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Abstract 

Van der Zee, Eddy A. and Bas R.K. Douma: Historical review of research on protein kinase C in learning 
and memory. Prog. Neuro-Psychopharmacol. Jr Biol. Psychiat. 1997,& pp. 379-406. 
0 1997 ELsevier Science Inc. 

1. In 1977, the discovery of a new type of kinase was reported, which turned out to be a receptor for 
phorbol esters. Thereafter, several mechanisms regulating PKC activity and various PKC subtypes have 
been discovered. 

2. A role for PKC in synaptic plasticity and information storage has been postulated in the mid- 
1980s. An important role for PKC has since been suggested in several learning and memory models, in 
which persistent changes in the activation of PKC outlasting the initial stimulating event am thought to 
be crucial. 

3. A vast number of experiments have further substantiated a role of PKC in learning and memory 
using molecular genetic, behavioral, pharmacological, electrophysiological or immunocytochemical 
approaches in the late 1980s and the 1990s. PKC research of the past decade or so of has shown some 
exciting aspects of the putative role of PKC in synaptic plasticity and information storage. 

4. The authors have provided highlights (Table 1) on research on PKC. 

‘Keywords: discocery, history, isoforms, learning and memory, long-term potentiation, models, phorbol 
ester receptor, Protein kinase C (PKC), synaptic plasticity, translocation. 

Abbreviations: diacylglycerol (DAG), intermediate and medial hyperstriatum ventrale (IMHV), long- 
term potentiation (LTP), phorbol-12,13-dibutyrate (PDBu), phosphatidylinositol (PI), phospholipase 
A? @‘LA,), protein kinase C (PKC), Receptors for Activated C Kinase (RACKS) 

1. Introduction 

The identification of the phenomenon of protein phosphorylation, first described in the early 1930s 

together with the realization of the importance of such protein modifications back in the early 1950s 

have been two major breakthroughs in our understanding in the regulation of key cellular processes. 

Protein kinases phosphorylate many cellular proteins, catalyzing the transfer of phosphate to certain 

aminoacid residues within proteins. Phosphorylation can alter the folding of the protein, and hence their 

function. In the late 196Os, CAMP-dependent protein kinase was discovered (Walsh et al., 1968), 

followed by cGMP-dependent protein kinase in 1970 (Kuo and Greengard, 1970). The discovery of a 
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novel, cyclic nucleotide-independent, protein kinase took place relatively recently in the late 1970s. The 

discovery of this enzyme and its impact on learning and memory research will be the main focus of this 

historical review. 

2. Discovery of Protein Kinase C (PKC) 

2.1 The Discovery of a Novel Protein Kinase 

In 1977, co-workers from the Nishizuka group at Kobe University in Japan first reported to have 

found a new type of kinase in rat liver (Takai et al., 1977a), bovine cerebellum (Takai et al., 1977b) and 

in the cytosol of rat brain (Inoue et al., 1977) but it took another 2 years before it was referred to as 

PKC. They described the purification of a proenzyme from the soluble fraction of tissue homogenates. 

This proenzyme was initially thought to be activated by limited proteolysis with Ca”-dependent neural 

thiol protease (Takai et al., 1977a,b; Inoue et al., 1977). At that time they named the enzyme protein 

kinase M, probably since maximum enzyme activities were established in the presence of mM 

concentrations of Mg2+. In fact, it turned out that they had isolated the catalytic portion of PKC, 

believing it to be a new type of unregulated protein kinase. The protease calpain fragmented PKC during 

the extraction of the kinase from tissue for purification. These catalytic fragments, which require Mg2+ 

but no second messengers to be active, are still called PKM. However, at that point in time neither the 

proenzyme nor its catalytic fragment had an obvious role in signal transduction pathways. 

It was demonstrated by the same group that the precursor enzyme itself could be enzymatically fully 

active in the presence of Ca2’ and a ‘membrane-associated factor’ that was identified as a phospholipid 

later clarified to be phosphatidylserine (Kaibuchi et al., 1981; Orr et al., 1992). The protein kinase is 

activated in a reversible manner by attachment to membrane phospholipid in the presence of Ca” (Takai 

et al., 1979a,b). The apparently Ca”-dependent protein kinase precursor now received its final name: 

protein kinase C. Further analysis showed that a small amount of diacylglycerol (DAG; a minor 

component of the cellular lipids) significantly increases the affinity of this enzyme for Ca2’ and 

phospholipid (Takai et al., 1979; Kishimoto et al., 1980). DAG (and inositoltrisphosphate; Benidge, 

1984) is produced by the metabolism of phosphatidylinositol bisphosphate (PI-turnover; the hydrolysis 

of phosphatidylinositol (PI) derivates by hormone or neurotransmitter-stimulated phospholipase C 

followed by resynthesis of PI). Interestingly, DAG permitted activation of PKC at resting intracellular 

CaZf levels (Kishimoto et al., 1980). PKC is usually present in an inactive form in the cytosol. Due to 
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the specific binding of PKC by DAG, which is transiently formed in the membrane, activation of PKC is 

accompanied by its translocation from the cytosol to the membrane (Kawahara et al., 1980). The 

duration and magnitude of the DAG signal determines the activation of PKC at the cellular membrane. 

Taken together, the in vitro results on PKC made it seem plausible that under physiological conditions 

PKC is activated when cells are stimulated by a wide variety of biological substances. It was therefore 

suggested that the release of DAG through the signal-induced breakdown of PI may trigger the activation 

of PKC in viva (Kaibuchi et al., 1982; Nishizuka, 1984). 

2.2 A Receptor for Phorbol Esters 

Around 1982 it became clear that PKC was the receptor for tumor-promoting phorbol esters. Phorbol 

esters, which dissolve in the cell membrane, compete with DAG for the same binding site and activate 

PKC in a similar fashion (Castagna et al., 1982), thereby increasing the enzyme’s affinity for Ca’+ 

approximately lo-fold. Since the observation that phorbol esters, like DAG, cause PKC translocation to 

membranes (Kraft et al., 1982; Kraft and Anderson, 1983) this and the accompanying activation of PKC 

has been the subject of extensive investigations. However, there was no proof for PKC being the sole 

target of phorbol esters (Nishizuka, 1986). In 1984, Moon et al. found effects of phorbol esters in 

membrane preparations from cells that lacked PKC, and in the mid-1980s the first discrepancies were 

found between physiological actions of phorbol esters and activation of PKC (Kreutter et al., 1985). It 

became clear that phorbol esters may sometimes be unsuitable for studies of the physiological activation 

of PKC; DAG is present only transiently in membranes, while phorbol esters may extend a usually 

limited phase of cellular response, thereby distorting the normal sequence of events (Nishizuka, 1986). 

Nowadays we know that there are also other receptors than PKC for phorbol esters (the 34kD n- 

chimaerin, for example (Hall et al., 1990)) calling into question some of the results of experiments 

obtained with phorbol ester to study the cellular function of PKC (Wilkinson and Hallam, 1994). 

PKC gained much interest after the mid-1980s when the two major findings, i.e. that it was the main 

target of PI-turnover as well as the phorbol ester receptor, became widely known. Since the first reports 

in the late 1970s on PKC, a still increasingly growing body of papers appears in the literature each year 

(Fig. 1). Research on PKC has spread over many fields of biology and medicine, probably because of its 

diverse functions in signal transduction. Nowadays, approximately 40-50 papers are published on PKC 

every week, and the total number of PKC-related reports presently exceeds 17,000. 
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Fig. 1. Some statistics on publications related to PKC. After the initial reports of PKC in 1977 (Takai et 
al., 1977b; Inoue et al., 1977) it took several years (until approximately 1983) before considerable 
numbers of PKC-related papers appeared. After 1983, the number of yearly published reports on PKC 
increased steadily, with a top of 2290 in 1994, although probably even more papers appeared in 1995 
(asterisks; the consulted database (Medline) did not yet include the last months of 1995). 



384 E.A. Van Der Zee and B.R.K. Douma 

2.3 The Discovery of Additional Mechanisms Regulating PKC Activity 

Mechanisms for the regulation of PKC activity other than by DAG or phorbol esters were soon 

detected. For example, in the early 1980s there were already indications that PKC undergoes 

autophosphorylation (Kikkawa et al., 1982), and the mechanism of PKC autophosphorylation and the 

resulting change in the property of the kinase were determined in the mid-1980s (Huang et al., 1986a,b). 

Autophosphorylation increases the affinity of PKC for DAG and may therefore be important in the 

regulation of the activity subsequent to signal transduction. Experiments by Borner and co-workers 

(1989) provided the first evidence that PKC is phosphorylated in viva. It is now known that PKC can 

be phosphorylated at several sites, each probably with its own functional consequence (Newton, 1995). 

The first endogenous inhibitor putatively modulating PKC activity was isolated in the mid-1980s 

(Walsh et al., 1984; McDonald and Walsh, 1985). Nowadays several endogenous inhibitors are known, 

although it remains uncertain to what extent these substances function as a control mechanism regulating 

PKC activity in vivo (Melner, 1996). Also in the mid-1980s, it was first demonstrated that several cis 

unsaturated fatty acids, produced from phospholipids by the action of phospholipase Az, were able to 

activate PKC providing a second pathway for PKC activation (McPhail et al., 1984; Murakami and 

Routtenberg, 1985). After these initial studies, many other cellular factors were found to modulate PKC 

activity, and the biochemical mechanisms underlying PKC activity have been shown to be rather 

complex (Nishizuka, 1995; Liu, 1996). These modulations contribute to the fine-tuning of PKC activity 

necessary to ensure regulated PKC activity in the midst of complex intracellular signaling pathways such 

as known to occur, for example, in learning and memory processes. 

2.4 The Discovery of Various PKC Subtypes 

Until the mid-1980s PKC was thought to be a single entity, and it was known that the single 

polypeptide chain of about 77-80 kDa could be proteolyzed into two fragments of approximately 32 

kDa (the regulatory domain with the DAG binding site) and the 5 1 kDa (the catalytic domain with the 

kinase activity) (Inoue et al., 1977). However, the existence of “proenzyme I and II” was recognized in 

the early 1980s (Kikkawa et al., 1982), although the exact nature of this apparent heterogeneity was not 

clarified. Three kinase activity peaks using chromatographic separation were first described by Huang et 

al. (1986b), which were designated as PKC I, II, and III. A new family of PKC-related genes (a, p, and 

y) was identified in bovine, human, and rat genomes in 1986 (Coussens et al., 1986) and in rabbit genome 
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in 1987 (Ohno et al., 1987). Three members of the gene family were characterized and mapped to 

different chromosomal locations (Coussens et al., 1986; Knopf et al., 1986). It became soon certain that 

PKC I, II, and III are derived form T, p, and a genes, respectively. Southern hybridization analysis 

(Coussens et al., 1986) suggested that an even larger number of PKC genes could exist, which turned out 

to be true in later years. Until the mid-1980s Western blot analysis has shown a single polypeptide 

supporting the belief that PKC was a single protein. Using a different PKC purification procedure, 

Woodgett and Hunter (1987) were the first to describe a doublet of PKC in Western blots, providing 

evidence that they represented two distinct forms of PKC. PKC was thereafter proven to be a complex 

family of closely related structures (Pears, 1995; Nishizuka, 1995) and to date at least 12 PKC 

isozymes have been identified and classified into three groups based on their structure and cofactor 

regulation. The discovery of the diverse PKC isoforms contributed to our understanding of the mystery 

how a great diversity of messages in cellular communication can be generated by only a limited number 

of different components: apparently this was not only achieved by multiple receptors, but by multiple 

PKC isofonns as well. It has been demonstrated that PKC subtypes have an isofonn-specific cellular 

localization in various tissues and cell types (Tanaka and Saito, 1992). Apparently, each isozyme of the 

PKC family has its own spatial organization and is present in the right intracellular compartment of the 

cell, presumably in association with its specific target substrate proteins (for further details, see 

Casabona and Ramakers et al., this issue). 

3. Discovery of PKC as a Putative Key Protein in Synaptic Plasticity 
and Information Storage 

It is believed that memories are stored via highly selective changes in the strength of synaptic 

connections between neurons in the brain. As such, storage of information in the brain appears to 

involve persistent, use-dependent alteration in the efficacy of synaptic transmission. Approximately a 

decade ago the first experimental data in support of a putative role of PKC in synaptic plasticity and 

information storage were reported. The chain of events leading to our current knowledge of PKC (Table 

1) and its contribution to learning and memory will be outlined below. 

3.1. The Link Between Receptor Stimulation and PKC Activation 

Hokin and Hokin (1953; 1954) first demonstrated that acetylcholine induced a greatly increased rate 

of uptake of 32P into phospholipids in pancreatic exocrine tissue. Acetylcholine, acting through 
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Table 1 

Approximate Time Table of Relevant Mile Stones in Research on PKC 

YHif 
1977 
1978 
1979 

Event 
Discovery of protein kinase C 

Ca2+ and phospholipid dependent character of PKC 

1980 

1981 
1982 

1983 

1984 

1985 

Diacylglycerol stimulates PKC 
Translocation of PKC from cytosol to membrane increases the activity of PKC 

A role for PKC in signal transduction implicated 

PKC is a receptor for phorbol esters 

The role of PKC in signal transduction is firmly established 

Discovery of endogenous PKC inhibitors 

Immunocytochemical localization of PKC in brain tissue 
Modulation of membrane functions by PKC: 

a role for PKC in synaptic plasticity and information storage? 

1986 [3H] phorbol esters used to localize PKC in brain tissue 
A role for PKC in LTP 

First evidence for PKC isoforms (conventional PKCs, a, p, and 7) 
The mechanism of autophosphotylation of PKC determined 

1987 
1988 
1989 
1990 

Discovery of various other PKC isoforms 

The role of PKC in synaptic plasticity and information storage is widely accepted 

1991 A role for PKC in LTD 
Identification of receptors for activated PKC (RACKS) 

1992 Different role of PKC isoforms in information storage 
(notably the brain specific y-isoform) 

1993 PKCy-mutant mice reveal modified LTP but 
only mild learning deficits 

1994 
1995 
1996 More than 100 PKC substrates are known 
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muscarinic receptors, also provoked increases in phospholipid metabolism in cerebral cortex slices. 

Later, Hokin and Hokin showed that these changes were largely confined to the hydrolysis of PI (Hokin 

and Hokin, 1958). In the late 1960s and early 1970s it became apparent that rapid enhancement of PI- 

turnover occurred in a large variety of tissues and could be evoked by numerous (extracellular) stimuli 

(Lapetina and Michell, 1973). Nevertheless, the physiological significance of such PI-turnover remained 

unclear until the late 197Os, when Takai et al. (1979a) provided experimental evidence that the 

choline& cell response involved activation of PKC by means of the production of DAG. Interestingly 

this way a direct link was established between (muscarinic) receptor stimulation and activation of PKC 

in the central nervous system. This direct link between receptor activation and PKC activation proved to 

be a critical step in the history of PKC since it indicates the implication of PKC in signal transduction 

between nerve cells and the translation of an extracellular message to an intracellular biochemical signal. 

Surveying a variety of tissue sources for PKC, Kikkawa et al. (1982) found that this enzyme had the 

highest specific activity in brain. PKC was found to be concentrated in brain membranes, whereas it was 

barely detectable in plasma membrane in peripheral tissue. A greater than 140-fold increase in PKC 

activity in brain relative to peripheral non-neuronal tissue suggested an important role for PKC in 

neuronal membranes. But what could this function be? 

3.2 Learning and Memory-Related Functions of PKC 

The way PKC is stimulated under physiological conditions by Ca”, phospholipids and DAG and in 

experimental conditions by phorbol esters implicated PKC in many biological roles in the mid-1980s, 

ranging from cell growth and differentiation to oncogenesis and inflammation, but there was not yet 

much attention for PKC in synaptic plasticity and information storage. This started to change after 

DeRiemer et al. (1985) presented evidence that activation of endogenous PKC by phorbol ester or 

intracellular injection of the purified enzyme enhanced the voltage-sensitive calcium current in bag cell 

neurons of the mollusc Apl’sia. Hence it induced a long lasting enhancement of the excitability of these 

cells. Before this report, there was no direct evidence for the involvement of PKC in the control of 

neuronal excitability. Soon thereafter, Baraban et al. (1985) studied the effect of phorbol ester in rat 

hippocampal slices to further clarify the role of PKC in neuronal l?mction. They found that phorbol 

ester blocked the late hyperpolarization elicited by synaptic stimulation, and their results also suggested 

that PKC regulates membrane conductance, possibly through translocation of PKC. These studies 

clearly implicated PKC in the modulation of membrane ti,mction, and it became clear that PKC could be a 

key regulator of neuronal excitability. It was anticipated in 1986, therefore, that “as with cyclic AMP, 
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further investigations into the role of PKC in the nervous system will be well rewarded” (Miller, 1986). 

Furthermore, Routtenberg pointed out in 1985 that “based on the view that plasticity in the adult may 

be a form of controlled growth regulated by Cazf, it is attractive to think that such control is mediated, 

on a brain regional basis, through the PKC system” (Routtenberg, 1985). The above described findings 

and thoughts were further elaborated in the first studies on models of learning and memory discussed 

below. 

3.2.1 Invertebrate Models for Learning and Memory Clear evidence for a direct link between PKC 

activation and learning and memory was provided by Farley and Auerbach in January 1986, who used 

associative learning in the matine snail Hermissenda as an invertebrate model for learning and memory. 

Hermissenda can be conditioned to associate a flash of light with rotation that mimics ocean turbulence; 

in nature, the snail responds to turbulence by flexing its muscular foot to anchor itself to a hard surface. 

The B photoreceptor cell, which receives the relevant visual and sensory input, contains high levels of 

PKC. Activation of PKC by phorbol esters or intracellular injection of the purified enzyme in 

Hermissemh B cells induced reduction of Kf currents similar to these caused by associative learning 

(Farley and Auerbach, 1986). Some years later, however, concerns were raised about the purity of their 

used enzyme and their choice of phorbol ester; their enzyme material could have been contaminated with 

calcium-calmodulin dependent protein kinase and their phorbol ester was not water-soluble, hampering 

the removal of the agent between measurements (Alkon et al., 1988). The role of PKC in regulation of 

K+ channels in Hermissenda was further explored in the laboratory of Alkon in the mid and late 1980s. 

Their results clearly showed that PKC activators mimicked all the electrophysiological changes in the B 

cell in a manner similar to that observed in the trained animal (Alkon et al., 1986). Microinjection of 

purified PKC directly into the B photoreceptor cell, concurrent with a flash of light causing a Ca*’ load, 

mimicked the effects of Pavlovian conditioning upon these cells (Alkon et al., 1988). Based on their set 

of data, they presented a conceptual model of PKC translocation and subsequent regulation of K’ 

currents underlying associative learning in Hermissenda B cells and speculated about a similar PKC 

mechanism in vertebrate associative learning. 

Besides associative learning in Hermissendu, non-associative hsarning (defensive tail-withdrawal) in 

the mollusc A&ia has been used as a simple invertebrate fotm of learning. Jn 1990, Sacktor and 

Schwartz showed that short-term sensitization induced translocation of PKC activity from cytosol to 

membrane in sensory neurons. The attention in the Aplysia model was mainly focussed on the 

facilitation of synaptic transmission (the release of serotonin; Sugita et al., 1992) by PKC during 
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learning. Compared to associative learning in Hermissenda, however, the Ap&sia model has not been as 

extensively used to study the role of PKC in learning and memory. 

Interestingly, reduced PKC activity measured in brain of the learning mutant fly turnip as compared 

to wild type flies led some researchers to believe that PKC is involved in associative learning in 

Drosophila melanogaster as well (Choi et al., 1991). However, earlier work in the late 1980s studying a 

different strain of memory-mutant flies (dunce) did not reveal such differences in brain PKC activity 

@evay et al., 1989). 

3.2.2 Vertebrate Models for Leaming and Memory The predominant and most studied vertebrate 

memory model is long-term potentiation (LTP), first described by Bliss and Lsmo in 1973. To date the 

relationship between LTP and certain aspects of memory has been well documented (Doyere and 

Laroche, 1992; Bliss and Collingridge, 1993). Hippocampal LTP reflects a persistent enhancement of 

hippocampal synaptic efftcacy, and hence strengthening of neuronal connectivity through synaptic 

plasticity. In 1985, it was demonstrated in the laboratory of Routtenberg that the phosphorylation of a 

PKC substrate (FI) was directly related to the plasticity of LTP, and they wrote that “since PKC 

activity can be regulated for different temporal durations by different mechanisms, it is attractive to 

think that time-dependent processes of neural plasticity [such as in learning and memory] may be 

regulated by PKC (Routtenberg et al., 1985; Akers and Routtenberg, 1985). The publication in 1986 that 

application of phorbol ester to hippocampal slices produced a significant potentiation of synaptic 

transmission (possibly through enhancement of evoked neurotransmitter release) with many of the 

characteristics of LTP provided further evidence for a role of PKC in LTP (Malenka et al., 1986; 

Angenstein & Staak, and Ramakers et al., this issue). Similarly, PKC injections into CA1 hippocampal 

pyramidal cells elicited features of LTP (Hu et al., 1987). In February 1986, Akers et al. reported that at 

1 hour after the induction of LTP, PKC activity was increased twofold in membranes and decreased 

proportionately in cytosol, suggesting translocation of the activity. They proposed that induction of 

LTP was accompanied by persistent activation of PKC as this enzyme is known to bind to membranes 

when activated. These experiments led to the idea that tetanic stimulation of hippocampal synapses 

activates PKC, which is directly related to the persistence of synaptic plasticity. At that time, they 

proposed the translocation of PKC activity to be “a novel mechanism regulating the strength of synaptic 

transmission” (Akers et al., 1986). 

In search for a protein that could serve as a molecular substrate of associative memory, these results 

and those from HermissenA stimulated the analyses of PKC activation in a simple form of associative 

learning in mammals in Alkon’s laboratory in the late 1980s. Rabbits had to learn to associate an 
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auditory tone with a puff of air to the surface of the eye; the air causes the nictitating membrane to 

extend, and in time the rabbit extends the membrane when it hears the tone. Bank et al. (1988) found that 

although total PKC levels were unchanged between trained and control subjects, the percentage of 

enzymatically measured PKC in the membrane of trained animals was increased. They suggested that 

there was a long-term translocation of PKC from cytosol to membrane as a result of learning, a 

mechanism similar to that seen two years earlier by Akers et al. (1986) in LTP. In follow-up 

experiments in the late 1980s Olds et al. were able to track PKC changes in rabbit hippocampus 

employing radioactive phorbol ester (which is believed to specifically bind to membrane-associated 

PKC; Olds et al., 1989) using a technique developed by Worley and co-workers (1986). Although 

phorbol esters induce PKC translocation to the membrane, it is thought that “if the concentration of the 

phorbol ester is kept low enough, the label does not cause translocation of PKC and tags only those 

neurons with increased amounts of PKC in the cell membrane” (Alkon, 1989). Radioactive phorbol ester 

binding ([3Hjphorbol-12,13-dibutyrate; [311jPDBu), revealed a redistribution within hippocampal 

pyramidal cells of the trained animals. They interpreted this finding as a learning-related move of PKC 

distally along the dendrites, from the cell body (1 day after training) to the basal dendrite (3 days after 

training). Based on these findings “a multifunctional model was proposed with sequential activation of 

PKC within different intracellular spatial domains” (Olds and Alkon, 1991) and PKC was supposed to 

be a nexus in the biochemical events that underlie associative learning. 

Several groups in England and Australia used filial imprinting and one trial passive avoidance learning 

in the one-day old chick as a model system for the molecular and cellular analysis of the substrates of 

memory. After a preliminary study showing that the application of a PKC inhibitor resulted in the 

amnesia for the avoidance response (Ali et al., 1988), Burchuladze et al. (1990) published the first report 

on PKC changes in the intermediate and medial hyperstriatum ventrale (IMHV), the likely brain region 

for information storage which contains relatively high levels of PKC (Van der Zee et al., 1995). 

According to the authors, they expected to find a translocation of PKC from the soluble to membrane 

bound form after passive avoidance in analogue to the situation during LTP. Indeed, a small increase in 

membrane bound PKCc$ was found in the left IMHV after training. Thereafter, Sheu et al. (1993) 

showed a learning-selective increase in the phosphorylation of a membrane-bound PKC substrate in the 

left Ih4HV after imprinting, which was possibly related to translocation of PKC to the membrane 

similarly as seen in LTP. 



Historical review of research on PKC in learning and memory 391 

3.3 Outlasting the Initial Stimulus 

Persistent changes in phosphorylation of PKC substrates that outlast an initial signal is most likely 

an important molecular event in information storage. Prolonged PKC activation, therefore, may serve as 

a critical step in the chain of biological events leading to memory formation. In the mid-1980% the group 

of Routtenberg suggested that the liberation of free cis-fatty acid from membrane phospholipids by 

phospholipase AZ (PLAz) was an important mechanism for PKC activation in LTP. Activation of this 

pathway was thought to stabilize PKC in an activated state, and thus contributing to the maintenance of 

the potentiated synaptic response (Linden and Routtenberg, 1989). A synergistic action of free cis-fatty 

acids and DAG for the activation of PKC was first suggested by Seifert et al., in 1987. In the early part 

of the 1990s the group of Nishizuka emphasized that stimuli somewhat separated in time but acting 

through different types of phospholipases (phosphoinositide- and phosphatidylcholine-specific 

phospholipase C, and phospholipase D plus a phosphatase; Liscovitch, 1992) and on the same target 

could induce sustained elevation of DAG (Nishizuka, 1992; Asaoka et al., 1992). PKC activity could be 

maintained if both DAG and free cis-fatty acid are available at a relatively late phase after the initial 

signal occurred, which would be essential for long-term cellular responses such as necessary in learning 

and memory. 

In February of 1988, Alkon and Rasmussen published a review with a pivotal role for PKC in a 

spatial-temporal model of cell activation, which could account for sustained cellular responses as seen in 

the above described classical conditioning of Hermissenda light response and the mammalian eye blink 

response, and LTP. Persistent enhancement of cell responsiveness after removal of stimuli was 

suggested to be due to the continued association, or anchoring, of PKC to the membrane. In this way a 

“cellular memory” is formed, where information has been stored or “remembered” by the cell in the form 

of constitutively active PKC. In a model of associative learning presented by Bank et al. in 1989, such 

stable anchoring of PKC to the membrane and hence its prolonged activity was suggested to occur also 

by phosphorylation of PKC by calcium-calmodulin dependent protein kinase. 

In 1988, Bazzi and Nelsestuen (1988a,b) reported that PKC not only translocates upon stimulation, 

but could also become membrane-inserted and constitutively active. These authors demonstrated in vitro 

that membrane-inserted PKC bound phorbol ester, but that this binding did not further increase the 

activity of the enzyme. In contrast, the free form of PKC bound phorbol ester only in the presence of 

Ca*+ and phospholipid (subsequently leading to membrane association and membrane insertion). These 

results indicated that neither Ca*’ nor phorbol esters were needed to maintain the conformation of an 

active PKC complex once the enzyme was inserted into a membrane. Insertion into membranes could be 

the mechanism by which phorbol ester or DAG induce long-term activation of PKC, which outlasts the 
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initial activating stimulus for hours or even days. This obviously provided an interesting mechanism for 

PKC anchoring to the membrane as postulated by Alkon and Rasmussen (Alkon et al., 1988) in their 

cellular memory model. In a commentary in March 1989, however, Burgoyne pointed out that although 

it was very attractive that this endogeneously active membrane-inserted PKC could form a cellular 

memory, it needed to be shown to exist in vivo: “Confirmation of the importance of membrane-inserted 

endogeneously active PKC will require a demonstration that this form of PKC is present in intact cells 

and that its levels are regulated by signals that result in long term changes in cellular function.” 

In 1991, receptors for activated protein kinase C (Receptors for Activated C Kinase; RACKS) were 

identified by Mochly-Rosen and co-workers. Activation of PKC exposes the RACK-binding site. 

RACKS can bind PKC at different subcellular sites, among which the plasma membrane. Although the 

concept of intracellular receptors for activated PKC seems appealing in terms of the induction of a more 

permanent localization of PKC to the membrane (and hence providing an additional mechanism to 

outlast the initial activating stimulus), to our knowledge no studies have been published linking RACKS 

to learning and memory processes. 

4. A Brief Outline of Ongoing Research on PKC in Learning and Memory in the 1990s 

After the initial studies in the mid-1980s a vast number of experiments have further substantiated the 

role of PKC in learning and memory and LTP using molecular genetic, behavioral, pharmacological, 

electrophysiological or immunocytochemical approaches. Unraveling the role of PKC in learning and 

memory may eventually illustrate how synaptic plasticity and information storage might be reflected in 

the molecular properties of PKC. A brief outline of experiments performed in the 1990s is presented 

below describing some of the highlights of this research. 

4.1 Continuing Studies on Svnaptic Plasticitv and PKC Redistribution 

In the early 1990s part of the research on the role of PKC in LTP focussed on whether the locus of 

PKC activity was with the pre- or postsynaptic components during different phases of LTP. A 

differential pre- and postsynaptic localization of PKC isoforms was suggested to underlie the selective 

sequential activation observed in LTP (Huang et al., 1992) stating that “it is attractive to think that 

these two events [LTP induction and persistence] are sequentially activated and employ different PKC 
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subtypes differentially localized to presynaptic and postsynaptic elements”. Indeed, earlier 

immunocytochemical studies using PKC isoform-specific antibodies had revealed a somewhat 

differential pre- and postsynaptic localization of PKC subtypes in rat hippocampus (Saito et al., 1989; 

Ito et al., 1990; Kose et al., 1990). Interestingly, a sharp differential distribution of PKCy versus 

PKCaP was found in respectively a post- and presynaptic localization in the IMHV of the chick brain 

mentioned above, where LTP-like phenomena could play a role in the information storage function of 

this region (Van der Zee et al., 1995). 

Several mechanisms inducing persistently active forms of PKC other than through translocation of 

PKC from cytosol to membrane were found in LTP. Proteolytic activation of PKC, resulting in a 

constitutively active fragment called PKM (Suzuki et al. 1992; Sactor et al. 1993) oxidative modification 

of PKC (Palumbo et al., 1992) and the phosphorylative activation of PKC (Klamr et al., 1993) were 

described as mechanisms explaining the long-term activation of PKC in different phases of LTP. In a 

commentary in September 1993, in response to this research, Schwartz referred to PKC as a “cognitive 

kinase”, and wrote that “in a metaphorical sense, PKC behave as if they were taught, memorizing 

temporal connections between events in the empirical world” (Schwartz, 1993). 

In 1994, Angenstein et al. were the first to report a translocationfrom the membrane to the cytosol in 

LTP, demonstrating that the translocation cascade may be more complex than previously thought. In 

this respect it is worth noting that the suggestion that prolonged translocation of PKC from the soluble 

to an integral membrane protein form plays an important role in memory processes (as described in 

section 3.3) has recently been questioned. The doubt is primarily based on the observation of rapid 

redistribution of phorbol ester-induced membrane-associated PKC back to the cytosol after the 

dissociation of the applied phorbol esters in vivo (Szallasi et al., 1994; Mosior and Newton, 1995). 

Continuing studies in the early and mid-1990s in Alkon’s laboratory using [3H]PDB~ to track 

learning-specific alterations in PKC showed with increasing complexity that the type and time-point of 

(spatial) learning in rats determined the degree and direction of the changes in [3HjPDBu binding (Olds et 

al., 1990; Golski et al., 1995). The [3H]PDBu technique was also used as a marker for PKC in the B 

photoreceptor cells of Hermissenda associated with Pavlovian conditioning, and it was shown that 

conditioning increased [3H]PDBu-binding in molluscan cells in a fashion comparable to mammalian 

neurons (McPhie et al., 1993). 
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PKC activity measures have provided a good parameter to study the contribution of PKC in a 

number of different approaches. Laboratories in Italy studied the role of PKC in aging-related memory 

deticiences. One of the first reports on age-related changes in PKC activity, translocation and 

physiological response to PKC stimulation appeared in the late 1980s (Friedman and Wang, 1989). 

Thereafter, Battaini and co-workers analysed in detail age-related alteration in PKC functioning in brain 

(Battaini et al., 1994). A behavioral-genetic analysis was first used in the early 1990s by the group of 

Wehner. Inbred strains differing in spatial memory performance were shown to have different levels of 

hippocampal PKC activity (Wehner et al., 1990) and Fordyce and Wehner (1993) showed that age 

related deficits in spatial learning performance correlated with a decline in hippocampal PKC activity 

using two inbred strains. These results suggest a genetic correlation between PKC activity and learning 

abilities. The use of different inbred strains of mice proved to be a valuable approach in combination 

with aging and pharmacology to study the role of PKC in learning and memory. Detailed PKC activity 

measures were also used in the mid-1990s in the group of Jaffard in France searching for a correlation 

between hippocampal PKC activity and the learning abilities of mice (Nogues et al., 1994; 1996b). 

Causal models are proposed by the authors to explain their results and the seemingly contradictory data 

on the role of PKC in learning and memory in the literature (for a new model, see Noguts, this issue). 

4.3. Pharmacological Manipulations 

Besides the various experiments using different PKC inhibitors or activators (phorbol esters) to study 

electrophysiological and biochemical alterations at the cellular level, a pharmacological approach has been 

used to directly interfere with memory performance in animals. As phrased by Nogues et al., (1996a) 

“the rationale is to block or to activate PKC activity in an attempt to inhibit or to facilitate memory 

processes”. One of the first studies employing PKC inhibitors was performed by Ah et al. (1988) using 

one trial passive avoidance training in the chick. Application of the inhibitors to brain resulted in the 

amnesia for the avoidance response. One of the first examples of the effect of intraventricular application 

of PKC inhibitors to rodents is provided by Takashima et al. (1991) showing that it caused a marked 

impairment in one-trial passive avoidance response and spatial learning in rats, It should be taken into 

account, however, that some of the inhibitors used in the early studies often displayed activity towards 

other kinases than PKC, and nonspecific effects on the kinase or the cell membrane could be exerted by 

some of them due to their hydrophobic nature. Moreover, due to the wide fUnctional cellular role of 
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PKC, the effects of inhibition of PKC activity should not a priori be taken as evidence that the enzyme 

plays a role in learning and memory. Using the approach of PKC activation employing phorbol esters, 

injectecting it either into the lateral ventricles prior to training (Paylor et al., 1991) or directly into the 

hippocampus immediately after training (Yang and Lee, 1993) improved the learning performance of 

rats. Taken the pharmacological data over the years together, both in rodent (Nogub et al., 1996a) and 

chick brain (Zhao et al., 1994) the results indicate that PKC activity is related to information storage. 

4.4 Some New Approaches 

An immunocytochemical approach was used by us in Luiten’s laboratory to study the contribution 

of Ca*‘-dependent PKC isoforms in learning and memory. In 1992, the authors demonstrated that 

spatial learning in mice and rats induced PKCy-specific alterations in the hippocampus, whereas no such 

changes were found for PKCaP using an antibody that did not discriminate between PKCa, PI and p2 

(Beldhuis et al., 1992; Van der Zee et al., 1992). Different types of learning tasks stimulating different 

(but partly overlapping) brain circuits induced corresponding patterns of altered PKCy- 

immunoreactivity (Luiten et al., 1991; Van der Zee et al., 1992; 1994); these in situ alterations in 

immunoreactivity enabled us to map the neural substrate and the individual neurons engaged in the 

learning task. Thereafter, a battery of Ca*‘-dependent PKC isoform-specific antibodies were used in 

Disterhoft’s laboratory to study immunocytochemical changes in the rabbit hippocampus after 

associative learning. Like in spatial learning in rodents, the results pointed to PKCy as the main Ca*‘- 

dependent isoform involved in learning and memory processes. The combined approach of behavior, 

immunocytochemistry and biochemistry led to a proposed model for the role and molecular cascade of 

PKCy in associative learning (see Van der Zee et al., this issue). 

In the early 1990s PKCy mutant mice became available and were tested for hippocampal LTP and 

spatial and contextual learning. Although LTP was greatly diminished in these mice, it appeared that 

PKCy is “not part of the molecular machinery that produces LTP but is a key regulatory component” 

(Abeliovich et al., 1993a). The behavioral results showed only relatively mild deficits (Abeliovich et al., 

1993b). These results seem to suggest that although PKCy is important for normal hippocampal 

function in learning and memory, it can be compensated for when its expression is shut off before the 

hippocampus is functionally developed. However, our knowledge of developmental functions of PKC is 
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rather limited and more extensive investigations are needed (for some details on the role of PKC in 

development of the optic tectum/superior colliculus, see McCrossan et al., this issue). 

5. Conclusion 

Ever since the discovery of PKC extensive biochemical analyses has revealed a complex cascade of 

events that underlie enhanced and sustained activation of PKC (Nishizuka 1995), which is thought 

necessary to explain the putative role of this enzyme in persistent cellular changes associated with 

learning and memory processes. The search for the role of PKC in learning and memory, and especially a 

persistently active or autonomous form that makes the enzyme less dependent on second messengers 

and thereby prolonging its action well beyond the initial stimulating event, will continue. The ultimate 

goal of PKC activation, protein phosphorylation in a correct spatial-temporal fashion, has focused 

attention to the target substances. Since the discovery in the mid-1970s of a major PKC substrate 

participating in synaptic plasticity (Fl, also referred to as GAP43 or BSO; Routtenberg and Ehrlich, 

1975; Zwiers et al., 1976) an impressive differentiation of over 100 enzyme targets and numerous 

physiological actions have been described (Liu, 1996; Casabona and Ramakers et al., this issue). 

Compared to the immense number of PKC-related publications (over 17,000), the total amount of 

papers on PKC and learning and memory, starting to appear in the mid-1980s, only consists of about 

140 (Pig. l), making up less than 1 % of all PKC-related reports. In turn, only approximately 3 out of 

every 1000 papers on learning and memory are PKC-related. Notwithstanding these modest numbers, 

the past decade or so of PKC research and the reviews in this special issue clearly show the exciting 

aspects of the putative role for PKC in synaptic plasticity and information storage and its impact on 

learning and memory research. 
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