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Dedicated to the memory of W.A. Harris, Jr

We consider difference equations y(s+1) = A(s)y(s), where
A(s) is an n X n-matrix meromorphic in a neighborhood of
oo with det A(s) # 0. In general, the formal fundamental so-
lutions of this equation involve gamma-functions which give
rise to the critical variable slogs and a level 1T. We show
that, under a mild condition, formal fundamental matrices of
the equation can be summed uniquely to analytic fundamental
matrices represented asymptotically by the formal fundamen-
tal solution in appropriate domains.

The method of proof is analogous to a method used to
prove multi-summability of formal solutions of ODE’s. Start-
ing from analytic lifts of the formal fundamental matrix in
half planes, we construct a sequence of increasingly precise
quasi-functions, each of which is determined uniquely by its
predecessor.

1. Introduction.

This paper is concerned with summability of formal solutions of linear ho-
mogeneous difference equations. We consider the system

(1.1) y(s+1) = A(s)y(s),

where s is a complex variable, y(s) € C™, and A(s) an n X n-matrix, mero-
morphic at infinity, det A(s) # 0. For some p € N Equation (1.1) has a
formal fundamental matrix solution of the form

(1.2) Y(s) = H(s)s"*e) sk

with H(s) € End(n, C[[s™"/7]]), det H(s) # 0, A = @], \;l; where \; € 17
and |; is the n; x nj-identity matrix, G(s) = @}, g;(s)l; where g;(s) =0
or g;(s) is a polynomial in s/ of degree at most p with g;(0) = 0, and
L =@ L Lj = ¢lj + N; with ¢; € C and N;j an n; x nj-nilpotent
matrix, and with nqy +ns + -+ +n,y = n.

35
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The purpose of this paper is to sum the entries of H(s) on certain un-
bounded domains D in order to obtain uniquely characterizable analytic
fundamental matrix solutions

Y(s) = H(s)s2e®) sk with
H(s) ~ H(s), s — oo on D.

Any solution of (1.1) on D can be written as Y(s)P(s) where P(s) is a
1-periodic C™-valued function.

If the factor s** does not appear in the formal fundamental matrix, i.e.,
if all A\;’s vanish, the formal fundamental matrix resembles that of a homo-
geneous linear differential system. Formal power series solutions of mero-
morphic differential equations can be summed by means of a method known
as multisummation. With such an equation one can associate so-called ‘lev-
els’, positive rational numbers ki, ... k., and corresponding ‘critical vari-
ables” s*1, ... s* which play a crucial part in the summation process.
Multi-summation is a particular case of accelero-summation (see [Eca87]),
involving only elementary accelerations. There exist various equivalent defi-
nitions of multisummability (see Definition 2). It can be formulated in terms
of Borel and Laplace transforms (cf. [MR91]), or in a more abstract way
(cf. [MR92]). In [Bal94] Balser presented yet another definition. Multi-
summability of solutions of both linear and nonlinear meromorphic differen-
tial equations has been proved both by using Borel-Laplace techniques (see
[Bra91| and [Bra92]) and in a way based on the definition of Malgrange
and Ramis (see [BBRS91], [RS94], [Bal94], [Tov96], and [BIS]).

Two of the most important features that distinguish linear difference
equations from linear differential equations are:

(1.3)

(i) The solution space of a homogeneous linear difference equation is lin-
ear over the l-periodic functions instead of C-linear as in the case of
homogeneous linear differential equations.

(ii) The occurrence of the factor sMs_ that does not appear in formal solu-
tions of differential equations.

If the factor s*° does not appear in the formal fundamental matrix, or,
more generally, if all A\;’s are equal, then all entries of I:I(s) are multi-
summable in all but at most a countably infinite number of directions. This
was shown in [BF96] by means of Borel-Laplace techniques in the spirit of
the work of Ecalle [Eca85]. With the same techniques multisummability
of formal solutions of a class of non-linear difference equations was proved
there. .

If not all \;’s are equal, some of the entries of H(s) may not be multi-
summable in any direction. This is due to the fact that, in this case, one of
the critical variables is slog s, which is not a rational power of s.

Following Ecalle (cf. [Eca85]), one might set out to sum the formal so-
lutions by accelero-summation, using Borel and Laplace transforms. For a
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particular class of linear difference equations, accelero-summability of the
formal solutions was established in [Imm]. Ecalle’s method involves the
study of a convolution equation, obtained from the equation satisfied by H
by means of a formal Borel transformation in the variable slog s, which does
not look very inviting. In the present paper we take a different approach,
similar to the method employed in [BIS] to sum formal solutions of lin-
ear differential equations (cf. Theorem 13). Our starting point is the ‘main
asymptotic existence theorem’ for difference equations (Theorem 6), which
says that I:I(s) can be lifted on half planes in C.,, bounded by the real or
imaginary axis, to an analytic matrix H(s) such that (1.3) defines an analytic
fundamental matrix Y(s) of the difference equation. With the equation we
associate certain levels 0 < k; < --- < k. = 1, that can be extracted from
the formal fundamental solution, as well as a level 17 if not all \;’s are equal
(see Definitions 3 and 5). We choose a covering of a neighbourhood of oo in
Co by appropriate half planes and, on each half plane a fundamental sys-
tem of (1.1) represented asymptotically by the formal fundamental system
(1.2). In several steps, modifying the solutions by exponentially small func-
tions of increasing order at each subsequent step, we construct a sequence
of so-called kj-precise quasi-functions, j = 1,... ,r. If the equation does not
possess a level 11, this procedure yields the multi-sum, or (k1,... , k. )-sum
of the formal solution (Theorem 13).

If the equation does possess level 17, the final step is more delicate than
the preceding ones. This is due to the relative ‘closeness’ of the levels 1 and
1" and the transcendental nature of the critical variable slogs. In order to
end up with a unique sum, we need to consider domains that are strictly
smaller than half planes, but sufficiently large to exclude the existence of flat
solutions of the difference equation satisfied by H, with a dominant factor
of the form si=2)5 with \; # Aj. Here we shall consider domains of the
type {s € Cxlargs € ((h — )7, (h + 1)), (=1)"R{s(logs + if)} > 1},
with 0 € R, h € Z (cf. Figures 2-5). On the union of two such domains with
the same h we can define a sum H(s) of H(s) if a certain generic condition
is satisfied (cf. Section 7). By means of (1.3) we obtain a unique analytic
fundamental matrix of the difference equation (Theorem 18).

In order to illustrate the particular properties of difference equations with
level 17, we end this introduction with a simple example.

Example 1. Consider the equation
(1.4) h(s+1) —as 'h(s) = s witha € R, a >0

which can be transformed into the matrix equation

(w)een=(% 1) (%)
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(1.4) belongs to a class of equations that was discussed in [BH75] and in
great detail by Ecalle in [Eca85, §3.6] and later by Immink in [Imm)]. It

has a unique formal solution h = Donst has™ Let a(t) == 32, 5, %t”fl,

the formal Borel transform of h. The power series © formally satisfies the
convolution equation

e tu(t) —a(l xu)(t) = 1.

This equation has the unique analytic solution
u(t) = e~
Thus 4(t) coincides with the Taylor series at t = 0 of this function and is
actually a convergent power series which extends to a holomorphic function
on C. The convergence of @ implies that h is 1-Gevrey. By using Cauchy’s
formula for the coeflicients in a convergent Taylor series, one may derive the
more precise estimate
n

|hn| < K (
logn

n
> A", ¥Yn > 2, for some K, A > 0.
This type of estimate is typical of difference equations possessing a level 17
(cf. [Imm88]).
The function u(t) = e!~%¢*" is bounded in the left half plane and, conse-

quently, h(s) is I-summable in all directions in (Z,2X). The 1-sum hy(s) is
analytic on the sector 0 < args < 27 and is a solution of (1.4).

In the right half plane u(t) grows faster than exponentially of any order
on the horizontal strips {t € C | ®t > 0,3t € (—7/2,7/2) mod 27}, but on

the strips
{te C|Rt>0,3t € (r/2,37/2) mod 27}
it decreases faster than exponentially of any order. Hence, the functions

(1.5) Py () ::/ e Stu(t)dt, n € Z,

n

with C), a path from 0 to +oco+i6, § € (7/2+42nm, 37 /2+42nm) (see Figure 1)
are well defined and satisfy (1.4).

3n/2 + 2nm

/2 + 2nm

Figure 1. Contour C,,.
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The functions h,,, all have the asymptotic expansion has s — 00, —5 <
args < 4, uniformly on closed subsectors (cf. also [BH75]). However, it
can be shown that the h,, are not 1-sums. See also [vdPS97, Chapter 11].

In order to characterize these solutions by means of their asymptotic
behaviour, we have to consider this asymptotic behaviour on regions other

than sectors, namely regions of the form
D(0):={se C|R{s(logs+1ih)} > 1}, 0 € R,

see Figures 2-5.

-10

Figure 2. Region D(0). Figure 3. Region D(7).

10 -10

Figure 4. Region D(7). Figure 5. The regions ‘rotate’
clockwise with increasing 6.
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Proposition. For any 0 € (2nm,2(n+ 1)), there exist K, A > 0 such that

N-1

hyn(s) — Z hps™"

n=1

(1.6) < KAN(NV)|s|7™ Vs € D(#), YN € N.

This proposition has been proved by Borel-Laplace methods in [Fab97].
According to a theorem by Immink in [Imm96], h, ,, is uniquely determined
by the above property.

2. Preliminaries.

By Argz we denote the principal argument of z € C\{0}; we take Argz €
(—m, 7). The Riemann surface of the logarithm will be denoted by Cq.

For a, 8 € R we denote by S(a, 3) the open sector {s € C, | @ < args <
B}, and by S|, 3] the closed sector {s € Cx | @ < args < (}. Similarly,
S[a, B) and S(«, (] denote half-open sectors. For u € Z we define

H,, = (0 = V)2, (u+ 1) /2); Hy o= Sl — /2, (u+ L) /2).

Throughout this paper, by an upper half plane, a fourth quadrant, etcetera,
we understand a lift of the upper half plane, the fourth quadrant, etcetera,
from the complex plane to the Riemann surface of the logarithm. A sector
will always be a sector of C,, with vertex at the origin.

By definition, a neighbourhood of oo in a sector S (S not necessarily
open) is an open subset U of S, such that, for any closed subsector S’ of S
with aperture < 7, we can find sg € S such that sg +.5" C U. In particular,
Re'nm/2 4 H,, pe€Z R >0, is a neighbourhood of oo both in H, and in
H,.

If we write f(s) = O(g(s)) or f(s) = o(g(s)) as s — oo on a sector S, we
mean that f and g are functions defined on a neighbourhood U of oo in 5,
and that the O or o relation holds uniformly, as s — oo, on the intersection
of U and any closed subsector of S.

Similarly, if f(s) = >i>0 a;s79/P where p > 0, and if S is a sector, then
f(s) ~ f(s), s — oo on S, means the following: f is an analytic function on
a neighbourhood U of oo in S and for any closed subsector S’ C S and any
N € N, we can find positive constants R and Cg/ g v, such that

=2

(2.1) f(s) — ajsI/P| < CSCR’N’SFN/;D,VS e S'nU,|s| > R.
J

i
=)

The set of such functions f with an asymptotic expansion f on S as above
will be denoted by A(S).
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In accordance with the above, when we write f(s) ~ 0, s — oo on S, we
mean that f(s) = o(s™"), s — oo on S, for any N € N.

Suppose a(s) = > 1L, ﬁj(s)(log s)7 with ﬁj e C[[s~'/?]] for j =0,...,m.
If we write u(s) ~ u(s), s — 0o on S, we mean that there exist analytic
functions hj,j = 0,... ,m, on a neighborhood of oo in S such that u(s) =
> itohi(s)(log 5)7, with h;(s) ~ hj(s), s — oo on S.

If f € A(S) such that (2.1) holds and if there exist k > 0, and K¢/ r, Ag R
> 0 such that, for each N,

N N
CsrN < Kgr,pAg gl (ﬁ) ;

then we call f a k-Gevrey function on S with respect to the family %NO,
and we write f € A/ (S). Note that %NO is an example of a ‘convenient
family’, according to the terminology introduced by Malgrange in [Mal95].

Any f € Aqi(S) has an asymptotic expansion f(s) = Z;io a;s~I/P
with the a; satisfying

laj| < KAD (ﬁ) Vi >0,

for some positive K and A. Such a formal series f will be called a Gevrey
series (in s~ ') of order 1/k with respect to the family %No, and

Cl[[s~ /7] E denotes the set of such series.

In the sequel all Gevrey functions and Gevrey series will be with respect
to the family %No with p as in (1.2), and we omit the references to this
family in our notations.

A function f defined on a neighbourhood of oo in a sector S is exponen-
tially small of order & > 0 on S if for any closed subsector S’ of S there
exists a positive constant ¢ such that f(s) = O(e~<*"), s — oo on §'. If
this holds for all positive ¢ then f is said to be supra-exponentially small of
order k on S. The set of all analytic functions on a neighbourhood of co in
S which are exponentially or supra-exponentially small of order k£ on S will
be denoted by AS7F(S) and A<7#(S) respectively. If S = S(a, 3) then we
will also write these latter sets as AS~*(a, 3) and A<"*(a, 3). Similarly if
S = S(a, B] ete. If f and g both are in A1) (S), and f and g have the
same asymptotic expansion, then it can be shown that their difference f — g
is in AS7F(S) (cf. [Mal95]).

Let [ > 0 and S be an open sector. Let {S;}ic; be a covering of S
consisting of open sectors and let f() € A(S;), i € I, such that f1) — f(i2) ¢
ASTY(S;, N Sy,) for any iy,ip € T with S;, NSy, # 0. These data determine
an [-precise quasi-function on S. We identify two such sets of data
{fDYier; {Si}ier) and ({¢D}jes; {Sj}jen) if fO — g € ASTI(S; N 5;)
where ¢ € I, j € J such that S; NS; # (). They define the same [-precise
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quasi-function on S and we write (A/AS7!)(S) for the set of these I-precise
quasi-functions on S. Indeed, if we identify the interval I = (a,b) in R
and the sector S(a,b), then A and AS™* k > 0, can be considered as
sheaves on R and then A/AS"! is the quotient sheaf. Also elements of
(AJAS"H"(9)[log s] with n € N will be called I-precise quasi-functions on
S.

All elements in a representative { f) }ics of f € (A/A=H7(S)[log s] have
the same asymptotic expansion f and this expansion is independent of the
chosen representative. Therefore we may write f(s) ~ f (s), s — oo on S,
without causing confusion.

Similarly if | > k > 0 we define (Aq/4)/AS7')(S) as the set of [-precise
quasi-functions f which have representatives f; on S; as above with f; €
A(l/k)(SZ) forall ¢ € 1.

If fe C[[sil/p]]ik then there exists a unique f € (A /ASF)(Cp)

P

such that f ~ f , where C,, denotes the Riemann surface of s¥/P. This f will
be denoted by T-1f (cf. [MR92, Cor. (1.8)]).

Let f € (A/AS7H"(S)[logs]. The ‘restriction’ of f to an open subsector
S’ of S, denoted by f|g, is defined as follows: Suppose {f};c; is a rep-
resentative of f with respect to a covering {S;}ier of S. Then f|g is the
element of (A/AS"H)"(S")[log s] defined by {f|s.ns tier, where f®)|g,ngr
is the restriction of f® to a neighbourhood of co in S; N S’

Definition 2. Let 0 < k; < --- < k,, and let f € C[[s_l/p]]l/(pkl). Fur-
thermore, let S1 D ... D S, be a nested sequence of open sectors, where
S; has aperture larger than 7/k;, i = 1,...,r and S; has aperture at most
2pr. We say that f is (k1,...,k,)-summable on (Si,...,S,) if there exist
fi € (A(l/kl)/AS_ki“)(Si), i=1,...,r—1,and f. € Aq1/x,)(Sr), such that
fils;.1 = fir1 mod AS=ki1 i =0,... r—1 where fo = T"1f. We call f,
the (ki,...,k.)-sum of f on (Sy,...,S,), and we have f.(s) ~ f(s), s — oo
on S,.

According to the ‘relative Watson lemma’ ([MR92, Prop. (2.1)]) fit1
is completely determined by f; and S;11, ¢ = 0,...,r — 1. Hence the
(k1,... ,ky)-sum of f on (S1,...,S;) is uniquely defined. We may
extend the definition of multisummability in an obvious way to the case
that f is an n-vector or an n x n-matix with elements in C[[s_l/p]]l/(pkl).

Definition 3. Let f(s) = s%e?msb+4(s) 57 with d € %Z, b € C, q(s) iden-
tically zero or a polynomial in s'/P without constant term and of degree at
most p—1, and v € C. We will say that f(s) is of level 17 if d # 0, of level
Lifd=0,b# 0, of level k with k € {3,... ,Pp;l} ifd=0b=0, q(s) # 0 and
q(s) has degree pk in s%/P, and of level 0 if d = b = 0 and ¢(s) = 0.
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Let f be of level k € (0,1], so d = 0, 2misb + q(s) Z 0. A closed interval
[0 —7/k, o] will be called a Stokes interval of level k of f if f € AS7*(o—
w/k,0). So if k = 1 then 0 = 7 — Argb mod 27 whereas if 0 < k£ < 1 and
q(s) = ws® + o(s¥), s — 00, w # 0, then ko = %7{' — Argw mod 27.

If f is of level 17 we will, in Section 7, associate with it a certain Stokes
number. This number is connected with curves that separate regions of
growth from regions of decay. All these curves have the limiting directions
s
5 mod 7.

If f is of level 17, we have f(s) = exp(dslogs(1+ o(1))), s — +oo with
d # 0, and so it grows or decays faster than exponentially of order 1 on R,
but slower than any higher exponential order.

Definition 4. For any (i.e., not necessarily open) sector S we will write
fe AS_ﬁ(S) to express that f is analytic on a neighbourhood U of oo in
S, and that for any closed subsector S’ of S, there exists a positive constant
¢ (depending on S’) such that f(s) = O(e~cl*I1°8ls)) uniformly as s — oo on
s'nU.

We define 1"-precise quasi-functions by replacing [ by 17 in the definition
of [-precise quasi-functions above.

So, for example, e®1°85 ¢ A<~ (Hp) if d<0. And if p(s) => >0 pje2misi
is an analytic 1-periodic function on {s € C|Js > R} for some R > 0, then
p(s)edstoss ¢ A<= (o N Hy) if d < 0.

With Equation (1.1) we associate levels, and with each level certain Stokes
intervals or numbers. For this purpose we rewrite the formal fundamental
matrix solution (1.2) as follows:

(2.2) Y(s) = U(s)F(s),
where U(s) = H(s)sN, N = @7, N; and F(s) = sheC9sC C =@l ;.

The columns (s ) (I =1,...,n) of Y(s) form a formal fundamental
system of solutions {g;};" , and we have
(2.3) 9i(s) = fls)u(s), fils) = shoePmshralelgm,

where @;(s) € C"[[s~1/?]][log 5] is the I-th column of U(s), and, furthermore,
if0<l—(ni+...+nj_1) <nj, then d; = A;, b € C and ¢;(s) =0 or ¢(s)
is a polynomial in s*/? without constant term and of degree at most p — 1
such that 2misb; + ¢;(s) = ¢;(s) and y; = ¢;. Without loss of generality, we
may assume that b, € [0,1),l=1,... ,n

We use the following abbreviations (cf. (2.3)): fou = fmfl_l, At =
dm — diy by = b — b1y Gl = Gm — QU Yml = Ym — V- We write K,y for
the level of f,;.
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Definition 5. The levels of Equation (1.1) are the levels of the functions
¥ fr(s), j € Z, myl € {1,...,n}. Let k € {3,... ,%,1}. The Stokes
intervals of level k of the equation are the Stokes intervals of level k of the
functions *™J f,,(s), j € Z, m,1 € {1,... ,n}.

Taking j = 0 we see that all the k,,; are levels of the equation. Moreover,
0 and 1 always are levels of the equation (take m = [ and then j = 0 and
j # 0, respectively). By 0 < k; < --- < k, = 1 we denote the increasing
sequence of levels of the equation in the interval (0, 1]. If $b,,; # 0 for some
m and [ then there are infinitely many Stokes directions (endpoints of Stokes
intervals) —Arg(b,,; + j) mod 7, j € Z which cluster at 0 mod 7.

The following theorem is the counter part in the theory of linear differ-
ence equations of the ‘main asymptotic existence’ theorem in the theory of
differential equations.

Theorem 6. Letl € {1,... ,n} and §;(s) = fi(s)w(s) be a formal solution
of (1.1) of the form (2.3) with iy(s) € C*[[s~'/7]][log 5].

Then for any p € Z there exists an analytic solution y;(s) = fi(s)ui(s) of
the equation such that w(s) ~ @ (s), s — oo on H,.

A proof of this theorem (for the case that no logarithmic terms appear
in 4(s)) can be found in [vdPS97]. It is based on the so-called quadrant
theorem, already stated by Birkhoff and Trjitzinsky in [BT33], but made
rigorous by Immink in [Imm91].

3. Two auxiliary lemmas.

The following lemma gives information on the relation between two funda-
mental systems of solutions of Equation (1.1), which have the same asymp-
totic behaviour at co on some sector.

Lemma 7. Suppose we have two fundamental matrixz solutions of Equation
(1.1), Y = UF and Y, = UF, such that U(s) ~ U(s) and Ui(s) ~ U(s) for
s — 00 on an open sector S, with F(s) and U(s) as in (2.2). Let w; and U1
be the l-th column of U and Uy, respectively.

Then there exist analytic 1-periodic functions py,, m = 1,...,n, on a
neighbourhood of oo in S, such that

n
u — U = E Dim frmitm.-
m=1

Moreover,
Dim(8) fmi(s) ~ 0,8 — 00 on S,Vm € {1,... ,n}.
If
up —upy € (AS7FYYS) for some k > 0 (including k = 11),
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then
Pim fmi € ASTH(S), ¥m € {1,... ,n}.

Proof. Let U := U — U;. Then UF = UFP, or, equivalently, FPF~1 = U~1U,
for some 1-periodic analytic matrix function P = (P,,;), on a neighbourhood
of 0o in S. From the diagonal form of the matrix F it follows that if py,, is
the element in the m-th row and [-th column of P, then

Pimfmi = (m-th row of U_l)(ul —up).

As U(s) ~ U(s) we have U71(s) ~ U~1(s) = s NH1(s). Hence any entry
of U™t is of order O(s*(logs)¥), s — oo for some u,v € Z. Since u(s) —
u1(s) ~0as s — oo on S, we thus find that

Pim(8) fmi(s) ~ 0,8 — oo on S,Vm € {1,... ,n}.

Similarly, we see that ppy, fy € AS7F(S), if u; — 1 € (AS=F)7(S) for some
k > 0, including k = 1. O

The next lemma yields more information on the asymptotic behaviour of
the functions py,, fry in the previous lemma.

Lemma 8. Let S := S(a1,az) be an open sector with 0 < ag — oy < 7.
Let p(s) be an analytic, 1-periodic function on a neighbourhood of oo in
S, and let f be a function of level k € {0,1/p,... 1,17} as in Section 2:
f(s) = ste2misbtals)sy with Rb € [0,1). Assume g(s) = p(s)f(s) ~ 0,
s — o0 on S. Let H be an upper or lower half plane in Co which has a
nonempty intersection with S.
Then g € ASTF(S) if k > 0 and g € AS7Y(H) if k = 0. If v denotes
some integer we have:
1) Ifk=0: If g <vmw < g thenp=g=0.
2) If0 < k < 1:
Then there exists ¢ € C such that g — cf € ASTY(H) and cf €
AS7E(S). If a1 < vm < ag then p(s) = c. If g € A<TF(S) then

g€ ASTI(H).

3) If k = 1:
If p # 0 then with H corresponds an integer N such that p(s) ~
pne?™ NS as |Ss| — oo on H where py # 0. If b € R* then g €

AS"Y(H) and if moreover a1 < vr < ag then p = g = 0. If ay <
vr < ag and (—1)VSb < 0 then p =g = 0.
Next suppose
(D) a1 <vr < ag and (—1)"Sb > 0.
(I1) (a1, a2) C (B1, B2) where (1, B2) does not contain a Stokes interval
of €271 f(s) of level 1 for any j € Z.
Then there exist analytic 1-periodic functions py and p— such that
p=p++p- and pif € AS oy, B2) and p—f € ASTH (B, ag). If
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a1 = vr then pif € AS7vrm, B) and similarly if as = vm then
p_f € AS7Y By, vn].

4) If k =1%:
If ap < (l/—f—%)ﬂ < ag, thenp = g =0. Ifvr < a1 < ag <
(v+3)mor (v—3)r < a1 <ay < vr theng € A ur ag) and
ge A (ay, vm] respectively. If f & AS1T(8) thenp =g =0.

5 If k<1 and g€ A<7Y(S) then g = 0.

Proof. We will give the proof for the cases (i) 2hm < o < ag < (2h + 1),
(ii) oy = 2hm and (iii) a1 < 2h7 < ag for some h € Z. The other cases can
be treated similarly.

We may choose H = Hyp+1. So p(s) and g(s) are analytic on H for
s > R for some R > 0. Put z = €?™ and P(2) := p(s). Then |z| = e 27%
and we have expansions

(3.1)

oo o
P(z) = Z P2 if 0 < |2] < e 2™ p(s) = Z p;e*™7 if §s > R.

j:—oo jzfoo

In case (iii) p is an entire function. So then (3.1) holds with p; =01if j <0
and R may be replaced by —oo. We now treat separately the different cases
of the lemma.

Ad 1) We have f(s) = s”. Hence p(s) = s 7g(s) ~ 0 as s — oo on
S. The 1-periodicity of p(s) then implies that p(s) ~ 0 as s — oo, so
P(z) — 0 as z — 0. Therefore p; = 0if j <0 and p,g € AS}(H). In case
(iii) also p(s) ~ 0 as s — —o0, so P(z) — 0 as z — oco. Hence P = 0 and
sog=p=0.

Ad 2) For any closed sector S C (SN H) and any p > R, there exist
positive constants K and a such that

p(s)| = 9(s)f(s) | < K exp(als|"), if s € Sy and s > p.

From the 1-periodicity of p(s) and the fact that k € (0,1) it follows that
Ip(s)| < K exp(a'Ss), Vs > p, for some o € (0,27), if we choose p suffi-
ciently large. This implies P(z) = o(z™1), 2 — 0. Hence p; = 0if j < 0
n (3.1). With ¢ := py we get p(s) —c € AS7YHH) and g — cf € AS7H(H).
If f ¢ AS7%(SN H) then ¢ = 0 since otherwise ¢ is unbounded in a neigh-
bourhood of oo in S. So in cases (i) and (ii) we have cf € AS7#(S). Also
c=0if g € A<7%(S) and therefore g € AS7'(H). In case (iii) we have
moreover P(z) = o(z) as z — oo and so P(z) = p(s) = ¢. If ¢ # 0 then
g=cfc ASF(S)asg~0in S.

Ad 3) The fact that f is of level 1 implies that d = 0,b # 0.

We have p(s) = g(s)f(s)™! = O(1) exp(—27is(b + o(1))) as s — oo on
S N H and therefore P(z) = O(z*t°M) as z — 0. So if p # 0 then there
exists N € Z such that p; = 0 for all j < N and py # 0 in (3.1). Then
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p(s) = pne?™Ns(14-0(1)) and g(s) = pye?™ bHN+To()s(140(1)) as Ss — oc.
As g(s) ~ 0as s — ooin S it follows that g € AS™YH(SNH) where SNH = S
in cases (i) and (ii). Moreover, if 3b = 0 then b+N > 0 and so g € AS~L(H).
In cases (ii) and (iii) we see that if p # 0 and 3b < 0 then g(s) — oo on
arg s = 2hm + € for € sufficiently small positive. Hence p = g = 0 if 3b < 0.

In case (iii) similar reasoning as above leads to p; = 0 for all j > M
with some M € Z, M > N, g(s) = 2™+M+o(1)s( 1 0(1)) as Is — —o0
and g € AS"!(aq,2h7). In particular, if 3b = 0 and py # 0 # pyr, then
the fact that g ~ 0 in S(2hm — €,2hm + €) for some € > 0 implies that
N+b>0> M +bin contradiction with M > N, and therefore p = g = 0.
So in case (iii) we have Jb # 0 if p # 0 and so Ib > 0. Consequently ¢ is
exponentially small of order 1 in S(2hm — €, 2hm + €) for some € > 0. Thus
g€ ASTH(S).

Next consider the case that (I) and (II) are satisfied. Now v = 2h and
only cases (ii) and (iii) with 3b > 0 have to be considered. Let o; :=
(2h+1)m — Arg(b+j) for all j € Z. Then S(o; —m,0;) is a maximal sector
where €271 f(s) is exponentially small of order 1 and the behaviour of g on
S N H implies that oy — ™ < 2h7 < ag < on. If o > P9 then we see that
g € AS72hm, B2). Next suppose oy < (2. As 0j increases monotonically
from 2hm to (2h + 1)7 as j increases from —oo to 400, there exists A € Z
such that 04 < f2 < 0441 and A > N. The condition on Stokes intervals
now implies that o4 — 7 < (4.

Let p_(s) := Z?:N pje?™i. Then p_(s) = O(e*™*4) on the lower
half plane and p_(s) = O(e*™*N) on the upper half plane. So p_f is
exponentially small of order 1 for args € (04 — m,2hn| and for args €
[2hm,on). Hence p_f € AS7Y(B1,a2). Furthermore, py = p —p_ =
Z;’iAHpjez’”'sj = O(e?™5(A+1)) on the upper half plane and as o441 > (s
we see that p, f € AS71[2h7, B2). Moreover, py f = g—p_f € AS L(ag, a)
and we conclude that p, f € AS (a1, 32).

Ad 4) Now f(s) = exp{ds(logs + O(1))}, s — oo with d # 0.
Since R(slogs) = Rslog|s| — Isargs, we have p(s) = g(s)f(s)™! =
O(exp{—dRslog|s| + O(s)}), as s — oo on S. As Rs/Js is a nonzero
constant on any ray args = 1) € §Z we see that if S contains such a ray on
which dRs > 0 then p(s) = O(1) exp(—N|Ss|) for any N € N and therefore
p =g = 0. In particular, if f ¢ AS—1" (S) then there exists a ray where
dRs > 0,s0p=g=0.

It is now sufficient to consider the case that S belongs to a right half
plane and d < 0. Choose € with 0 < ¢ < (ag — @1)/2 and £ < ag/2 — hr.
Let ¢ € (2hm, ag — 2¢). For any s with arg s = 1 there exists s_ € H with
s—s_ €N and args_ € (a2 — ¢, a2 — £/2) if Js is sufficiently large. Then
Rs_ < Yscot(az —¢). Thus

p(s) = p(s—) = O(1) exp[—d cot(az — €)Jslog Is + O(s)].
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From this and Sslog s = |s| sin ) log(|s|sin) = |s|(sinv log |s| +O(1)) we
conclude that |p(s)| < Kjexp{—dcot(as — €)sinv|s|log|s| + Kals|} if s
is sufficiently large where K; and Ko are some positive constants. Using
g(s) = O(1)p(s) exp[—|ds|(cos i) log |s| + O(s)] and cos® — (sin®)) cot(aa —
g) =sin(ag —e — 1) /sin(ag — ) > sine/sin(ag — ) =: ¢ > 0 we see that
9(s) = O(1) exp(—cc|ds|log |s])

if s is sufficiently large and args € (2hm,ay — 2¢). Thus we see that
g € AT [2hw, ). In case (iii) we get similarly g € AS"" (ay, 2hm).
Furthermore, the 1-periodic function p is bounded on any bounded strip
parallel to the real axis intersected with S. Thus we obtain g € AS™1"(S)
in case (iii).

Ad 5) If g(s) € A<7H(S) and k < 1 we deduce p(s) = g(s)/f(s) €
A<1(S). Therefore p(s) = O(1)e 1l as s — oo for all ¢ > 0. So P(z) =
O(27) as z — 0 for all j. Hence P(z) =0 and so p =g = 0. O

4. A Gevrey property of solutions

Proposition 9. Let ki be the lowest positive level of (1.1). Then the ele-
ments of H(s) are Geuvrey series of order 1/ki. There exist fundamental
matrices Y (s) = H (5)s25eC) sk of (1.1) such that HW(s) is a matriz
of k1-Geuvrey functions on H,, with HW(s) ~ H(s) on H, for all pn € Z.
For any po € Z a representative of T-'H (cf. definition of T~ in Sec-
tion 2) on the covering {H, | p = po,...,po + 4p — 1} of C, is given by
{HU | o= puo, ..., o+ 4p — 1},

Let S be an open sector of aperture at most ™ and let Gy be given by (2.3)
forl=1,... n. Assume that fiv; is a solution of (1.1) such that vy ~ @y on
S forl=1,...,n. Then v; € (A /k,))"(S)[logs]. Moreover, { frui}j-, is a

fundamental set of solutions of equation (1.1).

Proof. To prove the last statement, let V be the matrix with v; as [-th
column. Then V ~ U on S, where U as in (2.2). As detU # 0, we also
have detV £ 0. Thus Y := VF is a matrix solution of Equation (1 1) and
detY # 0, i.e., it is a fundamental matrix solution.

According to Theorem 6 and the last statement of the proposition under
consideration we have fundamental matrices Y (s) = H®) (s)sNF(s), p =
[0, - - > pto + 4p — 1, with HW(s) ~ H(s), s — oo on H,, H(s) as in (1.2).
Since €™ H,, = H,, 14, we define HWo4)(5) = H#H0) (se72P70) s € H o 14y
Then H#0H4)(5) ~ H(se2™) = H(s), s — 0o on Hyyiap. If 5 € Hyuorap,
¢ :=se ™ € H,,, then s + 1 = (¢ + 1)e*™ and

Ym0 HAP) (5) 1= HHoT4P) () NF (s)
= HUO Q)€ m™)NF(¢e™) = YU (O)P(C),
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where P(¢) = €™M with A and L as in (1.2), is a I-periodic matrix
function, and det P(¢) # 0. Hence Y#0+4P)(5) is a fundamental matrix.

Next we prove that the entries of H)(s) are in Ay (Hy)s = pioy - - -
po+4p. Asthe half planes H,,, it = po, . .. , po+4p—1, cover a neighbourhood
of 0o on the Riemann surface of z'/P| it is, by [MR92, Theorem 1.6], suffi-
cient to prove that the entries of H®#*1(s) — H#)(s) are exponentially small
of order k1 on H,NH, 11, ft = o, ... , po+4p—1. If we denote by ul(“)(s) the
[-th column of H(“)(s)sN7 l=1,...,n, u=po,...,o+4p, this is equivalent
to proving that the differences ul(“ﬂ) — ul(“) are in (AS™F)"(H, N H,41).
We have

ul(u+1) . ul(u) _ Z plmfmlusyl:)
m=1

for some 1-periodic functions p;,, on a neighbourhood of oo in H, N H,, 1.
Since ul(“H)(s)—ul(“)(s) ~ 0,as s — ooon H,NH, 11, we have pj, () frni(s) ~
0,s —oocon H,NH,11, form =1,... n, according to Lemma 7. Lemma 8

now yields that pyy, fry € AS™F1 (H,NHyq1), m=1,...,n,so
uf Y — ) € (ASTRO(H, 0 Hy ).

Applying [MR92, Theorem 1.6], we conclude that

) € (A(l/kl))n(Hu)[logS]? l=1,...,n, B= [0 - -- 5 Ho +4p — 1,

H() is a k;-Gevrey function on H . and the elements of H (s) are Gevrey series
of order 1/k;. Moreover, it follows that {H" | = po, ..., puo+4p — 1} is
a representative of T-1H.

Finally we prove the statement concerning the functions v;(s). It is suf-
ficient to consider the case that S C (H,, U Hyy+1). There exist 1-periodic
functions py,, analytic on a neighbourhood of co in SN H,,,, such that

(MO) Zpl fim lu(uo)

Since vi(s) — ul(“o)(s) ~0,as s — oo on SN Hy,, Lemma 7 and Lemma 8

now tell us that py, fr € AS7F1(SN H,,), hence
v —ulf) € (ASTF(S N ).

The same holds with po replaced by pg + 1. It follows that v; €
(A(1/k))"(S)[log s], what had to be proven. O
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5. Refinement of chains of solutions.

Consider the fundamental matrix Y (s) of Proposition 9 for . € Z. Let

its columns be denoted by {flul(%)} forl=1,...,n asin (2.3). Then ul(’é) €

(A1 /)" (Hy)[log 5], ul(’é) ~ @ on H, and {ul(fé) | = po,... 0o+ 4p —

1} represents the kj-precise quasi-function corresponding to 7~'di; on the
covering {H,, | pt = po, ... ,po +4p — 1} of C, for any ug € Z.

In this section we show how these ki-precise quasi-functions can be refined
to ko-precise quasi-functions with representatives {ul(’i)} on an open sector
S(aq, 41) with aperture > 7/k; such that (aq, 31) does not contain a Stokes

interval of level ki of the equation and such that { flul(’i)}?zl again is a

fundamental system of (1.1) with the same asymptotic expansion as before.

This will be done by expressing the differences fl(ul( 0 u%ﬂ)) in terms of

suitable fundamental systems and distributing the terms that are fi times

an exponentially small factor of order ki, over ul( 0) and ul(“ D The same

(u)

method can be applied to proceed from kj;-precise quasi-functions u)'

to kjy1-precise quasi-functions ul(” ) corresponding to solutions flul” )

flu(“ of (1.1).

1 and

Proposition 10. Let 0 < k; < --- < k, = 1 be the levels in (0,1] of (1.1).
Let j € {1,...,r}, and define k :=k;. If j <r, then k' := kjt1, otherwise
K :=1%. Let (a,3) be an open interval of length > m/k not containing a
Stokes interval of level k of (1.1). Let M and N be the integers, such that
(M-1)5 <a<Mji <N§<p<(N+1)5. Definel'y := H, N S(a,B)
for un= M .., N.

Suppose that we have fundamental systems of solutions {flul(“)}?zl on T,
foru=M,... , N which satisfy forl=1,... ,n

(i) u" € (Aq/m))"(Cu)llog s], uf (s) ~ tu(s), s — o0 on T,

(i) wf " — uf € (ASTR)(Hy O Hyp).

Then there exist fundamental systems of solutions {flﬁl(”)}l”:l for n =
M,... N such that forl=1,... ,n

(5.1) i — " e (ASF)MT,), ifpe {M,... N}
and

(5.2) @t —a" e (ASTMYU(H, O Hyp), if pe{M,... N —1}.

Moreover, for eachl € {1,... ,n} the family of functions {ﬁl(” u—n defines

an element @y in (A /ky) /A< Ky (a, B)[log s, which is uniquely determined

~ (1)

by the properties of the )"’ mentioned above.
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We prove the proposition subsequently for the cases k € (0,1) and k = 1.
Proof fork € (0,1).

We introduce the following sets:
St~ (1) = {m | Kyt = k, fru € A5 ¥(a, (u+1)7/2)}if p € {M~1,... , N~
1};
St (p,l) = {m | kmy =k, fru € AS F(um/2,8)} if p € {M,... ,N}. Obvi-
ously

(5.3) St™(u+1,1) € St (1), and St (p —1,1) C St™(u,1).

Because of the assumption that 8 — a > w/k the two sets St~ (u,l) and
St*(u,1) are disjoint. Since fj; = fjm fmi the following transitivity relation
holds:

(5.4) JjeSt (u,m) Am e St™(p, 1) = j €St (i, 1).

Finally, let St(u,1) := St~ (u, 1) UStT(u,0), p = M,... ,N —1. If u €
{M,... ,N —1} then

(5.5) kg =k and foy € ASTF(H, N H,y1) <= m € St(y,1).

We only give the proof that the left statement implies the right one since the
converse is trivial. The left-hand side implies that f,,,; has a Stokes interval
[c — 7/k, o] containing (um/2, (1 + 1)7/2). Because of the assumptions of
the proposition we have either o« < o—n/k < f<ocoro—7n/k<a<o<f
and therefore m € St(yu, ).

For k < 1 the first statement of Proposition 10 is an easy consequence of
the following two lemmas.

Lemma 11. Under the assumptions of Proposition 10 with k < 1 there exist
fundamental systems {fi 1)}1 L =M,... N, satisfying:

() uly —u € (ASTH)();
(ii) ul(’frl) - ul(’i) = ZmeStf(u )cm fmlu 1+ wll , where e € and
z/’l,l (AS ¥ )" (Hy N Hyp1).-
Proof. The proof goes by induction on p. Define u%) = u%\/f ), m =
1,...,n. Next assume u%), RN} (”) have been defined forallm =1,... ,n

and some p € {M,... ,N—1}. In the remaining part of this section m Wlll

always be understood to be in {1,... ,n}. Fixl € {1,... ,n}.
From condition (i) of the prop051t10n it follows that u(“ )1 ~ U, on T,

Thus the functions fmu Woom e St (u,1), together with the functions

m,1?

fmu,(#ﬂ) m & St~ (u, 1), form a fundamental system of solutions according
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to Proposition 9. Hence, there exist 1-periodic analytic functions p#f ) , p,(ﬁ H),

1 < m < n, such that

(5'6) ul(M—H) - ul(ﬁ) = Z p%)fmlu%,)l + Z ,u+1 fmlu (p+1)
meSt ™ (u,l) mEStJr(,u,l)

+ > o fuh Y,
m€S‘6(u7)

We have ul(”Jr ) ul(q) ul(”H) — ul(“) +ul(“) ul € (ASMM(H, N H,41),
and thus (by Lemma 7) we may conclude that each term in the sums on
the right-hand side of (5.6) belongs to this set. Next we apply Lemma 8 to
these terms, and find:

o If m € St™(u,1) (resp. m € St*(u,1)): Then f,,; is of level k < 1,
and it is an element of ASK(H, N H,11). So there exist complex

constants ¢! (resp. d(“H)) such that (pg,’f)(s) - cg,’f))fml(s) (resp.

(pg,‘fﬂ)( ) — dety ) fmi(8)) belong to AS~1(H), where H is the upper
or lower half plane containing H, N H,, 1.
o If m & St(u,l): Then kyy < k or /iml =k with f,,; € A<_k(H NH,1)

Or Ky > k with in all cases p fm € AS™ k(H N Hyyq). In the

last case Lemma 8 implies pm fm e ASF(H p N Hyy1). This also
follows in the first two cases from Lemma 8-2 with ¢ = 0.

So we have
ul(u+1) _ ul(ul) _ Z C%)fmzuffi)l + Z d%—l—l)fmlu%-‘rl) + wl(’/i)’
meSt ™ (u,l) meSt™ (ul)
with @Dl(ﬁ) a function in (AS~%)"(H, N H,41). Obviously, if we define
D S )
m€St+(u,l)
(p+1)

then u)'y satisfies the requirements.

So, if we have constructed u( ) for m € {1,...,n} and A € {M, M +

1 i1} (< N —1), then we can construct “1(1 D for each [ € {1,...,n}
and the lemma follows by induction on u.

PR

We next refine the solutions of the previous lemma to solutions which
satisfy (5.1) and (5.2) in Proposition 10.

Lemma 12. Let k < 1. Suppose the assumptions of Pmposztzon 10 hold

and furthermore, assume that ul(”H) —ul(”) = ZmeSt (o) Clm fm )+1/)1 ;

for some constants c(“) and a function wl(“) € (A "(H, N H,y1).
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Then there exist fundamental systems {flﬂl(“)}?zl, w=M,... N, such
that

(i) ﬂl(”) - ul(“) = ZmeSt_ () 6l(7i)fmlu£#) for some constants 5%) ;

(i) @ — a™ e (AS K (H, N Hyyh).

Proof. This lemma can also be proven by induction, but this time we start
from the other end of the covering {I‘M}IJLM of S(a, B): define ) = 0

for all m € {1,...,n}. Next suppose &%V),... ,aﬁﬁ“) have been defined
and possess the properties of the lemma for all m € {1,... ,n} and some

we{M,... N—1} Letle{l,...,n}. We have

ﬂl(ﬂ+1) _ ul(ﬂ)

_ al(u+1) _ ul(u+1) 4ot )

Uy U
= Y A el Y ) fal) 0.
meSt™ (u+1,0) meSt™ (u,l)
Furthermore,
A= Sl )
F€St™ (n,m)
From these two relations and properties (5.3) and (5.4) we obtain
al(qul) _ ul(u) _ Z El(ﬁb)fmzuﬁﬁf) + &l(u)’
mESti(u,l)
where the El(f;) are constants in C and 1[}[(”) € (A (H, N Hyyq).
If we define
=) ., (1) ~(1) (1)
u =+ Z Cim fmlum )
meSt™ (i)
then ﬁg“ ) satisfies the requirements of the lemma. Again the lemma follows

by induction on u. (|

The first statement of Proposition 10 follows from the previous lemmas
and the last statement is a direct consequence of the relative Watson lemma,
referred to after Definition 2. We could also prove the uniqueness directly,
without reference to this lemma, along the same lines as in [BIS]. O

Proof fork = 1.

Recall that the Stokes intervals of level 1 of Equation (1.1) with for-
mal solution (2.3) are, by definition, the Stokes intervals of the functions
e?™sif1(s), 5 € Z, 1,m € {1,... ,n}, that are of level 1. Taking [ = m and
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j # 0, we find that [(h—1)7, hr] is a Stokes interval of level 1 of the equation
for any h € Z. Hence, due to the assumption that («, 3) does not contain a
Stokes interval of level 1, the sector S(«, 3) does not contain a lift of both the
positive and the negative real axis. From this and « < M7/2 < N7/2 < f3
it follows that N — M < 2 and at least one of the integers M and N has to
be odd.

We will prove the proposition for the cases M = —1land N =0or N =1,

that is « € [—m, —7/2), § € (0, 7]. The other cases can be proven similarly.

Let | € {1,...,n}. There exist l-periodic analytic functions pggl)(s),

m=1,...,n, such that

(5.7) — ul Z oY ol
By assumption (11) of Prop051t1on 10, we have ul(o)—ul € (AS~Hn(—m/2,0).

So, by Lemma, 7, pm fml € A 1(—7n/2,0),m €{1,... ,n}. From Lemma 8
we conclude that

(5.8) SV o € ASTH=m,0) if Ky < 1,
and
(5.9) pCD e ASTY (27 /2,0) 3 Ky = 17

If Ky = 1 and p§; b # 0 then according to Lemma 8-3 we have Sb,,,; > 0.
Moreover, this lemma tells us that

(5.10) pCV frn € ASTH(=m,0) if Ky = 1, Sbyy = 0.
Let t1,...,t, denote the numbers by, h € {1,...,n} in decreasing order
of magnitude. We will use induction on 7 € {1,... ,v}.

If Sb; = t1, then by < 0 for all m € {1,...,n}. So if Ky = 1 and

~1) # 0 then we know already that b,,,; > 0 and so Sb,,,; = 0 and (5.10)
applies. Therefore if 3b; = t1 we define

B ol 1 3 D ), 9 = o)
Hmlg1

Then from (5.7), (5.8), (5.9) and (5.10) it follows that flﬂl(“) are solutions
of (1.1) with

~(u) € (A1 if —1,04
(5.11) ~(0) é 1) ((A< 2+( ()w/gf){ }

—
Next let 7 € {2,...,v}, Qb = t; and suppose that for all m € I(l) :=

{m € {1,... ;n}|km = 1,3y > 0} the functions a5V and @9 have
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already been defined such that (5.11) holds with [ replaced by m. We have
0 -1 _(— (= (— .
w” =™ = 3 P fl V> B fiily Y
mgI(l) mel(l)
for some 1-periodic functions ;5$n‘ 1)(s) analytic on a neighbourhood of co in
H_1. As before we have

(5.12) P frt € ASTH(=7/2,0).
Now we have analogues of (5.8), (5.9) and (5.10), and so the first sum can
be written as gol(fl) + 1 (1) Such that gol(fl) € (AS H"(H_y) and 1/)571)
(AS=1)7(—7/2,0) and flapl Y and flwl(_l) are solutions of (1.1).

Next consider the case that m € I(l) and pm 7& 0. Then according to
Lemma 8-3 there exist analytic 1-periodic functions pm such that p,(n -
P+ i and pr fru € AS7H, 0) andp for € AS7L(— 77/2 B). Now define

ﬂl(*l) = ul( )+ 901 _|_ Z pmfmlu

mel(l)
i = = 3 il
mel(l)
Then " —a{ ™" = {45, P font (W =) ) € (AZ7L7)2(=7/2,0)

and it follows that the functions ul( #) satisfy (5.11). By induction (5.11) fol-
lows for all . So in case N = 0 the proposition has been proved.

Next suppose that N =1, so § > 7/2. If pﬁ}ﬁ(s), m =1,...,n, are the
1-periodic functions analytic on a neighbourhood of co in the upper half
plane such that

Z p(l)fmlum )

then pm)fml € AS71(0,7/2). If Ky < 1 then as before pm fml € AS~1(Hy).
Next suppose ky,; = 1 and pq(n # 0. Then by Lemma 8-3 there exists an
integer N such that pg,ll)(s) = pne?™N(1 4 0(1)) as s — oo with py # 0
and therefore e2™N f, 1(s) € AS71(0,7/2). So there exists a Stokes interval
[0 — T, 0] of 27N f 1 which contains (0,7/2). Now 0, — 7 > —7/2 > «
and therefore o, > (3. Hence p%)fml € AS71(0, 3). Moreover, if #, = 17,
then pg) foi € AST17(0,7/2) according to Lemma 8. Thus, if we define

~(1) = ul( ) — Zﬁml<1 pm)fmlugn)a then

i =V € (4570, 8); ) — 5" € (4570, 7/2).



56 B.L.J. BRAAKSMA, B.F. FABER, AND G.K. IMMINK

The fundamental systems { flﬂl(“ )}?:1, @ = —1,0,1, thus obtained satisfy
(5.1) and (5.2).

The uniqueness property of Proposition 10 is an immediate consequence
of a more general form of the relative Watson lemma by Malgrange and
Ramis, that can be found in [BIS]. O

6. Equations without level 17.

Theorem 13 has already been stated and proven in [BF96], but here we
present a new proof.

Theorem 13. Let 0 < k; < --- < k, =1 be the levels in (0,1] of Equation
(1.1), and suppose that this equation does not contain a level 17 (i.e., dyy =
0, Vm,l € {1,...,n}). Let H(s)s**e®)st be a formal fundamental matriz
as in (1.2).

Let S; = S(a;,0;), i = 1,...,7, be a sequence of open sectors such that
S1 D ... D8, S1 has aperture less than 2pm, S; has aperture larger than
7 /k; and (o, B;) does not contain a Stokes interval of level ki, i =1,... r.

Then H is (k1,... ,ky)-summable on (Si,...,Sy) with sum H, such that

H,(s)s2eC() st is an analytic fundamental matriz of (1.1).
Proof. Define M;,N;, j = 1,...,r, to be the integers such that (M; —
1)7‘(‘/2 < a; < Mjﬂ'/2 < Njﬂ'/2 < ﬁj < (Nj —|—1)7T/2 and let Fj:# = Sj QH#,
pw=>M; ... ,Njj=1,...,r. Also, let Sy := C, be the Riemann surface
of s'/P Ty, := H,, u = Mo,..., Ny where My := My, Ny := Mo + 4p — 1.

By Proposition 9 we have a representative {H(“)(s)}ﬁfiMo of T~'H(s) on
the covering {H,, LViMO of C, such that H®(s)s%eG()sl is an analytic
fundamental matrix of (1.1). To show that the columns h; of H are multi-
summable we have to construct hy; € (A /g,) /A= +1)"(S)), j=0,... ,r
such that hlJ\SjH = hy j41 mod AS—kit j=0,...,rif k.41 = 0.

Let U(()“)(s) = H®(5)sN so that U(()“)(S)F(s) is a fundamental matrix of
(1.1) (cf. (2.2)) and let 11%) denote the [th column of U(()“). The construction
mentioned above is equivalent to the construction of functions {ﬂl(’;)}iv; M,
forj=1,...,rand [ =1,...,n such that:

(1) { flﬂl(’;)}?zl is a fundamental system of Equation (1.1),
(2) {ﬂl(?)}gi M, Tepresents a kjyj-precise quasi-function
fLl,j € (A(l/kl)/AS_ijrl)n(Sj)[log S]? j = ]-7 -7

(3) iy j-1ls; =ty mod (AS™h)", j=1,...,r.
Suppose we have constructed @;; for @ = 0,...,j7 — 1, for some j €
{1,...,r}. Then we can apply Proposition 10 with o = «;, § = f;, and
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(w)

with u/” = @ |r, ., = Mj,... ,Nj. Defining "

l?j
= M;,...,N; we see that properties (1), (2) and (3) are satisfied for i = j

as well. So they are satisfied for all j € {1,...,7}.
We have al(,lj"ﬂ) - al(lv{) € (Agiﬁ)n(rr,u NI .41). We also have T

L,r

(w)

=, l=1,... n,

ﬁl(‘i ) — > o1 Dm fmlﬁ,(ff?r for some 1-periodic analytic functions p,,. Lemma 7

now tells us that each p,,fm € AS—1T (Tur NTyt1,), and then it follows
from Lemma 8 and the fact that the equation has no level 17, that p,, = 0,
for all m. Hence, the functions ﬂl(’i), w= M., ..., N, are the restrictions of

an analytic function 4, € (A /k,))" (S)[log s]. O

7. Equations with level 17.

In this section we will consider Equation (1.1) under the assumption that
there does exist a pair (m,[) such that d,,, # d; in the notation of (2.3); that
is, the equation possesses the level 17. We will show in this section that
we can still assign a uniquely characterizable fundamental system Y (s) with
asymptotic expansion \?(s) in appropriate regions of the Riemann surface of
the logarithm, provided Rb; # Rby,, if by # by, (cf. notation in (2.3)).

Before we state the main result of this paper (Theorem 18), we need to
define the Stokes numbers of level 1T of the equation. The Stokes number
of a function f of level 17 of the form

(7.1) f(s) = exp(dslog s + 2mibs + q(s) + ylog s), with d # 0,

occurring in formal solutions of equations possessing a level 17, is associated
with curves that separate regions of growth from regions of decay of f. We
have

R{dslog s + 2mibs} = dRslog|s| — (darg s + 277Rb)Fs — 27 JbRs,
and therefore the main contribution to |f(s)| comes from exp[R{s(dlog s +
27iRb)}]. Let h be an even integer if d < 0 and an odd integer if d > 0.
Then f € AS1T (Hap). Moreover, f behaves as an exponential function
of order 1 in vertical strips, f becomes exponentially large on any open
sector containing Hoy, and, if Sy (h) := S((h — 3)m, (h+ 3)7] and S_(h) :=
S[(h— 3)m, (h + £)m) then it is easily verified that

feAST(Sy) iff £ (h+42Rb/d) < —1/2,

where the upper (lower) signs belong together.

Let {fju;}}_; be a fundamental system of (1.1) such that u; ~ 4; as
s — ooon St (h). Assume d,,; = d,,—d; < 0 and h is even. Then there exists
N € Z such that +{h + 2(Rbyy + N1)/dp} < —1/2. Then >N« f ;€
AS71(S4) and therefore the solutions fyu; and fiu; 4+ €2™N+ . u,, have the
same asymptotic behaviour on Sy (h). So in this case it is not possible to
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characterize fundamental systems Y (s) by their asymptotic behaviour Y(s)
on Sy (h).

In order for a fundamental system to be in some way uniquely determined
by its asymptotic expansion in a sector of C, which contains an open right
or left half plane, this sector therefore should contain the closure of this
half plane. However, such fundamental systems do not exist in general (see
[vdPS97, Chapter 11]).

Hence we have to characterize fundamental systems by their asymptotic
behaviour in a more complicated type of region. This region should contain
a neighbourhood of co in some half plane Hs, but not a neighborhood of oo
in Hyyp,. In the case d = (—1)"*! a suitable region is given by

Definition 14. For § € R, h € Z, we define
D(h;0) :={s€Cqx | (h—1)m <args < (h+ 1)m;
(—1)"R{s(log s +i0)} > 1}.
If h € Z and 61,60, € R then D(h;60,,02) := D(h;61) U D(h;62).

We denote the boundary of D(h;0) by C(h;0). We have D(h;0) C
UJI-:_1 Hopyj and se™ € D(h;0) < s € D(0;0 + hr). Similarly with D
replaced by C. Details on C(0;6) can be found in Imm84] and [Imm91].
We have Rs = O(Ss/logls|) as s — oo on C(h;#). This implies that
arg s — £7/2 mod 27 as Ss — +oo, s € C(h;0).

If h € Z and 6 € R, then the following properties are easily established.

e Let < 6. As (=1)"R{s(logs + i)} = (—1)"R{s(logs + i0)} —
(=1)"(6 — 0)Ss, it follows that:
i) D(h;0) N Hop_1 € D(h;0) N Hop,_y, and that
ii) D(h;0) N Hopt1 D D(h;0) N Hapyr.
One could say that the regions D(h;6) ‘rotate’ (modulo some de-
formation) clockwise with increasing 6.
e D(h;0)N Hyy, is a neighbourhood of co in Hy,. However, since for any
s0 € Hayp, 80+ Hop, ¢ D(h;6), the intersection D(h;6) N Hoy, is not a
neighbourhood of co in Hap,.

Let D := D(h;6;,602), for some h € Z and 01 < 03. A set U C D is called
a neighbourhood of oo in D, if, for any 0 € (01, 62), there exists sg € D
such that sg + D(h;0) C U.

Suppose g is an analytic function on a neighbourhood U of oo in D, and
suppose there exist a k > 0 and a series §(s) = >, gns~™P such that for
any 6 € (01,02) we have -
N-1

9(5) - Z gn57n/p

n=0

(7.2)

< KANT (8 |s| =77,
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Vs € D(h;0) N U, VN € N,

for some positive constants K and A, which only depend on 6. Then we call
g a k-Gevrey function on D (with respect to %No), and the set of these
functions is denoted by A /xy(D).

Concerning 1-Gevrey functions on D we have the following theorem by
Immink (cf. [Imm96)):

Theorem 15. Suppose 61,00 € R, 01 < 0o, and h € Z. Let D :=
D(h;61,02).

Ifg € A(l)(D), then g is uniquely determined by its asymptotic expansion
gJ.

In [Imm96] it is shown that g is already uniquely determined by its
asymptotic expansion if (7.2) with £ = 1 holds on D(h; 8) for one 6 € (01, 62).

Let f be a function of level 17 given by (7.1) and 6; < 27Rb/d < 6.
Let h € Z be odd if d > 0 and even if d < 0. Then there exist positive
constants K and ¢ such that |f(s)| < Ke=l for s € D(h;61) N D(h;6) and
|s| sufficiently large. From this it follows that (7.2) holds on this set with
g:= f,gn =0, and k = 1. This is not true if 2“73% & [01,02]. Therefore we
introduce the following definition:

Definition 16. Let f(s) be the function of level 11 given by (7.1). Then
we call 2”73% its Stokes number. The Stokes numbers of level 17 of
the equation (1.1) are the Stokes numbers of the functions e*™sf,(s),
I,me{l,...,n}, j € Z, that are of level 1. That is, they are given by the
expression

%(%bml +j)7 jalvm as abOVe, dml # 0.

Suppose 01 < 03 and o < 3. Let D := D(h;61,62) and S := S(a, ).
Assume D NS # (). We define a neighbourhood of co in DN S to be an
open set U in D NS, such that for any 6,,0 satisfying 6; < 6 < 02 and
a <7y << S, there exists sg € DN .S such that so + (D(h;0) N S(y,0)) C
U. We write AS71(D N S) for the set of functions that are analytic on a
neighbourhood of co in DN.S, and exponentially small of order 1, as s — oo,
uniformly on D(h;6) N S(v,d), for any 6,,0 as above.

We extend Definition 2 of multisummability as follows:

Definition 17. Let 0 < ky < --- < ky_1 < k, = 1, and define k,; = 17.
Let S; D ... D S, be a nested sequence of sectors .S; with aperture > 7/k;,
i =1,...,r, aperture of S; at most 2pm and assume S, O S((h — %)ﬂ' —
g, (h+3)m+e), for some h € Z and some ¢ > 0. Finally, let D := D(h; 61, 65)
for some 61 < 05.

A formal power series f € C[[s‘l/p]h/(pkl) is called (ki,...,kr, 17)-
summable on (Si,..., S,, D) with (ki,... ,k,, 17)-sum f € A (D),
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if there exist quasi-functions f; € (A(l/kl)/AS*k”l)(Si), 1=1,...,r, satis-
fying:

filsies = fiyr mod ASTRit1 G =0,y — 1 with fo=T""'f;
fr has a representative { f,, }weq with respect

to a covering {S, . }weq of S, with open sectors S,

such that f., — f € Ag_l(D NSrw), Vw € Q.

Let g be another function such that f., —g € ASHD N S,), Yw € Q.
Then f —g € ASTHDN S,y), Vw € Q, hence, f —g € ASHDNS,) =
AS~Y(D). Theorem 15 implies f = g and it follows that f is uniquely deter-
mined by f, and D. By the relative Watson lemma ([MR92, Prop. (2.1)])
fi is uniquely determined by f;—1 and S;, ¢ =r,...,1. Hence the sum f is
uniquely determined by f and (S1,...,5:D).

Similarly to Definition 2 we extend this definition to the case that f is an
n-vector or n X n-matrix with elements in C[[sfl/p]]l/(pkl).

The main result of this paper is the following theorem.

Theorem 18. Let k1 < --- < k. = 1 be the sequence of positive levels < 1
of (1.1). Suppose that 17 is a level of (1.1) and that Rb; # Rby, if by # b
where by is defined below (2.3). Let H(s)s*eS®) st be a formal fundamental
matriz as in (1.2).

Let S; = S(a;, Bi), i = 1,...,r, be a sequence of open sectors, such that
S1D...D8 and f1 — a1 < 2pm, B —a; > 7w/k; and (o, 3;) does not
contain a Stokes interval of level k;, i = 1,... ,r of (1.1). Moreover, suppose

that (h—1)m < o < (h—3)7 and (h+3)7 < B, < (h+1)7, for some h € Z.
Let 6,0 € R, 0 < 0, such that (5, 0) does not contain a Stokes number of
level 17 and define D = D(h;6,0).

Then H is (ki,..., ky,17)-summable on (Si,...,S,, D) with (ki,...,
kpy,17)-sum H such that (1.3) defines an analytic fundamental matriz of

(1.1).

For the proof of this theorem we will use the following lemma which
extends the results of Lemma 8-4.

Lemma 19. Let h € Z and Q+ be the quadrant Hop N Hopt1. Here and in
the following the upper signs belong together and so do the lower signs. Let f
be given by (7.1). Define 0; := ZX(Rb+j), j € Z, and D := D(h;0n_1,0n),
for some N € Z.

Suppose that p(s) # 0 is a 1-periodic analytic function on a neighbourhood
of 00 in Hapt1 such that p(s)f(s) € Agfﬁ(Qi).

Then there ezists a 1-periodic function p_(s), such that p_(s) is analytic
on a neighbourhood of oo in Hopy1, pi(s) := p(s) — p—(s) is an entire
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function, and
p_(s)f(s) € AS7H(D N Hypyr),

p(s)f(s) € ASTHD N Hop) N AT (Hap,).

Proof. We will give the details of the proof for the lower sign and A is even.
The other cases can be proven in a similar way.
Now @_ is a fourth quadrant and H := Hoy,_1 is a lower half plane.

According to Lemma 8-4 we have p(s)f(s) € Ag_ﬁ((h — %)W,hﬂ'], and,
since p(s) # 0 also f(s) € AS™1"((h — $)m, k). Therefore d < 0, f(s) €
AST (b= Yym, (h+ 3)m) and Oy < On_1.

We have an expansion for p(s) as in (3.1) for s < —p for some p > 0.
Let p_(s) := ZjSN_lpjeQWisj. Then p_(s) is analytic for Js < —p and
p_(s) = 2™N=D0(1), s — oo on H. Moreover, py(s) = D >N pje’™s is
an entire function.

First consider p_(s)f(s). The properties of p_ imply
(7.3) p-(5)f(s) € A5 ((h = p)m, ha] € ASTT(Q).

For ¢ > 0, let S. := S((h — $)m —&,(h — 3)m +¢). In order to prove
that p_(s)f(s) € AS71(D N H) it is sufficient to show, that with any 0 €
(On,0n—1) we can find positive constants K, ¢ and &, such that
(7.4) Ip_(s)f(s)] < Ke™¥l s € D(h;0) N S, s < —p.
Asp_(s)f(s) =O(1)exp(dslogs+2mis(b+ N —1)+o(s)), s — oo on H, it
is sufficient to prove that
(7.5) R{dslogs+2mis(b+ N — 1)} < —c|s|,Vs € D(h;0) N S,
for some ¢ > 0.
So let 0 € (On,0n-1). On D(h;60) we have:
R{dslog s+ 2mis(b+ N — 1)}
= dR{s(logs +i0) +is(Z(b+ N —1)—0)}
< —d[Ss(On-1 — 0) + ZRsSY]
273b
)] cot(arg s)) .
We have dsin(arg s)(Oy—1—6) > 0 on H. Furthermore, there exists an € > 0
such that Miﬂfc‘\;b_e) cot(arg s)‘ < 1,Vs € S.. Thus (7.5) and (7.4) follow.
Next consider py(s)f(s). As p(s)f(s), p_(s)f(s) € AS"V ((h — ), hrl,
also py(s)f(s) belongs to this set. Moreover, f(s) € AS"1"(Hy,) and

pi(s)] < Ke 2™NSs &g > —p for some K > 0, and therefore p(s)f(s) €
+(8)] +
AS"Y"(Hsyy). To prove the lemma it now suffices to prove that pf €

= —dsin(arg s)(On_1 — 0)|s] (1 +
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AS"YD N Hapy 1), hence that for any 6 € (Oy,0ny_1) we can find positive
constants K, c and &, such that

1 (s)f(s)] < Ke L ¥s € D(h;0) N S((h+ L)m — e, (h+ )m +¢).
A proof of this inequality runs along the same lines as that of (7.4). O

The following proposition extends the results of Proposition 10.

Proposition 20. Let k1 < --- < k, be the positive levels < 1 of equation
(1.1) and assume that (1.1) has a level 17,

Let M be odd. Assume o« < Mm/2, B > (M + 2)w/2 such that I =
(o, B) does not contain a Stokes interval of level 1 of (1.1). Define Iy, :=

H, N S(,B) for p = M, M +1,M + 2. Assume 0.0 € R, 6 < 0, such
that (0,6) does not contain any Stokes number of level 1T of (1.1). Define
D :=D(3(M +1);0,0).

Assume we have fundamental systems {flul(“)}?zl, w=MM+1,M+2
such that for alll € {1,... ,n}:

(i) ul(“) € (Aq k)" (T'y)[log s], ul(“) ~u onlyifu=MM+1,M+2,

(ii) ul(ll«+1) _ ul(ﬂ) c (A§—1+)n(1—‘u N Flﬁ-l) if p=M,M+1.

Then there exists a fundamental system { iy}, of equation (1.1) such
that for alll € {1,... ,n}:

(7.6) i —u™ € (ASTYN(DAH,) if p=M,M+2,

(7.7) @ — " € (AT (Harg),

Moreover, for each 1 € {1,...,n} the function i € (A k,))"(D)[log s]
is uniquely determined by these properties.

Remark. We can find « and 3 satisfying the above conditions if and only
if [vm — /2, v + /2] is not a Stokes interval of level 1 for any v € Z. This
corresponds to the condition that Rb; # Rb,, if by # byy,.

Proof. Throughout the proof [,m € {1,... ,n}. Let h := (M +1)/2, s0 h is
an integer. We will write m < 1 if f,,y € AS™' (Hyy), and I(1) :== {m | m <
[}. The relation < gives a partial ordering on {1,... ,n}. We will prove the

proposition by induction with respect to this partial ordering.
(1)

Let pp’, w = M, M + 1, be the 1-periodic analytic functions such that
n
(7.8) u§“+1) - ul(“) = Z p%’{)fmlufﬁ), w=MM-+1.

m=1

As ul(”H) - ul(”) € (A§*1+)”(FH N I'y41) by assumption, it follows from
Lemma 7 that each of the summands must belong to this set. If m ¢ I(l)
then edmis1ogs is unbounded on Hayp,, so Rd,y;s is positive on Hoyp,. Therefore
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fru & .AS_ﬁ(F;L NITyy1) for p = M, M + 1 and Lemma 8 tells us that

pg’if) = 0. So in (7.8) we only need to sum over m € I(I).

First let [ be such that I(l) = (). Then ul(“) is independent of u € {M, M +
1,M + 2} and 4; = ugu) satisfies (7.6) and (7.7).

Now let [ be such that ,, have been defined, and satisfy (7.6) and (7.7)
for all m € I(1). The functions fy, @y, m € I(l), together with the functions

fmu (M+1) ,m & I(l), form a fundamental system of solutions. With the aid
of Lemmas 7 and 8 we may conclude as above that

M+1
ul( - Z pm fmlum)

mel(l

for some 1-periodic analytic functions ﬁ%w ) on a neighbourhood of oo in

Q = Iy NTa41, and ﬁgy)fml € AS_ﬁ(Q). According to Lemma 19

the functions 157(7]:/[)(3) can be written as p( )( ) +p(M)( ) with p%)fml €

ASYD N Hy) and pla? fry € ASTHD N Hargo) 0 ASTY (Hprgn). We
define

upp = ul(M) + Z ng_)fmlam,

mel(l)
so that u;; — ul € (AS~H™(D N Hyy) and
w — ul(M+1)
= - Z p%)fmlﬂm € (A=) (DN Hyp2) N (Agfﬁ)n (Hare1)-
mel(l)
From these relations and assumption (ii) it follows that ul(M+2) —u €

(ASY)2(T 01 N Taze2) and as above we find that there exist 1-periodic
functions p( +1)( ), pmﬂ)( ), m € I(l), such that

m

U1(M+2) — U, = Z < (M+1)fm Um +p£n+ )fmlum> )
mel(l)

where the first term of each summand belongs to (AS~1)"(D N Hy2), and
the second one to (AS~1)*(DNH )N (AS1)"(Hyzy ). Hence, if we define
_ M M _
Uy 1= ul( 2 _ p,(njl)fmlum»
mel(l)
then

_ M+1) p -
up = g1+ Z p7(n++ ) Fontim,
mel(l)
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and it is easy to verify that 4; satisfies (7.6) and (7.7). The uniqueness of
1 follows from Theorem 15. O

Theorem 18 can be proved similarly to Theorem 13, with the aid of Propo-
sitions 9, 10 and 20.
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