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Recently, a method to nitride iron in NH3 ambients at low temperature~225–350 °C! has been
developed. In this method, the Fe is covered with a thin~;40 nm! Ni layer, which acts as a catalyst
for the nitriding process. From experiments, in which the amount of nitrogen uptake is measured as
a function of nitriding time, it is concluded that the decomposition of NH3 at the Ni surface contains
the rate-limiting step in this low-temperature nitriding process. From a model calculation, it is
further concluded that the reaction step NH3→NH21H at the Ni surface is the rate-limiting step
with an activation energy of;1.5 eV. © 1999 American Institute of Physics.
@S0021-8979~99!03813-X#

I. INTRODUCTION

Nitrogen is introduced in iron to improve material prop-
erties like hardness and wear and corrosion resistance, or to
induce interesting magnetic properties. A commonly used
method to form nitride layers in iron is a thermochemical
treatment of iron in a NH3-containing atmosphere at tem-
peratures of 500–600 °C. A disadvantage of these high tem-
peratures is the possible occurrence of porosity.1

In previous papers a method to form nitrides in iron by a
thermochemical treatment in a NH3/H2 atmosphere at tem-
peratures below 325 °C was presented.2,3 This was done by
applying a thin Ni layer on top of Fe. The Ni layer protects
the Fe from oxidation and serves as a catalytic surface for the
decomposition of NH3. After dissociation of the NH3, the N
species enters the Ni layer. Due to a larger affinity for N of
Fe than of Ni, the N diffuses from the Ni into the Fe where
a nitride layer is formed. Owing to the low process tempera-
ture these nitride layers are pore free, which is beneficial for
the material properties.4

It was shown that two growth modes can occur in this
low-temperature nitriding method, depending on the interfa-
cial structure and the amount of impurities present at the
Ni/Fe interface.5 In one mode nitrides nucleate throughout
the Fe layer and grow by uptake of more N to coalesce and
form a continuous nitride layer. In another mode they pref-
erentially nucleate at the Ni/Fe interface after which the layer
grows towards larger depths.5 In this article, the different
steps in the process~e.g., dissociation, diffusion, nitride for-
mation! are discussed in detail. it is concluded that the rate-
limiting step in the process occurs in the dissociation reac-
tion of NH3 at the Ni surface.

II. EXPERIMENT

Ni and Fe layers were deposited subsequently on Si in a
vacuum of 1026 Pa by means ofe-beam evaporation. Thick-

nesses of the layers were 30 nm for the Ni layer and 250 nm
for the Fe layer as measured by means of Rutherford back-
scattering spectrometry~RBS!. Two kinds of samples were
deposited: one without and one with exposure to air between
deposition of the Fe and Ni layer~series I and II, respec-
tively!. The exposure to air resulted in a Fe–O layer between
the Fe and Ni layer, containing;2731015at/cm2 oxygen@as
determined with elastic recoil detection~ERD!#, correspond-
ing to an iron oxide layer thickness of around 5 nm.

After transport through air, nitriding was done in an at-
mosphere containing a mixture of ammonia~99.9995% pure!
and hydrogen~99.9999% pure!. No flow other than thermal
convection was applied to the gas. Nitriding temperatures
were 275 or 325 °C. At these temperatures, interdiffusion of
Ni and Fe does not occur, as was revealed by RBS. Nitriding
times varied between 0 and 60 min. A nitriding time of 0 min
means heating the sample in NH3 to the nitriding temperature
and immediately after reaching this temperature turning off
the heating power.

Depth profiles of nitrogen and the amounts of nitrogen
taken up in the sample were measured with ERD,6 using a
beam of 72 MeV Ag ions or 42 MeV Si ions. X-ray diffrac-
tion ~XRD! was used to analyze the phases that were formed
after the nitriding treatment~CuKa radiation!. Some
samples were examined by cross-sectional transmission elec-
tron microscopy~XTEM!. Results of XRD and XTEM are
presented in another paper.5

III. RESULTS AND DISCUSSION

A. Two growth modes of the nitride layers

Nitriding experiments for different exposure times were
performed at 275 °C for samples of series I and II~without
and with interface oxide, respectively!, see Fig. 1 for ERD
results.

From Fig. 1~a! ~series I!, it is seen that almost no N is
present in Ni. Flat N profiles are formed in Fe, with N con-
centrations increasing with time. After 22 min a N concen-a!Electron mail: a.m.vredenberg@phys.uu.nl
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tration of ;18 at. % is found in Fe. An x-ray diffractogram
taken from this sample, as well as an XTEM micrograph,
revealed thatg8-Fe4N has formed in this sample~result not
shown!.

In Fig. 1~b! ERD profiles are shown for nitrided samples
of series II. These profiles differ significantly from the pro-
files in Fig. 1~a!. After 0 min at 275 °C a nitrogen peak is
present just below the Ni/Fe interface. Below this peak an
;3 at. % N level is found. After prolonged nitriding the peak
below the interface increases in height and width until it

reaches a N concentration of 20 at. % after 20 min. After
reaching this level, the N uptake continues in depth until the
Fe layer has been completely filled with 20 at. % N. XRD
and XTEM measurements show that after 10, 20, and 50 min
g8-Fe4N has formed, and thus that the layer forming below
the interface must be~nearly! continuousg8-Fe4N.

It is clear that two different growth modes occur for
samples of series I and II. In series I, after dissolution of N in
a-Fe g8 particles start to precipitate at sites that are evenly
distributed throughout the layer. Small precipitates ofg8 are
formed, which then grow by uptake of more nitrogen. Most
probably, the nitrogen diffuses through thea-Fe which has
not yet been transformed intog8-Fe4N. Eventually theseg8
particles form a continuousg8-Fe4N layer, cutting off the
a-Fe diffusion channels. A schematic model of this growth
mode of the nitride layer in Fe is depicted in Fig. 2~a!.

In series II precipitates ofg8 are formed preferentially
just below the Ni/Fe interface, probably at the Fe–O/Fe in-
terface. From the 3 at. % level at larger depth it cannot be
excluded thatg8 particles also nucleate throughout the Fe
layer, even though they were not found in XTEM. Theg8
particles below the interface grow by uptake of more nitro-
gen from the gas phase until a 20 at. % level has been
reached, after which theg8 particles grow in depth to form a
continuousg8 layer. This growth mode is schematically de-
picted in Fig. 2~b!. Apparently, the Fe–O/Fe interface pro-
vides sites where nucleation ofg8 particles can take place
preferentially. This may be caused by a strain in the Fe lat-
tice in the vicinity of the Fe–O/Fe interface. The nature of
the strain is probably tensile, because the volume per iron
atom in Fe2O3 or Fe3O4 is about twice that ina-Fe ~25.2 Å3

or 24.7 Å3 cf. 11.8 Å3!. Since the volume per Fe atom in
g8-Fe4N is 16% larger than that ina-Fe ~13.7 Å3 cf. 11.8
Å3!, it is conceivable that the extra space which must be
available at the interface provides nucleation sites forg8
nitride.

Another explanation for the difference in growth mode
could be a difference in kinetic behavior of nitrogen in the
two samples. If the two Ni/Fe interfaces have a different
permeability for nitrogen, this would lead to a different ni-
trogen chemical potential at the interface, and thus to a dif-
ferent driving force for the formation of nitrides at the inter-
face, resulting in a different precipitation behavior. A kinetic
effect would thus result in a different uptake rate of N in the
Fe layer. However, a different uptake rate is not observed as
will be shown in the next section. Therefore, the difference
in the two samples is not caused by a kinetic effect but by a
difference in nucleation behavior, as discussed above.

The nitriding was done at 275 °C; at 325 °C a similar
behavior is observed for the two series, but at a higher rate.
A 20 at. % level~i.e., a continuousg8-Fe4N layer! is reached
after 3 min nitriding time for samples of both series I and II.
Upon longer nitriding theg8 layer transforms into an
e-Fe32xN layer ~profiles not shown here!. It cannot be in-
ferred from the depth profiles whether the difference in
growth mode also exists for theg8→e transformation.FIG. 2. Schematic image of growth modes for~a! series I and~b! series II.

FIG. 1. ERD profiles of samples nitrided for different times at 275 °C:~a!
series I and~b! series II. The deeper edge of the profiles is caused by the
limited probing depth of ERD and is not a feature of the N profiles.
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B. N uptake rate

The total amount of nitrogen taken up after different
nitriding times and temperatures was measured by ERD us-
ing a 42 MeV Si beam, which allows to measure a depth
range ending just beyond the Fe/Si interface. This resulted in
a plot of the amount of N versus the nitriding time as given
in Fig. 3. Only minor differences are observed between
samples from different series, despite the remarkable differ-
ences in growth mode as discussed in the preceding section.

After 3 min of nitriding at 325 °C, the rate~i.e., the slope
of the line! decreases. Several reasons can be given for this.
Since equilibrium is approached, the driving force for nitro-
gen uptake decreases, and therefore the nitriding rate de-
creases. Another reason can be that after;3 min at 325 °C a
different step in the process determines the rate of the nitrid-
ing reaction. Possibly, this is the nucleation and growth ofe,
since at this pointe starts to develop.

To discuss which step is rate limiting in the initial
stages, it is necessary to compare only the initial rates of the
nitriding process at 275 and 325 °C. Therefore, at 275 °C the
points up to 22 min were taken into account, while at 325 °C
the points up to 3 min were used to determine a~linear! rate,
as indicated by the dashed lines in the figure.

In Fig. 3, the results of nitriding experiments at a total
pressure of 0.2 atm~series I at 325 °C! are given. Again, all
depth profiles were flat, in agreement with the discussion of
the growth modes in the preceding section. Apparently, ni-
trogen is taken up at an;5 times lower rate as compared to
the initial rate at 1 atm.

The presence of H2 reduces the nitriding rate as well, as
was demonstrated explicitly in an additional experiment in
which 5 vol % H2 was added to the NH3 gas. After 30 min at
275 °C a~flat! N level of only ;8 at. % was observed in a
sample from series I, which is a much lower concentration
than the 18 at. % which is reached after 22 min when pure
NH3 is used@Fig. 1~a!#. A similar reduced rate is observed at
325 °C; at this temperature the N uptake rate was roughly 5
times lower in a 95/5% NH3/H2 mixture than in 100% NH3.

C. Rate-determining step

In this section the rate-limiting step in the overall nitrid-
ing process is discussed. For this purpose the process is di-
vided into several steps. These steps include:

~1! Sticking and desorption of NH3 and H2;
~2! decomposition of NH3 into atomic N and H and up-

take of atomic N in the Ni layer;
~3! diffusion of N through the Ni layer;
~4! transfer of N from the Ni layer into the Fe layer

across the interface;
~5! diffusion of N in the Fe–N layer;
~6! formation ofg8 nitride.
There are two observations, described in the previous

sections, which already point at step 1 or 2 as being rate
limiting. These are the rate dependence on the NH3/H2 pres-
sure ratio and on the total pressure, respectively. A lowering
of the absolute pressure with a factor of 5 resulted in a low-
ering of the nitriding rate with approximately the same fac-
tor. If, for the sake of argument, another step than step 1 or 2
~further on in the chain! is assumed to be rate limiting, there
should be~near-! equilibrium with the chemical potential in
the gas up to this step. Since the chemical potential depends
only weakly on the gas pressure~at least less than linear!, it
is not expected that the gas pressure would largely influence
the rate of this step.

Yet, it is interesting to discuss the above-mentioned
steps in greater detail and to try to formulate other arguments
in favor of the step which limits the rate of N uptake in the
Fe layer. It will be argued that step 2 is the only step that can
be rate limiting.

1. Steps 6 1514: N diffusion in Fe and g8 nitride
formation

A similar uptake of N is observed for samples of series I
and II, despite the different characteristics of the N profiles
and the growth modes of theg8 nitride layer in Fe, for which
it was discussed that they are dependent on the structure
and/or the amount of oxygen at the Ni/Fe interface. Further-
more, in series I, N diffuses througha-Fe, while in series II,
N diffusion throughg8 nitride is necessary, which is much
slower than diffusion througha-Fe.7 The similar uptake rate,
combined with different characteristics of nitride nucleation
and nitrogen diffusion for both series, strongly suggests that
steps 6, 5, or 4 do not contain the rate-determining step in the
nitriding process.

2. Step 3: Diffusion through Ni

Nitriding experiments~275 °C, 10 min! on samples of
series I with different Ni layer thicknesses were performed to
determine whether diffusion through Ni is rate limiting in the
process. The amount of N taken up did not vary by more
than 20%, when Ni layers with thicknesses of 10, 25, and 40
nm were used. A difference of a factor of 4 would have been
expected between the 10 and 40 nm Ni layers when transport
through this layer was rate determining. This implies that
step 3 is not rate determining in the nitriding process.

This conclusion is supported by an estimation of the pos-
sible flux of N through the Ni layer per unit time. The dif-
fusion coefficient of N in Ni is not known exactly, but the

FIG. 3. Amount of N taken up in the Ni/Fe bilayer as a function of time for
both series I and II nitrided at 275 and at 325 °C. The dashed lines are linear
fits to the initial parts of the data for samples of series I.
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activation energy is similar to that of N in Fe,8 and thus the
diffusion coefficient for Ni can be estimated by taking that
for Fe and correcting for the difference in lattice structure
and lattice parameter between Ni and Fe. The concentration
gradient is derived from a surface concentration in equilib-
rium with the chemical potential of the gas and a~near! zero
concentration at the interface. This surface concentration is
not known, but even if this is~under!estimated as the solu-
bility limit @;0.15 at. % at 275 °C~Ref. 9!#, this leads to a
transport rate of N through 25 nm Ni of at least 1
31016N/cm2 s at 275 °C. This is two orders of magnitude
higher than the slope of the curve for series I at 275 °C in
Fig. 3 (;131014at/cm2 s).

The exclusion of the four steps just discussed results in
the conclusion that the rate-limiting step in the nitriding pro-
cess does not occur in the solid, but rather in the gas phase or
at the Ni surface. In the following, first the arrival and de-
sorption of NH3 and H2 will be discussed, and then the spe-
cific reaction steps at the surface are treated.

3. Step 1: NH 3 arrival and H 2 desorption

To estimate the amount of NH3 available for decompo-
sition at the surface, a very simple model is now presented.
In this model the following steps take place at the surface
~see Fig. 4!: NH3 molecules, hitting the surface, can stick to
it with reaction ratek1 ~here it is assumed that one surface
site is needed per NH3 molecule!; they can desorb from the
surface with reaction ratek2 or dissociate with reaction rate
kdiss. The atomic N is taken up in the Ni layer. H2 molecules
also hit the surface and stick to it dissociatively~reaction rate
k3 , two surface sites needed per H2 molecule!; H atoms can
recombine and desorb from the surface~reaction ratek4!:

NH3~g!
NH3~ad!, ~1!

NH3~ad!
N~sol!13H~ad!, ~2!

H2~g!
2H~ad!. ~3!

The sticking and desorption processes are dependent on
the fractions of the surface covered with NH3 and H,uNH3

anduH , respectively. These processes lead to the following
rate equations, whereKuptakeis the uptake rate of N in Ni and
A is the number of surface sites available~taken as
1015at/cm2!:

A
duNH3

dt
5k1pNH3

~12uNH3
2uH!2k2uNH3

2Kuptake, ~4!

A
duH

dt
52k3pH2

~12uNH3
2uH!222k4uH

2 13Kuptake. ~5!

In these equations the coverages with intermediate species in
the decomposition of NH3 into N and H, for instance NH2,
are not taken into account. If the steps to and from these
intermediate species are fast in comparison with arrival or
desorption steps, it can be easily shown that the coverages
with intermediate species are much smaller than the cover-
ages with NH3 and H ~see next section for further discus-
sion!. Without theKuptaketerms, Eqs.~4! and~5! describe the
adsorption isotherms of NH3 and H2.

Under steady state conditions, Eqs.~4! and~5! can be set
to zero. Taking literature values fork1 throughk4 , the NH3

and H coverages and the corresponding adsorption and de-
sorption rates can be calculated. For the reaction ratesk1 and
k3 , which give a measure for the number of collisions with
the surface times the initial sticking coefficients0 , the fol-
lowing expressions can be used:

k1,35
s0,NH3,H2

A2pmNH3,H2
kT

. ~6!

For both initial sticking factors a value of 0.1 is taken, al-
though these values are only known for well defined, clean
surfaces.10–12 The desorption of NH3 from the surface is
given by

k25AnNH3
exp

2Edes,NH3

kT
, ~7!

where the attempt frequencynNH3
is taken as 1013s,13 and

Edes,NH3
as 0.52 eV~12 kcal/mol14!.

For desorption of H2 a process with second-order kinet-
ics is taken into account:10

k45A2nH8 exp
2Edes,H

kT
, ~8!

where fornH8 1021 cm2/s H atom can be taken10 and Edes,H

equals 0.96 eV~22 kcal/mol!.15

For T5275 °C, pNH3
50.999 atm andpH2

50.001 atm
~and Kuptake50!, uNH3

and uH are calculated as 8
31013NH3/cm2 and 531014H/cm2, respectively. The cor-
responding NH3 adsorption and H2 desorption rates@the first
term on the right-hand side of Eq.~4! and the second one on
the right-hand side of Eq.~5!, respectively# are 1
31022NH3/cm2 s and 831019H2/cm2 s, respectively. These
rates are much higher than the experimentally found uptake
rate of;131014N/cm2 s. Therefore, the uptake of N is not

FIG. 4. Overview of arrival and desorption of NH3 and H2.
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greatly influenced by the arrival rate of NH3 or the desorp-
tion rate of H2 ~and vice versa!, which means that step 1
cannot be rate limiting.

It should be noted that the model is very simple, and
makes use of some rough assumptions, which might not at
all be true. It is conceivable that specific~defect! surface
sites are needed for NH3 sticking and decomposition. Also,
molecular precursor states or specific configurations of NH3

at the surface can play a role in the adsorption process. The
number of sites necessary to adsorb a H2 or NH3 molecule is
important in this mode. This number is not known precisely.
It was also assumed that NH3 and H occupy, and compete
for, the same adsorption sites, which is uncertain. Also, some
specific parameters, such as sticking coefficients, are not
known exactly. However, since in the model the maximum
obtainable uptake rate is many orders of magnitude larger
than the observed uptake rate in the experiments, it seems
reasonable to conclude that the arrival and desorption steps
are not rate limiting.

4. Step 2: Decomposition of NH 3 and uptake of N

The considerations mentioned in the previous paragraphs
lead to the conclusion that the reaction from NH3 adsorbed at
the surface to N taken up in the Ni layer is rate limiting. It is
interesting to elaborate a little further on a possible mecha-
nism ~and a corresponding rate model!, and compare that
with the presented results. One particular experimental ob-
servation is important here, namely that the uptake rate is in
first order linear withpNH3

.
If the successive dissociation steps,

NH3~ad!
NH2~ad!1H~ad!, ~9!

NH2~ad!
NH~ad!1H~ad!, ~10!

NH~ad!
N~ad!1H~ad!, ~11!

N~ad!
N~sol!, ~12!

are assumed to take place at similar surface sites, rate equa-
tions for the coverages with NH3, NH2, NH, N, and H can be
given. From these rate equations, expressions can be found
for the uptake rate of nitrogen under steady state conditions,
depending on which step in the decomposition process is rate
limiting. The rate equations and the corresponding uptake
rates are derived in the Appendix. There it is also shown that
the experimentally found linear dependence on the ammonia
pressure points to the first step in the chain@reaction~9!# as
the most likely rate-limiting step.

The amount of N taken up in the sample per cm2 and per
second at lowpH2

is then given by~see Appendix!

Kuptake5k5pNH3

k1

k2
. ~13!

Here, k5 is the rate constant for NH3 decomposition@Eq.
~9!#. For other steps a weaker~i.e., less than linear! pNH3

dependence is found, which therefore shows less correspon-
dence with the experiments. Withk5 written as

k55Andecompexp
2Edecomp

kT
, ~14!

the temperature dependence ofKuptake is then given by

Kuptake}exp
Edes,NH3

2Edecomp

kT
, ~15!

with an effective activation energy ofEdecomp2Edes,NH3
. Ex-

perimentally, this effective activation energy is estimated
from the nitriding rates at 275 and 325 °C, and is found to be
;1.0 eV. WithEdes,NH3

50.52 eV~12 kcal/mol14!, this leads
to an activation energy for the decomposition of NH3 ~more
in particular for the step from NH3 to NH2 and H! of ;1.5
eV. Unfortunately, the literature on the decomposition kinet-
ics of NH3 on Ni is scarce, therefore it is hard to compare our
findings with other, independent measurements. Experiments
done in the temperature range 70–100 °C, and at low NH3

exposures, showed that under these circumstances on
Ni~110! the NH2 to NH and H step should be rate limiting,
with an activation energy of 0.9 eV.16 However, at higher
temperatures, higher pressures, and with different gas com-
position, another reaction step may become rate limiting, as
has in fact been suggested by Grabke for the case of NH3

decomposition on Fe surfaces.17

Presently, the rates at all pressures and temperatures can
be calculated. Table I compares the experimental and calcu-
lated values of the uptake rate for a number of situations.
Herendecompis taken as 1013s. Since the exact partial pres-
sures of NH3 and H2 are not known, values for these param-
eters were estimated.

The calculated values are roughly one order of magni-
tude smaller than the experimental values. However, the gen-
eral image resembles the tendencies found in the experi-
ments. The amount of nitrogen taken up per second increases
with increasing temperature, increasing total pressure, and
decreasing relative amount of H2 in the gas mixture. If other
values~within the uncertainty range! for the initial sticking
coefficients are used, the calculated and experimental values
can be brought to close agreement. In this model it was as-

TABLE I. Experimental and calculated values for N uptake and the accompanying coverages with NH3 and H2.
Note that thepNH3

/pH2
ratio of 0.999/0.001 is only an estimation of the actual situation in the furnace.

T
~°C!

pNH3

~atm!
pH2

~atm!
Kupt exp
~N/cm2 s!

Kuptcalc
~N/cm2 s!

uNH3
A

~at/cm2!
uHA

~at/cm2!

325 0.999 0.001 531014 731013 531013 231014

275 0.999 0.001 131014 731012 131014 431014

325 0.1998 0.0002 131014 231013 131013 131014

325 0.95 0.05 ;131014 131013 231013 731014
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sumed that NH3 needs one surface site to stick to, while H2

needs two because of the dissociative adsorption. For NH3 in
particular this assumption is questionable. Although it is as-
sumed that NH3 does not dissociate immediately after stick-
ing it might also need more than one surface site because of
its larger size. Furthermore, values for the parameters in the
adsorption and desorption processes are taken from literature
experiments performed on clean and well defined Ni sur-
faces. In the present experiments, the condition of the Ni
surface is not precisely known. For a more detailed knowl-
edge of the reaction mechanism it is necessary to perform
measurements on the surface coverages of the different spe-
cies.

The conclusion on the rate-limiting step is valid only for
the initial stages ofg8 nitride precipitation and growth of a
relatively thin nitride layer~a few hundred nm!. For later
stages of the nitriding process, or at other temperatures, other
steps can become rate limiting. For instance, if thicker nitride
layers form according to the growth mode of series I, the
transport of N througha-Fe certainly becomes rate limiting
above a critical thickness. Similarly, for the growth mode of
series II, it can be assumed that transport of N through the
continuousg8 layer becomes rate limiting above a certain
thickness of theg8 layer. Indeed, at the more widely applied
nitriding temperatures between 500 and 600 °C, the transport
of N through the already formed nitride layer has been
shown to quickly become the rate-limiting step.7

The present work can be compared to that of Grabke,17

who did extensive research on the rates of NH3 decomposi-
tion and N uptake on Fe at nitriding potentials at which no
nitrides were formed. In contrast with the present work, for
his model Grabke assumed explicitly that NH3 and H only
weakly bind to the surface and that their coverages depend
linearly on pNH3

and pH2

1/2, respectively. Although this as-

sumption is different from our starting point@Eqs. ~16!–
~20!#, Grabke also arrived at the conclusion that at low par-
tial H2 pressures and at low temperatures the reaction step
from adsorbed NH3 to NH2 plus H is rate limiting, and ex-
perimentally determined a linear dependence of the uptake
rate of N onpNH3

. For higher partial H2 pressures, the reac-
tion step from NH2 to NH plus H became rate limiting in
Grabke’s work. This cannot be compared to the present ex-
perimental results. It should be noted that then the coverages
with NH3, H2, and intermediate species play an important
role, which was not taken into account by Grabke.

IV. CONCLUSION

In this article, the N uptake rate and the rate-limiting
step in the thermochemical nitriding method at low tempera-
tures are discussed. In experiments in which samples with
and without a Fe–O layer at the Ni/Fe interface were nitrided
for different times, it was found that two different growth
mechanisms occur, which show a similar N uptake rate. Also
the influence of lowering the total pressure or adding H2 to
the nitriding atmosphere was discussed.

The nitriding process has been divided into six steps. It
is shown that one of the processes occurring at the surface of
the Ni layer is the rate-limiting step. From a simple model it

is concluded that at low H2 pressures the reaction from NH3

adsorbed at the surface to NH2 and H probably determines
the rate of the reaction. The activation energy of this step
was derived as 1.5 eV. With this activation energy, and ac-
tivation energies for desorption processes, the observed rates
were calculated. The trends in the calculated values showed
reasonable resemblance with the experimental trends, in par-
ticular the linear dependence of the uptake rate on the total
pressure was reproduced. Also the observed dependence on
the partial hydrogen pressure was reproduced in the calcula-
tions.
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APPENDIX: STEP 2

In this appendix the mathematics in the model presented
in Sec. III C about the successive decomposition steps of
NH3 will be presented in greater detail. This decomposition
is assumed to take place according to reaction steps~9!–~12!.
For these steps the following rate equations can be given, in
which k5 and k6 are the rate constants of the forward and
reverse reactions of~9!, while the same holds fork7 andk8

for reaction~10!, for k9 andk10 for reaction~11!, and fork11

andk12 for reaction~12!:

A
duNH3

dt
5k1pNH3

~12u total!2k2uNH3

2k5uNH3
~12u total!1k6uNH2

uH , ~16!

A
duNH2

dt
5k5uNH3

~12u total!2k6uNH2
uH

2k7uNH2
~12u total!1k8uNHuH , ~17!

A
duNH

dt
5k7uNH2

~12u total!2k8uNHuH

2k9uNH~12u total!1k10uNuH , ~18!

A
duN

dt
5k9uNH~12u total!2k10uNuH

2k11uN1k12@N#Ni~12u total!, ~19!

A
duH

dt
52k3pH2

~12u total!
222k4uH

2 . ~20!

For the steady state, in which all time derivatives in the
equations above equal zero, expressions can be found for the
coverages with the different species. The amount of N uptake
depends on the coverage with the species of which the de-
composition is the rate-limiting step. If for instance the reac-
tion from NH to N and H is rate limiting,Kuptake scales
linearly with the NH coverage. In that casek9 should be very
small and its contribution toA(duNH)/(dt) can be neglected.
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Also the coverage with N is small, since every N atom that is
formed by the rate limiting reaction from NH to N and H
will immediately be taken up by the Ni layer. Expressions
can be found for the coverages of the species, of which the
decomposition is rate limiting, and for the corresponding up-
take rates. As an example this will be done for the case in
which NH2 to NH plus H is rate limiting.

For the coverage with NH2 the following expression is
then found:

uNH2
5

pNH3

pH2

1/2Ak3

k4

k5

k6

k1

k2
~12u total! ~21!

with an uptake rate of

Kuptake5k7uNH2
~12u total!. ~22!

In these expressionsu total depends onpH2
andpNH3

. An
approximation has to be made foru total: it can be replaced by
the coverage of the most abundant species~NH3, NH2, or H,
depending on the values of the different reaction constants
that are unknown!. If the surface is covered with NH2 ~which
is the case ifk5 is much larger thank6!, u total is replaced by
uNH2

. From Eq.~21! an expression can now be found for
uNH2

and thus forKuptake:

Kuptake5

k7pNH3

k5

k6

k1

k2

pH2

1/2Ak3

k4
S 11pNH3

k5

k6

k1

k2
Y pH2

1/2Ak3

k4
D 2 . ~23!

For the case that the surface is mainly covered with H~u total

can be replaced byuH!, the following expression is found:

Kuptake5

k7pNH3

k5

k6

k1

k2

pH2

1/2Ak3

k4
S 11pH2

1/2Ak3

k4
D 2 , ~24!

and when the surface is mainly covered with NH3 ~u total can
be replaced byuNH3

!, Kuptakecan be written as follows:

Kuptake5

k7pNH3

k5

k6

k1

k2

pH2

1/2Ak3

k4
S 11pNH3

k1

k2
D 2 . ~25!

To resemble the experimental findings, these expressions
should be linear inpNH3

, while they do not depend on
pNH3

/pH2
. This is not true for all three expressions above.

Thus, according to this model the rate-limiting step is not the
decomposition of NH2 into NH and H. The expressions for
the other possible rate-limiting steps will not be given in
further detail. It is concluded that the rate-limiting step
which comes closest to the experimentally found dependence
is obtained when NH3 decomposition is rate limiting. For
this rate-limiting stepu total can be replaced byuH since the H
coverage is much larger than the NH3 coverage, see the dis-
cussion in step 1. With

Kuptake5

k5pNH3

k1

k2

S 11pH2

1/2Ak3

k4
D 2 , ~26!

the uptake rate becomes linear inpNH3
if pH2

1/2Ak3 /k4!1,

which is the case for hydrogen pressures in the order of
0.001 atm or lower.

1M. A. J. Somers and E. J. Mittemeijer, Surf. Eng.3, 123 ~1987!.
2D. K. Inia, W. M. Arnoldbik, A. M. Vredenberg, and D. O. Boerma, Surf.
Eng.12, 326 ~1996!.
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