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Iterative-Interpolated DFT for Synchrophasor
Estimation: a Single Algorithm for P and M-class

compliant PMUs
Asja Derviškadić, Member, IEEE, Paolo Romano, Member, IEEE, Mario Paolone, Senior Member, IEEE

Abstract—We present a single synchrophasor estimation (SE)
algorithm that is simultaneously compliant with both P and
M Phasor Measurement Unit (PMU) performance classes. The
method, called iterative-Interpolated DFT (i-IpDFT), iteratively
estimates and compensates the effects of the spectral interference
produced by both a generic interfering tone, harmonic or
interharmonic, and the negative image of the fundamental tone.
We define the 3-points i-IpDFT technique for cosine and Hanning
window functions and we propose a procedure to select the i-
IpDFT parameters. We assess the performance of the i-IpDFT
with respect to all the operating conditions defined in the IEEE
Std. C37.118 for P and M-class PMUs. We demonstrate that the
proposed SE method is simultaneously compliant with all the
accuracy requirements of both PMU performance classes.

Index Terms—Discrete Fourier transform (DFT), IEEE Std.
C37.118, Interpolated Discrete Fourier transform (IpDFT), Pha-
sor Measurement Unit (PMU), Synchrophasor Estimation.

I. INTRODUCTION

THE IEEE Std. C37.118 [1] and its latest amendment [2]
have defined two performance classes and related mea-

surement requirements, to which Phasor Measurement Units
(PMUs) must comply with: P-class is meant for applications
requiring fast response time, such as power system protection;
M-class is meant for high accuracy measurements requiring
resiliency against interfering spectral components1. One of
the main differences between P and M-class requirements is
represented by the Out-Of-Band Interference (OOBI) test. The
latter, has been specifically designed for the M-class, to test
the PMU capability to reject superposed interharmonics close
to the 50 or 60 Hz main tone. These are defined as signals
characterized by an amplitude that is 10% of the main tone
and a frequency fi in the bands [10, fn-Fr/2] and [fn+Fr/2,
2fn], being fn the nominal power system frequency, Fr the
PMU reporting rate and fi/fn 6∈ N [3].

Recently, the idea of a single PMU capable of satisfying
both the P and M-class PMU requirements at the same time
has become increasingly popular [4], [5]. The advantages
are evident: from a cost perspective, an electrical utility
interested to use PMUs to simultaneously supply monitoring

The Authors are with the École Polytechnique Fédérale de Lausanne EPFL,
CH-1015, Lausanne, Switzerland.

1The amendment [2] introduces significant changes with respect to [1].
Therefore, the design of PMUs has evolved over time. Specifically, regarding
frequency and Rate-Of-Change-Of-Frequency (ROCOF), [2] relaxes most of
the requirements contained in [1] and suspends the ROCOF limit for the
Out-Of-Band Interference (OOBI) test. Moreover, [2] changes and relaxes
the requirements for measurement reporting latency and response time and
simplifies the testing conditions for the frequency ramp test.

and protection functionalities of situational awareness systems
does not need to equip every measurement point with two
different devices. From a measurement reliability perspective,
the performance of fault management systems using PMU
data to tune or back-up existing protection schemes, are not
degraded by the presence of interharmonic tones [6]. In this
respect, [4] proposes a hybrid P+M-class PMU design based
on tunable trigger thresholds to switch between two different
frequency-tracking filters. The technique self-switches from an
M-class algorithm to a P-class one in case a transient event is
detected. On the contrary, [5] proposes a two-channel design
that is conceived to comply with P and M-class at once. The
process implements in parallel two different Taylor Fourier
Transform algorithms, not designed to meet P and M-class
respectively: the first one produces accurate measurements of
steady state signals, while the second one is better suited to
follow fast signal changes. In this case, the selection of the
most appropriate output is implemented by a detector that
identifies the presence of power system transients.

In this paper, we propose a single algorithm designed
to simultaneously fulfill the performance requirements of P
and M-class PMUs. That is to say that, for each operating
condition defined in [1], the method is compliant with the most
demanding specification of the joint P and M-class require-
ments. The technique is hereafter called iterative Interpolated
Discrete Fourier Transform (i-IpDFT) and demonstrates how
it is possible to develop a DFT-based SE algorithm capable of
rejecting interharmonics, also when adopting relatively short
window lengths (3 periods of a signal at fn). The method
represents an evolution of those proposed in [7] and [8], which
are conceived for P and M-class PMUs, respectively. In this
paper, we extend our investigation to meet simultaneously the
compliance with P and M-class requirements. To do so, we
employ the 3-points IpDFT for cosine and Hanning window
functions.

The i-IpDFT method iteratively finds and compensates
the effects of the spectral interference produced by both an
interfering tone and the negative image of the fundamental
tone. Several algorithms that compensate the spectral inter-
ference generated by the image component of the main tone
have been presented in the literature, the majority relying
on the IpDFT [7]–[12]. Sine-fitting techniques [13], as well
as compressive sensing [14] and lookup tables [15] have
been investigated too. In [16] an IpDFT-based method that
compensates the spectral interference generated by both the
image component of the main tone and harmonic tones is
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presented. To the best of the Authors knowledge, [16] is
the only contribution that takes into account tones other than
the fundamental one, however such investigation disregards
interharmonic tones like those defined in the OOBI test.

The paper is structured as follows: Section II reviews the
theoretical background about the 3-points IpDFT for cosα

windows and presents the effects of spectral leakage on
the IpDFT performance. Section III formulates the i-IpDFT
SE algorithm, with a specific focus on the selection of the
algorithm parameters. Then Section IV assesses the algorithm
performance in an offline simulation environment with respect
to the testing conditions defined in [1]. A dedicated com-
putational complexity is also presented in order to support
the prospective integration of the algorithm into an embedded
hardware. Finally, Section V concludes the paper with final
remarks.

II. INTERPOLATED DFT FOR cosα WINDOWS

The IpDFT is a technique that enables us to extract the
parameters of a sinusoidal waveform by processing the highest
DFT bins of the related DFT spectrum. In particular, the
IpDFT enables us to mitigate the effects generated by inco-
herent sampling by [17], [18]:

• Applying suitably shaped window functions to reduce the
spectral leakage effects;

• Interpolating the highest DFT bins of the spectrum to
minimize the spectral sampling effects.

In the following of this Section we present the IpDFT
technique and define the nomenclature. More specifically, in
Section II-A we introduce the family of cosα window func-
tions with a particular focus on the cosine and the Hanning (or
Hann) window. These two window types have been selected
as they represent a good trade-off between the main-lobe
width and the side-lobe levels. In Section II-B we derive
the IpDFT solution for these window functions. Finally, in
Section II-C we discuss the effects of spectral leakage on the
IpDFT performance.

A. cosα Window Functions

The IpDFT solution can be analytically derived only for
cosα windows (also known as sinα windows)2, that are defined
as follows [19]:

wα(n) = sinα
( π
N
n
)
, n ∈ [0, N − 1], α ∈ N (1)

being N the number of samples. In particular, Fig. 1 shows
three different cosα window functions obtained for α =
{0, 1, 2}. As it can be noted, the window spectrum depends
upon α: as α decreases, the main lobe shrinks but the side
lobes increase, whereas as α increases, the side lobes decrease
but the main lobe becomes wider.

Generally, IpDFT algorithms were formulated for the so
called Rife-Vincent class I windows, i.e., cosα windows char-
acterized by a null or even value for α. The most elementary

2 The IpDFT can be formulated for window functions not belonging to the
cosα family. However, this problem does not have a closed form analytical
solution. In that case, the solution may use approximations of the numerically
computed window spectrum.

Fig. 1. Time (top) and frequency domain (bottom) representations of three
different cosα windows: the rectangular (α = 0), cosine (α = 1) and Hanning
(α = 2).

one is the rectangular (α = 0), whose DFT is known as the
Dirichlet kernel:

DN (k) = e−jπk(N−1)/N sin(πk)

sin(πk/N)
, k ∈ [0, N − 1] (2)

This function is characterized by the narrowest main lobe
among the cosα windows but at the same time it exhibits the
highest side lobes.

In order to reduce the effects of spectral leakage generated
by the side-lobe levels, IpDFT algorithms typically adopt bell-
shaped windows, obtained by increasing the value of α in (1).
The most common is the Hanning window (α = 2) defined
as:

wH(n) = 0.5 · (1− cos(2πn/N)) , n ∈ [0, N − 1] (3)

and characterized by the following DFT:

WH(k) = −0.25 ·DN (k−1)+0.5 ·DN (k)−0.25 ·DN (k+1)
(4)

that is known for the good trade-off between the main-lobe
width and side-lobe levels [18].

More recent studies have derived the analytical solution of
the IpDFT problem for cosα windows in the case of an odd
value for α [20]. In applications where the main lobe width
plays a crucial role in identifying relatively nearby tones, like
in SE, the so-called cosine window, defined for α = 1, is
an extremely attractive solution as it represents a compromise
between the rectangular and the Hanning window:

wC(n) = sin
( π
N
n
)
, n ∈ [0, N − 1] (5)

Its DFT can be derived as follows:

WC(k) = −0.5jDN (k − 0.5) + 0.5jDN (k + 0.5) (6)

However, for an odd value for α, the window is a weighted
sum of Dirichlet kernels modulated by non-integers of the
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Fig. 2. DFT and DTFT of a steady state single-tone signal that is incoherently
sampled and the related positive and negative images.

frequency resolution, therefore an intrinsic limitation arises:
as it can be seen from Fig. 1, the WC(k) zero-crossing do
not happen for integer values of k. As a consequence, also
with coherent sampling, the cosine window generates spectral
leakage.

B. The Interpolated DFT (IpDFT)

As known, the IpDFT is based on a static signal model that,
in general, is assumed to contain a single unknown frequency
component. In this respect, let us consider a finite sequence
of N equally spaced samples x(n) obtained by sampling an
input continuous signal x(t) with a sampling rate Fs = 1/Ts,
being Ts the sampling time:

x(n) = A0 cos (2πf0nTs + ϕ0) , n ∈ [0, N − 1] (7)

where {f0, A0, ϕ0} are the signal frequency, amplitude and
initial phase respectively. The signal is assumed to be win-
dowed with a discrete function of N samples w(n), being
T = N · Ts the window length. The DFT X(k) of the
windowed input signal is:

X(k)
∆
=

1

B

N−1∑
n=0

w(n)x(n)W kn
N , k ∈ [0, N − 1] (8)

where B ∆
=
∑N−1
n=0 w(n) is the DFT normalization factor, and

WN
∆
= e−j2π/N is the so called twiddle factor. The DFT

returns a sequence of N samples (also called bins) of the
theoretical Discrete Time Fourier Transform (DTFT) that are
uniformly spaced by the DFT frequency resolution ∆f = 1/T .
More specifically, based on the convolution theorem, the DFT
of the windowed signal x(n) exhibits a pair of scaled, shifted
and rotated versions of the DFT of the window function (see
Fig. 2): the so-called positive image (in blue), is shifted up to
the tone frequency f0, the so-called negative image (in red),
is shifted down to −f0:

X(k) =X+
0 (k) +X−

0 (k) (9)

where: {
X+

0 (k) = A0e
+jϕ0W (k − f0/∆f ) (10a)

X−
0 (k) = A0e

−jϕ0W (k + f0/∆f ) (10b)

being W (k) the DFT of the adopted window function.
As shown in Fig. 2, in case of incoherent sampling

(f0/∆f /∈ N), the peak value of the continuous spectrum of the
fundamental tone of a signal (highlighted in green) is located
between two consecutive DFT bins and the signal frequency
can be expressed as:

f0 = (km + δ)∆f (11)

being −0.5 ≤ δ < 0.5 a fractional correction term and km the
index of the highest bin. The IpDFT problem lies in finding the
correction term δ (and, consequently, the fundamental tone’s
parameters {f0, A0, ϕ0}) that better approximates the exact
location of the main spectrum tone.

The IpDFT problem solution has been originally provided as
a 2-point interpolation scheme [17], [18]. More recently, mul-
tipoint interpolation schemes have demonstrated to inherently
reduce the long-term spectral leakage effects, leading to more
accurate interpolation results [10], [11]. In this respect, for the
Hanning window, the fractional term δ can be computed by
interpolating the 3 highest DFT bins as [10]:

δ = 2ε · |X(km + ε)| − |X(km − ε)|
|X(km − ε)|+ 2 |X(km)|+ |X(km + ε)|

(12)

where ε = ±1 if |X(km + 1)| ≷ |X(km − 1)|. The funda-
mental tone’s amplitude and phase can then be computed as:

A0 = |X(km)|
∣∣∣∣ πδ

sin(πδ)

∣∣∣∣ ∣∣δ2 − 1
∣∣ (13)

ϕ0 = ∠X(km)− πδ (14)

Similarly, for the cosine window, δ can be obtained by
interpolating the 3 highest DFT bins as [20]:

δ = 1.5ε · |X(km + ε)| − |X(km − ε)|
|X(km − ε)|+ 2 |X(km)|+ |X(km + ε)|

(15)

The fundamental tone’s amplitude and phase can then be
computed as (computational details are given in Appendix):

A0 = 4 ·
∣∣δ2 − 0.25

∣∣
|cos (πδ)|

· |X(km)| (16)

ϕ0 = ∠X(km)− πδ (17)

C. Spectral Leakage Effects on the IpDFT

The main assumptions behind the formulation of the IpDFT
technique are the following [17]:

1) The input signal is characterized by time-invariant pa-
rameters;

2) The input signal is sampled with a sampling rate suffi-
ciently higher than the highest signal’s spectral compo-
nent;

3) The DFT bins used to perform the interpolation are
only generated by the positive image of the tone under
analysis.

In order to satisfy the first two assumptions when applying
the IpDFT to SE, sampling rates in the order of few kHz and
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window lengths containing few periods of a signal at the rated
power system frequency must be adopted respectively [21].
This choice causes the energy of the DFT spectrum to be
concentrated in the lower frequency range and the positive
and negative image of the main tone of the spectrum to be
relatively close. In such conditions, in case of incoherent
sampling, the tails of the negative image of the spectrum main
tone (red curve in Fig. 2) leak into the positive frequency range
and bias the DFT bins used to perform the interpolation (i.e.,
assumption 3 is not respected). This effect, also known as
spectral interference has demonstrated to considerably corrupt
the IpDFT estimations when applied to SE [12]. To cope with
these conditions, in [7] a technique that mitigates the effect
of the spectral leakage produced by the negative image of the
spectrum is presented. The method, called enhanced-IpDFT
(e-IpDFT) is described by Algorithm 1, where the function
DFT refers to (8), IpDFT refers to (11)-(14) and wf to (10a)
or (10b).

Algorithm 1 The e-IpDFT algorithm.
1: X(k) = DFT(x(n))
2: {f̂0

0 , Â
0
0, ϕ̂

0
0} = IpDFT(X(k))

3: for p = 1→ P
4: X̂p−

0 (k) = wf(−f̂p−1
0 , Âp−1

0 ,−ϕ̂p−1
0 )

5: X̂p+
0 (k) = X(k)− X̂p−

0 (k)

6: {f̂p0 , Â
p
0, ϕ̂

p
0} = IpDFT(X̂p+

0 (k))
7: end for

It starts with the computation of the DFT spectrum X(k)
(line 1), that can be performed with any DFT computation
method3. Then, a preliminary estimation of the main tone
parameters is obtained by applying the IpDFT to X(k) (line 2).
These values are used to estimate the main tone’s negative
image X̂−

0 (k) (line 4), as in (10b), that is then subtracted
from X(k), to return an estimation of the main tone’s positive
image (line 5). The IpDFT is applied to the resulting spectrum,
where the spectral interference produced by the negative image
is considerably reduced (line 6). The compensation of the
spectral interference produced by the negative image of the
fundamental tone, can be improved by iterating the procedure
a predefined number of times P (see Section III-B). We
summarize the method proposed in [7] by defining a single
function e-IpDFT that accounts for lines 2-7 of Algorithm 1:

{f̂0, Â0, ϕ̂0}|P = e-IpDFT[X(k)] (18)

The method presented in [7] does not account for the
spectral interference produced by tones other than the fun-
damental one. As a consequence, it produces incorrect results
in presence of interfering tones that are relatively close to the
main one, such those defined in the OOBI test.

III. THE PROPOSED ITERATIVE IPDFT (I-IPDFT)

This Section aims at presenting the i-IpDFT, that represents
an enhancement of the method proposed in [7] as it takes

3Recursive DFT computation methods that update the DFT spectrum on a
sample basis are normally more efficient when calculating a small amount of
DFT bins, such in the case of the e-IpDFT algorithm (e.g., [22]).

Fig. 3. DFT and DTFT of a steady state signal composed by a main tone
and an interharmonic one and the related positive and negative images.

into account the effects of the spectral interference generated
by both the negative image of the main tone and a generic
interfering one. More specifically, in Section III-A we define
the SE algorithm and in Section III-B and III-C we propose a
procedure to tune the algorithm parameters.

A. The i-IpDFT Algorithm Formulation

Let us consider a steady-state discrete signal composed of
two tones, a fundamental and an interfering tone (not necessary
harmonic, i.e., fi/f0 ∈ R), both unknown:

x(n) = A0 cos (2πf0nTs + ϕ0) +Ai cos (2πfinTs + ϕi)
(19)

As shown in Fig. 3, its DFT spectrum can be modelled as
the sum of the positive (in blue) and negative (in red) images
of the fundamental (solid line) and interfering (dashed line)
tones:

X(k) = X0(k) +Xi(k)

= X+
0 (k) +X−

0 (k) +X+
i (k) +X−

i (k) (20)

The proposed i-IpDFT algorithm iteratively estimates and
compensates the effects of spectral leakage generated by an
interfering tone and by the negative image of the main tone,
such that the IpDFT is applied to a DFT spectrum that is only
composed by the positive image of the main tone X+

0 (k).
The pseudo-code of the proposed i-IpDFT is reported in
Algorithm 2, whereas Fig. 4 illustrates the spectra that are
processed during successive steps of the method.

The first steps (lines 1-2) of the i-IpDFT algorithm ex-
actly correspond to the e-IpDFT technique in Algorithm 1.
Although in presence of an interfering tone, the estimated
main tone parameters might be largely biased, they can be
used to approximate the positive and the negative image of
the fundamental tone (line 3, Fig. 4b). The latter are then
subtracted from the original DFT bins to produce a spectrum
X(k) − X̂0(k) that accounts for any spurious contribution
perturbing the fundamental tone of the signal (line 4, Fig. 4c).



5

Algorithm 2 The i-IpDFT algorithm.
1: X(k) = DFT(x(n))
2: {f̂0

0 , Â
0
0, ϕ̂

0
0}|P = e-IpDFT[X(k)]

3: X̂0
0 (k) = wf(f̂0

0 , Â
0
0, ϕ̂

0
0) + wf(−f̂0

0 , Â
0
0,−ϕ̂0

0)
4: if

∑
|X(k)− X̂0

0 (k)|2 > λ ·
∑
|X(k)|2

5: for q = 1→ Q
6: {f̂qi , Â

q
i , ϕ̂

q
i }|P = e-IpDFT[X(k)− X̂q−1

0 (k)]

7: X̂q
i (k) = wf(f̂qi , Â

q
i , ϕ̂

q
i ) + wf(−f̂qi , Â

q
i ,−ϕ̂

q
i )

8: {f̂q0 , Â
q
0, ϕ̂

q
0}|P = e-IpDFT[X(k)− X̂q

i (k)]

9: X̂q
0 (k) = wf(f̂q0 , Â

q
0, ϕ̂

q
0) + wf(−f̂q0 , Â

q
0,−ϕ̂

q
0)

10: end for
11: else
12: break
13: end if

In case an interfering tone is detected, the procedure that
estimates and compensates its spectral interference must be
activated. Otherwise the method stops and returns the param-
eters {f̂0

0 , Â
0
0, ϕ̂

0
0} estimated at line 2. If an interfering tone is

present, the spectral energy of X(k)−X̂0
0 (k) weighted by the

spectral energy of X(k), exceeds a certain threshold λ (see
Section III-C for further details):

En =
E[X(k)− X̂0

0 (k)]

E [X(k)]
=

K∑
k=0

|X(k)− X̂0
0 (k)|2

K∑
k=0

|X(k)|2
> λ

(21)
where K is the total number of computed DFT bins. In such a
case, the e-IpDFT is applied to X(k)− X̂q−1

0 (k), to estimate
the parameters {f̂qi , Â

q
i , ϕ̂

q
i } of the detected interharmonic tone

(line 6). The latter, are used to evaluate both the positive and
negative image of the interharmonic tone (line 7, Fig. 4d), that
are then subtracted from the original DFT bins, obtaining the
spectrum X(k)− X̂q

i (k) that does not contain the interfering
tone (line 8, Fig. 4e). Finally, the e-IpDFT is applied to such
spectrum leading to an enhanced estimation of the main tone
parameters {f̂q0 , Â

q
0, ϕ̂

q
0} (line 8, Fig. 4f).

The whole procedure can be iterated a predefined number
of times Q, leading to more and more accurate estimates
as Q increases (see Section III-B). The presented i-IpDFT
algorithm can be formulated for any window function, number
of IpDFT interpolation points, window length and sampling
frequency. Even though it has been formulated for a single
interfering component, it can be easily extended to consider
more than one interfering component. In this respect, it is
worth mentioning that the amount of DFT bins to be calculated
at line 1 depends on the highest frequency component that has
to be compensated.

B. On the Tuning of the Number of Iterations P and Q
The performance of the i-IpDFT algorithm are mainly

influenced by two parameters, and in what follows a procedure
to select them is presented:

• P : the number of iterations of the compensation of the
spectral interference generated by the negative image of
the tone under analysis (see Algorithm 1);

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Spectra processed at different steps of Algorithm 2: X(k) in line 1
(a); X̂0(k)0 in line 3 (b); X(k)− X̂q−1

0 (k) in line 4 and 6 (c); X̂q
i (k) in

line 7 (d); X(k)− X̂q
i (k) in line 8 (e); X̂q

0 (k) in line 9 (f).

• Q: the number of iterations of the overall procedure (see
Algorithm 2).

The effects of P can be evaluated when applying the
e-IpDFT technique to a single-tone signal that is incoher-
ently sampled. In this respect, Fig. 5 shows the accuracy
in estimating the IpDFT correction term δ as a function of
P , when analyzing a signal at 47.5 Hz with a sampling
rate of 50 kHz and a window length of 60 ms. In order to
emulate more realistic conditions, the signal is characterized
by an 80 dB Signal-to-Noise Ratio (SNR) [23]. As it can be
noted, in this specific case, the effect of the compensation
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Fig. 5. Error in estimating the IpDFT correction term δ with the e-IpDFT
technique, as a function of P : signal at f0 = 47.5 Hz. Fs = 50 kHz, T =
60 ms, SNR = 80 dB.
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Fig. 6. Error in estimating the IpDFT correction term δ with the i-IpDFT
technique, as a function of Q: signal at f0 = 47.5 Hz corrupted by an
interfering tone at fi = 20 Hz. Fs = 50 kHz, T = 60 ms, SNR = 80 dB.

becomes negligible after P = 2 iterations both for the Hanning
and the cosine windows. In general this is not always the
case and the number of iterations gets higher as the relative
distance between the positive and negative images gets smaller.
Nevertheless, due to its good trade-off between the overall
algorithm performance and computational complexity, in the
following of the paper the results will be presented for P = 2.

The effects of the overall number of iterations Q are
evaluated when applying the i-IpDFT algorithm to a signal
corrupted by an interharmonic tone. In particular, the case
of a signal characterized by a main tone at 47.5 Hz and an
interharmonic tone at 20 Hz is presented (similar results hold
for all combinations of f0 and fi in the OOBI range). Again,
an 80 dB SNR is considered [23]. Fig. 6 shows the error in
estimating the correction term δ with the i-IpDFT technique
(Fs = 50 kHz, T = 60 ms) as a function of Q. For the cosine
window the effects of the compensation become negligible
after Q = 16 iterations, whereas for the Hanning window after
Q = 28 iterations. This result is explained by the fact that the
narrower main lobe of the cosine window allows to detect (and
therefore compensate) the interharmonic tone with a smaller
number of iterations. As a consequence, in the following of
this paper, the i-IpDFT results are presented for Q = 16 and
Q = 28 for the cosine and Hanning window respectively.

C. On the tuning of the threshold λ

The threshold λ must be set so that the iterative compen-
sation (i.e., lines 5-10 of Algorithm 2) is activated only in
presence of an interharmonic tone. Furthermore, the proposed
technique can turn out to be extremely useful to compensate
the spectral leakage generated by an harmonic tone when
using the cosine window, which has demonstrated to generate
spectral leakage also with coherent sampling.

0 0.005 0.01 0.015 0.02 0.025

E
n

Ph Step

Ampl Step

Freq Ramp

Ph Mod

Ampl Mod

Sign Freq

Harm Dist 1%

Harm Dist 10%

OOBI

cos
Hann

0 0.005 0.01 0.015 0.02 0.025

E
n

1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

O
O

B
I

cos
Hann

Fig. 7. Boxplot representation of En in all operating conditions indicated
in [1] (top) and in the OOBI test when changing Ai in the range [1,10]%A0

(bottom). Fs = 50 kHz, fn = 50 Hz, T = 60 ms, SNR = 80 dB.

In general, the normalized spectral energy En can contain
contributions generated by an interfering tone (e.g., harmonic
or interharmonic) as well as any spurious component generated
by a dynamic event that is wrongly captured by the DFT
(e.g., steps in amplitude and in phase or amplitude and phase
modulations). In this respect, Fig. 7 shows the variability
of En by means of a boxplot representation for the various
testing conditions dictated by [1]. Fig. 7 shows that, when the
main tone is corrupted by a 10% harmonic or interharmonic
component, the values of En are relatively higher than all the
other testing conditions. Therefore, in the following of this
paper, the value of λ is set to 3.3·10−3, in order to activate the
algorithm only in presence of interfering components higher
than 10% of the fundamental tone.

Even if not required by [1], we carry out dedicated simula-
tions to assess the influence of lower interharmonic amplitudes
on the i-IpDFT performance. Specifically, we vary Ai within
the interval [1, 10]%A0. As it can be seen from Fig. 7, the
threshold λ = 3.3·10−3 enables the correct identification of
interharmonic tones characterized by Ai above 8% for the
cosine window and 9% for the Hanning one. Consequently, a
correct behavior of the algorithm takes place and the errors are
below the limits dictated by [1]. Below such amplitudes, given
that the iterative compensation in not activated, the i-IpDFT
cannot identify and correct the interharmonic tone. Therefore,
the errors exceed the limits dictated by [1]. Even though a
lower value of λ would enable the detection of interfering
tones characterized by smaller amplitudes, it would not enable
the distinction between an interfering tone (to be eliminated
from the signal spectrum) and a dynamic behavior (not to be
eliminated).
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TABLE I
I-IPDFT PARAMETERS.

Parameter Variable Value

Nominal system frequency fn 50 Hz
Window length T 60 ms (3/fn)
Sampling rate Fs 50 kHz
PMU reporting rate Fr 50 fps
DFT bins K 11
Iterations comp. of the image P 2
Iterations overall procedure Q 16 (cos), 28 (Hann)
IpDFT interpolation points - 3

IV. PERFORMANCE ASSESSMENT

We carry out the numerical validation of the i-IpDFT
algorithm in a simulation environment, by making reference
to the static and dynamic performance requirements dictated
by [1], [2] and following the testing procedures described in
the IEEE Guide C37.242 [24]. In order to limit the number of
tests, the nominal frequency and the reporting rate have been
fixed to 50 Hz and 50 frames-per-second (fps) respectively. For
each test, the results are presented by means of three graphs
showing the maximum Total Vector Error (TVE), Frequency
Error (FE) and ROCOF Error (RFE) as a function of the
independent variable of the specific test, together with the
maximum limit allowed by [1] for both P and M-class PMU
(Fig. 8 - 15). Moreover, two tables summarize the maximum
obtained TVE, FE and RFE and the maximum limit allowed
by [1] in all tests (Tables II and III). Although [1] does not
provide any guidelines regarding the noise, additive white
Gaussian noise with zero mean and variance corresponding
to an SNR in the range [60, 80] dB is added to the various
reference signals, in order to simulate more realistic condi-
tions [23]. For the sake of clarity, since the trend of errors
is similar for any value of SNR, the graphs refer to an SNR
of 80 dB, whereas the tables include the maximum obtained
errors for both 60 and 80 dB.

As resumed in Table I, the i-IpDFT algorithm results are
shown for both the Hanning (green lines) and cosine windows
(blue lines), using a sampling rate of 50 kHz and a window
containing 3 periods of a signal at the nominal power system
frequency. This is the shortest observation interval that enables
us to distinguish between the fundamental and the interfering
tone, and to fulfill jointly the P and M-class requirements4.
The time-stamp of the synchrophasor is referred to the center
of the applied window. The synchrophasors are estimated at
overlapping observation windows, that are shifted by the given
PMU reporting rate. The first 10 DFT bins of the spectrum
are computed, in order to be able to compensate the effects
of any interfering component up to the 3rd harmonic. The
3-points IpDFT is used to estimate the fractional correction
term δ. It is worth pointing out that the parameters resumed
in Table I are kept constant during all tests, and that such

4The existing literature on DFT-based SE techniques has discussed algo-
rithms characterized by shorter observation intervals. However, those esti-
mators are performing well only in quasi-stationary conditions and when
the signal frequency is neither far from the nominal one nor corrupted by
interfering tones (e.g., [25]).
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Fig. 8. Signal frequency test [1].

configuration enables us to simultaneously meet the P and M-
class compliance in all operating conditions defined in [1].

Finally, the Rate-Of-Change-Of-Frequency (ROCOF) is
computed by means of a classical backward first-order ap-
proximation of a first-order derivative:

ROCOF (n) =
∣∣∣f̂0(n)− f̂0(n− 1)

∣∣∣ · Fr (22)

where f̂0(n) and f̂0(n − 1) represent the fundamental fre-
quency estimations at two successive reporting times.

A. Static Conditions

Regarding the steady state conditions (see Fig. 8, 9, 10 and
Table II), three cases are analyzed according to [1]:

• Signal frequency: single-tone signals in the frequency
range 45 ≤ f0 ≤ 55 Hz (Fig. 8);

• Harmonic distortion: signals distorted by a single 10%
harmonic in the frequency range 100 ≤ fh ≤ 2500 Hz
(Fig. 9)

• OOBI: signals characterized by a fundamental frequency
f0 of 47.5, 50 and 52.5 Hz, distorted by single 10%
interharmonics in the frequency range 10 ≤ fi ≤ 25 Hz
and 75 ≤ fi ≤ 100 Hz (Fig. 10).

During the signal frequency test (see Fig. 8), the errors
are not influenced by the fundamental tone frequency. As it
can be noted from Table II, when the wideband noise level
is 60 dB, in case of using the Hanning window, the RFE is
0.126 Hz/s, being 0.1 Hz/s the maximum limit allowed by [1].
Nevertheless, in the same conditions, for the cosine window
the RFE is below such limit. Regarding the harmonic distortion
test (see Fig. 9), in case the Hanning window is adopted,
the errors are invariant with respect to the harmonic order,
due to the fact that both the fundamental and the harmonic
tone are coherently sampled. On the contrary, for the cosine
window the two tones are not coherently sampled, therefore
the effects of spectral leakage are significant, worsening the
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TABLE II
COMPLIANCE WITH RESPECT TO STATIC SIGNALS: MAXIMUM TVE, FE AND RFE FOR THE I-IPDFT AND MAXIMUM LIMIT ALLOWED BY [1].

TVE [%] FE [mHz] RFE [Hz/s]

IEEE Std i-IpDFT IEEE Std i-IpDFT IEEE Std i-IpDFT
P M cos Hann P M cos Hann P M cos Hann

SNR [dB] SNR [dB] SNR [dB] SNR [dB] SNR [dB] SNR [dB]
60 80 60 80 60 80 60 80 60 80 60 80

Sign Freq 1 1 0.024 0.002 0.03 0.003 5 5 1.3 0.1 1.5 0.1 0.4 0.1 0.095 0.009 0.126 0.012
Harm Dist 1% 1 1 0.108 0.094 0.028 0.003 5 25 5.4 4.7 1.3 0.1 0.4 - 0.086 0.009 0.112 0.011

Harm Dist 10% 1 1 0.055 0.047 0.026 0.003 5 25 2 1.1 1.2 0.1 0.4 - 0.085 0.009 0.124 0.011

f0=47.5 Hz - 1.3 0.056 0.022 0.108 0.082 - 10 2.7 1.1 5.6 4.1 - - 0.217 0.101 0.513 0.369
OOBI f0=50 Hz - 1.3 0.026 0.003 0.033 0.004 - 10 1.3 0.1 1.7 0.2 - - 0.104 0.009 0.153 0.013

f0=52.5 Hz - 1.3 0.043 0.004 0.044 0.011 - 10 2.1 0.2 2.2 0.6 - - 0.143 0.022 0.150 0.032

TABLE III
COMPLIANCE WITH RESPECT TO DYNAMIC SIGNALS: MAXIMUM TVE, FE AND RFE FOR THE I-IPDFT AND MAXIMUM LIMIT ALLOWED BY [1].

TVE [%] FE [mHz] RFE [Hz/s]

IEEE Std i-IpDFT IEEE Std i-IpDFT IEEE Std i-IpDFT
P M cos Hann P M cos Hann P M cos Hann

SNR [dB] SNR [dB] SNR [dB] SNR [dB] SNR [dB] SNR [dB]
60 80 60 80 60 80 60 80 60 80 60 80

Ampl Mod 3 3 0.846 0.847 0.604 0.604 60 300 2.2 1.6 1.6 0.4 2.3 14 0.106 0.051 0.123 0.016
Ph Mod 3 3 0.805 0.806 0.547 0.547 60 300 21.9 22 17.9 17.4 2.3 14 0.725 0.683 0.568 0.540

Freq Ramp 1 1 0.058 0.055 0.044 0.038 10 10 1 0.2 0.9 0.2 0.4 0.2 0.088 0.011 0.083 0.011

TVE Response time [s] FE Response time [s] RFE Response time [s]

IEEE Std i-IpDFT IEEE Std i-IpDFT IEEE Std i-IpDFT
P M cos Hann P M cos Hann P M cos Hann

SNR [dB] SNR [dB] SNR [dB] SNR [dB] SNR [dB] SNR [dB]
60 80 60 80 60 80 60 80 60 80 60 80

Ampl Step 0.04 0.14 0.034 0.034 0.028 0.028 0.09 0.28 0.048 0.048 0.044 0.044 0.12 0.28 0.056 0.056 0.054 0.054
Ph Step 0.04 0.14 0.040 0.040 0.032 0.032 0.09 0.28 0.048 0.048 0.044 0.044 0.12 0.28 0.054 0.054 0.054 0.054

Delay time [s] Max Overshoot [%]

IEEE Std i-IpDFT IEEE Std i-IpDFT
P M cos Hann P M cos Hann

SNR [dB] SNR [dB] SNR [dB] SNR [dB]
60 80 60 80 60 80 60 80

Ampl Step 0.005 0.005 0.002 0.002 0.002 0.002 5 10 0 0 0 0
Ph Step 0.005 0.005 0.002 0.002 0.002 0.002 5 10 0 0 0 0
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Fig. 9. Harmonic distortion test (Ah = 10%A0) [1].
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Fig. 10. OOBI test [1].
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IpDFT results especially for lower harmonic orders. Indeed,
as reported in Table II, in case Ah = 1%A0 the FE exceeds
the 5 mHz limit dictated by [1] when SNR = 60 dB, and is
below such limit for higher SNRs. It is worth mentioning that,
in case Ah = 10%A0, for the second and third harmonic
the weighted energy En exceeds the threshold λ, activating
the procedure that compensates the detected harmonic tone,
leading to smaller errors even for the cosine window.

As far as the OOBI test is concerned (see Fig. 10), the
graphs show the maximum obtained errors among the 3
considered fundamental frequencies. The TVE and FE are
within the limits required by [1] for every combination of
interharmonic and fundamental frequencies, for both cosine
and Hanning window. Even though [1] does not define any
specific limit for the RFE, the obtained results show that we are
capable of estimating the ROCOF with similar performance as
in the harmonic distortion test. To be more precise, the most
challenging condition is when the two tones have frequencies
that are close together and their images are not detectable due
to short-term spectral leakage. In case f0 = 47.5 Hz, this occurs
for 20 ≤ fi ≤ 25 Hz whereas in case f0 = 52.5 Hz, this occurs
for 75 ≤ fi ≤ 80 Hz.

B. Dynamic Conditions
Regarding the dynamic conditions (see Fig. 11-15 and

Table III), three cases are analyzed according to [1]:
• Measurement bandwidth: signals characterized by phase

and amplitude modulations, being 0.1 ≤ fm ≤ 5 Hz the
modulating frequency (Fig. 11 and 12);

• Frequency ramp: signals characterized by positive and
negative frequency ramps in the frequency range 48 ≤
f0 ≤ 52 Hz and 45 ≤ f0 ≤ 55 Hz at a rate of ± 1 Hz/s
(Fig. 13);

• Amplitude and phase steps: signals characterized by
positive and negative amplitude (± 10 %) and phase
(±π/18) steps (Fig. 14 and 15).

During the measurement bandwidth test (see Fig. 11 for
amplitude and Fig. 12 for phase modulation results), despite
the errors increase with the modulating frequency, they are
always well within the limits required by [1]. As for the
Frequency ramp, the errors fully satisfy the requirements
and are comparable with those obtained during the signal
frequency test even within the exclusion intervals (Fig. 13
shows the positive frequency ramp for the [45, 55] Hz range,
similar results hold for the negative ramp and for the [48,
52] Hz range). Finally, regarding the amplitude and phase steps
(see Fig. 14 and 15 for the positive step cases), the errors
are represented as a function of the measured response time.
Moreover, the estimated amplitude (A) and phase (ph) are
represented as a function of the delay time. The results show
that, during positive steps, the errors return below the limits
within the allowed response times without any violation of
the overshoot limit (similar results hold for the negative step
cases).

C. Computational Complexity
In view of implementing the i-IpDFT algorithm into an

FPGA-based (Field Programmable Gate Array) device, we
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Fig. 11. Amplitude modulation test [1]. The range of the modulation
frequency is [0.1,2] Hz for P-class, [0.1,5] for M-class [1].
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Fig. 12. Phase modulation test [1]. The range of the modulation frequency
is [0.1,2] Hz for P-class, [0.1,5] for M-class [1].

have assessed its computational complexity. More specifically,
Table IV summarizes the number of arithmetic operations
required to produce each step of the i-IpDFT, via the pseudo-
code shown in Algorithm 2.

Overall, the workload is higher than the one of the procedure
presented in [7]. Nevertheless, the possibility to share FPGA
resources when implementing iterative algorithms, such as
the i-IpDFT, enables us to considerably reduce the overall
FPGA occupation and potentially fit the proposed i-IpDFT
in an embedded device. In this regard, [22] demonstrates that
the e-IpDFT technique is taking less than 20 microseconds
to estimate the synchrophasor of a single input channel in
the targeted FPGA device. As summarized in Table IV, when
implementing the i-IpDFT, for each estimated synchrophasor,
the e-IpDFT is applied Q times to both the fundamental
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Fig. 13. Frequency ramp test when the signal frequency ramps over the range
[45, 55] Hz (positive) [1] (similar results hold for negative frequency ramp and
for the [48, 52] Hz range). The gray areas correspond to the initial and final
steady-state conditions. The vertical lines delineate the exclusion intervals:
2/Fs = 0.04 s for P-class (dashed lines) and 7/Fs = 0.14 s for M-class (solid
lines).
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Fig. 14. Amplitude step test (positive) [1] (similar results hold for negative
step test). TVE, FE and RFE are represented as a function of the response
time, meaning that time t = 0 corresponds to the instant that the measurement
leaves the accuracy limit, to which the curves for the two windows are aligned.
The vertical dotted lines indicate the instant that the step change is applied,
the vertical dashed lines indicate the SE response time, the vertical red lines
indicate the response time limits dictated by [1]. The estimated amplitude
is represented as a function of the delay time, meaning that time t = 0
corresponds to the instant that the step change is applied. The vertical dashed
lines indicate the SE delay time, the vertical red lines indicate the delay time
limits dictated by [1].
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Fig. 15. Phase step test (positive) [1] (similar results hold for negative step
test). Refer to Fig. 14 caption for further details.

TABLE IV
COMPUTATIONAL COMPLEXITY OF THE I-IPDFT.

i-IpDFT Variable Value

K 11
P 2
Q 16 (cos), 28 (Hann)

Function +| − |× ÷|exp|sin

IpDFT 14 3
wf (cos) 18K 11K
wf (Hann) 23K 16K
e-IpDFT (P+1)·IpDFT+ P · wf+KP (P+1)·IpDFT+ P · wf

Alg. II +| − |× ÷|exp|sin

line 2 e-IpDFT e-IpDFT
line 3 K + 2 · wf 2 · wf
line 4 5K − 2 -

line 6, 8 Q · e-IpDFT+K Q · e-IpDFT
line 7, 9 Q · (K + 2 · wf) Q · (2 · wf)

and the interfering tones. As a consequence, the expected
computational latency of the i-IpDFT on the same FPGA
target of [22] for a single channel can be approximately
computed as a function of the e-IpDFT latency. Specifically,
this leads to 20 µs · 2 · 16 = 0.64 ms for the cosine and
20 µs · 2 · 28 = 1.12 ms for the Hanning window. Those
values are fully compatible with the 10 ms time budget at a
reporting rate of 50 fps, demonstrating the feasibility of the
i-IpDFT technique implementation on an FPGA target similar
the one used in [22].
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V. CONCLUSIONS

In this paper, we have presented an IpDFT-based SE algo-
rithm, called i-IpDFT, that is an enhancement of the methods
proposed in [7] and [8]. We have discussed the limits of the
IpDFT technique when estimating the parameters of a signal
corrupted by an interharmonic tone and formulated a technique
that is resilient against the spectral leakage generated by any
interfering tone. We have conducted a sensitivity analysis to
characterize the dependence upon the adopted window func-
tion and upon the algorithm’s parameters. We have assessed
its performance with respect to all the operating conditions
introduced for P and M-class PMUs in [1]. We have presented
the results in the case of a power system operating at a nominal
frequency of 50 Hz, a reporting frequency of 50 fps and signals
characterized by an SNR in the range from 60 to 80 dB.

The proposed i-IpDFT algorithm satisfies all the accuracy
requirements defined in [1] for P and M-class PMUs. In
particular, the i-IpDFT fulfils the OOBI test constraints, which
is the main noticeable advantage when comparing it with the
method presented in [7]. In such an operating condition, the
maximum TVE is 0.1 % (being 1.3 % the maximum limit
allowed by [1]) and the maximum FE is 5.6 mHz (being
10 mHz the maximum limit allowed by [1]). Moreover, we
have assessed its computational complexity and have demon-
strated the prospective deployability of the proposed method
in an embedded device.

APPENDIX

Solution of the IpDFT Problem using the Cosine Window

The analytical formulation of the IpDFT correction term
δ for the cosine window given in (15) is derived in [20].
Regarding the tone’s amplitude given in (16), no derivation
was found in the existing literature.

If the number of samples N is sufficiently large, the
following approximation is valid [21]:

e±j
π
2 (N−1)/N ≈ ±j (23)

Moreover, sine functions are approximated by their arguments
in the case of small angles. The Dirichlet kernel evaluated in
k ± 0.5 can be then approximated as:

DN (k ± 0.5) = ∓je−jπk(N−1)/N sin(πk ± π/2)

sin(π(k ± 0.5)/N)
(24)

≈ −jN
π
e−jπk(N−1)/N cos(πk)

k ± 0.5
(25)

Therefore, the DFT of the cosine window in (6) can be
approximated as:

WC(k) = −N
2π
e−jπk(N−1)/N cos(πk)

k2 − 0.25
(26)

The tone’s amplitude A0 corresponds to the modulus of the
DTFT of the signal evaluated at frequency f0 = km + δ:

A0 = |X(km + δ)| (27)

Its value can be derived as a function of the highest amplitude
DFT bin:

|X(km + δ)|
|X(km)|

≈ |WC(0)|
|WC(−δ)|

(28)

= 4 · |δ
2 − 0.25|
| cos(πδ)|

(29)

leading to (16). The approximation sign is used instead of
equality, because the ratios might differ due to spectral leak-
age [21].
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