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Abstract

We study the magnetic response due to neutral solitons induced by dis-

order in polymer materials. We account for interchain interactions, which,

if sufficiently strong, result in a bond-ordered phase, in which the neutral

solitons are bound into pairs. We analytically calculate the corresponding

pair size distribution. As the spins of the solitons have a distance dependent

antiferromagnetic coupling, this allows us to calculate the magnetic suscep-

tibility in the ordered phase. At low temperatures, the result deviates from

the usual Curie behavior in a way that depends on the relative strength of

the disorder and the interchain interactions. We compare our results to the

observed magnetic susceptibility of trans-polyacetylene and we suggest new

experiments extending towards lower temperatures.
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1 Introduction

In recent papers we have studied the effect of off-diagonal disorder on the lattice con-
figuration of a half-filled Peierls-Hubbard chain with a doubly degenerate ground state
[1, 2]. An example is the π-conjugated polymer trans-polyacetylene, which in the absence
of disorder has a uniformly dimerized ground state. As the energy does not depend on
the sign of the lattice dimerization (which determines whether even or odd bonds are
short), this ground state is doubly degenerate. For a single Peierls-Hubbard chain we
showed that arbitrarily weak off-diagonal disorder induces neutral solitons (kinks) in the
lattice dimerization, which interpolate between the two degenerate bond alternations.
Even though the creation energy of a neutral soliton is rather large (of the order of the
gap in trans-polyacetylene), the energy loss is compensated by allowing the sign of the
dimerization to adjust to the electronic disorder fluctuations. Off-diagonal disorder in
conjugated polymers (i.e., disorder in the hopping amplitudes of the π-electrons) may
originate from random chain twists, which decrease the overlap between the π-orbitals of
neighboring carbon atoms. The density of disorder-induced neutral solitons in a single
chain is proportional to the disorder strength [1, 2].

In trans-polyacetylene the disorder strength is presumably rather large, as the average
conjugation length in this material is of the order of several tens of carbon atoms only[3].
One would then expect the neutral solitons to contribute significantly to the polymer’s
magnetic and optical properties, as they carry spin 1

2
and result in the appearance of

electronic states inside the Peierls gap.
There is, however, no direct evidence for the existence of a high density of solitons

in undoped trans-polyacetylene. Electron spin resonance (ESR) experiments report only
about one free spin per 3000 carbon atoms [4, 5, 6, 7]. Moreover, it appears difficult
to observe neutral solitons in optical absorption experiments, as, contrary to what is
expected from the Su-Schrieffer-Heeger (SSH) model [8], they seem not to give rise to a
clear midgap absorption peak [9]. This may be explained by assuming that the on-site
Coulomb repulsion U is strong enough to shift the midgap peak towards the absorption
edge resulting from interband transitions [10, 11]. Since both the peak and the absorption
edge are significantly broadened by the quantum lattice motion [12], there may be no
clear distinction between them.

X-ray scattering data do yield some indirect evidence for disorder-induced kinks. There
still is considerable disagreement whether neighboring carbon chains are dimerized in
phase (P21/a space group) or in anti-phase (P21/n space group) [13, 14]. While this
may originate from different preparation methods leading to different space groups, it
has also been pointed out that the disagreement may result from a high density (of the
order of several percent) of kinks that locally change the relative sign of the dimerization
in neighboring chains [15, 16]. Yet, it is not clear how such random changes would lead
to sharp peaks in the x-ray spectra.

From the above it appears that a clear signature of the effect of disorder-induced
solitons is still to be found. This has motivated us to study the magnetic response of
disorder-induced solitons in more detail. A proper modeling of the magnetic susceptibility
involves more than a calculation of the density of solitons in an isolated chain. As
we noted in Refs. [1, 2], the actual density of neutral solitons (and thus of spins) is
determined by the competition between disorder and interchain interactions, as the latter
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lead to confinement of soliton-antisoliton pairs and may restore the long-range bond
order. Moreover, at low temperature, the exchange between the spins of neighboring
solitons on a single chain tends to bind them into a singlet state[17], which has no
magnetic response. Thus, the magnetic susceptibility and, in particular, its temperature
dependence should be expected to depend strongly on the interplay between disorder and
interchain interactions.

In this paper, we focus on the magnetic susceptibility of disorder-induced solitons in
the phase with long-range bond order. In this case, solitons occur in isolated pairs of
random size dictated by the disorder realization. We study the statistics of these pairs
by mapping the problem on the anisotropic random-field Ising model, which is treated
in the chain-mean-field approximation [18]. This mapping is analogous to what we did
in Refs. [1, 2] for isolated chains. We briefly explain the mapping in Sec. 2 and discuss
the phase diagram of this model. In Sec. 3, we express the magnetic susceptibility of
an ensemble of soliton-antisoliton pairs in terms of the, as yet unknown, distribution
of exchange interactions. In Sec. 4, we calculate the distribution of soliton-pair sizes
using the saddle-point method. From the pair size distribution we derive in Sec. 5 the
distribution of exchange constants. The latter is used in Sec. 6 to calculate the magnetic
susceptibility of trans-polyacetylene. We find that the low-temperature behavior of this
susceptibility deviates from the Curie law and we fit our results to the experimental data
obtained in Ref. [7]. In Sec. 7, we summarize and conclude.

2 Solitons in Interacting Disordered Peierls Chains

In Ref.[2], we have shown that the statistics of neutral solitons in isolated weakly disor-
dered Peierls chains can be studied using the one-dimensional random-field Ising model
(RFIM). In this mapping, Ising variables σm = ±1 (m = 1, ..., M) are defined on the sites
of a lattice with lattice constant d. These variables play the role of the sign of the dimer-
ization in the Peierls chain, while the random ”magnetic” field hm at site m represents
the off-diagonal disorder, which locally lifts the degeneracy between the two dimeriza-
tion phases in the Peierls chain. Two neighboring sites on the lattice having different
Ising variable, correspond to the occurrence of a soliton in the Peierls chain. There-
fore, the creation energy µ of a soliton in the Peierls chain is equivalent to the exchange
interaction between neighboring Ising spins. In the SSH model of trans-polyacetylene
µ = 2∆0/π ≃ 0.5 eV (∆0 is the dimerization). We emphasize, however, that this map-
ping is not limited to the SSH model, but also holds in the presence of electron-electron
interactions, in which case the value of µ is smaller [19, 20].

Our approach may easily be extended to account for three-dimensional effects: in-
terchain interactions (electron hopping, eleastic forces, or Coulomb interactions) tend
to favor a coherence of the dimerization pattern on neighboring chains, which in Ising
language translates into an interaction, 2W , between spins on neighboring chains. As
for quasi-one-dimensional materials, like conjugated polymers, W ≪ µ, we are thus deal-
ing with a strongly anisotropic random-field Ising model [18]. The anisotropy allows
one to treat the interchain interactions in a mean-field way, an approach known as the
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chain-mean-field approximation. The energy of the resulting Ising model is given by:

E{σm} =
M
∑

m=1

[

µ

2
(1 − σmσm+1) − hmσm − Bσm

]

, (1)

Here, the first term describes the energy cost for creating 1
2

∑M
m=1(1 − σmσm+1) kinks

and the second term describes the interaction energy with the random magnetic field.
The latter is assumed to have a Gaussian distribution with zero mean (〈hm〉 = 0) and
correlator:

〈hmhn〉 = ǫ δm,n , (2)

where ǫ is the disorder strength. We consider the case of weak disorder: ǫ ≪ µ2. Finally,
the third term in Eq. (1) describes the interchain interactions in the mean-field approxi-
mation, where the homogeneous “magnetic” field B is proportional to the average order
parameter:

B = W 〈〈σ〉〉 . (3)

The double brackets denote both the thermal and the random-field average.
To end the explanation of our model, a few remarks are in place. First, by replacing the

dimerization by a discrete Ising variable, we have neglected the true dimerization profile
associated with a soliton. As the extent of this profile is given by the correlation length ξ0,
our ”sudden-kink approximation” is valid as long as the soliton density is small compared
to 1/ξ0, as is the case for weak disorder. Taking into account the true dimerization profile

results in an effective increase of the kink creation energy of the order
√

ǫ ξ0/a (with a the

average carbon-carbon distance in trans-polyacetylene) and, thus, in a small reduction of
the soliton density. This has recently been confirmed explicitely in numerical simulations
which do account for the true profile [21]. Second, it should be kept in mind that the
RFIM Eq. (1) is an effective model, obtained by integrating out small lattice fluctuations.
As a result, the kink creation energy µ weakly depends on the temperature [2]. Third,
above we have not specified the value of the Ising lattice constant d (which should not be
confused with the lattice constant a of the polymer chain). It should be noted that both
the disorder strength ǫ and the interchain interaction energy W scale proportional to d.
In Sec. 5 we show that all physical observables are d-independent in the d → 0 limit.

The temperature versus disorder strength phase diagram of the model Eq. (1) contains
two phases: the ordered phase characterized by a nonzero value of the average dimer-
ization, 〈〈σ〉〉∆0, and the disordered phase, in which the long-range bond order (LRBO)
is destroyed by thermal and disorder-induced kinks. The two phases are separated by a
second-order transition. Figure 1 shows the phase diagram calculated for W/µ = 0.008,
a typical value for trans-polyacetylene if the interchain interactions are dominated by
interchain electron hopping [22]. The stars in Fig. 1 denote the phase boundary which
we obtained by numerical simulation of the model Eq. (1) using an algorithm based on
the transfer-matrix approach (cf. Ref.[2]). The order parameter 〈〈σ〉〉 was found from a
self-consistent calculation of the mean field B and the critical curve was then obtained
by requiring that 〈〈σ〉〉 → 0. The smooth temperature dependence of the phase bound-
ary was obtained by averaging the free energy over 104 random-field realizations for a
chain with 103 sites. The solid curve in Fig. 1 indicates the phase boundary which was
calculated in Ref.[18] from an analytical expression for the average free energy of the
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continuum version of the model Eq. (1). With the exception of a small temperature
region, T < T0(ǫ) [18], the results of the continuum and the discrete models agree well.

At low temperatures the phase transition results from a competition between the
disorder and the interchain interactions. In fact, the critical disorder strength which
separates the phases with and without LRBO at zero temperature reads [18]

ǫc ≈
2

3
Wµ . (4)

In the disordered phase, 〈〈σ〉〉 = 0, the density of disorder-induced neutral solitons
(spin-flips) is to lowest order in ǫ given by [18]

ns =
1

d

ǫ

µ2
, (5)

as is the case for a single disordered chain (W = 0) [23]. On the other hand, for ǫ < ǫc the
order parameter 〈〈σ〉〉 is observed to increase rapidly [18] with a slope that is proportional
to the ratio µ/W ≫ 1. Thus, in the overwhelming part of the ordered phase the system
is nearly perfectly ordered with an order parameter close to unity, 〈〈σ〉〉 ≃ 1, and the
solitons are bound into pairs by the interchain interactions. Well within the ordered
phase (ǫ ≪ ǫc) their density is exponentially suppressed. The distance between the
soliton-antisoliton pairs is much larger than the typical pair size and the number of
soliton-antisoliton pairs per unit length reads [18]

np =
1

d

2 W 2

ǫ
exp

(

− 2
W µ

ǫ

)

(6)

(for W 2 ≪ ǫ ≪ 2Wµ/3).
In the following we will focus on the LRBO phase and calculate the magnetic suscep-

tibility due to the spins of the bound pairs of neutral solitons.

3 Magnetic susceptibility in the ordered phase

Apart from the interchain interaction discussed in the previous section, there is also an
intrachain interaction between kinks. The latter interaction is strong only when the
distance between kinks is of the order of their size, ξ0. Thus, for weak disorder, when the
density of kinks is small, it has little effect on the statistics of the kinks. It may, however,
be important for the magnetic properties of disordered Peierls systems, as it results in an
antiferromagnetic exchange between the spins of neutral kinks [17]. This exchange can
bind the spins of neighboring kinks into nonmagnetic singlets, thus reducing the magnetic
susceptibility of the system.

As argued in the previous section, for a nearly perfectly ordered system the typical
distance between disorder-induced soliton-antisoliton pairs is much larger than the typical
pair size. We may then neglect the spin exchange between kinks from different pairs. The
Hamiltonian describing the interactions of soliton and antisoliton spins, ~S1 and ~S2, within
one pair reads

Ĥpair = J
(

~S1 · ~S2 −
1

4

)

− gµBH (Sz
1 + Sz

2) , (7)
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where J is the exchange constant in the pair and H is the external magnetic field. The
pair free energy is given by

f(J, H) = − J − 1

β
ln
[

1 + e−βJ (1 + 2 cosh(βgµBH))
]

(8)

and the zero-field magnetic susceptibility of the pair is

χ(T, J) = − ∂2f(J, H)

∂H2

∣

∣

∣

∣

∣

H=0

= 2g2µ2
B β

e−βJ

1 + 3e−βJ
. (9)

The coupling J decreases with the soliton-antisoliton separation R. Quite generally,
the large-R behavior is

J = J0 exp

(

−R

ρ

)

, (10)

where ρ = ξ0/d (R is measured in units of d) and J0 is of the order of the spin gap. For
the SSH model, in which Coulomb interactions are neglected and the spin gap equals the
charge gap, J0 = 4∆0 [17].

As R is a random quantity that is imposed by the disorder realization, also J is
random. If we know the pair size distribution, p(R), the distribution of exchange values,
w(J), can be obtained using Eq. (10). We normalize the latter to the total density of
spin-pairs

np =
∫

∞

0
dJ w(J) . (11)

The system’s magnetic susceptibility is then given by

χ(T ) =
∫

∞

0
dJ w(J) χ(T, J) , (12)

with χ(T, J) as in Eq. (9).
Clearly, the temperature dependence of the magnetic susceptibility is determined by

the pair size distribution. As we will show in detail in Secs. 4 and 5, in the LRBO phase,
p(R) is sharply peaked at some R∗, while for R ≫ R∗

p(R ≫ R∗) ∝ exp

(

−α
R

ρ

)

(13)

with α a constant determined by the strength of the disorder and interchain interactions.
Equation (13) in a straightforward way yields a power-law exchange distribution

w(J) ∝
(

J0

J

)1−α

(14)

for J ≪ J(R∗). This part of w(J) dictates the behavior of the magnetic susceptibility
at low temperature, T ≪ J(R∗). Pairs with J ≫ J(R∗) (or: R ≪ R∗) are in the
nonmagnetic singlet state at these low temperatures. We thus find

χ(T ≪ J(R∗)) ∝
(

J0

T

)1−α

, (15)
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which deviates from the high temperature Curie behaviour.
We note that, in order to describe the anomalous temperature dependence of the

magnetic susceptibility of charge transfer salts, Clark et al. [24] also introduced pairs of
spins with a random antiferromagnetic coupling. These pairs, however, were introduced in
a purely phenomenological way, whereas in our model they naturally emerge as disorder-
induced soltion-antisoliton pairs with a distribution of exchange constants that follows
from the pair size distribution.

4 Calculation of the Pair Size Distribution

The pair size distribution p(R) is defined as the number of soliton-antisoliton pairs of
size R per site of the Ising chain. For a given disorder realization {hm} one finds from
Eq. (1) that the energy of a configuration (m1, m2), with the soliton located between m1

and m1 + 1 and the antisoliton between m2 and m2 + 1, reads:

E[m1, m2] = E0 − ∆E[m1, m2] , (16)

where E0 denotes the energy for a configuration without solitons and

∆E[m1, m2] = −2µ − 2
m2
∑

m=m1+1

(B + hm) (17)

is the energy change due to the creation of the soliton-antisoliton pair. As we restrict
ourselves to isolated soliton-antisoliton pairs, it is sufficient to consider a segment of the
chain which contains one such pair located far away from its end points. Furthermore,
because the sequence of solitons and antisolitons along the chain is determined by fixed
boundary conditions for the lattice dimerization, we may, without loss of generality,
assume that m2 > m1. Then, the pair size R (in units of the Ising lattice constant d) is
given by

R = m2 − m1 . (18)

The soliton-antisoliton pair configuration (m1, m2) is only energetically favorable if

∆E[m1, m2] ≥ 0 . (19)

This is, however, not sufficient to calculate the pair size distribution p(R), as we also
have to impose the condition that this pair configuration has lower energy than any
other pair in the considered chain segment. Thus, simultaneously, the energy of the pair
configuration has to satisfy the inequalities

∆E[m1, m2] ≥ ∆E[m′

1, m
′

2] , (20)

for all other possible pair configurations (m′

1, m
′

2). Therefore, the desired pair size distri-
bution takes the form:

p(R) =

〈

Θ (∆E[m1, m2] )
∏

(m′

1
,m′

2
)

Θ (∆E[m1, m2] − ∆E[m′

1, m
′

2] )

〉

, (21)
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where Θ(x) is the step function:

Θ(x) =

{

1 for x ≥ 0
0 for x < 0

(22)

and the brackets, 〈...〉, denote the Gaussian average over disorder realizations {hm}. The
definition Eq. (21) ensures that, in accordance with Eq. (11), p(R)/d is normalized to
the density of soliton-antisoliton pairs:

np =
1

d

∫

∞

0
dR p(R) . (23)

It is easy to see that p(R) factorizes into two independent parts, pout and pin, that
account for the soliton-antisoliton pairs with a size that is, respectively, larger and smaller
than R:

p(R) = pout pin , (24)

with

pout =
〈

Θ(z + sm1
) Θ(2z + sm1

+ sm1−1) Θ(3z + sm1
+ sm1−1 + sm1−2) ...

〉

〈

Θ(z + sm2+1) Θ(2z + sm2+1 + sm2+2) Θ(3z + sm2+1 + sm2+2 + sm2+3) ...
〉

, (25)

and

pin =
〈

Θ(−I − Rz −
m2
∑

m=m1+1

sm) ΠL ΠR

〉

. (26)

Here, we have defined the dimensionless variables sm = hm/
√

ǫ, z = B/
√

ǫ, I = µ/
√

ǫ,
while

ΠL ≡ Θ(−z − sm1+1) Θ(−2z − sm1+1 − sm1+2) ... Θ(−Rz − sm1+1 − ... − sm2
) (27)

and

ΠR ≡ Θ(−z − sm2
) Θ(−2z − sm2

− sm2−1) ... Θ(−Rz − sm2
− ... − sm1+1) . (28)

Note that pout itself also consists of two independent factors: the first factor excludes
the pairs with the soliton located to the left of m1, while the second one excludes anti-
soliton positions larger than m2 + 1. Both these factors can be written in the form:

Y (z) =
∞
∏

m=1

[

∫ +∞

−∞

dsm f(sm) Θ
(

m
∑

k=1

(z + sk)
)

]

, (29)

where

f(s) =
exp(−1

2
s2)√

2π
(30)

is the Gaussian weight. As a result, for the outer factor we obtain:

pout = [Y (z)]2 . (31)
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The function Y (z) will be calculated later in this section.
The calculation of the inner factor is complicated by the presence of the extra Θ-

function in Eq. (26), which precludes the factorization of pin in two independent averages.
However, considerable simplification is possible, because we focus on the bond-ordered
phase where 〈〈σ〉〉 ≃ 1. Then the density of disorder-induced soliton-antisoliton pairs is
small, and the main suppression factor in p(R) is the probability of the disorder realization
necessary to create a pair [25, 26]. In other words, the most important contribution to
pin [and p(R)] comes from averaging the first Θ-function in Eq. (26):

〈

Θ(−I −
m2
∑

m=m1+1

(z + sm))
〉

=
1

2
erfc(g(R)) ≈ exp(−g(R)2)√

4π g(R)
, (32)

where

g(R) ≡ I + Rz√
2R

. (33)

Here, the asymptotic expression for the complementary error function erfc(g(R)) was

used because the minimal value for its argument is easily shown to be gmin =
√

3ǫc/ǫ, so

that for ǫ ≤ ǫc/2 the relative error becomes already less than several percent.
The interpretation of this result is that the optimal disorder fluctuation (i.e., the

disorder realization with the largest weight) that can induce a soliton-antisoliton pair
of size R has a constant value −hR in the interval of length R and is zero outside the
interval. The amplitude hR is determined by the energy balance [see Eqs. (17) and (19)]:

hRR = µ + WR . (34)

The weight of the optimal fluctuation, w = exp
(

−RhR
2/(2ǫ)

)

, is precisely the exponen-

tial factor appearing in Eq. (32). At

R∗ =
I

z
=

µ

W
≫ 1 (35)

the weight reaches its maximal value, exp (−2Wµ/ǫ). For ǫ ≪ ǫc, the maximal weight
is small [as was also found in Eqs. (32) and (33)] and the soliton-antisoliton pairs are
suppressed. In that case, all disorder realizations that contribute significantly to p(R)
are close to the optimal fluctuation.

Bearing this in mind, we now calculate the inner factor Eq. (26). First, we can rewrite
Eq. (26) in the form:

pin =
∫

∞

zR+I
dS

∫ +i∞

−i∞

dλ

2πi
e−λS

m2
∏

m=m1+1

∫ +∞

−∞

dsme−λsmf(sm)ΠLΠR , (36)

where the integration over λ ensures that

S = −
m=m2
∑

m=m1+1

sm (37)

and the limits of the integration over S follow from the first Θ-function in Eq. (26).
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Since the typical pair size R∗ ≫ 1 [see Eq. (35)], we can use the canonical formalism,
in which Eq. (37) for the sum of R random variables is satisfied only in average. We do
this by “shifting” the argument of the random-field distribution on each site by λ:

f(s) → f(s + λ) = e−
1

2
λ2

−λsf(s) , (38)

so that the average value now becomes s = −λ and Eq. (36) reads:

pin =
∫

∞

zR+I
dS

∫ +i∞

−i∞

dλ

2πi
e−λS+ 1

2
Rλ2

m2
∏

m=m1+1

∫ +∞

−∞

dsmf(sm + λ)ΠLΠR . (39)

The integral over λ comes from the small vicinity (∼ 1/
√

R) of λ0 = S/R, where the
exponential in Eq. (39) has its maximum. Saddle-point integration over λ then gives:

pin =
∫

∞

zR+I

dS√
2πR

e−
S
2

2R

m2
∏

m=m1+1

∫ +∞

−∞

dsmf
(

sm +
S

R

)

ΠLΠR . (40)

Next we note that if the condition imposed by the first Θ-function in Eq. (26) is
satisfied, the arguments of the last Θ-functions in ΠL and ΠR also almost certainly are
positive. In other words, because the relevant disorder realizations are close to the optimal
fluctuations, only the first few Θ-functions in ΠL and ΠR are really restrictive. This
implies that the disorder averages of ΠL and ΠR in Eq. (40) are decoupled. Furthermore,
it is easily seen from Eq. (29) that then 〈ΠL〉 = 〈ΠR〉 = Y ( S

R
− z), so that Eq. (40)

becomes:

pin =
∫

∞

zR+I

dS√
2πR

e−
1

2R
S2

[

Y
(

S

R
− z

)]2

. (41)

The integral over S comes from the vicinity of the lower limit, S = zR + I [cf. Eq. (34)
for the optimal fluctuation]. The result of the integration is:

pin =

√

R

2π

exp
[

− (I+Rz)2

2R

]

(I + Rz)

[

Y
(

I

R

)]2

, (42)

where for S in the argument of Y we took its value at the lower limit of the integration.
From Eqs. (24), (31), and (42) we finally obtain for the pair size distribution:

p(R) =
exp(−g(R)2)√

4π g(R)

[

Y
(

I

R

)]2

[Y (z)]2 , (43)

where the function g(R) is defined by Eq. (33).
What is left now, is the calculation of the function Y (v). To this end we introduce the

function Y (s|v), satisfying the integral equation:

Y (s|v) =
∫

∞

0
ds′ f(s + v − s′) Y (s′|v) . (44)

Comparing the iterative solution of this equation to Eq. (29), one finds:

Y (v) = Y (0|v) . (45)
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The integral equation (44) can be easily solved numerically. The result is shown as stars
in Fig. 2. The solid line represents the best fit to these points by a function of the form:

Y (v) = tanh(c v) . (46)

The fit yields c ≃ 1.14. For small v, the best linear fit (Y (v) = c′v) yields c′ ≃
√

2, with
a precision of several percent.

We conclude this section by a brief analysis of the pair size distribution Eq. (43). First,
integrating p(R)/d over R gives the density of soliton-antisoliton pairs [cf. Eq. (23)]. For
ǫ ≪ ǫc, the exponential factor in Eq. (43) has a sharp peak at R∗ given by Eq. (35).
Using B ≃ W , the saddle-point integration around the peak gives:

np ≈ 1

d

ǫ

2 W 2

[

Y

(

W√
ǫ

)]4

exp
(

−2
Wµ

ǫ

)

. (47)

Furthermore, we note that knowledge of the pair size distribution Eq. (43) allows us to
derive the long- and short-range bond order parameter of the RFIM Eq. (1). For a dilute
gas of soliton-antisoliton pairs it is sufficient to consider a chain segment of N + 1 sites
containing a single pair of size R:

σ(m) = 1 − 2 Θ(m − m1) Θ(m2 − m) , (48)

where m1 and m2 = m1 + R denote the positions of, respectively, the soliton and the
antisoliton. Replacing summations by integrations, the LRBO parameter averaged over
all possible pair sizes is easily calculated:

〈〈σ〉〉 =
∫

∞

0
dR p(R)

∫ + N

2

−
N

2

dm σ(m) = 1 − 2
∫

∞

0
dR p(R) R . (49)

For a nearly perfectly ordered system, 〈〈σ〉〉 ≃ 1, we thus find from Eq. (49) the con-
dition that the typical pair size R∗ is much smaller than the typical number of sites
1/(dnp) between soliton-antisoliton pairs. Similarly, we calculate the correlation function
〈〈σ(0)σ(l)〉〉, which yields the sum of the square of the LRBO parameter Eq. (49),

〈〈σ〉〉2 ≃ 1 − 4
∫

∞

0
dR p(R) R , (50)

and the connected correlator

〈〈σ(0)σ(l)〉〉c = 4
∫

∞

0
dR p(R + |l|) R . (51)

The scale for the decay of short-range correlations is obviously set by the typical pair size
R∗, as 〈〈σ(0)σ(l)〉〉c → 0 for |l| ≫ R∗.

5 The Exchange Distribution in the Continuum Limit

In the previous sections we described disordered Peierls systems using the effective RFIM
Eq. (1). The values of the interchain interaction W and the disorder strength ǫ in this
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model are proportional to the length d which we choose for the unit cell of the Ising
chain and which plays the role of a short-distance cut off. On the other hand physical ob-
servables, such as the density of soliton-antisoliton pairs and the magnetic susceptibility,
should not depend on d. Thus, before comparing our results to the experimental data on
trans-polyacetylene, we show that d drops out from the expressions for the observables
in the d → 0 limit.

To this end, we introduce as physically meaningful quantities the disorder strength ǭ
and the interchain interaction W̄ per unit length:

ǫ = ǭ d , (52)

and
W = W̄ d . (53)

Furthermore, from now on we will work with the physical pair size r = Rd. In terms
of these new variables, the arguments of both Y -functions in Eq. (43) for the pair size
distribution are ∝

√
d. Therefore, for d → 0, the arguments are small and we can use

Y (v) ≃
√

2v [see below Eq. (46)], giving the pair size distribution

p̄(r) = 4
µ2 W̄ 2

ǭ 2 r2

exp (−g(r)2)√
4π g(r)

, (54)

where

g(r) =
µ + W̄ r√

2 ǭ r
. (55)

Similarly, from Eq. (47), the total density of neutral soliton-antisoliton pairs in the limit
d → 0 is found to be:

np ≈ 2 W̄ 2

ǭ
exp

(

−2
W̄µ

ǭ

)

, (56)

which coincides with Eq. (6) obtained in Ref. [18] within the continuum approximation
for the RFIM Eq. (1).

Furthermore, in terms of continuum variables, the exchange coupling Eq. (10) reads:

J(r) = J0 exp(− r

ξ0
) . (57)

Thus, in the continuum limit the distribution of exchange constants becomes:

w(J) =
∫

∞

0
dr p̄(r) δ(J − J(r)) = 4

1

J

1

ξ0

µ2 W̄ 2

ǭ 2 [ln(J/J0)]2
exp (−g(J)2)√

4π g(J)
, (58)

with g(J) ≡ g(r = ξ0 ln(J0/J)) [cf. Eq. (55)].
In Fig. 3 we plot the distribution w(J) for four different parameter sets (ǭ, W̄ , J0)

chosen such that the density of soliton-antisoliton pairs is fixed at np = 1/6000 a−1 (with
a the average carbon-carbon distance in trans-polyacetylene). Our choice of parameters
is summarized in Table I and will become clear in Sec. 6. Depending on the parameters,
one observes two qualitatively very different behaviors: w(J) either has a pronounced
peak at J∗ ≃ J(r∗) (with r∗ = R∗ d and R∗ as in Eq. (35)) and tends to zero for J → 0,
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or w(J) diverges for small J . The distinction between these two behaviors is dominated
by only one parameter combination:

α =
W̄ 2

2 ǭ
ξ0 . (59)

In fact, Eq. (58) for J ≪ J∗ yields

w(J) ∝
(

J0

J

)1−α

, (60)

which shows that the relative strength of the interchain interactions and the disorder
determines whether w(J) diverges (α < 1) or approaches zero (α > 1) for J → 0.

The behavior of Eq. (60) agrees with Eq. (14) in Sec. 3 and can indeed be traced back
to the fact that for large r the pair size distribution is exponential:

p̄(r ≫ r∗) ∝ exp

(

−W̄ 2 r

2ǭ

)

=
(

J0

J

)−α

. (61)

This exponential dependence can be understood as follows. For r ≫ r∗, the energy
of the string between soliton and antisoliton exceeds the kink creation energy: W̄r =
WR ≫ µ. Thus, the amplitude of the optimal fluctuation Eq. (34) is hRR ≃ WR.
The Gaussian weight exp (−Rh2

R/(2ǫ)) of this fluctuation is the exponential in Eq. (61).
Similar arguments were used to explain the power-law dependence of the density of states
in the Fluctuating Gap Model of disordered systems [26]. The power-law dependence of
w(J) at small J gives rise to a characteristic low-temperature behavior of the magnetic
susceptibility, as we will see in the next section.

6 Magnetic susceptibility of trans-polyacetylene

In this section we consider trans-polyacetylene as a disordered Peierls system and calculate
its magnetic susceptibility due to disorder-induced soliton-antisoliton pairs as a function
of temperature. The temperature dependence of the magnetic susceptibility is determined
by the distribution of exchange constants Eq. (58). For temperatures T much larger than
the typical singlet-triplet energy splitting J∗, almost all spin pairs are thermally excited.
Thus, we have, essentially, 2np free spins, which give rise to a Curie susceptibility. Indeed,
Eqs. (9) and (12) yield:

χ(T ≫ J∗) ≃ 1

2
g2µ2

B β
∫

∞

0
dJ w(J) =

1

2
g2µ2

B

np

T
, (62)

where the density of soliton-antisoliton pairs np is given by Eq. (56). In the opposite limit,
T ≪ J∗, however, most of the spin pairs are in the singlet state and do not contribute
to the magnetic susceptibility. Under these conditions Eqs. (12) and (58) yield:

χ(T ≪ J∗) = C(T )
(

J0

T

)1−α

, (63)
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with α as in Eq. (59) and logarithmic temperature corrections given by

C(T ) ≈ 4 g2 µ2
B

9 J0 α

(

np ξ0

π

)
1

2 µ2

ǭ ξ2
0

Γ(1 + α) Liα(−1
3
)

(ln(J0/T ))5/2
(64)

(Liν(z) =
∑

∞

k=1 zk/kν is the polylogarithm function). The dominant factor in Eq. (63)
is (J0/T )1−α, which basically gives the density of spin pairs with singlet-triplet splitting
∼ T [cf. Eq. (60)].

We thus find that the low-temperature behavior of the magnetic susceptibility differs
from the Curie law and is dictated by the relative strength α of interchain interactions and
disorder. For α < 1, the susceptibility diverges as T → 0, while for α > 1 it approaches
zero.

A low-temperature (T < 30 K) deviation from Curie behavior has indeed been ob-
served by Foot et al. in ESR experiments on Durham trans-polyacetylene [7]. These
authors already suggested pairing of spins as possible reason for this behavior. To see
whether our model of spins associated with disorder-induced soliton-antisoliton pairs of-
fers a microscopic explanation, we compared our result for χ(T ) [numerically calculated
from Eqs. (12) and (58)] to the experimental data. In our fit procedure there are, in
principle, three free parameters: W̄ , ǭ, and J0 (for the correlation length we take the
SSH value ξ0 = 7a). We require, however, that our parameters are also consistent with
the total density of spin pairs, which is reported to be approximately np = 1/6000 a−1

[4, 5, 6, 7]. This requirement imposes a relation between W̄ and ǭ, reducing the number
of free parameters to two.

In practice, we chose various values for α [Eq. (59)]. For each α value, W̄ and ǭ
are uniquely determined by np, and J0 is left as free parameter to fit the temperature
dependence of the magnetic susceptibility. This procedure yielded the fits shown in Fig. 4,
with parameter sets given in Table I. For convenience, we will refer to each parameter
set by its α value. We note that our values for J0 are much smaller than the value
J0 = 4∆0 ∼ 104 K, which one would expect in the absence of Coulomb interactions. It is
not known, however, how Coulomb interactions alter J0 and (possibly) the exponent in
Eq. (10).

The important point is now that, while all four parameter sets give rise to reasonable
fits of the experimental data, they predict totally different behaviors for T ≤ 5 K, where
experiments have not been performed. This is shown in Fig. 5, where we extend the
four theoretical fits to 1 K. The qualitative differences in the low-temperature behavior,
dictated by the value of α, are clearly visible below 5 K. This suggests that extending the
experiments to lower temperatures may yield more information on the relative strength
of interchain interactions and disorder in trans-polyacetylene.

We conclude this section by noting that, within the context of our model, it is possible
to determine the strength of the interchain interactions and the disorder independent of
the fitting parameter J0. For this purpose, the density np of soliton-antisoliton pairs is to
be obtained experimentally from the Curie tail of the magnetic susceptibility, while for
the same sample α is to be determined from the asymptotic zero-temperature behavior of
the magnetic susceptibility. Then, using Eqs. (56) and (59), the strength of the interchain
interactions,

W̄ ≈ 4 α
µ

ξ0

[

ln

(

4α

npξ0

)]

−1

, (65)
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and the disorder strength,

ǭ ≈ 8 α
µ2

ξ0

[

ln

(

4α

npξ0

)]

−2

, (66)

can be calculated as a function of np and α. For typical values of the density np the
logarithmic factor depends only weakly on α ∼ O(1) and can be approximated by a
numerical constant. If np = 1/6000 a−1 and choosing again the SSH-parameter ξ0 = 7a,
one obtains W̄ ≈ 0.07 αµ/a and ǭ ≈ 0.02 α µ2/a. It is important to realize that Eqs. (65)
and (66) do not depend on the maximal exchange constant J0 which may be used as a
fitting parameter for temperatures around the typical exchange J∗.

7 Concluding remarks

To summarize, we have calculated the magnetic susceptibility of quasi-one-dimensional
Peierls systems with a doubly degenerate ground state. We have related the temperature-
dependent part of the susceptibility to the presence of neutral solitons and antisolitons
with spin 1

2
induced by disorder in the electron hopping amplitudes along the chain. We

have assumed the interchain interactions to be sufficiently strong to bind the disorder-
induced solitons and antisolitons into pairs and thus establish long range bond order in
the system. Using a mapping on the random field Ising model, we have calculated the
distribution of the soliton-antisoliton pair size. This allowed us to obtain the distribution
of exchange constants describing the interaction between the spins of the soliton and the
antisoliton within one pair. Both distributions strongly depend on the relative strength
α of the disorder and the interchain interactions. As a result, the magnetic susceptibility
deviates from the Curie law: below T = J∗, where J∗ is the most probable value of the
exchange constant, the magnetic susceptibility behaves as (1/T )1−α.

Our results explain the deviation from Curie behavior observed in Durham trans-
polyacetylene [7], though from the experimental data it is difficult to find unambigously
the values of α and J∗ for this conjugated polymer. It is, therefore, important to ex-
tend the measurements to lower temperatures, where the temperature dependence of the
magnetic susceptibility is extremely sensitive to the choice of parameters.

Our theory is only applicable when the low-temperature behavior of the susceptibility
is an intrinsic property of the material and is not governed by spins of impurities. The
latter situation may, in fact, be realized in Shirakawa trans-polyacetylene, which shows
Curie behavior down to T = 1.5 K [27]. Furthermore, we assumed the existence of long
range order in the system. Whether this is the case in trans-polyacetylene is an open
question. It would, therefore, be interesting to extend our studies to the case without
long-range order. At the same time, however, it should be noted that in substituted
polyacetylenes, the degeneracy of the two dimerized configurations may be lifted. This
leads to an extra (intrachain) source of soliton-antisoliton confinement[28] and favors
long-range bond order. Our theory may be applied to these substituted polymers by
simply adding to the interchain interaction per bond (Wa), the energy difference per bond
between the two dimerized configurations. As this energy difference may be controlled by
varying the substitutions, this opens interesting possibilities to study disorder-induced
solitons in more detail.
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We finally mention that in the ordered phase, the disorder-induced soliton-antisoliton
pairs show up in the x-ray spectrum as a broad incoherent peak associated with each
sharp elastic peak arising from the bond length alternation. Our result for the pair size
distribution allows one to calculate the shape of this incoherent peak: it simply is the
Fourier transform squared of the connected correlator Eq.(51). Thus, one immediately
finds that the peak width is ∼ 1/r∗ ≈ W̄/µ. It should be kept in mind, however, that
this calculation does not account for other broadening mechanisms, e.g., those due to the
complicated morphology of polyacetylene samples.
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Tables

W̄ (µ/a) ǭ (µ2/a) J0 (K) α

0.038 0.010 400 0.5
0.055 0.014 130 0.75
0.070 0.017 72 1.0
0.100 0.023 39 1.5

Table I. The four sets of parameters used in the numerical calculations for a fixed density
of spin pairs, np = 1/6000 a−1. The value for α as defined in Eq. (59) is obtained using
the SSH-parameter ξ0 = 7a for the correlation length.
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Fig. 1. The phase diagram of the RFIM Eq. (1) captures the essential physics of weakly
disordered Peierls systems and is shown as a function of the disorder strength ǫ/µ2 and the
temperature T/µ. The long range bond order (LRBO) phase corresponds to an average
dimerization 〈〈σ〉〉∆0 6= 0. The numerical calculation of the critical curve (stars) agrees
well with the analytical result (solid curve) obtained in Ref. [18]. The dashed curve
indicates the breakdown of the continuum approximation in the analytical calculation
below T = T0(ǫ) [18].
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Fig. 2. The function Y (v) obtained from a numerical solution (stars) of the integral
equation (44). The best fit of this solution by a function of the form Y (v) = tanh(cv)
yields c ≃ 1.14 (solid line).
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Fig. 3. The distribution w(J) of exchange constants as a function of J/J0 for the four
parameter sets given in Table I. The curves correspond to α = 1.5 (dots), 1.0 (dash-dot),
0.75 (dashes), and 0.5 (solid). For α ≥ 1.0 the distribution has a pronounced peak at
some J = J∗ and tends to zero for J → 0. In contrast, for α < 1.0, w(J) diverges when
J → 0.
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Fig. 4. Fits of our theory (solid curve) to the experimental data (dots) for the magnetic
susceptibility of Durham trans-polyacetylene obtained in Ref. [7]. The four parameter
sets given in Table I were used to fit the same experimental data points (see text for
details). The deviation from Curie behavior (straight line) below T = 30 K is clearly
seen and reasonably reproduced by each fit down to T = 5 K, below which experimental
data are not available.
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Fig. 5. As Fig. 4, but now the four theoretical curves are shown down to T = 1 K.
It is clearly observed that different values for α (the relative strength of disorder and
interchain interactions) lead to qualitatively different low-T (< 5 K) behavior of the
magnetic susceptibility.
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