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Quantum lattice motion and optical absorption in conjugated polymers: Adiabatic theory

Maxim V. Mostovoy* and Jasper Knoester
Institute for Theoretical Physics, Materials Science Center, University of Groningen, Nijenborgh 4,

9747 AG Groningen, The Netherlands
~Received 10 October 1995!

The quantum lattice motion of short conjugated polymer chains (N<70) described by the Su-Schrieffer-
Heeger~SSH! model is studied within the adiabatic approximation. We find that for these short chains only
three lattice degrees of freedom are strongly affected by low-energy electronic transitions. Moreover, we show
that forN<30 these three degrees of freedom are only weakly coupled to each other. This allows us to perform
a calculation of the optical-absorption spectrum of polymer chains in which the lattice is treated quantum
mechanically rather than~semi!classically. For the standard set of SSH parameters fortrans-polyacetylene, the
classical~rigid-band! absorption edge is smeared over an energy interval of 0.5 eV by the lattice quantum
fluctuations. The validity of the adiabatic approximation is investigated. Finally, we find a strong size depen-
dence of the onset of the optical-absorption spectrum.

I. INTRODUCTION

Over the past decades, considerable effort of physicists
and chemists has been devoted to understanding and opti-
mizing the properties of conjugated polymers.1 Much interest
in these materials was aroused by the observed drastic in-
crease of the conductivity upon doping.2 In addition, a large
number of studies have focused on the~nonlinear! optical
response of conjugated polymers. In particular the strong
scaling of their optical hyperpolarizabilities with the electron
conjugation length continues to attract much interest.3 Poly-
mer light emitting diodes~LED’s! are among the promising
applications, for which both optical and transport properties
are important.4

The electronic properties of conjugated polymers differ
considerably from those of conventional inorganic semicon-
ductors, mainly as a result of the specific effects arising from
the interaction of itinerant electrons with a quasi-one-
dimensional lattice. In 1979, Su, Schrieffer, and Heeger5,6

proposed a model~the SSH model! that explained the exist-
ence of spinless charge carriers in polyacetylene, as was sug-
gested by earlier experiments.7 In this model, the electron-
phonon interaction~i! relates the band gap in the undoped
polymer to the lattice dimerization,~ii ! leads to a strong
dressing of the electronic excitations~polarons!, and~iii ! re-
sults in the appearance of excitations of an entirely different
nature~solitons!. According to this picture, a change in the
occupation of the one-electron levels in a conjugated poly-
mer, induced by photon absorption or doping, is accompa-
nied by strong lattice deformations, that considerably change
the energies of the one-electron levels. Consequently, even if
direct electron-electron interactions are neglected, it is im-
possible to characterize the excited states of conjugated poly-
mers by the simple concepts of fixed one-electron bands and
band gaps.

In this paper, we will study the optical-absorption spec-
trum of conjugated polymers, accounting for the quantum
nature of the lattice. Within a classical treatment, the lattice
is initially fixed in the configuration that minimizes the total
ground-state energy. Moreover, a classical lattice cannot re-
adjust instantaneously to an electronic transition, so that the

band gap caused by the ground-state lattice dimerization de-
fines a sharp lower edge in the optical-absorption spectrum.
Experimentally, such a sharp edge is not observed. As was
pointed out by Sethna and Kivelson,8 however, absorption
can take place at photon frequencies well below this classical
edge ~‘‘subgap’’ absorption!, provided that the electronic
transition is accompanied by the creation of a soliton-
antisoliton pair in the lattice. This process is classically for-
bidden, but quantum fluctuations of the lattice make it pos-
sible. Like in molecular spectroscopy, the absorption
probability is determined by the overlap between the initial
and final lattice wave functions~the Franck-Condon factor!,
which results in a smearing of the absorption edge.

Lattice quantum fluctuations are important as a result of
the small value of the average dimerization: about 0.04 Å for
trans-polyacetylene. Quantum Monte Carlo simulations have
shown that the fluctuations of the dimerization are of the
same order.9,10Since within the SSH model the gap is related
to the dimerization, it is obvious that the quantum lattice
motion strongly affects the optical-absorption spectrum. Un-
fortunately, quantum Monte Carlo calculations cannot give
direct information about the excited states~or the dynamical
correlation functions! necessary to obtain the absorption
spectrum.

Clearly, owing to the large number of lattice degrees of
freedom for realistic size polymers, a full quantum descrip-
tion of the coupled lattice-electron dynamics is prohibitively
complicated, forcing one to apply approximations. Close to
the threshold for soliton-antisoliton pair creation, the final
wave function describing lattice fluctuations around the clas-
sical configuration with minimal energy~corresponding to an
infinitely separated soliton-antisoliton pair! only has very
small overlap with the initial wave function, describing zero-
point fluctuations around the perfectly dimerized lattice. This
suppresses the transition probability and enables one to cal-
culate the absorption close to the threshold
semiclassically.8,11,12 In this approach, the overlap integral
can be writtenC exp(2Si /\), whereSi is the action of the
classical motion in the imaginary time along the trajectory
connecting initial and final lattice configurations~the instan-
ton!. The preexponential factorC can be related to the sta-
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bility properties of this trajectory and accounts for the con-
tributions of the paths close to the classical one.

Using a path-integral approach, Kivelson and Auerbach13

developed a general formalism that allows for the semiclas-
sical calculation of the Franck-Condon factors between lat-
tice states in the electronic ground and excited states. When
applying this formalism to calculate the ‘‘subgap’’
absorption,11 however, these authors assumed for the~ana-
lytically unknown! instanton trajectory an approximation,
that simply interpolates between the perfectly dimerized con-
figuration and the soliton-antisoliton pair and has only one
degree of freedom: the soliton-antisoliton distance. This tra-
jectory does allow for analytical results, but it is not the real
solution of the classical equations of motion and, therefore,
makes a proper calculation of the preexponential factor im-
possible. The validity of this approach is limited to photon
energies lying in a small interval close to the soliton-
antisoliton pair threshold.

The subgap absorption has also been calculated within a
‘‘lattice relaxation’’ approach.14 In that work, the lattice dy-
namics was assumed to be linear and the phonon frequencies
were considered independent of the occupation of the single-
electron levels. More precisely, the only effect of electronic
excitations on the lattice was assumed to be a shift of the
minimum of its effective potential energy to a new configu-
ration. This shift results in a nonzero overlap of the initial
state with final states containing a number of phonon excita-
tions over the new vacuum~multiphonon emission!. Using
this concept, the absorption spectrum for the continuum ver-
sion of the SSH model was calculated. It should be noted,
however, that in the continuum limit the linear approxima-
tion for the lattice dynamics is not justified, as the optical
absorption involves large lattice fluctuations~such as soliton-
antisoliton pairs!, which cannot be described in terms of har-
monic oscillations.

From the above, it may be concluded that the role of
quantum lattice fluctuations on the optical absorption, al-
though understood qualitatively, has only partially been
solved quantitatively. This problem has recently gained fur-
ther interest, as it has been suggested by Heeger and co-
workers that quantum fluctuations are responsible for the
large third-order optical response in degenerate-ground-state
conjugated polymers.15–18Therefore, in this paper we recon-
sider the problem of the quantum description of the lattice
and its influence on the optical absorption. We focus on the
lattice dynamics accompanying the optical absorption in
relatively short polymer rings~several tens of monomers!
and show that it is quite different and much simpler than in
the case of infinite chains. This is a consequence of the fact
that only a few relevant lattice degrees of freedom, described
in terms of phonons with wave vectors close top, are
coupled strongly to the electron dynamics. The weak cou-
pling between the relevant degrees of freedom allows us to
perform the full quantum-mechanical calculation, similar to
Ref.14, retaining, however, the essential nonlinearity of the
lattice dynamics and its dependence on the occupation of the
single-electron levels. Apart from this quantum calculation,
we also analytically solve for the instanton path and show
that a proper calculation of the preexponential factor for a
small range of photon energies gives a reasonable descrip-

tion of the multiphonon emission accompanying the absorp-
tion.

Surprisingly, the chain lengths that can be considered in
this way are long enough to make our study relevant to ex-
perimental conditions, where the conjugation length is gen-
erally limited by defects and conformational disorder. The
transition from the simple lattice dynamics to the dynamics
of the continuum limit is smooth and in the case of poly-
acetylene occurs nearN570. Our results show strong size
dependence which is important for the interpretation of ex-
perimental data.

The organization of this paper is as follows. In Sec. II we
describe the model Hamiltonian and the adiabatic approxi-
mation. In Sec. III A, we present the results of a numerical
analysis of the effective potential energies for short chains,
while in Sec. III B we derive their key features analytically.
Section IV contains the details and the results of the
quantum-mechanical calculation of the optical-absorption
spectrum, while the semiclassical approximation is consid-
ered in Sec. V, postponing some details to the Appendix.
Finally, our results and conclusions are summarized in Sec.
VI.

II. SSH HAMILTONIAN AND ADIABATIC
APPROXIMATION

We will calculate the linear absorption spectrum for poly-
mer chains described by the SSH model,5,6 in which the
electron-lattice interaction is introduced through the depen-
dence of the electron hopping amplitude on the carbon-
carbon bond length and the Coulomb interaction between the
electrons is neglected. Although this model can be used to
describe various kinds of polymers, we will consider the ge-
neric example of trans-polyacetylene,~CH!N , and through-
out this paper use parameter values appropriate for this com-
pound. The Hamiltonian reads

HSSH52(
n,s

@ t01a~un2un11!#~cn11,s
† cn,s1cn,s

† cn11,s!

1(
n

S Pn
2

2M
1
K

2
~un112un!

2D , ~2.1!

where,cn,s
† andcn,s are the Fermi creation and annihilation

operators, respectively, for an electron with spin projection
s in thep orbital of thenth carbon atom (n51, . . . ,N) and
un is the displacement along the chain of thenth atom from
its position in the undimerized chain. Furthermore,Pn de-
note the momenta of the CH units,M is their mass, and the
standard polyacetylene parameters aret052.5 eV for the
hopping amplitude in the undimerized chain,a54.1 eV/Å
for the electron-phonon coupling, andK521 eV/Å2 for the
spring constant. The lattice dynamics of the SSH model dif-
fers fundamentally for chains with even and odd numbers of
molecules. In this paper, we will restrict ourselves to even
N, which is also the most likely case in realistic samples, for
reasons of chemical stability~avoidance of radicals! and syn-
thesis. Furthermore, we impose periodic boundary condi-
tions: un1N5un andcn1N5cn . This simplifies the calcula-
tion, but also leads to an artificial dependence on the
divisibility of N by 4, related to the fact that the degeneracy
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of the highest occupied single-electron level in the half-filled
chain depends~for a fixed lattice configuration! on whether
N54k orN54k12. Since we do not want to complicate the
paper by considering both cases in full detail, we will
throughout this paper assume thatN54k12 and only briefly
discuss the other case in Sec. VI. Finally, we will only con-
sider undoped, i.e., half-filled chains.

We now turn to the general expression for the linear ab-
sorption coefficient of an ensemble of randomly oriented
noninteracting chains. Assuming that initially each chain is
in the ground stateu i & ~zero temperature!, the absorption co-
efficient is given by

a~v!5
4p2v

3ch
nch(

f
u^ f ud̂u i &u2d~Ef2Ei2\v!, ~2.2!

where the sum over final statesf extends over all excited
states of the chain, andd̂ is the electron dipole operator.Ei
and Ef denote the energies of the initial and final states,
respectively,v is the photon frequency,nch is the density of
polymer chains, andh is the refractive index.

In order to evaluate Eq.~2.2!, we have to calculate the
eigenstatesC(n,u) for theNp electrons and theN carbon
atoms governed by the SSH Hamiltonian. Here,
n5(n1 ,n2 , . . . ,nN) is a vector containing the positions of
the electrons andu[(u1 ,u2 , . . . ,uN) is the vector of dis-
placements of the CH units. We will restrict ourselves to the
adiabatic approximation, the validity of which will be dis-
cussed in Sec. III B. Within this approximation, the total
wave function is factored as

C~n,u!5x~nuu!F~u!, ~2.3!

wherex(nuu) is a Slater determinant ofN single-electron
wave functions at a given lattice configurationu, andF(u)
is the lattice wave function. The 2N possible single-electron
wave functionsca(nuu) and their energies«a(u) are found
by diagonalizing the hopping term of the Hamiltonian at
fixed value ofu ~the labela also includes the spin projec-
tion!. This amounts to a simple numericalN3N matrix di-
agonalization. Of course, (2N!)/(N!) 2 different Slater deter-
minants can be made, differing in the occupation of the
single-electron levels. In order not to complicate the nota-
tion, however, we have not explicitly labeledx(nuu) by this
occupation.

The lattice wave functionF(u) satisfies the Schro¨dinger
equation

S 2
\2

2M(
n

]2

]un
2 1U~u! DF~u!5EF~u!, ~2.4!

where the effective potential energyU(u) is the sum of the
energies of the occupied electron levels and the harmonic
energy of the lattice

U~u!5 (
occa

«a~u!1
K

2(n ~un112un!
2. ~2.5!

We note that in a more rigorous treatment Eq.~2.4! should
be replaced by19,20

F 1

2M S \

i

]

]u
2A~u! D 21U~u!1f~u!GF~u!5EF~u!.

~2.6!

However, the effective vector potential A~u!
5 i\(nx

†(nuu)(]/]u)x(nuu) vanishes everywhere, because
all electron wave functions can be chosen real. The effective
scalar potentialf(u) is significant only in the regions of the
lattice configuration space where the single-electron levels
cross and the adiabatic approximation fails. As for low-
energy lattice excitations the wave function is small in these
regions, the scalar potential can be neglected.

Next, we consider the matrix elements of the electron
dipole operator,d̂5e(n,sxncn

†cn , wherexn is the position of
the nth carbon atom ande is the electron charge. Asd̂ is a
single-electron operator, it will, within the adiabatic approxi-
mation, only induce transitions between two Slater determi-
nants that differ by precisely one occupied single-electron
level. Explicitly, consider the transition in which an electron
is transferred from an initially occupied single-electron level
a to an unoccupied levelb, while the lattice makes a transi-
tion from stateA to stateB. The dipole matrix element for
this transition is easily found to be

^ f ud̂u i &5E dNuFB* ~u!Dba~u!FA~u!, ~2.7!

with

Dba~u!5e(
n

cb* ~nuu!xnca~nuu!. ~2.8!

Clearly, the electronic matrix elementDba(u) depends on the
shape of the chain, which we will assume to be circular with
radiusR5Na0 /2p, wherea051.22 Å is the distance be-
tween the carbon atoms in polyacetylene measured along the
chain. If we choose the coordinate system such that the ring
lies in thexy plane,Dba(u) only has two nonzero compo-
nents,

D1
ba~u!5e(

n51

N

cb* ~nuu!Rcos~un!ca~nuu!, ~2.9a!

and

D2
ba~u!5e(

n51

N

cb* ~nuu!Rsin~un!ca~nuu!, ~2.9b!

with

un5
na01un

R
52pS nN1

un
a0N

D , ~2.10!

the angle characterizing the position of thenth atom in the
ring. Deformation of the chain from a perfect circle does not
lead to qualitative changes in the absorption spectrum. For a
proper definition of the dipole operator, however, it is crucial
that the chosen geometry is consistent with the boundary
conditions imposed on the wave functions. For instance,
choosingxn5na0e, with e a fixed vector, is not consistent
with our periodic boundary conditions and gives an absorp-
tion spectrum that looks considerably different from that for
a linear chain with open boundary conditions.
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If the lattice is treated classically, being fixed in the con-
figuration that minimizes the adiabatic ground-state energy,
the absorption spectrum of along chain shows a sharp lower
edge corresponding to the gap between the conduction and
valence bands. Within the same approximation, the spectrum
of ashortchain consists of a number of well separated peaks.
In both cases the onset of the absorption corresponds to the
transition from the highest occupied single-electron state to
the lowest unoccupied one. In this paper, we are interested in
the spectral broadening of this lowest-energy transition peak
due to quantum lattice fluctuations. We will assume that ini-
tially the lattice is in its ground state~zero temperature!. In
the final state, however, we have to account for possible
excitations of the lattice accompanying the electronic transi-
tion. Unless stated otherwise, we will hereafter use the term
‘‘electronic ground state’’ for the electron configuration
where all single-electron levels below the Fermi level are
filled and all others are empty. By ‘‘electronic excited state,’’
we will mean the state generated from the ground state by
transferring one electron from the highest occupied to the
lowest unoccupied level.

III. ADIABATIC POTENTIALS FOR SHORT CHAINS

A. Numerical analysis

Whereas the calculation of the single-electron states is a
straightforward numerical problem, finding the lattice wave
functionsF(u) for a given electron occupation is immensely
complicated, as it involves solving the Schro¨dinger equation
in an N-dimensional configuration space. We shall show,
however, that for relatively short polymer chains (N,70)
the number of lattice degrees of freedom excited by low-
energy photons is small. This considerably simplifies the cal-
culation of the optical absorption. It should be stressed that
restricting ourselves to short chains does not necessarily
limit the relevance to practical circumstances. The reason is
that, although polymer chains can be made very long, the
free propagation of electrons along the chain is, due to vari-
ous defects~in particular conformational disorder!, limited to
relatively short chain intervals, with a typical length of sev-
eral tens of atoms.21 Therefore, the description of a polymer
sample as an ensemble of disconnected fully conjugated
short chains may be viewed as a rough way to account for
the effects of disorder. For many materials this picture seems
more adequate than the infinite chain description.

Most of the analytical studies of the quantum dynamics of
polymer chains have been performed in the continuum limit.
The continuum version of the SSH model22 gives a good
approximation to the discrete model if two conditions hold:
~i! the gap, 2D0 , is much smaller than thep-band width,
given by 4t0 , ~ii ! the typical distance between the neighbor-
ing single-electron levels near the Fermi energy is much
smaller than the gap. While the first condition is fulfilled for
trans-polyacetylene (2D0'1.4 eV and 4t0510 eV!, the sec-
ond one requires the chain sizeN to be rather large: The
relevant level distance for a half-filled undimerized poly-
acetylene chain equals 2pt0 /N, which, for a gap of 1.4 eV,
givesN@10 to fulfill the second condition. Thus, an interval
of chain sizes exists, which are of practical interest, but for
which the continuum model is not applicable, even though
N@1. We will call such chains short.

The lattice dynamics of short chains is quite different
from those in the continuum limit. In fact, it is much simpler,
because the number of the relevant lattice degrees of free-
dom is greatly reduced. To demonstrate this, we will com-
pare the lattice configurations that minimize the effective
potential energy of short and long electronically excited
chains. For this comparison, it is necessary to introduce the
phonon decomposition of the configuration,

un5
1

AN(
k
eiknqk , ~3.1!

where k52p12p/N,2p14p/N, . . . ,p. The phonon
amplitudesqk5qk81 iqk9 are complex, except fork50 or
k5p. Here we consider the amplitudes withk>0 as inde-
pendent variables and useq2k5qk* . Furthermore, we sepa-
rateun in slowly varying and staggering~dimerization! parts:

un5gn1~2 !ndn , ~3.2!

wheregn accounts for the acoustic phonons@Eq. ~3.1! with
k,p/2# and (2)ndn for the optical ones (k.p/2).

The numerically obtained lattice configurations that mini-
mize the effective potential energy of electronically excited
chains withN5122 andN562 are shown in Fig. 1, by plot-
ting gn anddn . Clearly, both variables vary smoothly over
the chains, indicating that the phonon spectrum consists of
two well-separated peaks, one at smallk and one atk close
to p. The effective energy related togn ~resulting from in-
teractions with acoustic phonons! is small, making it irrel-
evant for our consideration. The important part of the lattice
configuration is the dimerizationdn . From Fig. 1, it is evi-
dent that for short chains the effective potential energy has a
much simpler form than for long chains: ForN5122, the
dimerizationdn reveals a soliton-antisoliton pair, for which
the phonon decomposition contains many harmonics. By
contrast, the staggering part of the corresponding configura-

FIG. 1. Lattice configurations minimizing the effective potential
energy of the lowest electronically excited state forN5122~a!, and
N562 ~b!. Plotted are the acoustic (gn , dashed line! and optical
(dn , solid line! parts of the configuration, as defined in the text.
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tion for N562, basically, contains only one phonon mode
with wave vectork5p(122/N). This configuration may be
interpreted as a dimerization wave with a period equal to the
chain length. When increasing the chain length, the dimer-
ization wave smoothly changes into a soliton-antisoliton pair
at N'70–80~for our choice of model parameters!.

Because of the charge conjugation symmetry23 of the SSH
Hamiltonian the configuration that minimizes the lowest
electronically excited state of the half-filled chain also mini-
mizes the energy of the ground state when two electrons are
added or removed, in which case the dimerization wave is
called a charge-density wave~CDW!. Therefore, the above
change of the soliton-antisoliton pair into a dimerization
wave is related to the earlier found transition from a soliton
lattice to a CDW when increasing the doping.24

Additional evidence for the reduction of the number of
relevant lattice degrees of freedom is found by considering
the renormalization~due to the electron-phonon interaction!
of the frequencies of small amplitude oscillations around the
minimum of the potential energy. In Fig. 2 we plot

~\vk!
25

\2

M

]2U

]qk
2 U

q50
~3.3!

as a function ofk for both the electronic ground and excited
state and compare to the normal-mode dispersion in the ab-
sence of the electron-phonon interaction. Clearly, the acous-
tic phonons are only weakly affected by this interaction. By
contrast, the frequencies of the optical phonons are reduced,
but the crucial point is that most of them are nearly the same
in the electronic ground and excited state. Therefore, these
degrees of freedom remain practically unexcited upon elec-
tronic transitions. We have checked that the dependence of
the effective potential energy on those~irrelevant! lattice co-
ordinates is to a good approximation harmonic,

U irrel~q!5 (
irrel k

Mvk
2

2
~qk8

21qk9
2!, ~3.4!

where the frequenciesvk only weakly depend on the elec-
tronic state.

A similar harmonic approximation fails for the phonon
modes with wave vectorsk5p and k5p(122/N). In the
former case,vp

2,0 in the electronic ground state, related to
the familiar double-well potential which arises from the
electron-phonon interaction. Fork5p(122/N), the poten-
tial energy in the electronic excited state has a cusp at
qk50. In the remainder of this section, we will discuss the
numerically obtained dependence of the effective potential
energy on the three coordinates describing these relevant
phonon modes. It is useful to introduce a special notation for
these coordinates:

z5qp ,

~3.5!

x1 iy5reiw5A2qp~122/N! .

In addition, we define the rescaled amplitudesz̃5z/AN, and
analogous forx, y, andr. The lattice configuration described
by the vectorr5(x,y,z) then reads

dn5 z̃1A2r̃ cosS 2pn

N
2w D . ~3.6!

Thus, z̃ is the average dimerization of the chain,A2r̃ is the
amplitude of the dimerization wave with period equal to the
chain length@cf. Fig. 1~b!#, and the anglew describes the
shift of this wave along the chain. In the limitN→` the
effective potential energy isw independent. In the case of a
finite chain, it is invariant only under the finite rotation
w→w12p/N ~accompanied byz→2z), which corresponds
to a shift of the dimerization wave by one lattice unit. Nev-
ertheless, for all practical purposes, the effective potential
energy for a chain of several tens of units can be taken in-
dependent ofw.

From the above, we conclude that for short chains the
dynamics of only two lattice degrees of freedom (z andr) is
nontrivial. Due to the interaction with the electrons, these
two phonon amplitudes will generally be coupled, which is
indeed seen from the form of the effective potential energy
for the electronically excited chain of 70 units, given in Fig.
3~a!. In order to evaluate the optical absorption one has to
calculate the wave functions of many excited lattice states in
this potential, which is complicated by the coupling between
the two degrees of freedom~though, of course, this problem
is already much easier than solving the quantum motion in
the full N-dimensional lattice configuration space!.

However, it turns out that the coupling diminishes for
shorter chains. This can be seen from Fig. 3~b!, which dis-
plays the same potential energy forN530. To a good ap-
proximation, the variablesz andr are decoupled in the elec-
tronic excited state for this chain length. The same holds for
the electronic ground state. We will make these statements
more explicit by showing how along various cuts in thexz
plane the numerically obtained effective potentials~for
N530) can be fitted by simple decoupled expressions.

FIG. 2. Numerically obtained phonon dispersion for polyacety-
lene chains of 50 units in the electronic ground state~crosses!,
excited state~circles!, and for the harmonic chain in the absence of
electron-phonon interaction~asterisks!. The frequency for
k5p(122/N) in the excited state is not defined, because the effec-
tive potential has a cusp atqp(122/N)50.
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First, we consider the electronic ground state and fit its
effective lattice potential by the decoupled function

Uvac~r,z!5
Mv'

2r2

2
1Vvac~z!, ~3.7!

whereVvac(z) is a double well with minima at6a, with a
related to the classical value of the dimerizationu0 through
a5ANu0 . Figure 4 shows the numerically obtained poten-
tial, as well as the fit along three cuts in thexz plane. We
determinedVvac(z) by fitting Uvac(0,z) by an eighth-order
polynomial @Fig. 4~a!#. Likewise, the frequencyv' was
found from a quadratic fit ofUeff(r,0) @Fig. 4~b!#. Finally, in
Fig. 4~c!, the thus obtained form Eq.~3.7! is compared to the
exact effective potential along the cutz1r5a. Clearly, the
fit is satisfactory in the region where the ground-state lattice
wave function~also indicated in the figure! is appreciable.

Similarly we fitted the effective potential energy for the
electronic excited state@cf. Fig. 3~b!# by the expression

Uex~r,z!5DU1Vex~r!1
Mv i8

2z2

2
, ~3.8!

with

Vex~r!5
Mv'8

2

2
~r2b!2, r>0. ~3.9!

The fit is compared to the exact numerical result in Fig. 5
and again demonstrates the effective decoupling of the pho-
non degrees of freedom.

The minimum of the effective potential for the electroni-
cally excited state is reached atz50 ~zero average dimeriza-
tion! on a circle

r25x21y25b2. ~3.10!

The degeneracy of this minimum corresponds to the possi-
bility of shifting the dimerization wave along the polymer.
The cusp atr50 is an artifact of the periodic boundary
conditions. Although the actualz dependence ofUex is
slightly anharmonic, we prefer to use a quadratic fit to sim-

FIG. 3. Effective potential energy in the electronically excited
state as a function of the two relevant phonon coordinatesz̃ and x̃
for N570 ~a! andN530 ~b!.

FIG. 4. Effective potential energyUvac of the electronic ground
state forN530 according to exact numerical calculation~thin solid
line! and the fit Eq.~3.7! ~dots! along three cuts in thexz plane. The
cut directions are indicated in panel~d! and are given byx̃50 ~a!,
z̃5a/AN ~b!, andx̃1 z̃5a/AN ~c!, wherea/AN is the ground-state
dimerization. The thick solid lines give~in arbitrary units! the
ground-state wave function of the lattice in the potentialUvac along
the same cuts.

FIG. 5. Effective potential energyUex of the electronic excited
state forN530 according to exact numerical calculation~thin solid
line! and the fit Eq.~3.8! ~dots! along three cuts in thexz plane. The
cut directions are indicated in panel~d! and are given by
x̃5b/AN ~a!, z̃50 ~b!, and x̃1 z̃5b/AN ~c!, whereb is the posi-
tion of the minimum of the potential in the transverse (x̃) direction.
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plify the calculation of the wave functions@see Eq.~3.16! for
a more accurate expression#. The differenceDU between the
minima of the effective potential energies for the electronic
excited and ground states is the threshold for optical absorp-
tion ~if we discard corrections due to the small changes in the
zero point phonon energies!, which for the infinite chain is
equal to twice the soliton mass.

B. Analytical discussion

In this section, we will present analytical arguments that
explain the origin of and put a firmer basis under the simple
behavior of the effective potential energies for short polymer
chains found in Sec. III A. In the adiabatic approximation the
coupling between the electron and phonon degrees of free-
dom is caused by the dependence of the adiabatic potential
on the sum of the energies of the occupied single-electron
levels @Eq. ~2.5!#. For short chains, the separation between
the single-electron levels is large and we may use perturba-
tive arguments to build intuition about the effects of lattice
distortions. Then, the largest shifts in the electron levels arise
from the mixing of adjacent levels by the electron-phonon
interaction. If both neighboring levels are filled, however,
this will not change the effective potential. Thus, the effec-
tive potential is most sensitive to lattice distortions that
couple the occupied and unoccupied single-electron levels
that are close to the Fermi energy~0 for half-filling!. In the
undimerized chain these are the electron states with wave
vectors close to6p/2.

From these arguments and the form of the electron-
phonon interaction

He-ph5
2ia

AN (
k,k8,s

~sink82sink!ck8,s
† ck,sqk82k , ~3.11!

it follows that the lattice degrees of freedom most strongly
coupled to the electron dynamics are phonons with wave
vectors close top. This also holds in the continuum limit,
but for a short chain the number of single-electron levels that
lie in an energy interval of the orderD0 near the Fermi
energy is very small, and so is the number of relevant pho-
non degrees of freedom.

We can even obtain analytical expressions which give a
good semiquantitative description of the effective potential
energies, by assuming that the nonlinearity of the potentials
is solely related to the energies of the four~without account-
ing for spin degeneracy! single-electron levels closest to the
Fermi energy, which we denote by 2,̄ 1̄, 1, and 2. The levels
1 and 2 have positive energy and are empty in the electronic
ground state, while the negative energy levels 1¯and 2̄are
doubly occupied. Due to charge conjugation symmetry of the
SSH Hamiltonian« 1̄52«1 and« 2̄52«2.

For an undimerized chain withN indivisible by 4, the
states 1 and 2 are plane waves with wave vectors
6p(1/211/N) and equal energies«1,252t0sin(p/N), and
the degenerate states 1¯and 2̄ are plane waves with wave
vectors6p(1/221/N). If we leave all other electron levels
out of consideration, the energies of the four levels in an
arbitrarily distorted chain only depend on the amplitudes of
the phonons with wave vectorsp,p(122/N), and 2p/N.
The coupling to the acoustic phonon with wave vector

2p/N is small @cf. Eq. ~3.11!# and can be neglected, while
the remaining phonon degrees of freedom are ourx, y, and
z coordinates. Diagonalizing the Hamiltonian within the sub-
space of the four electron states, we obtain the energies of
the single-electron levels in the presence of the lattice defor-
mation:

«1~r,z!52« 1̄~r,z!5AA212~Bz!22Br,
~3.12!

«2~r,z!52« 2̄~r,z!5AA212~Bz!21Br,

with

A52t0sin
p

N
, B52A2

N
a cos

p

N
. ~3.13!

As we see, the energy of each of the four single-electron
levels is the sum of two terms, one of which depends only on
z and the other only onr. Thus, any coupling between these
two phonon degrees of freedom is completely due to thez
andr dependence of the energies of other, deep lying, elec-
tron levels and therefore has to be small. This is the under-
lying reason for the decoupling of the relevant degrees of
freedom found in Sec. III A.

Since we have assumed that the contribution of all the
other electron levels together with the harmonic energy of
the lattice can be approximated by

U rest~r,z!5U01
br2

2
1

gz2

2
~3.14!

~with U0 , b, andg constants!, the effective potential energy
of the electronic ground state reads

Uvac5U rest12~« 1̄1« 2̄!

5U01
br2

2
1

gz2

2
24AA212~Bz!2, ~3.15!

and the energy of the state with one electron in level 1 and
one hole in level 1̄is,

Uex5Uvac12«1

5U01
br2

2
22Br1

gz2

2
22AA212~Bz!2. ~3.16!

Note that the coefficient in front of2AA212(Bz)2 is
smaller by a factor of two inUex compared toUvac, which
results in the disappearance of the nontrivial minimum atz
Þ0 in the excited state@cf. Figs. 4~a! and 5~a!#. On the other
hand, due to the linear term22Br, Uex obtains a nontrivial
minimum atrÞ0 @cf. Fig. 5~b!#.

The term22Br also leads to nonanalytic behavior of
Uex: in the x-y plane it has a cusp atx5y50. This singu-
larity is due to the degeneracy of the single-electron states 1
and 2 atr50, which means that the energies of the four
~without accounting for spin! low-lying electron excitations
with one electron in either the state 1 or 2 and one hole in
either the state 1̄or 2̄ cross atr50. Three such excitations
are dipole allowed, which means that they have spin 0 and
negative charge conjugation parity. The numerically ob-
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tained exactr dependence of the effective potential energies
of these three excitations is shown in Fig. 6~curvesb, c, and
d). According to our analytical approximation, thisr depen-
dence is given by

DU1
br2

2
12mBr, m521,0,1. ~3.17!

In the rigid-band calculation (z5a,r50, fixed!, these three
dipole transitions all would have the same energyDU. In the
quantum calculation, the splitting of the terms atrÞ0 con-
tributes to the broadening of the absorption spectrum. This
broadening exists in addition to the smearing of the lowest-
energy electron excitation due to the possibility to also excite
the lattice, which is our main focus in this paper.

At this point, we would like to discuss the validity of the
adiabatic approximation for short chains. Generally, this is a
good approximation if the energy of the lattice motion is
small compared to the energy separation between different
electron terms, so that the slow lattice motion cannot induce
transitions between different electron configurations. Let us
first consider the ground state of the chain~curvea in Fig.
6!. The electron terms which can be nonadiabatically mixed
with the ground-state electron configuration should have spin
0 and the same~positive! charge conjugation parity. The
nearest two possibilities are~i! a combination of an electron
in state 1 and a hole in state 2w̄ith an electron in state 2 and
a hole in state 1̄~curve c8 in Fig. 6, which coincides with
curvec) and~ii ! two electrons with opposite spin in state 1,
two holes in state 1̄~curve e). In the region where the
ground-state lattice wave function is significant@cf. Fig.
4~b!#, both of these configurations are separated from the
ground state by an amount of energy considerably larger than
the typical optical-phonon frequency~about 0.1 eV!, which
means that for the ground state the adiabatic approximation
is valid. Of course, Fig. 6 only shows ther dependence,

which is most threatening for the adiabaticity, as a result of
the splitting atr50. Inspection learns that thez dependence
does not endanger the adiabatic approximation.

For the excited electron states, the situation is more prob-
lematic, however. The crossing atr50 of the three lowest-
energy excited electron terms with negative charge conjuga-
tion symmetry~curvesb, c, andd in Fig. 6! gives rise to
nonadiabatic transitions between them~we also note that the
effective scalar potential in Eq.~2.6!, which we neglected,
diverges as 1/r at the terms-crossing point!. Thus, only a few
excited lattice states on top of the lowest-energy term~curve
b) whose wave functions are localized near the minimum of
the effective energy~far from r50) can be treated adiabati-
cally. This imposes an upper limit on the photon energy for
which our results given in Sec. IV are valid, which we esti-
mate to be 0.5 eV above the absorption threshold. The results
of a full nonadiabatic treatment will be published in a forth-
coming paper.

IV. QUANTUM CALCULATION OF THE OPTICAL
ABSORPTION

In this section, we will apply the knowledge obtained
about the adiabatic potentials and perform a full quantum
calculation of the optical-absorption spectrum caused by the
lowest-energy excited electron configuration. We will con-
sider a chain ofN530 units, for which we have learned
above that the phonons with different wave vectors are de-
coupled. Thus, the lattice wave function factorizes into a
product of the wave functions for the separate wave vectors,

F~q!5f i~z!f'~r,w! )
irrel k

fk~qk8 ,qk9!. ~4.1!

If we now neglect the weak dependence of the electron di-
pole matrix element on the irrelevant phonon degrees of free-
dom,

Da~q!'Da~r !, ~4.2!

the integration over these lattice variables in Eq.~2.7! re-
duces to the product of the overlap integrals of the initial
(fk) and final (fk8) lattice wave functions for each mode:

)
irrel k

E
k
dqk8dqk9fk8* ~qk8 ,qk9!fk~qk8 ,qk9!. ~4.3!

These integrals are easily calculated, as the irrelevant de-
grees of freedom are harmonic. We are interested in the op-
tical absorption at zero temperature, so that no phonon exci-
tations exist in the initial state. Although the phonon
frequenciesvk andvk8 before and after the electronic transi-
tion are slightly different~see Fig. 2!, it turns out that for
N530 the initial lattice ground state has a negligible overlap
with excited final lattice states. Therefore, only transitions in
which the irrelevant degrees of freedom remain unexcited are
important and for these transitions the factor~4.3! equals
unity.

More precisely, the phonons with small wave vectors
~acoustic phonons! are weakly coupled to the electron dy-
namics, and the lattice configuration minimizing the energy
of the polymer ring in the excited electron state has a small
low-frequency component~see Fig. 1!. This leads to a non-
zero overlap with states in which acoustic phonons are ex-

FIG. 6. The energy of the lowest electron configurations for
chains ofN530 units as a function ofr̃ ~for z5a). The solid line
indicates the electron ground state, the dashed lines denote the one-
particle–one-hole states, and the dotted lines are the two-particle–
two-hole states.
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cited. Since, however, such excitations do not cost much
energy, they only result in a small broadening of the absorp-
tion peaks associated with the optical-phonon excitations. At
room temperature a small additional broadening occurs due
to thermal excitation of low-energy acoustic phonons in the
initial state. We will not take these effects into account,
since, anyway, a consistent treatment of acoustic phonons
should necessarily be three dimensional.

Thus, the only nontrivial integrations in the matrix ele-
ment Eq. ~2.7! are the ones over the relevant degrees of
freedom,

E
2`

`

dzf i8* ~z!f i~z!E
0

`

drr

3E
0

2p

dwf'8* ~r,w!f'~r,w!Da~r !. ~4.4!

We first focus on thez mode ~the p phonon!. The initial
wave functionf i(z) is the symmetric ground-state wave
function in the double-well potentialVvac(z) of Eq. ~3.7!.
However, if the temperature exceeds the energy splitting due
to tunneling between the degenerate minima of the potential
~about 0.2 K forN530), the states described by symmetric
and antisymmetric lattice wave functions are populated with
equal probability. For the chain sizes considered here, we
may neglect the tunneling and assume that the discrete sym-
metry z→2z is spontaneously broken. Therefore, we have
restricted ourselves to numerically calculating the lattice
wave functionf i(z) for z.0. The overlap integrals with
f i8(z) turn out not to be sensitive to the choice of the bound-
ary condition atz50 (f i50 or df i /dz50), since, in any
case, the wave function is very small in the vicinity of
z50. Finally, according to Eq.~3.8!, the wave functions
f i8(z) are the eigenfunctions of the harmonic oscillator with
frequencyv i8 .

For the two ‘‘perpendicular’’ coordinatesx and y, the
situation is in a sense reversed to the above. Now, the motion
is harmonic in the initial state@Eq. ~3.7!# and the correspond-
ing lattice wave function is a product of the ground-state
functions for each of the two coordinates,

f'~r,w!5F2Mv'

\ G ~1/2!

e2Mv'r2/2\
1

A2p
. ~4.5!

The z component of the angular momentum of this state
vanishes. Furthermore, becauseVex(r) does not depend on
w, the final state wave function has the form,

f'8 ~r,w!5Rl umu~r!
eimw

A2p
. ~4.6!

Now note that for a circular polymer ring the matrix element
of the dipole between the electron wave functions of the
highest occupied and the lowest unoccupied levels trans-
forms as a vector under rotation around thez axis,

D1~z,r,w!5D1~z,r,0!cos~w!2D2~z,r,0!sin~w!.

~4.7!

D2~z,r,w!5D1~z,r,0!sin~w!1D2~z,r,0!cos~w!,

because rotation over an angle 4p/N corresponds to a shift
of the lattice configuration by two lattice unitsun→un12 .

Hence, the projection of the angular momentum in the final
state is given bym561. The wave functionsRl1~r!
~l50,1, . . .! of the radial excitations were found numeri-
cally.

Using the thus obtained wave functions to evaluate the
matrix elements Eq.~4.4! for various phonon excitations in
the excited state, we obtain as the final result of our full
quantum calculation the stick spectrum Fig. 7~a!. It is ob-
served that the lowest-energy peak of the rigid-band absorp-
tion spectrum is replaced by a sequence of many peaks cor-
responding to different excitations of phonons with wave
vectorsp andp(122/N). A more coarse-grained picture of
the spectrum is useful for comparison with experiments and
with the semiclassical approximation~Sec. V! and is ob-
tained by making a histogram, in which the contributions
from different phonon excitations inside each energy bin are

FIG. 7. ~a! Stick absorption spectrum for the transition from the
highest occupied to the lowest unoccupied single-electron level ac-
companied by various lattice excitations for a chain ofN530 units.
Each peak derives from a particular phonon excitation and the peak
height gives the relative probability for this excitation. If the lattice
would be fixed in the ground-state dimerization, the spectrum
would be a singled peak at about 1.6 eV.~b! Histogram for the
absorption spectrum obtained from~a! as described in the text. The
solid line gives the semiclassical absorption spectrum derived in
Sec. V.
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summed @Fig. 7~b!#. In this representation, the lowest
(d-shaped! rigid-band absorption peak at 1.6 eV is replaced
by a broad feature due to the lattice quantum fluctuations.
The onset of the absorption lies 0.7 eV below the first rigid-
band transition.

V. SEMICLASSICAL CALCULATION
OF THE OPTICAL ABSORPTION

In the previous section we obtained the absorption spec-
trum of a short polymer ring, treating the lattice quantum
mechanically. For long chains, however, the number of rel-
evant lattice degrees of freedom is large and the semiclassi-
cal ~or instanton! calculation seems the best one can do.
Therefore, it is instructive to compare our quantum result
with the semiclassical approximation and discuss the region
of validity of the latter. Although the general formulas for
the absorption coefficient in the semiclassical approximation
were derived in Ref. 13, we will use an equivalent but sim-
pler approach, which exploits the fact that many phonon de-
grees of freedom for a short chain are decoupled and allows
us to use simple WKB expressions for the wave functions
rather than the path-integral approach. As in the quantum
calculation, we consider only the three lattice degrees of
freedomx, y, andz.

For photon energies close to the absorption threshold, the
overlap between the initial and final lattice wave functions is
small, because the minima of the adiabatic potentials before
and after the electronic transition are located at different val-
ues of the lattice coordinates (z5a, r50 for Uvac and
z50, r5b for Uex). Thus, the overlap integral comes from a
region where both initial and final lattice wave functions are
suppressed. This means that the lattice motion is classically
forbidden there and the wave functions have a WKB form

f5Aw exp~2S/\!, ~5.1!

whereS is the action of the motion in the imaginary time in
a corresponding potential from the classical turning point.
The product of the wave functionsf i8* (z)f i(z)
}exp$2@Si8(z)1Si(z)#/\% has its maximum atz5z0 for
which the sum of the actions is minimal:

d

dz
@Si~z!1Si8~z!#uz5z0

50, ~5.2!

which means that at this point the classical momenta
pi5dSi /dz and2pi852dSi8/dzmatch. Similarly, the prod-
uct of the wave functions describing the motion in the trans-
verse directionf'8* (r)f'(r)}exp$2@S'8 (r)1S'(r)#/\%
has its maximum atr0 defined by

p'~r0!5
dS'

dr
~r0!52

dS'8

dr
~r0!52p'8 ~r0!.

In the semiclassical regime the classical actions are large,
so that the products of the wave functions are sharply
peaked. Therefore, we can calculate the matrix element Eq.
~4.4! performing the integrations overz and r nearz0 and
r0 in the saddle-point approximation. Thew integral can be
evaluated exactly and corresponds to the integration over the
zero mode~the overall shift of the saddle-point configuration

along the chain! in the continuum limit.11 Then, the transi-
tion amplitudes into states withm561 are given by

^ f ud̂u i &52pr0ku~D16 iD 2!uf i8~z0!f i~z0!f'8 ~r0!f'~r0!,
~5.3!

with

k52p\F ddz~pi81pi!U
z5z0

d

dr
~p'8 1p'!U

r5r0
G2~1/2!

.

~5.4!

The strongest dependence of the product of wave func-
tions in Eq.~5.3! on the ‘‘parallel’’ and ‘‘transverse’’ excita-
tion energies « i8 and «'8 comes from the factor
exp@2(Si1Si81S'1S'8 )/\#. Here, it should be noted that
the sum of four actions is not yet the action along some
classical path in the two-dimensional space of lattice coordi-
nates, since the~imaginary! times of motion in the ‘‘paral-
lel’’ and ‘‘transverse’’ directions,

t i5
d~Si1Si8!

d« i8
,

~5.5!

t'5
d~S'1S'8 !

d«'8
,

are, in general, different. This will be solved automatically
when performing the sum over all final states. If the spec-
trum of final states is dense enough, the summation can be
replaced by an integration:

(
f

d~Ef2Ei2\v!u^ f ud̂u i &u2

'2E d« i8

\v i8

d«'8

\v'8 ~«'8 !

3d~DU1« i81«'8 2\v2« i2«'!u^ f ud̂u i &u2, ~5.6!

where the factor of 2 is due to the electron spin,v i8 is defined
as in Eq.~3.8!, andv'8 («'8 )[2p/t'(«'8 ), the energy sepa-
ration between the states of the ‘‘transverse’’ motion of the
lattice in the electronically excited state. Only the integration
over the difference« i82«'8 is nontrivial, for which we again
use the saddle-point approximation. Using Eq.~5.5!,
it is clear that for « i81«'8 5 const, the factor
exp@22(Si1Si81S'1S'8 )/\# has its maximum at«̄ i8 ,«̄'8
such that

t5t i~ «̄ i8!5t'~ «̄ ē'8 !, ~5.7!

which is precisely the condition for the equality of times of
motion in the ‘‘parallel’’ and the ‘‘transverse’’ directions.
Then,Si[2(Si1Si81S'1S'8 ) becomes the instanton action
and the absorption coefficient can be written as

a~v!5C exp~2Si /\!. ~5.8!

The calculation of the classical actionsSi , Si8 , S' , andS'8
is discussed in the Appendix. The preexponential factorC
has a rather lengthy expression, which agrees with the result
of the path-integral method.13
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In the above derivation, we neglected the coupling be-
tween the ‘‘parallel’’ and the ‘‘transverse’’ degrees of free-
dom. To demonstrate once more that for short chains this is
a good approximation, we compared forN530 the proper-
ties of our analytical instanton with those of the instanton
obtained by numerically solving the classical equations of
motion. In the latter calculation, we even accounted for two
additional lattice degrees of freedom, the real and imaginary
parts ofqp(124/N) , the amplitudes of which turned out to be
relatively small. The effective lattice potentialsU vac and
Uex as functions of the five lattice variables were obtained by
numerically diagonalizing the single-electron Hamiltonian.
Figure 8 shows the instanton action as a function ofVt,
where V5A4K/M is a typical optical-phonon frequency
andt is the time of motion in the adiabatic potential of the
electronically excited state given by Eq.~5.7!. Clearly, a
good agreement exists between the analytical and the nu-
merically obtained instanton.

The final result for the semiclassical absorption spectrum
is shown in Fig. 7~b!, where it is compared to the histogram
of the quantum calculation. Unfortunately, just above the
absorption threshold, where the suppression by the Frank-
Condon factor is strong and the semiclassical approximation
is supposed to be very precise, the number of available lat-
tice excitations in a short chain is relatively small@see Fig.
7~a!#, and the comparison of a smooth curve with a histo-
gram is, strictly speaking, impossible. Still one can say that
for photon energies just above the threshold, the instanton
approach reasonably describes the diffusion of the onset of
the absorption due to multiphonon emission accompanying
the electronic transition.

At higher photon energies the instanton ideology breaks
down, because the lattice fluctuations in the excited states
become large and the final lattice wave function is no longer
small for configurations close to the perfectly dimerized lat-
tice. This manifests itself in a shrinking of the instanton path

for increasing photon energy. The saddle-point configuration
described by the coordinates (r0 ,z0), at which according to
the semiclassical scenario the electron transition occurs, for
growing photon energy tends to the perfectly dimerized con-
figuration (r0→0 and z0→a), until, finally, the instanton
disappears. When this happens the saddle-point value of the
transverse coordinater0 becomes zero and the semiclassical
expression for the Franck-Condon factor vanishes@cf. Eq.
~5.3!#. The quantum absorption tail, however, even with only
one electronic transition taken into account, stretches to con-
siderably higher energies.

VI. SUMMARY AND DISCUSSION

In this paper, we have studied the quantum lattice motion
of short polyacetylene chains, described by the SSH model,
in the ground and lowest excited electron states within the
adiabatic approximation. Using both numerical calculations
and analytical arguments, we have found that the number of
lattice degrees of freedom whose dynamics is strongly modi-
fied by the interaction with electrons is small. In this respect
the lattice dynamics of short chains is fundamentally differ-
ent from that in the continuum limit. Moreover, we found
that below a certain chain size~30 units for the standard
polyacetylene parameters! the lattice dynamics is even fur-
ther simplified, because the remaining relevant~nontrivial!
lattice degrees of freedom become practically decoupled, al-
though the dynamics of each of them is nonlinear. This has
allowed us to perform a full quantum-mechanical calculation
of the optical-absorption spectrum for photon energies for
which only the lowest electronic transition is important. In
particular, we have been able to study in detail the ‘‘subgap’’
smearing of the lowest rigid-band absorption peak as a result
of the electron-phonon interaction~the ‘‘subgap’’ absorption
spectrum!.

This smearing may be defined as the energy difference
between the peak position and the onset of absorption. Our
calculations show a smearing of 0.5 eV, whereas the experi-
ment shows 0.7 eV.25 For a realistic comparison to the ex-
periment, however, other important effects should be taken
into account. First, the existence of higher excited electron
configurations will further broaden the absorption spectrum.
A proper inclusion of higher states, however, cannot be done
within the adiabatic approximation and will be the subject of
a forthcoming paper. Second, in reality, part of the smearing
comes from higher dimensional effects, caused by interchain
hopping. Most importantly, however, in practice appreciable
additional broadening will arise from disorder in the electron
conjugation length caused by conformational defects.26 Re-
cent studies21 suggest that the distribution of conjugation
lengths in polyacetylene is broad and has two peaks, one at
N'40 and one atN'80. Within our modeling, such a dis-
tribution will lead to an important broadening, because a
strong size dependence of the predicted absorption spectrum
is observed. In particular, we have found that the absorption
thresholdDU varies by about 1.5 eV whenN changes from
10 to 60~see Fig. 9!. Therefore, it seems that the combined
effect of all broadening factors will, for the standard SSH
parameters, lead to a predicted smearing of the absorption
peak that is larger than the experimental value.

A solution to this problem may be the effect of the Cou-

FIG. 8. Instanton action as a function of~imaginary! time of
motion in the electronic excited-state potentialUex. The solid line
gives the result of the numerical calculation and the dashed line was
obtained analytically, using the decoupling of the phonon degrees
of freedom.
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lomb interaction between the electrons. If we account for this
coupling, the role of the electron-lattice interaction in the
formation of the gap will diminish. In other words, the value
of the electron-phonon coupling constanta necessary to fit
the observed gap and lattice dimerization will be smaller
when the Coulomb interaction is turned on. Accordingly, the
effect of the quantum lattice fluctuations on the absorption
spectrum and its size dependence will decrease.

In this paper, we have only considered polymer rings with
N54k12 units (k integer! in detail. The caseN54k, which
will naturally also occur in practice, differs from this mainly
because no degeneracy occurs for the highest single-electron
level in the chain with constant dimerization. Therefore, the
effective potentials are somewhat different. In particular, the
potential for the electronic ground state now has a cusp,
while the potential for the electronic excited state has a non-
trivial minimum only forN>36. Nevertheless, the dynamics
of the lattice degrees of freedom has similar simplicity as we
found for N54k12, and the optical-absorption spectrum
arising from it can be found in close analogy. As explained
in Sec. II, we did not consider odd-N chains. Those have a
solitonlike deformation with a midgap single-electron level
in their ground state,27 and their lattice dynamics accompa-
nying optical absorption has to be studied separately.

As this is, to our knowledge, the first calculation of the
quantum lattice dynamics and the optical absorption for short
polymer chains, it is difficult to compare our results to pre-
vious theories dealing with subgap absorption. Earlier results
were obtained in the continuum limit and, as discussed in the
Introduction, are to a large extent approximate. Instead, we
have made a comparison with a semiclassical calculation
performed along the lines of Ref. 13, but adopted to the short
chain case. This comparison clearly shows the limitations of
the semiclassical approach@Fig. 7~b!#.

In future work, we hope to include moderate electron-
electron interactions and to apply our approach to the non-
linear optical response of conjugated polymers. The latter is

of much interest, as the third-harmonic generation of
degenerate-ground-state conjugated polymers has been
claimed to be greatly enhanced by soliton-antisoliton pair
production.15–18
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APPENDIX: SEMICLASSICAL WAVE FUNCTIONS

In this appendix, we derive the semiclassical expressions
for the wave functions describing large classically forbidden
lattice fluctuations. This derivation is possible because of the
~approximate! decoupling of the lattice degrees of freedom
and is easier than the semiclassical calculation of the Green
functions using the path-integral method.13

In the classically forbidden region of a one-dimensional
potentialU(q), the wave function can be written

f~q!5Aw~q!expS 2
S~q!

\ D , ~A1!

where, by means of the standard WKB procedure, one iden-
tifies S(q) with the Euclidean action,

S~q!5U E
q0

q

pdqU, ~A2!

with p(q)5A2M (U(q)2E) and q0 the nearest turning
point. To leading order in powers of\, the preexponential
factor is given byw(q)5A(E)M /p(q), where the coeffi-
cient A(E) is found by matching the semiclassical expres-
sion with the wave function in the classically accessible re-
gion. If the latter can also be described semiclassically, as is
the case for the excited lattice states, then28

A~E!5
1

T~E!
, ~A3!

whereT(E) is the period of motion with energyE in the
classically accessible region.

To find A(E) for the lattice ground state, we match the
semiclassical solution with the Gaussian function that de-
scribes the zero-point fluctuations near the minimum of
Uvac. Now, somewhat different expressions are found for
S(q) andw(q), because of the smallness of the ground-state
energy. To see this, we insert Eq.~A1! into the Schro¨dinger
equation forf i(z),

S 2
\2

2M

d2

dz2
1Vvac~z! Df i~z!5« if i~z!, ~A4!

and expand in powers of\, taking into account that the
energy of the zero-point fluctuations« i5O(\). Then, to ze-
roth order in\ we obtain the Hamilton-Jacobi equation,

FIG. 9. The classical threshold for optical absorption,
DU5min(Uex)2min(U vac), for polyacetylene rings with an even
number of unitsN. The circles and asterisks distinguish between
N indivisible and divisible by 4, respectively.
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pi~z!2

2M
2Vvac~z!50, ~A5!

wherepi(z)5dSi /dz, while the first-order terms in\ yield
the equation for the probability current,

\
d

dzSw pi

M D52« iw. ~A6!

The actionSi for the motion inVvac(z) has to be calculated
by numerical integration ofpi(z) @cf. Eq. ~A2!#. The differ-
ence with the usual WKB procedure is that the energy of the
lattice zero-point motion,« i , is included in the last equation
rather than the Hamilton-Jacobi equation~A5!. Since we
count energy from the minimum ofVvac(z), the classical
momentumpi(z) vanishes only at the minimum of the po-
tentialz5a, so that the solution is formally applicable for all
z. In fact, the ability of the semiclassical solution to describe
small fluctuations, as well as large ones, relies on the exist-
ence of a small parameter. To see this, we note that for the
harmonic potentialVvac5(1/2)Mv i

2(z2a)2, our procedure
gives the exact ground-state wave function with
« i5(1/2)\v i @in this case Si5(1/2)Mv i(z2a)2 and
w(z)5const#. Thus, small fluctuations are accurately de-
scribed by the semiclassical solution if the anharmonicity of
the potential is small over distances of the order of the zero-
point fluctuationA\/Mv i away from the minimum. For
small anharmonicity,« i'(1/2)\v i , with v i the frequency
of small oscillations near the minimum ofVvac(z) at z5a.
Then Eq.~A6! gives for the preexponential factor

w~z!5
A

pi~z!
expSMv i E dz

pi~z! D , ~A7!

and it is easy to check thatw(z) is regular atz5a. Since, for
all practical purposes one can neglect the tunneling between
the degenerate minimaz56a, the numerical coefficientA
is found from the normalization condition

E
0

`

dzf i
2~z!51. ~A8!

To find the final lattice wave functionf i8(z) with energy
« i8 in the classically forbidden region of the harmonic poten-
tial V5(1/2)Mv i8

2z2, the standard WKB approximation can
be used and leads analytically to

f i8~z!5F Mv i8

2ppi8~z!G
1/2

expS 2
Si8~z!

\ D , ~A9!

with

Si8~z!5E
c

z

dz pi8~z!, ~A10a!

and

pi8~z!5Mv i8Az22c2, ~A10b!

and c the right classical turning point determined by
« i85(1/2)Mv i8

2c2.
The initial wave function of the motion in the ‘‘trans-

verse’’ directions,f'(r,w), is the ground state of the two-
dimensional harmonic oscillator with frequencyv' , which
can be written in the ‘‘semiclassical’’ form

f'~r,w!5FMv'

p\ G ~1/2!

e2S' /\ ~A11a!

with the classical action

S'5
Mv'r2

2
. ~A11b!

Finally, for the ‘‘transverse’’ motion in the final lattice
state, with the potential given by Eq.~3.9!, we again use the
WKB approximation. As both the semiclassical and the adia-
batic approximation anyhow fail at smallr, we neglect the
centrifugal barrier for them561 states and obtain

R~r!5F Mv'8

2pp'8 ~r!G
1/2

expS 2
S'8 ~r!

\ D , ~A12!

with

S'8 ~r!5E
d

r

dr p'8 ~r!, ~A13a!

and

p'8 ~r!52Mv'8 A~b2r!22~b2d!2. ~A13b!

Here, d is the left classical turning point determined by
«'8 5(1/2)Mv'8

2(b2d)2.
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