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Neural networks in high-performance liquid chromatography 
optimization: response surface modeling 

Harm J. Metting, Pierre M.J. Coenegracht* 
Chemometrics Research Group, Universi~ Centre for Pharmacy, A. Deusinglaan 2. NL-9713 AW Groningen. Netherlands 

Abstract 

The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with 
(non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is 
controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces 
(capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC 
method development. The predictive results were better or comparable to those obtained with linear and non-linear 
regression models. 
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I. Introduction 

1.1. Optimization of the mobile phase composition 

Optimization of the mobile phas e composition is 
an important aspect of method development in 
HPLC. Retention mapping methods are important 
optimization methods because the global optimum 
can be found [1,2]. The aim of retention mapping 
methods is to describe the chromatographic behav- 
iour of a solute in the design space by its response 
surface, which shows the relationship between the 
response, i.e., the capacity factor of a solute, and 
several input variables, i.e., the components of the 
mobile phase. 

Retention mapping methods are also called 
simultaneous methods or regression methods because 
the model that describes the retention as a function 
of the mobile phase composition is often estimated 
by multiple (non-)linear regression. To construct the 

*Corresponding author. 

model a minimum number of experiments has to be 
performed i.e., the capacity factor has to be mea- 
sured at a number of mobile phase compositions or 
design points. These measurements are performed 
'simultaneously' according to an experimental design 
and used for modeling the response surface of every 
solute in the sample. The capacity factor of every 
solute in the sample can then be predicted at every 
mobile phase composition in the design space. This 
means that for every mobile phase composition a 
chromatogram can be predicted. The best chromato- 
gram is selected by an optimization procedure, which 
will not be discussed here, because the focus of this 
article is on response surface modeling. 

1.2. Response su~.ace modeling 

The factor space of a ternary eluent consisting of 
water or a buffer, methanol (MeOH) and acetonitrile 
(MeCN) can be represented by a triangle at the 
vertices of which the pure solvents are located. If 
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water (component x~) is placed at the top of the 
triangle and the two organic modifiers (x 2, x 3) at the 
vertices of the ground side, then the solvent strength 
of the mobile phase systems decreases into the 
direction of the top of the triangle as the fraction of 
water of the system increases. 

The design space, in which the design points are 
to be located, is tbund by constraining the factor 
space. For the non-isoeluotropic solvent system 
described by the mixture triangle, two constraints on 
the solvent strength are needed; an 'upper' constraint 
at low solvent strength in order to obtain a capacity 
factor of the last peak smaller than a given accept- 
able value, 20 for example, and a 'lower' constraint 
at high solvent strength that confines the capacity 
factor of the first peak to values greater than 1 (Fig. 
IA). 

The number of the design points that is required to 
construct the response surface by multiple linear 
regression, depends on the dimensions of the factor 
space and the order of the model• This discussion 
will be limited to the use of quadratic models. The 
quadratic mixture model for the capacity factor of 
one solute in a ternary mobile phase system is: 

In(U) = a~x~ + a2x 2 + a3x 3 + a t 2 x l x  2 + a~3x~x 3 

+ a23x2x  3 + E (1)  

where xt, x 2, x 3, are fractions of the components: 
water, MeOH, MeCN; a~ to a23 are the coefficients 
to be estimated and E is the residual error. For the 
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Fig. 1. (A) Mixture triangle for a three component phase system. 
Indicated is the design space with seven of the design points. (B) 
Factorial design for a two component system. Indicated is the 
design space with nine of the design points. 

estimation of the coefficients and E we need in this 
case at least 7 experiments. The number of required 
experiments is determined by the necessity to esti- 
mate the coefficients a and the error term E of Eq. 1. 
For a quadratic mixture model in a quaternary 
system I0 model coefficients have to be estimated. 
The eleven experiments should be performed simul- 
taneously and in a random order. 

Simple polynomials, i.e. a quadratic model, can 
predict well the capacity factors of simple solutes in 
isoeluotropic ternary, quaternary, and non-isoeluot- 
ropic ternary and quaternary systems consisting of 
water and organic modifiers [21. 

For the separation of ionogenic solutes, variation 
of the pH leads to dramatic changes of the selectivi- 
ty. If the pH is introduced as an independent variable 
or factor, then a second factor, usually the fraction of 
an organic modifier, has to be varied simultaneously 
to define a suitable design space wherein the capacity 
factor has acceptable values [3]. The factor space can 
now be defined by two orthogonal variable axis: the 
pH and the fraction of the organic modifier (Fig. 
IB). 

Introduction of the pH as a variable affects not 
only retention, but also column efficiency and peak 
shape, This discussion is limited to the estimation of 
a model that describes the capacity factor as a 
function of pH and fraction modifier. 

Polynomial models are inadequate to approximate 
the response surface and non-linear models have to 
be used, for example: 

al[H + ] + 0 2 
k ' -  

[H +] + a~ 

• exp{(a4 + as[H + ] + a.[H + 12).r 

4 ( a  7 + as[H + ])x:} + E (2) 

where x is the fraction of the modifier and a~ to a s 
are the coefficients which have to be estimated by a 
non-linear regression method [31. These methods 
usually need initial estimates of the coefficients and 
iteratively approximate the response surface. 

1.3. N e u r a l  n e t w o r k s  

In the last years artificial neural networks (ANNs) 
have generated a lot of interest. A variety of different 
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types of ANNs have been developed to simulate 
different activities of the human brain. These ANNs 
can be applied to various tasks of information 
processing: classification, modeling, association, and 
mapping [4,5]. They have been used for curve fitting 
[6]. In analytical chemistry neural networks have 
been applied to spectroscopy [7,8] and electrochem- 
istry [9]. In HPLC optimization a neural network is 
used for peaktracking by means of spectral recogni- 
tion [10]. In clinical chemistry an ANN was used to 
predict urinary calculus compositions [11]. 

In this paper the usefulness of ANNs for response 
surface modeling is investigated for the first time and 
compared to established methods like (non-) linear 
regression. 

ANNs are mathematical systems that simulate 
biological neural networks. They consist of process- 
ing elements (neurons, nodes) organized in layers. A 
general description of a processing unit is given in 
Fig. 2. Backpropagation neural networks (BNNs) are 
most often used in analytical applications. BNNs 
model relations between sets of input and output data 
by minimizing the output errors during training. The 
model is stored in the connections (weights) between 
the processing layers. A problem in constructing a 
BNN is to find the optimal number of hidden 
neurons. Another problem of BNN training is over- 
fitting, which occurs when the training data contain 
noise and the BNN is modeling the noise instead of 
the underlying features. Overfitting can be controlled 
by means of crossvalidation during training of the 
network, 

2 .  T h e o r y  

The neural network used in this work is of the 
backpropagation neural network (BNN) type. A 
typical feedforward neural network with backpropa- 
gation has three layers: the input, the hidden, and the 
output layer (Fig. 3). Information in a BNN is stored 
in the weights, which are connections between 
neurons in successive layers and in the bias values of 
a neuron. ~ is the weight-connection to neuron j in 
the actual layer from neuron i in the previous layer 
and bias/ is the bias of neuron j. The activation of a 
neuron is defined as the sum of the weighted input 
signals to that neuron (Eq. 3) 

Net i = ~2 WiiA" i + b ias  (3) 
i 

This activation is transformed to the neuron output 
by means of an activation function which is 
symmetrical sigmoid in this paper (Eq. 4). 

2 
YJ -  l + e  N,,, I {4) 

The error E of a network is defined as the squared 
difference between the target values t and the outputs 
y of the output neurons summed over p training 
patterns and j output nodes (Eq. 5). 

1 )2 
e = ( 5 )  

I '  / 

x: Neuron j Z 
• .t~retj) - - -  - 

~ or 1 +e -Netj 1 

U N e t j  = 2 f(Netj) =Netj 

x~ wj2 ~l ~'w,,xii YJ= L 
,~'+" - '  : B-Net,) ]-----~yj 

! bias~ 

1 
Fig. 2. General scheme of a processing unit. yj is output of neuron 
j, w, is weight from neuron j to neuron i. biasj is bias of neuron j. 
Net is the sum of the weighted inputs of neuron j. f(Net ) is the 
transfer function of neuron j which may be ~igmoid or linear. 
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Fig. 3. Configuration of a feedforward backpropagation neural 
network. Squares indicate inputs, circles indicate nodes, arrows 
between the nodes represent weights. Dashed lines respresent the 
biases of the nodes• 



5 0  H.J. Metting, P.M.J. Coenegracht / J. Chromatogr. A 728 (1996) 47-53 

During training of the network an input vector Xp, 
for example the fractions of the modifiers in a 
design-point, is presented to the input layer. Each 
node in the input layer is connected to each node in 
the bidden layer and each node in the hidden layer is 
connected to each node in the output layer which 
produce the output vector yp. 

The number of input nodes equals the number of 
elements of vector xp (number of modifier fractions) 
and the number of output nodes equals the number of 
elements of vector yp (i.e. the number of solutes in 
the chromatographic sample); the number of hidden 
units is an adjustable parameter and has to be 
optimized. 

The goal of training the network is to change the 
weights between the layers in a direction that 
minimizes the error E according the steepest descent 
method (Eq. 6). 

OE 
Aws~(n) = - r/ (6) 

OW ji 

where r/is a positive constant known as the 'learning 
rate' and Awji(n) the current weight change for the 
weight wji. This gradient descent method can be 
enhanced by a 'momentum term' from previous 
weight changes as 

OE 
Awji(n ) = - r I ~ + aAwj i (n  - 1 ) (7) 

where a (momentum factor) is another constant 
which leads to 

Awji(n)  = rl~ Yi + aAwji (n  - 1) (8) 

and 

Abiasj(n) = rl~ + aAbias  j(n - 1) (9) 

(The bias term can be treated as a weight by 
assuming that it is connected to a node with an 
output of unit value) 
where 

1 
~_ 2 t - ~ ( 1 - y ~ ) ( ~ - y j )  for output units, (10) 

and 

1 2 
~ = ~ - ( 1 - y j ) ~ ¢ w k j  for hidden units. (11) 

k 

In the case of hidden units 6 k values are prop- 
agated backward from upper" layer(s) (starting with 
the output layer) to lower layer(s) (hidden layer(s)). 
These forward and backward processes are repeated 
in cycles until the output vector y matches the target 
vector t within a minimum E. 

The effect of the 'momentum term' is damping of 
oscillations and a faster training in fiat plateaus of 
the Error space. 

3. Experimental 

Data has been taken from literature [3,12]. For 
response surface modeling the following data sets 
have been used. (A) The capacity factors of 6 
benzene derivatives measured at 17 different mobile 
phase compositions in a quaternary mobile phase 
system of water, MeOH, MeCN and THF (Table 2 in 
Ref. [2]). (B) The capacity factors of 15 mainly 
benzene derivatives measured at 9 different mobile 
phase compositions in a ternary phase system of 
water, MeOH and MeCN (Table 1 in Ref. [7]). (C) 
The capacity factors of 3 solutes measured at 36, 23, 
and 40 different mobile phase compositions respec- 
tively, in mobile phase systems of MeOH-buffers 
and MeCN-buffers varying in pH from 2.6 to 7 
(Table 3 and Table 4 basic solutes and Table 5 in 
Ref. [3]). 

3.1. Sof tware  

The artificial neural network program was written 
in C based on an algorithm which adjusts the 
learning rate factor and the momentum factor during 
training [14]. The optimum number of hidden nodes 
was determined by an algorithm of Syozo Yasui [13], 
which eliminates redundant hidden nodes by lateral 
inhibition. Multiple linear regression was performed 
with POEM version 3.0 (University Centre of Phar- 
macy, Groningen, Netherlands); non-linear regres- 
sion was performed with Sigmaplot version 5.01 
(Jandel Scientific, Erkrath, Germany). 
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4. Results 

Before modeling the capacity factors are logarith- 
mically transformed in order to get a homogeneous 
variance in y. 

The response surfaces of the capacity factors of 
the benzene derivatives of datasets A and B were 
estimated by linear regression using Eq.1 for the 
ternary system of set B and a 10-term polynomial 
which is an extension of Eq. 1 with the appropriate 
terms of x 4, for set A. The data is also modeled by a 
neural network. The number of input nodes equals 
the number of components in the eluent and the 
number of output nodes equals the number of solutes 
in the chromatographic sample. The number of 
hidden nodes was optimized by eliminating redun- 
dant hidden nodes by lateral inhibition [13]. 

Because of the small data sets no independent test 
sets can be derived from the data sets. Overfitting is 
controlled by crossvalidation using the leave one out 
method (LOOM), which means that the neural 
network is trained on ( p -  i ) patterns (design points) 
for t cycles and the pattern (design point) left out is 
used as a test pattern every At cycles intervals where 
the ln(k') value is predicted. This procedure is 
repeated p times leaving out the next pattern which 
gives p-test errors from the whole data set. From the 
test errors a mean test error is calculated as: 

k 1 E(y , , j - , . , ) 2  
Mean Test Err. = P ,,~ff- 1 k/=1 (12) 
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Fig. 4. Plot of the mean training error (dashed lines) and the mean 
test error (solid lines) against the number of cycles during training 
of the BNN to determine the optimal number of cycles using 
LOOM. (A) data-set from Table 1; (B) data-set from Table 2; (C) 
data-set containing solute 1 from Table 3; (D) data-set containing 
solute 2 from Table 3: (E) data-set containing solute ~ from Table 
3. 

To follow the progress of the mean training error 
and the mean test error the network is trained for 
5000 cycles using LOOM. Every 50 cycles the 
training error and the test error are recordered. From 
the mean test error curve the optimum number of 
training cycles can be obtained (Fig. 4). When the 
test error begins to increase overfitting may occur. 
The time necessary to find an optimal network using 
LOOM depends on the structure of the network, the 
number of design points and can be rather time 
consuming. For example the data set from Table 1 
requires 13 min training time for 5000 cycles 
(LOOM) on a Pentium 100 MHz. 

To compare the predictive power of the regression 
model with the neural network model MPRESS 
values (mean predicted error sum of squares) were 

calculated from the predicted ln(k') at the optimum 
number of cycles using LOOM. 

MPRESS = --- ~ (Y.i ,,i)- (13) 

In Eq. 12 and Eq. 13, y,j represents the predicted 
capacity factor of solute j of the nth observation with 
a model constructed by training the neural network 
without the nth observation (LOOM) and t,, is the 
measured capacity factor for that observation and k 
represents the number of output neurons (number of 
solutes). 

MPRESS values were calculated at a training time 
of 500 cycles for all data sets and at 4000 cycles for 
data sets from Table 1 and Table 2 and at 2500 
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Table 1 
MPRESS values of polynomial and neural network models based on ln(k') 

Model Solute 

1 2 3 4 5 6 

MMI0 0.0141 0.0271 0.0118 0.0141 0.0135 0.0153 
NN4 500 0.0076 0.0106 0.0059 0.0041 0.0059 0.0041 
NN4 4000 0.0059 0.0082 0.0057 0.0026 0.0076 0.0036 

Models: M M I 0 =  10 term quadratic mixture model; NN4 500=neural network model with 4 hidden nodes at 500 cycles; NN4 4000=neural 
network mode with 4 hidden nodes at 4000 cycles (optimum). Solutes: six benzene derivatives (number objects= 17) (Table 2 of Ref. [2]). 

Table 2 
MPRESS values of polynomial and network models based on ln(k') 

Model Solute 

1 2 3 4 5 6 7 8 

MM6 0.0267 0.0467 0.0167 0.0411 0.0411 0.0267 0.0189 0.0422 
NN8 500 0.0111 0.0122 0.0089 0.0133 0.0233 0.0156 0.0122 0.0167 
NN8 4000 0.0091 0.0158 0.0079 0.0164 0.0236 0.0066 0.0061 0.0201 

Model Solute 

9 10 11 12 13 14 15 
MM6 0.0656 0.0533 0.0411 0.0489 0.1167 0.1678 0.1756 
NN8 500 0.0222 0.0178 0,0133 0.0233 0.0344 0.0511 0.0489 
NN8 4000 0.0194 0.0187 0.0156 0.0245 0.0560 0.0504 0.0244 

Models: M M 6 = 6  term quadratic mixture model; NN8 500=neural network with 8 hidden nodes at 500 cycles; NN8 4000=neural network 
with 8 hidden nodes at 4000 cycles (optimum). Solutes: 15 mainly benzene derivatives (number objects=9)(Table 1 of Ref. [12]). 

cycles for data sets from Table 3 (except data set 
containing solute 3 which has a minimum mean test 
error at 500 cycles). After 500 training cycles the test 
error does not decrease very much (Fig. 4) and the 
training time is much shorter (85 s for the data set 
from Table 1). 

The MPRESS values for the polynomial models 
and the corresponding network models of data A and 

Table 3 
MPRESS values of non-linear models based on ln(k') 

Model Solute 

1 2 3 

NR 0.0083 0.0157 0.0038 
NN7 500 0.0008 0.0130 0.0038 
NN7 2500 0.0006 0.0121 

Models: NR=non-linear regression; NN7 500=neural network 
with 7 bidden nodes(optimal for all solutes) at 500 cycles; NN7 
2500=neural network with 7 bidden nodes(optimal for all solutes) 
at 2500 cycles. Solutes: l=2,3,4,-trihydrobenzophenone (number 
objects=36), 2=basic solute org5222 (number objects-23),  3=0-  
nitrophenol (number objects=40), (Tables 3, 4 and5 of Ref. [3]). 

B are presented in Table 1 and Table 2. As the 
quality of fit of the polynomial models is already 
good [2], it is even more surprising to see even better 
predictive power of the network model. A possible 
explanation may be the fact that in the regression 
method each solute has its own model. The network, 
however, constructs one model for all solutes as the 
whole data matrix, consisting of the capacity factors 
of all solutes at all design points used for training. In 
this way the information in the data matrix is utilized 
more completely, because the peak sequence in the 
different chromatograms, which is implicitly present 
in the data matrix, can contribute to the model. 

Non-linear response surfaces of the capacity fac- 
tors of the solutes of data set C were estimated by 
non-linear regression using Eq. 3 and by a neural 
network. The network configuration was optimized 
by eliminating redundant hidden nodes. From each 
of the tables of Ref. [5], which contain the capacity 
factors of 10, 7 and 10 solutes respectively, one 
solute was selected. The network was trained with all 
data from each table, so that one network model is 
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obtained for the capacity factors of all solutes of a 
given table. Each output node of the trained network 
predicts the capacity factor of one solute. 

The MPRESS values for non-linear models esti- 
mated by regression and by the neural network are 
presented in Table 3. For the first solute the network 
model outperforms the regression model, but in both 
other cases the performance of the regression model 
and the network are of the same order. 

5. Conclusions 

Neural networks offer promising possibilities in 
HPLC method development. Response surface for 
linear and non-linear changing capacity factors can 
be estimated with results better than or comparable 
to those obtained with linear and non-linear regres- 
sion models. Optimization of the number of hidden 
nodes by lateral inhibition provides an objective way 
for configuring the network and reduces the risk of 
overfitting. 
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