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Abstract 

The role of shelf seas in global carbon cycling is poorly understood. The dissolved inorganic carbon system and air-sea 

exchange of carbon dioxide (CO,) are described for the Dutch coastal zone in September 1993. The inorganic carbon 
chemistry was affected by tidal mixing, wind speed, wind direction, freshwater input, stratification and coastal upwelling. 

Surface water had a variable fugacity of carbon dioxide (,fcoz) between 300 and 800 patm with short-term changes partly 

related to the tidal cycle. High contents of dissolved inorganic carbon (DE) and CO, in relatively saline water probably 
originated from mineralisation of accumulated organic matter in water and sediments farther out at sea and transport of water 

enriched in DIC into the coastal zone by upwelling. Air-sea exchange of CO, ranged from -20 to 60 mmol rn-? dayy ‘. 
These fluxes are critically discussed in the light of potential stratification. It is not possible to assess from this study whether 
the Dutch coastal zone is a net sink or source for atmospheric CO,. 

Keyword.~: dissolved carbon dioxide; coastal waters; North Sea; inorganic carbon chemistry 

1. Introduction 

1. I. Research objectices 

The role of shelf seas in global carbon cycling is 
poorly understood (e.g., Frankignoulle et al., 1996a,b; 

Kempe and Pegler, 1991). Of particular importance 
is the question, whether shelf seas act as a sink or 
source for carbon dioxide (CO,). S.V. Smith and 
Hollibaugh (1993) concluded that coastal seas were a 

net source for atmospheric CO, in preindustrial 

* Corresponding author. Present address: LODYC-UPMC, BoIte 

100, Tour 14, 2gme Etage, 4, Place Jussieu, 75252 Paris, Cedex 

05, France. 

times. In the current era the world ocean is generally 

considered a net sink of fossil fuel CO, @chime1 et 

al., 1995), but the source or sink function is not 
known for the part consisting of coastal seas (Hop- 

pema and De Baar, 199 I ; Kempe, 1995). 

In the open ocean air-sea exchange of CO, is 

driven by warming and cooling of surface waters, 
wax and wane of plankton blooms, wind velocity 
(Bakker et al., 19961, lateral advection and up- 
welling. In coastal seas the same processes take 

place, yet with more intensity and variability. In 
addition, the content of dissolved inorganic carbon 

(DIG) is highly variable as a consequence of river 
input and more dominant tidal forcing. Moreover, 
exchanges with the shallow sediments strongly affect 
the carbon budget of the water column. Finally, the 
nearby regional sources and sinks on land may cause 

0304-4203/96/$15.(K) Copyright 0 1996 Elsevier Science B.V. All rights reserved 
PI/ SO304-4203(96)00067-9 
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large variations of the atmospheric CO, value as 

function of wind direction. 
The dissolved inorganic carbon chemistry in Dutch 

coastal waters is discussed in relation to the outflow 

of fresh water, tidal mixing, wind speed, wind direc- 

tion and coastal upwelling. Attention is paid to the 

effect of hydrography on the estimated air-sea fluxes 

of CO,. The research was conducted in September 
1993 at Measuring Platform Noordwijk as part of the 

Air-Sea Gas Exchange (ASGASEX) experiment. 

1.2. Inorganic carbon chemistry and air-sea ex- 

change of CO, 

Dissolved CO, constitutes - 1% of the dissolved 

inorganic carbon content of seawater, which other- 

wise mainly consists of bicarbonate (HCO;), car- 

bonate (CO:- > and a negligible amount of carbonic 

acid (H,CO,): 

DIC = [COZca4,] + [H&O,] + [HCO;] + [CO:-] 

(1) 

A concentration difference of carbon dioxide 

(CO,) across the air-water interface drives the net 

gas exchange (Liss and Slater, 1974). A common 
assumption is that a concentration gradient of CO, 

exists only near the air-water interface and that the 

gas is well mixed in bulk air and bulk water. In 

practice, contents of CO, in air and water are deter- 
mined at a certain height above and depth below the 

sea surface. Then the flux F can be expressed as: 

F = ‘( [“;(,a)] bulk - KCl frIO,(air)) (2) 

The gas transfer velocity, k, is taken as a function 
of the gas, wind speed, salinity and temperature (Liss 
and Merlivat, 1986; Wanninkhof, 1992). The con- 

centration of dissolved CO, in bulk surface water, 

[Co;,,,,],“,, 7 includes the small amount of carbonic 
acid (H,CO,), as denoted by the accent. The fugac- 

ity of CO, in air, fco,(air) (patm), is the partial 
pressure of CO, corrected for the slightly non-ideal 
behaviour of the gas. The solubility of CO, in 
seawater, K, (mol kg-’ atm- ‘>, is mainly a func- 
tion of temperature and salinity (Weiss, 1974): 

[ Co;,,,,] = Ko fco, (3) 

Air-sea exchange slowly brings the concentration 

of dissolved CO, in surface water towards equilib- 

rium with the atmospheric CO, content. More rapid 

physical and biological disturbances of the concen- 

tration of CO, in water generally prevent this equi- 

librium from being established. 

1.3. Measuring Platjorm Noordwijk 

Measuring Platform Noordwijk (52’16’N, 

04”18’E), sometimes called “Tower Noordwijk”, is 

situated in water of 18-m depth in the Dutch coastal 
zone. The platform is 9 km offshore from the town 
of Noordwijk, which is 35 km north of the river 

Rhine outflow and 25 km south of the mouth of the 

North Sea Channel (Noordzeekanaal) (Fig. 1). The 

vast industrial areas of Velsen and Europoort and the 

3’ 4O 

1”““““““‘I > 

t 

52’ 

3 4 5 

Fig. 1. The Dutch coastal zone with Measuring Platform Noord- 

wijk (M.P.N.), the cruise track (dashed line) and CTD stations 

(black dots) of R.V. “Holland” on 29 September 1986. Eastern 

longitude and northern latitude are on the x-axis and y-axis, 

respectively. Numbers next to the CTD stations refer to the 

distance offshore in kilometres. Also indicated are the vast indus- 
trial areas of Europoort and Velsen, and the cities of Rotterdam, 

The Hague and Amsterdam. 
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cities of Amsterdam, The Hague and Rotterdam are below mean sea level on the southern side of the 
situated on nearby land, northeast to southwest of the platform. Water temperature was registered with a 
platform. These and the industrial regions of Ger- Pt-100 sensor attached to the inlet. Water was sam- 
many and Belgium are deemed to be major sources pled in parallel for determination of fco?, DIC and 
of fossil fuel CO,. calibration of the thermosalinographs. 

Water in the Dutch coastal zone mainly originates 
from the English Channel (N 95%) and the outflow 

of the Rhine-Meuse Estuary (- 5%) (Van der 

Giessen et al., 1990). The fresh water of the Rhine 

builds a narrow coastal boundary current, which 

flows towards the northeast with most transport of 

fresh water within 15-20 km offshore (De Ruijter et 
al., 1992). Point sources along the coast add addi- 

tional fresh water. 

A CTD section was conducted perpendicular to 

the coast by R.V. “Holland” on 29 September (Fig. 

1; Rijkswaterstaat, 1994). CTD casts were made to 

the bottom at 2, 4, 10, 20, 30, 50 and 70 km offshore 

from Noordwijk. 

2.2. Parameters of the inorganic carbon system 

2. Methods 

2. I. Meteorological and hydrographic parameters 

Wind speed, wind direction, air temperature, at- 

mospheric moisture content and atmospheric pres- 

sure were recorded every 10 min at 27.6 m above 

mean sea level on the southeastern side of the plat- 
form. Wind speed was corrected to an undisturbed 

wind field at 10 m above mean sea level by dividing 
the detected wind speed by I. 142, a factor close to 
the value derived from the correction for height 

advised by WMO (1983) (Benschop, 1996). Current 
direction and current velocity at 5 m below mean sea 

level, tidal height and wave height were detected 

every 10 min on the southwestern side of the plat- 

form. Alongshore and cross-shore components were 
calculated for wind speed and tidal currents. Resid- 

ual alongshore and cross-shore current velocities were 

obtained by filtering the current components with a 
running average of 149 values. 

For detection of fco water from 5 m below 

mean sea level was contfnuously sprayed through a 

showerhead into an equilibrator (Robertson et al., 

1993; Bakker et al., 1996). The temperature change 
of the water between the inlet and the equilibrator 

was typically between - 0.1” and 0.5”C with an 

average of 0.2”C (a, _ , = 0.1 “C, IZ = 10061, as deter- 
mined from the difference of two Pt-100 sensors. 

The headspace of the equilibrator was sampled after 

ample flushing. Marine air was obtained from 6 m 

above mean sea level on the western side of the 

platform. Air and head-space samples were dried 
with silica gel before analysis. In the gas chromato- 

graph two Hayesep D columns separated CO, from 
other components. A nickel catalyst converted CO, 
to methane, which was detected by the flame ionisa- 

tion detector (FID). A cycle of 18 min contained 

three calibration gases of 261.1, 361.3 and 476.5 
pm01 mol-’ CO, in artificial dry air, an air sample 

and a head-space sample. Calibration gases had been 
calibrated against NOAA standards of 254.71, 

326.32, 374.13 and 446.46 pmol mol.- ’ CO, in dry 
air. 

Salinity, at the practical salinity scale, was calcu- 

lated from water temperature and conductivity (UN- 
ESCO, 198 1) detected by two thermosalinographs at 

5- and 7-m depth on the southwestern side of the 
platform. Average salinity of both thermosalino- 

graphs was used for calibration, which was carried 

out at 19°C with 25 samples collected throughout 
September. Accuracy was kO.2 for the calibrated 
values. 

Water was pumped at a large flow rate to the 
laboratory level by a submerged pump from 5 m 

The fugacity of CO, in bulk water was obtained 

from the detected mixing ratio of CO, in the head 
space, atmospheric pressure, the Weiss (1974) for- 

mulae and the temperature correction of Copin- 

MontCgut (1988, 1989). For flux calculations an 
atmospheric humidity of 100% was assumed in the 
equilibrator and at the sea surface. The air-sea flux 

of CO, was calculated from the concentration differ- 
ence of CO, between bulk air and bulk water, in situ 
IO-minute wind speed and atmospheric pressure with 
the relationship of Wanninkhof (1992) for shipboard 
measurements. Choice of this relationship rather than 
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that of Liss and Merlivat (1986) is somewhat arbi- 

trary, as both are well suited for instantaneous flux 

assessment (Wanninkhof, 1992). Potential tempera- 

ture differences between the sea surface and the 

water inlet at 5 m below mean sea level were 

neglected. The highly variable CO, contents of air 
and water made it difficult to estimate precision and 

accuracy of the CO, measurements. During an ear- 
lier cruise the overall precision of the mixing ratios 

of CO, in air was estimated as + 0.6 pmol mall ’ 
or &0.2% with an accuracy of better than 50.5%. 
The precision of ,fco2 in surface water was then 

estimated as _t 0.7 p.atm or +0.2% (Bakker et al., 

1996). Measurements at the platform may have had a 

slightly lower precision and accuracy as a result of 
introduction of the drying agent and the larger mois- 

ture correction at higher ambient temperatures. 
The content of DIC in water from 5 m below 

mean sea level was determined with a coulometer 

(Stoll, 1994), modified for semi-continuous opera- 

tion. A subsample was acidified with 8.5% phospho- 
ric acid and sparged with nitrogen. The evading CO, 
was captured in an ethanol-amine solution with an 

indicator. The solution was photometrically backti- 
trated by the coulometer (Johnson et al., 1987). 

Accuracy of the coulometer in the continuous mode 

was estimated as f5 peq kgg’, precision as + 1.5 

pmol kg-’ (after Stoll, 1994). Alkalinity was calcu- 

lated from fco, and DIC using the constants of 

Goyet and Poisson (1989). 
Upon request the complete set of meteorological, 

hydrographic and CO, variables is available from 

the Netherlands Institute for Sea Research. 

3. Results 

3.1. Meteorology and hydrography 

Between 8 and 25 September a spell of fine 
weather contained light to strong, offshore winds 
mainly from the northeast to south (Fig. 2a and b). 

Wave heights remained lower than 1.5 m (Fig. 3a). 
From 25 to 27 September strong winds from the 
northwest with a maximum of 16 m s- ’ increased 
wave heights up to 3.5 m and pushed water towards 
the coast (Figs. 2a, b and 3a, cl. Discharge of the 
river Rhine at Lobith was approximately 1500 m3 

s- ’ to 14 September and between 1600 and 2100 m3 

SC’ for the second half of September (data from 
Rijkswaterstaat); slightly below the annual mean river 

discharge of 2000 m3 s-’ (Van der Giessen et al., 

1990). 
Strong semi-diurnal tidal currents ran mainly par- 

allel to the coast. Neap tides were on 11 and 24 

September, spring tides on 3 and 18 September and 1 

October. Tidal amplitude varied from 0.6 m for neap 
tides to 1.0 m for the spring tide of 18 September 

(Fig. 3~). High water coincided with the maximum 

velocity of the flood current directed towards the 

northeast. Low water was shortly after the maximum 

strength of the ebb current towards the southwest 
(Fig. 3b and c). Tidal excursion was 4-10 km in 

alongshore direction, and O-l km in cross-shore 

direction (from Fig. 3b). 

The residual alongshore current was often di- 

rected towards the northeast, parallel to the along- 

shore wind component (Fig. 4a and b). The current 

reversed twice towards the southwest, namely on 12 
September and between 23 and 27 September. In the 

first case the residual alongshore current was not 
clearly related to the weak alongshore wind compo- 
nent. In the second case persistent winds from the 

northwest changed the direction of the current to- 
wards the southwest. As wind strength decreased on 

27 September, the current turned towards the north- 

east again. Daily residual alongshore transport ranged 

from 7 km day-’ towards the northeast to 5 km 

dayy’ towards the southwest (from Fig. 4a). The 

residual cross-shore current was generally shore- 
ward, frequently opposite to the cross-shore wind 
component (Fig. 4c and d). Daily residual cross-shore 

transport was between 5 km day-’ in shoreward 

direction and 1 km day _ ’ in offshore direction (from 

Fig. 4~). 
Salinity, temperature, DIC, alkalinity and ,fco, 

varied at both short and long time scales throughout 

September (Fig. 5a-e). Variability of these parame- 
ters at short time scales was related to the tidal cycle. 
Patterns of salinity and temperature occasionally re- 
curred after the turn of the tide in a reversed se- 

quence. Between 11 and 20 September the flood 
current carried more saline, warmer water than the 
ebb current, as suggested by maxima and minima of 
salinity and temperature at the turn of tide. Recur- 
ring, shifting patterns of salinity indicated water 
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passing the platform over several tidal cycles for 23 Salinity differences over the tidal cycle amounted 
to 27 September. Cooling of the water prevailed to 2.4 and I.0 close to neap tides, in contrast to 0.4 
from 14 to 20 September and from 25 to 28 Septem- close to the spring tide of 18 September, when 
ber (Fig. 5b). The four independent temperature salinity variations became very regular (Figs. 3b, c 
sensors around the platform indicated similar tidal and 5a). Wind mixing reduced the variability of 
changes. salinity and temperature over the tidal cycle between 

8 12 16 20 24 28 

20 

1 

3251, I I, I I I, I I I, I I I, I I I, I 

8 12 16 20 24 28 

Date (September 1993) 

Fig, 2. Wind direction (a), wind speed (b), and the fugacity of CO? in air (c) of 8-30 September 1993 at Measuring Platform Noordwijk. 

Wind direction indicates where the wind is coming from. 
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25 and 28 September. Average salinity over the tidal 
cycle was generally between 3 1 .O and 3 1.5 with two 
exceptions. High average salinity of 32.3 occurred 
between 15 and 21 September, while salinity dropped 
to 29.0 after an intrusion of water with a relatively 
large content of fresh water on 28 September. 

Salinity strongly increased from a value of 28.2 at 
4 km offshore to 34.0 at 30 km offshore from 

Noordwijk on 29 September (Figs. 1 and 6; after 
Rijkswaterstaat, 1994). Salinity gradually changed 
from 30.8 to 31.4 between 2.5 and 12.5-m depth in 
the CTD cast 10 km offshore. Temperature increased 
from 15.3” to 15.5”C from the coast to 30 km 
offshore, but did not have pronounced vertical gradi- 
ents within this area. Hence, vertical gradients of 
density were largely determined by salinity. 

I , I , ! I I , I 

6 12 16 20 24 26 

1000 , 

h 

-7 
* 800 

E 
-600 
z-3 

5 

9 400 

P 

F 

$ 2oo 

a 12 16 20 24 26 

a 12 16 20 24 28 

-1.5 Date (September 1993) 

Fig. 3. Wave height (a), current velocity at 5 m below mean sea level (b), and tidal height (c) of 8-30 September 1993 at Measuring 

Platform Noordwijk. 
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3.2. Dissolved inorganic carbon chemistry 

Low salinity accompanied high DIC within the 

tidal cycle on 11 September and from 21 to 28 
September (Fig. 5a and c). The opposite, low salinity 

along with low DIC and high salinity with high DIC, 

was observed in the relatively saline water between 

15 and 17 September. 
The content of dissolved CO, in surface water 

varied from close to equilibrium with the atmo- 
spheric CO, content to strong supersaturation for 12 

to 24 September (Fig. 5e). Very high .fco2 values of 

_ 100 

7 
fn 

i 5o 

2 0 

ii? 
-0 
03 -50 

8 
tY 

-100 To SW 

Onshore 
d) 

I I, I I, I I I I , , \ 

-8 12 16 20 24 28 

Offshore 

Date (September 1993) 

Fig. 4. Alongshore and cross-shore wind speeds (a, c) and residual alongshore and cross-shore current velocities at 5 m below mean sea 

level (b, d) of 8-30 September 1993 at Measuring Platform Noordwijk. 
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500 and 800 katm occurred between 15 and 18 

September, a period with relatively saline water, 

cooling and strong tidal mixing. These maxima of 

.fco > were partly related to maxima of salinity and 

temperature within the tidal cycle. On 24 September 

the variable supersaturation of CO, abruptly changed 

to undersaturation with less variation over the tidal 

cycle. The water with low fcoz had intermediate 

salinity and DIC values. Frequent blockage of the 

showerhead of the equilibrator with algal material 

33 

32 

2 31 

.G 
iE 

cn 30 

29 

a 12 16 20 24 20 

17.0 

15.0 

8 12 16 20 24 26 

2240 

i 

c) 
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2200 - 

'; 

s 

52160 - 

E 
1 

0 
E 2120 - 

@ i 

a 12 16 20 24 28 

Date (September 1993) 

Fig. 5. Salinity (a), water temperature (b), the content of dissolved inorganic carbon cc), calculated alkalinity cd), ,fco, in water (e), and 

air-sea exchange of CO, (f) of X-30 September 1993 at Measuring Platform Noordwijk. The uertical marks on the x-axis denote the turns 

of the tide from flood current to ebb current, while the fhin lines denote those after a neap or spring tide. The horizonfal dashed line (e) 

indicates a fugacity of CO? in air of 340 patm, as detected between 25 and 27 September. 
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Fig. 5 (continued). 

suggested the presence of an algal bloom in surface saline water. After the freshwater intrusion salinity 
water. increased with considerable small scale variation. On 

The flood current carried relatively fresh water on 29 September salinity values lower than 30 were 
28 September. Minimum salinity of 29.0 and max- only found within 5 km offshore (Fig. 6; from 
ima of DIC (2214 krnol kg-‘) and fco, (411 p,atm) Rijkswaterstaat, 1994). After the appearance of the 
were observed at the turn of the tide. Alkalinity and relatively fresh water the ,fco, of the water was O-60 
temperature were not notably affected by the less katm above that of the air. 
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Salinity 

Fig. 6. Salinity in the CTD section offshore from Noordwijk by R.V. “Holland” on 29 September 1993. Crosses denote sampling points 

(after Rijkswaterstaat, 1994). 

3.3. The atmospheric CO, content 

The offshore winds carried air with variable and 

high Lo, ranging from 335 to 440 p,atm to the 

platform between 8 and 2.5 September (Fig. 2a-c). 
Highest mixing ratios of CO, occurred during light 

winds from the northeast and southeast (Fig. 7a and 

b). Winds from the northwest had a more constant 
CO, content between 25 and 28 September. A diur- 
nal trend in the mixing ratios could not be distin- 

guished. 

0 90 180 270 360 

Wind direction (“) 

3.4. The air-sea flux of CO, 

The estimated air-sea flux of CO, reflected the 

variability of both wind speed and the concentration 

difference of CO, across the air-water interface 
(Figs. 2b and 5e, f). Very high fcoz in surface water 

caused considerable CO, release, even during light 

winds. Maximum release of CO, occurred on I6 and 
17 September, when high fco, in surface water was 
accompanied by moderate wind speed. On 25 and 26 

September the combination of strong northwesterly 

460 
. 

1 

440 
1 L 

420 

b) I 

360 

0 5 10 15 20 

Wind speed (m.i’) 

Fig. 7. Mixing ratio of CO, in dry air as function of wind direction (a) and wind speed (b) of 8-30 September 1993 at Measuring Platform 

Noor&vijk. Wind direction is the direction where the wind is coming from. 
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winds and low fco, in surface water induced moder- 

ate seawater uptake of CO,. Slight uptake of atmo- 
spheric CO, of 0.8 mmol me2 day-’ occurred 
between 8 and 30 September. 

The estimated air-sea exchange of CO, should be 

viewed critically in the light of the potential occur- 
rence of stratification above the water inlet at 5 m 

below mean sea level, which will be discussed in 

Section 4.1. The method to determine the flux as- 
sumes perfect mixing of CO, throughout bulk water 

and bulk air, except for a gradient across the air- 

water interface. This assumption is violated in the 

case of stratification. 
Measuring Platform Noordwijk provides a stable 

platform for the intercomparison of different tech- 
niques for estimating the air-sea flux of CO, (Kunz 

et al., 1995; Oost, 1995; Oost et al., 1995; S.D. 

Smith et al., 1995). Unfortunately, the dynamic and 

complex marine and atmospheric chemistry of CO, 
induce large variations in time and space of the true 

air-sea exchange of CO, at this coastal site. This is 

likely to cause incompatibility in sampling between 
the individual flux assessment techniques and 

strongly complicates any intercomparison. 

4. Discussion 

4.1. Residual currents, stratification and coastal up- 

welling 

Water temperature decreased by seasonal cooling 
and as such behaved as a partly conservative tracer 

(De Ruijter et al., 1992). Temperature changes over 

the tidal cycle were similar for the four individual 

sensors. Artefacts of the different sampling positions 

around the platform or of the underwater structure of 

the platform on other parameters cannot be ruled out, 
however. 

Springs-neaps switching influenced the variation 
of salinity over the tidal cycle (Figs. 3b, c and 5a). 
Minima and maxima of salinity and water tempera- 

ture more often occurred at the turn of the tide than 

at low or high water (Figs. 3b, c and 5a, b). Patterns 
of salinity and temperature occasionally recurred in a 
reversed sequence after the turn of the tide. As a 
maximum amount of water had passed the platform 
in one direction at the turn of the tide, this indicated 

that horizontal heterogeneity outweighed vertical 

stratification as a cause of the variability of the 

hydrographic parameters (De Wilde and Duyzer, 
1995). This does not, however, exclude the presence 
of stratification. On 29 September vertical gradients 

of salinity pointed to stratification at 10 km offshore 
from Noordwijk, close to the platform. 

The variability of the wind field affected the 
direction and strength of the residual current, which 

supports previous measurements (Van der Giessen et 

al., 1990). The residual alongshore current at 5 m 

below mean sea level was generally parallel to the 

alongshore wind component (Fig. 4a and b) in agree- 

ment with Van der Giessen et al. (1990). The resid- 

ual cross-shore current remained directed towards 

the shore, often opposite to the cross-shore wind 

component (Fig. 4c and d). This is in apparent 
contrast to observations at 10 km offshore from 

Noordwijk that the residual current at 3 m below the 

lowest low water surface occasionally turned off- 
shore in response to winds from the northeast to 

southeast (De Ruijter et al., 1992). Corresponding 
residual near-bottom currents generally had a shore- 

ward component (Van der Giessen et al., 1990; De 

Ruijter et al., 1992). The observed shoreward resid- 
ual current opposite to offshore winds suggests pres- 

ence of stratification with a shallow wind-driven 
surface layer, below which water moved shoreward. 

Periodic stratification is common in the region of 

freshwater influence of the river Rhine (Simpson et 
al., 1993) and has previously been observed in the 
coastal zone near Noordwijk (Van Alphen et al., 

1988; Van der Giessen et al., 1990). Springs-neaps 
switching between mixed and stratified conditions 

occurred 20 km offshore from Noordwijk (Simpson 

et al., 1993). Semi-diurnal variation of stratification 

was detected close to the platform (Simpson and 

Souza, 1995; Souza and Simpson, 1996). Offshore, 
upwelling-favourable winds tend to maintain stratifi- 

cation and to promote restratification. Onshore winds 
may inhibit the development of stratification and are 

more effective than offshore winds in inducing wind 
mixing (Simpson and Souza, 1995). 

Stratified conditions with a shallow wind mixed 
layer may well have been present during parts of the 
experiment, most likely between 8 and 15 September 
and 22 to 25 September, when offshore winds coin- 
cided with weak tidal mixing. Coastal upwelling 
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might have taken place, when winds came from the 

northeast to southeast. An indication of coastal up- 
welling might be the rather high salinity of the water 

between 15 and 21 September. Strong winds from 
the northwest would have destroyed any stratifica- 

tion present between 25 and 27 September. 

Relatively fresh water penetrated near the plat- 

form on 28 September (Fig. 5a>. An explanation for 

the appearance of this water could be instability in 

the coastal flow of less saline water, caused by the 

reversal of the residual alongshore current on 27 
September. 

(Pegler and Kempe, 1988; Hoppema, 199la,b; Table 

I). The graph of alkalinity and salinity did not 

indicate conservative mixing of seawater and fresh 
water (Fig. 8d). Apparently either the fresh water did 

not have a constant alkalinity or other processes 

overshadowed the effect of mixing on alkalinity 

(Hoppema, 199 1 b). Dissolution of marine carbonates 

in nearby estuaries could have increased alkalinity 

(Kempe, 1982). A naerobic mineralisation in sedi- 

ments (Kempe, 199.5) probably did not affect alkalin- 

ity in the coastal zone, as subsequent oxidation of 

reduced components in the water would have com- 
pensated preceding changes of alkalinity. 

4.2. Complex dissolved inorganic carbon chemistry 

A mixing line can drawn for salinity and DIC by 

exclusion of the 78 black squares, which represent 
water with high salinity and DIC from 750 U.T.C. 

at 15 September to 7: 10 U.T.C. at 16 September 
(Fig. 8a): 

4.3. Temporul and spatial variability of the inor- 

ganic carbon chemist? 

DIC = 2909 - 24.4s (4) 

The line has 653 datapoints and a correlation 

coefficient of -0.67. Its end-members are fresh 
water with a DIC content of 2909 p,mol kg-’ and 

seawater with a salinity of 35 and a DIC content of 

2056 pmol kgg ‘. Scatter around the line indicates 
that either the end-members did not have a constant 

composition or that additional processes occurred. 

High fcoZ and DIC at a salinity of 31.1-31.5 and 

Not much is known about the seasonal, interan- 

nual and regional variability of DIC and CO, in the 

North Sea. The available data will be discussed for 
the coastal zone within 20 km offshore between the 

river Rhine and the North Sea Channel. As the data 

originate from four expeditions in two different years, 
they only offer snapshots of the complex inorganic 
carbon chemistry. 

32.3-32.8 suggest enrichment of relatively saline 

water with CO, and DIC (Fig. 8a and b). An expla- 
nation could be mineralisation of accumulated or- 

ganic matter in water and (suspended) sediment fur- 

ther out at sea and subsequent transport of saline 

water enriched in CO, and DIC into the coastal zone 
by upwelling. Nevertheless, a straightforward rela- 
tionship between DIC and ,fco? was not present (Fig. 

8~). 

Water of the rivers Rhine and the Scheldt (Fig. 1) 
is often undersaturated with oxygen (O?), highly 
supersaturated with CO, and has high contents of 
alkalinity, inorganic and organic carbon relative to 

open North Sea water (Kempe, 1982). Freshwater 
input may induce high DIC, alkalinity and fco, in 

the coastal zone relative to the open North Sea 

(Pegler and Kempe, 1988; Hoppema, 1990, 1991 a,b; 

Kempe and Pegler, 199 1). Water from the North Sea 
Channel with low salinity, high DIC and alkalinity, 
may reach the coastal zone near Noordwijk (from 

Hoppema, 1990, 199 1 a,b). 

Cooling of the water did not induce the abrupt 
decrease of fco, on 24 September, as cooling only 
started after the change had occurred (Fig. 5b and e). 
More likely algal uptake of CO, was responsible for 
the undersaturation between 24 and 28 September. 

The abrupt change of .fco? in surface water indicated 
arrival of a “new” water type in the area. 

In March and April 1986 low contents of dis- 
solved CO, and high contents of O2 in surface water 

were attributed to primary production (Hoppema, 
199 lab; Table I). DIC contents decreased from 
March to May 1986. Undersaturated CO, and high 
chlorophyll-a levels were observed in May (Pegler 
and Kempe, 1988). Probably algal blooms had de- 

pleted DIC and CO,. Warming of the water would 
have counteracted the decrease of ,fco,. 

Calculated alkalinity varied from 2240 to 2470 Both .fco, and DIC were higher in September 

pcq kg-‘, a larger range than previously observed 1993 than in May 1986 (Pegler and Kempe, 1988; 
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Table I>. This combined increase of fco and DIC 

probably was the result of net mineralikation and 
air-sea exchange CO,, while warming further in- 

creased surface water ,&02. 
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salinity and DIC from 7:50 U.T.C. on 15 September to 7: 10 U.T.C. on 16 September. have been excluded from the regression. 



260 

Table I 
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Surface water characteristics within 20 km offshore between the river Rhine and the North Sea Channel in 1986 (Hoppema, 199la,b [I]; 

Pegler and Kempe, 1988 [2]) and at Measuring Platform Noordwijk in September 1993 [3] 

1986 1993 1986 

March [ 1] April [I] May I21 September [3] November [ 1] 

Salinity 29-31 

Temperature PC) 2.4 

DIC (mmol kg- ’ ) > 2.10-2.15 

Alkalinity (meq kg- ’ ) > 2.33-2.39 

fco (patm) > 150-200 z 
Chlorophyll-a (mg m-j) n.d. 

0, saturation (%I 103-105 

29-31 

5.9 

> 2.05-2.10 

> 2.35-2.36 

> 180-200 

n.d. 

110-113 

-31 29.0-32.8 

10 15.6-17.4 

1.90-2.00 2.09-2.22 

2.38 2.24-2.47 

<200 300-800 

> 25 n.d. 

n.d. nd. 

27-31 

9.8 

> 2.15-2.25 

> 2.35-2.40 

> 400-450 

n.d. 

96-98 

n.d. = no data available 

saturated in November (Table 1; Hoppema, 1991 a,b). 

These observations could be explained by a combi- 
nation of autumn cooling and continued mineralisa- 

tion. Hoppema (1991a,b) suggested that the high 
DIC and fco, levels in November 1986 partly re- 

sulted from decomposition in (suspended) sediments 

and ensuing fluxes of inorganic carbon into the 
water. 

Apparently, biological uptake of CO, in spring 

and net mineralisation in summer and autumn largely 
determined the composition of the inorganic carbon 

system in the Dutch coastal zone. Seasonal tempera- 
ture changes would be expected to have affected the 

solubility of fco, strongly. The effects of air-sea 
exchange and precipitation and dissolution of cal- 

careous material could not be discriminated in the 

CO, signal. The dissolved inorganic carbon chem- 

istry in the coastal zone is complicated by mixing in 
of fresh water of variable composition, offshore gra- 

dients, stratification and coastal upwelling. 
Values of 150-800 p,atm for fco, in surface 

water with large variations within a single tidal cycle 

have been observed in the coastal zone near Noord- 
wijk. This wide range is in agreement with data for 

the mouth of the river Scheldt some 150 km towards 
the south (Fig. 1). In this area the fco, of surface 
water varied from 100 p,atm in May 1993 to 410 
patm in June 1992 and to 700 p,atm in October 1993 
(Frankignoulle et al., 1996a). In May strong CO, 
undersaturation was accompanied by high chloro- 
phyll-u concentrations. In November 1993 large 
variability of fco, from 350 to 600 p,atm was 
related to the semi-diurnal tidal cycle, such that high 

f co, occurred during low tides and was ascribed to 

river influence (Frankignoulle et al., 1994). 

4.4. The atmospheric CO, content and wind direc- 

tion 

The atmospheric contents of CO, had clearly 
been influenced by the nearby land, industry and 
population centres during the frequent offshore 

winds. The apparent inverse relationship between 

wind speed and mixing ratios of CO, reflected that 
offshore winds had a high and variable CO, content, 
while strong winds from the open sea had a more 

constant CO, content (Fig. 7a and b). A potential 
diurnal trend in the mixing ratio of CO, was over- 

shadowed by the variability of anthropogenic emis- 
sions, wind speed and wind direction. 

4.5. Sink or source for atmospheric CO,? 

The air-sea flux of CO, is insufficient to achieve 
equilibrium of CO, in these coastal waters relative 

to the atmosphere. Effects on fco, in surface water 
of biological production, mineralisation, seasonal 
temperature changes, mixing in of river water, coastal 
upwelling and possibly calcification and dissolution 
of calcareous material by far exceed the stabilizing 
effect of air-sea exchange. 

It is not possible to determine from this study, 
whether the Dutch coastal zone constitutes a net 
annual sink or source for atmospheric CO,. During 
September 1993 the flux measurements had a mo- 
mentary, local significance as a consequence of the 
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variable hydrography and dissolved inorganic carbon 

chemistry. The river Rhine and other freshwater 
sources add water with high contents of inorganic 
and organic carbon to the coastal zone. Part of the 

imported organic carbon is mineralised, increasing 
DIC and fco, (S.V. Smith and Hollibaugh, 1993; 

Kempe, 1995). Sporadic upwelling adds water en- 

riched in DIC to the coastal zone. On the other hand, 

river water introduces high contents of nutrients, 

which stimulate algal blooms and photosynthetic up- 

take of CO, (Hoppema and De Baar, 1991; Kempe, 

1995). Dissolution or precipitation of carbonates and 

seasonal temperature changes also affect the carbon 

budget of the coastal zone. 
Extensive study of the organic and inorganic car- 

bon flows over all seasons, entering and leaving the 
coastal zone, would be necessary to quantify the role 

of the complex coastal zone in the global carbon 

budget. Simultaneous measurements of the in situ 
processes, affecting the dissolved inorganic carbon 

system, may yield a better understanding of the 

mechanisms behind it. 

5. Summary 

The observed, highly complex dissolved inorganic 
carbon chemistry resulted from variability of tidal 

mixing, wind speed, wind direction, freshwater in- 

put, coastal upwelling and biological processes. Con- 

sequently, it was impossible to completely unravel 
the individual endmembers and processes involved. 

Estimated air-sea exchange of CO, should be used 
with caution in the light of potential stratification. 

Large variability of surface water fco, was ob- 

served at short time scales. Very high CO, contents 

likely resulted from seasonal warming of the water 
and mineralisation of accumulated organic matter in 

water and sediments in combination with coastal 
upwelling. Undersaturated CO, values were ascribed 
to uptake of CO, by algal blooms. In all seasons 
rapid physical, chemical and biological processes 

prevented air-sea exchange from reaching equilib- 
rium between fco, in surface water and in the 

atmosphere. It cannot be ascertained from this study 
whether the Dutch coastal zone is a net sink or 
source for atmospheric CO,. 
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