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Abstract  

We present a new set of supersymmetric stationary solutions of pure N = 4, d = 4 super- 
gravity (and, hence, of low-energy effective string theory) that generalize (and include) the 
Israel-Wilson-Perjts solutions of Einstein-MaxweU theory. All solutions have 1/4 of the super- 
symmetries unbroken and some have 1/2. The full solution is determined by two arbitrary complex 
harmonic functions ~1,2 which transform as a doublet under SL(2,R) S duality and N complex 
constants k (") that transform as an S O ( N )  vector. This set of solutions is, then, manifestly duality 
invariant. When the harmonic functions are chosen to have only one pole, all the general resulting 
point-like objects have supersymmetric rotating asymptotically Taub-NUT metrics with 1/2 or 1/4 
of the supersymmetries unbroken. The static, asymptotically flat metrics describe supersymmetric 
extreme black holes. Only those breaking 3/4 of the supersymmetries have regular horizons. The 
stationary asymptotically flat metrics do not describe black holes when the angular momentum 
does not vanish, even in the case in which 3/4 of the supersymmetries are broken. 

1. I n t r o d u c t i o n  

The theory of pure N = 4, d = 4 supergravity without vector multiplets presents an 

interesting and relatively simple model to study various bosonic solutions with unbroken 

supersymmetry. It has a richer structure than pure N = 2, d = 4 supergravity and, in 

l E-mail: bergshoe@th.rug.nl 
2 E-mail: kallosh@physics.stanford.edu 
3 E-mail: tomas@mail.cern.ch 

0550-3213/96/$15.00 Copyright (~) 1996 Elsevier Science B.V. All rights reserved 
PII S0550-3213 (96)00408-7 



E. Bergshoeff et al./Nuclear Physics B 478 (1996) 156-180 157 

particular, this theory allows for configurations with either 1/2 or 1/4 of the N = 4 
supersymmetries unbroken, while in N = 2, d = 4 supergravity only 1/2 of the N = 2 
supersymmetries can be unbroken [ 1 ]. This is related to the fact that the central charge 
of the N = 2 theory is replaced in the N = 4 theory by a central charge matrix. In 
the appropriate basis, the N = 4 supersymmetry algebra gives rise to two Bogomol'nyi 
bounds that can be saturated independently [2]. When only one is saturated, only 1/4 
of the supersymmetries are unbroken. When both are simultaneously saturated 1/2 of 
the N = 4 supersymmetries are unbroken. 

Static axion/dilaton black holes with 1/4 of the supersymmetries unbroken were first 
found in Refs. [3-5] .  The most general family of solutions, presented in Ref. [5], 
describes an arbitrary number of extreme black holes with (almost) arbitrary electric 
and magnetic charges in the six U(1) gauge groups and non-trivial complex moduli, 
i.e. non-trivial dilaton and axion fields which are combined in a single complex scalar 
field. The constraint that the charges have to satisfy is a Bogomol'nyi identity and it 
is related to the existence of unbroken supersymmetry [6,1,2,7]. The solutions of this 
family generically have 1/4 of the supersymmetries unbroken, but some (in fact a whole 
subfamily) have 1/2 of the supersymmetries unbroken. 

Much work has also been devoted to the so-called axion/dilaton gravity theory which 
is a truncation of N = 4, d = 4 supergravity with only one vector field [8-15]. However, 
as we will extensively discuss, the presence of only one vector field is insufficient to 
generate all the interesting metrics. In particular, in the supersymmetric limit, with only 
one vector field one cannot get those with 1/4 of the supersymmetries unbroken. 

Another interesting feature of pure N = 4, d = 4 supergravity is that it is the simplest 
model that exhibits both S and T dualities. The group SL(2, ]~) (quantum-mechanically 
broken to SL(2, Z) )  acts on the vector fields by interchanging electric and magnetic 
fields and acts on the complex scalar by fractional-linear transformations that, in par- 
ticular, include the inversion of the complex scalar. In the old supergravity days these 
transformations were not physically understood. They just were simply there. How- 

ever, in the framework of string theory the complex scalar has a physical meaning 
because it contains the string coupling constant (the dilaton) and it was conjectured 
in Refs. [ 16,17] that this symmetry could be a non-perturbative symmetry relating the 
strong and weak-coupling regimes of string theory: S duality. 

The T duality group is SO(6) (again, quantum-mechanically broken to SO(6 ,Z) )  
and rotates amongst them the six Abelian vector fields of N = 4, d = 4 supergravity. Its 
physical meaning can only be found in string theory. 

The family of solutions presented in Ref. [5] is invariant under both dualities and, 
therefore, it contains all the solutions that can be generated by using them. Taking 
into account the number of charges that can be assigned arbitrarily to each black hole 
and the fact that a Bogomol'nyi bound has to be saturated in order to have unbroken 
supersymmetry it is reasonably to expect that these are the most general static black-hole 
solutions of this theory with unbroken supersymmetry. 

An interesting aspect of the static black-hole solutions with unbroken supersymmetry 
in pure N = 4 supergravity is the intriguing relation that seems to hold between the 
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number of  unbroken supersymmetries and the finiteness of  the area of  the horizon. All 

those with only 1/4 of  the supersymmetries unbroken have finite area, while those with 
1/2 do not have a regular horizon. 4 

But the static ones are not the only solutions with unbroken supersymmetry of  N = 

4, d = 4 supergravity. Some stationary solutions are also known [ 8], but all of  them 

have 1/2 of  the supersymmetries unbroken and none of  them represents a black hole 

with regular horizon. It is clear, though, that stationary solutions with 1/4 of  the su- 

persymmetries unbroken must exist. In particular, it must be possible to embed the 

stationary solutions of  pure N = 2, d = 4 supergravity into N = 4, d = 4 supergravity. 

These were found in Ref. [19] and turned out to be the Israel-Wilson-Perj6s ( IWP) 

[21 ] family of  metrics. It is a general feature that solutions of  N = 2, d = 4 supergravity 

with 1/2 o f  the supersymmetries unbroken have 1/4 of  them unbroken when embedded 

in N = 4 , d  = 4. The best-known example [22,3] is the extreme Reissner-Nordstr6m 

(RN) black hole and the entire Majumdar-Papapetrou (MP) [23] family of  metrics 

describing many extreme RN black holes in equilibrium [24].  Therefore, one would 

expect to find the IWP metrics as solutions of  N = 4, d = 4 supergravity with 1/4 of  

the supersymmetries unbroken, and we will present here the explicit embedding. 

The main goal of  this paper is to find the most general class of  supersymmetric 

stationary solutions of  N = 4, d = 4 supergravity, which should include the so-far 

unknown stationary solutions with 1/4 of  the supersymmetries unbroken (among them 

the IWP metrics), those with 1/2 presented in Ref. [8] as a particular case and all the 
static solutions of  Ref. [5] in the static limit. We will present and study this general 

class of  solutions that we will call SWIP because they generalize the IWP solutions. 

We can point out already at this stage that the correspondence between finiteness 

of  the black-hole area and 1/4 of  the supersymmetries unbroken will not hold for the 

stationary solutions, because the IWP metrics are part of  them and they are known 

to be singular except in the static limit [24].  The best-known example of  this fact is 

the Kerr-Newman metric, which reaches the extreme limit m - Iql = J much before it 

reaches the supersymmetric limit m = Iql. In this limit it has a naked singularity and it 

is an IWP solution. Similar results have been found in the context of  the low-energy 

heterotic string effective action [25] which is equivalent to N = 4, d = 4 supergravity 
coupled to 22 vector multiplets. 

A further reason to study the simple model of  N = 4, d = 4 supergravity is the fact 

that any solution of  this theory can be embedded into N = 8, d = 4 supergravity, whose 

solutions are interesting from the point of  view of  U duality [26].  By looking for the 
most general supersymmetric solutions with 1/4 of  unbroken supersymmetry in N = 4 

4 This relation no longer exist when matter is added to the pure supergravity theory or in other supergravities 
(N = 8). An example is provided by the extreme a = l/v'~ dilaton black hole, which is a solution of 
the low-energy heterotic string theory compactified in a six-toms (N = 4 supergravity coupled to 22 vector 
multiplets), which has a singular horizon and 1/4 of the N = 4 supersymmetries unbroken. This black hole 
is also a solution of the N = 8 supergravity theory with only 1/8 of the supersymmetries (i.e. the same as in 
N =4) unbroken [ 181. 
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theory we may make some progress in the problem of finding the most general solutions 
with 1/4 and 1/8 of unbroken supersymmetry in the N = 8 theory [18]. 

On the other hand, a reduced version of N -- 4 supergravity with only two vector 
fields, offers a nice example of N = 2 supergravity interacting with one vector multiplet. 

Our N = 4 solutions will supply us with solutions of the N = 2 theory with one vector 
multiplet with 1/2 of unbroken supersymmetry. Supersymmetric solutions in N = 2 

supergravity coupled to vector multiplets and hyper-multiplets are poorly understood. 

Only solutions of pure N = 2 supergravity [ 19] as well as the ones reduced from N = 4 

supergravity are known. In more general cases, when vector multiplets are included, 

only magnetic black-hole solutions are known [27 ]. The analysis of all supersymmetric 

stationary solutions of N = 4 supergravity performed in this paper will allow us to 
derive some lessons for the study of generic electric and magnetic solutions of N = 2 
theory. 

It will be particularly useful to reinterpret the results for the N = 4 theory in terms 
of the Kiihler geometry of the N = 2 theory. 5 We will find that for all of our new 

stationary solutions, the metric is described as in [27], in terms of the Kahler potential 

K(X, X). However, in addition to that, it depends on a chiral U(1) connection A~, which 
breaks hypersurface orthogonality and makes the solutions stationary. The appearance 

of this special geometry object has not been realized before. However, since both the 

Kiihler potential as well as the U(1) connection are invariant under symplectic trans- 
formations, it is not surprising that both of these functions show up in the canonical 

metric of the most general duality-invariant family of solutions. This suggests how to 
find the most general stationary supersymmetric solutions of N = 2, d = 4 supergravity 
coupled to an arbitrary number of vector multiplets. We will comment more on this in 

Section 2.5. 
Finally, we would like to remark that point-like objects (black holes among them) 

are just one type of the many objects described by the metrics that we are about to 

present: by taking two complex harmonic functions that depend on only two or one 
spatial coordinate one gets strings or domain walls, although we will not study them 

here. 
This paper is organized as follows. In Section 2 we describe the SWIP solutions 

of pure N = 4, d = 4 supergravity. In Section 2.1 we present the action and our 

conventions, in Section 2.2 we present the solutions, in Section 2.3 we describe their 
relation with previously known solutions and their behavior under duality transformations 
is described in Section 2.4. In Section 2.5 we discuss these solutions from the point of 
view of stationary supersymmetric solutions of N = 2 supergravity coupled to vector 
multiplets. In Section 3 we study the most general single point-like object described 
by a SWIP solution. In Section 3.1 we study those with NUT charge and no angular 
momentum (extreme axion/dilaton Taub-NUT solutions) and in Section 3.2 we study 
asymptotically fiat (i.e. zero NUT charge) rotating solutions showing that there are 

5 Static solutions of  N = 4 theory have been identified as solutions of N = 2 supergravity interacting with 
the vector multiplet before [ 27 ]. 
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no supersymmetric rotating black holes (that is, with regular horizon) with 1/4 or 

more supersymmetries unbroken in N = 4, d = 4 supergravity. In Section 4 we prove 

explicitly the supersymmetry of  the point-like SWIP metrics and find their Killing 
spinors. Section 5 contains our conclusions. 

2. General axion/dilaton IWP solution 

2.1. N = 4, d = 4 supergravity 

Our conventions are those of  Refs. [3,8] and are summarized in an appendix of  the 

first reference, the only difference being that world indices are underlined instead of  

carrying a hat. Our theory contains a complex scalar )t = a + ie -2~ that parametrizes an 

SL(2, I~) coset. When we consider this theory as part of  a low-energy effective string 

theory, a is the axion field (the dual of  the usual two-form axion field Bu,,) and ~b is 

the dilaton field. It also contains the Einstein metric gu~ and an arbitrary number N of  
U( 1 ) vector fields A(un), n = 1,2 . . . . .  N. 

The action is 

1 / d4xvC- ~ { - R  + 2(0q~) 2 q- le44~(cga) 2 
S = i-g 7 

- ~ [e-Z$F{n)F'n) + iaF'n)*F{n)]/ '  (1) 
n=l J 

When the total number of  vector fields is six, this action is identical to the bosonic part 

of  the action of  N = 4, d = 4 supergravity. When the total number of  vector fields is 

greater than six, this action does not correspond to any supergravity action: additional 

vector multiplets of  N = 4, d = 4 supergravity would have additional scalars. We prefer 

to leave the number of  vector fields arbitrary for the sake of  generality. 

Sometimes it is convenient to use alternative ways of  writing this action: 

f { 10#. A'°~''~ N } S= ~1 daxv/- '~  - R +  2 ( I m a )  2 iEF{mn=l *p{n) 

/ I} = 1 d4xx/-~ - R +  2 ( I m a )  ~ + 2 R e  ia~-'~F{")+F{")+ , 
16zr \ n=l ] 

where we have defined the SL(2,1R)-duals 6 to  the fields F~(~ ) = O~,A(~ n) - &A(n)u 

~(n) = e-2~ *F(n) _ iaF(n) . 

(2) 

(3) 

(4) 

6 The space-time duals are *F (n)#v = 2~_ee~vt"rFp,r, with ~.0123 = cot23 = +i. 
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The advantage of using p(n) is that the equations of motion for the vector fields can be 
written in this way 

d*P (n) = 0 ,  (5) 

and imply the local existence of N real vector potentials fi,(n) such that 

P(,~) = i (a~fi~ (n) - a~fi,(ff)). (6) 

The analogous equations F(~ n) 8~A (~) - -(n) = - a~a u are a consequence of the Bianchi 
identities 

d*F (n) = 0 (7) 

(or, obviously, the definition of F ~  )). 

If the time-like components A} ") play the role of electrostatic potentials, then the 
.4}")'s will play the role of magnetostatic potentials. A virtue of this formalism is that 
the duality rotations can be written in terms of the vector fields A (n) and ,~(n) instead 
of the field strengths: 7 

a ( m ' ( x )  = 6A (n) ( x )  - TA(") ( x )  , 

A(n) ' (x )  = - f l a ( " ) ( x )  + aA(n ) ( x )  , (8) 

where a,/3, y and 8 are the elements of an SL(2,  ~ )  matrix 

R=  ( y  8fl ) . (9) 

Note that, since the A(~)'s are not independent fields, the consistency of Eqs. (8) 
implies the usual transformation law of ,~, 

a ' (x)  = a a ( x )  +/3  (10) 
y ~ ( x )  + 6 

With no dilaton nor axion (A = i), our theory coincides with the Einstein-Maxwell 
theory. In this case P = *F and the consistency of Eqs. (8) would imply that R is an 
SO(2) matrix, the duality group being just U(1). 

2.2. The SWIP solutions 

Now let us describe the solutions. All the functions entering in the different fields 
can ultimately be expressed in terms of two completely arbitrary complex harmonic 
functions ~1 (x) and 7-(z(x), 

03/0/~-~1 = 0/0~/~'~2 = O,  ( 11 ) 

7 0 f  course, this is only valid on-shell, where the ,~(n)s exist, but SL(2,N) is only a symmetry of the 
equations of motion anyway. 
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and a set of  complex constants k (n) that satisfy the constraints 

N N 

~ ( k ( " ) ) 2  = 0,  ~-~ Ik(")12 = ½, (12) 
n=l n=l 

in the general case. 8 This means that in general we must have at least two non-trivial 

vector fields. 

The harmonic functions enter through the following two combinations into the met- 
ric: 9 

e-2U = 2 Im (7-/1~2) , (13) 

ai/C.Oj] = •ijk Re (7"/lak_~2 -- ~ 2 a k ~ l  ) • (14) 

The fields themselves are 

ds2 = e2U(dt 2 + ~o/dx/) 2 - e-2Udx 2 , (15) 

A= 7/---L~ (16) 
7-(2 ' 

a~ n) = 2e2URe (k(n)7-/2) , (17) 

.~,1) = _2e2U Re ( k(n)7"tl ) . (18) 

Given the time components A} n), ,~}n), all the components of  the "true" vector fields 

A ~  ) are completely determined. 

2.3. Relation with previously known solutions 

First we observe that these solutions reduce to the usual IWP metrics [21] when 

7-/1 = i7-L2 = ~ 2  V-1 (19) 

(in the notation of  Ref. [ 19] ), where V -1 is a complex harmonic function, but now 
embedded in N = 4 supergravity. All these metrics admit Killing spinors when embedded 

in N = 2 supergravity [ 19] and generically have 1/2 of  the supersymmetries of  N = 2 
supergravity unbroken [20] .  In fact, apart from pp-waves,  all supersymmetric solutions 
of  N = 2, d = 4 supergravity have IWP metrics [ 19]. 

However, the only black-hole-type solutions (i.e. describing point-like objects with 
regular horizons covering the singularities) in this class are the MP solutions Ref. [ 23 ] 
(V = V with the right asymptotics) that describe an arbitrary number of  extreme RN 
black holes in static equilibrium [24].  Any amount of  angular momentum added to 
the MP solutions produces naked singularities. One can also add NUT charge (general 
IWP metrics have angular momentum and NUT charge), but then the spaces are not 

8 If 7-(1 or  7-(2 are constant, then only the second constraint is necessary .  
9 Here e]23 = +1. 
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asymptotically flat and do not admit a black-hole interpretation. There are no supersym- 

metric rotating black holes in pure N -- 2, d = 4 supergravity and, in consequence, in 

the IWP subclass of  the SWIP solutions of  N = 4, d = 4 supergravity there will be no 
supersymmetric rotating black holes either. We will discuss later how many N = 4, d = 4 
unbroken supersymmetries they have. 

If  we now take 

i i 
= = ( 2 0 )  

we recover the electric-type axion-dilaton IWP solutions of Ref. [ 8 ]. All these solutions 

have 1/2 of all N = 4 supersymmetries unbroken. Again, all solutions with angular 
momentum in this class have naked singularities. Observe that this class does not 

contain any N = 2 IWP metric and is intrinsically N = 4. 

Finally, if  we impose the constraint 

at/toll = 0 =¢, Re (?-/, ak_~2 - ~2&_?-/,) = 0 ,  (21) 

which gives static metrics, we recover the solutions of Ref. [5]. The existence of a 
constraint on the harmonic functions in those solutions is implicit in the form in which 

the two harmonic functions were given. However, when those solutions were found by a 
lengthy and not transparent process of covariantization with respect to SL(2, R) duality 

rotations (first discussed in this context in Ref. [28] ) it was almost impossible to see 
that the relations between the two complex harmonic functions could be expressed as 

just the effect of imposing that the metrics are static, as opposite to stationary. 

The black-hole solutions in this class have either 1/2 or 1/4 of the supersymmetries 

unbroken [3,29]. The complexity of the constraints between the complex harmonic 

functions made a proof of the supersymmetry of the general solution very difficult to 

obtain. This class trivially contains all the static N = 2 IWP metrics, and also the usual 
extreme dilaton black holes [30-32] from which they were obtained by generalization 

[4] and SL(2 ,R)  covariantization [5]. 
Finally, we should mention the relation with solutions of the low-energy heterotic 

string theory compactified on a six-torus [33]. From the supergravity point of view, this 
theory is nothing but N = 4, d = 4 supergravity coupled to 22 vector supermultiplets. Our 
solution is related to truncations in which all 22 matter vector fields (and scalars) vanish. 

This truncation corresponds to the case in which the six vector fields that come from 

the ten-dimensional axion are identified (up to a convention-dependent sign) with the 
six vector fields that come from the ten-dimensional metric and the remaining 16 vector 
fields vanish. The most general static solution of the low-energy heterotic string effective 
action compactified on a six-torus and given in terms of independent harmonic functions 

was recently found in Ref. [34] and rediscovered in Ref. [35]. The truncation typically 
reduces the number of independent harmonic functions by a half. Then, some of the 
static solutions in the SWIP class, with only two real independent harmonic functions 
correspond to some of the solutions in Ref. [34] with two independent harmonic 
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functions. It is difficult to make more accurate comparisons between these two families 
of metrics because they are given in two very different settings. 

Another stationary solution of the low-energy heterotic string effective action depend- 
ing on just one real harmonic function F - l  was recently constructed in Ref. [36]. This 
solution breaks 1/2 of the supersymmetries and, when the matter vector fields are set 
to zero, they correspond to one of the N = 4 solutions in Ref. [8]. 

We will say more about this and other solutions in Section 3 where we will discuss 
the relation between other known solutions and the SWIP metrics in the single point-like 
object (spherically or axially symmetric) case. 

2.4. Duality properties 

Since our general SWIP solution is a straightforward generalization of the solutions in 
Ref. [5], it shares many of their properties, in particular those concerning its behavior 
under SL(2, R) transformations: the whole family transforms into itself under SL(2, ~). 
Individual solutions in this family are simply interchanged by SL(2, ~) transformations, 
and, therefore, the effect of the transformations can be expressed by substituting 7-/1,2 
and the k(n)s by its primed counterparts: 7-/~, 2 and k (n)~. 

So, what is the action of SL(2 ,~ )  on them? ~1,2 transform as a doublet (that is, 
linearly) under SL(2 ,~ )  while the k(n)'s are invariant. To be more precise, observe 
first that ~1,7-(2 and the k (~)'s are defined up to a complex phase: if we multiply 7-(1 
and 7-/2 by the same complex phase and the constants k (n) by the opposite phase, the 
solution is invariant. An SL(2,R) rotation as we have defined it transforms 7-/1.2 as a 
doublet up to a complex phase and scales the k(~)'s by the opposite phase but we can 
always absorb that phase as we just explained. 

Incidentally, the solution is also SO(N) covariant: the constants k (n) (and, hence, the 
N U(1) vector fields) transform as an SO(N) vector. 10 

Therefore, this solution has all the duality symmetries of N = 4, d = 4 supergravity 
"built in" and nothing more general can be generated by duality rotations. In a sense they 
are the "true" generalization of the IWP solutions which also have built in the duality 
symmetries of N = 2, d = 4 supergravity: a U(1) electric-magnetic duality rotation of 
the single vector field of N = 2, d = 4 supergravity (the only duality symmetry of this 
theory) corresponds to multiplying the complex harmonic function V-I by a complex 
phase, giving another IWP solution with the same metric, etc. 

On the other hand, all these metrics have a time-like isometry and one can perform 
further T duality [37] transformations in the time direction. We will not attempt to 
study here the result of these transformations. 

10 SO(6, Z) is the duality group of the pure N = 4 truncation of heterotic string theory compactified on a 
six-torus, 



E. Bergshoef f  et  a l . / N u c l e a r  Physics  B 478 (1996) 156-180  

2.5. Relat ion  with general  N = 2 solut ions 

165 

In Ref. [27] ,  whose conventions we follow in this section, some static extremal 
magnetic black-hole solutions o f  N = 2, d = 4 supergravity coupled to an arbitrary 

number o f  vector multiplets were constructed in the case in which the ratios o f  the 

complex X a are real. The metric turns out to depend exclusively on the K~ihler potential 
K ( Z , - Z ) ,  where Z a = xA/xO: 

d s  2 = e2Udt 2 - e - 2 U d x  2 , e 2U = e K ( Z - i ) - K ~  . (22) 

It was then realized that the solutions presented in Ref. [5] could also be described in 

terms of  the K~ihler potential associated to pure N = 4, d = 4 supergravity with only 

two vector fields interpreted as N = 2, d = 4 supergravity coupled to a single vector 
multiplet. For this theory, the prepotential is F ( X )  = 2X°X l . Taking X ° and X 1 to be 

two suitably normalized complex harmonic functions 

X 0 = i7"/2,  X 1 = 7-/1, (23) 

one immediately arrives at the K~ahler potential 

e - K (  X,-X) = -'XA N A2.XZ 

= 2 Im(7-(17-/2) 

= e - 2 v  . (24) 

Therefore the Kahler potential provides the factor e 2U in the metric. With the complex 

harmonic functions 7"(1.2 constrained as in Ref. [5] ,  this is all there is to it. However, 

if the harmonic functions 7-/1,2 are not constrained, there is another geometrical object 

which is a symplectic invariant and which in this case does not vanish: the chiral 

connection 

i [--~A#lzX2~ Az, = ~ N A5 -- ( Oiz'xA ) x 5] 

= - 2 R e  (7-/10u7-(2 - ~ 2 0 u ~ 1  ) 

= - S u  k eijk Oiiwjl • (25) 

Thus, the chiral connection naturally gives us the three-vector wi which codifies the 

information about angular momentum, NUT charge, etc. Imposing the condition that the 

metric is static can be simply expressed as the vanishing of  the chiral connection: 

A u = 0 .  (26) 

It is surprising to some extent and highly non-trivial that this constraint does not 

constrain the values of  the electric and magnetic charges and the masses and that they 
are essentially arbitrary (as long as the Bogomol 'nyi  bound is saturated). This constraint 

seems to have a purely (space-time) geometrical content. 
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We see that all the elements appearing in the general metric of the SWIP solution 
have a special geometrical meaning. Hence, it is only natural to try to extend this 
scheme to more general N = 2, d = 4 theories with an arbitrary number of vector 
multiplets and arbitrary prepotential F(X) .  We conjecture that the metric of most general 
supersymmetric stationary solution of N = 2, d = 4 supergravity coupled to vector 
multiplets can be written in the form 

d s  2 = e K(X'-~) ( d t  2 4- toi_dxi) 2 - e - K ( X ' - X ) d x 2 ,  (27) 

where K(X,X) is the K~ihler potential associated to the corresponding holomorphic 
prepotential F(X) and w,_ is determined by the chiral connection A~ as before. A 
natural step that would generalize the results obtained in Ref. [27] for static purely 
magnetic solution would be to obtain static dyonic solutions by using the constraint of 
the vanishing of the chiral connection. 

3. Point-like SWIP solutions 

The most general choice of complex harmonic functions for a point-like object is 

7-/~ = Xo + X_~.~, 7-(2 = g'o + ¢__!L, (28) 
r l  r2 

where Xo, X1, ~bo, ~l are arbitrary complex constants and r 2 = (x - xl,2) • (x  - xl,2) 1,2 
where the constants x~,2 are arbitrary and complex. Up to shifts in the coordinate z, the 
most general possibility compatible with having a single point-like object is r~ = r~ = 
x 2 + y2 + (z - ia) 2. 

We have then at our disposal 9 + 2n real integration constants, including the k(n)'s. 
After imposing the normalization of the metric at infinity and the three real constraints 
that the k(n)'s have to satisfy in order to have a solution, it seems that we are left 
with 5 + 2n independent integration constants. However, if one multiplies both 7-/1,2 by 
the same complex phase, the solution remains invariant, and so we only have 4 + 2n 
meaningful independent integration constants at our disposal with n ~> 2 in the generic 
case .  

On the other hand, the maximum number of independent physical parameters that we 
can have seems to be 11 5 4- 2n: the mass m, the NUT charge I, the angular momentum 
J, the complex moduli A0 (which is the value of the complex scalar at infinity) and 2n 
electric and magnetic charges (q(n), p(~) ). However, when the field configurations have 
unbroken supersymmetry, there is at least one constraint between them: the Bogomol'nyi 
identity. Therefore we only expect 4 4- 2n independent physical parameters in the super- 
symmetric case. We are going to show that all these solutions satisfy the Bogomol'nyi 
identity and, since the number of independent physical parameters matches the number 
of integration constants, we expect them to be the most general axisymmetric solutions 
of our theory with (at least) 1/4 of the supersymmetries unbroken. 

11 Although some sort of "no-hair" theorem probably holds for this theory, none has yet been proven. 



E. Bergshoeff et al./Nuclear Physics B 478 (1996) 156-180 167 

Studying the asymptotic behavior of the different fields (see later) we find that the 

integration constants are related to the physical parameters of the solution 12 by 

1 , ,~0 "B Xo = ---~e hoe , X1 = e¢'° eiB ( a.o.M + ~o7") , 

~o = ~2e~O ei# ' ~l = _~2e~ ei# (./td + T) ' (29) 

k(n) = _e_ifl.AdI'(n) d- 7`1 "(n) 
I M I 2 _  1~12 , ~ = J / m ,  

where J is the angular momentum and fl is an arbitrary real number which does not 

play any physical role (but transforms under S duality according to our prescription). 

Observe that these identifications have been made under the assumption m 4: 0. There 

are also massless solutions in this class. 

The functions "7"/1, ~t'~2, e -2U and wi take the form 

Hl = --~2e'b° A°eiB ( A° + A°'/M +- -~°7` ' (30) 

7-/2=---~e~°e B 1 + - , (31) 
V2 r 

ir12 , ( 32 )  

Oti-WJl=eijkIm['MOk! + ( [ ' A 4 1 2 - l T ` 1 2 ) l O k l ] -  - r - ? J  ' (33) 

That the above identifications between physical parameters and integration constants 

are correct becomes evident when we switch from Cartesian to oblate spheroidal coor- 

dinates (p,  0, ~o), 

x -t- iy = ~/p2 + c~2 sin 0 e + i ~  , 

Z = p c o s 0 ,  

dx  2 = (p2 + a2 cos 2 0) (p2 + a 2 ) - l d p 2  + (p2 + a2 cos 2 0) dO 2 

+ ( p 2  + or2) sin 2 0 d~o 2 , 

(34) 

in which only the component o9~ does not vanish and takes the form 13 

w~o = 2 cos 0 1 + a sin 2 0 (e-2V _ 1 ) 

sin 2 0 
= 2 cos  0 1 + ~ p2 + ~2 cos  2 0 [2mp + 2Z,~ cos 0 + ( I M  12 - 17'12)], ( 35 )  

12 Again we use the same definitions for electric and magnetic charges as in Ref. [5]. The only difference is 
that the mass m has to be substituted by the complex combination M = m + il, where l is the NUT charge, 

in the definition of the complex scalar charge 7' = -2  ~ n  F---~n)2/'Ad" 
13 Observe that p can take positive or negative values since its sign is not determined by the coordinate 
transformation. We have used r = p + ia cos 0. 
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while e -2U takes the form 

e -2U = p2 + a Z c o s 2 0 + 2 m p + 2 l o t c o s O  + (1.A,412 _ iT]Z) (36) 
p2  + 4 2  COS 2 0 

The full general metric can be written in the standard way after a shift in the radial 
coordinate/3 = p + m + ITI, 

( ~ 2  £----~Asin2Od~°2~sm~, ] ds 2 _ A - -  i f2  sin 2 0 (d t  - wd~o) 2 - X - -  + dO 2 + --:---S--O. , (37) 
X 

where 

(.0 ~ --O.)~p -- 
2 

{tAcos0 + asin20 [m(/3-- ( m +  ITI)) 
A --  a 2 s i n  2 0 

+½(IMI 2 -  ITI2)]), (38) 

A = t3[~6 - 2(m + [7'1) ] + a 2 + (m + 17"1) 2 , (39) 

X = f l ( f l -  2IT I) + (cecos 0 + / ) 2 .  (40) 

Before comparing this metric with other rotating Taub-NUT solutions in the literature, 
we make the following observation: by construction, the following relation between the 
physical parameters is always obeyed in this class of solutions: 

I.,Vt 12 + I'rl 2 - 4 E I r (")12 = o. (41 )  
/1 

This is the usual expression of the Bogomol'nyi identity in pure N = 4 supergravity 
[4], and it is valid for solutions with 1/2 or 1/4 of the supersymmetries unbroken. 
Multiplying by [Ad[ 2 and using the expression of T in terms of .M and the/ ' (n) 's  we 
observe that we can always rewrite it as follows: 

( IMI  2 - ]z112) ( IMI  2 - Iz2l  2) -- o ,  (42 )  

where [ZII and [Z21 c a n  be identified with the two different skew eigenvalues of the 
central charge matrix [ 1,2 ]. The above identity indicated that one of the two possible 
Bogomol'nyi bounds, 

IMI 2/> Iz~,zl 2, (43) 

is always saturated and, therefore, 1/4 of the supersymmetries of pure N = 4 supergravity 
are always unbroken. 

For only two vector fields, the central charge eigenvalues are linear in electric and 
magnetic charges: 

Z1 = v ~ ( F  (I) + iF (2)) , (44 )  

Z2 = x/2( F (I) - iF (2)) , (45 )  
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but, in general, we have the non-linear expression 14 

½1z~,212 -- ~ Ir<")12 + Ir(n)12 - F ~")2 (46) 

When both central-charge eigenvalues are equal, IZll -- I&l, and, therefore, 1/2 of  

the supersymmetries are unbroken, it is easy to prove that 

IMI 2 = I~'12 = Iz~,212 = 2 ~ F  ~n)2 (47) 

Now we are ready to compare the metric ( 3 7 ) - ( 4 0 )  with other general rotating 

asymptotically Taub-NUT metrics of  N = 4, d = 4 supergravity solutions. The most 

general metric of  this kind was given in Eqs. ( 3 1 ) - ( 3 5 )  of  Ref. [10] and has the same 

general form (37) but now with 

2 { I A c o s O + a s i n 2 0 [ m ( r  r _ ) + l ( l  I _ ) ] } ,  (48) O ) ~  - -  - -  

A - a 2 sin 2 0 

A= ( r  - r _ ) ( r  - 2m) + a 2 -k- (I - •_)2, (49) 

X =  r ( r  - r _ )  + (cecos 0 + l)2 _ 12 , (50) 

where the constants r_ ,  l_ are related to the electric charge Q, the mass and Taub-NUT 

charge by 

mlQl2 I]Q[2 
r_  - - -  l_ - (51) 

IMI 2 , 21A412- 

First, note that this metric is not supersymmetric in general. It becomes supersymmet- 
ric when [.A41 = v ~ l Q I .  It is now very easy to check that in this limit and shifting the 

radial coordinate r = ~ 3 + m - I M I  one recovers the metric ( 3 7 ) - ( 4 0 )  with IMI 2 -  [TI 2 = 

0. Therefore, the supersymmetric limit of  this metric ( 3 7 ) - ( 5 0 ) ,  is a particular case of  
the SWIP metric with 1/2 of  the supersymmetries unbroken. 

If  we compare with the axion/dilaton IWP solutions presented in Ref. [ 8], we observe 
that 1/2 o f  the supersymmetries were also always unbroken. This meant again that the 

terms proportional to the difference IMI 2 - ITI = in the metric were always absent. The 

presence o f  these terms in the solutions that we are going to study, which implies the 

breaking of  an additional 1/4 of  the supersymmetries, proves crucial for the existence 

of  regular horizons in the static cases. It is also easy to see that the complex scalar a 

is also regular on the horizon when only 1/4 of  the supersymmetries are unbroken: if 

IMI ¢= ITI,  then .A4 ~ T and the constant in the denominator of  

~or + A0.A4 + A0T 
a = (52) 

r + A 4 + T  

14 We stress that only when there are six or less vector fields Zl, 2 have an interpretation in terms of pure 
N = 4, d = 4 supergravity. 
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never vanishes. Then, on the would-be horizon (which we expect to be generically 
placed at r = 0), A takes the finite value 

A0.A4 + ,~07" 
~.horizon -- (53) .A4 + 7` 

As we will see, in the rotating case, the additional 1/4 of broken supersymmetries 
does not help in getting regular horizons, though. 

From all this discussion we conclude that the most general solution in the SWIP 

class describing a point-like object is an asymptotically Taub-NUT metric with angular 
momentum. In general we expect to have at least 1/4 of the supersymmetries unbroken 
and a general proof will be given later in Section 4 with an explicit calculation of the 
Killing spinors. This is the main difference with previously known solutions. (We will 
compare with rotating asymptotically fiat solutions in Section 3.2.) 

Instead of studying the most general case, we will study separately two important 
particular cases: the non-rotating axion/dilaton Taub-NUT solution (or = 0,  l # 0) and 
the rotating asymptotically flat solution (or # 0,  l 4: 0). 

3.1. Extreme axion/dilaton Taub-NUT solution 

When the angular momentum J = mcr vanishes (but the mass m does not vanish), 
using the coordinate p is more adequate, and the solution takes the form 

d s 2 = ( l  + 2m + '.A412- 'T'2) - '  
P -p-~ (dt + 2lcosOd~o) 2 

( 2m IM]p2  ITI2 ) - 1 + P + (dp 2 + p2dO 2) , (54) 

Aor + aoA4 + AoT 
a - ( 5 5 )  

r +.A4 + T 

The expressions for the A~")'s and ,4}")'s are quite complicated and can be readily 
obtained from the general solution. 

This is the most general extreme axion/dilaton Taub-NUT solution [38] obtained 
so far. If we compare the metric with the metric of the extreme Taub-NUT solution 
in Eq. (14) of Ref. [8] we can immediately see that the difference is the additional 
( I MI 2-17`12)/p2 term in e - 2 U .  This term vanishes when both central charge eigenvalues 
are equal and 1/2 of the supersymmetries are unbroken. This is always the case when 
there is only one vector field, as in Refs. [8,10], etc. The effect of this additional term 
is dramatic: when it is absent, the coordinate singularity at p = 0 is also a curvature 
singularity. One can easily see that the area of the two-spheres of constant t and p is 
4rrp(p+2m) and it goes to zero when p goes to zero. If the additional term that breaks 
an additional 1/4 of the supersymmetries is present, in the limit p = 0 one finds a finite 
area: 

A = 4~'(I.A4I 2 - 17'12). (56) 



E. Bergshoeff  et a l . /Nuc lear  Physics B 478 (1996) 156-180  171 

In fact, it is easy to rewrite the area formula in terms of  the central-charge eigenvalues 

a = 47rl[Zl] 2 - 1z2121, (57) 

making evident that, when there is 1/2 of  unbroken supersymmetry (IZ~I = IZ=l), and 
only then, the area vanishes. 15 

On the other hand, with only one vector field one cannot set to zero the scalar charge, 

because it is equal to .M. Only with at least two vector fields one can set T = 0 and 
recover solutions of  N = 2 supergravity (all in the IWP class), in particular the charged 
NUT metric of  Ref. [39] .  

When l 4 : 0  this metric does not admit a black-hole interpretation since it has 

additional naked singularities along the axes 0 = 0, ~-, which can be removed using 
Misner 's  procedure [40] at the expense of  changing the asymptotics and introducing 

closed time-like curves. 

When l = 0 this is the area of  the extreme black-hole horizon [ 3,5 ]. When only 1/4 

of  the supersymmetries are unbroken and IMI [T[, this area is finite, the scalars are 
regular on this surface and p = 0 does not correspond to a point. An infinite throat of  
finite section appears in this limit. 

Finally, we observe that the area formula can be written in terms of  the conserved 
charges 16 ~(n),~(n) a s  follows: 

A = 8~ 'V/(~ • ~) ( p .  p )  - (~ .  p ) 2 .  (60) 

In this formula, the independence of  the area of  the horizon of  the string coupling 
constant and the moduli is evident, but the manifest duality invariance seems to be 

lost. 17 It is, though, not too complicated to rewrite yet again the area formula in a 

manifestly duality-invariant and moduli-independent fashion: 

a = 8 ~ ' ; d e t [ (  p : )0  (ff q)]  , (61) 

where the action of  the duality group on the charge vector ( ~ )  is given by 

15 We stress again that this is a property of  pure N = 4 supergravity that disappears when there is matter. 
16 The conserved charges are defined by 

! 5(n) ( e - 2 ~ F _ i a . F ) I n r )  Cl (n) 
• Ft(r n) ~ i r---- 5 -  , ~ r2 , (58) 

and with them we build the charge vectors 

# = ~ ( -  , /~ = " . (59) 
p(m 

17 The invariance under duality of Eq. (57) is manifest because duality transformations only permute the 
absolute value of the central-charge eigenvalues. 
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where R is an SO(6) rotation matrix and S is an SL(2 ,R)  (unimodular) matrix. 

(62) 

3.2. Rotating asymptotically flat solution 

When the NUT charge vanishes (l = 0) in the general solution we get 

where 

d s  2 = 
A --  a 2 s i n  2 0 (d/~ 2 A sin 20d~o 2 

( at  - 02a )2 - --S- + do2 + b ) , (63) 

2 a  sin 2 0 
0 2 = - w ~  = { m [ / ~ -  ( m +  ITI)] + l (m2 --[TI2) } (64) 

A - a 2 sin 2 0 

4 =/~[/~ - 2 ( m +  17"1)1 + ~2 + (m + 17"1) 2 , (65) 

2 = t3(/~ - 2[TI ) + cr 2 COS 2 0 .  (66) 

Again, the expressions for the potentials A} n) and/~}n) are complicated and we refer 

the reader to the general expression. 

When a = 0, we recover the same general class of  static black holes as in the previous 

section for l = 0. When m = 17"1 this metric is essentially the one in Eq. (31 ) of  Ref. [ 8 ] 

which has naked singularities. In this limit we also recover the metric of  the solution 

in Eqs. (3 .11) - (3 .16)  of  Ref. [36] (after going to the string frame). Other rotating 

solutions of  the low-energy heterotic string effective action [41,25], after truncation (so 

they can be considered solutions of  pure N = 4, d = 4) seem to give the same metric 

in the supersymmetric limit, breaking only 1/2 of  the supersymmetries. The exception 
is the supersymmetric limit of  the general rotating solution in Ref. [42] (see also 

Ref. [43] ), but the situation is unclear because the metric was not explicitly written 

down in the supersymmetric limit. 

The new rotating solutions in this class are, therefore, those with m 2 - 17"12 :~ 0. 

First of  all, we see that, for T = 0 (that is, constant scalar A) one recovers the 
Kerr-Newman metric with m = [ql. This was expected since, as we pointed out in 

Section 2, the usual IWP metrics (embedded in N = 4 supergravity) are obtained when 

7-/j = i~2 = ~ V  -1. This metric has a naked ring singularity 18 at r = cos0  = 0. On 

the other hand, it has m 2 - 17'12 ~ 0, which, according to our central charge analysis at 
the beginning of  this section, should mean that it has only 1/4 of  the supersymmetries 

unbroken when embedded in N = 4 supergravity. We will give a direct proof of  this in 
the next section. 

When 7" 4= 0 the situation becomes even worse: there are two naked singularities at 

~ =  17"1 ± x/[TI 2 - ~ 2  cos20.  (67) 

18 The fact that it is a ring, and not just a point can be seen by a further shift of the radial coordinate. 
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These singularities become one ring-shaped singularity (t3 = 0, 0 = 7r/2) when T = 0, 

but for general T, the range of values of 0 and ~ such that gtt and g ~  diverge is bigger 

and the singularities are in open surfaces satisfying the above equation. The surfaces are 
closed when 0 can take all values from 0 to 7r, that is, when 17"1 > lal. 

All rotating, supersymmetric, point-like objects in this class of metrics seem to have 
naked singularities. A similar result was recently obtained in the framework of the low- 
energy heterotic string effective action in Ref. [ 25 ] and previously in a more restricted 
case in Refs. [43,36] where the difference with the situation in higher dimensions was 
also discussed. 

4 .  S u p e r s y m m e t r y  

In this section we study the unbroken supersymmetries of the SWIP solutions. We 
first consider only two vector fields. Pure N = 4, d = 4 supergravity [44] has six vector 
fields that in the supersymmetry transformation laws appear in two different fashions: 
three of them are associated to the three metrics a~j and the other three are associated 
to the three matrices fly~ given in Ref. [45]. Our choice [3] is to identify the first 
vector field with the vector field that couples to a~j _= ~H and the second vector field 
with the one that couples to /33  -= fill. The corresponding supersymmetry rules are 

i 
~a!g,, /= el, e , -  ~1 o~+ab--,, o~b~,- -- ae2~(O~,a)e, 

1 e_~bovab(F+(l)olij iFa+b(2)t~ij)yt~ej (68) 

"~aAl-1 - --/e24'"/z (0"A) e l 2  r 4- " ~ 1  ,,-~b .,.ab ( ~ -  ( 1 ) _ . , . ,  ~'ab CXlJq- iF~b(2)BlJ) "J • 

Making the obvious choice of vierbein one-forms and vectors basis 

{ e ° = e e a ( d t + o ~ i _ d x i - ) , { e o = e - 4 ' O o _ ,  

e i = e-4~dx i-, ei = e4'(-ooi_Oo+ Oi), (69) 

the components of the spin-connection one-form are given by 

i 3u [ -- o + ieijkOjVe k] O9+0i __. -~e i&_Ve _ 
.1 

w+iJ=~e3U[,ijkOk_VeO--F2i(o[iY)Sjlkek ] , (70)  

where V = b + ie -2U. The curvatures for the vector fields are given by 

F~(n ) i 2~ (n) = - ~ e  Bi , 

F+(.)  = 1 e . . . .  2,/,n(.) ( 7 1 )  
• ij 2 uK~ ,% , 
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with 

B~n)=e2U[tgi'~2(k(n))-[1W-k(n)~l)-Cgi~l(k(n)7-~2"F-k(n)~2)]_ ~ _ _ . (72) 

We first consider the supersymmetry variation of the gravitino. The variation of the 
time component leads to (assuming that the Killing spinor is time independent) 

l ~![_tO 1 = 1 U .+ab_ _ _ 4 . . . .  ~" ab 1)OllJ ) ~e to o Oabe I l.,/-~aU-qb,rab (~,+( + iF+(2)~l J .gOEJ 
i 

=0, (73) 

or 

v/2 ( B~ l ) alj -k- iB~2) f l l j )  fJ = e-@+ 3u (o£)T°  Ei . (74) 

On the other hand, the variation of the space components leads to 

l i [-e-Uw+°Jy°ej ( - o, i8 o ) = , - ( a ,_a) , ,  + r j - [ ' 

+½v~e-U-' l ' (F~ (') a u  + iF;.(2),Su)yiy°e :] 

=0. (75) 

Applying the identity 

yJyi F~(n) = F~ii(n) _ 3fi FiT(n)Toy5, (76) 

and using the explicit form of co and F, the requirement that 

½ (6Vi - wi_6q'o_) = 0 (77) 

leads to the following equation for the Killing spinor: 

1 v/-~e_U_4, {F+(I iF0~(2)flH) y0e J Oiet_ --i4 e2¢a(OLa)e*+~v.. \ 0i ) a u +  =0.  (78) 

Substituting the expression (71) and applying (74) this Killing spinor equation can be 
rewritten as follows: 

i 
4 e2u (OLV)e'10. (79) ale ! -- , ( e, + = 

Next, we apply the identity 

eZ~ (a,a) - e 2U (aib) = i a i ~ 2  - i ~220~i7"~2 , (80) 
- "]"/2 - 

a n d  find that 
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1 (0 i~2  0i7-12"~ 1 (4u),,:0. 

175 

(81) 

Finally, we can solve this equation for the Killing spinor as follows: 

et = e U/2 el(O), (82) 

for constant el(0). We note that the first factor in the expression for e# containing the 
harmonic function is exactly what one would expect for an SL(2, ~,) covariant spinor 
[29]. 

The constant spinors E/(0) satisfy certain algebraic conditions which are determined 
by the vanishing of the supersymmetry rules of the time component of the gravitino 
(see Eq. (74)) and of At. For clarity, we repeat here Eq. (74), and give the equation 
that follows from the vanishing of 8Al: 

x /~ (B~ l )  otlj + iB~2)~ i j )~J  =e-~b+3u (Oi_V--)y° ~l , 

VI2(-B~I)oIlJ + i-n~2)~tj)lfJ=edp+U(oiA)~lO~l . ( 8 3 )  

In terms of the harmonic functions these two equations read as follows: 19 

[k(1) AL + ~( 1)~/_] alj,~(o) + i [k(2)AL + ~(2)B-d flljeJ(o) - -.ALy°e,(o), 

~(1)-A L + k(l)13i] oqje(o ) + i [-k(2)~ L + k(2)]3L]t~tj~ZJ(o) = -]3LyOeI(O) , (84) 

with 

A / =  ~1"~1 O i l 2  - -  '~20L7"~1 , 

J~ /=  ' ~ l  O i~2  - -  ~'/2O/'~t'~l • ( 8 5 )  

Let us now define 

C L =- .,4. L - e2i6-~ i , ( 8 6 )  

for some real and non-yet specified parameter & Next, we solve the two constrained 
complex parameters k (l) and k (2) in terms of a single real parameter y as follows: 

i k(l) !,,it k ( 2 ) = -  'Y ( 8 7 )  
= 2  ~ , 2 e • 

Using this parametrization of k (1) and k (2), it is easy to see that Eqs. (84) reduce to 

19 TO derive this equation we must make a choice of convention for the branch cuts of the square root of  a 

complex number. In the specific calculation below we have made use of the identity ~2/~12/2 - ~ t / 2  - ' ~2 . The 
effect of  taking another sign at the r.h.s, of  this equation is that in the final answer for the Killing spinors 
y0 ._~ _y0.  
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A i  (1  -- Ci T]I = O,  

A--, c ,  - e,_  1=0, 

where sol, r/1 and ( i  are constant spinors defined as 

~71 = l e-i~r+a) ( Otlj +/31j)E{0 ) , 

(1  = l eiCr+'~) ( a i j  -- flH )e{o ) q- ei'~ r° el(O) , 

(x = [cos(y + 6)a l j  -- i s in (y  + 8)/31j] e(o ) + ei~y°et~o) 

= r/l + ( 1 .  

(88) 

(89) 

We have to consider several different cases: 

(i) 

(90) 

(91) 

(92) 

(93) 

I f  both .Ai and C/a re  different from zero for any possible value of  8 and if they 

are also different for any value of  S, then, since the spinors ~1, r/t, ( i  are constant, 

they have to vanish. Given that ( t  = r/t + (x, this gives only two independent 

conditions: r/t = ( t  = 0 on the constant spinors et(0). 
By making use of  the explicit form of the matrices a t j  and/31.I (see Ref. [3] ), 

we can solve these two equations and we find that the constant parts of  the Killing 

spinors are 

e~0 ) = e~0 ) = 0 ,  e l (0 )  = ei~ 'y°e~0) • (94) 

This is the generic case and we just have proven that only 1/4 of  the supersym- 
metries are unbroken in this case. 

(ii) I f  both A,  and C,- are equal to each other and different from zero for some value 
of & then, using that ~:1 = r/1 + (1 we get again the same equations and the same 
amount of  unbroken supersymmetry. 

(iii) I f  .Ai vanishes we are again in the same case. 
(iv) I f  C/vanishes for some value of & then we only get one condition on the constant 

spinors e1(0): ~ = 0. In this case, and only in this case, 1/2 of  the supersymmetries 
are unbroken. 

This proves that we always have that at least 1/4 of  the supersymmetries are unbroken 
and all the SWIP metrics admit Killing spinors. 

We can now study how different particular cases fit into this scheme. We can treat 
first the case of  a single point-like object because we know in which cases one or two 
Bogomol 'nyi  bounds are saturated. For one bound saturated we expect two algebraic 
constraints on the Killing spinors and for two bounds saturated we expect only one 
( 1 / 4  and 1/2 of  the supersymmetries unbroken respectively). Substituting Eqs. (30) 
and (32) of  7-/n and 7-/2 in Eqs. (30) and (32) ,  which are expressed in terms of  the 
charges, we find that 

A i = i ( M  Oi I + (IA//I 2 -  ITI 2) l o i l  
- - r  r - - ? )  ' 

1 
13i=iT cgi-. (95) 

- r  
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It is easy to see that when I M I  2 - ITI z = o, then .A4 = ei28T and we are in the case 

in which C/= 0 and 1/2 of  the supersymmetries are unbroken. I M I  z - 1 ,[2 ÷ 0 is the 
generic case and only 1/4 of the supersymmetries are unbroken, as expected form the 
Bogomol'nyi bounds analysis. 

Another particular case is when 7-/1 = ei"7-[2 for some real constant o'. Then 13i = 0 

and C/=  ,,4i and only 1/4 of the supersymmetries are unbroken. In the N = 2, d = 4 
IWP solutions 

7-¢1 = i7-(2 = - -~V -1 , (96) 

that is or = ~r/2, and, as expected, they have only 1/4 of the supersymmetries unbroken 

when embedded in N = 4, d = 4 supergravity. 

5. Conclusion 

We have presented a family of supersymmetric stationary solutions that generalizes 

to N = 4 supergravity the IWP solutions of N = 2 supergravity in the sense that they 
are the most general solutions of its kind and that they are manifestly invariant (as a 

family) under all the duality symmetries of N = 4, d = 4 supergravity. 

We have studied the supersymmetry properties of the general solution and the geom- 
etry of the most general point-like solution in this class, arriving to the conclusion that 

no rotating supersymmetric black holes exist in pure N = 4, d = 4 supergravity (see 
also Refs. [ 8,43,25 ] ). The situation in four dimensions seems to be radically different 
from the situation in five dimensions, where supersymmetric rotating black holes with 

regular horizon have been found in Ref. [36]. The physical reason for this has not yet 

been understood. 
We have also argued that the interpretation of our solution for the two-vectors case 

as a solution of N = 2, d = 4 supergravity coupled to one vector field and in terms of 
special geometry provides a most interesting clue to get the most general supersymmetric 
stationary solution of N = 2, d = 4 supergravity coupled to any number of vector 

multiplets. 
We have not studied other solutions in this class describing extended objects like 

strings and membranes. These can be obtained by choosing complex harmonic functions 
that depend on less than three spatial coordinates. These solutions are, of course, also 
supersymmetric because the general analysis performed in Section 4 applies to them. 
They are also manifestly S and T duality invariant. We have not discussed massless 
solutions either. Exploiting this class of solutions to its full extent will require much 
more work, but all the results that will eventually be obtained will also be manifestly 
duality invariant. We believe that this is really progress towards a full characterization 
of the most general supersymmetric solution in N = 8 supergravity, which should be 
manifestly U duality invariant. Having this solution at hand would be of immense 
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value as a testing ground for all the current ideas on duality and the construction of 
supersymmetric black holes from D branes. 

It would also be interesting to take these solutions out of the supersymmetric limit. 
The non-supersymmetric metrics should also be manifestly duality invariant and would 
describe single stationary black holes, asymptotically Taub-NUT metrics, strings or 
membranes because there would be no balance of forces and it would be impossible to 
have more than one of such objects in equilibrium. Many of these non-supersymmetric 
solutions are known in the point-like case (black holes or asymptotically Taub-NUT 
metrics) (see, for instance, Ref. [5]) .  This is, we hope, one of the main goals of 
obtaining supersymmetric solutions. They are easier to obtain because of the additional 
(super) symmetry that constrains the equations of motion and they should help in finding 

the general non-supersymmetric solutions which are, perhaps, the most interesting from 
a physical point of view. 

After the completion of this work we discovered that some of the stationary solutions 
presented in this work have also been found, in a different setting, in Ref. [46], by 
directly solving the Killing spinor equations. 
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