of V a simple topological argument therefore 
implies that our second assertion only has to be checked in the case of an 
affinoid space X. This is done in [B] 2.2.3 (iii). 

Of course, in the situation of Proposition 4 the space .go(U), for any ad- 
missible open subset U _C X, is Hausdorff. 

An abelian sheaf F on X (or ~ ( X ) )  is called overconvergent if its re- 
striction to any atfinoid open subset U ___ X (or ~ ( U ) )  is overconvergent. It 
is shown in IS] Sect. 2 that it suffices to test this condition for an admissible 
affinoid open covering of  X. It is immediate from the affinoid case that the 
functor r~c maps any abelian sheaf on r to an overconvergent sheaf on 
~'(x) (or x). 

Lemma 5. With the same assumptions as in Proposition 4 let U C_ X be a 
quasi-compact admissible open subset and consider the commutative diagram 

~,(u) ~ , :(x) 

.g(u) ~', ~t(x) 

where q~ and ~b are the natural maps; for any overconvergent sheaf S on 
~ ( X )  the base chanoe map 

~,*rx,S ~-'~ rtl,~o*S 

is an isomorphism. 
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Proof (The above diagram in general is not cartesian. The map tp is an open 
immersion whereas ~, by Lemma 2, is a closed immersion.) It is convenient 
to introduce the following notation. For any two admissible open subsets V _ 
W _ X let S(V, W) denote the sheaf on W which is the direct image of SI#. 
The proof proceeds in several steps by imposing additional assumptions which 
gradually will be weakened. 

Step 1. U and X both are affinoid. Then the assertion is an immediate conse- 
quence of Theorem 4.2. 

Step 2. X is separated, U is affinoid, and the sheaf is of the form S(V,X) 
for some affinoid open subset V C_ X. Since by [S] 2.4 with S also S(V,X) is 
overconvergent we may apply Step 1 to V N U _C V and obtain 

rv ,~*s(g ,x )  = rv,S(V n U, U) 

= direct image on U of rvnu,(SI P N U) 

= direct image on U of (rv,(SI#))I_VO U 

= ~*(direct image on J / ( X )  of  rv,(S[~')) 

= ~ , * r x . s ( v , x ) .  

Step 3. X is separated and quasi-compact and U is affinoid. Then we have 
the exact sequence of sheaves 

0 --+ S --+ ~ S ( V , , X )  - ,  ~ S(U~ n U:,X) 
i6.I i , jEI 

where I can be taken to be finite. We apply now Step 2 to the middle and 
the right hand terms and we use that the functors involved in the base change 
map are left exact and commute with finite direct sums. 

Step 4, X is separated and quasi-compact. Let U = V1 U ... U Vr be a cov- 
eting by affinoid open subsets Vj C_ U and let ~pj : ~(V))  -+ ~ ( U )  and ~/,j : 
J / (Vj )  --+ M/(U) be the natural maps. The assertion may be checked after re- 
stricting to ,At'(Vj) for all 1 __< j ~ r. But then using Step 3 twice for Vj C_ X 
and Vj c_ U we obtain 

~j~k rx,S = ($~bj)*rx,S = rvj,(9~oj)*S = ~,q~yq) = ~jrv ,  q~ S .  

Step 5. The sheaf is of  the form ,ga(V,X) for some separated and quasi- 
compact admissible open subset V C_ X. Redo Step 2 but now using Step 4 
instead of Step 1. 

Step 6. In the general situation we consider the exact sequence of sheaves 

0 -~ S --* I-IS(U,,X) --* [I S(U, n Uj, X ) .  
iEI i, j E l  

The condition (*) implies that the infinite products appearing in this sequence 
coincide with the corresponding direct sums. Therefore we can redo Step 3 
now based on Step 5. 
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Theorem 6. With the same assumptions as in Proposition 4 we have that rx. 
and r~ are quasi-inverse equivalences between the category o f  overconvergent 
sheaves on ~ ( X )  (or X )  and the category of  all abelian sheaves on Jg(X). 

Proof We have to show that the two adjunetion maps are isomorphisms. This 
can be checked after restriction to ~(U,  ) and .gO(Ui), respectively. But applying 
Lemma 5 and Theorem 4.2 we obtain 

(r~.rx.S)l~( U~ ) = r~, ( (rx .S )l.lZ( UD ) = rT;iru,.( Sl~'( U, ) ) = SI~(U~) 

for any overconvergent sheaf S on ~ ( X )  and similarly 

(rx.r~ r)l.~(U,-) = rt~i.((r~ r)l~(U~)) = ru~.rb,(TlJt(Ue)) = T[.~'(UD 

for any sheaf T on Jg(X).  
The assumptions of  Proposition 4 are satisfied by any reasonable rigid space. 

For example, the generic fiber of  any formal scheme of finite type and fiat over 
k ~ is quasi-separated and quasi-compact. To discuss the property ( , )  a little 
further we first note that obviously any morphism fl : X  ~ Y of rigid spaces 
over k induces a continuous map 

~(~) : ~ , ( x )  - ,  ~ ( Y )  

p ~ { V _ Y admissible open :/~- l V E p } .  

This map respects maximal filters: To see this we may assume X and Y to 
be affinoid; then it is a consequence of  Lemma 2.6. Hence ~ also induces a 
continuous map 

~ ( /~ )  : ~ ( X )  ~ J r ( Y ) .  

I f  t :  U - - )X  is the inclusion of  an admissible open subset then d / ( O  is 
injective but in general not open. We therefore introduce the following notion. 

Definition. An open immersion ~ : U ~ X is called wide open if  .Ir is an 
open immersion, too. 

In case t is a wide open inclusion map we call U simply a wide open subset 
of  X. By Lemma 3 this notion is local in X. 

Lemma 7. For any admissible open subset U c_ X the Jbltowing conditions 
are equivalent: 

i. U is wide open in X; 
ii. r~l(_U) = U; 

iii. U is open in .,el(X). 

Proof It is trivial that i. implies iii. Assume now iii. to hold. It is clear that 
0 C r x l  (_U). Let p E r xl(_U) be any prime filter. Since r x l (_U) is open in 
~ ( X )  we find an affmoid open subset V C X such that V e p and V C U. 
The latter implies that V _C U and hence U E p which means that p E U. 
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The assertion ii. can be expressed by saying that the obvious diagram of 
topological spaces 

~(u) ~('~ ~(x) 

~(~) ~('~ ~(x) 
is cartesian. Moreover ~(~) is an open immersion and ru and rx are quotient 
maps. It is straightforward that then ~ / ( t )  has to be an open immersion, too. 

Proposition 8. With the same assumptions as in Proposition 4 let U C_ X 
be a wide open subset which possesses a countable admissible affinoid open 
covering; then U is quasi-separated and satisfies the condition ( , )  in Propo- 
sition 4. 

Proof It follows from Proposition 4 that Jg(X)  is locally compact. As an 
open subset ~r is locally compact, too. Of course U is quasi-separated. 
The assumption about the countable covering then implies by Lemma 2 that 
J I ( U )  is a countable union of compact subsets or in other words is countable 
at infinity and in particular is paracompact. 

According to [Bou] 1.9.10 Corollary there is a locally finite open covering 

~ ( U )  = O M` 
iEo r 

such that all the Mi are compact. Moreover, by [Bou] IX.4.3 Theorem 3 there 
are open coverings 

~(u) = UN~ = UL, 
iEJ iEJ 

such that 
L i C N i C N i C M i  for any i E J .  

The N/and Li are compact as well. We claim that for any i E J there are only 
finitely many j E J with Ni ANj4:O. Fix an i E J. The family { ~  : j  E J}  
being locally finite we find, for any a E Ni, an open neighbourhood Ma of a in 
Mi which intersects only finitely many sets N]. Since Ni is compact we have 

Ni C_ Mal tO... U Mar for some points al . . . . .  ar .  

If now N/ANj 4:{~ then also Map nNjae~ for some 1 < p < r. Hence this can 
happen only for finitely many j E J.  

According to Proposition 4 any point in some Li has a neighbourhood in N~ 
of the form V for some quasi-compact admissible open subset V c_ U. Since 
the L~ are compact and cover ,r it follows that there exists a family {Vi}iet 
of affinoid open subsets in U such that 

- U = U i ~ i  z , ,  
- for any i E 1 there are only finitely many j E I with V/M V/4= 0, and 
- for any point a E J r  there is an i E I such that V L is a neighbourhood 

of a in .,r 
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The latter property implies that the V/ form an admissible covering of  U: 
Let fl : Y ~ U be any morphism from an affmoid space Y into U. Using the 
compactness o f  J / ( Y )  it easily follows that the coveting {fl-1Vi}iel o f  Y has 
a finite subcovering and hence is admissible. 

Now let X = Z an be the rigid space associated to a separated scheme Z o f  
finite type over k ([BGR] 9.3.6). Of  course X is separated. 

Lemma 9. I f  Zo C_ Z is a Zar i sk i  open subscheme then U :=  Z~ n is wide open 
in X : Z an. 

P r o o f  Using Lemma  3 and an admissible affinoid open covering of  Z a~ this 
follows from the fact that any Zariski open subset in an affinoid space is wide 
open (IS] Sect. 3 Proposition 3 (iii)). 

Proposit ion 10. X = Z a" satisfies the condition ( , )  in Proposition 4. 

Proof. We want to apply Proposition 8. By Nagata Z is Zariski open in a proper 
scheme 2 over  k. Since d an is proper and hence quasi-compact it satisfies the 
assumptions of  Proposition 4. According to the previous Lemma Z a" is wide 
open in ~,an. By Proposition 8 it remains to check that Z an has a countable 
admissible affinoid open covering. Writing Z as a finite union of  affine open 
subschemes we are reduced to consider the case where Z is affme. But for the 
affme space and then also for any Zariski closed subscheme in the affine space 
our claim is obvious. 

Using the properties of  the Raynaud functor ([Meh] or [BL] 4.1) one can 
easily establish a version of  Theorem 3.4 for any quasi-separated and quasi- 
compact space X.  
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