
Quarts: Quick Agreement for Real-Time Control Systems
Wajeb Saab, Maaz Mohiuddin, Simon Bliudze, Jean-Yves Le Boudec

École Polytechnique Fédérale de Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract—Real-time control systems (RTCSs) tolerate delay
and crash faults by replicating the controller. Each replica com-
putes and issues setpoints to actuators over a network that might
drop or delay messages. Hence, the actuators might receive an
inconsistent set of setpoints. Such inconsistency is avoided either
by having a single primary replica compute and issue setpoints (in
passive replication) or a consensus algorithm select one sending-
replica (in active replication). However, due to the impossibility
of a perfect failure-detector, passive-replication schemes can
have multiple primaries, causing inconsistency, especially in the
presence of intermittent delay faults. Furthermore, the impos-
sibility of bounded-latency consensus causes both schemes to
have poor real-time performance. We identified three properties
of RTCSs that enable active-replication schemes to agree on
the measurements before computing, instead of using traditional
consensus. As all computing replicas compute with the same state,
the resulting setpoints are guaranteed to be consistent. We present
the design of Quarts, an agreement solution for active replication
that guarantees consistency and bounded latency-overhead. We
prove the guarantees and compare the performance of Quarts
with existing solutions through simulation. We show that Quarts
provides an availability higher than existing solutions, and that
the availability improvement is up to 10x with two replicas.

Index Terms—agreement; consistency; consensus; replication;
real-time; control systems

I. INTRODUCTION

We consider real-time control systems (RTCSs) that consist
of controllers built from commercial-off-the-shelf (COTS)
software and/or hardware components. Such systems include
real-time control of electric grids [1], [2] and manufacturing
processes [3]. The controller receives labelled (time-stamped
or logically sequenced) measurements from sensors. It uses the
measurements to compute and issue setpoints, within bounded
latency of a few milliseconds, to actuators to complete the
control. The measurements and setpoints are sent over a non-
ideal network, and hence might experience delays and losses.

COTS-based RTCSs are susceptible to faults [4] such as
delay- and crash-faults [5]. Being mission-critical, such sys-
tems achieve the desired high-reliability by replicating the
controller. Replication increases the availability by enabling
the system to continue issuing setpoints when some replicas
are faulty. However, replicas might receive different subsets
of the measurements as input and, consequently, produce
different — possibly inconsistent — setpoints. Such behavior
diverges from that of a non-replicated controller and could
result in incorrect control of the controlled process. For
instance, in an RTCS that balances power in an electric grid by
using two actuators, if the controller replicas issue setpoints
(+5 kW, −5 kW) and (+4.8 kW, −4.8 kW), the actuators
might implement (+5 kW, −4.8 kW) or (+4.8 kW, −5 kW).

Achieving consistency among the replicas within bounded
latency is impossible, as shown in the CAP theorem [6].

RTCSs circumvent this by using passive replication [7], where
only one replica (the primary) issues setpoints. In the event
of the failure of the primary, the standbys perform consen-
sus [8] to elect a new primary among themselves. As perfect
failure-detection is impossible in non-ideal networks [9], the
standbys might elect a new primary when the existing primary
is non-faulty, resulting in multiple replicas issuing setpoints
and, consequently, possible inconsistency. This is particularly
relevant for RTCSs, due to the intermittence of delay faults.

Alternatively, RTCSs that use active replication perform
consensus before issuing each setpoint to provide consistency.
However, termination of consensus takes unbounded time [10],
resulting in low availability of the RTCS. The shortcomings
of existing solutions are discussed in Section II.

We identified a class of RTCSs that enables providing
consistency and remaining highly available. The controllers of
these RTCSs can compute setpoints, despite missing previous
setpoint computations, such as the Kalman filter in [11]. Also,
the state of the controller used for computation can be known
exactly, e.g., the Kalman gain matrix. Lastly, the actuators
should be able to handle identical duplicate setpoints.

For these RTCSs, we developed Quarts, an active-replication
agreement protocol that guarantees consistency and provides
high availability. In Section III, we describe the model of the
RTCSs to which Quarts applies. The model encompasses a
wide-range of RTCSs [1], [2], [11], the most famous of which
use Kalman-filter-based controllers [12], in which the value of
computed setpoints depends on the state of the controller in
addition to the measurements. Moreover, in contrast to the
crash-only fault model considered by classic solutions, we
consider a stronger model that consists of delays and crashes,
which better suits COTS-based RTCSs [5].

Our key contribution in the paper is the design of Quarts,
described in Section IV. To guarantee consistency, Quarts
votes on the measurements to be used in computation. To
enhance the chances of a successful vote, voting is preceded
by a phase of measurement exchange that enables the replicas
to have the same measurements. Quarts is also designed to
have bounded latency-overhead. The formal guarantees of
consistency and latency overhead are presented in Section V.

Another contribution is an extensive performance evaluation
of existing agreement protocols, presented in Section VI.
We study the effect of several factors, including the number
of replicas, network loss probability, and fault probability,
on availability, consistency, latency, and messaging cost. By
comparing Quarts to three state-of-the-art protocols [7], [13],
we find that Quarts provides higher availability and maintains
100% consistency. This comes at a small expense in messaging
cost. Also, addition of replicas improves availability with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148030614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Network Network
M; r Actuators

h
x1r

xjr

xhr

Z; r X; rController

A1; : : : ; Ah
Sensors

m

CH

Controller replica

Controller replica

Fig. 1. Architecture of an RTCS

Quarts significantly, but only marginally for other protocols.

II. RELATED WORK

Passive replication [7] is commonly used in RTCSs as it
avoids agreement by having one primary compute and issue
setpoints. If the primary is detected as faulty, the standbys elect
a new primary by consensus. As failure detection is imperfect
in non-synchronous settings [9], the standbys could incorrectly
detect the primary as faulty and elect a new primary, and
the original primary would not be notified, resulting in two
primaries, thus leading to potential inconsistencies. However,
these inconsistencies are rare under a crash-only fault model.

Most passive-replication research considers the crash-only
fault model, under which passive replication improves avail-
ability at a negligible cost of inconsistency. For RTCSs,
however, a stronger fault model that includes delay faults is
relevant. The intermittent nature of delay faults causes more
false positives by failure detectors, hence more inconsistencies.

Alternatively, active-replication schemes such as Fast
Paxos [13] and Viewstamped Replication [14] guarantee con-
sistency by using consensus, for deciding the setpoint to be
sent or the sender of the setpoint. Consensus consists of 4
properties: agreement, termination, validity, and integrity [8].
Validity and integrity address issues that arise due to Byzantine
faults, and are not under consideration in this work. Agreement
and termination are impossible to guarantee together, within a
bounded delay, in a non-synchronous setting [10]. As RTCSs
require low latency, this results in low availability.

Quarts focuses on a class of RTCS for which agreement
termination is not always necessary, as they can correctly com-
pute setpoints even if some previous computation was missed
(refer to properties in Section III). This enables agreement via
voting that, irrespective of the success, ends after a bounded
time. Moreover, performing agreement on the input, rather
than over the setpoints or the issuing replicas, affords a phase
of collection prior to agreement. This increases the chances of
a successful vote, thereby improving availability.

We use a composite voter [15] that, in cases of no majority,
selects the output of one of the replicas based on a predeter-
mined order. Unlike in [15], where the order is replica-based,
we use an ordering based on the number of measurements, a
scheme more suited to RTCSs. Also, we use plurality voting
[16], instead of majority voting, as it has higher availability.

III. SYSTEM MODEL

In this section, we describe the model of an RTCS with
a single controller that we will replicate using Quarts. The
controller is as shown in Algorithm 1 without the parts in
red (lines 11-13, 15); and all replicas are copies of the
same controller. The part in red is Quarts, which extends the
controller model, and is discussed in detail in Section IV.

Algorithm 1: Abstract model of an RTCS controller.
Quarts adds the parts in red to guarantee consistency.

1 r ← 0; // highest label of measurements received
2 r− ← 0; // highest label of measurements used for computation
3 Z← ∅; // vector of measurements with label r
4 H← ∅; // controller state after computing setpoints with label r−
5
6 repeat // Thread 1: Receive and aggregate measurements
7 Z, r ← aggregate_received_measurements(r);
8 forever;
9

10 repeat // Thread 2: Compute and issue setpoints
11 if r > r− then
12 success, Z,H, r− ← collect_and_vote(Z,H, r, r−);
13 end
14 decision ← ready_to_compute(Z,H, r);
15 if success and decision then
16 X← compute_setpoints(Z,H, r − r−);
17 H← update_state(Z,H, r − r−);
18 issue(X, r);
19 r− ← r;
20 end
21 forever;

Figure 1 shows the architecture of RTCSs that we consider.
The m sensors send measurements to the controller, each mea-
surement marked with a logical sequence number r, hereafter
referred to as label. The labels are global and shared by all
the sensors. Such labelling can be obtained either by time-
synchronization or through logical clocks [17]. The controller
computes and issues h setpoints, one for each actuator. The
measurements and setpoints are sent over a non-ideal network
that might delay or drop messages. In case of no loss, the
propagation delay is bounded by δn. The message processing
time of non-faulty replicas is negligible w.r.t. δn. This network
model is called probabilistic synchronous [9].

We follow a refined version of the controller model in [5],
shown in Algorithm 1. From the received measurements, the
controller forms the vector of measurements, Z, corresponding
to label r (line 7). This function forms Z and, when it receives
measurements with label greater than r, overwrites r. An
example of such a function is the time-alignment function
in phasor data concentrators upon receiving time-stamped
measurements from phasor measurement units (PMUs) [2].

When sufficient measurements of label r are received or a
timeout occurs, the ready_to_compute function (line 14)
allows the controller to begin computing setpoints. The com-
putations are performed in a strictly increasing order in r.

The computation of setpoints X corresponding to label r
(line 16) depends on measurements of label r (Z), state (H),
and correction factor (r− r−). The correction factor indicates
when the last setpoint was computed and is used to handle
intermittent measurements, as discussed in Property 2. Also,
each computation results in a new state (line 17).

Given that the state is used in the computation of setpoints
(line 16), Quarts requires replicas to agree on the state. To this
end, the following property is expected to hold.

Property 1. The state used by the controller for computing
the setpoints can be known exactly.

This property is satisfied by a wide range of controllers
including controllers using Kalman filters [12] where the state

is the gain matrix, or more sophisticated controllers like [18],
where the state is the time of the most recent voltage violation.

As the controller is composed of COTS components, it is
susceptible to faults. In addition to crash faults, considered
within the fault models of classic agreement solutions [7],
[19], we include delay faults. The controller is marked delay
faulty between two consecutive issuings of setpoints if its delay
in issuing the former setpoint is greater than a pre-defined
value [5]. A crash fault is a special case of delay fault with
the controller’s delay being infinite.

The intermittent nature of delay faults makes real-time
agreement more challenging. As a controller can be delay
faulty for an arbitrarily long time, solutions that rely on failure
detection will incur a high latency-overhead for each setpoint.
In order to tackle the challenges of such intermittent faults,
we require the controller to satisfy the following property.

Property 2. The controller can compute correct setpoints in
the presence of intermittent measurements.

This property holds for controllers that receive measure-
ments and send setpoints via a non-ideal network, e.g., wide-
area networks. Specifically, this applies to RTCSs that use a
Kalman filter that accounts for intermittent measurements [11].

Controllers of RTCSs that exhibit this property can compute
and issue setpoints despite intermittent faults, either in the
network (losses of measurements) or in the controller (delay
faults). On the contrary, an RTCS that does not exhibit Prop-
erty 2, will eventually permanently fail to compute and issue
setpoints, even in the absence of crash faults. This is because
a controller that fails to compute setpoints for a label r, cannot
compute setpoints for all labels greater than r.

From this property, we find that a controller might compute
setpoints for label k < r − 1, be delay faulty for some
time and then compute setpoints for label r, by using the
state corresponding to label k, without the knowledge of the
intermediate states. Note that the resulting setpoints would be
correct, but might be sub-optimal when compared to those
computed using the state corresponding to label r − 1.

Lastly, as we intend to use active replication, multiple
replicas will issue setpoints of the same label to the actuators.
Therefore, we require the following property to hold.

Property 3. Actuators are able to handle duplicate setpoints.

This property is generally exhibited in RTCSs that use
absolute, rather than differential, setpoints. An example of
absolute setpoints is an electric-grid controller instructing a
battery agent that is injecting 8kW to ‘set the injected power
to 10kW’, rather than to ‘increase the injected power by
2kW’. Receiving identical duplicates of the former has the
same effect as receiving a single setpoint. For RTCSs with
differential setpoints, Property 3 can also be achieved by de-
duplication using the labels of the setpoints.

IV. QUARTS DESIGN

We take a top-down approach to describing the design of
Quarts. In Section IV-A, we give a walkthrough of a typical
operation of Quarts by using, as an example, an RTCS for
control of electric grids that uses a Kalman-filter controller [2].

Algorithm 2: collect_and_vote(Z, H, r, r−)

1 // Part 1: Collection
2 Zcoll ← collect_missing_measurements(Z, r);
3 Hcoll, r

−
coll ← collect_missing_state(H, r−);

4 S ← indices of entries in Zcoll;
5 send digest(S , r−coll, r) to all voters;
6
7 // Part 2: Voting
8 success, Schosen , r

−
chosen ← vote(r);

9 if success and r−chosen = r−coll and Schosen ⊆ S then
10 return True, Zcoll[Schosen],Hcoll, r

−
coll;

11 else
12 return False, Zcoll[Schosen],Hcoll, r

−
coll ;

13 end

Then, in Sections IV-B, IV-C, we detail the design of the
individual building blocks of Quarts.

A. Protocol Walkthrough

Quarts is applied to an RTCS by replicating the controller,
adding the red part (Algorithm 1 lines 11-13, 15), and imple-
menting the collect_and_vote function (Algorithm 2)
that itself implements Algorithms 3, 4 and 5. In order to guar-
antee consistency, this function performs agreement between
the controller replicas and overwrites the set of measurements
Z, the state H, and the label of the last setpoint computation
r−. The function returns False in case this replica should not
compute for this label. The collect_and_vote function
has two parts, Collection and Voting, described in Section IV-B
and IV-C, respectively.

The novelty of Quarts is to perform agreement on mea-
surements Z and the state H before computation, as opposed
to agreement on setpoints done by existing solutions. By
agreement on H for label r, replicas explicitly agree on
the correction factor, r − r−. Our choice stems from the
observation that performing agreement on the input allows for
an optimization that increases the probability of a successful
agreement. This optimization is referred to as the collection
phase, and involves replicas exchanging measurements and
state so as to minimize the missing information in each replica.

Agreement is done in the subsequent voting phase, where
replicas exchange a digest of the measurements and the state
they have. The subset of measurements corresponding to the
most-common digest is chosen for computation. The details of
the digest and the voting phase are explained in Section IV-C.

From Algorithm 1, note that the setpoints returned by the
compute_setpoints function are uniquely determined by
Z, H and r − r−. An example of such a controller is [2],
which uses a Kalman filter for estimating the state of an
electric grid, and uses the estimated state to compute and issue
setpoints to actuators to keep the grid in a feasible state. Here,
Z is composed of phasors received from PMUs, and H is the
Kalman-gain matrix. Recall that in a Kalman filter [11], the
measurements, Kalman-gain, and correction-factor uniquely
determine the output. Hence, agreeing on Z, H, and r− for a
given r is sufficient for agreeing on the value of the setpoints.

With Quarts, the aforementioned RTCS [2] works as fol-
lows. Every 20 ms, the sensors (PMUs) send measurements,
with timestamps that are used as labels for identification.

Algorithm 3: collect_missing_measurements(Z, r)

1 S ← indices of entries in Z;
2 send Query<S̄ , r> to all replicas; // Ask for missing indices
3 repeat
4 if Query<Q , l> received and l = r then
5 // Received query, send response
6 send Response<Z [Q ∩ S], r> to all replicas;
7 else if Response<P, l> received and l = r then
8 // Received response, update set of measurements
9 Update Z to include P;

10 Add received entries to S ;
11 end
12 until timer 2δn expires;
13
14 return Z; // Return set of measurements after collection

When the first measurement with a new label r is received,
the replica sets a timeout by which it expects to receive all
measurements. One possible value of the timeout is the one-
way delay of the network (δn). As the measurements are sent
over a lossy network, the controller replicas receive different
subsets of measurements. On timeout, each replica queries
other replicas for the missing measurements. Moreover, each
replica that has a state with a label less than r − 1 requests
others for their most recent state. This way, more replicas have
a similar state and set of measurements after collection, and
the subsequent voting phase is more likely to succeed.

The collection phase in Algorithm 2 is realized through
the functions collect_missing_measurements and
collect_missing_state (Algorithms 3, 4). Each of
these functions lasts for at most 2δn at each replica, as detailed
in Section IV-B. These functions are independent and can run
simultaneously, resulting in a bounded latency of 2δn for the
collection phase.

At the end of the collection phase, each replica sends to
other replicas a digest of the measurements it has obtained
thus far. This begins the voting phase, in which each replica
chooses, using the vote function (Algorithm 5), the set
of measurements and the state to be used for computing
setpoints corresponding to this label. If voting is unsuccessful,
or if the corresponding replica does not possess the chosen
measurements or state, then False is returned (Algorithm 2,
line 12). This prohibits the replica from computing setpoints
(Algorithm 1, line 15). The voting phase has a bounded
duration of 3δn and is explained further in Section IV-C.

Note that, the voting phase requires an upper bound on
the number of controller replicas (faulty and non-faulty). This
can be achieved either by statically configuring the number of
replicas every time a new replica is added or removed, or by
using a group membership algorithm such as [20]. As addition
of replicas is not done on the real-time path, the introduction
of a new replica can wait until the termination of the group
membership algorithm. During this time, the RTCS continues
to provide consistency but with reduced availability due to a
conservative count of the number of replicas.

B. Collection Phase

The collection phase consists of replicas exchanging mea-
surements and state, as presented in Algorithms 3 and 4, re-
spectively. As mentioned earlier, these can run simultaneously.

Algorithm 4: collect_missing_state(H, r−)

1 send Advertisement<r−> to all replicas; // Advertise state label
2 repeat
3 if Advertisement<l> received and l < r− then
4 // Received advertisement with smaller label, send my state
5 send Update<H, r−> to all replicas;
6 else if Update<H′, l> received and l > r− then
7 // Received state with higher label, update my state
8 H← H′;
9 r− ← l;

10 end
11 until timer 2δn expires;
12

13 return H, r−; // Return state and label after collection

Collection, designed with delay faults in mind, is terminated
after 2δn. Thus, non-delay-faulty replicas can proceed with the
voting phase without waiting for delay-faulty ones.

The main premise of collection is that measurements and
state with the same label have the same value (Theorem V.1).
Without agreeing on the input, this need not necessarily hold
for setpoints, as replicas might use different measurements or
state for computation. Hence, collection can be performed only
on measurements and state, and not on setpoints.

1) Collecting Measurements: Each replica calls
collect_missing_measurements(Z, r) (Algorithm 3).
It forms S , the set of IDs of the sensors from which it has
received measurements with label r. Then, it sends a Query
to all replicas asking for the missing measurements (entries
of S̄).

For each Query received, the replica sends a Response
containing the queried measurements that it has. Also, for each
Response received, the replica updates the vector Z to include
the newly received measurements. These exchanges include
the label r to ensure that stale measurements, caused by delay-
faulty replicas sending queries or responses, are ignored.

As this phase is done simultaneously by all non-delay-faulty
replicas, its delay is upper-bounded by 2δn, the time required
for queries and responses to be delivered.

2) Collecting State: Similarly, each replica calls
collect_missing_state, passing it as input the
current state (H), and the label (r−) of the measurements
involved in the computation leading up to that state,
henceforth referred to as the state label. The replica sends an
Advertisement with the label of its state r−.

If a replica receives an Advertisement with a label lower
than its own, it sends an Update with its state and label to all
replicas, so that they can synchronize their state accordingly.
If a replica receives an Update with a label higher than its
own, it changes its state and label.

C. Voting Phase

The collection phase ends with each replica sending its
digest to all the voters. A digest with a label l consists of
(1) an indicator set S of measurements with label l that
this replica has, and (2) the state label r− at this replica.
Quarts uses a total order among digests. Consequently, we
have a function max that returns the largest digest, based on
the total order. For each label, there exists a largest possible
digest (full_digest) that does not contain any missing

Algorithm 5: vote(r)

1 v ← []; // vector of digests from each replica
2 Smc ← set of most common digests in v;
3 Ssec ← set of second most common digests in v;
4 fmc ← count of each element of Smc in v;
5 fsec ← count of each element of Ssec in v;
6 f0 ← number of empty cells in v;
7
8 repeat
9 // Receive collection message

10 if digest (S , r−, l) received from replica j and l = r then
11 v[j] ← (S , r−);
12 update Smc,Ssec, fmc, fsec, f0 using v;
13 // Attempt vote
14 if f0 = 0 then
15 // All digests received, pick max of Smc

16 return True, max(Smc);
17 else if |Smc|= 1 and fmc > fsec + f0 then
18 // Only one most common digest, and clearly the majority
19 return True, Smc[0];
20 else if |Smc|= 1 and fmc = fsec + f0 and fsec 6= 0 then
21 // 2nd most common digests could have equal count
22 if Smc[0] > max(Ssec) then
23 // Most common digest is the largest
24 return True, Smc[0];
25 end
26 else if |Smc|= 1 and fmc = fsec + f0 then
27 // Other digests could have equal count
28 if Smc[0] = full_digest then
29 // Most common digest is the largest
30 return True, Smc[0];
31 end
32 end
33 end
34 until timer 3δn expires;
35
36 return False, NULL; // Return false because vote was unsuccessful

measurements and that has r− = l− 1. A possible implemen-
tation of the digest is a concatenation of the state label with
the bitmask of the measurements. For instance, computing
setpoints with label l = 25: if r− is 24 and a replica has
received measurements from sensors 1, 2, and 5 (m = 5), then
its digest would be “24.11001”. The lexicographic ordering
of the digest string gives the total order, with “24.11111”
being the full_digest. We use this implementation in our
simulations.

Each replica maintains a list v of digests received with label
r from other replicas, with at most one entry per replica. From
v, it attempts to vote and choose a digest, such that all replicas
choosing a digest with label r, choose the same digest.

The voter also maintains two lists and three integers that are
updated when a new digest is received and stored in v. As the
same digest can be received from several replicas, we count the
number of occurrences of each unique digest in v. We store the
digests with the highest frequency in Smc, and their count in
fmc. Similarly, the digests with the second highest frequency
are stored in Ssec, and their count in fsec. Finally, the number
of empty elements in v, that is the number of replicas from
which the voter has not received digests, is stored in f0.

There are four cases in which the voter can choose a digest.
In all other cases, the voter has to wait for more digests. (1)
The number of empty cells in v is zero (lines 14-16). In this
case, the voter has to choose one of the digests that are most
common. If there’s only one, it is chosen, otherwise, it chooses
the largest among them. (2) There is only one most common

digest, and it will remain so no matter what the replicas that
have yet to send digests send (lines 17-19). It is chosen (as the
obvious majority). (3) There is only one most common digest,
and there is at least another digest (second most common), and
no matter what the replicas that have yet to send digests send,
any second most common digest can be at most as frequent as
the most common one (lines 20-25). In this case, if the most
common digest is larger than all the second most common
digests, the voter chooses it. (4) The full_digest is the
only most common one and no other digest can become more
common. Since it is the largest by definition, it is chosen.

This approach enables the voter to successfully vote, before
receiving digests from all replicas, while guaranteeing con-
sistency, thus accounting for delay faults. Specifically, item 4
(lines 26-32) enables a two-replica RTCS to be available when
one of its replicas is faulty, if the other replica receives all
measurements and is up-to-date on the state (full_digest).

The voter returns unsuccessfully after 3δn, which is enough
time to allow the non-faulty replicas to send their digests.

V. PERFORMANCE GUARANTEES

We first formalize the notion of consistency.

Definition 1 (Consistency). Consistency is said to hold on
label r for an RTCS iff all the setpoints with label r for the
same actuator have the same value.

Theorem V.1 (Consistency). Quarts guarantees consistency in
the presence of any number of delay- or crash-faulty replicas.

Proof. From Algorithm 1, we see that the setpoints depend
entirely on the measurements Z used for computation, the state
H, and the state label r−. Hence, it suffices to show that, any
two replicas, Ci and Cj , that compute setpoints for label r,
using measurements Zi

r and Zj
r, states Hi

r and Hj
r, and state

labels r−i and r−j , respectively, will have Zi
r = Zj

r, Hi
r = Hj

r,
and r−i = r−j . This is shown by the following lemmas.

Lemma V.1. ∀ r, i, j, Zi
r = Zj

r

Lemma V.2. When replicas Ci and Cj compute setpoints for
a label r using state labels r−i and r−j respectively, r−i = r−j .

Lemma V.3. ∀ r, i, j, r−i = r−j =⇒ Hi
r = Hj

r

The proofs for the lemmas are in the technical report [21].

RTCSs aim to have minimal latency between generation
of measurements and issuing of setpoints. Hence, agreement
protocols for RTCSs must have a low latency-overhead. The
latency overhead of a replica due to Quarts is the time spent
in the collect_and_vote function (Algorithm 1, line 7).
It depends on the network delay between the controllers. As
described in Section III, we consider a lossy network with
a bounded propagation delay δn for non-lost packets. For
an RTCS using such a network, Quarts guarantees bounded
latency-overhead for each replica that issues a setpoint.

Theorem V.2 (Bounded Latency-Overhead). When a non-
faulty replica of an RTCS using Quarts issues a setpoint, its
latency overhead is bounded by 5δn.

The proof of Theorem V.2 is in the technical report [21].

VI. PERFORMANCE EVALUATION

We evaluate the consistency (Definitions 1) of Quarts and
that of existing protocols [7], [13]. We also evaluate other per-
formance metrics of RTCSs, namely, availability (Definition
2), latency (Defintion 3) and messaging cost. The analytical
evaluation of these metrics appears to be mathematically
intractable. So, we perform the evaluation using simulations.

A. Performance Metrics

From Definition 1, we obtain a measure of consistency as
follows. If consistency holds for an RTCS for setpoints with
label r, then put γr = 1, else γr = 0. Note that γr = 1, when
no setpoints are sent by an RTCS with a label r, or when only
one of the replicas sends setpoints for label r. The measure
of consistency of an RTCS is given by Γ = E [γr].

In addition to providing consistency, a controller of an
RTCS is required to have high availability.

Definition 2 (Availability). Availability is said to hold for an
RTCS for a setpoint with label r w.r.t. an actuator Aj , iff Aj

receives a setpoint with label r.

If availability holds for an RTCS for setpoints labelled r
for an actuator Aj , then put ψj

r = 1, else ψj
r = 0. Then, a

measure of the availability for setpoints with label r is ψr =
1
h

∑h
j=1 ψ

j
r , and the availability of an RTCS is Ψ = E [ψr].

Besides high availability, RTCSs require low latency. Let
Si
r, 1 ≤ i ≤ m, be the time instant at which sensor i sends

measurement with label r and Ijr , 1 ≤ j ≤ g, be the time
instant at which the controller Cj issues the setpoints with
label r. Then, latency is defined as follows.

Definition 3 (Latency). Latency of an RTCS for a setpoint
with label r is δr = minj∈[1,g] I

j
r −mini∈[1,m] S

i
r.

From Definition 3, we compute the mean latency of an
RTCS with an agreement protocol as ∆ = E[δr]. Besides
having a low mean-latency, it is important that the delay
distribution is light-tailed. So, we also consider the 99th

percentile of latency (δp99) in our evaluation.
Another important performance metric for RTCSs is the

messaging cost needed to provide consistency and high avail-
ability. For simplicity, we use the number of messages ex-
changed as an indicator of messaging cost. Specifically, the
messaging cost (ωr) of an RTCS for computing and sending
setpoints corresponding to label r is evaluated as the total
number of messages labelled r exchanged by the replicas
among each other and with the actuators. We consider the
mean (Ω) and 99th percentile (ωp99) of messaging cost.

In summary, the metrics of interest are consistency (Γ),
availability (Ψ), mean and 99th percentile of latency (∆, δp99),
and mean and 99th percentile of messaging cost (Ω, ωp99).

B. Agreement Protocols

The state-of-the-art agreement protocols against which we
compare the performance of Quarts, are active replication with

Fast-Paxos consensus [13] and passive replication with hot or
cold standbys [7]. Hereafter, we denote them as AC, PH, and
PC, respectively. We denote Quarts as Q.

a) Protocol AC: All replicas receive measurements and
perform computation. Before sending setpoints to the actua-
tors, the replicas agree on which replica sends the septoints for
this label (which is equivalent to agreeing on which setpoint
is sent), by using a consensus protocol. We choose the widely
used Fast Paxos [13] protocol for consenus as it is optimized
for low latency and guarantees consistency. This is an example
of an active-replication-based agreement protocol that ensures
consistency by agreement on the septoints, as opposed to
agreement on the measurements, as done by Quarts.

b) Protocol PC: This is a passive-replication scheme,
in which only the primary replica sends setpoints to the
actuators. In PC, the standbys are cold, i.e., only the primary
receives measurements and computes setpoints. After each
computation, the primary sends heartbeats to the standbys, the
absence of which is used to detect the failure of the primary.
The heartbeats also serve as a mechanism for synchronization
of the state of the standbys with that of the primary. When the
primary is detected as faulty, the standbys elect a leader among
themselves by using Fast Paxos to hold a consensus. As the
cold standbys do not receive measurements, the newly elected
primary can only begin computing setpoints for next label.

c) Protocol PH: This agreement protocol is the same
as protocol PC, except that the standbys in protocol PH are
hot, i.e., they receive measurements and compute setpoints but
do not send them to the actuators. As a result, when a new
primary is elected after the failure of the existing primary, it
can issue setpoints for the current label and does not have to
wait for the reception of measurements of the next label.

PC and PH are expected to have lower latency and higher
availability than the active-replication scheme AC, as the
replicas do not hold consensus for every label. For this reason,
passive replication is the traditional choice of agreement
protocol for RTCSs and is included in our evaluation.

C. Simulation Methodology

We consider an RTCS for the control of electric grids
that uses a Kalman-filter based controller [2]. In this RTCS,
PMUs send measurements every T = 20 ms. As mentioned
in Section III, the network is considered to be probabilistic
synchronous [9], in which packets are dropped with a prob-
ability p, and are otherwise received within a delay bounded
by δn = 0.5 ms. We simulate this using a Bernoulli random
variable with success probability 1 − p, and a uniformly
distributed delay in the range (0, 0.5] ms when the packet is
delivered. The detailed fault model is described below.

1) Fault Model: The controller replicas are considered
to have independent faults, consisting of both crashes and
delays. Crash faults are fail-stop, causing a replica to be faulty
indefinitely until it is externally recovered. Delay faults are
intermittent, i.e., a delay-faulty replica might turn non-faulty
after the duration of the computation that was delayed.

To simulate the bursty behavior of faults, we use the Gilbert-
Elliot model [22]. The replica could be in one of two states:
Good state (G) or Bad state (B). The transition probabilities

1 2 3 4 5
Number of Replicas (g)

10-3

10-4

10-5

10-6

10-7

10-8

AC

PH

PC

Q

10-4 10-3 10-2

Network Loss Probability (p)

10-5
10-4
10-3
10-2
10-1

AC

PH

PC

QU
n
a
v
a
ila
b
ili
ty
 (
1
−
Ψ
)

Fig. 2. Unavailability with varying g and varying p

from G to B and B to G are qB and qG, respectively. In state
G, the replica is faulty with a probability pd, which simulates
delay faults. The computation delay of a replica is drawn from
an exponential distribution such that P(delay > τ) = pd,
where τ is the threshold for a non-faulty replica computation.
The replica is considered unavailable if its delay is such that
it fails to send the setpoint before new measurements arrive.

In state B, the replica is faulty with probability 1, thereby
simulating crash faults. The parameters (qB , qG, pd) of the
model are evaluated from the probability of crash faults (θc),
probability of delay faults (θd), and mean-time-to-repair from
crash faults (R), which are chosen for each particular scenario.

2) Quality of the Estimation: We run each simulation until
the 95% confidence interval of the estimated value has a half
width, from the central value, less than 5%. Hence, all our
results can be interpreted with the 95% confidence interval as
[0.95x̂, 1.05x̂], where x̂ is the reported estimate.

D. Results

We simulated the 4 protocols (Q, AC, PC, PH) for several
scenarios with 2 values of m (10 and 100), 5 values for each of
g and h (1 through 5), 3 different fault models, and 10 values
of p (between 10−4 and 0.05). Our simulation platform was
a high-throughput cluster with 278 nodes and the simulation
campaign lasted a total of 10 days. Due to limited space, we
present the results of a distilled representative set of scenarios.

Henceforth, unless otherwise specified, the parameters used
are g = 2, h = 1,m = 10, p = 1E−3, θc = 1E−4, θd =
1E−3, R = 1 s, ∆n = 0.5 ms, τ = 8 ms, and T = 20 ms.
Figure 2 shows the unavailability (1 − Ψ) for varying g and
varying p. Tables I, II show the detailed simulation results for
the chosen scenarios.

Finding 1. Quarts provides higher availability than that of
AC, PC and PH, while maintaining 100% consistency.

We simulate the protocols for g = [1, 5]. The first plot
of Figure 2 shows that the unavailability (1 - Ψ) of Quarts
is more than an order of magnitude lower than that of
other protocols with 2 replicas, and 4 orders of magnitude
lower with 3 replicas. Additionally, for more than 3 replicas,
Quarts showed no unavailability in 1E10 runs (∼ 3 days of
simulation). Simulating such extremely rare-events requires

more sophisticated techniques such as Importance Sampling
and Palm Calculus [23], and is left for future work.

In order to put the availability improvement with Quarts
into perspective, we analyze the mean-time-between-faults
(MTBF) [24] of the RTCS. For the RTCS under study that
sends setpoints every 20 ms, for g = 1, an availability of
0.9987 translates to an MTBF of 18.2 s. Using two replicas,
the protocols AC, PC and PH can increase the MTBF to 18.4 s,
19.6 s and 19.9 s, respectively. By comparison, the MTBF with
Quarts is 5 minutes. Furthermore, the MTBF with 3 replicas
for protocols AC, PC, PH and Q is 19.7 s, 19.2 s, 19.9 s,
and 4.54 days. As seen above, the existing protocols show
marginal improvement in availability with each additional
replica, whereas Quarts enjoys a significant increase.

The second plot of Figure 2 confirms Finding 1 for different
values of p. We see that, even at extremely high-values of
p = 0.02, Quarts has Ψ = 0.9991, whereas this value drops
down to 0.98 for other protocols. This finding is further re-
affirmed by the results of the scenarios shown in Table I.

The availability improvement of Quarts comes without any
penalty to consistency. We find that the consistency of Quarts
and AC is 1. However, the consistency guarantee of AC comes
at the cost of low availability, as compared to Quarts. In
contrast, PC and PH have an inconsistency between 1E − 5
and 1E − 3 in the presence of delay faults, for the scenarios
considered. In the absence of delay faults, the probability of
inconsistency for PC and PH could not be captured by our
simulations in 1E10 runs and, therefore, can be considered
small. For these scenarios, however, their availability is still
lower than that of Quarts.

Finding 2. Quarts has a lower average-latency and tail-
latency than other consistency-guaranteeing protocols.

Table II shows that the mean latency of Quarts is less than
that of AC with a factor of 4. PC and PH have a comparable
mean that comes the expense of inconsistency. Quarts has a
better mean latency than AC, as it does not perform consensus
in each cycle. Furthermore, in Quarts, when a replica is up-to-
date, i.e., has all the measurements and the state label r−1, it
can enter the voting phase without waiting for the collection
timer (2δn) to expire. In the meantime, it continues to listen
for queries and sends responses to other replicas.

We also see in Table II that the tail-latency of Quarts is
lower than that of other protocols in the presence of delay
faults, and comparable to that of PC and PH in the absence
of delay faults. Such low tail-latency is due to the bounded
latency-overhead of Quarts as shown by Theorem V.2.

Finding 3. Guaranteeing consistency comes at the marginal
expense of a higher messaging cost.

The mean messaging cost of Quarts and AC is marginally
higher than that of PC and PH and increases with the number
of replicas. This is due to the collection phase in Quarts
and the consensus employed by AC, for every setpoint. Such
an exchange of messages is the price to pay for achieving
consistency. The 99th percentile messaging cost is also higher
for Quarts, as can be seen in the technical report [21].

Unavailability (1−Ψ) Inconsistency (1− Γ) Messaging cost in messages/label (Ω)
Scenario: (m, g, θc, θd) Q AC PH PC PH PC Q AC PH PC
#1: (10, 2, 1E−4, 1E−3) 9.12E−5 1.24E−3 9.87E−4 1.02E−3 1.92E−4 1.28E−3 4.04 5.17 3.87 3.00
#2: (100, 2, 1E−4, 1E−3) 1.46E−4 1.19E−3 9.76E−4 1.03E−3 1.68E−3 1.50E−3 4.38 5.17 3.87 3.00
#3: (10, 2, 1E−5, 1E−4) 1.02E−5 9.98E−4 1.01E−3 9.96E−4 2.40E−5 1.38E−4 4.04 5.10 3.74 3.00
#4: (10, 2, 1E−4, 0) 8.14E−5 1.37E−3 1.01E−3 1.02E−3 (0, 3E − 10]∗ (0, 3E − 10]∗ 4.04 5.02 3.50 3.00
#5: (10, 3, 1E−4, 0) 2.25E−8 1.01E−3 1.01E−3 9.92E−4 (0, 3E − 10]∗ (0, 3E − 10]∗ 9.18 9.02 6.67 5.01

TABLE I
SIMULATION RESULTS FOR SELECT SCENARIOS OF QUARTS (Q), ACTIVE CONSENSUS (AC), PASSIVE HOT (PH), AND PASSIVE COLD (PC)

∗ NO INCONSISTENCY WAS OBSERVED IN 1E10 RUNS

Latency in ms (∆, δp99)
Scenario Q AC PH PC

#1 0.96, 3.08 4.28, 8.78 1.40, 5.59 1.41, 5.59
#2 0.98, 3.11 4.27, 8.78 1.40, 5.58 1.41, 5.59
#3 0.82, 2.42 3.91, 8.09 1.12, 4.26 1.12, 4.26
#4 0.39, 0.78 3.52, 4.18 0.25, 0.5 0.25, 0.5
#5 0.50, 0.84 3.50, 4.15 0.25, 0.49 0.25, 0.5

TABLE II
MEAN AND 99th PERCENTILE LATENCY FOR THE SCENARIOS IN TABLE I

VII. CONCLUSION AND FUTURE WORK

We presented Quarts, an agreement protocol for RTCSs that
uses active replication of the controller. Quarts is designed
and formally proven to guarantee consistency with a bounded
latency-overhead. We performed an extensive performance
evaluation of Quarts and existing agreement protocols through
simulation under different conditions of number of replicas,
network losses, fault profiles, etc. We showed that besides
guaranteeing consistency, Quarts improves the availability of
an RTCS by more than an order of magnitude, when compared
with existing agreement protocols. Moreover, Quarts improves
the tail-latency performance of the RTCS. These benefits of
Quarts come at a marginal increase in messaging cost when
compared to passive replication schemes.

We intend to implement Quarts and deploy it in our campus
microgrid with an RTCS that performs control of electric grids
[1]. As Quarts applies to Kalman-filter controllers, which have
a wide range of applications, we intend to implement a Quarts
API for such systems. We also intend to model and verify
our design and implementation using formal modeling and
verification tools, such as BIP [25], so as to facilitate the ease
of adoption of Quarts for mission-critical applications.

VIII. ACKNOWLEDGMENTS

This research was supported by the “SNSF - NRP 70”
Energy Turnaround project.

REFERENCES

[1] Andrey Bernstein, Lorenzo Reyes-Chamorro, Jean-Yves Le Boudec, and
Mario Paolone. A Composable Method for Real-Time Control of Active
Distribution Networks with Explicit Power Setpoints. Part I: Framework.
Electric Power Systems Research, 125:254–264, 2015.

[2] Styliani Sarri, Lorenzo Zanni, Miroslav Popovic, Jean-Yves Le Boudec,
and Mario Paolone. Performance Assessment of Linear State Estimators
using Synchrophasor Measurements. IEEE Transactions on Instrumen-
tation and Measurement, 65(3):535–548, 2016.

[3] Paulo Leitão. Agent-Based Distributed Manufacturing Control: A State-
of-the-Art Survey. Engineering Applications of Artificial Intelligence,
22(7):979–991, 2009.

[4] Donald J Reifer, Victor R Basili, Barry W Boehm, and Betsy Clark.
Cots-Based Systems–Twelve Lessons Learned about Maintenance. In
COTS-Based Software Systems, pages 137–145. Springer, 2004.

[5] Maaz Mohiuddin, Wajeb Saab, Simon Bliudze, and Jean-Yves
Le Boudec. Axo: Masking Delay Faults in Real-Time Control Systems.
In Industrial Electronics Society, IECON 2016-42nd Annual Conference
of the IEEE, pages 4933–4940. IEEE, 2016.

[6] Seth Gilbert and Nancy Ann Lynch. Perspectives on the CAP Theorem.
Institute of Electrical and Electronics Engineers, 2012.

[7] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg.
The Primary-Backup Approach. Distributed systems, 2:199–216, 1993.

[8] Leslie Lamport et al. Paxos Made Simple. ACM Sigact News, 32(4):18–
25, 2001.

[9] Dacfey Dzung, Rachid Guerraoui, David Kozhaya, and Yvonne-Anne
Pignolet. Never Say Never–Probabilistic and Temporal Failure Detec-
tors. In Parallel and Distributed Processing Symposium, 2016 IEEE
International, pages 679–688. IEEE, 2016.

[10] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-
bility of Distributed Consensus with One Faulty Process. Journal of the
ACM (JACM), 32(2):374–382, 1985.

[11] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar
Poolla, Michael I Jordan, and Shankar S Sastry. Kalman Filtering
with Intermittent Observations. IEEE transactions on Automatic Control,
49(9):1453–1464, 2004.

[12] Rudolph Emil Kalman. A New Approach to Linear Filtering and
Prediction Problems. Journal of basic Engineering, 82(1):35–45, 1960.

[13] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103,
2006.

[14] Brian M Oki and Barbara H Liskov. Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed Systems.
In Proceedings of the seventh annual ACM Symposium on Principles of
distributed computing, pages 8–17. ACM, 1988.

[15] Judith L Gersting, Robert L Nist, Dale B Roberts, and RL Van Valken-
burg. A Comparison of Voting Algorithms for N-Version Programming.
In System Sciences, 1991. Proceedings of the Twenty-Fourth Annual
Hawaii International Conference on, volume 2, pages 253–262. IEEE,
1991.

[16] Douglas M Blough and Gregory F Sullivan. A Comparison of Voting
Strategies for Fault-Tolerant Distributed Systems. In Reliable Distributed
Systems, 1990. Proceedings., Ninth Symposium on, pages 136–145.
IEEE, 1990.

[17] Leslie Lamport. Time Clocks and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, 1978.

[18] Roman Rudnik, Lorenzo Enrique Reyes Chamorro, Andrey Bernstein,
Jean-Yves Le Boudec, and Mario Paolone. Handling Large Power
Steps in Real-Time Microgrid Control Via Explicit Power Setpoints.
In PowerTech 2017, number EPFL-CONF-226196, 2017.

[19] Leslie Lamport. The Part-Time Parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[20] R. Guerraoui, D. Kozhaya, M. Oriol, and Y. A. Pignolet. Who’s On
Board?: Probabilistic Membership for Real-Time Distributed Control
Systems . In 2016 IEEE 35th Symposium on Reliable Distributed
Systems (SRDS), pages 167–176, Sept 2016.

[21] Wajeb Saab, Maaz Mohiuddin, Simon Bliudze, and Jean-Yves
Le Boudec. Quarts: Quick Agreement for Real-Time Control Systems.
Technical report, EPFL, 2017.

[22] Edwin O Elliott. Estimates of Error Rates for Codes on Burst-Noise
Channels. The Bell System Technical Journal, 42(5):1977–1997, 1963.

[23] Jean-Yves Le Boudec. Performance Evaluation of Computer and
Communication Systems, volume 12. Epfl Press Lausanne, 2010.

[24] Hubert Kirrmann. §2.5 Dependable Automation. Collaborative Process
Automation Systems, page 100, 2010.

[25] Simon Bliudze, Alessandro Cimatti, Mohamad Jaber, Sergio Mover,
Marco Roveri, Wajeb Saab, and Qiang Wang. Formal Verification of
Infinite-State BIP Models. In International Symposium on Automated
Technology for Verification and Analysis, pages 326–343. Springer,
2015.

