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Quantum lattice motion and optical absorption in conjugated polymers: Adiabatic theory

Maxim V. Mostovoy' and Jasper Knoester
Institute for Theoretical Physics, Materials Science Center, University of Groningen, Nijenborgh 4,
9747 AG Groningen, The Netherlands
(Received 10 October 1995

The quantum lattice motion of short conjugated polymer chalhs 70) described by the Su-Schrieffer-
Heeger(SSH model is studied within the adiabatic approximation. We find that for these short chains only
three lattice degrees of freedom are strongly affected by low-energy electronic transitions. Moreover, we show
that forN=< 30 these three degrees of freedom are only weakly coupled to each other. This allows us to perform
a calculation of the optical-absorption spectrum of polymer chains in which the lattice is treated quantum
mechanically rather thatsemjclassically. For the standard set of SSH parametersdos-polyacetylene, the
classical(rigid-band absorption edge is smeared over an energy interval of 0.5 eV by the lattice quantum
fluctuations. The validity of the adiabatic approximation is investigated. Finally, we find a strong size depen-
dence of the onset of the optical-absorption spectrum.

[. INTRODUCTION band gap caused by the ground-state lattice dimerization de-
fines a sharp lower edge in the optical-absorption spectrum.
Over the past decades, considerable effort of physicistExperimentally, such a sharp edge is not observed. As was
and chemists has been devoted to understanding and opfieinted out by Sethna and KivelsBrhowever, absorption
mizing the properties of conjugated polyménguch interest  can take place at photon frequencies well below this classical
in these materials was aroused by the observed drastic iedge (“subgap” absorption, provided that the electronic
crease of the conductivity upon dopifdn addition, a large  transition is accompanied by the creation of a soliton-
number of studies have focused on tfmonlineay optical  antisoliton pair in the lattice. This process is classically for-
response of conjugated polymers. In particular the strondpidden, but quantum fluctuations of the lattice make it pos-
scaling of their optical hyperpolarizabilities with the electron sible. Like in molecular spectroscopy, the absorption
conjugation length continues to attract much inteféaly-  probability is determined by the overlap between the initial
mer light emitting diodegLED’s) are among the promising and final lattice wave function@he Franck-Condon factpr
applications, for which both optical and transport propertiesvhich results in a smearing of the absorption edge.
are important. Lattice qguantum fluctuations are important as a result of
The electronic properties of conjugated polymers differthe small value of the average dimerization: about 0.04 A for
considerably from those of conventional inorganic semiconirans-polyacetylene. Quantum Monte Carlo simulations have
ductors, mainly as a result of the specific effects arising fronmshown that the fluctuations of the dimerization are of the
the interaction of itinerant electrons with a quasi-one-same ordef:1°Since within the SSH model the gap is related
dimensional lattice. In 1979, Su, Schrieffer, and Hegfer to the dimerization, it is obvious that the quantum lattice
proposed a moddthe SSH modelthat explained the exist- motion strongly affects the optical-absorption spectrum. Un-
ence of spinless charge carriers in polyacetylene, as was sufprtunately, quantum Monte Carlo calculations cannot give
gested by earlier experimerftsn this model, the electron- direct information about the excited states the dynamical
phonon interactior(i) relates the band gap in the undopedcorrelation functions necessary to obtain the absorption
polymer to the lattice dimerizationji) leads to a strong spectrum.
dressing of the electronic excitatiofygolarong, and (iii) re- Clearly, owing to the large number of lattice degrees of
sults in the appearance of excitations of an entirely differenfreedom for realistic size polymers, a full quantum descrip-
nature(solitong. According to this picture, a change in the tion of the coupled lattice-electron dynamics is prohibitively
occupation of the one-electron levels in a conjugated polyeomplicated, forcing one to apply approximations. Close to
mer, induced by photon absorption or doping, is accompathe threshold for soliton-antisoliton pair creation, the final
nied by strong lattice deformations, that considerably changeave function describing lattice fluctuations around the clas-
the energies of the one-electron levels. Consequently, evenical configuration with minimal energgorresponding to an
direct electron-electron interactions are neglected, it is iminfinitely separated soliton-antisoliton prionly has very
possible to characterize the excited states of conjugated polgmall overlap with the initial wave function, describing zero-
mers by the simple concepts of fixed one-electron bands anabint fluctuations around the perfectly dimerized lattice. This
band gaps. suppresses the transition probability and enables one to cal-
In this paper, we will study the optical-absorption spec-culate the absorption close to the threshold
trum of conjugated polymers, accounting for the quantunsemiclassically:*>*? In this approach, the overlap integral
nature of the lattice. Within a classical treatment, the latticecan be writtenC exp(—S; /%), whereS; is the action of the
is initially fixed in the configuration that minimizes the total classical motion in the imaginary time along the trajectory
ground-state energy. Moreover, a classical lattice cannot resonnecting initial and final lattice configuratioftbe instan-
adjust instantaneously to an electronic transition, so that thon). The preexponential factd@ can be related to the sta-
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bility properties of this trajectory and accounts for the con-tion of the multiphonon emission accompanying the absorp-
tributions of the paths close to the classical one. tion.

Using a path-integral approach, Kivelson and Auerbich Surprisingly, the chain lengths that can be considered in
developed a general formalism that allows for the semiclasthis way are long enough to make our study relevant to ex-
sical calculation of the Franck-Condon factors between latPerimental conditions, where the conjugation length is gen-
tice states in the electronic ground and excited states. Whegfally limited by defects and conformational disorder. The
applying this formalism to calculate the “subgap” transition from the simple lattice dynamics to the dynamics
absorptiort! however, these authors assumed for taea- of the continuum limit is smooth and in the case of pply-
lytically unknown) instanton trajectory an approximation, acetylene occurs nedd=70. Our results show strong size

that simply interpolates between the perfectly dimerized Congependence which is important for the interpretation of ex-
erimental data.

figuration and the soliton-antisoliton pair and has only one” o . .
9 b y The organization of this paper is as follows. In Sec. Il we

degree of freedom: the soliton-antisoliton distance. This tra- ; L ; ; .
. . o describe the model Hamiltonian and the adiabatic approxi-
jectory does allow for analytical results, but it is not the real

solution of the classical equations of motion and thereforemation' In Sec. lll A, we present the results of a numerical
q ! analysis of the effective potential energies for short chains,

makes a proper calculation of the preexponential factor 'Mwhile in Sec. 1l B we derive their key features analytically.

possible. The validity of this approach is limited to photongeciion v contains the details and the results of the
energies lying in a small interval close to the soliton- gy antym-mechanical calculation of the optical-absorption
antisoliton pair threshol.d. ~ spectrum, while the semiclassical approximation is consid-

The subgap absorption has also been calculated within gred in Sec. V, postponing some details to the Appendix.

g H H " 4 H . . . .
lattice relaxation” approach? In that work, the lattice dy-  Finally, our results and conclusions are summarized in Sec.
namics was assumed to be linear and the phonon frequencigs,

were considered independent of the occupation of the single-

electron levels. More precisely, the only effect of electronic Il SSH HAMILTONIAN AND ADIABATIC

e>§C|.tat|ons on the Iat.t|ce was gssumed to be a shift qf the APPROXIMATION

minimum of its effective potential energy to a new configu- _ _ _

ration. This shift results in a nonzero overlap of the initial ~ We will calculate the linear absorption spectrum for poly-
state with final states containing a number of phonon excitamer chains described by the SSH motilin which the
tions over the new vacuurfmultiphonon emission Using electron-lattice interaction is introduced through the depen-
this concept, the absorption spectrum for the continuum verdence of the electron hopping amplitude on the carbon-
sion of the SSH model was calculated. It should be notedc@rbon bond length and the Coulomb interaction between the
however, that in the continuum limit the linear approxima- €/eCtrons is neglected. Although this model can be used to
tion for the lattice dynamics is not justified, as the opticaldes‘.Crlbe vanlousflf[mds of [Iaolymteis;ﬁ(wz)wnl cor&s![(rj]er thﬁ ge-
absorption involves large lattice fluctuatiofssich as soliton- neric example of trans-polyacetyleri&H) , an rougn-

antisoliton pairg which cannot be described in terms of har- out this paper use parameter values appropriate for this com-
monic oscillations pound. The Hamiltonian reads

From the above, it may be concluded that the role of
quantum lattice fluctuations on the optical absorption, al- Hgg = — > [to+ a(Up—Uns1)1(Cl. 1 sCn ot Ch Crito)
though understood qualitatively, has only partially been no T ' ’

solved quantitatively. This problem has recently gained fur- P2 K
ther interest, as it has been suggested by Heeger and co- +2 _“+_(u IESTAL 2.1)
workers that quantum fluctuations are responsible for the m 2M 20 o)

large third-order optical response in degenerate-ground-state

conjugated polymer® 8 Therefore, in this paper we recon- Where,cI’g andc, , are the Fermi creation and annihilation
sider the problem of the quantum description of the latticeoperators, respectively, for an electron with spin projection
and its influence on the optical absorption. We focus on ther in the 7 orbital of thenth carbon atomrf=1, ... N) and
lattice dynamics accompanying the optical absorption irln is the displacement along the chain of thié atom from
relatively short polymer ringgseveral tens of monomers its position in the undimerized chain. FurthermoRs, de-
and show that it is quite different and much simpler than innote the momenta of the CH unit} is their mass, and the
the case of infinite chains. This is a consequence of the fagtandard polyacetylene parameters tye2.5 eV for the
that only a few relevant lattice degrees of freedom, describetiopping amplitude in the undimerized chain=4.1 eV/A

in terms of phonons with wave vectors close 49 are  for the electron-phonon coupling, amd=21 eV/A? for the
coupled strongly to the electron dynamics. The weak couspring constant. The lattice dynamics of the SSH model dif-
pling between the relevant degrees of freedom allows us téers fundamentally for chains with even and odd numbers of
perform the full quantum-mechanical calculation, similar tomolecules. In this paper, we will restrict ourselves to even
Ref.14, retaining, however, the essential nonlinearity of theéN, which is also the most likely case in realistic samples, for
lattice dynamics and its dependence on the occupation of thi@asons of chemical stabilitgvoidance of radicalsand syn-
single-electron levels. Apart from this quantum calculationthesis. Furthermore, we impose periodic boundary condi-
we also analytically solve for the instanton path and showtions: u,;ny=u, andc,.y=C,. This simplifies the calcula-
that a proper calculation of the preexponential factor for gion, but also leads to an artificial dependence on the
small range of photon energies gives a reasonable descrigivisibility of N by 4, related to the fact that the degeneracy
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of the highest occupied single-electron level in the half-filled 1 (% 9 2
chain dependgfor a fixed lattice configurationon whether m(i— o5 AW | U+ ¢(u) [P (u)=ED(u).
N=4k or N=4k+ 2. Since we do not want to complicate the (2.6)

paper by considering both cases in full detail, we will . )
throughout this paper assume thet 4k+ 2 and only briefly However,  the  effective  vector  potential A(u)
discuss the other case in Sec. VI. Finally, we will only con-=1%Znx"(n|u)(#/du) x(n|u) vanishes everywhere, because
sider undoped, i.e., half-filled chains. all electron wave functions can be chosen real. The effective
We now turn to the general expression for the linear abscalar potentiais(u) is significant only in the regions of the
sorption coefficient of an ensemble of randomly orientedattice configuration space where the single-electron levels
noninteracting chains. Assuming that initially each chain iscross and the adiabatic approximation fails. As for low-

in the ground Statb) (Zero temperatubethe absorption co- energy lattice excitations the wave function is small in these
efficient is given by regions, the scalar potential can be neglected.

Next, we consider the matrix elements of the electron
A7l N dipole operatord=e2nyoxnc§cn, wherex, is the position of
a(w)= Wnchg [(f]d[i)|?6(Ef—Ei—#%iw), (22  thenth carbon atom ané is the electron charge. Ad s a
single-electron operator, it will, within the adiabatic approxi-
where the sum over final statésextends over all excited Mation, only induce transitions between two Slater determi-
. nants that differ by precisely one occupied single-electron

states of the chain, ardiis the electron dipole operatdg; level. Explicitly. consider the transition in which an electron
and E; denote the energies of the initial and final states, VEl. Explicitly, : ttion In Whi

especively i he photon frecuency s the denstyof = oher e 10T, ol occuped sgleelcton eve
polymer chains, and; is the refractive index. P i

In order to evaluate Eq2.2), we have to calculate the :ﬁg Irrgrrgizz)ar:eié é%ssi}atﬁa%ngqg g:apole matrix element for
eigenstatedl (n,u) for the N7 electrons and th& carbon y

atoms governed by the SSH Hamiltonian. Here, ~
n=(ny,n,, ...,Ny) is a vector containing the positions of <f|d|i>=f dNud% (u)DP3(u) P A(u), 2.7
the electrons andi=(u,u,, ... ,uy) is the vector of dis-

placements of the CH units. We will restrict ourselves to thewith

adiabatic approximation, the validity of which will be dis-

cussed in _Sec_. Il B. Within this approximation, the total Dba(u):eE g (n|u)Xaa(n|u). 2.9
wave function is factored as n

Clearly, the electronic matrix elemeBP?(u) depends on the
shape of the chain, which we will assume to be circular with
radiusR=Na, /2, whereay=1.22 A is the distance be-
tween the carbon atoms in polyacetylene measured along the
chain. If we choose the coordinate system such that the ring
lies in thexy plane,D?(u) only has two nonzero compo-
nents,

W(n,u)=x(nju)®(u), 2.3

where x(n|u) is a Slater determinant dfl single-electron
wave functions at a given lattice configurationand® (u)

is the lattice wave function. TheN2 possible single-electron
wave functionsi,(n|u) and their energies,(u) are found
by diagonalizing the hopping term of the Hamiltonian at
fixed value ofu (the labela also includes the spin projec- N

tion). This amounts to a simple numeriddi<x N matrix di- D?a(u):ez & (nJu)Rcod 0,) wa(nju),  (2.99
agonalization. Of course, ()/(N!)? different Slater deter- n=1

minants can be made, differing in the occupation of they,q

single-electron levels. In order not to complicate the nota-

tion, however, we have not explicitly labelgdn|u) by this N

occupation. DYu)=e, ¢ (nJu)Rsin(6,) g (n|u), (2.9b
The lattice wave functiomb (u) satisfies the Schdinger n=t
equation with
2 3? nag+up ( n n
N — 0,= =27 —+——], 2.1
I sz VW |eW=Eew), 24 =R N 2N (2.10

_ _ ) the angle characterizing the position of thi#h atom in the
where the effective potential energ(u) is the sum of the  ing peformation of the chain from a perfect circle does not
energies of the occupied electron levels and the harmonig,,q 1o qualitative changes in the absorption spectrum. For a
energy of the lattice proper definition of the dipole operator, however, it is crucial
that the chosen geometry is consistent with the boundary
conditions imposed on the wave functions. For instance,
choosingx,=nage, with e a fixed vector, is not consistent
with our periodic boundary conditions and gives an absorp-
We note that in a more rigorous treatment E24) should tion spectrum that looks considerably different from that for
be replaced bY?° a linear chain with open boundary conditions.

K
V=2 saW+ 52 (Ut (29

occa
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If the lattice is treated classically, being fixed in the con-
figuration that minimizes the adiabatic ground-state energy,
the absorption spectrum oflang chain shows a sharp lower
edge corresponding to the gap between the conduction and
valence bands. Within the same approximation, the spectrum
of ashortchain consists of a number of well separated peaks.
In both cases the onset of the absorption corresponds to the
transition from the highest occupied single-electron state to
the lowest unoccupied one. In this paper, we are interested in
the spectral broadening of this lowest-energy transition peak n
due to quantum lattice fluctuations. We will assume that ini-
tially the lattice is in its ground stat@ero temperatuje In
the final state, however, we have to account for possible
excitations of the lattice accompanying the electronic transi-
tion. Unless stated otherwise, we will hereafter use the term
“electronic ground state” for the electron configuration
where all single-electron levels below the Fermi level are
filled and all others are empty. By “electronic excited state,”
we will mean the state generated from the ground state by
transferring one electron from the highest occupied to the
lowest unoccupied level.

90 120

FIG. 1. Lattice configurations minimizing the effective potential
lll. ADIABATIC POTENTIALS FOR SHORT CHAINS energy of the lowest electronically excited stateMor 122 (a), and
N=62 (b). Plotted are the acousticyf, dashed lingand optical
(6, , solid ling parts of the configuration, as defined in the text.
Whereas the calculation of the single-electron states is a ) ) o ) )
straightforward numerical problem, finding the lattice wave 1he lattice dynamics of short chains is quite different

functions® (u) for a given electron occupation is immensely from those in the continuum limit. In fact, it is much simpler,
complicated, as it involves solving the Sctilnger equation because the number of the relevant lattice degrees of free-

in an N-dimensional configuration space. We shall show,dom is greatly reduced. To demonstrate this, we will com-

. . the lattice configurations that minimize the effective

however, that for relatively short polymer chaind<70 pare U . .
the number of lattice de )r/ees of I?re>e/dom excite;(: b )Iow_potenual energy of shqrt and_ long electronlc_a lly excited
. gre . excited by chains. For this comparison, it is necessary to introduce the
energy photons is small. This considerably simplifies the cal- honon decomposition of the configuration
culation of the optical absorption. It should be stressed tha[% ’

A. Numerical analysis

restricting ourselves to short chains does not necessarily 1 _

limit the relevance to practical circumstances. The reason is Un=\/—N§k: e gy, 3.
that, although polymer chains can be made very long, the

free propagation of electrons along the chain is, due to variwhere k= —7+27/N,—7+4%/N, ...,m. The phonon

ous defectgin particular conformational disordefimited to ~ amplitudesq,=q,+iqgy are complex, except fok=0 or
relatively short chain intervals, with a typical length of sev- k= 7. Here we consider the amplitudes witt=0 as inde-
eral tens of atom&! Therefore, the description of a polymer pendent variables and use =0y . Furthermore, we sepa-
sample as an ensemble of disconnected fully conjugaterhteu, in slowly varying and staggerin@limerizatior) parts:
short chains may be viewed as a rough way to account for n
the effects of disorder. For many materials this picture seems Un=¥n+(=)"0n, (3.2
more adequate than the infinite chain description. where y,, accounts for the acoustic phondi&g. (3.1) with
Most of the analytical studies of the quantum dynamics ofk< /2] and (—)"&, for the optical onesk> =/2).
polymer chains have been performed in the continuum limit. The numerically obtained lattice configurations that mini-
The continuum version of the SSH motfebives a good mize the effective potential energy of electronically excited
approximation to the discrete model if two conditions hold: chains withN= 122 andN=62 are shown in Fig. 1, by plot-
(i) the gap, Ag, is much smaller than ther-band width, ting v, and é,. Clearly, both variables vary smoothly over
given by 4, (ii) the typical distance between the neighbor-the chains, indicating that the phonon spectrum consists of
ing single-electron levels near the Fermi energy is muchwo well-separated peaks, one at smalind one ak close
smaller than the gap. While the first condition is fulfilled for to 7. The effective energy related tg, (resulting from in-
trans-polyacetylene (®,~1.4 eV and 4,=10 eV), the sec- teractions with acoustic phongnis small, making it irrel-
ond one requires the chain side to be rather large: The evant for our consideration. The important part of the lattice
relevant level distance for a half-filled undimerized poly- configuration is the dimerizatios,. From Fig. 1, it is evi-
acetylene chain equalsn2,/N, which, for a gap of 1.4 eV, dent that for short chains the effective potential energy has a
givesN>10 to fulfill the second condition. Thus, an interval much simpler form than for long chains: Fbr=122, the
of chain sizes exists, which are of practical interest, but fordimerization s, reveals a soliton-antisoliton pair, for which
which the continuum model is not applicable, even thoughthe phonon decomposition contains many harmonics. By
N>1. We will call such chains short. contrast, the staggering part of the corresponding configura-
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M w?
0.03 . . Unnel(@)= > —5(a+?), (3.4

****** rrel

N =50 o * X * where the frequencies, only weakly depend on the elec-
§§§&E®®566 tronic state.
.. 8 A similar harmonic approximation fails for the phonon
o modes with wave vectork= 7 andk=m(1—2/N). In the
former casew?<0 in the electronic ground state, related to
the familiar double-well potential which arises from the
electron-phonon interaction. Fé&= 7(1—2/N), the poten-
x tial energy in the electronic excited state has a cusp at
dx=0. In the remainder of this section, we will discuss the
numerically obtained dependence of the effective potential
-0.03 . : energy on the three coordinates describing these relevant
2 n phonon modes. It is useful to introduce a special notation for

(hwk)2 (ev2)
[e]

k these coordinates:
FIG. 2. Numerically obtained phonon dispersion for polyacety- 2= 0
lene chains of 50 units in the electronic ground statsses (3.5
excited statdcircles, and for the harmonic chain in the absence of ) i
electron-phonon interaction(asterisks The frequency for Xtiy=pe'¥= \/Eqﬂ-(172/N) .

k=m(1—2/N) in the excited state is not defined, because the effec- . . .
tivewp(otential)has 2 cUSP Bs. om0, In addition, we define the rescaled amplitudesz/ /N, and

analogous fok, y, andp. The lattice configuration described

by the vector =(x,y,z) then reads
tion for N=62, basically, contains only one phonon mode y (x.y.2)

with wave vectok= 7(1—2/N). This configuration may be 2N
interpreted as a dimerization wave with a period equal to the Sp=7+ \/575 COE(T - ) .
chain length. When increasing the chain length, the dimer-

ization wave smoothly changes into a soliton-antisoliton paifrp s 7 is the average dimerization of the chah@ﬁ is the

at N~70-80(for our choice of model paranrr%ée:(}ars amplitude of the dimerization wave with period equal to the
Because of the charge conjugation symnt€toj the SSH  cain engthlcf. Fig. Ab)], and the anglep describes the
Hamiltonian the configuration that minimizes the lowestghig of this wave along the chain. In the limN—c the
electronically excited state of the half-filled chain also mini- oo ctive potential energy i independent. In the case of a
mizes the energy of the ground state when two electrons aig,ite chain, it is invariant only under the finite rotation
added or removed, in which case the dimerization wave i%o—>cp+27r/N (accompanied bg— — 7), which corresponds
called a charge-density wa€DW). Therefore, the above , 5 ghit of the dimerization wave by one lattice unit. Nev-

change Ofl th% sollrt10n-an|t.|solflton dpalr Into af d'mer'zalt,'onertheless, for all practical purposes, the effective potential
wave is related to the earlier found transition from a solitonenergy for a chain of several tens of units can be taken in-

lattice to a CDW when increasing the dopiffg. dependent o,

Additional evidence for the reduction of the number of From the above. we conclude that for short chains the
relevant lattice degrees of freedom is found by consideringjynamics of only tvx;o lattice degrees of freedomandp) is
the renormalizatioridue to the electron-phonon interaction nontrivial. Due to the interaction with the electrons, these
of_the frequencies of small amplitude oscillations around thetWO phonon amplitudes will generally be coupled, which is
minimum of the potential energy. In Fig. 2 we plot indeed seen from the form of the effective potential energy
for the electronically excited chain of 70 units, given in Fig.

(3.6

%2 52U 3(a). In order to evaluate the optical absorption one has to
(ﬁwk)zzm i (3.3 calculate the wave functions of many excited lattice states in
Ok lq=0 this potential, which is complicated by the coupling between

the two degrees of freedofthough, of course, this problem
as a function ok for both the electronic ground and excited is already much easier than solving the quantum motion in
state and compare to the normal-mode dispersion in the afthe full N-dimensional lattice configuration space
sence of the electron-phonon interaction. Clearly, the acous- However, it turns out that the coupling diminishes for
tic phonons are only weakly affected by this interaction. Byshorter chains. This can be seen from Figh)3which dis-
contrast, the frequencies of the optical phonons are reducefllays the same potential energy fdr=30. To a good ap-
but the crucial point is that most of them are nearly the sam@roximation, the variables andp are decoupled in the elec-
in the electronic ground and excited state. Therefore, thesionic excited state for this chain length. The same holds for
degrees of freedom remain practically unexcited upon electhe electronic ground state. We will make these statements
tronic transitions. We have checked that the dependence afiore explicit by showing how along various cuts in the
the effective potential energy on tho@eelevani lattice co-  plane the numerically obtained effective potentidfer
ordinates is to a good approximation harmonic, N=30) can be fitted by simple decoupled expressions.
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1 1.5
_ (a) = (b)
g 0.5 9
= = 05
-0.05 0 0.05
£ (A)
0.05 .
(d) N
o _ R
~— °< A
o =0 n
s = N
0.05 oy N
1
I
— Il
% 0.05 005555 0 o005
FeN! [N

FIG. 4. Effective potential energy,,. of the electronic ground
state forN=30 according to exact numerical calculatighin solid
line) and the fit Eq(3.7) (dot9 along three cuts in thez plane. The
cut directions are indicated in pan@) and are given bx=0 (a),
Z=alN (b), andX+Z=a/ N (c), wherea/ N is the ground-state
dimerization. The thick solid lines givéin arbitrary unitg the
ground-state wave function of the lattice in the poteritigl. along
the same cuts.

The fit is compared to the exact numerical result in Fig. 5
and again demonstrates the effective decoupling of the pho-
non degrees of freedom.

The minimum of the effective potential for the electroni-

_ _ _ _ ~cally excited state is reachedzt 0 (zero average dimeriza-
FIG. 3. Effective potential energy in the electronically excited tion) on a circle

state as a function of the two relevant phonon coordiratesdx
for N=70 (a) andN=30 (b). p2=x2+y2: b2. (3.10

0.05

i (A

First, we consider the electronic ground state and fit it%_?.e defgerl;n_]tca.racy r?f ghis minimum correslpondshto thle possi-
effective lattice potential by the decoupled function llity of shifting t e |mer|z_at|on wave along t € polymer.
The cusp atp=0 is an artifact of the periodic boundary
2 2 conditions. Although the actuat dependence olJ,, is

M
Uyadp,2)= %Jerac(Z), (3.7 slightly anharmonic, we prefer to use a quadratic fit to sim-

whereV,,{z) is a double well with minima at-a, with a
related to the classical value of the dimerizatignthrough
a= \/ﬁuo. Figure 4 shows the numerically obtained poten-
tial, as well as the fit along three cuts in the plane. We
determinedV,,{2z) by fitting U,,{0,2) by an eighth-order 1 1

(a) (b)

Uex (V)

polynomial [Fig. 4(a)]. Likewise, the frequencyw, was

-0.05 0 0.05
found from a quaderatic fit o) .(p,0) [Fig. 4(b)]. Finally, in % (&)
Fig. 4(c), the thus obtained form E¢3.7) is compared to the 005 (@) ~. |
exact effective potential along the czit p=a. Clearly, the _ _
fit is satisfactory in the region where the ground-state lattice = = < 0 AN
wave function(also indicated in the figuyds appreciable. 5 = :
Similarly we fitted the effective potential energy for the 005 ;
electronic excited statief. Fig. 3b)] by the expression o o0e o007 005 o 005
EIN] i A
wH’ZZZ zZ (A)
Uep ) =AU+Velp)+——, (38
FIG. 5. Effective potential energy,, of the electronic excited
with state forN=30 according to exact numerical calculatighin solid
line) and the fit Eq(3.8) (dot9 along three cuts in thez plane. The
.2 cut directions are indicated in panéd) and are given by
_ Mo, RV - X=b/\N (a), Z=0 (b), andX+Z=b//N (c), whereb is the posi-
Vel p) 5 (p—b), p=0. (3.9 i ' < S g
ion of the minimum of the potential in the transversg (irection.
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plify the calculation of the wave functiorisee Eq(3.16 for ~ 2«/N is small[cf. Eqg. (3.11)] and can be neglected, while

a more accurate expressioithe differenceAU between the the remaining phonon degrees of freedom arexquy, and
minima of the effective potential energies for the electronicz coordinates. Diagonalizing the Hamiltonian within the sub-
excited and ground states is the threshold for optical absorspace of the four electron states, we obtain the energies of
tion (if we discard corrections due to the small changes in thehe single-electron levels in the presence of the lattice defor-
zero point phonon energigswhich for the infinite chain is  mation:

equal to twice the soliton mass.
e1(p,2)=—¢e1(p,2)= JAZ+2(Bz)2— Bp,
B. Analytical discussion (3.12

In 'this sect'io.n, we will present analytipal arguments that e2(p,2)=—e3tp,z) = VAZ+2(Bz)2+Bp,
explain the origin of and put a firmer basis under the simple
behavior of the effective potential energies for short polymelWlth
chains found in Sec. Il A. In the adiabatic approximation the
coupling between the electron and phonon degrees of free- A=t sinz B=2\/§a co ™ (3.13
dom is caused by the dependence of the adiabatic potential >IN N N ’
on the sum of the energies of the occupied single-electron
levels [Eq. (2.5)]. For short chains, the separation between As we see, the energy of each of the four single-electron
the single-electron levels is large and we may use perturbdevels is the sum of two terms, one of which depends only on
tive arguments to build intuition about the effects of lattice Z and the other only op. Thus, any coupling between these
distortions. Then, the largest shifts in the electron levels arisevo phonon degrees of freedom is completely due tozhe
from the mixing of adjacent levels by the electron-phononandp dependence of the energies of other, deep lying, elec-
interaction. If both neighboring levels are filled, however, tron levels and therefore has to be small. This is the under-
this will not change the effective potential. Thus, the effec-lying reason for the decoupling of the relevant degrees of
tive potential is most sensitive to lattice distortions thatfreedom found in Sec. lll A.
couple the occupied and unoccupied single-electron levels Since we have assumed that the contribution of all the
that are close to the Fermi ener¢y for half-filling). In the  other electron levels together with the harmonic energy of
undimerized chain these are the electron states with waviée lattice can be approximated by
vectors close ta- 7/2. B8p? 2

From these arguments and the form of the electron- Upee(pr2)=Uo+ P Y (3.14

. . ——+ =
phonon interaction 2 2

: (with Uy, B, andy constanty the effective potential energy
_2la ik’ — sink)ct f the electroni d state read
Hepr=—= > (sink —sink)c}, GOk, (3.1 of the electronic ground state reads
k.k', o
) ) Uvac= Urestt2(e1+ €3)
it follows that the lattice degrees of freedom most strongly B2 2
coupled to the electron dynamics are phonons with wave -~ P Y-V
vectors close tar. This also holds in the continuum limit, =Uot -t 5 —4VATH2(B2S, (319
but for a short chain the number of single-electron levels that , ,
lie in an energy interval of the ordek, near the Fermi and the e_nergy o_f_the state with one electron in level 1 and
energy is very small, and so is the number of relevant pho©ne hole in level Iis,
non degrees of freedom. UimU.. 42

We can even obtain analytical expressions which give a ~ex “vac’ <81
good semiquantitative description of the effective potential Bp? yz?
energies, by assuming that the nonlinearity of the potentials =Up+ T—ZBp+ 7—2 A*+2(B2)”. (3.16
is solely related to the energies of the fquithout account-
ing for spin degeneragysingle-electron levels closest to the Note that the coefficient in front of- JA?+2(B2)? is
Fermi energy, which we denote by 2, 1, and 2. The levels smaller by a factor of two ifJ., compared tdJ,,;, which
1 and 2 have positive energy and are empty in the electronigesults in the disappearance of the nontrivial minimunz at
ground state, while the negative energy levelantl 2are  #0 in the excited statgef. Figs. 4a) and §a)]. On the other
doubly occupied. Due to charge conjugation symmetry of thénand, due to the linear term 2Bp, U, obtains a nontrivial
SSH Hamiltoniane7=—¢;, andez=—¢,. minimum atp# 0 [cf. Fig. 5b)].

For an undimerized chain witN indivisible by 4, the The term —2Bp also leads to nonanalytic behavior of
states 1 and 2 are plane waves with wave vectord),,: in thex-y plane it has a cusp at=y=0. This singu-
+(1/2+1/N) and equal energies; ,=2tysin(w/N), and larity is due to the degeneracy of the single-electron states 1
the degenerate statesahd 2 are plane waves with wave and 2 atp=0, which means that the energies of the four
vectors* m(1/2— 1/N). If we leave all other electron levels (without accounting for spinlow-lying electron excitations
out of consideration, the energies of the four levels in arwith one electron in either the state 1 or 2 and one hole in
arbitrarily distorted chain only depend on the amplitudes ofeither the state br 2 cross atp=0. Three such excitations
the phonons with wave vectors,7(1—2/N), and 27/N. are dipole allowed, which means that they have spin 0 and
The coupling to the acoustic phonon with wave vectornegative charge conjugation parity. The numerically ob-
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which is most threatening for the adiabaticity, as a result of
the splitting atp=0. Inspection learns that ttiedependence
does not endanger the adiabatic approximation.

For the excited electron states, the situation is more prob-
lematic, however. The crossing at=0 of the three lowest-
energy excited electron terms with negative charge conjuga-
tion symmetry(curvesb, ¢, andd in Fig. 6) gives rise to
nonadiabatic transitions between thémwe also note that the
effective scalar potential in Eq2.6), which we neglected,
diverges as } at the terms-crossing pojnfThus, only a few
excited lattice states on top of the lowest-energy t&ruive
b) whose wave functions are localized near the minimum of
the effective energyfar from p=0) can be treated adiabati-
cally. This imposes an upper limit on the photon energy for
a which our results given in Sec. IV are valid, which we esti-
0 : ; mate to be 0.5 eV above the absorption threshold. The results

0 0.02 0.04 0.06 . X . i .
5 A of a_fuII nonadiabatic treatment will be published in a forth-
coming paper.

U (V) -

FIG. 6. The energy of the lowest electron configurations for IV. QUANTUM CALCULATION OF THE OPTICAL
chains ofN=230 units as a function g (for z=a). The solid line ABSORPTION
indicates the electron ground state, the dashed lines denote the one- . . . .
particle—one-hole states, and the dotted lines are the two-particle— !N this section, we will apply the knowledge obtained
two-hole states. about the adiabatic potentials and perform a full quantum

calculation of the optical-absorption spectrum caused by the

tained exacp dependence of the effective potential energiedOWest-energy excited electron configuration. We will con-

of these three excitations is shown in Figigirvesb, ¢, and ~ Sider @ chain oN=30 units, for which we have learned
d). According to our analytical approximation, thisdepen- above that the phonons with different wave vectors are de-
dence is given by ' coupled. Thus, the lattice wave function factorizes into a

product of the wave functions for the separate wave vectors,

Bp?
AU+=-+2mBp, m=-1,01. (317 D= 4@ (o0 [t @D

In the rigid-band calculationz=a,p=0, fixed), these three If we now neglect the Wea_k dependence of the electron di-
dipole transitions all would have the same enesdy. In the pole matrix element on the irrelevant phonon degrees of free-
guantum calculation, the splitting of the termspat 0 con- dom,
tributes to the broadening of the absorption spectrum. This D,(q)=D (1) 4.2
broadening exists in addition to the smearing of the lowest- _ “ o .
energy electron excitation due to the possibility to also excitdh€ integration over these lattice variables in E2.7) re-
the lattice, which is our main focus in this paper. duces to the product of the overlap integrals of the initial
At this point, we would like to discuss the validity of the (#x) and final (#y) lattice wave functions for each mode:
adiabatic approximation for short chains. Generally, this is a
good approximation if the energy of the lattice motion is H quiidq{(’ K (ar,ar) di(dr . ge) - 4.3
small compared to the energy separation between different irrel k Jk
electron terms, so that the slow lattice motion cannot inducqhese integrals are easily calculated, as the irrelevant de-
transitions between different electron configurations. Let Ugyrees of freedom are harmonic. We are interested in the op-
first consider the ground state of the chéuirvea in Fig.  tical absorption at zero temperature, so that no phonon exci-
6).. The electron terms which can be nonadiabatically mixeqations exist in the initial state. Although the phonon
with the ground-state electron configuration should have spifyequenciess, andw] before and after the electronic transi-
0 and the samépositive charge conjugation parity. The ion are slightly different(see Fig. 2, it turns out that for
nearest two possibilities af® a combination of an electron \_ 30 the initial lattice ground state has a negligible overlap
in state 1 and a hole in statenth an electron in state 2 and jith excited final lattice states. Therefore, only transitions in
a hole in state Xcurvec’ in Fig. 6, which coincides with  which the irrelevant degrees of freedom remain unexcited are
curvec) and(ii) two electrons with opposite spin in state 1, important and for these transitions the factdt3) equals
two holes in state 1(curve €). In the region where the unity.
ground-state lattice wave function is significatf. Fig. More precisely, the phonons with small wave vectors
4(b)], both of these configurations are separated from théacoustic phononsare weakly coupled to the electron dy-
ground state by an amount of energy considerably larger thamamics, and the lattice configuration minimizing the energy
the typical optical-phonon frequendggbout 0.1 eV, which  of the polymer ring in the excited electron state has a small
means that for the ground state the adiabatic approximatiolow-frequency componer(see Fig. 1. This leads to a non-
is valid. Of course, Fig. 6 only shows the dependence, zero overlap with states in which acoustic phonons are ex-
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cited. Since, however, such excitations do not cost much
energy, they only result in a small broadening of the absorp-
tion peaks associated with the optical-phonon excitations. At o.06f (a)
room temperature a small additional broadening occurs due
to thermal excitation of low-energy acoustic phonons in the
initial state. We will not take these effects into account,
since, anyway, a consistent treatment of acoustic phonons
should necessarily be three dimensional.

Thus, the only nontrivial integrations in the matrix ele-
ment Eq.(2.7) are the ones over the relevant degrees of
freedom,

0.02
J':d2¢u'*(2)¢|\(2) f:dpp

. I

0.04r

ary units)

a(w) (arbitr:

2
X1, ded ™ (p,@) b, (p,@)Du(r). (4.9
ho (€V)
We first focus on the mode (the = phonon. The initial o5
wave function ¢|(z) is the symmetric ground-state wave '
function in the double-well potentiaV,,{(z) of Eq. (3.7). (b)
However, if the temperature exceeds the energy splitting due ol Y—

to tunneling between the degenerate minima of the potential
(about 0.2 K forN=230), the states described by symmetric

and antisymmetric lattice wave functions are populated with
equal probability. For the chain sizes considered here, weZ
may neglect the tunneling and assume that the discrete sym:s
metry z— —z is spontaneously broken. Therefore, we have
restricted ourselves to numerically calculating the lattice
wave functiong(z) for z>0. The overlap integrals with 0.5
¢ﬁ(z) turn out not to be sensitive to the choice of the bound-

ary condition atz=0 ((ZS”:O Ordd)H/dZ:O)’ Since, in any HHHHHHH
f i
2 3

—_
[Z)
=
B=1
1=}
=3

1.5¢

ow) (a

case, the wave function is very small in the vicinity of 0
z=0. Finally, according to Eq(3.8), the wave functions
¢‘](z) are the eigenfunctions of the harmonic oscillator with ho (eV)

!
frequencywH o . . . FIG. 7. (a) Stick absorption spectrum for the transition from the
. Fo_r th_e _tWO perpendicular” coordinatex andy, the . highest occupied to the lowest unoccupied single-electron level ac-
situation is in a sense reversed to the above. Now, the motiog,mpanied by various lattice excitations for a chaime# 30 units.
is harmonic in the initial stateEq. (3.7)] and the correspond-  gach peak derives from a particular phonon excitation and the peak
ing lattice wave function is a product of the ground-stateneight gives the relative probability for this excitation. If the lattice

functions for each of the two coordinates, would be fixed in the ground-state dimerization, the spectrum
2Mw, (12 , 1 would be a singles peak at about 1.6 eMb) Histogram for the
¢ (p,@)= e Mop2h (4.5  absorption spectrum obtained fra@ as described in the text. The
h \/ﬂ solid line gives the semiclassical absorption spectrum derived in
Sec. V.

The z component of the angular momentum of this state
vanishes. Furthermore, becaugg(p) does not depend on Hence, the projection of the angular momentum in the final

¢, the final state wave function has the form, state is given bym==1. The wave functionsR,(p)
gime (1=0,1, ...) of the radial excitations were found numeri-
(p.¢)=R : 4.6)  cally.

Using the thus obtained wave functions to evaluate the

Now note that for a circular polymer ring the matrix elementmatrix elements Eq(4.4) for various phonon excitations in
of the dipole between the electron wave functions of thethe excited state, we obtain as the final result of our full
highest occupied and the lowest unoccupied levels trangiuantum calculation the stick spectrum Figa)7 It is ob-

forms as a vector under rotation around maxiS’ served that the IOWQSt'energy peak of the rigid-band absorp—
_ B . tion spectrum is replaced by a sequence of many peaks cor-
D1(2.p,¢)=D1(2.,p,0)c08 ¢) ~D2(z.p,0)sin(¢). responding to different excitations of phonons with wave
(4.7 vectorsm and 7(1—2/N). A more coarse-grained picture of
D,(z,p,¢)=D4(z,p,0)siN(¢) + D(2,p,0)cod ¢), the spectrum is useful for comparison with experiments and

with the semiclassical approximatiof®ec. Vj and is ob-
because rotation over an anglerAN corresponds to a shift tained by making a histogram, in which the contributions
of the lattice configuration by two lattice unitg,—u, . from different phonon excitations inside each energy bin are
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summed [Fig. 7(b)]. In this representation, the lowest along the chainin the continuum limit* Then, the transi-
(S-shaped rigid-band absorption peak at 1.6 eV is replacedtion amplitudes into states wittn=+1 are given by

by a broad feature due to the lattice quantum fluctuations. .

The onset of the absorption lies 0.7 eV below the first rigid- (f|d[i) =27pox|(D1 21D )| #} (20) $)(20) b (po) . (po),
band transition. (5.3

with
—(1/2)
In the previous section we obtained the absorption spec- ppol
trum of a short polymer ring, treating the lattice quantum (5.4

mechanically. For long chains, however, the number of relThe strongest dependence of the product of wave func-
evant lattice degrees of freedom is large and the semiclassjpns in Eq.(5.3) on the “parallel” and “transverse” excita-
cal (or instanton calculation seems the best one can dojgn energies sﬁ and & comes from the factor

Therefore, it is instructive to compare our quantum resu”exp{—(&+§’+$ +S/)/4]. Here, it should be noted that
with the semiclassical approximation and discuss the region1e suml of f‘ourlactiéns is; not y’et the action along some
of validity qf the IatFe_r. Alphough thg gengral formulgs fqr classical path in the two-dimensional space of lattice coordi-
the absorption coefficient in the semiclassical approximation, ..« cince thémaginary times of motion in the “paral-
were derived in Ref. 13, we will use an equivalent but Sim'lel” ar,ld “transverse” directions

pler approach, which exploits the fact that many phonon de-

V. SEMICLASSICAL CALCULATION

OF THE OPTICAL ABSORPTION
k=2h

d I d !
d_z(p‘|+p”) - E(pﬁfpﬂ
—“0

grees of freedom for a short chain are decoupled and allows d(gwg")
us to use simple WKB expressions for the wave functions =gl
rather than the path-integral approach. As in the quantum el
calculation, we consider only the three lattice degrees of (5.9
freedomx, y, andz. d(S, +S))
For photon energies close to the absorption threshold, the e
1

overlap between the initial and final lattice wave functions is
small, because the minima of the adiabatic potentials beforare, in general, different. This will be solved automatically
and after the electronic transition are located at different valwhen performing the sum over all final states. If the spec-
ues of the lattice coordinatez€a, p=0 for U, and trum of final states is dense enough, the summation can be
z=0, p=b for Ugy). Thus, the overlap integral comes from a replaced by an integration:

region where both initial and final lattice wave functions are

suppressed. This means that the lattice motion is classical qliy[2

for?)?dden there and the wave functions have a WKB form ® o5~ Ei—fiw)[(fld])]

$= 1w exp(—S/t), (5.9 ds| de|

whereS is the action of the motion in the imaginary time in hof fiw; (e])
a corresponding potential from the classical turning point. L ~ 2
The product of the wave functionse|*(2)#(2) X8(AU+e[+e| —ho—g—s)[(fld[i)]% (5.6

xexp{—[S{(2) +S(2)]/h} has its maximum az=z, for  where the factor of 2 is due to the electron spifi,is defined

which the sum of the actions is minimal: as in Eq.(3.9), andw/ (¢])=27/7,(¢]), the energy sepa-
q ration between the states of the “transverse” motion of the
d_[S1\(Z)+SH’(Z)]|z= 2=0, (5.2) lattice in the electrolnlcallly. exmted_ s_tate. Only the mtegrgnon

z over the difference | — ¢ is nontrivial, for which we again

which means that at this point the classical momentad'S® the ~saddle-point ap,prox,|mat|on. Using E®.5,
pj=dS /dzand—p{=—dS/dzmatch. Similarly, the prod- 't 1S clear that for sj+e,= —const the factor
uct of the wave functions describing the motion in the trans&*H ~2(S+ S+ S, +8))/] has its maximum ae e,
verse direction ¢.* (p) b, (p)=exp{—[S. (p) +S, (p) I/} ~ Such that

has its maximum ap, defined by r= r”(s_u’)= 7. (e€)), (5.7)

/

S 1 which is precisely the condition for the equality of times of

P.(po)= W(Po)z— o (PO= —p.(po)- motion in the “parallel” and the “transverse” directions.
P Then,SiEZ(S”ﬂLS“’ +S, +S]) becomes the instanton action

In the semiclassical regime the classical actions are larg&nd the absorption coefficient can be written as

so that the products of the wave functions are sharply _

peaked. Therefore, we can calculate the matrix element Eq. @(0)=C exp(=§/h). 5.8

(4.4 performing the integrations over and p nearz, and  The calculation of the classical actioBg, Sﬁ , S, andS]

po in the saddle-point approximation. Theintegral can be is discussed in the Appendix. The preexponential fa€or

evaluated exactly and corresponds to the integration over theas a rather lengthy expression, which agrees with the result

zero mode(the overall shift of the saddle-point configuration of the path-integral methotd.
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for increasing photon energy. The saddle-point configuration

8 - - ' described by the coordinateg(,z), at which according to
the semiclassical scenario the electron transition occurs, for
7' A growing photon energy tends to the perfectly dimerized con-
6 | figuration (po—0 andzy—a), until, finally, the instanton
disappears. When this happens the saddle-point value of the
st 1 transverse coordinajg, becomes zero and the semiclassical
- expression for the Franck-Condon factor vanishefs Eq.
5 4 y (5.3)]. The quantum absorption tail, however, even with only
sl ] one electronic transition taken into account, stretches to con-
a siderably higher energies.
of v
4t | VI. SUMMARY AND DISCUSSION
0 . . . In this paper, we have studied the quantum lattice motion
0 2 4 6 8 of short polyacetylene chains, described by the SSH model,
Qr in the ground and lowest excited electron states within the

adiabatic approximation. Using both numerical calculations
. o . and analytical arguments, we have found that the number of

FIG. 8. Instanton action as a function @iaginary time of |5ttice degrees of freedom whose dynamics is strongly modi-
motion in the electronic excited-state potentifik. The solid ine o py the interaction with electrons is small. In this respect
glt\)/t(;?ntgs ;enzlf)'/tti%;“;e El;mg”tf‘ael gilg;ﬁ';g %?i;gepiisnhoendgggr‘gs%e lattice dynamics of short chains is fundamentally differ-
of freedom. ' &nt from that in thg continuum limit. _Moreover, we found

that below a certain chain siz&0 units for the standard
polyacetylene parameterthe lattice dynamics is even fur-

In the above derivation, we neglected the coupling bether simplified, because the remaining relevémintrivial)
tween the “parallel” and the “transverse” degrees of free- |attice degrees of freedom become practically decoupled, al-
dom. To demonstrate once more that for short chains this ighough the dynamics of each of them is nonlinear. This has
a good approximation, we compared fdr=30 the proper-  allowed us to perform a full quantum-mechanical calculation
ties of our analytical instanton with those of the instantongf the optical-absorption spectrum for photon energies for
obtained by numerically solving the classical equations ofyhich only the lowest electronic transition is important. In
motion. In the latter calculation, we even accounted for tWOparticu|ar, we have been able to study in detail the “subgap”
additional lattice degrees of freedom, the real and imaginargmearing of the lowest rigid-band absorption peak as a result
parts ofq 1 —4ny, the amplitudes of which turned out to be of the electron-phonon interactidgthe “subgap” absorption
relatively small. The effective lattice potentiald,,. and  spectrun.

U.x as functions of the five lattice variables were obtained by This smearing may be defined as the energy difference
numerically diagonalizing the single-electron Hamiltonian.petween the peak position and the onset of absorption. Our
Figure 8 shows the instanton action as a functionflaf,  calculations show a smearing of 0.5 eV, whereas the experi-
where Q= 4K/M is a typical optical-phonon frequency ment shows 0.7 e¥? For a realistic comparison to the ex-

and 7 is the time of motion in the adiabatic potential of the periment, however, other important effects should be taken
electronically excited state given by E¢.7). Clearly, a into account. First, the existence of higher excited electron
good agreement exists between the analytical and the nwonfigurations will further broaden the absorption spectrum.
merically obtained instanton. A proper inclusion of higher states, however, cannot be done

The final result for the semiclassical absorption spectrunwithin the adiabatic approximation and will be the subject of
is shown in Fig. T), where it is compared to the histogram a forthcoming paper. Second, in reality, part of the smearing
of the quantum calculation. Unfortunately, just above thecomes from higher dimensional effects, caused by interchain
absorption threshold, where the suppression by the Frankopping. Most importantly, however, in practice appreciable
Condon factor is strong and the semiclassical approximatioadditional broadening will arise from disorder in the electron
is supposed to be very precise, the number of available lasonjugation length caused by conformational defétRe-
tice excitations in a short chain is relatively smialee Fig. cent studie€ suggest that the distribution of conjugation
7(a)], and the comparison of a smooth curve with a histodengths in polyacetylene is broad and has two peaks, one at
gram is, strictly speaking, impossible. Still one can say thatN~40 and one aN~80. Within our modeling, such a dis-
for photon energies just above the threshold, the instantotribution will lead to an important broadening, because a
approach reasonably describes the diffusion of the onset aftrong size dependence of the predicted absorption spectrum
the absorption due to multiphonon emission accompanyings observed. In particular, we have found that the absorption
the electronic transition. thresholdAU varies by about 1.5 eV whel changes from

At higher photon energies the instanton ideology breakd40 to 60(see Fig. 9. Therefore, it seems that the combined
down, because the lattice fluctuations in the excited statesffect of all broadening factors will, for the standard SSH
become large and the final lattice wave function is no longeparameters, lead to a predicted smearing of the absorption
small for configurations close to the perfectly dimerized lat-peak that is larger than the experimental value.
tice. This manifests itself in a shrinking of the instanton path A solution to this problem may be the effect of the Cou-
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of much interest, as the third-harmonic generation of
3 | | . . ; : degenerate-ground-state conjugated polymers has been

claimed to be greatly enhanced by soliton-antisoliton pair
productiont®~18
2.5¢
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05, 20 30 40 50 60 70 80 APPENDIX: SEMICLASSICAL WAVE FUNCTIONS

N In this appendix, we derive the semiclassical expressions
for the wave functions describing large classically forbidden
lattice fluctuations. This derivation is possible because of the
AU=min(U,) —min(U .0, for polyacetylene rings with an even ' (approxima}taa decoupling of the I_attice degre_es of freedom
number of unitsN. The circles and asterisks distinguish betweenand '_S eas'e_r than the se_mlclassmal calculation of the Green
N indivisible and divisible by 4, respectively. functions using the path-integral meth. o

In the classically forbidden region of a one-dimensional

. . . potentialU(q), the wave function can be written
lomb interaction between the electrons. If we account for this

coupling, the role of the electron-lattice interaction in the S(q)
formation of the gap will diminish. In other words, the value d(q)= \/W(q)ex% - T) , (A1)
of the electron-phonon coupling constantnhecessary to fit
the observed gap and lattice dimerization will be smallefiwhere, by means of the standard WKB procedure, one iden-
when the Coulomb interaction is turned on. Accordingly, thetifies S(q) with the Euclidean action,
effect of the quantum lattice fluctuations on the absorption
spectrum and its size dependence will decrease. q
In this paper, we have only considered polymer rings with S(a) =‘ f pdq’, (A2)
N=4Kk+ 2 units (k intege) in detail. The cas&l =4k, which o
will naturally also occur in practice, differs from this mainly with p(q)=+y2M(U(q)—E) and q, the nearest turning
because no degeneracy occurs for the highest single-electrgaint. To leading order in powers df, the preexponential
level in the chain with constant dimerization. Therefore, thefactor is given byw(q)=A(E)M/p(q), where the coeffi-
effective potentials are somewhat different. In particular, thesient A(E) is found by matching the semiclassical expres-
potential for the electronic ground state now has a cuspsion with the wave function in the classically accessible re-
while the potential for the electronic excited state has a nongion. If the latter can also be described semiclassically, as is
trivial minimum only forN=36. Nevertheless, the dynamics the case for the excited lattice states, fien
of the lattice degrees of freedom has similar simplicity as we
found for N=4k+2, and the optical-absorption spectrum
arising from it can be found in close analogy. As explained A(E)= TE)" (A3)
in Sec. Il, we did not consider odd-chains. Those have a
solitonlike deformation with a midgap single-electron levelwhere T(E) is the period of motion with energi in the
in their ground staté’ and their lattice dynamics accompa- classically accessible region.
nying optical absorption has to be studied separately. To find A(E) for the lattice ground state, we match the
As this is, to our knowledge, the first calculation of the semiclassical solution with the Gaussian function that de-
quantum lattice dynamics and the optical absorption for shorscribes the zero-point fluctuations near the minimum of
polymer chains, it is difficult to compare our results to pre-U,,.. Now, somewhat different expressions are found for
vious theories dealing with subgap absorption. Earlier result$(q) andw(q), because of the smallness of the ground-state
were obtained in the continuum limit and, as discussed in thenergy. To see this, we insert E@\1) into the Schrdinger
Introduction, are to a large extent approximate. Instead, wequation fore(2),
have made a comparison with a semiclassical calculation
performed along the lines of Ref. 13, but adopted to the short
chain case. This comparison clearly shows the limitations of “om a2 Vvad2) | 9(2) =g ¢y(2), (Ad)
the semiclassical approa¢hig. 7(b)].
In future work, we hope to include moderate electron-and expand in powers o, taking into account that the
electron interactions and to apply our approach to the nonenergy of the zero-point fluctuatior$=O(7%). Then, to ze-
linear optical response of conjugated polymers. The latter isoth order ins we obtain the Hamilton-Jacobi equation,

FIG. 9. The classical threshold for optical absorption

#2 d?
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Mo 1% S
m} eX —T, (Ag)

2
pg(l\z/l) —V,o(2)=0, (A5) (2)=

wherep(z) =dS,/dz, while the first-order terms ifh yield  jth
the equation for the probability current,

z
d( P Sﬁ(Z)=f dz pj(2), (A10a)
ﬁd_Z(WM) =28HW' (AG) c
The actionS; for the motion inV,,{z) has to be calculated
by numerical integration of(z) [cf. Eq. (A2)]. The differ- pr(Z): M“’H, Nrrss (A10b)

ence with the usual WKB procedure is that the energy of the _ _ ) ) )

lattice zero-point motiong , is included in the last equation and c the “ght classical turning point determined by
rather than the Hamilton-Jacobi equatioh5). Since we &[=(1/2Mw|*c?.

count energy from the minimum d¥,,(z), the classical The initial wave function of the motion in the “trans-
momentump(z) vanishes only at the minimum of the po- verse” directions,¢, (p,¢), is the ground state of the two-
tentialz=a, so that the solution is formally applicable for all dimensional harmonic oscillator with frequeney , which

z. In fact, the ability of the semiclassical solution to describecan be written in the “semiclassical” form

small fluctuations, as well as large ones, relies on the exist-

ence of a small parameter. To see this, we note that for the b, (p, @)= M (llz)e—sl I (A113)
harmonic potentiaV, .= (1/2)M w”z(z— a)?, our procedure LAP® Th

gives the exact ground-state wave function WithWith the classical action

g|=(1/2)hw [in this case S=(1/2)Mw|(z—a)* and

w(z)=consi. Thus, small fluctuations are accurately de- Mw, p2

scribed by the semiclassical solution if the anharmonicity of = (Allb)

L
the potential is small over distances of the order of the zero- 2
point fluctuation VA/Mw| away from the minimum. For
small anharmonicityg |~ (1/2)f w|, with w the frequency
of small oscillations near the minimum &,,{(z) at z=a.
Then Eq.(A6) gives for the preexponential factor

Finally, for the “transverse” motion in the final lattice
state, with the potential given by E(B.9), we again use the
WKB approximation. As both the semiclassical and the adia-
batic approximation anyhow fail at small we neglect the
centrifugal barrier for then=+*1 states and obtain

(2= -2 p(M | 02 (A7)
wW(z)= ——ex o) | ——/,

P(2) | pi(2) (o) Mo, |2 S/ (p) AL
and it is easy to check that(z) is regular az=a. Since, for (p)= 27p;(p) ex ho (AL2)
all practical purposes one can neglect the tunneling between,
the degenerate minima= *a, the numerical coefficienf wit
is found from the normalization condition ,

$.(p)= [ "do pL00), (A133

J;dmﬁ(z): 1. (A8)

and

To find the final lattice wave functioaﬁ (z) with energy PN / 2 2
=-M b—p)°—(b—d)-. Al3b
sH’ in the classically forbidden region of the harmonic poten- P.(p) @ N(b=p)*~( ) ( )
tial V=(1/2)M wH’zzz, the standard WKB approximation can Here, d is the left classical turning point determined by
be used and leads analytically to g =(1/2Mw/*(b—d)2
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