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Abstract

This work studies the problem of statistical inference for Fréchet means in the Wasserstein

space of measures on Euclidean spaces, W2(Rd ). This question arises naturally from the

problem of separating amplitude and phase variation in point processes, analogous to a

well-known problem in functional data analysis. We formulate the point process version of

the problem, show that it is canonically equivalent to that of estimating Fréchet means in

W2(Rd ), and carry out estimation by means of M-estimation. This approach allows to achieve

consistency in a genuinely nonparametric framework, even in a sparse sampling regime. For

Cox processes on the real line, consistency is supplemented by convergence rates and, in the

dense sampling regime,
�

n-consistency and a central limit theorem.

Computation of the Fréchet mean is challenging when the processes are multivariate, in which

case our Fréchet mean estimator is only defined implicitly as the minimiser of an optimisation

problem. To overcome this difficulty, we propose a steepest descent algorithm that approx-

imates the minimiser, and show that it converges to a local minimum. Our techniques are

specific to the Wasserstein space, because Hessian-type arguments that are commonly used

for similar convergence proofs do not apply to that space. In addition, we discuss similarities

with generalised Procrustes analysis. The key advantage of the algorithm is that it requires

only the solution of pairwise transportation problems.

The results in the preceding paragraphs require properties of Fréchet means in W2(Rd ) whose

theory is developed, supplemented by some new results. We present the tangent bundle

and exploit its relation to optimal maps in order to derive differentiability properties of the

associated Fréchet functional, obtaining a characterisation of Karcher means. Additionally, we

establish a new optimality criterion for local minima and prove a new stability result for the

optimal maps that, enhanced with the established consistency of the Fréchet mean estimator,

yields consistency of the optimal transportation maps.

Keywords: Fréchet mean, functional data analysis, geodesic variation, optimal transportation,

phase variation, point process, random measure, registration, warping, Wasserstein distance.
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Résumé
Dans cette thèse, nous étudions le problème d’inférence statistique des moyennes de Fréchet

dans l’espace de Wasserstein de mesures sur les espaces euclidiens, W2(Rd ). Cette question

se pose naturellement lors de la séparation des variations d’amplitude et de phase dans les

processus ponctuels, de manière analogue au problème bien connu en analyse des données

fonctionnelles. Nous formulons ce problème pour les processus ponctuels, démontrons

qu’il est canoniquement équivalent à l’estimation de moyennes de Fréchet dans W2(Rd ) et

effectuons cette estimation au moyen de l’estimation M . Cette approche permet d’obtenir de

la consistance dans un cadre nonparamétrique, même sous un régime d’échantillonnage épars.

Pour les processus Cox sur R, la consistance est complémentée par les taux de convergences et,

dans le régime d’échantillonnage dense, par la consistance-
�

n et un théorème limite centrale.

Le calcul de la moyenne de Fréchet est difficile lorsque les processus sont multivariés. Dans

ce cas, notre estimateur de la moyenne de Fréchet n’est défini que de manière implicite,

en tant que solution d’un problème d’optimisation. Pour surmonter cette difficulté, nous

proposons un algorithme de la plus forte pente qui approxime cette solution et démontrons

qu’il converge à un minimum local. Nos techniques sont spécifiques à l’espace de Wasserstein,

parce que des arguments de type hessienne, qui sont généralement utilisés pour des preuves

similaires de convergence, ne s’appliquent pas à cet espace. De plus, nous examinons les

similitudes avec l’analyse procrustéenne généralisée. L’avantage principal de l’algorithme est

qu’il ne requiert que la solution des problèmes de transport entre des paires de mesures.

Les résultats des paragraphes précédents requièrent des propriétés des moyennes de Fréchet

dans W2(Rd ), dont la théorie qui est développée est complétée par de nouveaux résultats. Nous

présentons l’espace tangent et exploitons sa relation avec les fonctions optimales, pour dériver

des propriétés de différentiabilité de la fonctionnelle de Fréchet, obtenant une caractérisation

de moyennes de Karcher. De plus, nous établissons un nouveau critère d’optimalité pour les

minimums locaux et prouvons un nouveau résultat de stabilité pour les fonctions optimales

qui, annexé à la consistance déjà établie de l’estimateur de la moyenne de Fréchet, apporte de

la consistance aux fonctions de transport optimal.

Mots clefs: Analyse de données fonctionnelles, déformation, distance de Wasserstein, mesures

aléatoires, moyenne de Fréchet, processus ponctuel, recalage, transport optimal, variation

géodésique, variation de phase.

v





Contents
Acknowledgements i

Abstract iii

Résumé v

List of figures xi

Notation 1

1 Introduction 3

2 Optimal transportation 7

2.1 The Monge and the Kantorovich problems . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Probabilistic interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Kantorovich duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Duality in the discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Duality in the general case . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Relationship between the dual and primal problems . . . . . . . . . . . . 18

2.4.4 Unconstrained dual Kantorovich problem . . . . . . . . . . . . . . . . . . 19

2.5 The absolutely continuous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Quadratic cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Strictly convex cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 The one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 The Gaussian case with quadratic cost . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Regularity of the transport maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Stability of solutions under narrow convergence . . . . . . . . . . . . . . . . . . . 31

2.9.1 Stability of transference plans and c-monotonicity . . . . . . . . . . . . . 32

2.9.2 Stability of transport maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 The Wasserstein space 45

3.1 Definition, notation and basic properties . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Topological properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Convergence, compact subsets . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



Contents

3.2.2 Dense subsets and completeness . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Negative topological properties . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 The tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Geodesics, the log map and the exponential map in W2(X ) . . . . . . . . 54

3.3.2 Curvature and compatibility of measures . . . . . . . . . . . . . . . . . . . 55

3.4 Random measures in the Wasserstein space . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Measurability of measures and of optimal maps . . . . . . . . . . . . . . . 60

3.4.2 Random optimal maps and Fubini’s theorem . . . . . . . . . . . . . . . . 63

3.4.3 Measurability of the convex potentials in W2 . . . . . . . . . . . . . . . . . 66

3.5 Fréchet means in W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 The Fréchet functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 The one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.3 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.4 The Agueh–Carlier characterisation . . . . . . . . . . . . . . . . . . . . . . 78

3.5.5 Differentiability of the Fréchet functional and Karcher means . . . . . . 79

3.5.6 Relation to multimarginal formulation and the compatible case . . . . . 85

4 Phase variation and Fréchet means 89

4.1 Amplitude and phase variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 The functional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.2 The point process case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Wasserstein geometry and phase variation . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Equivariance properties of the Wasserstein distance . . . . . . . . . . . . 98

4.2.2 Canonicity of Wasserstein distance in measuring phase variation . . . . 100

4.3 Estimation of Fréchet means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Oracle case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Discretely observed measures . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.4 Estimation of warpings and registration maps . . . . . . . . . . . . . . . . 106

4.3.5 Unbiased estimation when X =R . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.1 Consistent estimation of Fréchet means . . . . . . . . . . . . . . . . . . . 109

4.4.2 Consistency of warp functions and inverses . . . . . . . . . . . . . . . . . 117

4.5 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.1 Explicit classes of warp maps . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5.2 Bimodal Cox Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5.3 Effect of the smoothing parameter . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Further results on the real line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.6.1 Convergence rates and a central limit theorem . . . . . . . . . . . . . . . 127

4.6.2 Optimality of the rates of convergence . . . . . . . . . . . . . . . . . . . . 133

5 Computation of multivariate Fréchet means 137

5.1 A steepest descent algorithm for the computation of Fréchet means . . . . . . . 138

viii



Contents

5.2 Relationship to shape theory and Procrustes analysis . . . . . . . . . . . . . . . . 140

5.3 Convergence of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3.1 A complete proof of Lemma 5.3.4 . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.1 Gaussian measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.2 Compatible measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4.3 Partially Gaussian trivariate measures . . . . . . . . . . . . . . . . . . . . . 158

5.5 Further properties of Karcher means . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.6 Population version of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Outlook 165

6.1 Extensions of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Generalising the consistency framework of Chapter 4 . . . . . . . . . . . . . . . 166

Bibliography 167

Curriculum Vitae 173

ix





List of Figures
2.1 The set G in (2.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Derivatives of growth curves from the Berkeley dataset. . . . . . . . . . . . . . . 92

4.2 Four realisations of (4.1) with means in thick blue. Left: amplitude variation

(B = 0); right: phase variation (A = 1). . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Unwarped (left) and warped Poisson point processes. . . . . . . . . . . . . . . . 96

4.4 Warp functions of Equation (4.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Density and distribution functions corresponding to (4.9) with ε= 0 and ε= 0.15.122

4.6 (a) 30 warped bimodal densities, with density of λ given by (4.9) in solid black;

(b) Their corresponding distribution functions, with that of λ in solid black; (c)

30 Cox processes, constructed as warped versions of Poisson processes with

mean intensity 93 f using as warp functions the rescaling to [−16.16] of (4.8). . 123

4.7 (a) Comparison between the the regularised Fréchet–Wasserstein estimator,

the empirical arithmetic mean, and the true distribution function, including

residual curves centred at y = 3/4; (b) The estimated warp functions; (c) Kernel

estimates of the density function f of the structural mean, based on the warped

and registered point patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 Bimodal Cox processes: (a) The observed warped point processes; (b) The unob-

served original point processes; (c) The registered point processes. . . . . . . . 124

4.9 (a) Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and the

true mean measure λ for 20 independent replications of the experiment; (b)

Sampling variation of the arithmetic mean, and the true mean measure λ for the

same 20 replications; (c) Superposition of (a) and (b). For ease of comparison all

three panels include residual curves centred at y = 3/4. . . . . . . . . . . . . . . 125

4.10 Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and the true

mean measure λ for 20 independent replications of the experiment, with ε= 0

and n = 30. Left: τ= 43; middle: τ= 93; right: τ= 143. For ease of comparison

all three panels include residual curves centred at y = 3/4. . . . . . . . . . . . . . 125

4.11 Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and the true

mean measure λ for 20 independent replications of the experiment, with ε= 0

and τ= 93. Left: n = 30; middle: n = 50; right: n = 70. For ease of comparison all

three panels include residual curves centred at y = 3/4. . . . . . . . . . . . . . . 125

xi



List of Figures

4.12 Regularised Fréchet–Wasserstein mean as a function of the smoothing parameter

multiplier s, including residual curves. Here n = 30 and τ= 143. . . . . . . . . . 126

4.13 Registered point processes as a function of the smoothing parameter multiplier

s. Left: s = 0.1; middle: s = 1; right: s = 3. Here n = 30 and τ= 43. . . . . . . . . . 126

5.1 Density plot of four Gaussian measures in R2. . . . . . . . . . . . . . . . . . . . . 153

5.2 Density plot of the Fréchet mean of the measures in Figure 5.1. . . . . . . . . . . 153

5.3 Gaussian example: vector fields depicting the optimal maps x �→ tμ
i

μ̄ (x) from the

Fréchet mean μ̄ of Figure 5.2 to the four measures {μi } of Figure 5.1. The order

corresponds to that of Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4 Densities of a bimodal Gaussian mixture (left) and a mixture of a Gaussian with

a gamma (right), with the Fréchet mean density in light blue. . . . . . . . . . . . 155

5.5 Optimal maps tμ
i

μ̄ from the Fréchet mean μ̄ to the four measures {μi } in Figure 5.4.

The left plot corresponds to the bimodal Gaussian mixture, and the right plot to

the Gaussian/gamma mixture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.6 Density plots of the four product measures of the measures in Figure 5.4. . . . . 156

5.7 Density plot of the Fréchet mean of the measures in Figure 5.6. . . . . . . . . . . 157

5.8 Density plots of four measures in R2 with Frank copula of parameter −8. . . . . 157

5.9 Density plot of the Fréchet mean of the measures in Figure 5.8. . . . . . . . . . . 157

5.10 Frank copula example: vector fields of the optimal maps tμ
i

μ̄ from the Fréchet

mean μ̄ of Figure 5.9 to the four measures {μi } of Figure 5.8. The colours match

those of Figure 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.11 The set {v ∈R3 : g i (v) = 0.0003} for i = 1 (black), the Fréchet mean (light blue),

i = 2,3,4 in red, green and dark blue respectively. . . . . . . . . . . . . . . . . . . 159

5.12 The set {v ∈R3 : g i (v) = 0.0003} for i = 3 (left) and i = 4 (right), with each of the

four different inverses of the bimodal density f i corresponding to a colour. . . 159

xii



Notation

Measure theory

Leb(A) Lebesgue measure of a (measurable) subset A ⊆Rd

P (X ) the set of Borel probability measures on a space X

M+(X ) the set of Borel measures on a space X

M(X ) the set of Borel signed measures on a space X

δx or δ{x} Dirac measure at a point x; δx (A) = 1 if x ∈ A and 0 otherwise

μ⊗ν the independence coupling measure defined by (μ⊗ν)(A ×B) =μ(A)ν(B)

T #μ push-forward measure defined as [T #μ](A) =μ(T −1(A))

suppμ support of a measure μ, defined as the complement of the largest open set

on which μ= 0
Lp (μ) the set of measurable functions f : X → X such that x �→ ‖ f (x)‖X ∈ Lp (μ)

(X is a Banach space. If X is separable, then this is a Bochner space)

Set theory and topology

A \ B the set difference {x ∈ A : x ∉ B}

intA interior of a set A (largest open set included in A)

A closure of a set A (smallest closed set that contains A)

∂A boundary of a set A, defined as the difference A \ intA

convA convex-hull of a set A (smallest convex set containing A)

〈·, ·〉 (‖ ·‖) inner product (norm) of X when it is a Hilbert (Banach) space

d(x, A) when (X ,d) is a metric space and {x}∪ A ⊆ X , this is infa∈A d(x, a)

dK diameter of a nonempty subset K of a metric space, defined as supx,y∈K d(x, y)

Cb(X ) or Cb(X ,R) the set of continuous, bounded real-valued functions on X

Cb(U ,K ) the set of continuous functions f : U → K such that supx∈U ‖ f (x)‖ <∞
BR (x0), B R (x0) the sets {x ∈X : d(x, x0) < R} and {x : d(x, x0) ≤ R} respectively.

Here X is a metric space with metric d

1



List of Figures

Optimal transportation

Wp (μ,ν) Wasserstein distance of order p between the measures μ and ν

Wp (X ) Wasserstein space of order p on a space X

Wp (K ) for K ⊆ X , this is the set {μ ∈Wp (X ) : μ(K ) = 1}

tνμ optimal transport map between μ and ν (when it exists and is unique)

logγ, expγ, Tanγ log map, exponential map and tangent space at an absolutely continuous γ ∈W2

Fμ and F−1
μ cumulative distribution function and quantile function of a probability measure μ ∈ P (R)

Miscellaneous

Rd+ d-dimensional vectors with nonnegative coordinates

i the identity map

At transpose of a matrix A

det A determinant of a matrix A

trA trace of a matrix A

Gden the set of Lebesgue points of a set G ⊆Rd

SN set of permutations: bijective functions from {1, . . . , N } to itself

dom f the set of points at which f : X →R∪ {±∞} is not +∞
φ∗ Legendre transform of φ defined by φ∗(y) = supx∈X

〈
x, y

〉−φ(x)

∂φ(x) subdifferential of φ at x

Xn = OP(Yn) the sequence (Xn/Yn) is bounded in probability

Xn = oP(Yn) the sequence (Xn/Yn) converges to 0 in probability

(When Xn and Yn are not random, we omit the subscript P)

2



1 Introduction

In the early days of statistics, the data to be analysed typically came in the form of vectors in

finite-dimensional Euclidean spaces. Though its roots date back to the years post World War

II, the field of functional data analysis received considerable attention since the last quarter

of the previous century. In this setting, instead of a finite sequence of numbers, the atoms

are entire curves, lying in a function space of infinite dimensions. This formalism allows for

modelling phenomena arising in an extremely rich variety of applications, such as growth

curves, electricity consumption, weather, brain images, handwriting recognition, criminology

and DNA dynamics. In some applications, however, the linear structure of function spaces

is inappropriate, as the space in which the data lie has no obvious notion of addition. The

ambient space of some medical data, for instance, is the quotient space of R3 over Euclidean

similarities, which is a particular type of manifold called the shape space. The evolutionary

history of a set of organisms is modelled by phylogenetic trees, elements of a stratified space.

More recently, research on social networks led to statistical analysis on (possibly weighted)

graphs, with the nodes being social units and edges representing affinity between them.

The type of datasets that motivated the work in this thesis arise in neuroscience, and arrive

in the form of random point patterns, sometimes called spike trains and mathematically

defined as point processes. In the simplest scenario, one observes for each individual a

random set of points in the unit interval K = [0,1] and the goal may be to define a sample

mean, representing the “average" behaviour of the sample. Though the total number of

observed points may be different for each observation, this is typically not the main source

of variation of the sample. Rather, it is the way these points are distributed on the interval

that differs across individuals. In view of that, it is convenient to normalise by the number of

points and treat the point processes as discrete random probability measures on K .

Despite not being a linear space, the space of probability measures on K (denoted P (K )) is

convex, and the linear sample average in P (K ) can be taken as a sample mean. There are

at least two reasons why the linear mean is unsatisfactory as a representative of the sample.

A first drawback is that the number of points it contains is much larger than each of the

observations. A more fundamental problem, however, is that it does not properly take into
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Chapter 1. Introduction

account the intrinsic time scales of each observations. Suppose as an example that each

individual exhibits concentration of points in a small vicinity of a time spot, ti , that differs

between the observations. Then the linear average will contain multiple concentrations of

points, one around each ti . In contrast, a point pattern with many points around the average

time t̄ provides a better description of the dataset, having a shape that is similar to each

individual.

Borrowing intuition and terminology from the functional case, we formulate this problem in

terms of amplitude and phase variation in multivariate point processes. In the context of the

above example, phase variation is the variation in the time spots ti across individuals, whereas

amplitude variation pertains to the fluctuations around a mean level that exist even without

presence of phase variation. Models for phase variation involve random deformations of

the observation window K , assumed in most applications to have mean identity and to be

“increasing". We argue that the canonical way to view this problem relies upon a different

geometric structure on the space P (K ), emanating from the Wasserstein distance between

probability measures. The resulting space, conventionally referred to as the Wasserstein space

and denoted W2(K ), is a metric space with a nonlinear geometry.

More specifically, a mean in a nonlinear space may be defined, in analogy to a well-known

property of the arithmetic mean in Euclidean spaces, by the concept of Fréchet mean, the

minimiser of a sum-of-squares functional on the space. We show that the classical assump-

tions on the deformations, being “increasing" and having mean identity (without which the

model for phase variation is usually not even identifiable), lead one inevitably to the problem

of estimating Fréchet means in W2(K ). This equivalence extends beyond the real line, and

holds whenever K is a compact convex subset of a Euclidean space of arbitrary dimension.

A very fortunate property of the Wasserstein space, one that is the exception rather than the

rule in most metric spaces, is that under weak regularity conditions Fréchet means exist and

are unique. In practical applications, however, it is desirable to have a method of constructing

them as a function of the data. With the notable exception of the real line and one-dimensional-

type examples, explicit formulae for the Fréchet mean are not available and one needs to

resort to numerical schemes. We propose an algorithm that reduces the problem of finding the

Fréchet mean to pairwise problems involving only two measures at a time, for which efficient

numerical methods exist. This algorithm can be elegantly interpreted as steepest descent in

the Wasserstein space, and has connections to an algorithm used in the analysis of shapes,

generalised Procrustes analysis.

The structure of the thesis follows.

The underlying geometry behind the Wasserstein space stems from the so-called optimal

transportation problem, or Monge–Kantorovich problem, an optimisation problem with a

long history and an immensely rich literature. Chapter 2 gives a short survey of the aspects of

the problem that are relevant for the thesis. After introducing the problem, defining the termi-

nology and notation, and discussing some basic results, we give in Section 2.2 a probabilistic
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formulation for the optimal transportation problem. This formulation is sometimes more

convenient, and is perhaps more natural to readers with a more probabilistic/statistical (rather

than analytic) taste. Examples of cases where the description of the solutions is particularly

simple are given in Sections 2.3 (the discrete case) and 2.5 (quadratic cost function); settings

in which solutions are explicit include that of the real line (Section 2.6) and that of Gaussian

distributions (Section 2.7). Like any convex optimisation problem, the optimal transportation

one admits a dual problem, introduced in Section 2.4. The important yet technical issue of

smoothness of solutions is briefly touched upon in Section 2.8.

One topic that will be covered in some detail is the stability of the solutions to perturbations

(Section 2.9). Roughly speaking, we show that the optimal solution of the problem, given by

a deformation of the space, is a continuous function of the parameters. This result will be

important in deriving consistency results for the estimation of the deformations that bring

about the phase variation of the data, and will also serve as a technical tool for the convergence

proof of the steepest descent algorithm.

Chapter 3 is devoted to the Wasserstein space, or more precisely, the Wasserstein spaces Wp ,

where p ≥ 1 is an exponent. A fair amount of attention will be given to the relation between

the topology of Wp and that of convergence of distribution, called narrow topology in this

thesis (and weak topology in many other texts). In particular, this relation will be exploited in

order to show existence results and to characterise compact sets in Wp .

The Riemannian-type structure of the Wasserstein space is presented in Section 3.3, including

a brief discussion on curvature. The tangent bundle will indeed turn out to be a crucial

ingredient in the derivation of the gradient of the Fréchet functional that will be used in

Chapter 5.

Preceded by the technical Section 3.4 that treats measurability issues, the longest and most

important section in Chapter 3 is Section 3.5, where Fréchet means are introduced and

discussed in some detail in the context of the Wasserstein space W2. We present existence

and uniqueness results, as well as some characterisations and properties of Fréchet means.

Assuming differentiability, a minimisation problem can be transformed to the problem of

finding zeroes of a derivative. This leads to the notion of Karcher means, defined as local

minima of the sum-of-squares functional, that are the centre of attention of Subsection 3.5.5.

The last part of the section is concerned with the equivalence between the problem of finding

Fréchet means and a multimarginal version of the optimal transportation problem involving

more than two measures.

The main contributions of this thesis are in Chapters 4 and 5 and can be summarised as

follows:

1. In Chapter 4, we formalise the problem of separation of amplitude and phase variation in

multivariate point processes, and demonstrate that the canonical solution is intrinsically

related to Fréchet means in the Wasserstein space W2. We show how the relevant objects
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Chapter 1. Introduction

can be estimated consistently in a fully nonparametric fashion, supplemented with

convergence rates and a central limit theorem in the case of the real line.

2. In Chapter 5, we propose an iterative algorithm for the computation of empirical mul-

tivariate Fréchet means. The motivation for the algorithm lies in the differentiability

properties of the Wasserstein distance emanating from the tangent bundle, and it is

elegantly interpretable as a steepest descent algorithm. We additionally provide a con-

vergence analysis of the algorithm, and sketch an extension of it to the population

level.

The presentation of the first contribution is based on the journal article Panaretos & Zemel

[70], and that of the second is based on the preprint Zemel & Panaretos [94].

We next enumerate additional contributions of the thesis. In Chapter 2, the only new result is

the stability of the optimal maps (Proposition 2.9.11). Other contributions in Chapter 3 include

relating the concept of compatible measures to flatness of the Wasserstein space (3.3.2) and to

common copulae, and making explicit the equivalence between the multimarginal problem

and the Fréchet mean (Subsection 3.5.6). The differentiability properties of the Wasserstein

distance were already known, but their application to Karcher and Fréchet means is made

for the first time, and the extension to the population level is new. The optimality criterion

for Karcher means (Theorem 3.5.18) is also new. Finally, the results in the measurability

section 3.4 are most likely known, but the simplified construction that does not use abstract

measurable selection theorems is probably new.

The text is meant to be readable from cover to cover, in case the reader is ambitious enough to

do so. Concepts and results that require some digression from the main flow of the text (such

as convex analysis or Bochner integrals) are defined en route when needed. Roughly speaking,

the statistical core of the thesis is in Chapters 4 and 5, and each can be read more or less

independently of the other. Both, but more so Chapter 5, require understanding of some parts

of Chapter 3; nevertheless, someone with even superficial knowledge of Wasserstein spaces

and of Fréchet means should not encounter major difficulties when reading the statements in

Chapter 4. As for Chapter 2, it mainly serves as background for Chapter 3 and a hopefully gentle

introduction to optimal transportation. A notable exception is the backbone stability result in

Subsection 2.9.2 that will be used for showing convergence of optimal maps in Chapters 4 and

5, but is not required for grasping the main ideas.
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2 Optimal transportation

In this chapter we introduce the problem of optimal transportation. General references on

this field are the book by Rachev & Rüschendorf [73], the two books by Villani [88, 89], and the

recent book by Santambrogio [83].

2.1 The Monge and the Kantorovich problems

In 1781 Monge [66] asked the following question: given a pile of sand and a pit, how can one

optimally transport the sand into the pit? In modern mathematical terms, the problem can

be formulated as follows. Given two measures μ and ν on some spaces X and Y , and a cost

function c : X ×Y →R, find a mass-preserving function T : X → Y that minimises the total

transportation cost

C (T ) =
∫
X

c(x,T (x))dμ(x).

By mass-preserving we mean that for any subset B ⊆ Y representing a part of the pit of size

ν(B), exactly that same amount of sand must go into the pit. That is, we cannot shrink or

expand the sand. The amount of sand allocated to B is {x ∈ X : T (x) ∈ B} = T −1(B), so the

mass preservation requirement is that μ(T −1(B)) = ν(B) for all B ⊆ Y . This condition will

be denoted by T #μ = ν and in words: ν is the push-forward of μ under T . To make the

discussion mathematically rigorous, we must assume that c and T are measurable maps,

and that μ(T −1(B)) = ν(B) for all measurable subsets of Y . When the underlying measures

are understood from the context, we call T a transport map. Specifying B = Y , we see that

no such T can exist unless μ(X ) = ν(Y ); we shall also assume unless explicitly specified

otherwise that μ and ν are probability measures. In this setting, the Monge problem is to find

the optimal transport map; that is, to solve

inf
T :T #μ=ν

C (T ).
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Chapter 2. Optimal transportation

We assume throughout this thesis that X and Y are complete and separable metric spaces.

The space X has a topology induced from its metric, and it needs to be endowed with a

σ-algebra in order to make it a measure space. These two structures can be made compatible

via the standard choice of taking the Borel σ-algebra of X ; this is, by definition, the smallest

σ-algebra containing the open sets of X . Measures defined on the Borel σ-algebra of X are

called Borel measures. Thus, if μ is a Borel measure on X , then μ(A) is defined for any A that

is open, or closed, or a countable union of closed sets, etc., and any continuous map on X

is measurable. Similarly, we endow Y with its Borel σ-algebra. The product space X ×Y is

also complete and separable when endowed with its product topology; its Borel σ-algebra is

generated by the product σ-algebra of those of X and Y ; thus, any continuous cost function

c : X ×Y →R is measurable. It will be assumed without further notice that μ and ν are Borel

measures on X and Y respectively, and that the cost function is continuous and nonnegative.

From Section 2.5 onwards, with the only exception being parts of Section 2.9, we will always

impose further restrictions. Namely, we will assume that Y = X is a complete and separable

metric space with metric d . In that case, a natural cost function is a power of the distance

between the source and the target, i.e.

c(x, y) = d p (x, y), p ≥ 0, x, y ∈X . (2.1)

In particular, c is continuous, hence measurable, if p > 0. The limit case p = 0 yields the

discontinuous function c(x, y) = 1{x = y}, which nevertheless remains measurable because

the diagonal {(x, x) : x ∈X } is measurable in X ×X .

The problem introduced by Monge [66] is very difficult, mainly because the set of transport

maps {T : T #μ= ν} is intractable. It may very well be empty: this will be the case if μ is a Dirac

measure at some x0 ∈X (meaning that μ(A) = 1 if x0 ∈ A and 0 otherwise) but ν is not. Indeed,

in that case the set B = {T (x0)} satisfies μ(T −1(B)) = 1 > ν(B), so no such T can exist. This

also shows that the problem is asymmetric in μ and ν: there always exists a map T such that

T #ν=μ — the constant map T (x) = x0 for all x is in fact the unique such map. A less extreme

situation happens in the case of absolutely continuous measures. If μ and ν have densities f

and g on Rd and T is continuously differentiable, then T #μ= ν if and only if for μ-almost all x

f (x) = g (T (x))|det∇T (x)|.

This is a highly nonlinear equation in T , nowadays known as a particular case of a family of

partial differential equations called Monge–Ampère equations. More than two centuries after

the work of Monge, Caffarelli [23] cleverly used the theory of Monge–Ampère equations to

deduce smoothness properties of transport maps (see Section 2.8).

As mentioned above, if μ= δ{x0} is a Dirac measure and ν is not, then no transport maps can

exist, because the mass at x0 must be sent to a unique point x0. In 1942 Kantorovich [54]

proposed a relaxation of Monge’s problem in which mass can be split. In other words, for each

point x ∈X one constructs a probability measure μx that describes how the mass at x is split.
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2.1. The Monge and the Kantorovich problems

If μx is a Dirac measure at some y , then all the mass at x is sent to y . The formal mathematical

object to represent this idea is a probability measure π on the product space X ×Y (which

is X 2 in our particular setting). Here π(A ×B) is the amount of sand that is being sent from

the subset A ⊆ X into the part of the pit represented by B ⊆ Y . The total mass sent from A

is π(A ×Y ), and the total mass sent into B is π(X ×B). Thus, π is mesaure-preserving if and

only if

π(A ×Y ) =μ(A), A ⊆X Borel;

π(X ×B) = ν(B), B ⊆ Y Borel.
(2.2)

Probability measures satisfying (2.2) will be called transference plans, and the set of those

will be denoted by Π(μ,ν). We also say that π is a coupling of μ and ν, and that μ and ν are the

first and second marginal distributions, or simply marginals, of π. The total cost associated

with π ∈Π(μ,ν) is

C (π) =
∫
X×Y

c(x, y)dπ(x, y).

In our setting of a complete separable metric space X one can in fact representπ as a collection

of probability measures {πx }x∈X on Y , in the sense that for all π-integrable functions∫
X×Y

g (x, y)dπ(x, y) =
∫
X

[∫
Y

g (x, y)dπx (y)

]
dμ(x).

The collection {πx } is that of the conditional distributions, and the iteration of integrals is

called disintegration. For proofs of existence of conditional distributions, one can consult

Dudley [31, Section 10.2] or Kallenberg [53, Chapter 5]. Conversely, the measure μ and the

collection {πx } determineπuniquely by choosing g to be indicator functions. An interpretation

of these notions in terms of random variables will be given in Section 2.2.

The Kantorovich problem is then to find the best transference plan, that is, to solve

inf
π∈Π(μ,ν)

C (π).

The Kantorovich problem is a relaxation of the Monge problem, because to each transport

map T one can associate a transference plan π=πT of the same total cost. To see this, choose

the conditional distribution πx to be a Dirac at T (x). Disintegration then yields

C (π) =
∫
X×Y

c(x, y)dπ(x, y) =
∫
X

[∫
Y

c(x, y)dπx (y)

]
dμ(x) =

∫
X

c(x,T (x))dμ(x) =C (T ).

This choice of π satisfies (2.2) because π(A ×B) =μ(A ∩T −1(B)) and ν(B) =μ(T −1(B)) for all

Borel A ⊆ X and B ⊆Y .

Compared to the Monge problem, the relaxed problem has considerable advantages. Firstly,

the set of transference plans is never empty: it always contains the product measure μ⊗ν de-
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Chapter 2. Optimal transportation

fined by [μ⊗ν](A) =μ(A)ν(B). Secondly, both the objective function C (π) and the constraints

(2.2) are linear in π, so the problem can be seen as infinite-dimensional linear programming.

To be precise we need to endow the space of measures with a linear structure, and this is

done in the standard way: define the space M(X ) of all finite signed Borel measures on X .

This is a vector space with (μ1 +αμ2)(A) =μ1(A)+αμ2(A) for α ∈R, μ1,μ2 ∈ M (X ) and A ⊆X

Borel. The set of probability measures on X is denoted by P (X ), and is a convex subset of

M(X ). The set Π(μ,ν) is then a convex subset of P (X ×Y ), and as C (π) is linear in π, the set of

minimisers is a convex subset of Π(μ,ν). Thirdly, there is a natural symmetry between Π(μ,ν)

and Π(ν,μ). If π belongs to the former and we define π̃(B × A) =π(A ×B), then π̃ ∈Π(ν,μ). If

we set c̃(y, x) = c(x, y), then

C (π) =
∫
X×Y

c(x, y)dπ(x, y) =
∫
Y ×X

c̃(y, x)dπ̃(y, x) = C̃ (π̃).

In particular, when X =Y and c = c̃ is symmetric (as in (2.1)),

inf
π∈Π(μ,ν)

C (π) = inf
π̃∈Π(ν,μ)

C̃ (π̃),

and π ∈Π(μ,ν) is optimal if and only if its natural counterpart π̃ is optimal in Π(ν,μ). This

symmetry will be fundamental in the definition of the Wasserstein distances in Chapter 3.

Perhaps most importantly, a minimiser for the Kantorovich problem exists under weak con-

ditions. In order to show this we first recall some definitions. Let Cb(X ) be the space of

real-valued, continuous bounded functions on X . A sequence of probability measures

(μn) ∈ M(X ) is said to converge narrowly to μ ∈ M(X ) if for all f ∈ Cb(X ),
∫

f dμn →∫
f dμ.

To avoid confusion with other types of convergence, we will usually write μn → μ narrowly;

in the rare cases where a symbol is needed we shall use the notation μn
n→ μ. Of course, if

μn →μ narrowly and μn ∈ P (X ), then μ must be in P (X ) too (this is seen by taking f ≡ 1 and

by observing that
∫

f dμ≥ 0 if f ≥ 0).

Remark 1. Many authors (Billingsley [17]; Villani [88, 89]) refer to this type of convergence as

weak convergence. In terms of functional analysis, however, this should have been called weak-*

convergence, since (at least when X is compact) M(X ) is the (topological) dual of Cb(X ), but

the dual of M(X ) is larger than Cb(X ). We prefer to avoid this terminology and use the term

narrow convergence like, for instance, Ambrosio, Gigli & Savaré [6].

A collection of probability measures K is tight if for all ε> 0 there exists a compact set K such

that infμ∈K μ(K ) > 1−ε. If K is represented by a sequence (μn), then Prokhorov’s theorem [17,

Theorem 5.1] states that a subsequence of (μn) must converge narrowly to some probability

measure μ.

We are now ready to show that the Kantorovich problem admits a solution when c is continuous

and nonnegative and X and Y are complete separable metric spaces. Let (πn) be a minimising

sequence for C . Since μ and ν are Borel measures on the complete separable space X , they

must be tight [17, Theorem 1.3]. If K1 and K2 are compact with μ(K1),ν(K2) > 1−ε, then K1×K2

10



2.2. Probabilistic interpretation

is compact and for all π ∈Π(μ,ν), π(K1×K2) > 1−2ε. It follows that the entire collection Π(μ,ν)

is tight, and by Prokhorov’s theorem πn has a limit π after extraction of a subsequence. For

any integer K , cK (x, y) = min(c(x, y),K ) is a continuous bounded function, and

C (πn) =
∫

c(x, y)dπn(x, y) ≥
∫

cK (x, y)dπn(x, y) →
∫

cK (x, y)dπ(x, y), n →∞.

By the monotone convergence theorem the right-hand side converges to C (π) as K →∞, and

we conclude that

liminf
n→∞ C (πn) ≥C (π) if πn →π narrowly. (2.3)

Since (πn) was chosen as a minimising sequence for C , π must be a minimiser, and existence

is established.

As we have seen, the Kantorovich problem is a relaxation of the Monge problem, in the sense

that

inf
T :T #μ=ν

C (T ) = inf
πT :T #μ=ν

C (π) ≥ inf
π∈Π(μ,ν)

C (π) =C (π∗),

for some optimal π∗. If π∗ = πT for some transport map T , then we say that the solution is

induced from a transport map. This will happen in two different and important cases that are

discussed in Sections 2.3 and 2.5.

A remark about terminology is in order. Many authors talk about the Monge–Kantorovich

problem or the optimal transportation problem. More often than not, they refer to what

we call here the Kantorovich problem. Usually, however, one of the scenarios presented in

Sections 2.3 and 2.5 is considered, in which case this does not result in ambiguity.

2.2 Probabilistic interpretation

The preceding section was an analytic presentation of the Monge and the Kantorovich prob-

lems. It is worth mentioning that the problem can be recast in probabilistic terms, and this is

the topic of this section.

A random element on a complete separable metric space (in fact, any topological space) X is

simply a measurable function X from some (generic) probability space (Ω,F ,P) to X (with

its Borel σ-algebra). The probability law (or probability distribution, law or distribution) is

the probability measure μX = X #P defined on the space X ; this is the Borel measure satisfying

μX (A) =P(X ∈ A) for all Borel sets A.

Suppose that one is given two random elements X and Y taking values in X and Y respectively,

and a cost function c : X ×Y → R. The Monge problem is to find a measurable function T
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such that T (X ) has the same distribution as Y , and such that the expectation

C (T ) =
∫
X

c(x,T (x))dμ(x) =
∫
Ω

c[X (ω),T (X (ω))]dP(ω) = Ec(X ,T (X ))

is minimised.

The Kantorovich problem is to find (a probability space (Ω,F ,P) and) a joint distribution (X ,Y )

with marginal distributions X and Y respectively, such that the probability law π= (X ,Y )#P

minimises the expectation

C (π) =
∫
X×Y

c(x, y)dπ(x, y) =
∫
Ω

c[X (ω),Y (ω))]dP(ω) = Eπc(X ,Y ).

Any such joint distribution is called a coupling of X and Y . Of course, (X ,T (X )) is a coupling

when T (X ) has the same distribution as Y . The measures πx in the previous section are then

interpreted as the conditional distribution of Y given X = x.

Consider now the important case where X = Y = Rd , c(x, y) = ‖x − y‖2, and X and Y are

square integrable random vectors (E‖X ‖2 + E‖Y ‖2 < ∞). Let A and B be the covariance

matrices of X and Y respectively, and notice that that of a coupling π must have the form

C =
(

A V

V t B

)
for a d ×d matrix V . The covariance matrix of the difference X −Y is

(
Id −Id

)( A V

V t B

)(
Id

−Id

)
= A +B −V t −V

so that

Eπc(X ,Y ) = Eπ‖X −Y ‖2 = ‖EX −EY ‖2 + trπ[A +B −V t −V ].

Since only V depends on the coupling π, the problem is equivalent to that of maximising

the trace of V , the covariance matrix between X and Y . This must be done subject to the

constraint that a coupling π with covariance matrix C exists; in particular C has to be positive

semidefinite.

2.3 The discrete case

There is a special case in which the Monge–Kantorovich problem reduces to a finite combi-

natorial problem. Although it may seem at first hand as an oversimplification of the original

problem, it is of importance in practice because arbitrary measures can be approximated by

discrete measures by means of the strong law of large numbers. Moreover, the discrete case is

important in theory as well, as a motivating example for the Kantorovich duality (Section 2.4)

and the property of cyclical monotonicity (Section 2.9).
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2.3. The discrete case

Suppose that μ and ν are supported each on n distinct points and are uniform on these points:

μ= 1

n
(δ{x1}+·· ·+δ{xn}) , ν= 1

n

(
δ{y1}+·· ·+δ{yn}

)
.

The only relevant costs are ci j = c(xi , y j ), the collection of which can be represented by an

n ×n matrix. Transport maps T are associated with permutations in Sn , the set of all bijective

functions from {1, . . . ,n} to itself: given σ ∈ Sn , a transport map can be constructed by defining

T (xi ) = yσ(i ). If σ is not a permutation, then T will not be a transport map from μ to ν.

Transference plans π are associated with n ×n matrices: if M is such a matrix, then one can

set π({(xi , y j )}) = Mi j ; this is the amount of mass sent from xi to y j . In order for π to a be

a transference plan, it must be that
∑

j Mi j = 1/n for all i and
∑

i Mi j = 1/n for all j , and in

addition M must be nonnegative. In other words, the matrix M ′ = nM belongs to Bn , the set

of bistochastic matrices of order n, defined as n ×n matrices M ′ satisfying

M ′
i j ≥ 0, i , j = 1, . . . ,n;

n∑
j=1

M ′
i j = 1, i = 1, . . . ,n;

n∑
i=1

M ′
i j = 1, j = 1, . . . ,n.

The Monge problem is therefore the combinatorial optimisation problem over permutations

inf
σ∈Sn

C (σ) = 1

n
inf
σ∈Sn

n∑
i=1

ci ,σ(i ),

and the Kantorovich problem is the linear program

inf
nM∈Bn

n∑
i , j=1

ci j Mi j = inf
M∈Bn /n

n∑
i , j=1

ci j Mi j = inf
M∈Bn /n

C (M).

If σ is a permutation, then one can define M = M(σ) by Mi j = 1/n if j =σ(i ) and 0 otherwise.

Then M ∈ Bn/n and C (M) = C (σ). Such M (or, more precisely, nM) is called a permutation

matrix.

The Kantorovich problem is a linear program with n2 variables and 2n constraints. It must

have a solution because Bn (hence Bn/n) is a compact (nonempty) set in Rn2
and the objective

function is linear in the matrix elements, hence continuous. (This property is independent

of the possibly infinite-dimensional spaces X and Y in which the points lie.) The Monge

problem also admits a solution because Sn is a finite set. To see that the two problems are

essentially the same we need to introduce the following notion. If B is a convex set, then x ∈ B

is an extremal point of B if it cannot be written as a convex combination t z +(1− t )y for some

distinct points y, z ∈ B . It is well known (Luenberger & Ye [63, Section 2.5]) that there exists an

optimal solution that is extremal, so that it becomes relevant to identify the extremal points of

Bn . It is fairly clear that each permutation matrix is extremal in Bn ; the less obvious converse

is known as Birkhoff’s theorem, a proof of which can be found for instance at the end of the

introduction in Villani [88] or (in a different terminology) in Luenberger & Ye [63, Section 6.5].

Thus, we have:

13



Chapter 2. Optimal transportation

Proposition 2.3.1 (solution of discrete problem). There exists σ ∈ Sn such that M(σ) minimises

C (M) over Bn/n. Furthermore, if {σ1, . . . ,σk } is the set of optimal permutations, then the set

of optimal matrices is the convex hull of {M(σ1), . . . , M(σk )}. In particular, if σ is the unique

optimal permutation, then M(σ) is the unique optimal matrix.

We see that in this discrete case, the Monge and the Kantorovich problems coincide. One

can of course use the simplex method [63, Chapter 3] to solve the linear program, but there

are n! vertices, and there is in principle no guarantee that the simplex method solves the

problem efficiently. However, the constraints matrix has a very specific form (it contains only

zeroes and ones and has a symmetric structure), so specialised algorithms for this problem

exist. One of them is the Hungarian algorithm of Kuhn [60] or its variant of Munkres [67]

that has a computational complexity of at most O(n4). Another alternative is the net flow

algorithms described in [63, Chapter 6]. In particular, the algorithm of Edmonds & Karp [34]

has a complexity of at most O(n3).

Interestingly, this special case is automatically symmetric, whatever the cost function is.

Indeed, if σ is optimal from μ to ν, then its inverse σ−1 is optimal from ν to μ; and if M is

optimal from μ to ν, then its transpose M t is optimal from ν to μ.

It should be remarked that the special case described here could have been more precisely

called “the discrete uniform case on the same number of points", as “the discrete case" could

refer to any two finitely supported measures μ and ν. When the Monge problem is of interest

and symmetry is desired, however, this turns out to be the only interesting case.

Indeed, suppose that μ is supported on n points and ν on m points. Then there cannot exist a

transport map from μ to ν if m > n and there cannot be a transport map from ν to μ if n > m.

Consequently, if one is interested in solving both Monge problems, the only possible case is

when n = m. If we now assume that the weights are ordered:

μ=
n∑

i=1
aiδ{xi }, ν=

n∑
i=1

biδ{yi }, 0 ≤ a1 ≤ ·· · ≤ an ; 0 ≤ b1 ≤ ·· · ≤ bn ,

then transport maps exist if and only if ai = bi , i = 1, . . . ,n. One can then split the problem

into smaller uniform problems: suppose for example that n = 7 and a5 < a6 = a7. Then x7 and

x6 can only be sent to y7 or y6, and this creates a uniform discrete problem of size 2. Arguing

inductively, we see that the only interesting discrete case for the Monge problem is the uniform

one (with the same number of points). We will henceforth refer to this special case as “the

discrete case".

2.4 Kantorovich duality

The discrete case of Section 2.3 is an example of a linear program and thus enjoys a rich

duality theory (Luenberger & Ye [63, Chapter 4]). The goal of this section is to show that the

14



2.4. Kantorovich duality

Kantorovich problem admits a dual problem and benefits from a similar theory.

2.4.1 Duality in the discrete case

We can represent any matrix M as a vector in Rn2
, say �M , by enumeration of the elements row

by row. If nM is bistochastic, i.e., M ∈ Bn/n, then the 2n constraints can be represented in a

(2n)×n2 matrix A. For instance, if n = 3, then

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈R6×9

and the constraints read A �M = n−1(1, . . . ,1) ∈R2n . In general, if In is the identity matrix, then

A takes the form

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

In

In

. . .

In

In In . . . In

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Thus the problem can be written

min
M

�C t �M subject to A �M = 1

n
(1, . . . ,1) ∈R2n ; �M ≥ 0.

The last constraint is to be interpreted coordinate-wise; all the elements of M must be non-

negative. The dual problem is constructed by introducing one variable for each row of A,

transposing the constraint matrix and interchanging the roles of the objective vector �C and

the constraints vector b = n−1(1, . . . ,1). If we call the new variables p1, . . . , pn and q1, . . . , qn , we

see that each column of A contains exactly one pi and one q j and the n2 columns exhaust all

possibilities. Hence the dual problem is

max
p,q∈Rn

bt

(
p

q

)
= 1

n

n∑
i=1

pi + 1

n

n∑
j=1

q j subject to pi +q j ≤ ci j , i , j = 1, . . . ,n. (2.4)

An alternative approach to duality is via a minimax argument. Introduce dual variables pi and

q j as above and λi j ≥ 0 and define the Lagrangian L : Rn2 ×Rn ×Rn ×Rn2

+ →R by

L (M , p, q,λ) =
n∑

i , j=1
ci j Mi j +

n∑
i=1

pi

[
1

n
−

n∑
j=1

Mi j

]
+

n∑
j=1

q j

[
1

n
−

n∑
i=1

Mi j

]
−

n∑
i , j=1

λi j Mi j .
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Chapter 2. Optimal transportation

If M satisfies the constraints M ∈ Bn , then the coefficients of pi and of q j in L vanish and the

coefficient of λi j is nonnegative. It follows that

sup
p,q∈Rn ;λ∈Rn2

+

L (M , p, q,λ) =
n∑

i , j=1
ci j Mi j .

If M is not in Bn , then the supremum is easily seen to be infinite. Thus the original minimisa-

tion problem on M can be written as

inf
M∈Bn /n

n∑
i , j=1

ci j Mi j = inf
M∈Rn2

sup
p,q∈Rn ;λ∈Rn2

+

L (M , p, q,λ).

The dual problem can be obtained by interchanging the infimum and the supremum: define

g : Rn ×Rn ×Rn2

+ by

g (p, q,λ) = inf
M∈Rn2

L (M , p, q,λ) = 1

n

n∑
i=1

pi + 1

n

n∑
j=1

q j + inf
M∈Rn2

n∑
i , j=1

Mi j [ci j −λi j −pi −q j ],

and the dual problem as

sup
p,q,λ

g (p, q,λ).

The expression defining g can be simplified because one can evaluate the infimum. Indeed, it

is trivially negative infinite if ci j �= λi j − pi − q j for some (i , j ). If ci j = λi j + pi + q j then the

infimum in g vanishes. In that case λi j does not appear in the objective function directly,

so it is convenient to write the constraints as pi +q j = ci j −λi j . Now λi j is nonnegative but

otherwise arbitrary, so this is equivalent to requiring pi +q j ≤ ci j for all i and all j . The dual

problem is therefore

sup
p,q∈Rn

1

n

n∑
i=1

pi + 1

n

n∑
j=1

q j subject to pi +q j ≤ ci j , i , j = 1, . . . ,n,

which is (2.4).

In the context of duality, one uses the terminology primal problem for the original optimisa-

tion problem.

2.4.2 Duality in the general case

We now use this minimax approach in order to derive a dual problem to the Kantorovich

problem. It will be more convenient to work with functional constraints rather than the set

constraints (2.2) that define the set of transference plans Π(μ,ν). This first step is carried out

using the following lemma.

Lemma 2.4.1 (functional constraints for Π(μ,ν)). Let μ and ν be probability measures. Then
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2.4. Kantorovich duality

π ∈Π(μ,ν) if and only if for all integrable functions ϕ ∈ L1(μ), ψ ∈ L1(ν),∫
X×Y

[ϕ(x)+ψ(y)]dπ(x, y) =
∫
X
ϕ(x)dμ(x)+

∫
Y
ψ(y)dν(y).

The proof follows from the fact that (2.2) yields the above equality when ϕ and ψ are indicator

functions. One then uses linearity and approximations to deduce the result.

If we now define for integrable ϕ and ψ

Aψ
ϕ(π) =

∫
X×Y

[ϕ(x)+ψ(y)]dπ(x, y), bψ
ϕ =

∫
X
ϕ(x)dμ(x)+

∫
Y
ψ(y)dν(y),

and recall that M+(X ×Y ) is the set of Borel measures on X ×Y , then the Kantorovich

problem can be written as

inf
π∈M+(X×Y )

C (π) =
∫
X×Y

c(x, y)dπ(x, y) subject to Aψ
ϕ(π) = bψ

ϕ , ϕ ∈ L1(μ);ψ ∈ L1(ν).

One can formally define the Lagrangian L : M+(X ×Y )×RL1(μ)×L1(ν) as

L (π, p) =C (π)+ ∑
ϕ,ψ

pψ
ϕ [bψ

ϕ − Aψ
ϕ(π)],

but this is an uncountable sum that will not have a meaning for most values of π and p. A

more fruitful approach is to view the functions ϕ and ψ themselves as dual variables, and

define

L (π,ϕ,ψ) =C (π)+bψ
ϕ − Aψ

ϕ(π).

Let us now take a supremum over ϕ and ψ. If π ∉ Π(μ,ν), then bψ
ϕ �= Aψ

ϕ(π) for some ψ

and some ϕ. Choosing an arbitrary large negative or positive value for pψ
ϕ , we see that the

supremum is infinite. On the other hand, if π ∈Π(μ,ν), the supremum is trivially C (π). Thus

inf
π∈M+(X×Y )

sup
(ϕ,ψ)∈L1(μ)×L1(ν)

L (π,ϕ,ψ) = inf
π∈Π(μ,ν)

C (π)

recovers the Kantorovich problem. Interchanging the supremum and the infimum and plug-

ging in the definitions of C (π) and Aψ
ϕ(π) yields the dual problem

sup
(ϕ,ψ)∈L1(μ)×L1(ν)

bψ
ϕ + inf

π∈M+(X×Y )

∫
X×Y

[c(x, y)−ϕ(x)−ψ(y)]dπ(x, y).

The infimum at the right-hand side is negative infinite if ϕ(x0)+ψ(y0) > c(x0, y0) for some

x0 ∈X and y0 ∈Y , since we can take π to be a Dirac mass at (x0, y0) with arbitrarily large mass.

If we define the set

Φc = {
(ϕ,ψ) ∈ L1(μ)×L1(ν) : ϕ(x)+ψ(y) ≤ c(x, y) for all x, y

}
,
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Chapter 2. Optimal transportation

then the dual problem becomes

sup
(ϕ,ψ)∈L1(μ)×L1(ν)

∫
X
ϕ(x)dμ(x)+

∫
Y
ψ(y)dν(y) subject to (ϕ,ψ) ∈Φc .

Notice how this reduces to (2.4) in the discrete case.

If π ∈Π(μ,ν) and (ϕ,ψ) ∈Φc , then by Lemma 2.4.1

bψ
ϕ =

∫
X×Y

[ϕ(x)+ψ(y)]dπ(x, y) ≤C (π).

In particular, the supremum of bψ
ϕ is no larger than the infimum of C (π). This result is known

as weak duality, and it holds in full generality (provided that there exists some π ∈Π(μ,ν) for

which C (π) >−∞). More important and far more useful is strong duality:

Theorem 2.4.2 (Kantorovich duality). Let μ and ν be probability measures on complete separa-

ble metric spaces X and Y respectively and let c : X ×Y be a nonnegative continuous function.

Then

inf
π∈P(μ,ν)

∫
X×Y

c dπ= sup
(ϕ,ψ)∈Φc

∫
X
ϕdμ+

∫
Y
ψdν.

We shall only use Theorem 2.4.2 in this form, but it holds in far more general circumstances

(Villani [89, Theorem 5.10]; Rachev & Rüschendorf [73, Chapter 4]).

2.4.3 Relationship between the dual and primal problems

It is well-known (Luenberger & Ye [63, Section 4.4]) that the solutions to the primal and dual

problems are related to each other via complementary slackness. In other words, solution of

one problem provides a lot of information about the solution of the other problem. Here we

show that this idea remains true for the Kantorovich primal and dual problems.

If one finds functions (ϕ,ψ) ∈Φc and a transference plan π ∈Π(μ,ν) such that C (π) = bψ
ϕ , then

by weak duality (ϕ,ψ) are optimal in Φc and π is optimal in π ∈Π(μ,ν). This is equivalent to∫
X×Y

[c(x, y)−ϕ(x)−ψ(y)]dπ(x, y) = 0

which is in turn equivalent to

ϕ(x)+ψ(y) = c(x, y), π-almost surely.

It has already been established that there exists an optimal transference plan π∗. Let us

assume that C (π∗) <∞ (otherwise all transference plans are optimal). Then a pair (ϕ,ψ) ∈Φc
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2.4. Kantorovich duality

is optimal if and only if

ϕ(x)+ψ(y) = c(x, y), π∗-almost surely.

Conversely, if (ϕ∗,ψ∗) is an optimal pair, then π is optimal if and only if it is concentrated on

the set

{(x, y) : ϕ∗(x)+ψ∗(y) = c(x, y)}.

In particular, if for a given x there exists a unique y such that ϕ∗(x)+ψ∗(y) = c(x, y), then the

mass at x must be sent entirely to y and not be split; if this is the case for μ-almost all x, then

this relation defines y as a function of x and the resulting optimal π is in fact induced from a

transport map. This idea provides a criterion for solvability of the Monge problem, see Villani

[89, Theorem 5.30].

2.4.4 Unconstrained dual Kantorovich problem

It turns out that the dual Kantorovich problem can be recast as an unconstrained optimisation

problem of only one function ϕ. The new formulation is not only conceptually simpler than

the original one, but also sheds light on the properties of the optimal dual variables.

Since the dual objective function to be maximised

bψ
ϕ =

∫
X
ϕdμ+

∫
Y
ψdν

is increasing in ϕ and ψ, one should seek functions that take values as large as possible subject

to the constraint ϕ(x)+ψ(y) ≤ c(x, y). Suppose that an oracle tells us that some ϕ ∈ L1(μ) is a

good candidate. Then the largest possible ψ satisfying (ϕ,ψ) ∈Φc is defined as

ψ(y) = inf
x∈X

c(x, y)−ϕ(x).

A function taking this form will be called c-concave [88, Chapter 2]; we say that ψ is the

c-transform of ϕ and denote ϕc =ψ. It is not necessarily true that ϕc is integrable or even

measurable, but if we neglect this difficulty, then it is obvious that

sup
ψ

bψ
ϕ = bϕc

ϕ .

The dual problem can thus be formulated as the unconstrained problem

sup
ϕ∈L1(μ)

∫
X
ϕdμ+

∫
Y
ϕc dν.
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One can apply this c-transform again and replace ϕ by

ϕcc (x) = (ϕc )c (x) = inf
y∈Y

c(x, y)−ϕc (y) ≥ϕ(x),

so that bϕc

ϕ ≤ bϕc

ϕcc but still (ϕcc ,ϕc ) ∈Φc (modulo measurability issues). An elementary cal-

culation shows that in general ϕccc = ϕc . Thus, for any function ϕ1, the pair of functions

(ϕ,ψ) = (ϕcc
1 ,ϕc

1) satisfies ϕc =ψ and ψc =ϕ. We say that ϕ and ψ are c-conjugate.

Proposition 2.4.3 (existence of an optimal pair). Let μ and ν be probability measures on X

and Y with optimal transference plan π∗ such that C (π∗) is finite. Then there exists an optimal

pair (ϕ,ψ) for the dual Kantorovich problem. Furthermore, the pair can be chosen in a way that

μ-almost surely, ϕ=ψc and ν-almost surely, ψ=ϕc .

This result is due to Ambrosio & Pratelli [7]. It is clear from the discussion above that once

existence of an optimal pair (ϕ1,ψ1) is established, the pair (ϕ,ψ) = (ϕcc
1 ,ϕc

1) should be op-

timal; Ambrosio & Pratelli show that this pair can be modified up to null sets in order to be

Borel measurable. Furthermore,
∫
ϕdμ+∫

ψdν is always finite, since we require ϕ and ψ to

be integrable. It follows that the condition C (π∗) <∞ is necessary for their existence.

Whether ϕc (y) is tractable to evaluate depends on the structure of c. Here is a concrete

example. Assume that X =Y , denote their metric by d , and let c(x, y) = d(x, y). If ϕ=ψc is

c-concave, then it is 1-Lipschitz. Indeed, by definition and the triangle inequality

ϕ(z) = inf
y

d(z, y)−ψ(y) ≤ inf
y

d(x, y)+d(x, z)−ψ(y) =ϕ(x)+d(x, z).

Interchanging x and z yields |ϕ(x)−ϕ(z)| ≤ d(x, z).

Next, we claim that ifϕ is Lipschitz, thenϕc (y) =−ϕ(y). Indeed, choosing x = y in the infimum

shows that ϕc (y) ≤ d(y, y)−ϕ(y) =−ϕ(y). But the Lipschitz condition on ϕ implies that for all

x, d(x, y)−ϕ(x) ≥−ϕ(y). In view of that, we can take in the dual problem ϕ to be Lipschitz

and ψ=−ϕ, and the duality formula (Theorem 2.4.2) takes the form

inf
π∈Π(μ,ν)

∫
X 2

d(x, y)dπ(x, y) = sup
‖ϕ‖Li p≤1

∣∣∣∣∫
X
ϕdμ−

∫
X
ϕdν

∣∣∣∣ , ‖ϕ‖Li p = sup
x �=y

|ϕ(x)−ϕ(y)|
d(x, y)

. (2.5)

This is known as the Kantorovich–Rubinstein theorem [88, Theorem 1.14]. (We have been a

bit sloppy because ϕ may not be integrable. But if for some x0 ∈ X , x �→ d(x, x0) is in L1(μ),

then any Lipschitz function is μ-integrable. Otherwise one needs to restrict the supremum to

bounded Lipschitz ϕ.)

Combining Proposition 2.4.3 with the preceding subsection, we see that if ϕ is optimal, then

any optimal transference plan π∗ must be concentrated on the set

{(x, y) : ϕ(x)+ϕc (y) = c(x, y)}.

20



2.5. The absolutely continuous case

If for μ-almost every x this equation defines y uniquely as a (measurable) function of x, then

π∗ is induced by a transport map. In the next section we present concrete examples as to when

this happens.

2.5 The absolutely continuous case

2.5.1 Quadratic cost

Let us now consider the most important example of the Kantorovich problem. Suppose that

X = Y is a separable Hilbert space and the cost function is c(x, y) = ‖x − y‖2/2. Let ϕ be any

function. Then

ϕc (y) = inf
x∈X

‖x‖2

2
+ ‖y‖2

2
−〈

x, y
〉−ϕ(x) = ‖y‖2

2
− sup

x∈X

〈
x, y

〉−(‖x‖2

2
−ϕ(x)

)
.

Equivalently,

‖y‖2

2
−ϕc (y) = sup

x∈X

〈
x, y

〉−(‖x‖2

2
−ϕ(x)

)
.

When viewed as a function of y , the right-hand side is the supremum of affine functions,

hence enjoys some useful properties. We remind the reader that a function f : X →R∪ {∞}

is convex if f (t x + (1 − t)y) ≤ t f (x) + (1 − t) f (y) for all x, y ∈ X and t ∈ [0,1]. It is lower

semicontinuous if for all x ∈ X , f (x) ≤ liminfy→x f (y). Now affine functions are convex

and lower semicontinuous, and it straightforward from the definitions that both convexity

and lower semicontinuity are stable under the supremum operation. Thus the function

‖y‖2/2−ϕc (y) is convex and lower semicontinuous. In particular, it is measurable due to the

following characterisation: f is lower semicontinuous if and only if {x : f (x) ≤ c} is a closed set

for all c ∈R. So in this particular case, there is no need to modify ϕc on a null set; it is already

Borel measurable. From the preceding subsection, we now know that optimal dual functions

ϕ and ψ must take the form of the difference between ‖ ·‖2/2 and a convex function.

Given the vast wealth of knowledge on convex functions (Rockafellar [78]), it will be convenient

to work with

ϕ̃(x) = ‖x‖2

2
−ϕ(x), and ϕ̃∗(y) = ‖y‖2

2
−ϕc (y) = sup

x∈X

〈
x, y

〉− ϕ̃(x),

so that

ϕ(x)+ψ(y) = c(x, y) ⇐⇒ ϕ̃(x)+ ϕ̃∗(y) = 〈
x, y

〉
.

The function ϕ̃∗ is known as the Legendre transform of ϕ̃ ([78, Chapter 26]; [88, Chapter 2]),

and is of fundamental importance in convex analysis. It is, of course, convex and lower

semicontinuous. Furthermore, we can assume that so is ϕ̃, because otherwise we may replace
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it by ϕ̃∗∗.

What can we say about optimal transference plans π? If ϕ is optimal, then they must be

concentrated on the set of (x, y) such that ϕ̃(x)+ ϕ̃∗(y) = 〈
x, y

〉
. By definition of the Legen-

dre transform as a supremum, this happens if and only if the supremum is attained at x;

equivalently

ϕ̃(z)− ϕ̃(x) ≥ 〈
z −x, y

〉
, z ∈X .

This condition is precisely the definition of y being a subgradient of ϕ̃ at x [78, Chapter 23].

Let us now further restrict the attention to a finite dimensional setting, where X = Y =Rd for

some integer d ≥ 1. It is then well-known [78, Theorem 25.1] that if ϕ̃ is differentiable, then

the unique subdifferential at x is its gradient ∇ϕ̃(x). If we are fortunate and ϕ̃ is differentiable

everywhere, or even μ-almost everywhere, then the optimal transference plan π is unique,

and in fact induced from the transport map ∇ϕ̃. The problem, of course, is that ϕ̃ may fail

to be differentiable μ-almost surely. This is remedied by assuming some regularity on the

source measure μ in order to make sure that any convex function be differentiable μ-almost

surely, and is done via the following result, which is a simplified version of Theorem 25.5 in

Rockafellar [78]. Another proof can be found in Alberti & Ambrosio [3, Chapter 2].

Theorem 2.5.1 (differentiability of convex functions). Let f : Rd →R∪{∞} be a convex function

with domain dom f = {x ∈ Rd : f (x) < ∞} and let N be the set of points at which f is not

differentiable. Then N ∩ int(dom f ) has Lebesgue measure 0.

Here intA means the interior of A, defined as the largest open set included in A. When A is

convex and bounded, its boundary has Lebesgue measure zero: indeed, if intA is empty, then

the closure of A lies in a lower dimensional subspace [78, Theorem 2.4]. Otherwise, without

loss of generality 0 ∈ intA, and then by convexity of A, ∂A ⊆ (1+ ε)A for all ε> 0. When A is

unbounded, write it as ∪n A∩ [−n,n]d . Since dom f is convex, it follows that in fact N ∩dom f

has Lebesgue measure zero.

Another issue that might arise is that optimal ϕ’s might not exist. This is easily dealt with using

Proposition 2.4.3. If we assume that μ and ν have finite second moments:∫
Rd

‖x‖2 dμ(x) <∞ and
∫
Rd

‖y‖2 dν(y) <∞,

then any transference plan π ∈Π(μ,ν) has a finite cost, as is seen from integrating the elemen-

tary inequality ‖x − y‖2 ≤ 2‖x‖2 +2‖y‖2 and using Lemma 2.4.1:

C (π) ≤
∫
Rd×Rd

[‖x‖2 +‖y‖2]dπ(x, y) =
∫
Rd

‖x‖2 dμ(x)+
∫
Rd

‖y‖2 dν(y) <∞.

With these tools, we can now prove a fundamental existence and uniqueness result for the

Monge–Kantorovich problem. It has been proven independently by several authors, including
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Brenier [22], Cuesta-Albertos & Matrán [26], Knott & Smith [58] and Rachev & Rüschendorf

[81].

Theorem 2.5.2 (quadratic cost in Euclidean spaces). Let μ and ν be probability measures on

Rd with finite second moments, and suppose that μ is absolutely continuous with respect to

Lebesgue measure. Then the solution to the Kantorovich problem is unique, and is induced from

a transport map T that equals μ-almost surely the gradient of a convex function φ. Furthermore,

the pair (‖x‖2/2−φ,‖y‖2/2−φ∗) is optimal for the dual problem.

Proof. The proof is now almost obvious. By Proposition 2.4.3 there exists an optimal dual

pair (ϕ,ψ) such that φ(x) = ‖x‖2/2−ϕ(x) is convex and lower semicontinuous, and by the

discussion in Section 2.1, there exists an optimal π. Since φ is μ-integrable, it must be finite

almost everywhere, i.e. μ(domφ) = 1. By Theorem 2.5.1, if we define N as the set of nondif-

ferentiability points of φ, then Leb(N ∩domφ) = 0; as μ is absolutely continuous, the same

holds for μ. (Here Leb denotes Lebesgue measure.)

We conclude that μ(int(domφ) \ N ) = 1. In other words, φ is differentiable μ-almost every-

where, and so for μ-almost any x, there exists a unique y such that φ(x)+φ∗(y) = 〈
x, y

〉
, and

y =∇φ(x). This shows that π is unique and induced from the transport map ∇φ(x). Finally, ∇φ
is Borel measurable, since each of its coordinates can be written as limsupq→0,q∈Q q−1(φ(x +
qv)−φ(x)) for some vector v (the canonical basis of Rd ), which is measurable because the

limit superior is taken on countably many functions (and φ is measurable because it is lower

semicontinuous).

Theorem 2.5.2 gives a rather general situation (in terms of the measures μ and ν) in which the

solution to the Kantorovich problem is given by a proper map. In the next subsection we show

that it holds true for more general cost functions.

2.5.2 Strictly convex cost functions

When c is not the quadratic cost, we cannot open up the square and relate the Monge–

Kantorovich problem to convexity. However, we can still apply the idea that ϕ(x)+ϕc (y) =
c(x, y) if and only if the infimum is attained at x. Indeed, recall that

ϕc (y) = inf
x∈X

c(x, y)−ϕ(x),

so that ϕ(x)+ϕc (y) = c(x, y) if and only if

ϕ(z)−ϕ(x) ≤ c(z, y)−c(x, y), z ∈X .

Notice the similarity to the subgradient inequality in the previous subsection, with the sign

being reversed. In analogy, we call the collection of y ’s satisfying the above in equality the
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c-superdifferential of ϕ at x, and we denote it by ∂cϕ(x). Of course, if c(x, y) = ‖x − y‖2/2,

then y ∈ ∂c (x) if and only if y is a subgradient of (‖ ·‖2/2−ϕ) at x.

The idea is now to identify a class of functions c such that if ϕ is c-concave, then for most

values of x, its c-superdifferential at x, ∂cϕ(x), consists of a single point y . As before, if ϕ is

dual optimal and ϕc (x) contains a single point y for μ-almost all x, then the unique optimal

π ∈Π(μ,ν) is again induced by the transport map ∂cϕ. As for the case of quadratic cost, we

would like to find such a class for which ∂cϕ(x) is unique Lebesgue-almost surely, and then it

will automatically be the case μ-almost surely when μ is absolutely continuous.

It turns out that such a class is given by c(x, y) = ‖x − y‖p /p for p > 1.

Theorem 2.5.3 (strictly convex costs in Rd ). Let c(x, y) = ‖x − y‖p /p for some p > 1 and let

μ and ν be probability measures on Rd with finite p-th moments such that μ is absolutely

continuous with respect to Lebesgue measure. Then the solution to the Kantorovich problem with

cost function c(x, y) = ‖x − y‖p /p is unique and induced from a transport map T . Furthermore,

there exists an optimal pair (φ,φc ) of the dual problem, with φ c-concave. The solutions are

related by

T (x) = x −∇φ(x)‖∇ϕ(x)‖1/(p−1)−1 (μ-almost surely).

This result is due to Gangbo & McCann [37]. Let us show the easy part of the proof, which

relates differentiability properties of φ to that of c . More precisely, define h(v) = ‖v‖p /p so that

c(x, y) = h(‖x − y‖). Suppose now that y ∈ ∂cφ(x) and let us assume that φ is subdifferentiable

at x. That is, there exists a subgradient u ∈Rd such that

φ(z)−φ(x) ≥ 〈u, z −x〉+o(‖z −x‖).

Here and more generally, o(‖z − x‖) denotes a function r (z) (defined in a neighbourhood of

x) such that r (z)/‖z − x‖ → 0 as z → x. (If φ were convex then we could take r ≡ 0, so the

definition for convex functions is equivalent, and then the inequality holds globally and not

only locally.) But y ∈ ∂cφ(x) means that

h(z − y)−h(x − y) = c(z, y)−c(x, y) ≥φ(z)−φ(x) ≥ 〈u, z −x〉+o(‖z −x‖).

In other words, z is a subgradient of h at x − y . Now, since h is differentiable, it only has one

subgradient u =∇h(x−y). This means that u must be unique too. Now if φ were differentiable,

then it must be that u =∇φ(x) =∇h(x − y). Since h is strictly convex, its gradient is invertible,

so this equation defines y uniquely via

y = x − (∇h)−1[∇φ(x)],

which defines y as a function of x. So if, μ-almost everywhere, φ is differentiable and has

a c-supergradient, then there is a unique transference plan induced by the transport map
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2.6. The one-dimensional case

T (x) = x − (∇h)−1[∇φ(x)]. Of course, we can assume that φ is c-concave; and this is exactly

what Gangbo & McCann showed: if φ is c-concave, then it is differentiable Lebesgue-almost

everywhere and further has at least (thus exactly) one c-supergradient.

It should be remarked that the result of Gangbo & McCann holds for much more general cost

functions than ‖x − y‖p /p. Furthermore, if the cost function is sufficiently smooth, μ does

not need to be absolutely continuous; it suffices that it not give positive measure to any set of

Hausdorff dimension smaller or equal than d −1. If d = 1 this means that Theorem 2.5.3 is still

valid as long as μ has no atoms (μ({x}) = 0 for all x ∈R), even if μ is not absolutely continuous.

In the same reference [37], Gangbo & McCann deal with strictly concave cost functions,

where the situation is similar if the supports of μ and ν are disjoint. Analogous results in an

infinite-dimensional setting can be found in Ambrosio, Gigli & Savaré [6, Theorem 6.2.10].

Although there is no obvious parallel for Lebesgue measure (i.e., translation invariant) on

infinite-dimensional Banach spaces, one can still define absolute continuity via Gaussian

measures. Indeed, μ ∈ P (Rd ) is absolutely continuous with respect to Lebesgue measure if and

only if the following holds: if N ⊂Rd is such that ν(N ) = 0 for any nondegenerate Gaussian

measure ν, then μ(N ) = 0. This definition can be extended to any separable Banach space X

via projections, as follows. Let X ∗ be the (topological) dual of X .

Definition 2.5.4 (Gaussian measures). A probability measure μ ∈ P (X ) is a nondegenerate

Gaussian measure if for any � ∈ X ∗ \ {0}, �#μ ∈ P (R) is a Gaussian measure with positive

variance.

Definition 2.5.5 (Gaussian null sets and absolutely continuous measures). A subset N ⊂X is

a Gaussian null set if whenever ν is nondegenerate Gaussian measure, ν(N ) = 0. A probability

measure μ ∈ P (X ) is absolutely continuous if μ vanishes on all Gaussian null sets.

Clearly, if ν is a nondegenerate Gaussian measure, then it is absolutely continuous. In the

sequel, X will usually be a Hilbert space, and then one can think of absolutely continuous

measures as measures μ ∈ P (X ) such that for any other ν ∈ P (X ), there exists a unique optimal

transference plan induced by a transport map T with respect to the cost ‖x − y‖p /p (provided

some moment conditions are satisfied). Therefore in the sense of optimal transportation,

Definition 2.5.5 is an extension of the notion of absolute continuity of measures in Rd with

respect to Lebesgue measure.

2.6 The one-dimensional case

When X = Y =R, the Monge–Kantorovich problem admits a unique solution in the situation

described in the previous subsection. The main difference is that the solution has an explicit

form in terms of the distribution functions of the measures. Specifically, let μ,ν ∈ P (R) with

distribution functions F and G respectively,

F (t ) =μ((−∞, t ]), G(t ) = ν((−∞, t ]), t ∈R.
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Suppose that the cost function is c(x, y) = |x − y |2/2 and let x1 ≤ x2, y1 ≤ y2. Since

c(y2, x1)+c(y1, x2)−c(y1, x1)−c(y2, x2) = (x2 −x1)(y2 − y1) ≥ 0,

it seems natural to expect the optimal transport map to be monotonically increasing. In

fact, the inequality holds whenever c(x, y) = h(|x − y |) with h : R+ →R convex, as elementary

calculations show. It turns out that, on the real line, there is at most one such map: if T is

increasing and T #μ= ν, then for all t ∈R

G(t ) = ν((−∞, t ]) =μ((−∞,T −1(t )]) = F (T −1(t )).

If t = T (x), then the above equation reduces to T (x) = G−1(F (x)). This formula determines

T uniquely, and has an interesting probabilistic interpretation: it is well-known that if X

is a random variable with continuous distribution function F , then F (X ) follows a uniform

distribution on (0,1). Conversely, if U follows a uniform distribution, G is any distribution

function, and

G−1(u) = infG−1([u,1]) = inf{x ∈R : G(x) ≥ u}, 0 < u < 1,

is the quantile function of X , then the random variable G−1(U ) has distribution function G .

We say that G is the left-continuous inverse of G . In terms of push-forward maps, we can

write F #μ= Leb|[0,1] and G−1#Leb|[0,1] = ν, with Leb standing for Lebesgue measure, and it is

restricted to the interval [0,1]. Consequently, we see that if F is continuous and G is arbitrary,

then T #μ= ν; we can view T as pushing μ forward to ν in two steps: firstly, μ is pushed forward

to Leb|[0,1] and secondly, Leb|[0,1] is pushed forward to ν.

Using the change of variables formula, we see that the total cost of T is

C (T ) =
∫
R

c(G−1(F (x), x))dμ(x) =
∫1

0
c(G−1(u),F−1(u))du.

If F is discontinuous, then F #μ is not Lebesgue measure, and T is not necessarily defined. But

there will exist an optimal transference plan π ∈Π(μ,ν) which is monotone in the following

sense: there exists a set Γ⊂R2 such that π(Γ) = 1 and whenever (xi , yi ) ∈ Γ,

c(y2, x1)+c(y1, x2)−c(y1, x1)−c(y2, x2) ≥ 0.

This is a particular case of the cyclical monotonicity that will be discussed in Section 2.9.

Thus, if x1 < x2, then it must be that y1 ≤ y2. Since any distribution can be approximated by

continuous distributions, in view of the above discussion, the following result from Villani [88,

Theorem 2.18] should not be surprising.

Theorem 2.6.1 (optimal transportation in R). Let μ,ν ∈ P (R) with distribution functions F and
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G respectively and let the cost function be of the form c(x, y) = h(|x − y |) with h convex. Then

inf
π∈Π(μ,ν)

C (π) =
∫1

0
h(G−1(u)−F−1(u))du.

Furthermore, if F is continuous, then the infimum is attained by the transport map T =G−1 ◦F ,

and if in addition h(z) = ‖z‖p /p for some p > 1 and μ and ν have finite p-th moments, then

the unique solution is the transference plan π induced by T .

This result allows in particular a direct evaluation of the Wasserstein distances for measures

on the real line (see Chapter 3).

The only part of our formulation that is not explicitly proven in [88] is the last part about the

uniqueness, in which case one may invoke Theorem 2.5.3 (if μ is not absolutely continuous,

see the discussion after the sketch of the proof of that theorem).

When p = 1, the cost function is convex but not strictly, and solutions will not be unique.

However, the total cost in Theorem 2.6.1 admits another representation that is often more

convenient.

Proposition 2.6.2 (quantiles and distribution functions). If F and G are distribution functions,

then ∫1

0
|G−1(u)−F−1(u)|du =

∫
R
|G(x)−F (x)|dx.

Proof. It is well known that F−1(u) ≤ x if and only if u ≤ F (x). Let A = {u : G−1(u) > F−1(u)} ⊆
(0,1) and notice that for u ∈ A, F−1(u) ≤ x < G−1(u) if and only if G(x) < u ≤ F (x). A similar

equivalence holds when u ∈ B = (0,1) \ A. It follows from Fubini’s theorem that

∫
A
|G−1(u)−F−1(u)|du =

∫
A

(∫G−1(u)

F −1(u)
1dx

)
du =

∫
R

(∫F (x)

G(x)
1A(u)1{F (x) ≥G(x)}du

)
dx;

∫
B
|G−1(u)−F−1(u)|du =

∫
B

(∫F −1(u)

G−1(u)
1dx

)
du =

∫
R

(∫G(x)

F (x)
1B (u)1{G(x) ≥ F (x)}du

)
dx.

Since 1A(u)+1B (u) = 1, summing up these equalities yields the result.

Corollary 2.6.3. If c(x, y) = |x − y | then under the conditions of Theorem 2.6.1

inf
π∈Π(μ,ν)

C (π) =
∫
R
|G(x)−F (x)|dx.

This result, as well as the more general Theorem 2.6.1 do not assume that the total cost is

finite, in which case both sides are infinite. Somewhat abusing the terminology, we will refer

to T =G−1 ◦F as the optimal map even in the rare cases where the total cost is infinite.
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2.7 The Gaussian case with quadratic cost

Beside the one-dimensional case in the previous section, there is another special case in which

not only uniqueness holds, but one also has an explicit solution to the Monge–Kantorovich

problem.

Suppose that μ and ν are Gaussian measures on Rd with zero means and nonsingular covari-

ance matrices A and B . By Theorem 2.5.2 we know that there exists a unique optimal map T

such that T #μ= ν. Since linear push-forwards of Gaussians are Gaussian, it seems natural to

guess that T should be linear. This is indeed the case, as was shown independently by Dowson

& Landau [29] and Olkin & Pukelsheim [69].

We present the argument of Bhatia [13, Exercise 1.2.13]. Since T is a linear map that should be

the gradient of a convex function φ, it must be that φ is quadratic, i.e. φ(x) = 〈x, Ax〉 for x ∈Rd

and some matrix A. The gradient of φ at x is (A + At )x and the Hessian matrix is A + At . Thus

T = A + At and since φ is convex, the latter must be positive semidefinite.

Viewing T as a matrix leads to the Ricatti equation T AT = B (since T is symmetric). This is a

quadratic equation in T , and so we wish to take square roots in a way that would isolate T .

This is done by multiplying the equation from both sides with A1/2:

[A1/2T A1/2][A1/2T A1/2] = A1/2T AT A1/2 = A1/2B A1/2 = [A1/2B 1/2][B 1/2 A1/2].

Both sides are clearly positive semidefinite, and furthermore A1/2T A1/2 is positive semidefinite.

By taking square roots and multiplying with A−1/2 we finally find

T = A−1/2[A1/2B A1/2]1/2 A−1/2.

A straightforward calculation shows that T AT = B indeed, and T is positive definite, hence

optimal. To calculate the transportation cost C (T ), observe that (T −I )#μ is a centred Gaussian

measure with covariance matrix

T AT −T A − AT + A = A +B − A1/2[A1/2B A1/2]1/2 A−1/2 − A−1/2[A1/2B A1/2]1/2 A1/2.

If Y ∼ N (0,C ), then E‖Y ‖2 equals the trace of C , denoted trC . Hence, by properties of the

trace,

C (T ) = tr
[

A +B −2(A1/2B A1/2)1/2] . (2.6)

If AB = B A, the above formulae simplify to

T = B 1/2 A−1/2, C (T ) = tr
[

A +B −2A1/2B 1/2] .

By continuity arguments, (2.6) is the total transportation cost between any two Gaussian

distributions with zero means, even if A is singular.
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If the means of μ and ν are m and n, one simply needs to translate the measures. The optimal

map and the total cost are then

T x = n−m+A−1/2[A1/2B A1/2]1/2 A−1/2x; C (T ) = ‖n−m‖2+tr[A+B −2(A1/2B A1/2)1/2].

From this we can deduce a lower bound on the total cost between any two measures in

Rd in terms of their second order structure. This is worth mentioning, because such lower

bounds are not very common. Once again, by continuity considerations this holds for arbitrary

measures with possibly singular covariance matrices.

Proposition 2.7.1 (lower bound for quadratic cost). Let μ,ν ∈ P (Rd ) be absolutely continuous

measures with means m and n and covariance matrices A and B and let T be the optimal map.

Then

C (T ) ≥ ‖n −m‖2 + tr[A +B −2(A1/2B A1/2)1/2].

Proof. It will be convenient here to use the probabilistic terminology of Section 2.2. Let X

and Y be random variables with distributions μ and ν. Any coupling of X and Y will have

covariance matrix of the form C =
(

A V

V t B

)
∈R2d×2d for some matrix V ∈Rd×d , constrained

so that C is positive semidefinite [29]. This gives the lower bound

inf
π∈Π(μ,ν)

Eπ‖X −Y ‖2 = ‖m −n‖2 + inf
π∈Π(μ,ν)

trπ[A+B −2V ] ≥ ‖m −n‖2 + inf
V :C≥0

tr[A+B −2V ].

As we know from the Gaussian case, the last infimum is given by (2.6).

2.8 Regularity of the transport maps

In the preceding two sections we have seen an explicit formula for the optimal transport map

T between μ and ν. In the Gaussian case in Rd , this map is linear, so it is of course very smooth

(analytic). The densities of Gaussian measures are analytic too, so we see that T inherits the

regularity of μ and ν. Using the formula for T , one can show that a similar phenomenon takes

place in the one-dimensional case. Though we do not have a formula for T at our disposal

when μ and ν are general absolutely continuous measures on Rd , d ≥ 2, it turns out that even

in that case, T inherits the regularity of μ and ν if some convexity conditions are satisfied.

Let us first show a precise result in the case d = 1. Let F and G denote the distribution functions

of μ and ν respectively. Suppose that G is continuously differentiable and that G ′ > 0 on some

open interval (finite or not) I such that ν(I ) = 1. Then the inverse function theorem says

that G−1 is also continuously differentiable. Recall that the support of a (Borel) probability

measure μ (denoted suppμ) is the smallest closed set K such that μ(K ) = 1. Throughout this

section, we will deal exclusively with the quadratic cost c(x, y) = ‖x − y‖2/2 on Rd . Then, we

have the following result:

29



Chapter 2. Optimal transportation

Theorem 2.8.1 (regularity in R). Let μ,ν ∈ P (R) possess distribution functions F and G of class

C k , k ≥ 1. Suppose further that suppν is an interval I (possibly unbounded) and that G ′ > 0 on

(the interior of) I . Then the optimal map is of class C k as well.

Remark 2. The result also holds if k = 0.

Proof. The optimal map is G−1 ◦ F by Theorem 2.6.1, and the discussion in the preceding

paragraph proves the result when k = 1, since we have a composition of C 1 functions. When

k = 2, we let H = G−1 and use the formula H ′(t) = 1/G ′(H(t)) for all t ∈ (0,1). Then both G ′

and H are C 1, so that H ′ is C 1, and consequently H is C 2. By induction we see that if G is C k ,

then so is H . If in addition F is C k , then T =G−1 ◦F is C k .

For the case k = 0, observe that G is strictly increasing, because suppν is an interval. Since G

is assumed continuous, so is H =G−1, so that T = H ◦F must be continuous too.

The assumption on the support of ν is important: if μ is Lebesgue measure on [0,1] and the

support of ν is disconnected, then T cannot even be continuous, no matter how smooth ν is!

The argument above cannot be easily extended to measures on Rd , d ≥ 2, because there is no

explicit formula available for the optimal maps. As before, we cannot expect the optimal map

to be continuous if the support of ν is disconnected. It turns out that the right condition on

the support of ν is not connectedness, but rather convexity. This was shown by Caffarelli, who

was able to prove ([23] and the references within) the following regularity result.

Theorem 2.8.2 (regularity of transport maps). Fix open sets Ω1,Ω2 ⊆Rd and absolutely contin-

uous measures μ,ν ∈ P (Rd ) with finite second moments and bounded densities f , g respectively,

such that μ(Ω1) = 1 = ν(Ω2). Suppose that Ω2 is convex and that f , g ∈C k,α (their k-th deriva-

tives are Hölder continuous of exponent α ∈ (0,1)), k ≥ 0. If either

1. both Ω1 and Ω2 are bounded and f , g are bounded below; or

2. both Ω1 =Ω2 =Rd and f and g are strictly positive,

then the convex potential φ such that ∇φ#μ= ν satisfies φ ∈C k+2,α on Ω1.

If the first of these conditions hold then φ is in addition strictly convex.

One can find a statement of this result (without proof) in this version in Villani [88, Theo-

rem 4.14]. Theorem 2.8.2 will be used in two ways in this thesis. Firstly, it is used to derive

criteria for a Karcher mean to be the Fréchet mean (Theorem 3.5.18). Secondly, it allows one

to obtain very smooth estimates for the transport maps. Indeed, any two measures μ and

ν can be approximated by measures satisfying the second condition: one can approximate

them by discrete measures using the law of large numbers and then employ a convolution

with e.g. a Gaussian measure (see for instance Theorem 3.2.6). It is not at all obvious that the

transport maps between the approximations converge to the transport maps between the

original measures, and we will show this in the next section.
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2.9 Stability of solutions under narrow convergence

In this section we discuss the behaviour of the solution to the Monge–Kantorovich problem

when the measures μ and ν are replaced by approximations μn and νn . Since any measure can

be approximated by discrete measures or by smooth measures, this allows us to benefit from

both worlds. On one hand, approximating μ and ν with discrete measures leads to the finite

discrete problem of Section 2.3 that can be solved exactly. On the other hand, approximating μ

and ν with Gaussian convolutions thereof leads to very smooth measures (at least in Rd ), and

so the regularity results of the previous section imply that the respective optimal maps will also

be smooth. Finally, in applications, one would almost always observe the measures of interest

μ and ν with a certain amount of noise, and it is therefore of interest to control the error

introduced by the noise. In image analysis, μ can represent an image that has as undergone

blurring, or some other perturbation (Amit, Grenander & Piccioni [8]). In other applications

the noise could be due to sampling variation, where instead of μ one observes a discrete

measure μN obtained from realisations X1, . . . , XN of random elements with distribution μ as

μN = N−1∑N
i=1δ{Xi } (see Chapter 4).

In Subsection 2.9.1 we show that the optimal transference plan π depends continuously on μ

and ν. With this result under our belt, we then deduce an analogous property for the optimal

map T from μ to ν given some regularity of μ, in Subsection 2.9.2.

We shall assume throughout this section that μn →μ and νn → ν narrowly, which, we recall,

means that
∫
X f dμn →∫

X f dμ for all continuous bounded f : X →R. The collection of these

functions is denoted by Cb(X ). The following equivalent conditions for narrow convergence

will be used not only in this section, but in other parts of this work as well.

Lemma 2.9.1 (portmanteau). Let X be a complete separable metric space and let μ,μn ∈ P (X ).

Then the following are equivalent:

• μn →μ narrowly;

• Fn(x) → F (x) for any continuity point x of F . Here X =Rd , Fn is the distribution function

of μn and F is that of μ;

• for any open G ⊆X , liminfμn(G) ≥μ(G);

• for any closed F ⊆ X , limsupμn(F ) ≤μ(F );

•
∫

h dμn → ∫
h dμ for any bounded measurable h whose set of discontinuity points is a

μ-null set.

For a proof, see for instance Billingsley [17, Theorem 2.1]. The equivalence with the last

condition can be found in Pollard [72, Section III.2].
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2.9.1 Stability of transference plans and c-monotonicity

Here is a precise stability result, due to Schachermayer & Teichmann [84, Theorem 3]. As usual,

we assume that X is a complete separable metric space.

Theorem 2.9.2 (narrow convergence and optimal plans). Let μn and νn converge narrowly to

μ and ν respectively in P (X ) and let c : X 2 →R+ be continuous. If πn ∈Π(μn ,νn) are optimal

transference plans and

limsup
n→∞

∫
X 2

c(x, y)dπn(x, y) <∞.

then (πn) is a tight sequence and each of its narrow limits π ∈Π(μ,ν) is optimal.

One can even let c vary with n under some conditions, see Villani [89, Theorem 5.20].

A key idea in the proof of this result is to replace optimality of π with another property called

c-monotonicity, which behaves nicely with respect to narrow convergence. To elucidate the

importance of this property, we recall the discrete case of Section 2.3 where μ= N−1∑N
i=1δ{xi }

and ν= N−1∑N
i=1δ{yi }. There exists an optimal transference plan π induced from a permuta-

tion σ0 ∈ SN . Since the ordering of {xi } and {yi } is irrelevant in the representations of μ and

ν, we may assume without loss of generality that σ0 is the identity permutation. Then, by

definition of optimality,

N∑
i=1

c(xi , yi ) ≤
N∑

i=1
c(xi , yσ(i )), σ ∈ SN . (2.7)

If σ is the identity except for a subset i1, . . . , in , n ≤ N , then in particular

n∑
k=1

c(xik , yik ) ≤
n∑

k=1
c(xik , yiσ(k) ), σ ∈ Sn ,

and if we choose σ(ik ) = ik−1 with i0 = in , this writes

n∑
k=1

c(xik , yik ) ≤
n∑

k=1
c(xik , yik−1 ). (2.8)

By decomposing a permutation σ ∈ SN to disjoint cycles, one can verify that (2.8) implies (2.7).

This will be useful since, as it turns out, a variant of (2.8) holds for arbitrary measures μ and ν

for which there is no relevant finite N as in (2.7).

Definition 2.9.3 (c-monotone sets and measures). A set Γ ⊆ X 2 is c-monotone if for any n

and any (x1, y1), . . . , (xn , yn) ∈ Γ,

n∑
i=1

c(xi , yi ) ≤
n∑

i=1
c(xi , yi−1), (y0 = yn). (2.9)

A probability measure π on X 2 is c-monotone if there exists a c-monotone Borel set Γ such that
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2.9. Stability of solutions under narrow convergence

π(Γ) = 1.

The relevance of c-monotonicity becomes clear from the following observation. If μ and ν

are discrete measures and σ is an optimal permutation for the Monge–Kantorovich problem,

then the coupling π = (1/N )
∑N

i=1δ{(xi , yσ(i ))} is c-monotone. In fact, even if the optimal

permutation is not unique, the set

Γ= {(xi , yσ(i )) : i = 1, . . . , N ,σ ∈ SN optimal}

is c-monotone. Furthermore, π ∈Π(μ,ν) is optimal if and only if it is c-monotone, if and only

if π(S) = 1. The following proposition extends the “only if" to arbitrary measures, when c is

continuous. It is due to Gangbo and McCann [37, Theorem 2.3].

Proposition 2.9.4 (optimal plans are c-monotone). Let μ,ν ∈ P (X ) and suppose that the cost

function c is nonnegative and continuous. Assume that the optimal π ∈Π(μ,ν) has a finite total

cost. Then suppπ is c-monotone. In particular, π is c-monotone.

The idea of the proof is that if for some (x1, y1), . . . , (xn , yn) in the support of π,

n∑
i=1

c(xi , yi ) >
n∑

i=1
c(xi , yi−1),

then by continuity of c, the same inequality holds on some balls of positive measure. One

can then replace π by a measure having (xi , yi−1) rather than (xi , yi ) in its support, and this

measure will incur a lower cost than π.

Thus, we see that optimal transference plansπ solve infinitely many discrete Monge–Kantorovich

problems emanating from their support. More precisely, for any finite collection (xi , yi ),

i = 1, . . . , N and any permutation σ ∈ SN , (2.7) is satisfied. Therefore the identity permutation

is optimal between the measures (1/N )
∑
δ{xi } and (1/N )

∑
δ{y j }.

It is not difficult to strengthen Proposition 2.9.4 and prove existence of a c-monotone set Γ

that includes the support of any optimal transference plan π: take Γ=∪supp(π) for π optimal.

A major contribution of Schachermayer & Teichmann [84] was to prove the converse of

Proposition 2.9.4.

Proposition 2.9.5 (c-monotone plans are optimal). Let μ,ν ∈ P (X ), c : X 2 →R+ continuous

and π ∈Π(μ,ν) a c-monotone measure with C (π) finite. Then π is optimal in Π(μ,ν).

Given these results, it is now instructive to prove Theorem 2.9.2.

Proof of Theorem 2.9.2. Since μn → μ narrowly, it is a tight sequence, and similarly for νn .

Consequently, the entire set of plans ∪nΠ(μn ,νn) is tight too (see the discussion before deriving
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Chapter 2. Optimal transportation

(2.3)). Therefore, up to a subsequence, (πn) has a narrow limit π. We need to show that π is

c-monotone and that C (π) is finite. The latter is easy, since

C (π) = lim
M→∞

∫
X 2

min(c, M)dπ= lim
M→∞

lim
n→∞

∫
X 2

min(c, M)dπn ≤ liminf
n→∞

∫
X 2

c dπn <∞.

To show that π is c-monotone, we fix (x1, y1), . . . , (xN , yN ) ∈ suppπ. Let us show that there exist

(xn
k , yn

k ) ∈ suppπn that converge to (xk , yk ). Once this is established, we conclude from the

c-monotonicity of suppπn and the continuity of c that

N∑
k=1

c(xk , yk ) = lim
n→∞

N∑
k=1

c(xn
k , yn

k ) ≤ lim
n→∞

N∑
k=1

c(xn
k , yn

k−1) =
N∑

k=1
c(xk , yk−1).

The existence proof for the sequence is standard. For all ε> 0 let B = Bε(xk , yk ) be an open ball

around (xk , yk ). Then π(B) > 0 and by the portmanteau lemma 2.9.1, πn(B) > 0 for sufficiently

large n. It follows that there exist (xn
k , yn

k ) ∈ B ∩ suppπn . We can let ε= 1/m, say, then for all

n ≥ Nm we can find (xn
k , yn

k ) ∈ suppμn of distance 1/m. We can choose Nm+1 > Nm without

loss of generality in order to complete the proof.

It should not come as a surprise that c-monotonicity takes a special form in the quadratic case.

Indeed, when X is a separable Hilbert space and c(x, y) = ‖x − y‖2 = (x − y)2, a c-monotone

set is called cyclically monotone. Easy algebra shows that (2.9) is then equivalent to

n∑
i=1

〈
yi , xi+1 −xi

〉≤ 0, (xn+1 = x1). (2.10)

Recall that if φ : X →R∪ {∞} is convex, then its subdifferential at x is the set of subgradients

∂φ(x) =
{

y ∈Rd : φ(z) ≥φ(x)+〈
y, z −x

〉
for any z ∈X

}
.

Suppose that yi ∈ ∂φ(xi ) for all i . Summing up the subgradient inequalities at zi = xi+1 yields

precisely (2.10). In other words, subdifferentials of convex functions are cyclically monotone.

Rockafellar [77] showed that this is in fact a characterisation of cyclical monotonicity.

Theorem 2.9.6 (Rockafellar). A nonempty Γ ⊆ X 2 is cyclically monotone if and only if it is

included in the graph of the subdifferential of a lower semicontinuous convex function that is

not identically infinite.

The proof is constructive: given Γ, one fixes (x0, y0) ∈ Γ and defines

φ(x) = sup
{〈

y0, x1 −x0
〉+·· ·+〈

ym−1, xm −xm−1
〉+〈

ym , x −xm
〉

: m ∈N, (xi , yi ) ∈ Γ
}

,

which is convex and lower semicontinuous (as a supremum of affine functions), and using the

cyclical monotonicity equals 0 (hence not ∞) at x0.

34



2.9. Stability of solutions under narrow convergence

Importantly, the Kantorovich duality is not needed, and can in fact be deduced from these

arguments. For instance, if π is optimal for (halved) quadratic cost, then its support is cyclically

monotone. As such, it is included in the subgradient of a convex function φ. One can then

verify that (‖x‖2/2−φ(x),‖y‖2/2−φ∗(y)) is optimal for the dual problem. These ideas can be

extended to other cost functions: given a c-monotone set Γ, the potential can be constructed

as (Rüschendorf [80])

ϕ(x) = inf
{
c(x1, y0)−c(x0, y0)+c(xm , ym−1)−c(xm−1, ym−1)+c(x, ym)−c(xm , ym)

}
,

and then (ϕ,ϕc ) is the solution to the dual problem.

2.9.2 Stability of transport maps

In this subsection, following Zemel & Panaretos [94, Section 7.5], we extend the narrow conver-

gence of πn to π of the previous subsection to convergence of optimal maps. Because of the

applications we have in mind, we shall work exclusively in the Euclidean space X =Rd with

the quadratic cost function; our results can most likely be extended to more general situations.

In this setting, we know that optimal plans are supported on graphs of subdifferentials of

convex functions. Suppose that πn is induced by Tn and π is induced by T . Then in some

sense, the narrow convergence of πn to π yields convergence of the graphs of Tn to the graph

of T . Our goal is to strengthen this to uniform convergence of Tn to T . Roughly speaking, we

show the following: there exists a set A with μ(A) = 1 and such that Tn converge uniformly to

T on every compact subset of A. For the reader’s convenience we give a user-friendly version

here; a more general statement is given in Proposition 2.9.11 below.

Theorem 2.9.7 (uniform convergence of optimal maps). Let μn ,μ be absolutely continuous

measures with finite second moments on an open convex set U ⊆Rd such that μn →μ narrowly,

and let νn → ν narrowly with νn ,ν ∈ P (Rd ) with finite second moments. If Tn and T are

continuous on U and C (Tn) is bounded uniformly in n, then

sup
x∈Ω

‖Tn(x)−T (x)‖→ 0, n →∞,

for any compact Ω⊆U .

A weaker result can be found in Villani [89, Corollary 5.23]: Tn converge to T inμ-measure. This

result, however, assumes that μn =μ and only νn is allowed to vary with n ([89, Remark 5.25]).

On the flip side, the result in [89, Corollary 5.23] holds in a very general setting.

Since Tn and T are only defined up to Lebesgue null sets, it will be more convenient to work

directly with the subgradients. That is, we view Tn and T as set-valued functions that to each

x ∈ Rd assign a (possibly empty) subset of Rd . In other words, Tn and T take values in the

power set of Rd , denoted by 2R
d

.
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Chapter 2. Optimal transportation

Let φ : Rd →R∪ {∞} be convex, y1 ∈ ∂φ(x1) and y2 ∈ ∂φ(x2). Putting n = 2 in the definition of

cyclical monotonicity (2.10) gives〈
y2 − y1, x2 −x1

〉≥ 0.

This property (which is weaker than cyclical monotonicity) is important enough to have its

own name. Following the notation of Alberti & Ambrosio [3], we call a set-valued function (or

multifunction) u : Rd → 2Rd
monotone if whenever yi ∈ u(xi ), i = 1,2,〈

y2 − y1, x2 −x1
〉≥ 0.

If d = 1, this simply means that u is a nondecreasing (set-valued) function. For example, one

can define u(x) = {0} for x ∈ [0,1), u(1) = [0,1] and u(x) = � if x ∉ [0,1]. Next, u is said to be

maximally monotone if no points can be added to its graph while preserving monotonicity:{〈
y ′ − y , x ′ −x

〉≥ 0 whenever y ∈ u(x)
} =⇒ y ′ ∈ u(x ′).

It will be convenient to identify u with its graph; we will often write (x, y) ∈ u to mean y ∈ u(x).

Note that u(x) can be empty, even when u is maximally monotone. The previous example

for u is not maximally monotone, but it will be if we modify u(0) to be (−∞,0] and u(1) to be

[0,∞).

Of course, if φ : Rd → R∪ {∞} is convex, then u = ∂φ is monotone. It follows from Theo-

rem 2.9.6 that u is maximally cyclical monotone (no points can be added to its graph while

preserving cyclical monotonicity). It is not immediate, but not very difficult to show that u

is actually maximally monotone; see [3, Section 7]. In what follows we will always work with

subdifferentials of convex functions, so unless stated otherwise, u will always be assumed

maximally monotone.

Maximally monotone functions enjoy the following very useful continuity property. It is proven

in [3, Corollary 1.3] and will be used extensively below.

Proposition 2.9.8 (continuity at singletons). Let x ∈ Rd such that u(x) = {y} is a singleton.

Then u is nonempty on some neighbourhood of x and it is continuous at x: if xn → x and

yn ∈ u(xn), then yn → y.

Notice that this result implies that if a convex function φ is differentiable on some open set

E ⊆Rd , then it is continuously differentiable there (Rockafellar [78, Corollary 25.5.1]).

If f : Rd →R∪ {∞} is any function, one can define its subgradient at x locally as

∂ f (x) = {y : f (z) ≥ f (x)+〈
y, z −x

〉+o(‖z −x‖)} =
{

y : liminf
z→x

f (z)− f (x)+〈
y, z −x

〉
‖z −x‖ ≥ 0

}
.

(See the discussion after Theorem 2.5.3.) When f is convex, one can remove the o(‖z − x‖)

term and the inequality holds for all z, i.e. globally and not locally. Since monotonicity is
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2.9. Stability of solutions under narrow convergence

Figure 2.1: The set G in (2.11).

related to convexity, it should not be surprising that monotonicity is in some sense a local

property. Suppose that u(x0) = {y0} is a singleton and that for some y∗ ∈Rd ,〈
y − y∗, x −x0

〉≥ 0

for all x ∈ Rd and y ∈ u(x). Then by maximality, y∗ must equal y0. By “local property"

we mean that the conclusion y∗ = y0 holds if the above inequality holds for x in a small

neighbourhood of x0 (an open set that includes x0). We will need a more general version of

this result, replacing neighbourhoods by a weaker condition that can be related to Lebesgue

points. The strengthening is somewhat technical; the reader can skip directly to Lemma 2.9.10

and assume that G is open without losing much intuition.

We remind the reader of the notation Br (x0) = {x : ‖x − x0‖ < r } for r ≥ 0 and x0 ∈ Rd . The

interior of a set G ⊆Rd is denoted by intG and the closure by G . If G is measurable, then LebG

denotes the Lebesgue measure of G . Finally, convG denotes the convex hull of G .

A point x0 is a Lebesgue point (or of Lebesgue density) of a measurable set G ⊆Rd if for any

ε> 0 there exists tε > 0 such that

Leb(Bt (x0)∩G)

Leb(Bt (x0))
> 1−ε, 0 < t < tε.

Here is an interesting example I learned from Tomáš Rubín. Define the set G ⊆ R2 by (see

Figure 2.1)

G =
{

(x, y) : |x| ≤ 1, −0.2 ≤ y ≤
√

|x|
}

. (2.11)

Then (0,0) is a Lebesgue point of G (because the “slope" of the square root is infinite) but the

fraction above is never one.

We denote the set of points of Lebesgue density of G by Gden. Here are some facts about

Gden: clearly, intG ⊆ Gden ⊆ G . Stein & Shakarchi [85, Chapter 3, Corollary 1.5] show that

Leb(G \ Gden) = 0 (and Leb(Gden \ G) = 0, so Gden is very close to G). By the Hahn–Banach

Theorem, Gden ⊆ int(conv(G)): indeed, if x is not in int(convG) then there is a separating

hyperplane between x and convG ⊇G , so the fraction above is at most 1/2 for all t > 0.
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Chapter 2. Optimal transportation

The “density"-ness of Lebesgue points is materialised in the following classical result.

Lemma 2.9.9 (density points and distance). Let x0 be a point of Lebesgue density of a measur-

able set G ⊆Rd . Then

δ(z) = δG (z) = inf
x∈G

‖z −x‖ = o(‖z −x0‖), as z → x0.

Of course, this result holds for any x0 ∈G if the little o is replaced by big O, since δ is Lipschitz.

When x0 ∈ intG , this is trivial because δ vanishes on intG .

Proof. [85] give this as an exercise when d = 1; for completeness we provide a full proof.

For any 1 > ε> 0 there exists 0 < tε such that for t < tε,

Leb(Bt (x0)∩G)

Leb(Bt (x0))
> 1−εd .

Fix z such that t = t (z) = ‖z −x0‖ < tε. The intersection of Bt (x0) with B2εt (z) includes a ball of

radius εt centred at y = x0 + (1−ε)(z −x0), so that

Leb(Bt (x0)∩B2εt (z))

Leb(Bt (x0))
≥ Leb(Bεt (y))

Leb(Bt (x0))
= εd .

It follows that G ∩B2εt (z) is nonempty. In other words: for any ε> 0 there exists tε such that if

‖z − x0‖ < tε, then there exists x ∈ G with ‖z − x‖ ≤ 2εt(z) = 2ε‖z − x0‖. This means precisely

that δ(z) = o(‖z −x0‖) as z → x0.

The important part here is the following corollary: for almost all x ∈ G , δ(z) = o(‖z − x‖)

as z → x. This can be seen in other ways: since δ is Lipschitz, it is differentiable almost

everywhere. If x ∈G and δ is differentiable at x, then ∇δ(x) must be 0 (because δ is minimised

there), and then δ(z) = o(‖z − x‖). We just showed that δ is differentiable with vanishing

derivative at all Lebesgue points of x. The converse is not true: G = {±1/n}∞n=1 has no Lebesgue

points, but δ(y) ≤ 4y2 as y → 0.

The locality of monotone functions can now be stated and proven as follows.

Lemma 2.9.10 (local monotonicity). Let x0 ∈ Rd such that u(x0) = {y0} and x0 is a Lebesgue

point of a set G satisfying

〈y − y∗, x −x0〉 ≥ 0 ∀x ∈G ∀y ∈ u(x).

Then y∗ = y0. In particular, the result is true if the inequality holds on G = O \N with � �= O

open and N Lebesgue negligible.

Proof. Set zt = x0 + t(y∗ − y0) for t > 0 small. It is possible that zt ∉ G ; but Lemma 2.9.9
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2.9. Stability of solutions under narrow convergence

guarantees existence of xt ∈G with ‖xt − zt‖/t → 0. By Proposition 2.9.8 u(xt ) is nonempty for

t small enough. For yt ∈ u(xt ),

0 ≤ 〈
yt − y∗, xt −x0

〉= 〈
yt − y∗, xt − zt

〉+〈
yt − y∗, zt −x0

〉
= 〈

yt − y∗, xt − zt
〉+ t

〈
yt − y0, y∗ − y0

〉− t‖y∗ − y0‖2.

It now follows from the Cauchy–Schwarz inequality that

‖y∗ − y0‖2 ≤ ‖yt − y0‖‖y∗ − y0‖+ t−1‖xt − zt‖
(‖yt − y0‖+‖y∗ − y0‖

)
.

As t ↘ 0 the right-hand side vanishes, since yt → y0 (Proposition 2.9.8) and ‖xt − zt‖/t → 0. It

follows that y∗ = y0.

These continuity properties cannot be of much use unless u(x) is a singleton for reasonably

many values of x. Fortunately, this is indeed the case: the set of points x such that u(x) contains

more than one element has Lebesgue measure 0 (see Alberti & Ambrosio [3, Remark 2.3] for a

stronger result). Another issue is that u may be empty, and convexity comes into play here

again. Let domu = {x : u(x) �= �}. Then there exists a convex closed set K such that

intK ⊆ domu ⊆ K .

([3, Corollary 1.3(2)]). Although domu itself may fail to be convex, it is almost convex in

the above sense. By convexity, K \ intK has Lebesgue measure 0 (see the discussion after

Theorem 2.5.1) and so the set of points in K where u is not a singleton,

{x ∈ K : u(x) =�}∪ {x ∈ K : u(x) contains more than one point},

has Lebesgue measure 0, and u(x) is empty for all x ∉ K . (It is in fact not difficult to show that

if x ∈ ∂K , then u(x) cannot be a singleton, by the Hahn–Banach theorem.)

With this background on monotone functions at our disposal, we are now ready to state the

stability result for the optimal maps. The following assumptions will be made unless stated

otherwise.

Assumptions 1. Let μn ,μ,νn ,ν ∈ P (Rd ) with optimal couplings (with respect to quadratic cost)

πn ∈Π(μn ,νn), π ∈Π(μ,ν) and convex potentials φn and φ respectively such that

• (convergence) μn →μ and νn → ν narrowly;

• (finiteness) the optimal couplings πn ∈Π(μn ,νn) satisfy

limsup
n→∞

∫
X 2

1

2
‖x − y‖2 dπn(x, y) <∞;

• (unique limit) the optimal π ∈Π(μ,ν) is unique.
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Chapter 2. Optimal transportation

We further denote the subgradients ∂φn and ∂φ by un and u respectively.

These assumptions imply that π has a finite total cost. This can be shown by the liminf

argument in the proof of Theorem 2.9.2 but also from the uniqueness of π. As a corollary

of the uniqueness of π, it follows that πn → π narrowly; notice that this holds even if πn is

not unique for any n. We will now translate this narrow convergence to convergence of the

maximal monotone maps un to u, in the following form.

Proposition 2.9.11 (uniform convergence of optimal maps). Let Assumptions 1 hold true and

denote E = suppμ and E den the set of its Lebesgue points.

Let Ω be a compact subset of E den on which u is univalued (i.e. u(x) is a singleton for all x ∈Ω).

Then un converges to u uniformly on Ω: un(x) is nonempty for all x ∈Ω and all n > NΩ, and

sup
x∈Ω

sup
y∈un (x)

‖y −u(x)‖→ 0, n →∞.

In particular, if u is univalued throughout int(E) (so that φ ∈C 1 there), then uniform conver-

gence holds for any compact Ω⊂ int(E).

Corollary 2.9.12 (pointwise convergence μ-almost surely). If in addition μ is absolutely con-

tinuous then un(x) → u(x) μ-almost surely.

Proof. We first claim that E ⊆ domu. Indeed, for any x ∈ E and any ε > 0, the ball B =
Bε(x) has positive measure. Consequently, u cannot be empty on the entire ball, because

otherwise μ(B) = π(B ×Rd ) would be 0. Since domu is almost convex (see the discussion

before Assumptions 1), this implies that actually int(convE) ⊆ domu.

The rest is now easy: the set of points x ∈ E for which Ω= {x} fails to satisfy the conditions of

Proposition 2.9.11 is included in

(E \ E den)∪ {x ∈ int(conv(E)) : u(x) contains more than one point},

which is μ-negligible because μ is absolutely continuous and both sets have Lebesgue measure

0.

The remainder of this subsection is devoted to the proof of Proposition 2.9.11. This will be

shown in two separate steps:

• if a sequence in the graph of un converges, then the limit is in the graph of u (Lemma 2.9.14);

• sequences in the graph of un are bounded if the domain is bounded (Proposition 2.9.16).

Each step will in turn be proven using an intermediate lemma.

40



2.9. Stability of solutions under narrow convergence

Lemma 2.9.13 (points in the limit graph are limit points). Let x0 ∈ suppμ be such that u(x0) =
{y0} is a singleton. Then there exists a sequence (xn , yn) ∈ un that converges to (x0, y0).

Proof. This is essentially the same argument as used in the proof of Theorem 2.9.2. Invoking

the continuity of u at x0 (Proposition 2.9.8), for any k there exists δ = δk > 0 such that if

x ∈ Bδ(x0) = {x : ‖x − x0‖ < δ} then u(x) is nonempty and if y ∈ u(x), then ‖y − y0‖ < 1/k.

Assume without loss of generality that δk → 0, and set Bk = Bδk (x0), Vk = B1/k (y0). Then

u(Bk ) ⊆ Vk , so

π(Bk ×Vk ) =π{(x, y) : x ∈ Bk , y ∈ u(x)∩Vk } =π{(x, y) : x ∈ Bk , y ∈ u(x)} =μ(Bk ) > 0,

because Bk is a neighbourhood of x0 ∈ supp(μ). Since Bk ×Vk is open, we have by the portman-

teau lemma 2.9.1 that πn(Bk ×Vk ) > 0 for n ≥ Nk . But πn is concentrated on the graph of un ,

so when n ≥ Nk there exist (xn , yn) ∈ un ∩ [Bk ×Vk ], so that ‖xn −x0‖ < δk and ‖yn − y0‖ < 1/k.

This completes the proof.

Lemma 2.9.14 (limit points are in the limit graph). Let x0 be a Lebesgue point of E = suppμ

(for example x0 ∈ intE) such that u(x0) = {y0} is a singleton. If a subsequence (xnk , ynk ) ∈ unk

converges to (x0, y∗), then y∗ = y0.

Proof. The set N ⊆ Rd of points where u contains more than one element has Lebesgue

measure zero. Moreover, there exists a neighbourhood V of x0 on which u is nonempty

(Proposition 2.9.8). It follows that x0 is a Lebesgue point of G = (E ∩V ) \N , and u(x) has one

and only element for every x ∈G . Let us fix (x, y) ∈ u with x ∈G . Application of Lemma 2.9.13

to the sequence {unk }∞k=1 at x yields sequences x ′
nk

→ x and y ′
nk

→ y with (x ′
nk

, y ′
nk

) ∈ unk .

Consequently,〈
y − y∗, x −x0

〉= lim
l→∞

〈
y ′

nk
− ynk , x ′

nk
−xnk

〉≥ 0, ∀x ∈G ∀y ∈ u(x).

It now follows from Lemma 2.9.10 that y∗ = y0.

We now know that if un(x) converges and u(x) = {y}, then un(x) → y . It therefore suffices

to show that un(x) remains in a bounded set. To this end we shall use another result about

monotone functions: if x is in the convex hull of x1, . . . , xm , yi ∈ u(xi ), and y ∈ u(x), then ‖y‖
can be bounded in terms of ‖yi‖ and the distance of x from the boundary of conv(x1, . . . , xm).

It will be convenient to introduce the �∞ balls B∞
ε (x0) = {x : ‖x −x0‖∞ < ε} and their closures

B
∞
ε (x0), because unlike the �2 balls, �∞ balls are polytopes and equal the convex hull of their

finitely many vertices. (For that purpose, we could have also chosen �1 balls.)

We will need the following easy result about �∞ balls: let Z = {z1, . . . , zm}, m = 2d be a collection

of vectors with the following property: for each collection (e1, . . . ,ed ) ∈ {±1}d there exists a

vector y ∈ Z such that |y j | > 1 and y j e j > 0 for all j = 1, . . . ,d . Then convZ ⊇ B
∞
1 (0). In
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geometric terms this means that if we have 2d points that are "more extreme“ than the vertices

of the unit �∞ ball around zero, then the convex hull of these points includes this �∞ ball.

The proof of this result is a straightforward consequence of the Hahn–Banach theorem. We

show that e = (e1, . . . ,ed ) cannot be separated from Z with a hyperplane for any e j ∈ {±1}.

Indeed, let x ∈Rd \{0} be any vector and set J = { j : e j x j > 0}. Pick w, y ∈ Z such that w j e j > 0 if

and only if y j e j < 0 if and only if j ∈ J . Since |w j | > 1 and |y j | > 1 this gives x j y j < x j e j < x j w j

whenever x j �= 0 and since x �= 0,〈
x, y

〉< 〈x,e〉 < 〈x, w〉 .

Lemma 2.9.15 (continuity of convex hulls). Let Z = {zi }i∈I ⊆ Rd be an arbitrary collection

of points and let Z̃ = {z̃i }i∈I be another collection such that ‖z̃i − zi‖∞ ≤ ε for all i ∈ I . If

convZ ⊇ B∞
ρ (x0), then convZ̃ ⊇ B∞

ρ−ε(x0).

Proof. Without loss of generality ε< ρ. Fix ε< ρ′ < ρ. Each vertex of B
∞
ρ′ (x0) takes the form

y = x0 +ρ′(e1, . . . ,ed ), ed ∈ {±1},

and can be written as a (finite) convex combination y = ∑
ai zi with zi ∈ Z . If we define

ỹ =∑
ai z̃i ∈ convZ̃ , then ‖ỹ − y‖∞ ≤ ε. It follows that ỹ is “more extreme" than the vertex

x = x0 + (ρ′ −ε)(e1, . . . ,ed )

of the �∞-ball B∞
ρ′−ε(x0), in the sense that y j −x0 has a larger absolute value than x j −x0 but

the same sign for all j = 1, . . . ,d . For each of the 2d vertices we can find a corresponding ỹ ,

and consequently convZ̃ ⊇ B∞
ρ′−ε(x0) by the discussion before the lemma. Since ρ′ < ρ was

arbitrary this completes the proof.

Proposition 2.9.16 (boundedness). Let Ω⊆ int(conv(supp(μ))) be compact. Then there exist

N (Ω) and a constant R(Ω) such that for all n > N (Ω), un(x) is nonempty for all x ∈ Ω and

supx∈Ω supy∈un (x) ‖y‖ ≤ R(Ω) is bounded uniformly.

Proof. If we set E = supp(μ) and F = conv(E ), then Ω is a compact subset of the open set intF .

Consequently, there exists δ = δ(Ω) > 0 such that B
∞
3δ(Ω) ⊆ intF . We may construct a finite

collection {ω j } ⊆Ω such that the union of B∞
δ

(ω j ) includes Ω. Since each vertex of ∪ j B
∞
3δ(ω j )

is in F , it can be written as a convex combination of elements of E . Consequently, there exists

a finite set Z = {z1, . . . , zm} ⊆ E with convZ ⊇ B∞
3δ(ω j ) for any j .

The ball Bi = B∞
δ

(zi ) is an open neighbourhood of an element of suppμ and therefore has

positive measure, say 2εi > 0. By the portmanteau lemma 2.9.1 μn(Bi ) > εi for all n large and

all i = 1, . . . ,m. We can set ε= mini εi > 0 and invoke the tightness of {νn} to find a compact set

Kε with infn νn(Kε) > 1−ε. A simple calculation shows that this construction guarantees the
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2.9. Stability of solutions under narrow convergence

existence of xni ∈ Bi and yni ∈ un(xni ) such that yni ∈ Kε. Setting

Z̃ = Xn = {xn1, . . . , xnm},

noticing that by definition ‖xni − zi‖∞ ≤ δ and applying Lemma 2.9.15, we obtain

convXn = conv({xn1, . . . , xnm}) ⊇ B∞
3δ−δ(ω j ) = B∞

2δ(ω j ) for all j .

Recall that B∞
δ

(ω j ) cover Ω. From this it follows that convXn ⊇ B∞
δ

(Ω) ⊇ Bδ(Ω) (since ‖x‖ ≥
‖x‖∞, �2-balls are always included in �∞-balls of the same radius).

We are now in a position to employ the property of monotonicity mentioned above. From [3,

Lemma 1.2(4)] we conclude that for any ω ∈Ω and any y0 ∈ un(ω),

‖y0‖ ≤ [supx,z∈Xn
‖x − z‖][maxx∈Xn infy∈un (x) ‖y‖]

d(ω,Rd \ conv(Xn))
≤ 1

δ

[
sup
k,l

‖xnk −xnl‖
][

max
i

inf
y∈un (xni )

‖y‖
]

.

To bound the infimum at the right-hand side, we can take y to be yni , which all lie in the

compact set Kε. To bound the supremum independently of n, we use the approximation

‖xnk − zk‖ ≤�
d‖xnk − zk‖∞ ≤�

dδ, so that ‖xnk −xnl‖ ≤ 2
�

dδ+‖zk − zl‖. Hence

∀n > N (δ) ∀ω ∈Ω ∀y0 ∈ un(ω) : ‖y0‖ ≤ 1

δ

(
2
�

dδ+max
k,l

‖zk − zl‖
)

sup
y∈Kε

‖y‖.

Recall that δ depends only on Ω, ε and Z only on δ, and Kε only on ε, so N (δ) = N (δ(Ω)) and

the bound at the right-hand side does not depend on n.

Finally, the fact that un is not empty on Ω is a consequence of the almost convexity of domu

([3, Corollary 1.3(2)]).

Proof of Proposition 2.9.11. After all the hard work, the proof is now straightforward.

There exists NΩ such that for all n > NΩ, un(x) is nonempty and (Proposition 2.9.16)

sup
x∈Ω

sup
y∈un (x)

‖y‖ ≤CΩ,d <∞, n > NΩ,

where CΩ,d is a constant that depends only on Ω (and the dimension d).

If uniform convergence did not hold, then one could find ε> 0 and subsequences (xnk , ynk ) ∈
unk with xnk ∈Ω and

‖ynk −u(xnk )‖ > ε, k = 1,2, . . . .

Since the xnk ’s are bounded (in Ω) and the ynk ’s are bounded too, they have subsequences

that converge to x ∈Ω and some y , that must equal u(x) by Lemma 2.9.14. Using again the
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Chapter 2. Optimal transportation

continuity of u at x (Proposition 2.9.8), we get (up to subsequences)

ε< ‖ynk −u(xnk )‖ ≤ ‖ynk − y‖+‖y −u(x)‖+‖u(x)−u(xnk )‖→ 0, k →∞,

a contradiction.
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3 The Wasserstein space

The Kantorovich problem described in the previous chapter gives rise to a metric structure,

the Wasserstein distance, in the space of probability measure P (X ) on a space X . The re-

sulting metric space, a subspace of P (X ), is commonly known as the Wasserstein space W

(although, as Villani [89, bibliographical notes of Chapter 6] puts it, “this terminology is very

questionable"; see also Bobkov & Ledoux [18, p. 4]). In the next chapter we shall see that this

metric is in a sense canonical when dealing with warpings, that is, deformations of the space

X (for example in Theorem 4.2.4). In this chapter we give the fundamental properties of the

Wasserstein space. After some basic definitions, we describe the topological properties of that

space in Section 3.2. It is then explained in Section 3.3 how W can be endowed with a sort

of infinite-dimensional Riemannian structure. As we will consider random measures in this

Wasserstein space, it will be necessary to deal with measurability issues; this is the purpose

of the somewhat technical Section 3.4. Finally, the important concept of Fréchet mean is

discussed in detail in Section 3.5 in the context of the Wasserstein space, both at the empirical

and the population levels.

3.1 Definition, notation and basic properties

Let X be a separable Banach space. The p-Wasserstein space on X is defined and denoted

by

Wp (X ) =
{
μ ∈ P (X ) :

∫
X

‖x‖p dμ(x) <∞
}

, p ≥ 1.

We will sometimes abbreviate and write simply Wp instead of Wp (X ).

Recall that if μ,ν ∈ P (X ), then Π(μ,ν) is defined to be the set of measures π ∈ P (X 2) having

μ and ν as marginals in the sense of (2.2). The p-Wasserstein distance between μ and ν is

defined as the minimal total transportation cost between μ and ν in the Kantorovich problem
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Chapter 3. The Wasserstein space

with respect to the cost function cp (x, y) = ‖x − y‖p :

Wp (μ,ν) =
(

inf
π∈Π(μ,ν)

Cp (π)

)1/p

=
(

inf
π∈Π(μ,ν)

∫
X×X

‖x1 −x2‖p dπ(x1, x2)

)1/p

.

The Wasserstein distance between μ and ν is finite when both measures are in Wp (X ), because

‖x1 −x2‖p ≤ 2p‖x1‖p +2p‖x2‖p .

Thus Wp is finite on [Wp (X )]2; it is clearly nonnegative and symmetric and it is easy to see that

Wp (μ,ν) = 0 if and only if μ= ν. A proof that Wp is a metric (satisfies the triangle inequality)

on Wp can be found in Villani [88, Chapter 7].

The aforementioned setting is by no means the most general one can consider. Firstly, one

can define Wp and Wp for 0 < p < 1 by removing the power 1/p from the infimum and the

limit case p = 0 yields the total variation distance. Another limit case can be defined as

W∞(μ,ν) = limp→∞ Wp (μ,ν). Moreover, Wp and Wp can be defined whenever X is a complete

and separable metric space (or even only separable; see Clément and Desch [25]): one fixes

some x0 in X and replaces ‖x‖ by d(x, x0). Although the topological properties below still hold

at that level of generality (except when p = 0 or p =∞), for the sake of simplifying the notation

we restrict the discussion to Banach spaces. It will always be assumed without explicit mention

that 1 ≤ p <∞.

The space Wp (X ) is defined as the collection of measures μ such that Wp (μ,δ0) < ∞ with

δx being a Dirac measure at x. Of course, Wp (μ,ν) can be finite even if μ,ν ∉ Wp (X ). But if

μ ∈ Wp (X ) and ν ∉ Wp (X ), then Wp (μ,ν) is always infinite. This can be seen from the triangle

inequality

∞= Wp (ν,δ0) ≤ Wp (μ,δ0)+Wp (μ,ν).

In the sequel, we shall almost exclusively deal with measures in Wp (X ).

The Wasserstein spaces are ordered in the sense that if q ≥ p, then Wq (X ) ⊆ Wp (X ). This

property extends to the distances, in the sense that

q ≥ p ≥ 1 =⇒ Wq (μ,ν) ≥ Wp (μ,ν). (3.1)

To see this, let π ∈ Π(μ,ν) be optimal with respect to q . Jensen’s inequality for the convex

function z �→ zq/p gives

W q
q (μ,ν) =

∫
X 2

‖x − y‖q dπ(x, y) ≥
(∫

X 2
‖x − y‖p dπ(x, y)

)q/p

≥ W q
p (μ,ν).

The converse of (3.1) fails to hold in general, since it is possible that Wp is finite while Wq is
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3.2. Topological properties

infinite. A converse can be established, however, if μ and ν are bounded:

q ≥ p ≥ 1, μ(K ) = ν(K ) = 1 =⇒ Wq (μ,ν) ≤ W p/q
p (μ,ν)

(
sup

x,y∈K
‖x − y‖

)1−p/q

. (3.2)

Indeed, if we denote the supremum by dK and let π be now optimal with respect to p, then

π(K ×K ) = 1 and

W q
q (μ,ν) ≤

∫
K 2

‖x − y‖q dπ(x, y) ≤ d q−p
K

∫
K 2

‖x − y‖p dπ(x, y) = d q−p
K W p

p (μ,ν).

Another useful property of the Wasserstein distance is the upper bound

Wp (t#μ,s#μ) ≤
(∫

X
‖t(x)−s(x)‖p dμ(x)

)1/p

= ‖ ‖t−s‖X ‖Lp (μ) (3.3)

for any pair of measurable functions t,s : X → X . Situations where this inequality holds as

equality and t and s are optimal maps are related to compatibility of the measures μ, ν= t#μ

and ρ = s#μ (see Subsection 3.3.2) and will be of conceptual importance in the context of

Fréchet means (see Section 3.5).

We also recall the notation BR (x0) = {x : ‖x −x0‖ < R} and B R (x0) = {x : ‖x −x0‖ ≤ R} for open

and closed balls in X .

3.2 Topological properties

3.2.1 Convergence, compact subsets

The topology of a space is determined by the collection of its closed sets. Since Wp (X ) is a

metric space, whether a set is closed or not depends on which sequences in Wp (X ) converge.

The following characterisation from Villani [88, Theorem 7.12] will be very useful.

Theorem 3.2.1 (convergence in Wasserstein space). Let μ,μn ∈Wp (X ). Then the following are

equivalent:

1. Wp (μn ,μ) → 0 as n →∞;

2. μn →μ narrowly and
∫
X ‖x‖p dμn(x) →∫

X ‖x‖p dμ(x);

3. μn →μ narrowly and

sup
n

∫
{x:‖x‖>R}

‖x‖p dμn(x) → 0, R →∞; (3.4)

4. for any C > 0 and any continuous f : X →R such that | f (x)| ≤C (1+‖x‖p ) for all x,∫
X

f (x)dμn(x) →
∫
X

f (x)dμ(x).
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Chapter 3. The Wasserstein space

Consequently, the Wasserstein topology is finer than the narrow topology induced on Wp (X )

from P (X ). Indeed, let A ⊆ Wp (X ) be narrowly closed. If μn ∈ A converge to μ in Wp (X ),

then μn → μ narrowly, so μ ∈ A . In other words, the Wasserstein topology has more closed

sets than the induced narrow topology. Moreover, each Wp (X ) is a narrowly closed subset of

P (X ) by the same arguments that lead to (2.3). In view of Theorem 3.2.1, a common strategy

to establish Wasserstein convergence is to first show tightness and obtain narrow convergence,

hence a candidate limit; and then show that the stronger Wasserstein convergence actually

holds. In some situations, the last part is automatic:

Corollary 3.2.2. Let K ⊂ X be a bounded set and suppose that μn(K ) = 1 for all n ≥ 1. Then

Wp (μn ,μ) → 0 if and only if μn →μ narrowly.

Proof. This is immediate from (3.4).

The fact that convergence in Wp is stronger than narrow convergence is exemplified in the

following result. If μn →μ and νn → ν in Wp (X ), then it obvious that Wp (μn ,νn) → Wp (μ,ν).

But the convergence is only narrow, then the Wasserstein distance is still lower semicontinuous:

liminf
n→∞ Wp (μn ,νn) ≥ Wp (μ,ν). (3.5)

This follows from Theorem 2.9.2 and (2.3).

Before giving some examples it will be convenient to formulate Theorem 3.2.1 in probabilistic

terms. Let X , Xn be random elements on X with laws μ,μn ∈ Wp (X ). Assume without loss of

generality that X , Xn are defined on the same probability space (Ω,F ,P) and write Wp (Xn , X )

to denote Wp (μn ,μ). Then Wp (Xn , X ) → 0 if and only if Xn → X narrowly and E‖Xn‖p →
E‖X ‖p .

An early example of the use of Wasserstein metric in statistics is due to Bickel & Freedman

[14]. Let Xn be independent and identically distributed random variables with mean zero and

variance 1 and let Z be a standard normal random variable. Then Zn =∑n
i=1 Xi /

�
n converge

narrowly to Z by the central limit theorem. But EZ 2
n = 1 = EZ 2, so W2(Zn , Z ) → 0. Let Z ∗

n

be a bootstrapped version of Zn constructed by resampling the Xn ’s. If W2(Z ∗
n , Zn) → 0 then

W2(Z ∗
n , Z ) → 0 and in particular Z ∗

n has the same asymptotic distribution as Zn .

Another consequence of Theorem 3.2.1 is that (in presence of narrow convergence) conver-

gence of moments automatically yields convergence of smaller moments (there are, however,

more elementary ways to see this). In the previous example, for instance, one can also con-

clude that E|Zn |p → E|Z |p for any p ≤ 2 by the last condition of the theorem. If in addition

EX 4
1 <∞ then

EZ 4
n = 3− 3

n
+ EX 4

1

n
→ 3 = EZ 4
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(see Durrett [33, Theorem 2.3.5]) so W4(Zn , Z ) → 0 and all moments of order 4 or less converge.

Condition (3.4) is called uniform integrability of the function x �→ ‖x‖p with respect to the

collection (μn). Of course, it holds for a single measure μ ∈ Wp (X ) by the dominated con-

vergence theorem. This condition allows us to characterise compact sets in the Wasserstein

space. One should beware that when X is infinite dimensional, (3.4) alone is not sufficient in

order to conclude that μn has a convergent subsequence: take μn to be Dirac measures at en

with (en) an orthonormal basis of a Hilbert space X (or any sequence with ‖en‖ = 1 that has

no convergent subsequence, if X is a Banach space). The uniform integrability (3.4) must be

accompanied with narrow tightness, which is a consequence of (3.4) only when X =Rd .

Proposition 3.2.3 (compact sets in Wp ). A narrowly tight set K ⊆ Wp is Wasserstein-tight (has

a compact closure) if and only if

sup
μ∈K

∫
{x:‖x‖>R}

‖x‖p dμ(x) → 0, R →∞. (3.6)

Proof. Suppose that (3.6) holds. If μn ∈K , then there exists a measure μ0 such that μn →μ0

narrowly (up to a subsequence), and as (3.4) holds for that subsequence, it converges in the

Wasserstein space.

Conversely, if (3.6) does not hold, then we can find a sequence μn ∈ K such that for some

ε> 0, ∫
{x:‖x‖>n}

‖x‖p dμn(x) > ε, n = 1,2, . . . .

Obviously no subsequence of μn can converge in the Wasserstein space, in view of (3.4). Thus

K is not compact in Wp .

Corollary 3.2.4 (measures with common support). Let K ⊆X be a compact set. Then

K =Wp (K ) = {μ ∈ P (X ) : μ(K ) = 1} ⊆Wp (X )

is compact.

Proof. This is immediate, since K is narrowly tight and the supremum in (3.6) vanishes when

R is larger than the finite quantity supx∈K ‖x‖. Finally, K is closed, so K is narrowly closed,

hence Wasserstein closed, by the portmanteau lemma 2.9.1.

For future reference we give another consequence of uniform integrability, called uniform

absolute continuity

∀ε ∃δ ∀n ∀A ⊆ X Borel : μn(A) ≤ δ =⇒
∫

A
‖x‖p dμn(x) < ε. (3.7)
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To show that (3.4) implies (3.7), let ε> 0, choose R = Rε > 0 such that the supremum in (3.4) is

smaller than ε/2, and set δ= ε/(2Rp ). If μn(A) ≤ δ then∫
A
‖x‖p dμn(x) ≤

∫
A∩B R (0)

‖x‖p dμn(x)+
∫

A\B R (0)
‖x‖p dμn(x) < δRp +ε/2 ≤ ε.

3.2.2 Dense subsets and completeness

If we identify a measure μ ∈Wp (X ) with a random variable X (having distribution μ), then X

has a finite p-th moment in the sense that the real-valued random variable ‖X ‖ is in Lp . In

view of that, it should not come as a surprise that Wp (X ) enjoys topological properties similar

to Lp spaces. In this subsection we give some examples of useful dense subsets of Wp (X ) and

then show that like X , it is a complete separable metric space. In the next subsection we

describe some of the negative properties that Wp (X ) has, again in similarity with Lp spaces.

We first show that Wp (X ) is separable. The core idea of the proof is the feasibility of approxi-

mating any measure with discrete measures as follows.

Let μ be a probability measure on X , and let X1, X2, . . . be a sequence of independent random

elements in X with probability distribution μ. Then the empirical measure μn is defined as

the random measure (1/n)
∑n

i=1δ{Xi }. The law of large numbers shows that for any (measur-

able) bounded or nonnegative f : X →R, almost surely∫
X

f (x)dμn(x) = 1

n

n∑
i=1

f (Xi ) → E f (X1) =
∫
X

f (x)dμ(x).

In particular when f (x) = ‖x‖p , we obtain convergence of moments of order p. Hence by

Theorem 3.2.1, if μ ∈ Wp (X ) then μn → μ in Wp (X ) if and only if μn → μ narrowly. We know

that integrals of bounded functions converge with probability one, but the null set may depend

on the chosen function and there are uncountably many such functions. When X =Rd , by

the portmanteau lemma 2.9.1 we can replace the collection Cb(X ) by indicator functions of

rectangles of the form (−∞, a1]×·· ·× (−∞, ad ] for a = (a1, . . . , ad ) ∈ Rd . It turns out that the

countable collection provided by rational vectors a suffices (see the proof of Theorem 4.4.1

where this is done in a more complicated setting). For more general spaces X , we need to

find another countable collection { f j } such that convergence of the integrals of f j for all j

suffices for narrow convergence. Such a collection exists, by using bounded Lipschitz functions

(Dudley, [31, Theorem 11.4.1]); an alternative construction can be found in Ambrosio, Gigli &

Savaré [6, Section 5.1]. Thus, we have:

Proposition 3.2.5 (empirical measures in Wp ). For any μ ∈ P (X ) and the corresponding se-

quence of empirical measures μn, Wp (μn ,μ) → 0 almost surely if and only if μ ∈Wp (X ).

Indeed, if μ ∉ Wp (X ), then Wp (μn ,μ) is infinite for all n, since μn is compactly supported,

hence in Wp (X ).
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Proposition 3.2.5 is the basis for constructing dense subsets of the Wasserstein space.

Theorem 3.2.6 (dense subsets of Wp ). The following collections of measures are dense in

Wp (X ):

1. finitely supported measures with rational weights;

2. compactly supported measures;

3. finitely supported measures with rational weights on a dense subset A ⊆ X ;

4. if X =Rd , the collection of absolutely continuous and compactly supported measures;

5. if X = Rd , the collection of absolutely continuous measures with strictly positive and

analytic densities.

In particular, Wp is separable (because X is separable and the third set is countable).

Proof. The first collection is dense by Proposition 3.2.5, and the second collection is larger

than the first. Let μ = n−1∑n
i=1δ{xi } be a finitely supported measure with rational weights

(with xi possibly not distinct) and ε> 0. Pick ai ∈ A with ‖ai −xi‖ < ε and set ν= n−1∑n
i=1δ{ai }.

Then Wp (μ,ν) ≤ ε, and so the third set is also dense. Finally, for any σ > 0 define μσ as the

convolution of μ with a uniform measure on a ball of size σ, i.e. with density

g (x) = σ−d

cd

1

n

n∑
i=1

1{‖x −xi‖ ≤σ}, cd = Leb
{

x ∈Rd : ‖x‖ ≤ 1
}

.

Then μσ is absolutely continuous and compactly supported with

W
p

p (μσ,μ) ≤ σ−d

cd

1

n

n∑
i=1

∫
Bσ(xi )

‖x −xi‖p dx ≤σp .

It follows that the fourth collection is dense too. For the fifth, use the same convolution with a

Gaussian measure instead of a uniform one.

Proposition 3.2.7 (completeness). The Wasserstein space Wp (X ) is complete.

Proof. Two different proofs of this result can be found in Villani [89, Theorem 6.18] and

in Ambrosio, Gigli & Savaré [6, Proposition 7.1.5]; we sketch an alternative argument here.

Let (μn) be a Cauchy sequence in Wp (X ). It follows from (3.1) that W1(μ,ν) ≤ Wp (μ,ν) for

any μ,ν ∈ P (X ). Thus (μn) is a Cauchy sequence in W1(X ). In that space the Kantorovich–

Rubinstein theorem (2.5) states that

W1(μ,ν) = sup
‖ϕ‖Li p≤1

∣∣∣∣∫
X
ϕdμ−

∫
X
ϕdν

∣∣∣∣ , ‖ϕ‖Li p = sup
x �=y

|ϕ(x)−ϕ(y)|
‖x − y‖ .

51



Chapter 3. The Wasserstein space

In particular W1(μ,ν) is larger than the bounded Lipschitz norm

W1(μ,ν) ≥ ‖μ−ν‖BL = sup
‖ϕ‖BL≤1

∣∣∣∣∫
X
ϕdμ−

∫
X
ϕdν

∣∣∣∣ , ‖ϕ‖BL = ‖ϕ‖Li p +‖ϕ‖∞,

which metrises narrow convergence in P (X ) [31, Theorem 11.3.3]. Thus (μn) is a Cauchy

sequence with ‖ · ‖BL . Since P (X ) is complete with this norm [31, Corollary 11.5.5], (μn)

converges narrowly to μ ∈ P (X ). If we now fix N , then the lower semicontinuity of the

Wasserstein distance (3.5) gives

W p
p (μN ,μ) ≤ liminf

k→∞
W p

p (μN ,μk ).

Since the sequence (μn) is Cauchy, the right-hand side vanishes as N →∞. Thus Wp (μN ,μ) →
0 and completeness is established.

3.2.3 Negative topological properties

In the previous subsection we have shown that Wp (X ) is separable and complete like Lp spaces.

Just like them, however, the Wasserstein space is neither locally compact nor σ-compact. For

this reason, existence proofs of Fréchet means in Wp (X ) require tools that are more specific to

this space, and do not rely upon local compactness (see Section 3.5).

Proposition 3.2.8 (Wp is not locally compact). Let μ ∈ Wp (X ) and let ε> 0. Then the Wasser-

stein ball

Bε(μ) = {ν ∈Wp (X ) : Wp (μ,ν) ≤ ε}

is not compact.

Proof. This is a generalisation of Remark 7.1.9 in Ambrosio, Gigli & Savaré [6] who prove it

when μ is Dirac.

By Theorem 3.2.6 there exists a compactly supported measure ν with Wp (μ,ν) < ε/2, so that

Bε/2(ν) ⊆ Bε(μ). We can consequently assume without loss of generality that there exists a

compact K ⊂ X with μ(K ) = 1.

Pick a sequence xn ∈X of elements that has no partial limits and that are of distance at least

δ > 0 from K (i.e. such that d(xn ,K ) = infx∈K ‖x − xn‖ ≥ δ for all n, for instance ‖xn‖ → ∞),

assume without loss of generality that ε< δ and set

μn = (1−αn)μ+αnδ{xn}, αn = εp /W p
p (μ,δ{xn}).

Then μn is a probability measure because

W p
p (μ,δ{xn}) =

∫
K
‖x −xn‖p dμ(x) ≥ δp ≥ εp ,
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so αn ∈ [0,1] for all n. To bound Wp (μn ,μ) observe that we may leave the common (1−αn)

mass in place, so that

W p
p (μn ,μ) ≤αnW p

p (μ,δ{xn}) = εp =⇒ μn ∈ Bε(μ).

We need to show that no subsequence of μn can converge in the Wasserstein space. By

extracting a subsequence, we may assume that αn → α ∈ [0,1]. If (a subsequence of) μn

converges in the Wasserstein space (or even narrowly), then the limit must be (1−α)μ+αδ{x}

with x a limit of (xn). By the hypothesis on the sequence (xn), this can only happen if α= 0. To

finish the proof we only need to show that Wp (μn ,μ) is bounded away from zero.

Clearly W p
p (μn ,μ) ≥ αnd p (xn ,K ); let us show that this is bounded below. Indeed, let dK =

supx,y∈K ‖x − y‖ be the diameter of K and observe that

W p
p (μ,δ{xn}) =

∫
K
‖x −xn‖p dμ(x) ≤ [d(xn ,K )+dK ]p ≤ d p (xn ,K )

[
1+ dK

δ

]p

,

so that

αnd p (xn ,K ) = εp d p (xn ,K )

W p
p (μ,δ{xn})

≥ εpδp

(δ+dK )p > 0.

Thus α= 0 is impossible too and no subsequence of (μn) converges.

From this we deduce:

Corollary 3.2.9. The Wasserstein space Wp (X ) is not σ-compact.

Proof. If K is a compact set in Wp (X ), then its interior is empty by Proposition 3.2.8. A

countable union of compact sets has an empty interior (hence cannot equal the entire space

Wp (X )) by the Baire property, which holds on the complete metric space Wp (X ) by the Baire

category theorem (Dudley [31, Theorem 2.5.2]).

3.3 The tangent bundle

Although the Wasserstein space Wp (X ) is nonlinear in terms of measures, it is linear in terms of

maps. Indeed, if μ ∈Wp (X ) and Ti : X → X are such that ‖Ti‖ ∈ Lp (μ), then (αT1 +βT2)#μ ∈
Wp (X ) for all α,β ∈R. Later, in Section 3.4, we shall see that Wp (X ) is in fact homeomorphic to

a subset of the space of such functions. The goal of this section is to exploit the linearity of the

latter in order to define the tangent bundle of Wp . This in particular will be used for deriving

differentiability properties of the Wasserstein distance in Subsection 3.5.5. We assume here

that X is a Hilbert space and, for simplicity only, that p = 2; the results below can be extended

to any p > 1, see Ambrosio, Gigli & Savaré [6]. We recall that absolutely continuous measures
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are assumed to be so with respect to Lebesgue measure if X = Rd and otherwise refer to

Definition 2.5.5.

3.3.1 Geodesics, the log map and the exponential map in W2(X )

Let γ ∈W2(X ) be absolutely continuous and μ ∈W2(X ) arbitrary. From results in Section 2.5

we know that there exists a unique solution to the Monge–Kantorovich problem, and that

solution is given by a transport map that we denote by tμγ . Recalling that i : X → X is the

identity map, we can define a curve

γt = [
i+ t (tμγ − i)

]
#γ, t ∈ [0,1].

This curve is known as McCann’s interpolation (McCann [65, Equation 7]). As hinted in the

introduction to this section, it is constructed via classical linear interpolation of the transport

maps tμγ and the identity. Clearly γ0 = γ, γ1 =μ and from (3.3),

W2(γt ,γ) ≤
√∫

X

[
t (tμγ − i)

]2
dγ = tW2(γ,μ);

W2(γt ,μ) ≤
√∫

X

[
(1− t )(tμγ − i)

]2
dγ= (1− t )W2(γ,μ).

It follows from the triangle inequality in W2 that these inequalities must hold as equalities.

Taking this one step further, we see that

W2(γt ,γs) = (t − s)W2(γ,μ), 0 ≤ s ≤ t ≤ 1.

In other words, McCann’s interpolation is a constant-speed geodesic in W2(X ).

In view of this, it seems reasonable to define the tangent space of W2(X ) at μ as (Ambrosio,

Gigli & Savaré [6, Definition 8.5.1])

Tanμ = {t (t− i) : t uniquely optimal between μ and t#μ; t > 0}
L2(μ)

.

Since t is uniquely optimal, t#μ ∈ W2(X ) as well and x �→ ‖t(x)‖ is in L2(μ), so Tanμ ⊆ L2(μ).

(Strictly speaking, Tanμ is a subset of the space of functions f : X → X such that ‖ f ‖ ∈ L2(μ)

rather than L2(μ) itself, as in Definition 3.4.2, but we will write L2 for simplicity.)

Since optimality of t is independent of μ, the only part of this definition that depends on μ is

the closure operation. Although not obvious from the definition, this is a linear space.1

1There is an equivalent definition in terms of gradients, in which linearity is clear, see [6, Definition 8.4.1]:

when X =Rd , it is Tanμ = {∇ f : f ∈C∞
c (Rd )}

L2(μ)
(compactly supported C∞ functions). When X is a separable

Hilbert space, one takes C∞
c functions that depend on finitely many coordinates, called cylindrical functions [6,

Definition 5.1.11]. The two definitions of the tangent space coincide by [6, Theorem 8.5.1].)
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Since γ is absolutely continuous, the exponential map at γ

expγ : Tanγ → W2 expγ(t (t− i)) = expγ([tt+ (1− t )i]− i) = [tt+ (1− t )i]#γ (t ∈R)

is surjective, as can be seen from its right inverse, the log map

logγ : W2 → Tanγ logγ(μ) = tμγ − i,

defined throughout W2. Thus

expγ(logγ(μ)) =μ, μ ∈W2, and logγ(expγ(t (t− i))) = t (t− i) (t ∈ [0,1]),

because convex combinations of optimal maps are optimal maps as well. In particular, Mc-

Cann’s interpolant
[
i+ t (tμγ − i)

]
#γ is mapped bijectively to the line segment t(tμγ − i) ∈ Tanγ

through the log map.

3.3.2 Curvature and compatibility of measures

Let γ,μ,ν ∈W2(X ) be absolutely continuous measures. Then by (3.3)

W 2
2 (μ,ν) ≤

∫
X

‖tμγ(x)− tνγ(x)‖2 dγ(x) = ‖ logγ(μ)− logγ(ν)‖2.

In other words, the distance between μ and ν is smaller in W2(X ) then the distance between

the corresponding vectors logγ(μ) and logγ(ν) in the tangent space Tanγ. In the terminology

of differential geometry, this means that the Wasserstein space has nonnegative sectional

curvature at any absolutely continuous γ.

It is instructive to see when equality holds. Clearly tγν = (tνγ)−1, so a change of variables gives

W 2
2 (μ,ν) ≤

∫
X

‖tμγ(tγν(x))−x‖2 dν(x).

Since the map tμγ ◦ tγν pushes forward ν to μ, equality holds if and only if tμγ ◦ tγν = tμν . This

motivates the following definition.

Definition 3.3.1 (compatible measures). A collection of absolutely continuous measures C ⊆
W2(X ) is compatible if for all γ,μ,ν ∈C , we have tμγ ◦ tγν = tμν (in L2(ν)).

It appears that this notion was first introduced by Boissard, Le Gouic & Loubes [20] under the

label of admissible optimal maps by defining families of gradients of convex functions (Ti )

such that T −1
j ◦Ti is a gradient of a convex function for any i and j . For (any) fixed measure

γ ∈C , compatibility of C is then equivalent to admissibility of the collection of maps {tμγ}μ∈C .

Remark 3. The absolute continuity is not the important issue in the definition and was in-

troduced in order to guarantee that tμγ exist and be unique for all γ,ν ∈ C . The definition of
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compatibility is valid as long as this is the case, which could very well happen if all the measures

in C are uniform discrete measures on the same number of points.

A collection of two (absolutely continuous) measures is always compatible. More interestingly,

if X =R, then the entire collection of absolutely continuous (or even just continuous) mea-

sures is compatible. This is because of the simple geometry of convex functions in R: gradients

of convex functions are nondecreasing, and this property is stable under composition. In

a more probabilistic way of thinking, one can always push-forward μ to ν via the uniform

distribution Leb|[0,1] (see Section 2.6). Letting F−1
μ and F−1

ν denote the quantile functions, we

have seen that

W2(μ,ν) = ‖F −1
μ −F−1

ν ‖L2(0,1).

(As a matter of fact, in this specific case, the equality holds for all p ≥ 1 and not only for

p = 2.) In other words, μ �→ F−1
μ is an isometry from W2(R) to the subset of L2(0,1) formed

by (equivalence classes of) left-continuous nondecreasing functions on (0,1). Since this is a

convex subset of a Hilbert space, this property provides a very simple way to evaluate Fréchet

means in W2(R) (see Section 3.5). If γ= Leb|[0,1], then F−1
μ = tμγ for all μ, so we can write the

above equality as

W 2
2 (μ,ν) = ‖F−1

μ −F−1
ν ‖L2(0,1) = ‖ logγ(μ)− logγ(ν)‖2,

so that if X =R, the Wasserstein space is essentially flat (has zero sectional curvature).

The importance of compatibility can be seen as mimicking the simple one-dimensional case

in terms of a Hilbert space embedding. Let C ⊆ W2(X ) be compatible and fix γ ∈C . Then for

all μ,ν ∈C

W 2
2 (μ,ν) =

∫
X

‖tμγ(x)− tνγ(x)‖2 dγ(x) = ‖ logγ(μ)− logγ(ν)‖2
L2(γ).

Consequently, once again, μ �→ tμγ is an isometric embedding of C into L2(γ). Generalising the

one-dimensional case, we shall see that this allows for easy calculations of Fréchet means by

means of averaging transport maps (Theorem 3.5.21).

Example: Gaussian compatible measures. The Gaussian case presented in Section 2.7 is helpful

in shedding light on the structure imposed by the compatibility condition. Let γ ∈W2(Rd ) be a

standard Gaussian distribution with identity covariance matrix. Let Σμ denote the covariance

matrix of a measure μ ∈W2(Rd ). When μ and ν are centred nondegenerate Gaussian measures,

tμγ =Σ1/2
μ ; tνγ =Σ1/2

ν ; tνμ =Σ−1/2
μ [Σ1/2

μ ΣνΣ
1/2
μ ]1/2Σ−1/2

μ ,

so that γ,μ and ν are compatible if and only if

tνμ = tνγ ◦ tγμ =Σ1/2
ν Σ−1/2

μ .
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Since the matrix on the left-hand side must be symmetric, it must necessarily be that Σ1/2
ν

and Σ−1/2
μ commute (if A and B are symmetric, then AB is symmetric if and only if AB = B A),

or equivalently, if and only if Σν and Σμ commute. We see that a collection C of Gaussian

measures on Rd that includes the standard Gaussian distribution is compatible if and only if

all the covariance matrices of the measures in C are simultaneously diagonalisable. In other

words, there exists an orthogonal matrix U such that Dμ =UΣμU t is diagonal for all μ ∈C . In

that case formula (2.6)

W2(μ,ν) = tr[Σμ+Σν−2(Σ1/2
μ ΣνΣ

1/2
μ )1/2] = tr[Σμ+Σν−2Σ1/2

μ Σ1/2
ν ]

simplifies to

W2(μ,ν) = tr[Dμ+Dν−2D1/2
μ D1/2

ν ] =
d∑

i=1
(αi −βi )2, αi = [Dμ]i i ; βi = [Dν]i i ,

and identifying the (nonnegative) number a ∈R with the map x �→ ax on R, the optimal maps

take the “orthogonal separable" form

tνμ =Σ1/2
ν Σ−1/2

μ =U D1/2
ν D−1/2

μ U t =U ◦
(√

β1/α1, . . . ,
√
βd /αd

)
◦U t .

In other words, up to an orthogonal change of coordinates, the optimal maps take the form of

d nondecreasing real-valued functions. This is yet another crystallisation the one-dimension-

like structure of compatible measures.

With the intuition of the Gaussian case at our disposal, we can discuss a more general case.

Suppose that the optimal maps are continuously differentiable. Then differentiating the

equation tνμ = tνγ ◦ tγμ gives

∇tνμ(x) =∇tνγ(tγμ(x))∇tγμ(x).

Since optimal maps are gradients of convex functions, their derivatives must be symmetric

and positive semidefinite matrices. A product of such matrices stays symmetric if and only if

they commute, so in this differentiable setting, compatibility is equivalent to commutativity

of the matrices ∇tνγ(tγμ(x)) and ∇tγμ(x) for μ-almost all x. In the Gaussian case, the optimal

maps are linear functions, so, of course, have constant derivatives and x does not appear in

the matrices.

Boissard, Le Gouic & Loubes [20] give some examples of compatible measures in terms of the

optimal maps. Let γ ∈ W2(Rd ) be a fixed measure and define C = t#γ with t belonging to one

of the following families. The first imposes the one-dimensional structure by varying only the

behaviour of the norm of x, while the second allows for separation of variables that splits the

d-dimensional problem into d one-dimensional ones.

Radial transformations. Consider the collection of functions t : Rd → Rd of the form t(x) =
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xG(‖x‖) with G : R+ →R differentiable. Then a straightforward calculation shows that

∇t(x) =G(‖x‖)I + [G ′(‖x‖)/‖x‖] xxt .

Since both I and xxt are positive semidefinite, the above matrix is so if both G and G ′ are non-

negative. If s(x) = xH (‖x‖) is a function of the same form, then s(t(x)) = xG(‖x‖)H (‖x‖G(‖x‖))

which belongs to that family of functions (since G is nonnegative). Clearly

∇s(t(x)) = H
[‖x‖G(‖x‖)

]
I +

[
G(‖x‖)H ′(‖x‖G(‖x‖))/‖x‖

]
xxt

commutes with ∇t(x), since both matrices are of the form aI +bxxt with a,b scalars (that

depend on x). In order to be able to change the base measure γ we need to check that the

inverses belong to the family. But if y = t(x), then x = ay for some scalar a that solves the

equation

aG(a‖y‖) = 1.

Such a is guaranteed to be unique if a �→ aG(a) is strictly increasing and it will exist (for y in

the range of t) if it is continuous. As a matter of fact, since the eigenvalues of ∇t(x) are G(a)

and

G(a)+G ′(a)a = (aG(a))′, a = ‖x‖,

the condition that a �→ aG(a) is strictly increasing is sufficient (this is weaker than G itself

increasing). Finally, differentiability of G is not required, so it is enough if G is continuous and

aG(a) is strictly increasing.

Separable variables. Consider the collection of functions t : Rd →Rd of the form

t(x1, . . . , xd ) = (T1(x1), . . . ,Td (xd )), Ti : R→R, (3.8)

with Ti continuous and strictly increasing. This is a generalisation of the compatible Gaussian

case discussed above in which all the Ti ’s were linear. Here it is obvious that elements in this

family are optimal maps and that the family is closed under inverses and composition, and

compatibility follows.

As observed by Zemel & Panaretos [94], this family is characterised by measures having a

common dependence structure. More precisely, we say that C : [0,1]d → [0,1] is a copula if C

is (the restriction of) a distribution function of a random vector having uniform margins. In

other words, if there is a random vector V = (V1, . . . ,Vd ) with P(Vi ≤ a) = a for all a ∈ [0,1] and

all j = 1, . . . ,d , and

P(V1 ≤ v1, . . . ,Vd ≤ vd ) =C (v1, . . . , vd ), ui ∈ [0,1].

Nelsen [68] provides an overview on copulae. To any d-dimensional probability measure μ

58



3.3. The tangent bundle

one can assign a copula C =Cμ in terms of the distribution function G of μ and its marginals

G j as

G(a1, . . . , ad ) =μ((−∞, a1]×·· ·× (−∞, ad ]) =C (G1(a1), . . . ,Gd (ad )).

If each G j is surjective on (0,1), which is equivalent to it being continuous, then this equation

defines C uniquely on (0,1)d , and consequently on [0,1]d . If some marginal G j is not continu-

ous, then uniqueness is lost, but C still exists [68, Chapter 2]. The connection of copulae to

compatibility becomes clear in the following lemma:

Lemma 3.3.2 (compatibility and copulae). The copulae associated with absolutely continuous

measures μ,ν ∈W2(Rd ) are equal if and only if tνμ takes the separable form (3.8).

Proof. Since G j is continuous, classical arguments on quantile functions yield G j (G−1
j (v)) = v

for all v ∈ (0,1), and the same holds for F j . If μ and ν have the same copula then

G(G−1
1 (v1), . . . ,G−1

d (vd )) =C (v1, . . . , vd ) = F (F−1
1 (v1), . . . ,F−1

d (vd )).

If we now change variables and set v j = F (x j ), then F (x1, . . . , xd ) =G(G−1
1 (F1(x1)), . . . ,G−1

d (Fd ((xd )))

for all x j in the range of F−1
j . Defining now T j =G−1

j ◦F j , it follows that ν= (T1, . . . ,Td )#μ, and

this map is optimal, hence equals tνμ, because the T j ’s are nondecreasing.

Conversely, tνμ of the form (3.8) ensures that T j is nondecreasing, since optimality will be vio-

lated otherwise. The push forward constraint of tνμ means that T j must push the j -th marginal

of μ to that of ν; as we have seen in Section 2.6, this entails T j =G−1
j ◦F j . Consequently for all

v j ∈ (0,1),

Cν(v1, . . . , vd ) =G(G−1
1 (v1), . . . ,G−1

d (vd )) = F (F−1
1 (v1), . . . ,F−1

d (vd )) =Cμ(v1, . . . , vd ).

Composition with linear functions. If φ : Rd → R is convex with gradient t and A is a d ×d

matrix, then the gradient of the convex function x �→φ(Ax) at x is tA = At t(Ax). Suppose ψ is

another convex function with gradient s and that compatibility holds, i.e. ∇s(t(x)) commutes

with ∇t(x) for all x. Then in order for

∇sA(tA(x)) = At∇s(A At t(Ax))A and ∇tA(x) = At∇t(Ax)A

to commute, it suffices that A At = I , i.e., that A be orthogonal. Consequently, if {t#μ}t∈T are

compatible, then so are {tU #μ}t∈T for any orthogonal matrix U .
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3.4 Random measures in the Wasserstein space

Let μ be a fixed absolutely continuous probability measure in W2(X ). If Λ ∈W2(X ) is another

probability measure, then the transport map tΛμ as well the convex potential are functions of

Λ. If Λ is now random, then we would like to be able to make probability statements about

them. To this end it needs to be shown that tΛμ and the convex potential are measurable

functions of Λ. The goal of this section is to develop a rigorous mathematical framework

that justifies such probability statements. We show that all the relevant quantities are indeed

measurable, and in particular establish the Fubini-type results in Propositions 3.4.8 and 3.4.13.

The less-technically inclined reader may consider skipping this section at first reading.

Here is an example of a measurability result (Villani [89, Corollary 5.22]). Recall that P (X ) is the

space of Borel probability measures on X , endowed with the topology of narrow convergence

that makes it a metric space. Let X be a complete separable metric space and c : X 2 → R+
a continuous cost function. Let (Ω,F ,P) be a probability space and Λ,κ : Ω → P (X ) be

measurable maps. Then there exists a measurable selection of optimal transference plans.

That is, a measurable π : Ω→ P (X 2) such that π(ω) ∈Π(Λ(ω),κ(ω)) is optimal for all ω ∈Ω.

Although this result is very general, it only provides information about π. If π is induced from

a map T , it is not obvious how to construct T from π in a measurable way; we will therefore

follow a different path. In order to have a (almost) self-contained exposition, we work in a

somewhat simplified setting that nevertheless suffices for the sequel. For instance, rather than

the narrow topology, we shall assume that the random measures are measurable with respect

to the Wasserstein topology. Since the latter is finer (has more closed sets), this assumption is

more restrictive. At least in the Euclidean case X = Rd , more general measurability results

in the flavour of this section can be found in Fontbona, Guérin & Méléard [35]. On the other

hand, we will not need to appeal to abstract measurable selection theorems as in [35, 89].

3.4.1 Measurability of measures and of optimal maps

Let X be a separable Banach space. (Most of the results below hold for any complete sep-

arable metric space but we will avoid this generality for brevity and simpler notation). The

Wasserstein space Wp (X ) is a metric space for any p ≥ 1. We can thus define:

Definition 3.4.1 (random measure). A random measure Λ is any measurable map from a

probability space (Ω,F ,P) to Wp (X ), endowed with its Borel σ-algebra.

In what follows, whenever we call something random, we mean that it is measurable as a map

from some generic unspecified probability space.

Optimal maps are functions from X to itself. In order to define random optimal maps, we

need to define a topology and a σ-algebra on the space of such functions.

Definition 3.4.2 (the space Lp (μ)). Let X be a Banach space and μ a Borel measure on X .
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Then the space Lp (μ) is the space of measurable functions f : X → X such that

‖ f ‖Lp (μ) =
(∫

X
‖ f (x)‖p

X
dμ(x)

)1/p

<∞.

When X is separable, Lp (μ) is an example of a Bochner space, but we will not use this

terminology.

It follows from the definition that ‖ f ‖Lp (μ) is the Lp norm of the map x �→ ‖ f (x)‖X from X to

R:

‖ f ‖Lp (μ) = ‖ ‖ f ‖X ‖Lp (μ).

As usual we identify functions that equal almost everywhere. Clearly, Lp (μ) is a normed vector

space. It enjoys another property shared by Lp spaces — completeness:

Theorem 3.4.3 (Riesz–Fischer). The space Lp (μ) is a Banach space.

Proof. We repeat the proof of the Riesz–Fischer theorem of completeness of Lp spaces. Let

fn be a Cauchy sequence in Lp (μ). For each k let nk be such that ‖ fn − fm‖Lp (μ) < 1/k2 if

m,n ≥ nk . Define f : X → X and g : X →R∪ {∞} by

f = f1 +
∞∑

k=1
fnk+1 − fnk , g (x) = ‖ f1(x)‖X +

∞∑
k=1

‖ fnk+1 (x)− fnk (x)‖X .

Then ‖ f (x)‖X ≤ g (x) for all x ∈X and

‖ f ‖Lp (μ) ≤ ‖g‖Lp (μ) ≤ ‖ f1‖Lp (μ) +
∞∑

k=1

1

k2 <∞.

This means that for μ-almost every x, g (x) <∞. Since X is complete, at each such point f (x)

is defined and belongs to X . Clearly ‖ f (x)− fnk (x)‖X ≤ g (x) and fnk (x) → f (x) as k → ∞,

μ-almost surely. By the dominated convergence theorem fnk → f in Lp (μ), and since { fn} is

Cauchy it follows that fn → f .

Random maps lead naturally to random measures:

Lemma 3.4.4 (push-forward with random maps). Let μ ∈Wp (X ) and let t be a random map in

Lp (μ). Then Λ= t#μ is a continuous mapping from Lp (μ) to Wp (X ), hence a random measure.

Proof. That Λ takes values in Wp follows from a change of variables∫
X

‖x‖p dΛ(x) =
∫
X

‖t(x)‖p dμ(x) = ‖t‖Lp (μ) <∞.
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Since Wp (t#μ,s#μ) ≤ ‖ ‖t − s‖X ‖Lp (μ) = ‖t − s‖Lp (μ) (see (3.3)), Λ is a continuous (in fact,

1-Lipschitz) function of t.

Conversely, t is a continuous function of Λ:

Lemma 3.4.5 (measurability of transport maps). Let Λ be a random measure in Wp (X ) and

let μ ∈ Wp (X ) such that (i,tΛμ )#μ is the unique optimal coupling of μ and Λ. Then Λ �→ tΛμ is a

continuous mapping from Wp (X ) to Lp (μ), so tΛμ is a random element in Lp (μ). In particular,

the result holds if X is a separable Hilbert space, p > 1, and μ is absolutely continuous.

Proof. This result is more subtle than Lemma 3.4.4, since Λ �→ tΛμ is not necessarily Lipschitz.

Suppose that Λn →Λ in Wp (X ) and fix ε> 0. Define the sets

Bn = {x : ‖tΛn
μ − tΛμ‖ ≥ ε},

so that

‖tΛn
μ − tΛμ‖p

Lp (μ) =
∫
X

‖tΛn
μ − tΛμ‖p dμ≤ εp +

∫
Bn

‖tΛn
μ − tΛμ‖p dμ.

Since ‖a −b‖p ≤ 2p‖a‖p +2p‖b‖p , the last integral is no larger than

2p
∫

Bn

‖tΛn
μ ‖p dμ+2p

∫
Bn

‖tΛμ‖p dμ= 2p
∫

(tΛn
μ )−1(Bn )

‖x‖p dΛn(x)+2p
∫

(tΛμ )−1(Bn )
‖x‖p dΛ(x).

Since (Λn) and Λ are tight in the Wasserstein space, they must satisfy the absolute uniform

continuity (3.7). Let δ = δε as in (3.7). Invoking Corollary 5.23 in Villani [89], we see that

μ(Bn) < δ for all n > N = Nε. By the measure preserving property of the optimal maps, the last

two integrals are taken on sets of measures at most δ. Consequently, for all n > Nε,

‖tΛn
μ − tΛμ‖Lp (μ) ≤ εp +2p+1ε,

and this completes the proof upon letting ε→ 0.

Remark 4. If X = Rd , p = 2 and μ is absolutely continuous, we can replace Bn above by a

compact set S with μ-measure at least 1−δ, bound the integral on the complement of S as above

(without needing to appeal to [89, Corollary 5.23]), and then use Proposition 2.9.11 to bound

the integral on S.

In Proposition 5.3.6 we show under some conditions that ‖tΛμ‖L2(μ) is a continuous function of

the pair (μ,Λ).
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3.4.2 Random optimal maps and Fubini’s theorem

From now on we assume that X is a separable Hilbert space and that p = 2. The results can

most likely be generalised to all p > 1 (see Ambrosio, Gigli & Savaré [6, Section 10.2]), but we

shall not need to do this here.

In some cases (Theorem 3.5.15) we would like to apply Fubini’s theorem in the form

E

∫
X

〈
tΛθ0

− i,tθθ0
− i

〉
dθ0 =

∫
X
E
〈

tΛθ0
− i,tθθ0

− i
〉

dθ0 =
∫
X

〈
EtΛθ0

− i,tθθ0
− i

〉
dθ0.

In order for this to even make sense, we need to have a meaning for “expectation" in the

spaces L2(θ0) and L2(θ0), both of which are Banach spaces. There are several nonequivalent

definitions for integrals in such spaces (Hildebrant [47]); the one which will be the most

convenient to us is the Bochner integral.

Definition 3.4.6 (Bochner integral). Let B be a Banach space and let f be a simple random

element taking values in B:

f (ω) =
n∑

j=1
f j 1{ω ∈Ω j }, Ω j ∈F , f j ∈ B.

Then the Bochner integral (or expectation) of f is defined by

E f =
n∑

j=1
P(Ω j ) f j ∈ B.

If f is measurable and there exists a sequence fn of simple random elements such that ‖ fn− f ‖→
0 almost surely and E‖ fn − f ‖→ 0, then the Bochner integral of f is defined as the limit

E f = lim
n→∞E fn .

The space of functions for which the Bochner integral is defined is the Bochner space L1(Ω;B),

but we will use neither this terminology nor the notation. It is not difficult to see that Bochner

integrals are well-defined: the expectations do not depend on the representation of the

simple functions nor on the approximating sequence, and the limit exists in B (because it

is complete). More on Bochner integrals can be found in Hsing & Eubank [49, Section 2.6]

or Dunford, Schwartz, Bade & Bartle [32, Chapter III.6]. It turns out that separability is quite

important in this setting:

Lemma 3.4.7 (approximation of separable functions). Let f : Ω → B be measurable. Then

there exists a sequence of simple functions fn such that ‖ fn(ω)− f (ω)‖→ 0 for almost all ω if

and only if f (Ω \ N ) is separable for some N ⊆Ω of probability zero. In that case, fn can be

chosen so that ‖ fn(ω)‖ ≤ 2‖ f (ω)‖ for all ω ∈Ω.

Functions satisfying this approximation condition are sometimes called strongly measurable
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or Bochner measurable. In view of the lemma, we will call them separately valued, since this

is the condition that will need to be checked in order to define their integrals.

Proof. If f is a limit of simple functions fn , and N is the set on which fn(ω) does not converge

to f , then f (Ω\N ) is included in the closure of the union of fn(Ω\N ). This is a countable

union of finite sets; hence f (Ω\N ) is separable.

Conversely, let (b j ) be dense in f (Ω\N ). For each n, f (Ω\N ) is included in the countable

union ∪k B1/n(bk ). By the monotone convergence theorem, there exists a finite M = M(n)

such that the probability that f is in the first M balls is at least 1−1/n. If we make these balls

disjoint (C1 = B1/n(b1);Ck+1 = B1/n(bk+1) \∪k
j=1B1/n(b j )) and let

fn(ω) =
M(n)∑
k=1

bk 1{ f (ω) ∈Ck },

then fn is a simple function and P(‖ fn − f ‖ ≥ 1/n) < 1/n, so that ‖ fn − f ‖→ 0 in probability.

Consequently, there exists a subsequence fnk that converges to f almost surely on Ω \ N .

Finally, define gn(ω) = fn(ω)1{‖ fn(ω)‖ ≤ 2‖ f (ω)‖}. The sequence (gnk ) satisfies the desired

properties.

Two remarks are in order. Firstly, if B itself is separable, then f (Ω) will obviously be separable.

Secondly, the set N ′ ⊂Ω\N on which (gnk ) does not converge to f may fail to be measurable,

but must have outer probability zero (it is included in a measurable set of measure zero) [32,

Lemma III.6.9]. This can be remedied by assuming that the probability space (Ω,F ,P) is

complete. It will not, however, be necessary to do so, since this measurability issue will not

alter the Bochner expectation of f .

Proposition 3.4.8 (Fubini for optimal maps). Let Λ be a random measure in W2(X ) such

that EW2(δ0,Λ) < ∞ and let θ0,θ ∈ W2(X ) such that tΛ
θ0

and tθ
θ0

exist (and are unique) with

probability one. (For example if θ0 is absolutely continuous.) Then

E

∫
X

〈
tΛθ0

− i,tθθ0
− i

〉
dθ0 =

∫
X
E
〈

tΛθ0
− i,tθθ0

− i
〉

dθ0 =
∫
X

〈
EtΛθ0

− i,tθθ0
− i

〉
dθ0. (3.9)

Proof. First we remark that projections are continuous: if t and s are random functions in

L2(θ0), then 〈t,s〉 is a random function in L2(θ0). Thus, the integral on the left-hand side of

(3.9) is a random variable, and so the expectation is taken on R. In the middle integral, the

expectation is the Bochner expectation of the random element
〈

tΛ
θ0

− i,tθ
θ0

− i
〉

in L2(θ0). The

expectation on the right-hand side of (3.9) is the Bochner expectation of the random element

tΛ
θ0

in L2(θ0).
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Suppose initially that Λ is a simple function, that is

Λ(ω) =
n∑

j=1
λ j 1{ω ∈Ω j }, λ j ∈W2(X ); Ω=

n⋃
j=1

Ω j .

If we let α j =PΩ j , then equation (3.9) states that

n∑
j=1

α j

∫
X

〈
t
λ j

θ0
− i,tθθ0

− i
〉

dθ0 =
∫
X

n∑
j=1

α j

〈
t
λ j

θ0
− i,tθθ0

− i
〉

dθ0 =
∫
X

〈
n∑

j=1
α j t

λ j

θ0
− i,tθθ0

− i

〉
dθ0,

which is true by linearity and by finiteness of each of the summands:

∫
X

∣∣∣〈t
λ j

θ0
− i,tθθ0

− i
〉∣∣∣ dθ0 ≤

√∫
X

∥∥∥t
λ j

θ0
− i

∥∥∥2
dθ0

√∫
X

∥∥∥tθ
θ0

− i
∥∥∥2

dθ0 = W2(θ0,λ j )W2(θ0,θ) <∞.

Now suppose that Λ is measurable and EW2(Λ,δ0) <∞. Since X is separable, the Wasserstein

space W2(X ) is separable too, so Λ(Ω) is separable. But it has been shown that Λ �→ tΛ
θ0

is

continuous from W2(X ) to L2(θ0) (Lemma 3.4.5). Consequently, tΛ
θ0

(Ω) is separable, and by

Lemma 3.4.7 there exists a sequence of simple functions tn(ω) that converge to tΛ
θ0

(ω) for

almost every ω and ‖tn‖L2(θ0) ≤ 2‖tΛ
θ0
‖L2(θ0). We may assume without loss of generality that tn

are optimal maps: indeed, define the simple random measures Λn = tn#θ0. Then

‖tΛn

θ0
‖L2(θ0) = W2(Λn ,δ0) = ‖tn‖L2(θ0),

and Λn(ω) →Λ(ω) by Lemma 3.4.4, so tΛn (ω)
θ0

→ tΛ(ω)
θ0

almost surely by Lemma 3.4.5. Thus, tn

can be replaced by tΛn

θ0
.

As (3.9) has been established for Λn , it suffices to show that each expression of (3.9) equals the

limit as n →∞ of the same expression with Λ replaced by Λn .

We begin with the right-hand side. Since for all ω ∈Ω

sup
n

‖tΛn (ω)
θ0

‖L2(θ0) ≤ 2‖tΛ(ω)
θ0

‖L2(θ0) = 2W2(Λ(ω),δ0),

and the latter is integrable, it follows from the dominated convergence theorem that E‖tΛn

θ0
−

tΛ
θ0
‖L2(θ0) → 0 and the definition of the Bochner integral implies that

EtΛn

θ0
→ EtΛθ0

in L2(θ0).

Consequently

∫
X

∣∣∣〈EtΛn

θ0
−EtΛθ0

,tθθ0
− i

〉∣∣∣ dθ0 ≤
√∫

X

∥∥∥EtΛn

θ0
−EtΛ

θ0

∥∥∥2
dθ0

√∫
X

∥∥∥tθ
θ0

− i
∥∥∥2

dθ0

vanishes as n →∞, since ‖EtΛn

θ0
−EtΛ

θ0
‖L2(θ0) → 0.
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Next we deal with the middle integral of (3.9). We have by continuity of the projections that

almost surely〈
tΛn

θ0
− i,tθθ0

− i
〉
→

〈
tΛθ0

− i,tθθ0
− i

〉
in L2(θ0), n →∞,

and as before

sup
n

∥∥∥〈tΛn

θ0
,tθθ0

− i
〉∥∥∥

L2(θ)
≤ W2(θ0,θ)sup

n

∥∥∥‖tΛn

θ0
‖X

∥∥∥
L2(θ)

≤ 2W2(θ0,θ)
∥∥∥tΛθ0

∥∥∥
L2(θ0)

so again the dominated convergence theorem gives

E
∥∥∥〈tΛn

θ0
,tθθ0

− i
〉
−
〈

tΛθ0
,tθθ0

− i
〉∥∥∥

L2(θ0)
→ 0, n →∞.

Of course the same holds if we subtract the identity from tΛn

θ0
and tΛ

θ0
. The definition of the

Bochner integral means that

E
〈

tΛn

θ0
− i,tθθ0

− i
〉
→ E

〈
tΛθ0

− i,tθθ0
− i

〉
in L2(θ),

which of course implies∫
X
E
〈

tΛn

θ0
− i,tθθ0

− i
〉

dθ0 →
∫
X
E
〈

tΛθ0
− i,tθθ0

− i
〉

dθ0, n →∞.

Lastly we treat the left-hand side of (3.9). Define the random variables

Yn =
∫
X

〈
tΛn

θ0
,tθθ0

− i
〉

dθ0, Y =
∫
X

〈
tΛθ0

,tθθ0
− i

〉
dθ0.

Then again

sup
n

|Yn | ≤ 2W2(θ0,θ)
∥∥∥tΛθ0

∥∥∥
L2(θ0)

and

|Yn −Y | ≤ W2(θ0,θ)‖tΛn

θ0
− tΛθ0

‖L2(θ0) → 0, n →∞,

so the dominated convergence theorem applies and EYn → EY .

3.4.3 Measurability of the convex potentials in W2

Let λ be an absolutely continuous measure supported on a convex compact set K ⊂Rd and

let t be a random deformation of K , i.e. a random element in L2(λ) taking values in K . Then

Λ= t#λ is a random measure on K by Lemma 3.4.4. The goal of this subsection is to establish
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sufficient conditions for

Et = i =⇒ {λ} = argmin
θ∈W2(X )

EW 2
2 (θ,Λ).

That is to say, we wish to find conditions that guarantee the implication that if the mean of t is

the identity function, then λ is the Fréchet mean of the random measure Λ (see Section 3.5).

This property will allow to “retract" statistical deformation models to the nonlinear Wasserstein

space (see Subsection 4.2.2).

The idea is to use the Kantorovich duality and express the Wasserstein distance as the sum of

two integrals involving the convex potential φ (of which t is the gradient). In order to do this

we need to have φ as a measurable function of t; this is the purpose of this subsection.

Without loss of generality, suppose that K is the minimal convex compact set with λ(K ) = 1,

i.e. K = conv(suppλ). If the random map t is optimal, then it is a subgradient of a convex

function defined λ-almost everywhere, and that subgradient is nonempty for all x ∈U = intK

(see Subsection 2.9.2). In fact, t is not only well-defined, but also continuous (in the set-valued

sense) λ-almost surely. It is therefore not very restrictive to assume that t is in fact continuous

on U . In other words, t belongs to the space

Cb(U ,K ) = { f : U → K ; f continuous},

which, since K is compact, is of course a subset of

Cb(U ,X ) = { f : U → X ; f continuous and ‖ f ‖ is bounded}.

(To simplify we will henceforth write “ f is bounded" when ‖ f ‖ is a bounded function.) We

will therefore explore the properties of random elements Cb(U ,X ). For ease of reference, we

gather up the following assumptions that will be used in the sequel. The compactness can be

replaced by weaker conditions (see Remark 6) but this generalisation will not be pursued in

the thesis.

Assumptions 2. Let X be a separable Hilbert space, and suppose that:

• K ⊂X is nonempty, compact and convex;

• U ⊂X is convex, contains 0, and has a compact closure;

• λ ∈W2(X ) is a probability measure satisfying λ(U ) = 1.

If X = Rd and λ is absolutely continuous, then we can take K = conv(suppλ) and U = intK .

But if X is infinite-dimensional, then U cannot be open because open nonempty sets of X

do not have compact closures. The assumption that U contains the origin is for convenience

only, the general case being easily deduced via a translation of λ.
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Continuous functions from U to K may in general fail to have limits at the boundary of U , so

they cannot be extended to functions in Cb(U ,X ). This creates some complications, because

the space Cb(U ,X ) is not separable, unlike Cb(U ,X ). It is easy to see that f ∈Cb(U ,X ) can

be extended to a function in Cb(U ,X ) if and only if f is uniformly continuous. In any case, we

still have:

Proposition 3.4.9. The space Cb(U ,X ) endowed with the supremum norm is a Banach space.

Proof. Only completeness is not immediate from the definition, and is a straightforward

extension of Theorems 2.4.8 and 2.4.9 in Dudley [31].

Let ( fn) be a Cauchy sequence. Then for all x, ( fn(x)) is a Cauchy sequence in X so has a

limit f (x). Let ε> 0 and let Nε such that ‖ fn − fm‖∞ < ε for n,m > Nε. For each x ∈U choose

m = m(x,ε) > Nε such that ‖ f (x)− fm(x)‖X < ε. Then

‖ f (x)− fn(x)‖X ≤ ‖ f (x)− fm(x)‖X +‖ fn − fm‖∞ < 2ε, n > Nε.

Thus fn → f uniformly. Clearly f is bounded, because ‖ f ‖∞ ≤ ‖ fn− f ‖∞+‖ fn‖∞ for n = Nε+1.

To show that f is continuous at x, let n = Nε+1 and choose δ> 0 such that ‖x − y‖X < δ=⇒
‖ fn(x)− fn(y)‖X < ε. Then

‖ f (x)− f (y)‖X ≤ ‖ f (x)− fn(x)‖X +‖ fn(x)− fn(y)‖X +‖ fn(y)− f (y)‖X < 5ε,

whenever ‖x − y‖X < δ. Thus f ∈Cb(U ,X ) and the proof is complete.

Since Cb(U ,X ) is a Banach space, we can define Bochner integrals on it. Furthermore, K

is convex and closed, so Cb(U ,K ) is a convex closed subset of Cb(U ,X ). Thus, if a Bochner

integrable random element t ∈Cb(U ,X ) takes values (with probability one) in Cb(U ,K ), then

Et is also in Cb(U ,K ). Now Cb(U ,X ) is more convenient than L2(λ) because pointwise eval-

uations are well-defined. Since Cb(U ,X ) has a stronger norm than L2(λ), no measurability

issues arise:

Lemma 3.4.10 (random elements in Cb). Let t be a random element in Cb(U ,X ). Then t(x) is

a random variable for any x ∈U . In addition (the equivalence class of) t is a random element in

L2(λ) and t#λ is a random measure in W2(X ).

Proof. For all x ∈U , the evaluation ex ( f ) = f (x) is continuous from Cb(U ,X ) to X . Further-

more

‖t−s‖2
L2(λ) =

∫
U
‖t(x)−s(x)‖2

X dλ(x) ≤
∫

U
‖t−s‖2

∞ dλ(x) = ‖t−s‖2
∞,

so the identity map from Cb(U ,X ) to L2(λ) is continuous (in fact, 1-Lipschitz). The first two

statements follow as composition of measurable functions. The assertion on t#λ is a corollary

of Lemma 3.4.4.
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For t ∈Cb(U ,X ) define its “potential" function φ : U →R by the line integral

φ(x) =φt(x) =
∫1

0
〈t(sx), x〉 ds (well-defined because U is convex and contains 0)

and the Legendre transform φ∗ : K →R of φ by

φ∗(y) = sup
x∈U

〈
x, y

〉−φ(x).

Remark 5. If 0 ∉U , we fix another point x0 ∈U and define the potential as

φ(x) = 1

2
‖x0‖2 +

∫1

0
〈t(x0 + s(x −x0)), x −x0〉 ds,

and all the results still hold modulo this translation.

The following lemma collects some properties of φt and φ∗
t .

Lemma 3.4.11 (convex potentials and measurability). Let t ∈ Cb(U ,X ). Then φ is bounded.

If t is uniformly continuous, then so is φ. If t is the gradient in the Gâteaux sense of some

function, then φ is Gâteaux differentiable and ∇φ= t. Furthermore φ∗ is uniformly continuous

and bounded. Finally, when t is uniformly continuous, φ : Cb(U ,X ) → Cb(U ) = Cb(U ,R) is

Lipschitz continuous as well as φ �→ φ∗ from Cb(U ) to Cb(K ). In particular, φt and φ∗
t are

random elements in Cb(U ) and Cb(K ).

Proof. Clearly φ is bounded by supu∈U ‖t(u)‖X supx∈U ‖x‖X . If t is uniformly continuous,

then for any ε> 0 there existsδ> 0 such that if ‖x−y‖X < δ and x, y ∈U , then ‖t(x)−t(y)‖X < ε.

Since s ∈ [0,1], ‖sx − s y‖X ≤ ‖x − y‖X . Write∫1

0
〈t(sx), x〉 ds −

∫1

0

〈
t(s y), y

〉
ds =

∫1

0

〈
t(sx)− t(s y), x

〉
ds +

∫1

0

〈
t(s y), x − y

〉
ds

and notice that if ‖x − y‖X < δ, then the first integral on the right-hand side is bounded by

εsupx∈U ‖x‖X and the second by δsupv∈U ‖t(v)‖X . Both bounds vanish as ε and δ→ 0 and

are independent of x, so φ is uniformly continuous.

If t =∇ψ, then by the mean value theorem, ψ(x)−ψ(0) =φ(x), so ∇φ=∇ψ= t.

By the Cauchy–Schwarz inequality,

|φt(x)−φr(x)| ≤ ‖t−r‖∞‖x‖X ≤ ‖t−r‖∞ sup
x∈U

‖x‖X <∞,

so φ : Cb(U ,X ) → Cb(U ,R) is Lipschitz. It is also obvious that ‖φ∗
t −φ∗

r ‖∞ ≤ ‖φt −φr‖∞ and

that φ∗ is bounded on U because φ is bounded and both U and K are bounded. Uniform

continuity can be verified directly as follows. Fix δ> 0 and y, z ∈ K with ‖z − y‖ < δ. Then for

69



Chapter 3. The Wasserstein space

any ε> 0 we can pick some x ∈U such that

φ∗(z) ≤ 〈x, z〉−φ(x)+ε= 〈
x, y

〉−φ(x)+ε+〈
x, z − y

〉≤φ∗(y)+ε+δsup
x∈U

‖x‖.

Letting ε→ 0 and since the supremum is finite, we see that φ∗(z)−φ∗(y) ≤ supx∈U ‖x‖‖y − z‖;

interchanging the roles of y and z above shows that in fact |φ∗(z)−φ∗(y)| ≤ supx∈U ‖x‖‖y −z‖,

so φ∗ is even Lipschitz.

Lemma 3.4.12 (random dual integrals). Let t be a Bochner integrable random element in

Cb(U ,X ) with potential φt and its Legendre transform φ∗
t , and let Λ= t#λ. Suppose that with

probability one, t takes values in Cb(U ,K ). Then∫
X
φ∗

t (x)dΛ(x) =
∫

K
φ∗

t (x)dΛ(x)

is an integrable random variable.

Proof. Clearly Λ(K ) = 1 almost surely, hence the equality of the integrals. As it has been

established that (φ∗
t ,Λ) is measurable in the product space (Lemmas 3.4.10 and 3.4.11), it is

sufficient to show that the integral above is a continuous function of this pair. By Lemma 3.4.11

φ∗
t is a random element in Cb(K ). Now if fn → f in Cb(K ) and μn → μ narrowly (a fortiori if

μn →μ in the Wasserstein space), then∫
K

fn dμn −
∫

K
f dμ=

∫
K

( fn − f )dμn +
∫

K
f d(μn −μ) → 0,

because fn → f uniformly on K and f is continuous and bounded.

Finally, we have |φ(x)| ≤ ‖x‖supz∈U ‖t(z)‖ so ‖φ‖∞ ≤ ‖t‖∞ supx∈K ‖x‖. Thus ‖φ∗‖∞ is, by

the Cauchy–Schwarz inequality, bounded by supx∈K ‖x‖supx∈U ‖x‖+‖t‖∞ supx∈K ‖x‖. As Λ

is a probability measure, the integral is bounded by the same quantity, which has a finite

expectation because K and U are bounded and E‖t‖∞ <∞.

We are now ready to state the next Fubini result:

Proposition 3.4.13 (Fubini for convex potentials). Let t be a random map in Cb(U ,K ) that is

uniformly continuous and let φ=φt the corresponding potential. Then

Eφ(x) =
∫1

0
〈Et(sx), x〉 ds, x ∈U , and E

∫
K
φdθ =

∫
K
Eφdθ ∀θ ∈ P (K ).

Proof. Both equalities hold when t is a simple function. If t is separately valued, then there

exists a sequence tn that converge uniformly to t with probability one, and ‖tn‖∞ ≤ 2‖t‖∞, the

expectation of which is smaller than supx∈K ‖x‖ <∞. Hence Etn → Et in the Bochner sense,

70



3.4. Random measures in the Wasserstein space

which means that ‖Etn → Et‖∞ → 0 and so∫1

0
〈Etn(sx), x〉 ds →

∫1

0
〈Et(sx), x〉 ds, n →∞.

Furthermore ‖φn −φ‖∞ ≤ ‖tn − t‖∞ and ‖φn‖∞ ≤ ‖tn‖∞ supx∈U ‖x‖, which is integrable. It

follows that Eφn(x) → Eφ(x) by the dominated convergence theorem and the first equality is

proven. For the second, we see that Eφn → Eφ, that
∫
φn dθ → ∫

φdθ and the integrals with

respect to φn are bounded by the integrable quantity ‖t‖∞ supx∈K ‖x‖ as above. In the next

lemma we show that t is separately valued.

Lemma 3.4.14. The set {t ∈Cb(U ,X ) : t is uniformly continuous} is separable.

Proof. If t is uniformly continuous on U , then t can be extended to a continuous function on

the compact set U . We can therefore assume without loss of generality that U is compact.

Step 1: reduction to real-valued functions. Suppose momentarily that there exists a count-

able dense subset D of C (U ) = { f : U →R continuous}. Let (e1, . . . , ) be an orthonormal basis

of X . We claim that the countable set

D̃ =
∞⋃

n=1

{
x �→

n∑
i=1

gi (x)ei : gi ∈ D

}

is dense in Cb(U ,X ). Indeed, fix f ∈ Cb(U ,X ) and let ε> 0. Then f (U ) is a compact subset

of X . Consequently, there exists n such that f (U ) is covered by an ε-neighbourhood of the

subspace S = span(e1, . . . ,en). (This follows from total boundedness of f (U ) and Parseval’s

equality.) Then u = ProjS ◦ f is continuous and satisfies supx∈U ‖u(x)− f (x)‖X ≤ ε. Let ui (x) =
〈u(x),ei 〉, so that u(x) =∑n

i=1 ui (x)ei . For each i there exists gi ∈ D such that supx∈U |ui (x)−
gi (x)|X < ε/n. Then g̃ (x) = ∑

gi (x)ei is such that g̃ ∈ D̃ and supx ‖g̃ (x) − u(x)‖X < ε, so

‖g̃ − f ‖∞ < 2ε. Density of D̃ is thus established.

Step 2: existence of D . Let {xk } be a countable dense set of U . Define fk (x) = ‖x −xk‖ for k ≥ 1

and f0(x) ≡ 1. Then the algebra generated by { fk }∞k=0 separates points in U and contains the

constant functions, so is dense in C (U ) by the Stone–Weierstrass theorem. Notice that this

result holds whenever U is a compact metric space.

Remark 6 (beyond compactness). In view of the application we have in mind (Theorem 4.2.4),

U and K were assumed compact. This can certainly be relaxed. For instance, one can endow

the space C (K ,X ) with the metric d( f , g ) = min(1,‖ f −g‖∞) that induces the same topology as

the infinity norm, for K possibly unbounded. Further conditions will then need to be imposed,

however, in order to guarantee integrability.
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Chapter 3. The Wasserstein space

3.5 Fréchet means in W2

3.5.1 The Fréchet functional

If H is a Hilbert space (or a closed convex subspace thereof) and x1, . . . , xN ∈ H , then the

empirical mean xN = N−1∑xi minimises the sum of squared distances from the xi ’s. That is,

if we define

F (θ) =
N∑

i=1
‖θ−xi‖2, θ ∈ H ,

then θ = xN is the unique minimiser of F . This is easily seen by “opening the squares" and

writing

F (θ) = F (xN )+N‖θ−xN‖2.

This property allows one to generalise the notion of mean to non-Hilbertian spaces, such as the

Wasserstein space. The generalisation is attributed to Fréchet [36], whence the terminology.

Definition 3.5.1 (empirical Fréchet functional and mean). The Fréchet functional associated

with measures μ1, . . . ,μN ∈W2(X ) is

F : W2(X ) →R F (γ) = 1

2N

N∑
i=1

W 2
2 (γ,μi ), γ ∈W2(X ). (3.10)

A Fréchet mean of (μ1, . . . ,μN ) is a minimiser of F in W2(X ) (if it exists).

In analysis, a Fréchet mean is often called a barycentre. We stick to “Fréchet mean" that is

more popular in statistics.

The factor 1/(2N ) is of course irrelevant for the definition of Fréchet mean. It is introduced in

order to have simpler expressions for the derivatives (Theorems 3.5.13 and 3.5.15) and to be

compatible with a population version:

Definition 3.5.2 (population Fréchet mean). Let Λ be a random measure in W2(X ). The Fréchet

mean of Λ is the minimiser (if it exists and is unique) of the Fréchet functional

F (γ) = 1

2
EW 2

2 (γ,Λ), γ ∈W2(X ). (3.11)

The first reference that deals with empirical Fréchet means in W2(Rd ) is the seminal paper of

Agueh & Carlier [2]. They treat the seemingly more general weighted Fréchet functional

F (γ) = 1

2

N∑
i=1

wi W 2
2 (γ,μi ), 0 ≤ wi ,

N∑
i=1

wi = 1,

72



3.5. Fréchet means in W2

but, at least conceptually, this generality is superfluous. Indeed, if all the wi ’s are rational,

then the weighted functional can be encompassed in (3.10) by taking some of the μi ’s to be the

same. The case of irrational wi ’s is then treated with continuity arguments. Moreover, (3.11)

encapsulates (3.10) as well as the weighted version when Λ can take finitely many values. For

these reasons, we will only discuss (3.10) and its population counterpart (3.11) in the sequel.

3.5.2 The one-dimensional case

When X =R, there is a simple expression for the Fréchet mean because W2(R) can be imbed-

ded in a Hilbert space. Indeed, recall that

W2(μ,ν) = ‖F−1
μ −F−1

ν ‖L2(0,1)

(see Subsection 3.3.2 or Section 2.6). In view of that, W2(R) can be seen as the convex closed

subset of L2(0,1) formed by equivalence classes of left-continuous nondecreasing functions

on (0,1): any quantile function is left-continuous and nondecreasing, and any such function

G can be seen to be the inverse function of the distribution function, the right-continuous

inverse of G

F (x) = inf{t ∈ (0,1) : G(t ) > x} = sup{t ∈ (0,1) : G(t ) ≤ x}.

If Λ is a random measure in W2(R), then F−1
Λ can be viewed as a random element in the Hilbert

space L2(0,1). Let us assume that E‖F−1
Λ ‖2 is finite. Then the unique Fréchet mean of F−1

Λ is

EF−1
Λ (defined as a Bochner integral). If we can show that EF−1

Λ is a quantile function, it will

follow that the Fréchet mean of Λ in W2(R) is the measure λ having EF−1
Λ as a quantile function.

This is fairly obvious intuitively, and holds trivially in the empirical case (3.10); the reader not

interested in the technical details can safely skip to Theorem 3.5.3 below.

We will always take F−1
Λ as the unique left-continuous nondecreasing in the equivalence class.

It needs to be shown that EF−1
Λ is left-continuous and nondecreasing. Although F−1

Λ is an

element of L2 where pointwise evaluations are undefined, the left-continuity allows us to

define them without resorting to the construction of Section 3.4: for any t ∈ (0,1), the quantity

lim
m→∞m

∫t

t−1/m
F−1
Λ (u)du = lim

m→∞m
〈

F−1
Λ ,1[t −1/m, t ]

〉
is a random variable (measurable from (Ω,F ,P) to R), and the limit exists and equals F−1

Λ (t )

by left-continuity. Furthermore for all m,

|m 〈
F−1
Λ ,1[t −1/m, t ]

〉 | ≤ ‖F−1
Λ ‖

and this is integrable, so the dominated convergence theorem gives

EF−1
Λ (t ) = lim

m→∞mE
〈

F−1
Λ ,1[t −1/m, t ]

〉= lim
m→∞m

〈
EF−1

Λ ,1[t −1/m, t ]
〉

.

73



Chapter 3. The Wasserstein space

(The last inequality is a consequence of Fubini’s theorem in the Bochner sense, like in

Proposition 3.4.8). Using this, one can easily deduce the desired properties. If s < t , then

F−1
Λ (s) ≤ F−1

Λ (t ), so EF−1
Λ (s) ≤ EF−1

Λ (t ). This implies that the sequence is nondecreasing in m.

To prove left-continuity, fix t ∈ (0,1) and ε> 0. Pick m such that

m
∫t

t−1/m
EF−1

Λ (u)du = m
〈
EF−1

Λ ,1[t −1/m, t ]
〉≥ EF−1

Λ (t )−ε/2,

and then δ< 1/m such that

m
∫t−δ

t−1/m
EF−1

Λ (u)du ≥ m
∫t

t−1/m
EF−1

Λ (u)du −ε/2 ≥ EF−1
Λ (t )−ε,

which exists because the integral converges. If s ∈ (t −δ, t ) then using the monotonicity of

EF−1
Λ again and noticing that s −1/k > t −δ for k large, we obtain

EF−1
Λ (s) = lim

k→∞
k
∫s

s−1/k
EF−1

Λ (u)du ≥ EF−1
Λ (t −δ) ≥ m

∫t−δ

t−1/m
EF−1

Λ (u)du ≥ EF−1
Λ (t )−ε,

This proves that EF−1
Λ can be viewed as a quantile function, and we can finally conclude:

Theorem 3.5.3 (Fréchet means in W2(R)). Let Λ be a random measure in W2(R) such that

F (δ0) <∞. Then the Fréchet mean of Λ is the unique measure λ whose quantile function F−1
λ

equals EF−1
Λ .

Interestingly, no regularity is needed in order for the Fréchet mean to be unique. This is

not the case for higher dimensions, see Proposition 3.5.8 below. If there is some regularity,

then one can state Theorem 3.5.3 in terms of optimal maps, because F−1
Λ is the optimal

map from Leb|[0,1] to Λ. If γ ∈ W2(R) is any absolutely continuous (or even just continuous)

measure, then Theorem 3.5.3 can be stated as follows: the Fréchet mean of Λ is the measure

[EtΛγ ]#γ. A generalisation of this result to compatible measures (see Definition 3.3.1) is given

in Theorem 3.5.21.

3.5.3 Existence and uniqueness

Fréchet means on a general metric space M may fail to exist and even if they do, they are

not necessarily unique. Usually, existence proofs are easier: for example, since the Fréchet

functional F is continuous on M (as we show below), one often invokes local compactness of

M in order to establish existence of a minimiser. Unfortunately, a different strategy is needed

when M = W2(X ), because the Wasserstein space is not locally compact (Proposition 3.2.8).

We will only consider the space W2(X ); results concerning Wp (X ) for other values of p can

be found in Le Gouic & Loubes [42]. The first thing to notice is that F is indeed continuous

(this is clear for the empirical version). This property has nothing to do with the Wasserstein

geometry and is valid when W2(X ) is replaced by any metric space. Assume that F is finite at
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3.5. Fréchet means in W2

γ. If θ is any other measure in W2(X ), write

2F (γ)−2F (θ) = E[W2(γ,Λ)−W2(θ,Λ)][W2(γ,Λ)+W2(θ,Λ)]

so that by the triangle inequality in W2,

2|F (γ)−F (θ)| ≤ W2(γ,θ)[2EW2(γ,Λ)+W2(θ,γ)] ≤ W2(γ,θ)[2EW 2
2 (γ,Λ)+2+W2(θ,γ)].

Since F (γ) <∞, the right-hand side vanishes as θ→ γ in W2(X ). Now that we know that F is

continuous, the same upper bound shows that it is in fact locally Lipschitz.

Using the lower semicontinuity (3.5), one can prove existence on Rd rather easily.

Proposition 3.5.4 (existence of Fréchet means). The Fréchet functional associated with any

random measure Λ in W2(Rd ) admits a minimiser.

Proof. The assertion is clear if F is identically infinite. Otherwise, let (γn) be a minimising

sequence. We wish to show that the sequence is tight. Define L = supn F (γn) <∞ and observe

that since x ≤ 1+x2 for all x ∈R,

EW2(γn ,Λ) ≤ 1+EW 2
2 (γn ,Λ) ≤ 2L +1, n = 1,2, . . . .

By the triangle inequality

L′ = EW2(δ0,Λ) ≤ W2(δ0,γ1)+EW2(γ1,Λ) ≤ W2(δ0,γ1)+2L +1

so that for all n(∫
Rd

‖x‖2 dγn(x)

)1/2

= W2(γn ,δ0) ≤ EW2(γn ,Λ)+EW2(Λ,δ0) ≤ 2L +1+L′ <∞.

Since closed and bounded sets in Rd are compact, it follows that (γn) is a tight sequence. We

may assume that γn → γ narrowly, then use (3.5) and Fatou’s lemma to obtain

2F (γ) = EW 2
2 (γ,Λ) ≤ E liminf

n→∞ W 2
2 (γn ,Λ) ≤ liminf

n→∞ EW 2
2 (γn ,Λ) = 2infF.

Thus γ is a minimiser of F , and existence is established.

If X is an infinite dimensional Hilbert space, existence still holds under a compactness

assumption. We first prove a result about the support of the Fréchet mean. On Rd at the

empirical level, one can say more about the support (see Corollary 5.5.1).

Proposition 3.5.5 (support of Fréchet mean). Let Λ be a random measure in W2(X ) and let

K ⊆X be a convex closed set such that P[Λ(K ) = 1] = 1. If γ minimises F , then γ(K ) = 1.

Remark 7. For any closed K ⊆ X and any α ∈ [0,1], the set {Λ ∈ Wp (X ) : Λ(K ) ≥ α} is closed
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in Wp (X ) because {Λ ∈ P (X ) : Λ(K ) ≥ α} is narrowly closed by the portmanteau lemma

(Lemma 2.9.1).

Proof. Let projK : X → K denote the projection onto the set K , which is well-defined since K

is closed and convex, and of course satisfies

‖x − y‖ ≥ ‖x −projK (y)‖, x ∈ K , y ∈X ,

with equality if and only if y ∈ K . Let π ∈Π(Λ,γ) be optimal. By the hypothesis Λ(K ) = 1, so

that the above inequality holds for Λ-almost every x and all y , hence π-almost surely. Define

the projection γK = projK #γ of γ onto K , and recall that i denotes the identity mapping on X .

Then (i×projK )#π ∈Π(Λ,γK ) and

W 2
2 (Λ,γ) =

∫
K×X

‖x − y‖2 dπ(x, y) ≥
∫

K×X
‖x −projK (y)‖2 dπ(x, y) ≥ W 2

2 (Λ,γK ).

Taking expectations gives F (γ) ≥ F (projK #γ). Again equality holds if and only if γ(K ) = 1, in

which case projK #γ= γ, which completes the proof.

Corollary 3.5.6. If there exists a compact convex K satisfying the hypothesis of Proposition 3.5.5,

then the Fréchet functional admits a minimiser supported on K .

Proof. Proposition 3.5.5 allows us to restrict the domain of F to W2(K ), the collection of

probability measures supported on K . Since this set is compact in W2(X ) (Corollary 3.2.4), the

result follows from continuity of F .

Next, we turn to uniqueness of Fréchet means. The first step is to exclude infinite values of F .

(Of course, this is not needed in the empirical version.) This is yet again a general property

that holds for any metric space, not only for W2(X ).

Lemma 3.5.7 (finiteness of the Fréchet functional). Suppose that F (γ0) < ∞ for some γ0 ∈
W2(X ). Then F is finite everywhere on W2(X ).

Proof. It follows from the triangle inequality in W2 that for all γ

2F (γ) ≤ W 2
2 (γ0,γ)+2W2(γ,γ0)EW2(γ0,Λ)+EW 2

2 (γ0,Λ) <∞,

because both expectations are finite.

Example: let (an) be a sequence of positive numbers that sum up to one. Let xn = 1/an and

suppose that Λ equals δ{xn} with probability an . Then

EW 2
2 (Λ,δ0) =

∞∑
n=1

an x2
n =

∞∑
n=1

1/an =∞,
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and by Lemma 3.5.7 F is identically infinite. Henceforth, we say that F is finite when the

condition in Lemma 3.5.7 holds.

A general situation in which Fréchet means are unique is when the Fréchet functional is

strictly convex. Although this is not always the case in the Wasserstein space, at least weak

convexity holds: if γ1,γ2 ∈ W2(X ), πi ∈Π(γi ,Λ), then the linear interpolant tπ1 + (1− t)π2 ∈
Π(tγ1 + (1− t )γ2,Λ) for all t ∈ [0,1]; taking πi to be optimal, we obtain

W 2
2 (tγ1+(1−t )γ2,Λ) ≤

∫
X 2

‖x − y‖2 d[tπ1 + (1− t )π2](x, y) = tW 2
2 (γ1,Λ)+(1−t )W 2

2 (γ2,Λ).

(3.12)

Remark 8. The Wasserstein distance is not convex along geodesics. That is, if we replace the

linear interpolant tγ1 + (1− t )γ2 by McCann’s interpolant, then t �→ W 2
2 (γt ,Λ) is not necessarily

convex (see Example 9.1.5 in [6]).

If we can upgrade (3.12) to strict convexity, then uniqueness of minimisers will be guaranteed.

This is the case if Λ is regular enough with positive probability:

Proposition 3.5.8 (uniqueness of Fréchet means). Let Λ be a random measure in W2(X ) with

finite Fréchet functional. If Λ is absolutely continuous with positive (inner) probability, then

the Fréchet mean of Λ is unique (if it exists).

This is a particular case of results of Álvarez-Esteban, del Barrio, Cuesta-Albertos & Matrán [4]

(see Corollary 2.9 there).

Remark 9. It is not obvious that the set of absolutely continuous measures is measurable in W2.

We assume that there exists a Borel set A ⊂ W2 such that P(Λ ∈ A) > 0 and all measures in A are

absolutely continuous.

Proof of Proposition 3.5.8. By taking expectations in (3.12), one sees that F is convex on W2(X )

with respect to linear interpolants. Let Λ be absolutely continuous, and let γi arbitrary. Then

equality in (3.12) holds if and only ifπt = tπ1+(1−t )π2 = (ttγ1+(1−t )γ2

Λ ×i)#Λ. Butπt is supported

on the graphs of two functions: tγ1

Λ and tγ2

Λ . Consequently, equality can hold only if these two

maps equal Λ-almost surely, or, equivalently, if γ1 = γ2. We can thus conclude that

Λ absolutely continuous =⇒ γ �→ 1

2
W 2

2 (γ,Λ) strictly convex.

As F was already shown to be weakly convex in any case, it follows that

P(Λ absolutely continuous) > 0 =⇒ F strictly convex.

Since strictly convex functionals have at most one minimiser, this completes the proof.
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3.5.4 The Agueh–Carlier characterisation

Agueh & Carlier [2] provide a useful sufficient condition for γ being the Fréchet mean. When

X = Rd , this condition is also necessary [2, Proposition 3.8], hence a characterisation of

Fréchet means in Rd . It will allow to easily deduce some equivariance results for Fréchet

means with respect to independence (Lemma 3.5.10) and rotations (3.5.11). More importantly,

it provides a sufficient condition under which a local minimum of F is a global minimum

(Theorem 3.5.18) and the same idea can be used to relate the population Fréchet mean to the

expected value of the optimal maps (Theorem 4.2.4).

Proposition 3.5.9 (Fréchet means and potentials). Let μ1, . . . ,μN ∈ W2(X ) be absolutely con-

tinuous, let γ ∈ W2(X ) and denote by φ∗
i the convex potentials of tγ

μi . If φi = φ∗∗
i are such

that

1

N

N∑
i=1

φi (x) ≤ 1

2
‖x‖2, ∀x ∈X , with equality γ-almost surely,

then γ is the unique Fréchet mean of μ1, . . . ,μN .

Proof. Uniqueness follows from Proposition 3.5.8. If θ ∈ W2(X ) is any measure, then the

Kantorovich duality yields

W 2
2 (γ,μi ) =

∫
X

(
1

2
‖x‖2 −φi (x)

)
dγ(x)+

∫
X

(
1

2
‖y‖2 −φ∗

i (y)

)
dμi (y);

W 2
2 (θ,μi ) ≥

∫
X

(
1

2
‖x‖2 −φi (x)

)
dθ(x)+

∫
X

(
1

2
‖y‖2 −φ∗

i (y)

)
dμi (y).

Summation over i gives the result.

A population version of this result, based on similar calculations, is shown in Theorem 4.2.4.

(The compactness assumption imposed there can be relaxed.)

The next two results are formulated in Rd because then the converse of Proposition 3.5.9 is

proven to be true. If one could extend [2, Proposition 3.8] to any separable Hilbert X , then the

two lemmas below will hold with Rd replaced by X .

Lemma 3.5.10 (independent Fréchet means). Let μ1, . . . ,μN and ν1, . . . ,νN be absolutely con-

tinuous measures in W2(Rd1 ) and W2(Rd2 ) with Fréchet means μ and ν respectively. Then the

independent coupling μ⊗ν is the Fréchet mean of μ1 ⊗ν1, . . . ,μN ⊗νN .

By induction (or a straightforward modification of the proof), one can show that the Fréchet

mean of (μi ⊗νi ⊗ρi ) is μ⊗ν⊗ρ, and so on.

Proof. Agueh & Carlier [2, Proposition 3.8] show that there exist convex lower semicontin-

uous potentials ψ∗
i on Rd1 and ϕ∗

i on Rd2 whose gradients push μ forward to μi and ν to νi
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respectively, and such that

1

N

N∑
i=1

ψi (x) ≤ 1

2
‖x‖2, x ∈Rd1 ;

1

N

N∑
i=1

ϕi (y) ≤ 1

2
‖y‖2, y ∈Rd2 ,

with equality μ- and ν-almost surely respectively. Define the convex function φi : Rd1+d2 →
R∪ {∞} by φi (x, y) =ψi (x)+ϕi (y). Then the gradient of

φ∗
i (x, y) = sup

u,v
〈x,u〉+〈

y, v
〉−ψi (u)−ϕi (v) =ψ∗

i (x)+ϕ∗
i (y)

pushes μi ⊗νi forward to μ⊗ν and

1

N

N∑
i=1

φi (x, y) ≤ 1

2
‖x‖2 + 1

2
‖y‖2 = 1

2
‖(x, y)‖2, (x, y) ∈Rd1+d2 ,

with equality μ⊗ν-almost surely. By Proposition 3.5.9, μ⊗ν is the Fréchet mean of (μi ⊗νi ).

Lemma 3.5.11 (rotated Fréchet means). If μ is the Fréchet mean of the absolutely continuous

measures μ1, . . . ,μN and U is orthogonal, then U #μ is the Fréchet mean of U #μ1, . . . ,U #μN .

Bonneel, Rabin, Peyré & Pfister sketch a proof of this statement in [21, Proposition 1], and

it also appears implicitly in Boissard, Le Gouic & Loubes [20, Proposition 4.1]; we give an

alternative argument here.

Proof. If x �→φ(x) is convex, then x �→φ(U−1x) is convex with gradient U∇φ(U−1x) at (almost

all) x and conjugate x �→φ∗(U−1x). If φi are convex potentials with ∇φ∗
i #μ=μi , then ∇[(φi ◦

U−1]∗) =∇(φ∗
i ◦U−1) pushes U #μ forward to U #μi and by [2, Proposition 3.8]

1

N

N∑
i=1

(ϕi ◦U−1)(Ux) = 1

N

N∑
i=1

φi (x) ≤ 1

2
‖x‖2 = 1

2
‖Ux‖2

with equality for μ-almost any x. A change of variables y =Ux shows that the set of points y

such that
∑

(ϕi ◦U−1)(y) < N‖y‖2/2 is (U #μ)-negligible, completing the proof.

3.5.5 Differentiability of the Fréchet functional and Karcher means

Since we seek to minimise the Fréchet functional F , it would be helpful if F were differen-

tiable, because we could then find at least local minima by solving the equation F ′ = 0. This

observation of Karcher [55] leads to the notion of Karcher mean.

Definition 3.5.12 (Karcher mean). Let F be a Fréchet functional associated with some random

measure Λ in W2(X ). Then γ is a Karcher mean for Λ if F is differentiable at γ and F ′(γ) = 0.

Of course, if γ is a Fréchet mean for Λ and F is differentiable at γ, then F ′(γ) must vanish. In
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Chapter 3. The Wasserstein space

this subsection we build upon the work of Ambrosio, Gigli & Savaré [6] and determine the

derivative of the Fréchet functional. This will not only allow for a simple characterisation

of Karcher means in terms of the optimal maps tΛγ (Proposition 3.5.16), but will also be the

cornerstone of the construction of a steepest descent algorithm for empirical calculation of

Fréchet means (see Section 5.1).

It turns out that the tangent bundle structure described in Section 3.3 gives rise to a differen-

tiable structure in the Wasserstein space. Fix μ0 ∈W2(X ) and consider the function

F0 : W2(X ) →R, F0(γ) = 1

2
W 2

2 (γ,μ0).

Ambrosio, Gigli & Savaré [6, Corollary 10.2.7] show that when γ is absolutely continuous,

lim
W2(ν,γ)→0

F0(ν)−F0(γ)+
∫
X

〈
tμ

0

γ (x)−x,tνγ(x)−x
〉

dγ(x)

W2(ν,γ)
= 0.

Parts of the proof of this result (the limit superior above is ≤ 0; the limit inferior is bounded

below) are reproduced in Proposition 3.5.14. The integral above can be seen as the inner

product〈
tμ

0

γ − i,tνγ− i
〉

in the space L2(γ) that includes as a (closed) subspace the tangent space Tanγ. In terms of this

inner product and the log map, we can write

F0(ν)−F0(γ) =−
〈

logγ(μ0), logγ(ν)
〉
+o(W2(ν,γ)), ν→ γ in W2,

so that F0 is Fréchet-differentiable2 at γ with derivative

F ′
0(γ) =− logγ(μ0) =−

(
tμ

0

γ − i
)
∈ Tanγ.

By linearity, one immediately obtains:

Theorem 3.5.13 (gradient of the Fréchet functional). Fix a collection of measures μ1, . . . ,μN ∈
W2(X ). When γ ∈W2(X ) is absolutely continuous, the Fréchet functional

F (γ) = 1

2N

N∑
i=1

W 2
2 (γ,μi ), γ ∈W2(X )

is Fréchet-differentiable and

F ′(γ) =− 1

N

N∑
i=1

logγ(μi ) =− 1

N

N∑
i=1

(
tμi
γ − i

)
.

2The notion of Fréchet derivative is also named after Fréchet, but is not directly related to Fréchet means.
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3.5. Fréchet means in W2

We now wish to extend this result to the population version (3.11). This will follow immediately

if we can interchange the expectation and the derivative in the form

F ′(γ) = 1

2
(EW 2

2 )′(γ,Λ) = E

(
1

2
W 2

2

)′
(γ,Λ) =−E(tΛγ − i).

In order to do this we will use dominated convergence in conjunction with uniform bounds

on the slopes

u(θ,Λ) =
0.5W 2

2 (θ,Λ)−0.5W 2
2 (θ0,Λ)+∫

X〈tΛ
θ0

− i ,tθ
θ0

− i 〉dθ0

W2(θ,θ0)
, u(θ0,Λ) = 0. (3.13)

Proposition 3.5.14 (slope bounds). Let θ0, Λ and θ be probability measures with θ0 absolutely

continuous, and set δ= W2(θ,θ0). Then

1

2
δ−W2(θ0,Λ)−

√
2W 2

2 (θ0,δ0)+2W 2
2 (Λ,δ0) ≤ u(θ,Λ) ≤ 1

2
δ,

where u is defined by (3.13). If the measures are compatible in the sense of Definition 3.3.1 then

in fact u(θ,Λ) = δ/2.

Proof. We repeat the calculations of Ambrosio, Gigli & Savaré (Theorem 10.2.2 and Proposi-

tion 10.2.6) for the particular case p = 2. Define a three-coupling μ= (i,tΛ
θ0

,tθ
θ0

)#θ0 ∈ P (X 3)

and notice that its relevant projections are optimal couplings of (θ0,Λ) and (θ0,θ) but not

necessarily of (Λ,θ). By definition∫
X
〈tΛθ0

− i,tθθ0
− i〉dθ0 =

∫
X 3

〈x2 −x1, x3 −x1〉dμ; W 2
2 (θ0,Λ) =

∫
X 3

‖x2 −x1‖2 dμ;

δ2 = W 2
2 (θ0,θ) =

∫
X 3

‖x1 −x3‖2 dμ; W 2
2 (θ ,Λ) ≤

∫
X 3

‖x2 −x3‖2 dμ.

Integrating the equality

1

2
‖x2 −x3‖2 − 1

2
‖x2 −x1‖2 +〈x2 −x1, x3 −x1〉 = 1

2
‖x1 −x3‖2 (3.14)

with respect to μ yields the second inequality of the proposition. If the measures are compati-

ble then the relevant marginal of μ is optimal for (Λ,θ), and the inequality holds as equality.

For the other inequality, let β be another three-coupling that optimally couples (θ0,θ) and

(Λ,θ). Then

W 2
2 (θ,Λ) =

∫
X 3

‖x2 −x3‖2 dβ and W 2
2 (θ0,Λ) ≤

∫
X 3

‖x1 −x2‖2 dβ.

Integration of (3.14) with respect to β yields

1

2
W 2

2 (θ,Λ)− 1

2
W 2

2 (θ0,Λ) ≥ 1

2
δ2 −

∫
X 3

〈x2 −x1, x3 −x1〉dβ.
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Chapter 3. The Wasserstein space

All that remains is to bound the last displayed integral by a constant times δ, when the integral

is taken with respect to either β or μ. To this end, we apply the Cauchy–Schwarz inequality

∣∣∣∣∫
X 3

〈x2 −x1, x3 −x1〉dμ

∣∣∣∣≤
√∫

X 3
‖x2 −x1‖2 dμ

√∫
X 3

‖x3 −x1‖2 dμ= δW2(θ0,Λ),

∣∣∣∣∫
X 3

〈x2 −x1, x3 −x1〉dβ

∣∣∣∣≤
√∫

X 3
‖x2 −x1‖2 dβ

√∫
X 3

‖x3 −x1‖2 dβ

where the last displayed square root again equals δ, and√∫
X 3

‖x2 −x1‖2 dβ≤
√∫

X 3
2‖x1‖2 dβ+

∫
X 3

2‖x2‖2 dβ=
√

2W 2
2 (θ0,δ0)+2W 2

2 (Λ,δ0).

This completes the proof.

Theorem 3.5.15 (population Fréchet gradient). Let Λ be a random measure with finite Fréchet

functional F . Then F is Fréchet-differentiable at any absolutely continuous θ0 in the Wasserstein

space, and F ′(θ0) = EtΛ
θ0

− i ∈ L2(θ0). More precisely,

F (θ)−F (θ0)+∫
X〈EtΛ

θ0
− i,tθ

θ0
− i〉dθ0

W2(θ,θ0)
→ 0, θ→ θ0 in W2.

Thus, the Fréchet derivative of F can be identified with the map −(EtΛ
θ0

− i) in the tangent space

at θ0, a subspace of L2(θ0).

In particular, the conclusion of the theorem holds if Λ(K ) = 1 almost surely for some non random

bounded set K .

Proof. Introduce the slopes u(θ,Λ) defined by (3.13). Then for all Λ,u(θ,Λ) → 0 as W2(θ,θ0) →
0, by the differentiability properties established above. Let us show that Eu(θ,Λ) → 0 as well.

By Proposition 3.5.14, the expectation of u is bounded above by a constant that does not

depend on Λ, and below by the negative of

EW2(θ0,Λ)+E

√
2W 2

2 (θ0,δ0)+2W 2
2 (Λ,δ0) ≤�

2W2(θ0,δ0)+EW2(θ0,Λ)+�
2EW2(Λ,δ0).

Both expectations are finite by the hypothesis on Λ because the Fréchet functional is finite.

The dominated convergence theorem yields

Eu(θ,Λ) =
F (θ)−F (θ0)+E

∫
X〈tΛ

θ0
− i ,tθ

θ0
− i 〉dθ0

W2(θ,θ0)
→ 0, W2(θ0,θ) → 0.

The measurability of the integral and the result then follow from Fubini’s theorem (see Propo-

sition 3.4.8).

Proposition 3.5.16. Let Λ be a random measure in W2(X ) with finite Fréchet functional F , and
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3.5. Fréchet means in W2

let γ be absolutely continuous in W2(X ). Then γ is a Karcher mean of Λ if and only if EtΛγ − i = 0

in L2(γ). Furthermore, if γ is a Fréchet mean of Λ, then it is also a Karcher mean.

Proof. The characterisation of Karcher means follows immediately from Theorem 3.5.15.

Suppose that F ′(γ) �= 0 and define t = EtΛγ and W = t− i. If we show that actually t = tt#γ
γ , i.e.

that t is optimal, then the result will follow immediately. Indeed, if we set νs = [i+ s(W − i)]#γ,

then W2(νs ,γ) = s‖W ‖L2(γ) for s ∈ [0,1] and by Theorem 3.5.15,

0 = lim
s→0+

F (νs)−F (γ)+∫
X 〈W (x), sW (x)〉 dγ(x)

s‖W ‖L2(γ)
= lim

s→0+
F (νs)−F (γ)

s‖W ‖L2(γ)
+‖W ‖L2(γ).

Since ‖W ‖L2(γ) > 0, this means that F (νs)−F (γ) is negative when s is small, and therefore γ

cannot be the Fréchet mean.

Let us now show the optimality of t. If Λ is a simple random measure, then the result follows

immediately. Otherwise, there exists a sequence of simple optimal maps tn that converge to t

in L2(γ) (see the proof of Proposition 3.4.8). Let us show that t is monotone. There exists a set

B with γ(B) = 1 such that〈
tn(y)− tn(x), y −x

〉≥ 0, x, y ∈ B n = 1,2, . . . .

Fix an integer k, let R = Rk such that γ[BR (0)] ≥ 1−1/k and define Dk ⊆X 2 by

Dk = {
(x, y) : x, y ∈ B ∩BR (0),

〈
t(y)− t(x), y −x

〉<−2/k
}

.

If (x, y) ∈ Dk then

‖tn(x)− t(x)‖ ≥ 1/k

‖x − y‖ ≥ 1/k

2R

or that same lower bound holds for ‖tn(y) − t(y)‖. By Markov’s inequality and since ‖tn −
t‖L2(γ) → 0, when n ≥ Nk is large enough this happens with γ measure at most 1/k. Define

Bk = B ∩BR (0)∩ {x : ‖tn(x)− t(x)‖ ≤ 1/(2Rk)}, n = Nk .

Then γ(Bk ) ≥ 1−2/k and

〈
t(y)− t(x), y −x

〉≥− 2

k
, x, y ∈ Bk .

If we now set

B ′ = ∩∞
j=1 ∪∞

k= j Bk ,

then γ(B ′) = 1 and
〈

t(y)− t(x), y −x
〉 ≥ 0 for all x, y ∈ B ′. Similarly one shows that t is cycli-

cally monotone, that is, the measure π = (i,t)#γ is cyclically monotone, hence optimal by
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Proposition 2.9.5.

These results will be of more use if we can show that the Fréchet mean is absolutely continuous,

because only then F is provably differentiable. This is provided by the following proposition of

Agueh & Carlier [2, Proposition 5.1], at least for Rd .

Proposition 3.5.17 (L∞-regularity of Fréchet means). Let μ1, . . . ,μN ∈ W2(Rd ) and suppose

that μ1 is absolutely continuous with density bounded by M. Then the Fréchet mean of {μi } is

absolutely continuous with density bounded by N d M and is consequently a Karcher mean.

We prove a population version of Proposition 3.5.17 in Theorem 5.6.2.

It may happen that a collection μ1, . . . ,μN of absolutely continuous measures have a Karcher

mean that is not a Fréchet mean; an example in R2 is given in Álvarez-Esteban, del Barrio,

Cuesta-Albertos & Matrán [5]. But a Karcher meanγ is “almost" a Fréchet mean in the following

sense. By Proposition 3.5.16, N−1∑tμ
i

γ (x) = x for γ-almost all x. If, on the other hand, the

equality holds for all x ∈ X , then γ is the Fréchet mean by taking integrals and applying

Proposition 3.5.9. One can hope that under regularity conditions, the γ-almost sure equality

can be upgraded to equality everywhere. Indeed, this is the case:

Theorem 3.5.18 (optimality criterion for Karcher means). Let U ⊆ Rd be an open convex

set and let μ1, . . . ,μN ∈ W2(Rd ) be probability measures on U with bounded strictly positive

densities g 1, . . . , g N . Suppose that an absolutely continuous Karcher mean γ is supported on U

with bounded strictly positive density f there. Then γ is the Fréchet mean of μ1, . . . ,μN if one of

the following holds:

1. U =Rd and the densities f , g 1, . . . , g N are of class C 1 (or Cα for some α> 0);

2. U is bounded and the densities f , g 1, . . . , g N are bounded below on U .

Proof. The result exploits Caffarelli’s regularity theory for Monge–Ampère equations in the

form of Theorem 2.8.2. In the first case, there exist C 1 (in fact, C 2,α) convex potentials ϕi on

Rd with tμ
i

γ =∇ϕi , so that tμ
i

γ (x) is a singleton for all x ∈Rd . The set {x ∈Rd :
∑

tμ
i

γ (x)/N �= x} is

γ-negligible (and hence Lebesgue-negligible) and open by continuity. It is therefore empty, so

F ′(γ) = 0 everywhere, and γ is the Fréchet mean (see the discussion before the theorem).

In the second case, by the same argument we have
∑

tμ
i

γ (x)/N = x for all x ∈ U . Since U is

convex, there must exist a constant C such that
∑
ϕi (x) =C+N‖x‖2/2 for all x ∈U , and we may

assume without loss of generality that C = 0. If one repeats the proof of Proposition 3.5.9, then

F (γ) ≤ F (θ) for all θ ∈ P (U ). By continuity considerations the inequality holds for all θ ∈ P (U )

(Theorem 3.2.6) and since U is closed and convex, γ is the Fréchet mean by Proposition 3.5.5.
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3.5. Fréchet means in W2

3.5.6 Relation to multimarginal formulation and the compatible case

In [38] Gangbo & Świȩch consider a multimarginal Monge–Kantorovich problem in the follow-

ing sense. Let μ1, . . . ,μN be N measures in W2(X ) and let Π(μ1, . . . ,μN ) be the set of probability

measures in X N having μi as marginals. The problem is to minimise

G(π) = 1

2N 2

∫
X N

∑
i< j

‖xi −x j ‖2 dπ(x1, . . . , xN ), over π ∈Π(μ1, . . . ,μN ).

The factor 1/(2N 2) is of course irrelevant for the minimisation and its purpose will be clarified

shortly. If N = 2 we obtain the Kantorovich problem with quadratic cost. The probabilistic in-

terpretation (as in Section 2.2) is that one is given random variables X1, . . . , XN with probability

laws μ1, . . . ,μN and one seeks a joint distribution, say Z , on X N minimising

1

2N 2 EZ
∑
i< j

‖Xi − X j ‖2.

We refer to elements of Π(μ1, . . . ,μN ) as multicouplings (of μ1, . . . ,μN ). Just like in the Kan-

torovich problem, there always exists an optimal multicoupling π. Given the results of Sec-

tion 2.5, it should not come as a surprise that if μ1, . . . ,μN are all absolutely continuous in Rd ,

then π is unique, and takes the form

π= (i,s2, . . . ,sN )#μ1,

for some functions s2, . . . ,sN : Rd →Rd . In probabilistic terms, the optimal coupling Z is the

vector (X1,s2(X2), . . . ,sN (XN )). The functions s j are not gradients of convex functions, but are

rather of the form (provided some extra regularity holds) t−1
j ◦ t1 with t j gradients of convex

functions. In other words, there exists a measure ρ = t1#μ1 such that the optimal π is

π=
(
tμ

1

ρ , . . . ,tμ
N

ρ

)
#ρ.

It is tempting to conjecture that ρ is the Fréchet mean of μ1, . . . ,μN , but this need not be

the case. As the one-dimensional case shows, ρ is not unique: one can take any absolutely

continuous measure θ and notice that the compatibility of all measures in W2(R) gives(
tμ

1

ρ , . . . ,tμ
N

ρ

)
#ρ =

(
tμ

1

ρ ◦ tρ
θ

, . . . ,tμ
N

ρ ◦ tρ
θ

)
#θ =

(
tμ

1

θ
, . . . ,tμ

N

θ

)
#θ.

As we show below, the measure ρ can be the Fréchet mean, and any other θ must be such that

tμ
j

ρ ◦ tρ
θ
= tμ

j

θ
, j = 1, . . . , N .

We see that compatibility of measures is strongly related to the multimarginal problem. Indeed,

it turns out that if (μi ) are compatible, then the s j ’s are the optimal maps from μ1 to μ j , that is

s j = tμ
N

μ1 .
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Let us now show how the multimarginal problem is equivalent to the problem of finding the

Fréchet mean of μ1, . . . ,μN . The first thing to observe is that the objective function can be

written as

G(π) =
∫
X N

1

2N

N∑
i=1

‖xi −M(x)‖2 dπ(x), M(x) = M(x1, . . . , xn) = 1

N

N∑
i=1

xi .

As Agueh & Carlier [2, Proposition 4.2] show (in Rd but their proof extends as is to any Hilbert

space), solving the multimarginal problem gives the Fréchet mean:

Proposition 3.5.19 (Fréchet means via multicouplings). Let π be a solution to the multi-

marginal problem with marginals μ1, . . . ,μN . Then γ = M#π is a Fréchet mean of μ1, . . . ,μN

and

F (γ) = 1

2N

N∑
i=1

W 2
2 (γ,μi ) =

∫
X N

1

2N

N∑
i=1

‖xi −M(x1, . . . , xN )‖2 dπ(x1, . . . , xN ) =G(π).

Proof. Let π ∈Π(μ1, . . . ,μN ) and define γ= M#π. Then for all i∫
X N

‖xi −M(x1, . . . , xN )‖2 dπ(x1, . . . , xN ) ≥ W 2
2 (μi ,γ),

because the relevant projection of π to X 2 is a coupling of μi and γ. Summation over i yields

F (γ) ≤G(π).

Now let γ be any absolutely continuous measure, so that ti = tμ
i

γ is well-defined for all i , and

set π= (t1, . . . ,tN )#γ. Let t = N−1∑ti , so that

N∑
i=1

‖ti (x)− t(x)‖2 ≤
N∑

i=1
‖ti (x)−x‖2, x ∈X .

Integration with respect to γ and a change of variables yield

G(π) =
∫
X

1

2N

N∑
i=1

‖ti (x)− t(x)‖2 dγ(x) ≤
∫
X

1

2N

N∑
i=1

‖ti (x)−x‖2 dγ(x) = F (γ).

From the two established inequalities we see that

inf
γ absolutely continuous

F (γ) ≥ inf
π

G(π) ≥ inf
γ

F (γ).

But the two infima over γ are equal, since F is continuous and absolutely continuous measures

constitute a dense set in W2(X )3.

3For X =Rd this was shown in Theorem 3.2.6, but the idea of convolving with Gaussian measures works for X

separable Hilbert space. Agueh & Carlier use a more direct approach without resorting to approximations, where
they invoke the gluing lemma.
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Conversely, the Fréchet mean leads to an optimal multicoupling (Zemel & Panaretos [94,

Theorem 2]):

Theorem 3.5.20 (multicoupling via Fréchet means). Let μ1, . . . ,μN be probability measures in

W2(X ) with absolutely continuous Fréchet mean γ. (For example, when X =Rd and μ1 has a

bounded density.) Then

π=
(
tμ

1

γ , . . . ,tμ
N

γ

)
#γ

is an optimal multicoupling of μ1, . . . ,μN .

Proof of Theorem 3.5.20. By Proposition 3.5.19 it suffices to show that F (γ) =G(π). Since γ is

a Karcher mean (Proposition 3.5.16), M(x) = x π-almost surely, so that

G(π) = 1

2N

∫
X

N∑
i=1

‖tμ
i

γ − i‖2 dγ= 1

2N

N∑
i=1

W 2
2 (γ,μi ) = F (γ),

proving optimality of π.

It is natural to ask whether such an equivalence still holds for the population Fréchet mean.

However, defining the multimarginal problem in full generality is not obvious because unless

Λ(Ω) is countable (i.e. Λ is a discrete random measure in W2(X )), the elements π should be

taken as probability measures in an uncountable product of X . If, however, there is more

structure in Λ, then the problem can be defined and solved in terms of stochastic processes;

see Pass [71]. In this work, when dealing with population Fréchet means, we will not consider

the multimarginal formulation.

Boissard, Le Gouic & Loubes [20] noticed that compatibility of μ1, . . . ,μN according to Defini-

tion 3.3.1 allows for a simple solution to the problem of finding their Fréchet mean. As showed

in the beginning of this subsection, this is equivalent to solving the multimarginal problem.

Returning to the original form of G , we see that for any π ∈Π(μ1, . . . ,μN ) we have

G(π) = 1

2N 2

∫
X N

∑
i< j

‖xi −x j ‖2 dπ(x1, . . . , xN ) ≥ 1

2N 2

∑
i< j

W 2
2 (μi ,μ j ),

because the (i , j )-th marginal of π is a coupling of μi and μ j . Thus, if equality above holds for

π, then π is optimal and M#π is the Fréchet mean by Proposition 3.5.19. This is indeed the

case for π= (i,tμ
2

μ1 , . . . ,tμ
N

μ1 )#μ1 because the compatibility gives:

∫
X N

‖xi −x j ‖2 dπ(x1, . . . , xN ) =
∫
X

∥∥∥tμ
i

μ1 − tμ
j

μ1

∥∥∥2
dμ1 =

∫
X

∥∥∥tμ
i

μ1 ◦ tμ
i

μ j − i
∥∥∥ dμ j = W 2

2 (μi ,μ j ).

We may thus conclude, in a slightly more general form (γ was μ1 above):
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Theorem 3.5.21 (Fréchet mean of compatible measures). Suppose that {γ,μ1, . . . ,μN } are

compatible measures. Then[
1

N

N∑
i=1

tμ
i

γ

]
#γ

is the Fréchet mean of (μ1, . . . ,μN ).

A population version is given in Theorem 5.6.3.
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4 Phase variation and Fréchet means

4.1 Amplitude and phase variation

Following Panaretos & Zemel [70], we describe the problem of separation of amplitude and

phase variation in point processes. To build the intuition we discuss the functional case first.

As the functional case will only serve as a motivation to the point process case discussed

next, our treatment will mostly be heuristic and superficial. Rigorous proofs and more precise

details can be found in Horváth & Kokoszka [48] or Hsing & Eubank [49]. The notion of

amplitude and phase variation is discussed in the more applied books by Ramsay & Silverman

[75, 76]. One can also consult the review by Wang, Chiou & Müller [90], where amplitude and

phase variation are discussed in Section 5.2.

4.1.1 The functional case

Let K denote the unit cube [0,1]d ⊂Rd . A real random function Y = (Y (x) : x ∈ K ) can, broadly

speaking, have two types of variation. The first, amplitude variation, results from Y (x) being a

random variable for every x and describes its fluctuations around the mean level m(x) = EY (x),

usually encoded by the variance varY (x). For this reason, it can be referred to as “variation in

the y-axis". More generally, for any finite set x1, . . . , xn , the n×n covariance matrix with entries

κ(xi , x j ) = cov[Y (xi ),Y (x j )] encapsulates (up to second order) the stochastic deviations of

the random vector (Y (x1), . . . ,Y (xn)) from its mean, in analogy with the multivariate case.

Heuristically, one then views amplitude variation as the collection κ(x, y) for x, y in a sense we

discuss next.

One typically views Y as a random element in the separable Hilbert space L2(K ), assumed to

have E‖Y ‖2 <∞ and continuous sample paths, so that in particular Y (x) is a random variable

for all x ∈ K . Then the mean function

m(x) = EY (x), x ∈ K
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Chapter 4. Phase variation and Fréchet means

and the covariance kernel

κ(x, y) = cov[Y (x),Y (y)], x, y ∈ K

are well-defined and finite; we shall assume that they are continuous, which is equivalent to Y

being mean-square continuous:

E[Y (y)−Y (x)]2 → 0, y → x.

The covariance kernel κ gives rise to the covariance operator R : L2(K ) → L2(K ), defined by

(R f )(y) =
∫

K
κ(x, y) f (x)dx,

a self-adjoint positive semidefinite Hilbert-Schmidt operator on L2(K ). The justification to

this terminology is the observation that when m = 0, for all bounded f , g ∈ L2(K ),

E
〈

Y , f
〉〈

Y , g
〉= E

[∫
K 2

Y (x) f (x)Y (y)g (y)d(x, y)

]
=
∫

K
g (y)(R f )(y)dy ,

and so, without the restriction to m = 0,

cov
[〈

Y , f
〉

,
〈

Y , g
〉]=∫

K
g (y)(R f )(y)dy = 〈

g ,R f
〉

.

The covariance operator admits an eigendecomposition (rk ,φk )∞k=1 such that rk ↘ 0, Rφk =
rkφk and (φk ) is an orthonormal basis of L2(K ). One then has the celebrated Karhunen–Loève

expansion

Y (x) = m(x)+
∞∑

k=1

〈
Y −m,φk

〉
φk (x) = m(x)+

∞∑
k=1

ξkφk (x).

A major feature in this expansion is the separation of the functional part from the stochastic

part: the functions φk (x) are deterministic; the random variables ξk are scalars. This sepa-

ration actually holds for any orthonormal basis; the role of choosing the eigenbasis of R is

making ξk uncorrelated:

cov(ξk ,ξl ) = cov
[〈

Y ,φk
〉

,
〈

Y ,φl
〉]= 〈

φl ,Rφk
〉

vanishes when k �= l and equals rk otherwise. For this reason, it is not surprising that using as

φk the eigenfunctions yields the optimal representation of Y . Here optimality is with respect

to truncations: for any other basis (ψk ) and any M ,

E

∥∥∥∥∥Y −m −
M∑

k=1

〈
Y −m,ψk

〉
ψk

∥∥∥∥∥
2

≥ E

∥∥∥∥∥Y −m −
M∑

k=1

〈
Y −m,φk

〉
φk

∥∥∥∥∥
2

so that (φk ) provides the best finite-dimensional approximation to Y . The approximation
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4.1. Amplitude and phase variation

error on the right-hand side equals

E

∥∥∥∥∥ ∞∑
k=M+1

ξkφk

∥∥∥∥∥
2

=
∞∑

k=M+1
rk

and depends on how quickly the eigenvalues of R decay.

One carries out inference for m and κ on the basis of a sample Y1, . . . ,Yn by

m̂(x) = 1

n

n∑
i=1

Yi (x), x ∈ K

and

κ̂(x, y) = 1

n

n∑
i=1

Yi (x)Yi (y)−m̂(x)m̂(y),

from which one proceeds to estimate R and its eigendecomposition.

We have seen that amplitude variation in the sense described above is linear and dealt with

using linear operations. There is another, qualitatively different type of variation, phase

variation, that is nonlinear and does not have an obvious finite-dimensional analogue. It arises

when in addition to the randomness in the values Y (x) itself, an extra layer of stochasticity

is present in its domain of definition. In mathematical terms, there is a random invertible

warp function (sometimes called deformation or warping) T : K → K and instead of Y (x),

one observes realisations from the model

Ỹ (x) = Y (T −1(x)), x ∈ K .

For this reason, phase variation can be viewed as “variation in the x-axis". When d = 1, the set

K is usually interpreted as a time interval, and then the model stipulates that each individual

has its own time scale. Typically, the warp function is assumed to be a homeomorphism of K

independent of Y and often some additional smoothness is imposed, say T ∈C 2. One of the

classical examples is growth curves of children, of which a dataset from the Berkeley growth

study (Jones & Bayley [51]) is shown in Figure 4.1. The curves are the derivatives of the height

of a sample of children as a function of time, from birth until the age of 18. One clearly notices

the presence of the two types of variation in the figure. The initial velocity for all children is

the highest immediately or shortly after birth, and in most cases decreases sharply during

the first two years. Then follows a period of acceleration for another year or so, and so on.

Despite presenting qualitatively similar behaviour, the curves differ substantially not only in

the magnitude of the peaks but also in their location. For instance, one green curve has a

local minimum at the age of three, while a red one has maximum at that same time point. It is

apparent that if one tries to estimate the mean function by averaging the curves at each time

x, the shape of the resulting estimate would look very different from each of the curves. Thus,

this pointwise averaging (known as the cross-sectional mean) fails to represent the typical
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Chapter 4. Phase variation and Fréchet means

Figure 4.1: Derivatives of growth curves from the Berkeley dataset.

behaviour. This phenomenon is seen more explicitly in the next example.

The terminology of amplitude and phase comes from trigonometric functions, from which

we derive an artificial example that illustrates the difficulties of estimation in the presence

of phase variation. Let A and B be symmetric random variables and consider the random

function

Ỹ (x) = A sin[8π(x +B)]. (4.1)

(Strictly speaking, x �→ x +B is not from [0,1] to itself; for illustration purposes, we assume in

this example that K = R.) The random variable A generates the amplitude variation, while

B represents the phase variation. In Figure 4.2 we plot four realisations and the resulting

empirical means for the two extreme scenarios where B = 0 (no phase variation) or A = 1 (no

amplitude variation). In the left panel of the figure, we see that the sample mean (in thick

blue) lies between the observations and has a similar form, so can be viewed as the curve

representing the typical realisation of the random curve. This is in contrast to the right panel,

where the mean is qualitatively different from all curves in the sample: though periodicity is

still present, the peaks and troughs have been flattened, and the sample mean is much more

diffuse than any of the observations.

The phenomenon illustrated in Figure 4.2 is hardly surprising, since as mentioned earlier

amplitude variation is linear while phase variation is not, and taking sample means is a linear

operation. Let us see in formulae how this phenomenon occurs. When A = 1 we have

EỸ (x) = sin8πxEcos8πB +cos8πxEsin8πB.

Since B is symmetric the second term vanishes, and unless B is trivial the expectation of the
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Figure 4.2: Four realisations of (4.1) with means in thick blue. Left: amplitude variation (B = 0);
right: phase variation (A = 1).

cosine is smaller than one in absolute value. Consequently, the expectation of Ỹ (x) is the

original function sin8πx multiplied by a constant of magnitude strictly less than one, resulting

in peaks of smaller magnitude.

In the general case, where Ỹ (x) = Y (T −1(x)) and Y and T are independent, we have

EỸ (x) = Em(T −1(x))

and

cov[Ỹ (x), Ỹ (y)] = Eκ(T −1(x),T −1(y))+cov(m(T −1(x),m(T −1(y))).

From this several conclusions can be drawn. Let μ̃ = μ(T −1(x)) be the conditional mean

function given T . Then the value mean function itself, Eμ̃, at x0 is determined not by a single

point, say x, but rather by all the values of m at the possible outcomes of T −1(x). In particular,

if x0 was a local maximum for m, the value of Eμ̃(x0) will be strictly smaller than m(x0); the

phase variation results in smearing m.

At this point an important remark should be made. Whether or not phase variation is prob-

lematic depends on the specific application. If one is interested indeed in the mean and

covariance functions of Ỹ , then the standard empirical estimators will be consistent, since

Ỹ itself is a random function. But if it is rather m, the mean of Y , that is of interest, then the

confounding of the amplitude and phase variation will lead to inconsistency. This can also be

seen from the formula

Ỹ (x) = m(T −1(x))+
∞∑

k=1
ξkφk (T −1(x)).
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Chapter 4. Phase variation and Fréchet means

The above series is not the Karhunen–Loève expansion of Ỹ ; the simplest way to notice this is

the observation that φk (T −1(x)) includes both the functional component φk and the random

component T −1(x). The true Karhunen–Loève expansion of Ỹ will in general be qualitatively

very different from that of Y , not only in terms of the mean function but also in terms of the

covariance operator and, consequently, its eigenfunctions and eigevalues. As illustrated in the

trigonometric example, the typical situation is that the mean EỸ is more diffuse than m, and

the decay of the eigenvalues r̃k of the covariance operator is slower that that of rk ; as a result,

one needs to truncate the sum at high threshold in order to capture a substantial enough part

of the variability. In the example model (4.1), the Karhunen–Loève expansion has a single

term besides the mean if B = 0, while having two terms if A = 1.

When one is indeed interested in the mean m and the covariance κ, the random function

T pertaining to the phase variation is nuisance parameter. Given a sample Ỹi = Yi ◦ T −1
i ,

i = 1, . . . ,n, there is no point in taking pointwise means of Ỹi , because the curves are mis-

aligned; Ỹ1(x) = Y1(T −1
1 (x)) should not be compared with Ỹ2(x), but rather with Y2(T −1

1 (x)) =
Ỹ2(T −1

1 (T2(x)). To overcome this difficulty, one seeks estimators T̂i such that

Ŷi (x) = Ỹi (T̂i (x)) = Yi (T −1
i (T̂i (x)))

is approximately Yi (x). In other words, one tries to align the curves in the sample to have

a common time scale. Such a procedure is called curve registration. Once registration has

been carried out, one proceeds the analysis on Ŷi (x) assuming only amplitude variation is

now present: estimate the mean m by

m̂(x) = 1

n

n∑
i=1

Ŷi (x)

and the covariance κ by its analogous counterpart. Put differently, registering the curves

amounts to separating the two types of variation. This step is crucial regardless of whether the

warp functions are considered as nuisance or an analysis of the warp functions is of interest in

the particular application.

There is an obvious identifiability problem in the model Ỹ = Y ◦T −1. If S is any (deterministic)

function, then the model with (Y ,T ) is statistically indistinguishable from the model with

(Y ◦S,T ◦S). It is therefore often assumed that ET = i is the identity and in addition, in nearly

all application, that T is monotonically increasing (if d = 1).

Discretely observed data. One cannot measure the height of person at every single instant of

her life. In other words, it is rare in practice that one has access to the entire curve. A far more

common situation is that one observes the curves discretely, i.e., at a finite number of points.

The conceptually simplest setting is that one has access to a grid x1, . . . , xJ ∈ K , and the data

come in the form

ỹi j = Ỹi (t j ),
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4.1. Amplitude and phase variation

with possibly additional additive measurement error. The problem is to find, given ỹi j , consis-

tent estimators of Ti and of the original, aligned functions Yi . We briefly discuss some methods

for carrying out this separation of amplitude and phase variation. In the next subsection we

formulate the analogous problem with functions replaced by point processes.

One of the first registration techniques employes dynamic programming (Wang & Gasser [91])

and dates back to Sakoe & Chiba [82]. Landmark registration consists of identifying salient

features for each curve, called landmarks, and aligning them (Gasser & Kneip [39]; Gervini &

Gasser [40]). In pairwise synchronisation (Tang & Müller [86]) one aligns each pair of curves

and then derives an estimator of the warp functions by linear averaging of the pairwise regis-

tration maps. Another class of methods involves a template curve, to which each observation

is registered, minimising a discrepancy criterion; the template is then iteratively updated

(Wang & Gasser [92]; Ramsay & Li [74]). James [50] defines a “feature function" for each curve

and uses the moments of the feature function to guarantee identifiability. Elastic registration

employs the Fisher–Rao metric that is invariant to warpings and calculates averages in the

resulting quotient space (Tucker, Wu & Srivastava [87]). Other techniques include semipara-

metric modelling (Rønn [79]; Gervini & Gasser [41]) and principal components registration

(Kneip & Ramsay [57]). More details can be found in the review article by Marron, Ramsay,

Sangalli & Srivastava [64].

It is fair to say that no single registration method arises as the canonical solution to the

functional registration problem. Indeed, most need to make additional structural and/or

smoothness assumptions on the warp maps, further to the basic identifiability conditions

requiring that T be increasing and that ET equal the identity. We now argue that the point

process case, in contrast, admits a canonical framework, without needing additional assump-

tions.

4.1.2 The point process case

A point process is the mathematical object that represents the intuitive notion of a random

collection of points in a space X . It is formally defined as a measurable map Π from a generic

probability space into the space of (possibly infinite) Borel integer-valued measures of X in

such a way that Π(B) is a measurable real-valued random variable for all Borel subsets B of X .

The quantity Π(B) represents the random number of points observed in the set B . Among the

plethora of books on point processes, let us mention Daley & Vere-Jones [28] and Karr [56].

Kallenberg [52] treats more general objects, random measures, of which point processes are

a peculiar special case. We will assume for convenience that Π is a measure on a compact

subset K ⊂Rd .

Amplitude variation of Π can be understood in analogy with the functional case. One defines

the mean measure

λ(A) = EΠ(A), A ⊂ K Borel
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Figure 4.3: Unwarped (left) and warped Poisson point processes.

and, provided that E[Π(K )]2 <∞, the covariance measure

κ(A,B) = cov[Π(A),Π(B)] = EΠ(A)Π(B)−λ(A)λ(B),

the latter being a finite signed Borel measure on K . Just like in the functional case, these two

objects encapsulate the second-order stochastic properties of the law of Π. Given a sample

Π1, . . . ,Πn of independent point processes distributed as Π, the natural estimators

λ̂(A) = 1

n

n∑
i=1

Πi (A); κ̂(A,B) = 1

n

n∑
i=1

Πi (A)Πi (B)− λ̂(A)λ̂(B),

are consistent and the former asymptotically normal [56, Proposition 4.8].

Phase variation then pertains to a random warp function T : K → K (independent of Π) that

deforms Π: if we denote the points of Π by x1, . . . , xK (with K random), then instead of (xi ),

one observes T (x1), . . . ,T (xK ). In symbols, what this means is that the data arise as Π̃= T #Π.

We refer to Π as the original point processes, and Π̃ as the warped point processes. An example

of 30 warped and unwarped point processes is shown in Figure 4.3. In both panels of the

figure, the point patterns present qualitatively similar structure: there are two peaks of high

concentration of points, while in between the peaks there are relatively few of them. The

difference between the two panels is in the position and concentration of those peaks. In the

left panel, only amplitude variation is present, and the location/concentration of the peaks is

the same across all observations. In contrast, phase variation results in shifting the peaks to

different places for each of the observations, while also smearing or sharpening them. Clearly,

estimation of the mean measure of a subset A by averaging the number of observed points in

A would not be satisfactory as an estimator of λ when carried out with the warped data. As in

the functional case, it will only be consistent for the measure λ̃ defined by

λ̃(A) = Eλ(T −1(A)), A ⊆X ,

and λ̃= E[T #λ] misses most (or at least a significant part) of the bimodal structure of λ and is

far more diffuse.
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4.1. Amplitude and phase variation

Since Π and T are independent, the conditional expectation of Π̃ given T is

EΠ̃(A)|T = EΠ(T −1(A))|T =λ(T −1(A)) = [T #λ](A).

Consequently, we define the conditional mean measure Λ= T #λ. The problem of separation

of amplitude and phase variation can now be stated as follows. On the basis of a sample

Π̃1, . . . ,Π̃n , find estimators of (Ti ) and (Πi ). Registering the point processes amounts to con-

structing estimators, the registration maps T̂ −1
i such that the aligned points

Π̂i = T̂ −1
i #Π̃i = [T̂ −1

i ◦Ti ]#Πi

are close to the original points Πi .

Poisson processes. A special but important case is that of a Poisson process. Gaussian processes

probably yield the most elegant and rich theory in functional data analysis, and so do Poisson

processes when it comes to point processes. We say that Π is a Poisson process when the

following two conditions hold. (1) For any disjoint collection (A1, . . . , An) of sets, the random

variables Π(A1), . . . ,Π(An) are independent; and (2) for every Borel A ⊂ X , Π(A) follows a

Poisson distribution with mean λ(A):

P(Π(A) = k) = e−λ(A) [λ(A)]k

k !
.

Conditional on T , the random variables Π̃(Ak ) =Π(T −1(Ak )), k = 1, . . . ,n are independent as

the sets (T −1(Ak )) are disjoint; and Π̃(A) follows a Poisson distribution with mean λ(T −1(A)) =
Λ(A). This is precisely the definition of a Cox process: conditional on the driving measure Λ,

Π̃ is a Poisson process with mean measure λ. For this reason, it also called a doubly stochastic

process; in our context, the phase variation is associated with the stochasticity of Λ while the

amplitude one is associated with the Poisson variation conditional on Λ.

As in the functional case there are problems with identifiability: the model (Π,T ) cannot be

distinguished from the model (S#Π,T ◦S−1) for any invertible S : K → K . It is thus natural to

assume that ET is the identity map (otherwise set S = ET , i.e., replace Π by [ET ]#Π and T by

T ◦ [ET ]−1).

Constraining T to have mean identity is nevertheless not sufficient for the model Π̃= T #Π to

be identifiable. The reason is that given the two point sets Π̃ and Π, there are many functions

that push forward the latter to the former. This ambiguity can be dealt with by assuming

some sort of regularity or parsimony for T . For example, when K = [a,b] is a subset of the

real line, imposing T to be monotonically increasing guarantees its uniqueness. In multiple

dimensions there is no obvious analogue for increasing functions. One possible definition is

the monotonicity described in Subsection 2.9.2 (p. 35):〈
T (y)−T (x), y −x

〉≥ 0, x, y ∈ K .
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Chapter 4. Phase variation and Fréchet means

This property is rather weak in a sense we describe now. Let K ⊆ R2 and write y ≥ x if and

only if yi ≥ xi for i = 1,2. It is natural to expect the deformations to maintain the lexicographic

order in R2:

y ≥ x =⇒ T (y) ≥ T (x).

If we require in addition that the ordering must be preserved for all quadrants: for z = T (x)

and w = T (y)

{y1 ≥ x1, y2 ≤ x2} =⇒ {w1 ≥ z1, w2 ≤ z2},

then monotonicity is automatically satisfied. In that sense it is arguably not very restrictive.

Monotonicity is weaker than cyclical monotonicity (see (2.10), p. 34, with yi = T (xi )), which

is itself equivalent to the property of being the subgradient of a convex function. But if extra

smoothness is present and T is a gradient of some function φ : K →R, then φ must be convex

and T is then cyclically monotone. Consequently, we will make the following assumptions:

• the expected value of T is the identity;

• T is a gradient of a convex function.

In the functional case, at least on the real line, these two conditions are imposed on the warp

functions in virtually all applications, often accompanied with additional assumptions about

smoothness of T , its structural properties, or its distance from the identity (see p. 95). In

the next section, we show how these two conditions alone lead to the Wasserstein geometry

and open the door to consistent, fully nonparametric separation of the amplitude and phase

variation.

4.2 Wasserstein geometry and phase variation

4.2.1 Equivariance properties of the Wasserstein distance

A first hint to the relevance of Wasserstein metrics in Wp (X ) for deformations of the space X

is that for all p ≥ 1 and all x, y ∈X ,

Wp (δx ,δy ) = ‖x − y‖,

where δx is as usual the Dirac measure at x ∈ X . This is in contrast to metrics such as the

bounded Lipschitz distance (that metrises narrow convergence) or the total variation distance

on P (X ). Recall that these are defined by

‖μ−ν‖BL = sup
‖ϕ‖BL≤1

∣∣∣∣∫
X
ϕdμ−

∫
X
ϕdν

∣∣∣∣ ; ‖μ−ν‖T V = sup
A

|μ(A)−ν(A)|,
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4.2. Wasserstein geometry and phase variation

so that

‖δx −δy‖BL = min(1,‖x − y‖); ‖δx −δy‖T V =
⎧⎨⎩1 x �= y

0 x = y.

In words, the total variation metric “does not see the geometry" of the space X . This is less so

for the bounded Lipschitz distance, that does take small distances into account but not large

ones.

Another property (shared by BL and T V ) that holds for the specific case p = 2 is equivariance

with respect to translations. It is more convenient to state it using the probabilistic formalism

of Section 2.2 (p. 11). Let X and Y be random elements in X , and suppose that the optimal

coupling between them is attained by a map T , the gradient of a convex function φ. Then

W2(X ,Y ) = E‖T (X )− X ‖2.

If a is a fixed point in X , X ′ = X +a and Y ′ = Y +a, then T ′(x) = a +T (x −a) pushes forward

X ′ to Y ′ and does so optimally, as the gradient of the convex function x �→ 〈a, x〉+φ(x − a).

This leads to the rather obvious fact that

W2(X +a,Y +a) = W2(X ,Y ).

The same holds even if the optimal coupling is not given by a proper map. In terms of measures,

the result states the following. Let μ∗δa denote the convolution of μ with the Dirac mass at a.

Then

W2(μ∗δa ,ν∗δa) = W2(μ,ν).

This carries over to Fréchet means in an obvious way.

Lemma 4.2.1 (Fréchet means and translations). Let Λ be a random measure in W2(X ) with

finite Fréchet functional and a ∈ X . Then γ is a Fréchet mean of Λ if and only if γ∗δa is the

Fréchet mean of Λ∗δa.

One can say more. Denote the first moment (mean) of μ ∈W1(X ) by

m : W1(X ) → X m(μ) =
∫
X

x dμ(x).

If only μ is translated, then

W2(μ∗δa ,ν) = W2(μ,ν)+ (a − [m(μ)−m(ν)])2 − [m(μ)−m(ν)]2,

which is minimised at a = m(μ)−m(ν). This leads to the following conclusion:

Proposition 4.2.2 (first moment of Fréchet mean). Let Λ be a random measure in W2(X ) with
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Chapter 4. Phase variation and Fréchet means

finite Fréchet functional with Fréchet mean γ. Then∫
X

x dγ(x) = E

∫
X

x dΛ(x).

4.2.2 Canonicity of Wasserstein distance in measuring phase variation

The purpose of this subsection is show that the standard functional data analysis assumptions

on the warp function T , having mean identity and being increasing, are equivalent to purely

geometric conditions on T and the conditional mean measure Λ = T #λ. Put differently, if

one is willing to assume that ET = i and that T is increasing, then one is led unequivocally to

the problem of estimation of Fréchet means in the Wasserstein space W2(X ). When X �=R,

“increasing" is interpreted as being the gradient of a convex function, as explained at the end

of Subsection 4.1.2.

We begin with the one-dimensional case, slightly generalising Proposition 1 in Panaretos

& Zemel [70]. The explicit formulae available when X = R allow for a more transparent

argument, and for simplicity we will assume some regularity.

Let K ⊆R be a nonempty closed convex set, that is, a possibly unbounded interval, and let T

be a real-valued continuous and strictly increasing function. Typically one assumes that K is

compact and T is a homeomorphism on K , which will happen if and only if T (K ) = K , but this

will not always be necessary. We will therefore assume the following:

Assumptions 3. The continuous and injective random map T : K →R (a random element in

Cb(K )) satisfies the following two conditions:

(A1) Unbiasedness: E[T (x)] = x for all x ∈ K .

(A2) Regularity: T is monotone increasing.

The relevance of the Wasserstein geometry to phase variation becomes clear in the following

Proposition, that shows that Assumptions 3 are equivalent to geometric assumptions on the

Wasserstein space W2(R). We say that a measure λ is diffuse or nonatomic if λ({x}) = 0 for all

x ∈R; equivalently, λ has a continuous distribution function Fλ.

Proposition 4.2.3 (mean identity warp functions and Fréchet means in W2(R)). Let λ ∈ W2(R)

be a diffuse probability with support K and let T be a continuous injective random map such

that EW 2
2 (T #λ,λ) <∞. Then T satisfies Assumptions 3 if and only if it satisfies:

(B1) Unbiasedness: for any γ ∈W2(R)

EW 2
2 (T #λ,λ) ≤ EW 2

2 (T #λ,γ).
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4.2. Wasserstein geometry and phase variation

(B2) Regularity: if Q : K →R is such that T #λ=Q#λ, then with probability one∫
K

∣∣∣T (x)−x
∣∣∣2 dλ(x) ≤

∫
K

∣∣∣Q(x)−x
∣∣∣2 dλ(x), almost surely.

These assumptions have a clear interpretation: (B1) stipulates that λ is the Fréchet mean of

the random measure Λ= T #λ, while (B2) states that T must be the optimal map from λ to Λ,

that is, T = tΛ
λ

.

Proof of Proposition 4.2.3. If T satisfies (B2) then, as an optimal map, it must be nondecreas-

ing λ-almost surely. Conversely, if T is nondecreasing, then it is optimal. Hence (A2) and (B2)

are equivalent.

Assuming (A2), we now show that (A1) and (B1) are equivalent. Condition (B1) is equivalent to

E‖F−1
T #λ−F−1

λ ‖2
L2(0,1) = EW 2

2 (T #λ,λ) ≤ EW 2
2 (T #λ,γ) = E‖F−1

T #λ−F−1
γ ‖2

L2(0,1), γ ∈W2(R),

which is in turn equivalent to EF−1
Λ = F−1

λ
(see Subsection 3.5.2). Condition (A2) and the

assumptions on T imply that FΛ(x) = Fλ(T −1(x)). Now Fλ is continuous and strictly increasing

on K (since suppλ = K ), and T −1(x) ∈ K for all x, so that F−1
Λ (u) = T (F−1

λ
(u)). Thus (B1) is

equivalent to ET (x) = x for all x in the range of F−1
λ

, which is K (or at least the interior of K ) by

the hypothesis on λ.

The situation in more than one dimension is similar but the proof is less transparent. Taking

X =R below, we see that the warp functions do not have to be strictly increasing and λ does

not have to be diffuse in order for the implication (A1-A2)⇒(B1-B2) to hold true, at least

when K is bounded (but boundedness can most likely be relaxed, see Remark 6, p. 71). When

X = Rd , one can take any compact convex K ⊂ X and choose U = intK to be its interior,

leading to a somewhat cleaner formulation. See Bigot & Klein [16, Theorem 5.1] for a similar

result, albeit in a parametric setting.

Theorem 4.2.4 (mean identity warp functions and Fréchet means). Fix a convex subset U of

a separable Hilbert space X with compact closure K and a probability measure λ ∈ P (U ). Let

t ∈Cb(U ,X ) be a random map such that with probability one t is uniformly continuous, takes

values in K , and equals the gradient of its convex potential φt. If Et(x) = x for all x in a dense

subset of U and Λ= t#λ, then

EW 2
2 (λ,Λ) ≤ EW 2

2 (θ,Λ) ∀θ ∈W2(X ).

Proof. Since P[Λ(K ) = 1] = 1 and K is compact and convex, we may assume that θ ∈ P (K )

by Corollary 3.5.6. Moreover, K = U , so any measure in P (K ) can be approximated in W2

by measures in P (U ) (Theorem 3.2.6), and the functional θ �→ EW 2
2 (θ,Λ) is continuous on

P (K ) = W2(K ), so we may further assume that θ ∈ P (U ).
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Chapter 4. Phase variation and Fréchet means

By Theorem 2.5.2, t = tΛ
λ

is optimal and the pair (‖x‖2/2 −φ,‖y‖2/2 −φ∗) is dual optimal.

Invoking strong duality for λ and weak duality for θ, we find

W 2
2 (λ,Λ) =

∫
X

(
1

2
‖x‖2 −φ(x)

)
dλ(x)+

∫
X

(
1

2
‖y‖2 −φ∗(y)

)
dΛ(y);

W 2
2 (θ,Λ) ≥

∫
X

(
1

2
‖x‖2 −φ(x)

)
dθ(x)+

∫
X

(
1

2
‖y‖2 −φ∗(y)

)
dΛ(y).

Since t is separately valued by Lemma 3.4.14, we may invoke Lemma 3.4.12 and Proposi-

tion 3.4.13 to write

EW 2
2 (λ,Λ) =

∫
X

(
1

2
‖x‖2 −Eφ(x)

)
dλ(x)+E

∫
X

(
1

2
‖y‖2 −φ∗(y)

)
dΛ(y);

EW 2
2 (θ,Λ) ≥

∫
X

(
1

2
‖x‖2 −Eφ(x)

)
dθ(x)+E

∫
X

(
1

2
‖y‖2 −φ∗(y)

)
dΛ(y).

But Et is continuous (by the bounded convergence theorem and boundedness of K ), so equals

the identity for all x ∈ U . Again by Proposition 3.4.13, it follows that Eφ(x) = ‖x‖2/2 for all

x ∈U , perhaps up to an additive constant. Since λ(U ) = 1 = θ(U ), the integrals with respect to

λ and θ vanish, and this completes the proof.

4.3 Estimation of Fréchet means

4.3.1 Oracle case

In view of the canonicity of the Wasserstein geometry in Subsection 4.2.2, separation of

amplitude and phase variation of the point processes Π̃i essentially requires computing

Fréchet means in the 2-Wasserstein space. It is both conceptually important and technically

convenient to introduce the case where an oracle reveals the conditional mean measures

Λ = T #λ entirely. Thus, assuming that λ ∈ W2(X ) is the unique Fréchet mean of a random

measure Λ, the goal is to estimate the structural mean λ on the basis of independent and

identically distributed realisations Λ1, . . . ,Λn of λ.

Given that λ is defined as the minimiser of the Fréchet functional

F (γ) = 1

2
EW 2

2 (Λ,γ), γ ∈W2(X ),

it is natural to estimate λ by a minimiser, say λn , of the empirical Fréchet functional

Fn(γ) = 1

2n

n∑
i=1

W 2
2 (Λi ,γ), γ ∈W2(X ).

In subsection 3.5.3 it is shown that λn exists if X =Rd or if the measures Λi have a compact

support.

When X = R, λn can be seen to be an unbiased estimator of λ in a generalised sense of
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Lehmann [62] (see Subsection 4.3.5).

4.3.2 Discretely observed measures

In practice, one does not have the fortune of fully observing the inherently infinite-dimensional

objects Λ1, . . . ,Λn . A far more realistic scenario is that one only has access to a discrete version

of Λi , say Λ̃i . The simplest situation is when Λ̃i arises as an empirical measure of the form

τ−1∑τ
i=1δ{Y j }, where Y j are independent with distribution Λi . More generally, Λ̃i can be a

normalised point process Π̃i with mean measure τΛi , i.e.

Λ̃i = 1

Π̃i (X )
Π̃i with EΠ̃i (A)|Λi = τΛi (A), A ⊆X Borel.

This encapsulates the case of empirical measure when τ is an integer and Π̃i is a binomial

point process. The parameter τ is the expected number of observed points over the entire

space X ; clearly, the larger τ is, the more information Π̃i gives on Λi .

Except if Λ̃i is an empirical measure, there is one difficulty in the above setting that needs

to be addressed. Unless Π̃i is binomial, there is a positive probability that Π̃i (X ) = 0 and

no points pertaining to Λi are observed. In the asymptotic setup below, conditions will be

imposed to ensure that this probability becomes negligible as n →∞. For concreteness we

define Λ̃i =λ(0) for some fixed measure λ(0) that will be of minor importance. This can be a

Dirac measure at 0, a certain fixed Gaussian measure, or (normalised) Lebesgue measure on

some bounded set in case X =Rd . We can now replace the estimator λn by λ̃n , defined as any

minimiser of

F̃n(γ) = 1

2n

n∑
i=1

W 2
2 (Λ̃i ,γ), γ ∈W2(X ).

Once again results in Subsection 3.5.3 guarantee the existence of λ̃n . Indeed, each Λ̃i has

finite, hence compact support, with the possible exception of the case Λ̃i =λ(0). Thus, if the

latter is compactly supported, then λ̃n must exist; in any case there is no problem whatsoever

if X =Rd . With the notable exception of the case X =R, λ̃n is not guaranteed to be unique.

As a generalisation of the discrete case discussed in Section 2.3, the Fréchet mean of discrete

measures can be computed exactly. Suppose that Ni = Π̃i (X ) is nonzero for all i . Then

each Λ̃i is a discrete measure supported on Ni points. One can then recast the multimarginal

formulation (see Subsection 3.5.6) as a finite linear program, solve it and “average" the solution

as in Proposition 3.5.19 in order to obtain λ̃n (an alternative linear programming formulation

for finding a Fréchet mean is given by Anderes, Borgwardt & Miller [9]). Thus λ̃n can be

computed in finite time, even when X is infinite-dimensional.

Finally, a remark about measurability is in order. Point processes can be viewed as random

elements in M+(X ) endowed with the vague topology induced from convergence of integrals
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of continuous functions with compact support. If μn converge to μ vaguely, and an are

numbers that converge to a, then anμn → aμ vaguely. Thus Λ̃i is a continuous function of the

pair (Π̃i ,Π̃i (X )) and can be viewed as a random measure with respect to the vague topology.

When it is known a-priori that the mean measures Λi are always supported on a fixed compact

set K ⊂ X , the vague topology is equivalent to the weak topology, which is in turn equivalent

to the Wasserstein topology and Λ̃i , like Λi itself, can be viewed as measurable mappings into

W2(K ).

4.3.3 Smoothing

Even when the computational complexity involved in calculating λ̃n is tractable, there is

another reason not to use it as an estimator for λ. If one has a-priori knowledge that λ is

smooth, it is often desirable to estimate it by a smooth measure. One way to achieve this would

be to apply some smoothing technique to λ̃n using, e.g., kernel density estimation. However,

unless the number of observed points from each measure is the same N1 = ·· · = Nn = N , λ̃n

will usually be concentrated on many points, essentially N1 +·· ·+Nn of them. In other words,

the Fréchet mean is concentrated on many more points than each of the measures Λ̃i , thus

potentially hindering its usefulness as a mean because it will not be a representative of the

sample.

This is most easily seen when X = R, in which case each Λ̃i is a discrete uniform measure

on points xi
1 < xi

2 < ·· · < xi
Ni

, where we assume for simplicity that the points are not repeated

(that is, that Λi is diffuse). If we now set Gi to be the distribution function of Λ̃i , then the

quantile function G−1
i is piecewise constant on each interval (k,k +1]/Ni with jumps at

G−1
i (k/Ni ) = xi

k , k = 1,2, . . . , Ni .

The Fréchet mean has quantile function G−1(u) = n−1∑G−1
i (u) and will have jumps at every

point of the form k/Ni for k ≤ Ni and i = 1, . . . ,n. In the worst case scenario, when no pair

from Ni has a common divisor, there will be(
n∑

i=1
Ni −1

)
+1 =

n∑
i=1

Ni −n +1

jumps for G−1, which is the number of points on which the Fréchet mean will be supported.

(All the G−1
i ’s have a jump at one which thus needs to be counted once rather than n times.)

By counting the number of redundancies in the constraints matrix of the linear program,

one can show that this is in general an upper bound on the number of support points of the

Fréchet mean.

An alternative approach is to first smooth each observation λ̃n and then calculate the Fréchet

mean. Since it is easy to bound the Wasserstein distances when dealing with convolutions, we

will employ kernel density estimation, although other smoothing approaches could be used
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as well.

To simplify the exposition we provide the technical details only when X =Rd , but a similar

construction will work when the dimension of X is infinite. Let ψ : Rd → (0,∞) be a continu-

ous, bounded, strictly positive isotropic density function with unit variance: ψ(x) =ψ1(‖x‖)

with ψ1 nondecreasing and∫
Rd

‖x‖2ψ(x)dx = 1 =
∫
Rd
ψ(x)dx.

(Besides the boundedness all these properties can be relaxed, and if X =R even boundedness

is not necessary.) A classical example for ψ is the standard Gaussian density in Rd . Define the

rescaled version ψσ(x) =σ−dψ(x/σ) for all σ> 0. We can then replace Λ̃i by a smooth proxy

Λ̃i ∗ψσ. If Λ̃i is a sum of Dirac masses at x1, . . . , xNi , then

Λ̃i ∗ψσ has density g (x) = 1

Ni

N j∑
j=1

ψσ(x −xi ).

If Ni = 0 one can either use λ(0) or λ(0) ∗ψσ; this event will have negligible probability anyway.

For the purpose of approximating Λ̃i , this convolution is an acceptable estimator, because as

was seen in the proof of Theorem 3.2.6,

W 2
2 (Λ̃i ,Λ̃i ∗ψσ) ≤σ2.

But the measure Λ̃i has a strictly positive density throughoutRd . If we know thatΛ is supported

on a convex compact K ⊂Rd , it is desirable to construct an estimator that has the same support

K . The first idea that comes to mind is to project Λ̃i ∗ψσ to K (see Proposition 3.5.5), as this will

further decrease the Wasserstein distance; but the resulting measure will then have positive

mass on the boundary of K , and will not be absolutely continuous. We will therefore use a

different strategy: eliminate all the mass outside K and redistribute it on K . The simplest way

to do this is to restrict Λ̃i ∗ψσ to K and renormalise the restriction to be a probability measure.

For technical reasons, it will be more convenient to bound the Wasserstein distance when

the restriction and renormalisation is done separately on each point of Λ̃i . This yields the

measure

Λ̂i = 1

Ni

Ni∑
j=1

δ{x j }∗ψσ

[δ{x j }∗ψσ](K )

∣∣∣∣
K

, (4.2)

It is most likely true that W 2
2 (Λ̃i ,Λ̂i ) ≤σ2 still holds; we show in Lemma 4.4.2 below that this

inequality holds up to a constant. It is apparent that Λ̂i is a continuous function of Λ̃i and σ;

in any case this is not particularly important because σ will vanish, so Λ̂i = Λ̃i asymptotically.
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Finally, the estimator λ̂n for λ is defined as the minimiser

F̂n(γ) = 1

2n

n∑
i=1

W 2
2 (Λ̂i ,γ), γ ∈W2(X ).

Since the measures Λ̂i are absolutely continuous, λ̂n is unique. We refer to λ̂n as the regu-

larised Fréchet–Wasserstein estimator.

In the case X =R, λ̂n can be constructed via averaging of quantile functions. Let Ĝi be the

distribution function of Λ̂i . Then λ̂n is the measure with quantile function

F−1
λ̂n

(u) = 1

n

n∑
i=1

Ĝ−1
i (u), u ∈ (0,1),

and disribution function

Fλ̂n
(x) = [F−1

λ̂n
]−1(x).

By construction, the Ĝi are continuous and strictly increasing, so the inverses are proper

inverses and one does not to use the right-continuous inverse as in Subsection 3.5.2 (p. 73).

If X = Rd and d ≥ 2, then there is no explicit expression for λ̂n , although it exists and is

unique. In Section 5.1 we present a steepest descent algorithm that approximately constructs

λ̂n by taking advantage of the differentiability properties of the Fréchet functional F̂n in

Subsection 3.5.5.

4.3.4 Estimation of warpings and registration maps

Once estimators Λ̂i , i = 1, . . . ,n and λ̂n are constructed, it is natural to estimate the map

Ti = tΛi

λ
and its inverse T −1

i = tλΛi
(when Λi are absolutely continuous; see the discussion after

Assumptions 4 below) by the plug-in estimators

T̂i = tΛ̂i

λ̂n
, T̂ −1

i = (T̂i )−1 = tλ̂n

Λ̂i
.

The latter, the registration maps, can then be used in order to register the points Πi via

Π̂(n)
i = T̂ −1

i #Π̃(n)
i =

[
T̂ −1

i ◦Ti

]
#Π(n)

i .

It is thus reasonable to expect that if T̂ −1
i is a good estimator, then its composition with Ti

should be close to the identity and Π̂i should be close to Πi .
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4.3.5 Unbiased estimation when X =R

In the same way Fréchet means extend the notion of mean to non-Hilbertian spaces, they also

extend the definition of unbiased estimators. Let H be a separable Hilbert space (or a convex

subset thereof) and suppose that θ̂ is a random element in H whose distribution μθ depends

on a parameter θ ∈ H . Then θ̂ is unbiased for θ if for all θ ∈ H

Eθθ̂ =
∫

H
x dμθ(x) = θ.

(We use the standard notation Eθg (θ̂) =∫
g (x)dμθ(x) in the sequel.) This is equivalent to

Eθ‖θ− θ̂‖2 ≤ Eθ‖γ− θ̂‖2, ∀θ,γ ∈ H .

In view of that, one can define unbiased estimators of λ ∈ W2 as measurable functions δ =
δ(Λ1, . . . ,Λn) for which

EλW 2
2 (λ,δ) ≤ EλW 2

2 (γ,δ), ∀γ,θ ∈W2.

This definition was introduced by Lehmann [62].

Unbiased estimators allow us to avoid the problem of over-registering (the so-called “pinching

effect"; Kneip & Ramsay [57, Section 2.4]; Marron et al. [64, p. 476]). An extreme example of

over-registration is if one “aligns" all the observed patterns into a single fixed point x0. The

registration will then seem “successful" in the sense of having no residual phase variation, but

the estimation is clearly biased because the points are not registered to the correct reference

measure. Thus, requiring the estimator to be unbiased is an alternative to penalising the

registration maps.

Due to the Hilbert space embedding of W2(R), it is possible to characterise unbiased estimators

in terms of a simple condition on their quantile functions. As a corollary, the Fréchet mean of

{Λ1, . . . ,Λn} (λn) is unbiased. Our regularised Fréchet–Wasserstein estimator λ̂n can then be

interpreted as approximately unbiased, since it approximates the unobservable λn .

Proposition 4.3.1 (unbiased estimators in W2(R)). Let Λ be a random measure in W2(R) with

finite Fréchet functional and let λ be the unique Fréchet mean of Λ (Theorem 3.5.3). An

estimator δ constructed as a function of a sample (Λ1, . . . ,Λn) is unbiased for λ if and only if the

left-continuous representatives (in L2(0,1)) satisfy EF−1
δ

(x) = F−1
λ

(x) for all x ∈ (0,1).

Proof of Proposition 4.3.1. The proof is straightforward from the definition: δ is unbiased if

and only if for all λ and all γ,

Eλ‖F−1
λ −F−1

δ ‖2
L2

≤ Eλ‖F−1
γ −F−1

δ ‖2
L2

,

which is equivalent to EλF−1
δ

= F−1
λ

. In other words, these two functions must equal almost

everywhere on (0,1), and their left-continuous representatives must equal everywhere (the
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fact that EλF−1
δ

has such a representative was established in Subsection 3.5.2).

To show that δ=λn is unbiased, we simply invoke Theorem 3.5.3 twice to see that

EF−1
δ = E

1

n

n∑
i=1

F−1
Λi

= EF−1
Λ = F−1

λ ,

which proves unbiasedness of δ.

4.4 Consistency

In functional data analysis, one typically assumes that the number of curves n as well as the

number of observed points m both diverge to infinity. An analogous framework for point

processes would similarly require the number of point processes n as well as the expected

number of points τ per processes to diverge. A technical complication arises, however, because

the mean measures do not suffice to characterise the distribution of the processes. Indeed, if

one is given a point processes Π with mean measure λ (not necessarily a probability measure),

and τ is an integer, there is no unique way to define a process Π(τ) with mean measure τλ. One

can define Π(τ) = τΠ, so that every point in Π will be counted τ times. Such a construction,

however, can never yield a consistent estimator of λ, even when τ→∞.

Another way to generate a point process with mean measure τλ is to take a superposition of τ

independent copies of Π. In symbols, this means

Π(τ) =Π1 +·· ·+Πτ,

with (Πi ) independent, each having the same distribution as Π. This superposition is the

analogue of an “iid" scheme that gives the possibility to use the law of large numbers. If τ is

not an integer, then this construction is not well-defined but can be made so by assuming that

the distribution of Π is infinitely divisible. The reader willing to assume that τ is always an

integer can safely skip to Subsection 4.4.1; all the main ideas are developed first for integer

values of τ and then extended to the general case.

A point process Π is infinitely divisible if for every integer m there exists a collection of m

independent and identically distributed Π(1/m)
i such that

Π=Π(1/m)
1 +·· ·+Π(1/m)

m in distribution.

If Π is infinitely divisible and τ= k/m is rational, then can define π(τ) using km independent

copies of Π(1/m):

Π(τ) =
km∑
i=1

Π(1/m)
i .

One then deals with the case of irrational τ via duality and continuity arguments, as follows.
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Define the Laplace functional of Π by

LΠ( f ) = E
[

e−Π f
]
= E

[
exp−

∫
X

f dΠ

]
, f : X →R+ Borel measurable.

The Laplace functional characterises the distribution of the point process, generalising the

notion of Laplace transform of a random variable or vector (Karr [56, Theorem 1.12]). The

expectation is of course finite, because f is a nonnegative function and Π is a nonnegative

measure. By definition, it translates convolutions into products. When Π=Π(1) is infinitely

divisible, the Laplace functional L1 of Π takes the form (Kallenberg [52, Chapter 6]; Karr [56,

Theorem 1.43])

L1( f ) = E
[

e−Π(1) f
]
= exp

[
−
∫

M+(X )
(1−e−μ f )dρ(μ)

]
for some ρ ∈ M+(M+(X )).

The Laplace functional of Π(τ) is Lτ( f ) = [L1( f )]τ for any rational τ, which simply amounts to

multiplying the measure ρ by the scalar τ. One can then do the same for an irrational τ, and

the resulting Laplace functional determines the distribution of Π(τ) for all τ> 0.

4.4.1 Consistent estimation of Fréchet means

We are now ready to define our asymptotic setup. The following assumptions will be made.

Notice that the Wasserstein geometry does not appear explicitly in these assumptions, but is

rather derived from them in view of Theorem 4.2.4.

Assumptions 4. Let K ⊂ Rd be a compact convex nonempty set, λ an absolutely continuous

probability measure on K and τn a sequence of positive numbers. Let Π be a point processes on

K with mean measure λ. Finally, define U = intK .

• For every n, let {Π(n)
1 , . . . ,Π(n)

n }∞n=1 be independent point processes, each having the same

distribution as a superposition of τn copies of Π.

• Let T be a random injective function on U (viewed as a random element in Cb(U ,U )) with

nonsingular derivative ∇T (x) ∈Rd×d for almost all x ∈U , that is uniformly continuous

and is a gradient of a convex function. Let {T1, . . . ,Tn} be independent and identically

distributed as T .

• For every x ∈U , assume that ET (x) = x.

• Assume that the collections {Tn}∞n=1 and {Π(n)
i }∞i≤n,n=1 are independent.

• Let Π̃(n)
i = Ti #Π(n)

i be the warped point processes, having conditional mean measures

Λi = Ti #λ= τ−1
n E

{
Π̃(n)

i

∣∣∣Ti

}
.

• Define Λ̂i by the smoothing procedure (4.2), using bandwidth σ(n)
i ∈ [0,1] (possibly ran-

dom).
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The dependence of the estimators on n will sometimes be tacit. But Λi does not depend on n.

By virtue of Theorem 4.2.4, λ is a Fréchet mean of the random measure Λ = T #λ. Unique-

ness of this Fréchet mean will follow from Proposition 3.5.8 if we show that Λ is absolutely

continuous with positive probability. This is indeed the case, since T is injective and has a

nonsingular Jacobian matrix; see Lemma 5.5.3 in Ambrosio, Gigli & Savaré [6]. The Jacobian

assumption can be relaxed when X = R, because Fréchet means are always unique in this

case by Theorem 3.5.3.

Notice that there is no assumption about the dependence between rows. Assumptions 4 thus

cover, in particular, two different scenarios:

• Full independence: here the point processes are independent across rows, that is, Π(n)
i

and Π(n+1)
i are also independent.

• Nested observations: here Π(n+1)
i includes the same points as Π(n)

i and additional points,

that is, Π(n+1)
i is a superposition of Π(n)

i and another point process distributed as (τn+1 −
τn)Π.

The full independence scenario is more difficult, because extra stochasticity is present; this is

analogous to the following fact: the strong law of large numbers holds as soon as E|X | <∞, but

if instead of a sequence we have a triangular array, then the requirement becomes EX 2 <∞
(this is the Hsu–Robbins–Erdös theorem; see Gut [45, Theorem 11.2]).

Needless to say, Assumptions 4 also encompass binomial processes when τn are integers, as

well as Poisson processes or, more generally, Poisson cluster processes.

We now state and prove the consistency result for the estimators of the conditional mean

measures Λi and the structural mean measure λ. This is a stronger version of Theorem 1 in

Panaretos & Zemel [70] where it was assumed that τn must diverge to infinity faster than logn.

Theorem 4.4.1 (consistency). If Assumptions 4 hold, σn = n−1∑n
i=1σ

(n)
i → 0 almost surely and

τn →∞ as n →∞, then:

1. The estimators Λ̂i defined by (4.2), constructed with bandwidth σ=σ(n)
i , are Wasserstein-

consistent for the conditional mean measures: for all i such that σ(n)
i

p→ 0

W2
(
Λ̂i ,Λi

) p−→ 0, as n →∞;

2. The regularised Fréchet–Wasserstein estimator of the structural mean measure (as de-

scribed in Section 4.3) is strongly Wasserstein-consistent,

W2(λ̂n ,λ)
a.s.−→ 0, as n →∞.
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Convergence in 1. holds almost surely under the additional conditions that
∑∞

n=1τ
−2
n <∞ and

E
[
Π(Rd )

]4 <∞. If σn → 0 only in probability, then convergence in 2. still holds in probability.

Theorem 4.4.1 still holds without smoothing (σn = 0). In that case, λ̂n = λ̃n is possibly not

unique, and the theorem should be interpreted in a set-valued sense (as in Proposition 2.9.8):

almost surely, any choice of minimisers λ̃n converges to λ as n →∞.

The preceding paragraph notwithstanding, we will usually assume that some smoothing is

present, in which case λ̂n is unique and absolutely continuous by Proposition 3.5.17. The

uniform Lipschitz bounds for the objective function show that if we restrict the relevant mea-

sures to be absolutely continuous, then λ̂n is a continuous function of (Λ̂1, . . . ,Λ̂n) and hence

λ̂n : (Ω,F ,P) → W2(K ) is measurable; this is again a minor issue because many arguments in

the proof hold for each ω ∈Ω separately. Thus, even if λ̂n is not measurable, the proof shows

that the convergence holds outer almost surely or in outer probability.

The first step in proving consistency is to show that the Wasserstein distance between the

unsmoothed and the smoothed estimators of Λi vanishes with the smoothing parameter. The

exact rate of decay will be important to later establish the rate of convergence of λ̂n to λ and is

determined next.

Lemma 4.4.2 (smoothing error). There exists a finite constant Cψ,K depending only on ψ and

on K such that

W 2
2

(
Λ̂i ,Λ̃i

)≤Cψ,K σ
2 if σ≤ 1. (4.3)

The constant Cψ,K is explicit. When X =R, a more refined construction allows to improve this

constant in some situations, see [70, Lemma 1].

Proof. The idea is that (4.2) is a sum of measures with mass 1/Ni that can be all sent to the

relevant point x j . This would have not been the case if the normalisation was carried out for

all the points simultaneously.

Denote the total number of points by Ni = Π̃i (Rd ), suppose that it is nonzero and let Ψ(A) =∫
Aψ(x)dx be the probability measure corresponding to the density ψ. For every y ∈ K

define μ̃y = δ{y} ∗ψσ and its restricted renormalised version μy = (1/μ̃y (K ))μ̃y |K . Then

Λ̂i = (1/Ni )
∑Ni

j=1μx j with Ni ≥ 1 and x j ∈ K (because Λi (K ) = 1).

A coupling (certainly not optimal, unless Ni = 1) of Λ̂i and Λ̃i = Π̃i /Ni can be constructed by

sending the 1/Ni mass of μx j to x j . This gives

W 2
2 (Λ̂i ,Λ̃i ) ≤ 1

Ni

Ni∑
j=1

W 2
2 (μx j ,δ{x j }) = 1

Ni

Ni∑
j=1

1

μ̃x j (K )

∫
K
‖x −x j ‖2ψσ(x −x j )dx.

A change of variables shows that each of the last displayed integrals is bounded by σ2, since ψ

111



Chapter 4. Phase variation and Fréchet means

was assumed to have unit variance and so ψσ has variance σ2. The proof will be complete if

we can find a lower bound for μ̃y (K ) that is uniform in σ and in y ∈ K . Clearly

μ̃y (K ) =
∫

K
ψσ(x − y)dx =

∫
(K−y)/σ

ψ(x)dx =Ψ

(
K − y

σ

)
.

Let us first eliminate σ. The set Ky = K − y is a convex set that includes the origin; it follows

that Ky ⊆ (1+ε)Ky for all ε> 0. Consequently Ky /σ⊇ Ky as long as σ≤ 1. Since the smoothing

parameter will anyway vanish, this restriction to small values of σ is not binding. Recalling

that ψ(x) =ψ1(‖x‖) with ψ1 nonincreasing and strictly positive, we find

Ψ

(
K − y

σ

)
≥Ψ(K − y) =

∫
K−y

ψ(x)dx ≥
∫

K−y
ψ1(dK )dx =ψ1(dK )LebK > 0.

We have again used the notation dK = sup{‖x − y‖ : x, y ∈ K } for the finite diameter of the

compact set K .

If we now define Cψ,K = [ψ1(dK )LebK ]−1 <∞, then putting everything together gives

W 2
2 (Λ̂i ,Λ̃i ) ≤ 1

Ni

Ni∑
j=1

W 2
2 (μx j ,δ{x j }) ≤Cψ,K σ

2 if σ≤ 1.

Finally, if Ni = 0, then by construction W2(Λ̂i ,Λ̃i ) = 0.

Here is an example: suppose that K = [0,∞)2 and y = 0. Then μ̃y (K ) = 1/4 for all σ> 0. But

actually W 2
2 (μy ,δy ) = W 2

2 (μ̃y ,δy ) =σ2 by the isotropy of ψ: this can be seen by “folding" each

quadrant onto the positive quadrant in R2. If now K is [0,1]2, then after this folding there is

still mass in the positive quadrant outside of K , so in fact W 2
2 (μy ,δy ) <σ2.

Proof of Theorem 4.4.1. Let us first show the convergence in probability of Λ̂i to Λi . Let N (n)
i =

Π(n)
i (X ) = Π̃(n)

i (X ) denote the total number of observed points. We may assume without loss

of generality that τn are integers: otherwise, we replace τn by  τn! and Λi by (τn/ τn!)Λi

which converges to Λi because the fraction τn/ τn!→ 1.

Then, Π(n)
i has the same distribution as the superposition of τn independent copies of Π, say

{P (n)
j }, and Π̃(n)

i has the same distribution as a superposition of {P̃ (n)
j }, independent copies of

Ti #Π which have mean measure Λi . Consequently, (e.g., Karr [56, Proposition 4.8])

1

τn
Π̃(n)

i
d= 1

τn

τn∑
j=1

P̃ (n)
j

n→Λi , in probability,

with ‘
n→’ denoting narrow convergence of measures. (The convergence will be almost surely if

P̃ (n+1)
j = P̃ (n)

j ; but otherwise the convergence is only in probability unless further conditions

are imposed).
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The proof of this result is just a conditional version of the empirical measure setting in Propo-

sition 3.2.5 with n replaced by τn : for any continuous bounded f : K →R,∫
K

f d
1

τn
Π̃(n)

i →
∫

K
f dΛi , in probability,

and one then finds a countable collection ( f j ) that suffices to conclude the narrow convergence.

In particular when f ≡ 1 we obtain N (n)
i /τn

p→ 1 and conclude from Slutsky’s theorem that

Π̃(n)
i /N (n)

i
n→Λi in probability. (4.4)

The narrow convergence is equivalent to Wasserstein convergence, since K is compact (Corol-

lary 3.2.2). Finally, by Lemma 4.4.2 and the triangle inequality

W2(Λ̂i ,Λi ) ≤ W2

(
Λi ,

Π̃(n)
i

N (n)
i

)
+W2

(
Π̃(n)

i

N (n)
i

,Λ̂i

)
≤ W2

(
Λi ,

Π̃(n)
i

N (n)
i

)
+
√

Cψ,K σ
(n)
i → 0,

because σ(n)
i → 0 as n →∞. This proves claim (1) in probability.

Let us now prove claim (2). Recall the definitions of the following functionals, defined on

W2(K ),

F (γ) = 1

2
EW 2

2 (Λ,γ);

Fn(γ) = 1

2n

n∑
i=1

W 2
2 (Λi ,γ);

F̃n(γ) = 1

2n

n∑
i=1

W 2
2 (Λ̃i ,γ), Λ̃i = Π̃(n)

i

N (n)
i

or λ(0) if N (n)
i = 0;

F̂n(γ) = 1

2n

n∑
i=1

W 2
2 (Λ̂i ,γ), Λ̂i =λ(0) if N (n)

i = 0.

Assumptions 4 imply that λ is the unique minimiser of F , and we wish to show that any se-

quences of minimisers λ̂n of F̂n must converge to λ. To this end we shall bound the differences

between any two consecutive functionals uniformly in γ. This is possible because all the

relevant measures lie in a bounded set of the Wasserstein space W2(Rd ). Indeed, if μ, ν and ρ

are probability measures on K , then

W2(μ,ν) ≤
√

sup
π∈P (K 2)

∫
K 2

‖x − y‖2 dπ(x, y) ≤
√

sup
x,y∈K

‖x − y‖2 = dK <∞; (4.5)

|W 2
2 (μ,ρ)−W 2

2 (ν,ρ)| = |W2(μ,ρ)+W2(ν,ρ)||W2(μ,ρ)−W2(ν,ρ)| ≤ 2dK W2(μ,ν), (4.6)

so that

sup
γ∈W2(K )

|F̂n(γ)− F̃n(γ)| ≤ dK

n

n∑
i=1

W2
(
Λ̂i ,Λ̃i

)≤ dK

√
Cψ,K

1

n

n∑
i=1

σ(n)
i
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by Lemma 4.4.2. The right-hand side vanishes by our assumptions.

Similarly,

sup
γ∈W2(K )

|F̃n(γ)−Fn(γ)| ≤ 1

n

n∑
i=1

W2
(
Λi ,Λ̃i

)= 1

n

n∑
i=1

Xni = X n .

Now Xni is a function of Ti and Π(n)
i , so by construction (Xni )n

i=1 are independent and identi-

cally distributed. Therefore EX n = EXn1. Since Xni ∈ [0,dK ] by (4.5) and Xni → 0 in probability

by (4.4), we have EX n → 0 by the bounded convergence theorem. In general L1 convergence

does not imply almost sure convergence, but here we deal with averages so the latter can

be established. The centred versions Yni = Xni −EXni are again bounded, and repeating the

proof of the fourth moment law of large numbers (Durrett [33, Theorem 2.3.5]), we have

P

((
X n −EX n

)4 > ε

)
=P(Yn

4 > ε) ≤ nE
[
Y 4

n1

]+3n(n −1)E
[
Y 2

n1

]
ε4n4 ≤ 3max(d 4

K ,d 2
K )

ε4n2 .

Put ε= n−1/5 and apply the Borel–Cantelli lemma while observing that EX n → 0 to conclude

|X n | ≤ |X n −EX n |+ |EX n |→ 0 almost surely.

Uniform convergence of Fn to F comes from a combination of the uniform Lipschitz bound

(4.6), the strong law of large numbers and compactness of W2(K ) (Corollary 3.2.4). For each

γ ∈W2,

Fn(γ)
a.s.−→ F (γ),

Fix ε> 0, invoke the total boundedness of W2(K ) to find a finite ε-cover γ1, . . . ,γm , m = m(ε).

By virtue of (4.6), Fn and F are uniformly dK -Lipschitz. For any γ ∈W2(K ) choose j such that

W2(γ,γ j ) < ε. Then

|Fn(γ)−F (γ)| ≤ |Fn(γ)−Fn(γ j )|+ |Fn(γ j )−F (γ j )|+ |F (γ j )−F (γ)|
≤ dK W2(γ,γ j )+|Fn(γ j )−F (γ j )|+dK W2(γ,γ j )

≤ 2dK ε+|Fn(γ j )−F (γ j )|.

Thus almost surely

limsup
n→∞

sup
γ∈W2(K )

|Fn(γ)−F (γ)| ≤ 2dK ε.

Since ε> 0 is arbitrary, we conclude that

sup
γ∈W2(K )

|F̂n(γ)−F (γ)|→ 0, almost surely.

Convergence of minimisers is now standard. If a subsequence of λ̂n converges to μ, then

the uniform convergence of F̂n to F and the continuity of F imply that F̂nk (λ̂nk ) → F (μ). The
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definition of λ̂n gives F̂nk (λ̂nk ) ≤ F̂nk (λ) → F (λ). Consequently, F (μ) ≤ F (λ) and it must be that

μ=λ because λ is the unique minimiser of F . Since λ̂n is a sequence in the compact set W2(K ),

this means that W2(λ̂n ,λ) → 0 almost surely.

Lastly, we prove convergence almost surely in (1) under the more stringent assumptions on τn

and on Π, mentioned in the end of the theorem’s statement. Let us begin by showing that for

all a = (a1, . . . , ad ) ∈Rd ,

P

(
Π̃(n)

i ((−∞, a])

τn
−Λi ((−∞, a]) → 0

)
= 1.

To simplify we shall write a instead of (−∞, a] henceforth. Recall that P̃ (n)
j are generic point

processes, distributed as Ti #Π and independent across j . We may assume that they are

constructed as Ti #P (n)
j with P (n)

j distributed as Π.

Define the random variables

Xn j = P̃ (n)
j (a)−Λi (a), j = 1, . . . ,τn ; Sn =

τn∑
j=1

Xn j .

The idea is now to use the fourth-moment law of large numbers (Durrett [33, Theorem 2.3.5])

conditional on Λi . Here is an informal argument. Since Λi = Ti #λ, conditioning on Λi is

equivalent to conditioning on Ti . The random variables Xn j have conditional mean zero by

construction; and since Ti and {Π(n)
i } are independent, Xn j are also conditionally independent

across j . It follows that

E[S4
n |Ti ] =

τn∑
j=1

E[X 4
n j |Ti ]+∑

j<l
E[X 2

n j X 2
nl |Ti ] = τnE[X 4

11|Ti ]+3τn(τn −1)E[X11X12|Ti ].

To see this formally, we set k = τn and define Φ : (M(U ))k ×Cb(U ,K ) →R+ by

Φ(p1, . . . , pk , f ) =
[

k∑
j=1

f #p j (a)− f #λ(a)

]4

, f ∈Cb(U ,K ); p j ∈ M(U ).

(Recall that M(U ) is the collection of finite Borel measures on U endowed with the topology

of narrow convergence.) Then S4
n = Φ(P (n)

1 , . . . ,P (n)
k ,Ti ) and we claim that Φ is continuous

(hence measurable). Indeed, if Vn are random vectors that converge narrowly to V and fn

are continuous functions that converge uniformly to f , then fn(Vn) → f (V ) narrowly by

the continuous mapping theorem and Slutsky’s theorem. Another application of Slutsky’s

theorem then shows that Φ is continuous. Finally, Φ is integrable because 0 ≤ f #λ(a) ≤ 1 and

E[Ti #P (n)
j (a)]4 ≤ E[Π(Rd )]4 <∞ by the hypothesis.

Since {P (n)
j } and Ti are independent, one can evaluate the conditional expectation E[S4

n |Ti ] by
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taking the expectation with respect to P . That is, if we define g : Cb(U ,K ) →R+ by

g ( f ) = EP

[
Φ(P (n)

1 , . . . ,P (n)
k , f )

]
=
∫

[M(U )]k
Φ(p1, . . . , pk , f )d(p1, . . . , pk ), f ∈Cb(U ,K ),

then Lemma 6.2.1 in Durrett [33] gives E[S4
n |Ti ] = g (Ti ).

The same idea shows that for each j ,

E[Xn j |Ti ] =
∫

M(U )
Ti #p j (a)dp j −Ti #λ(a) =λ(T −1

i (a))−λ(T −1
i (a)) = 0.

This provides the formal justification for the expression for E[S4
n |Ti ]. If we now take the

expectation with respect to Ti and apply Markov’s inequality, we obtain

P

[(
Sn

τn

)4

> ε

]
≤ E[S4

n]

ε4τ4
n

= τnE[X 4
11]+3τn(τn −1)E[X 2

11X 2
12]

ε4τ4
n

.

Since the expectations are finite, the right-hand side is bounded by a constant times τ−2
n ,

which is a convergent sum by the hypothesis. The result now follows from the Borel–Cantelli

lemma.

Now that we have convergence for a fixed a ∈Rd , we use a standard approximation by rationals

to obtain the convergence for all a ∈Rd . Indeed, we have

P

(
Π̃(n)

i (a)

τn
−Λi (a) → 0 for any a ∈Qd

)
= 1.

If a ∈Rd is arbitrary, then we can find rational sequences ak ↗ a ↙ bk that converge mono-

tonically coordinatewise to a. We can then use the approximations

Π̃(n)
i (a)

τn
−Λi (a) ≤ Π̃(n)

i (bk )

τn
−Λi (bk )+Λi (bk )−Λi (a);

Π̃(n)
i (a)

τn
−Λi (a) ≥ Π̃(n)

i (ak )

τn
−Λi (ak )+Λi (ak )−Λi (a).

The resulting errors

Λi (bk )−Λi (a) =Λi ((−∞,bk ]\ (−∞, a]) and Λi (ak )−Λi (a) =−Λi ((−∞, a]\ (−∞, ak ])

both vanish as k →∞: the first set converges monotonically to the empty set; the second one

does not converge to empty set but rather to (−∞, a] \ (−∞, a), which is a union of d rays of

dimension d −1. When a is a continuity point of Λi , this is still a Λi -null set. We may therefore

conclude that with probability one

Π̃(n)
i (a)

τn
−Λi (a) → 0, for all a ∈Rd continuity point of Λi .
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4.4. Consistency

Taking a =∞, we see that τn/N (n)
i → 1 almost surely, so that

Π̃(n)
i

N (n)
i

→Λi narrowly.

Since all these measures are concentrated on the compact set K ⊂Rd , the convergence holds

in Wasserstein distance too. Finally,

W2(Λ̂i ,Λi ) ≤ W2(Λ̂i ,Π̃(n)
i /N (n)

i )+W2(Π̃(n)
i /N (N )

i ,Λi ) → 0, n →∞,

by Lemma 4.4.2 if σ(n)
i → 0.

4.4.2 Consistency of warp functions and inverses

We next discuss the consistency of the warp and registration function estimators. These are

key elements in order to align the observed point patterns Π̃i . Recall that we have consistent

estimators Λ̂i for Λi and λ̂n for λ. Then Ti = tΛi

λ
is estimated by tΛ̂i

λ̂n
and T −1

i is estimated by

tλ̂n

Λ̂i
. We will make the following extra assumptions that make the statements more transparent

(otherwise one needs to replace K with the set of Lebesgue points of the supports of λ and Λi ).

Assumptions 5 (strictly positive measures). In addition to Assumptions 4 suppose that:

1. λ has a positive density on K (equivalently, suppλ= K );

2. T is almost surely surjective on U = intK (thus a homeomorhpism of U ).

As a consequence suppΛ= supp(T #λ) = T (suppλ) = K almost surely.

Theorem 4.4.3 (consistency of optimal maps). Let Assumptions 5 be satisfied in addition to the

hypotheses of Theorem 4.4.1. Then for any i such that σ(n)
i

p→ 0 and any compact set S ⊆ intK ,

sup
x∈S

‖T̂ −1
i (x)−T −1

i (x)‖ p→ 0, sup
x∈S

‖T̂i (x)−Ti (x)‖ p→ 0.

Almost sure convergence can be obtained under the same provisions made at the end of the

statement of Theorem 4.4.1.

A few technical remarks are in order. First and foremost, it is not clear that the two suprema

are measurable. Even though Ti and T −1
i are random elements in Cb(U ,Rd ), their estimators

are only defined in an L2 sense. The proof of Theorem 4.4.3 is done ω-wise. That is, for any ω

in the probability space such that Theorem 4.4.1 holds, the two suprema vanish as n →∞. In

other words, the convergence holds in outer probability or outer almost surely.

Secondly, assuming positive smoothing, the random measures Λ̂i are smooth with densities

bounded below on K , so T̂ −1
i are defined on the whole of U (possibly as set-valued functions
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on a Λi -null set). But the only known regularity result for λ̂n is an upper bound on its density

(Proposition 3.5.17), so it is unclear what is its support and consequently what is the domain

of definition of T̂i .

Lastly, when the smoothing parameter σ is zero, T̂i and T̂ −1
i are not defined. Nevertheless,

theorem 4.4.3 still holds in the set-valued formulation of Proposition 2.9.11, of which it is a

rather simple corollary:

Proof of Theorem 4.4.3. The proof simply amounts to setting up the scene in order to apply

Proposition 2.9.11 of stability of optimal maps. We define

μn = Λ̂i ; νn = λ̂n ; μ=Λi ; ν=λ; un = T̂ −1
i ; u = T −1

i ,

and verify the conditions of the proposition. The narrow convergence of μn to μ and νn

to ν is the conclusion of Theorem 4.4.1; the finiteness is apparent because K is compact

and the uniqueness follows from the assumed absolute continuity of Λi . Since in addition

T −1
i is uniquely defined on U = intK which is an open convex set, the restrictions on Ω in

Proposition 2.9.11 are redundant. Uniform convergence of T̂i to Ti is proven in the same

way.

Corollary 4.4.4 (consistency of point pattern registration). For any i such that σ(n)
i

p→ 0,

W2

⎛⎝ Π̂(n)
i

N (n)
i

,
Π(n)

i

N (n)
i

⎞⎠ p→ 0.

The division by the number of observed points ensures that the resulting measures are proba-

bility measures; the relevant information is contained in the point patterns themselves, which

is invariant under this normalisation.

Proof. Since Π̂(n)
i = T̂ −1

i ◦ Ti #Π(n)
i , we have the upper bound on the squared Wasserstein

distance:∫
K
‖T̂ −1

i (Ti (x))−x‖2 d
Π(n)

i

N (n)
i

,

and this is well-defined (that is, N (n)
i > 0) almost surely for n large enough by Lemma 4.6.1. Fix

a compact Ω⊆ intK and split the integral to Ω and its complement. Then

∫
K \Ω

‖T̂ −1
i (Ti (x))−x‖2 d

Π(n)
i

N (n)
i

≤ d 2
K

Π(n)
i (K \Ω)

τn

τn

N (n)
i

as→ d 2
K λ(K \Ω),

by the law of large numbers. By writing intK as a countable union of compact sets (and since

λ is absolutely continuous), this can be made arbitrarily small by choice of Ω.
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We can easily bound the integral on Ω itself by

∫
Ω
‖T̂ −1

i (Ti (x))−x‖2 d
Π(n)

i

N (n)
i

≤ sup
x∈Ω

‖T̂ −1
i (Ti (x))−x‖2 = sup

y∈Ti (Ω)
‖T̂ −1

i (y)−T −1
i (y)‖2.

But Ti (Ω) is a compact subset of U = intK , because Ti ∈ Cb(U ,U ). The right-hand side

therefore vanishes as n →∞ by Theorem 4.4.3, and this completes the proof.

We conclude with a discussion on possible extensions pertaining to the boundary of K .

Indeed, stronger statements can be made when we can control the behaviour at the boundary

of K . For example, when X =R, K = [a,b] and the construction guarantees that T̂ −1
i (a) = a

and 8T −1
i (b) = b, because in the one-dimensional case we do know that the Fréchet mean λ̂n

is strictly positive on K . Consequently, the convergence in Theorem 4.4.3 actually holds on

the whole of K . This can also be seen in elementary ways by properties of nondecreasing

functions on the real line [70].

The interpretation of this property when d = 1 in terms of the set-valued framework is more

propitious for extensions to multivariate setups. Let u be the set-valued function represented

by T −1
i . If x = b ∈ ∂K , then u(x) is a subset of the ray [b,∞) (because u is nondecreasing and

u(z) → b as z ↗ b). In other words, there is a unique y ∈ K that can be an element of u(x),

namely y = b. The same thing happens at x = a, which is the only other point of the boundary

of K .

Now suppose that X =Rd and u is as above. Assume that for each x ∈ ∂K , u(x)∩K contains

exactly one element y . Let xn be a sequence in U that converges to x ∈ ∂K . If yn ∈ u(xn) and

yn → y , then it is not difficult to see that y ∈ u(x) (this property is called upper semicontinuity

of set-valued functions and proven in Alberti & Ambrosio [3, Corollary 1.3]). Since yn must be

in K , it follows that they must converge to y . The same convergence holds when yn ∈ un(xn),

where un is represented by T̂ −1
i . In other words, we have extended the uniform convergence

on compact subsets of U to uniform convergence on U itself.

Finally, for Corollary 4.4.4 we have assumed that Ti (x) ∈U for all x ∈U . Let us see two sufficient

conditions for this to be a consequence rather than an assumption: one in terms of Ti , the

other in terms of the geometry of K . What we do know is that Ti (x) ∈ K for all x ∈U and it is of

interest to see whether this property suffices. Suppose that y = Ti (x) ∈ ∂K for some x ∈ intK .

By the Hahn–Banach theorem there exists α ∈Rd \ {0} with
〈

y,α
〉≥ sup〈K ,α〉. Let x ′ = x + tα

for t > 0 small enough such that x ′ ∈U . Then y ′ = Ti (x ′) ∈ K , so that

0 ≤ 〈
y ′ − y , x ′ −x

〉= t
〈

y ′ − y ,α
〉

.

One way to obtain a contradiction is to assume that Ti is strictly monotone on U ; and this

happens when the convex potential of Ti is strictly convex on U .
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Another way is to assume that α separates y from K strictly, in the sense that〈
y,α

〉> 〈
y ′,α

〉
, y ′ ∈ K \ {y}.

When such a strict separator exists (and y ∈ K ), we say that y is an exposed point of K .

When this is the case, the inequality 0 ≤ t
〈

y ′ − y ,α
〉

entails y ′ = y , because t > 0. This is

a contradiction to the injectivity of Ti . Hence when any boundary point of K is exposed,

Ti must map U into U . Examples for such K include the unit ball or any ellipsoid in Rd

and more generally, when it can be written as ∂K = {x : ϕK (x) = 0}, for some strictly convex

function ϕK . Indeed, if α creates a supporting hyperplane to K at y and
〈
α, y

〉= 〈
α, y ′〉 for

y �= y ′, then as ϕK is strictly convex on the line segment [y, y ′], it is impossible that y ′ ∈ K

without the hyperplane intersecting the interior of K . Although this condition excludes some

interesting cases, perhaps most prominently polyhedral sets such as K = [0,1]d , such sets can

be approximated by convex sets that do satisfy it (Krantz [59, Proposition 1.12]).

4.5 Illustrative examples

In this section we illustrate the estimation framework put forth in this chapter by considering

an example of a structural mean λ with a bimodal density on the real line. The unwarped

point patterns Π originate from Poisson processes with mean measure λ and, consequently,

the warped points Π̃ are Cox processes (see Subsection 4.1.2). Another scenario involving

triangular densities can be found in Panaretos & Zemel [70].

4.5.1 Explicit classes of warp maps

As a first step we introduce a class of random warp maps satisfying Assumptions 3, that is,

increasing maps that have as mean the identity function. The construction is a mixture version

of similar maps considered by Wang & Gasser in [91, 92].

For any integer k define ζk : [0,1] → [0,1] by

ζ0(x) = x, ζk (x) = x − sin(πkx)

|k|π , k ∈Z\ {0}. (4.7)

Clearly ζk (0) = 0, ζk (1) = 1 and ζk is smooth and strictly increasing for all k. Figure 4.4(a)

plots ζk for k =−3, . . . ,3. To make ζk a random function we let k be an integer-valued random

variable. If the latter is symmetric, then we have

E [ζk (x)] = x, x ∈ [0,1].

By means of mixtures, we replace this discrete family by a continuous one: let J > 1 be

an integer and V = (V1, . . . ,VJ ) be a random vector following the flat Dirichlet distribution

(uniform on the set of nonnegative vectors with v1 + ·· · + v J = 1). Take independently k j
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Figure 4.4: (a) The functions {ζ−3, . . . ,ζ3}; (b) Realisations of T defined by (4.8) with J = 2 and
k j symmetrisations of Poisson random variables with mean 3; (c) Realisations of T defined by
(4.8) with J = 10 and k j as in (b).

following the same distribution as k and define

T (x) =
J∑

j=1
Vjζk j (x). (4.8)

Since Vj is positive, T is increasing and as (Vj ) sums up to unity T has mean identity. Re-

alisations of these warp functions are given in Figures 4.4(b) and 4.4(c) for J = 2 and J = 10

respectively. The parameters (k j ) were chosen as symmetrised Poisson random variables:

each k j has the law of X Y with X Poisson with mean 3 and P(Y = 1) = P(Y = −1) = 1/2 for

Y and X independent. We see that when J = 10 is large, the function T deviates only mildly

from the identity, since a law of large numbers begins to take effect. In contrast, J = 2 yields

functions that are quite different from the identity. Thus, it can be said that the parameter J

controls the variance of the random warp function T .

4.5.2 Bimodal Cox Processes

Let the structural mean measure λ be a mixture of a bimodal Gaussian distribution (restricted

to K = [−16,16]) and a beta background on the interval [−12,12], so that mass is added at

the centre of K but not near the boundary. In symbols this is given as follows. Let ϕ be the

standard Gaussian density and let βα,β denote the density of a the beta distribution with

parameters α and β. Then λ is chosen as the measure with density

f (x) = 1−ε

2
[ϕ(x −8)+ϕ(x +8)]+ ε

24
β1.5,1.5

(
x +12

24

)
, x ∈ [−16,16], (4.9)

where ε ∈ [0,1] is the weight of the beta background. (We ignore the loss of a negligible

amount of mass due to the restriction of the Gaussians to [−16,16].) Plots of the density and

distribution functions are given in Figure 4.5.
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Figure 4.5: Density and distribution functions corresponding to (4.9) with ε= 0 and ε= 0.15.

The main criterion for the quality of our regularised Fréchet–Wasserstein estimator will be

its success in discerning the two modes at ±8; these will be smeared by the phase variation

arising from the warp functions.

We next simulated 30 independent Poisson processes with mean measure λ, ε= 0.1 and total

intensity (expected number of points) τ= 93. In addition, we generated warp functions as in

(4.8) but rescaled to [−16,16]; that is, having the same law as the functions

32T

(
x +16

32

)
−16

from K to K . These cause rather violent phase variation, as can be seen by the plots of

the densities and distribution functions of the conditional measures Λ= T #λ presented in

Figures 4.6(a) and 4.6(b); the warped points themselves are displayed in Figure 4.6(c).

Using these warped point patterns, we construct the regularised Fréchet–Wasserstein estimator

employing the procedure described in Section 4.3. Each Π̃i was smoothed with a Gaussian

kernel and bandwidth chosen by unbiased cross validation. We deviate slightly from the recipe

presented in Section 4.3 by not restricting the resulting estimates to the interval [−16,16],

but this has no essential effect on the finite sample performance. The regularised Fréchet–

Wasserstein estimator λ̂n serves as the estimator of the structural mean λ and is shown in

Figure 4.7(a). It is contrasted with λ at the level of distribution functions, as well as with

the empirical arithmetic mean; the latter, the naive estimator, is calculated by ignoring the

warping and simply averaging linearly the (smoothed) empirical distribution functions across

the observations. We notice that λ̂n is rather successful at locating the two modes of λ, in

contrast with the naive estimator that is more diffuse (the distribution function increases

approximately linearly, suggesting a nearly constant density instead of the correct bimodal

one).

Estimators of the warp maps T̂i , depicted in Figure 4.7(b), and their inverses are defined as

the optimal maps between λ̂n and the estimated conditional mean measures, as explained

in Subsection 4.3.4. Then we register the point patterns by applying to them the inverse

estimators T̂ −1
i (Figure 4.8). Figure 4.7(c) gives two kernel estimators of the density of λ

constructed from a superposition of all the warped points and all the registered ones. Notice
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4.5. Illustrative examples
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(c)

Figure 4.6: (a) 30 warped bimodal densities, with density of λ given by (4.9) in solid black; (b)
Their corresponding distribution functions, with that of λ in solid black; (c) 30 Cox processes,
constructed as warped versions of Poisson processes with mean intensity 93 f using as warp
functions the rescaling to [−16.16] of (4.8).
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Figure 4.7: (a) Comparison between the the regularised Fréchet–Wasserstein estimator, the
empirical arithmetic mean, and the true distribution function, including residual curves
centred at y = 3/4; (b) The estimated warp functions; (c) Kernel estimates of the density
function f of the structural mean, based on the warped and registered point patterns.
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Figure 4.8: Bimodal Cox processes: (a) The observed warped point processes; (b) The unob-
served original point processes; (c) The registered point processes.

that the estimator that uses the registered points is much more successful than the one using

the warped ones in discerning the two density peaks. This is not surprising after a brief look at

Figure 4.8, where the unwarped, warped and registered points are displayed. Indeed, there is

very high concentration of registered points around the true location of the peaks, ±8. This is

not the case for the warped points because of the phase variation that translates the centres of

concentration for each individual observation. It is important to remark that the fluctuations

in the density estimator in Figure 4.7(c) are not related to the registration procedure, and

could be reduced by a better choice of bandwidth (note that our procedure does not attempt

to estimate the density, but rather, the distribution function).

Figure 4.9 presents a superposition of the regularised Fréchet–Wasserstein estimators for 20

independent replications of the experiment, contrasted with a similar superposition for the

naive estimator. The latter is clearly seen to be biased around the two peaks, while the regu-

larised Fréchet–Wasserstein seems approximately unbiased, despite presenting fluctuations.

It always captures the bimodal nature of the density, as is seen from the two clear elbows in

each realisation.

To illustrate the consistency of the regularised Fréchet–Wasserstein estimator λ̂n for λ as

shown in Theorem 4.4.1, we let the number of processes n as well as the expected number of

observed point per process τ to vary. Figures 4.10 and 4.11 show the sampling variation of λ̂n

for different values of n and τ. We observe that as either of these increases, the realisations λ̂n

indeed approach λ. The figures suggest that, in this scenario, the amplitude variation plays a

stronger role than the phase variation, as the effect of τ is more substantial.

4.5.3 Effect of the smoothing parameter

In order to work with measures of strictly positive density, the observed point patterns have

been smoothed using a kernel function. This necessarily incurs an additional bias that depends
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4.5. Illustrative examples
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Figure 4.9: (a) Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and the
true mean measure λ for 20 independent replications of the experiment; (b) Sampling varia-
tion of the arithmetic mean, and the true mean measure λ for the same 20 replications; (c)
Superposition of (a) and (b). For ease of comparison all three panels include residual curves
centred at y = 3/4.
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Figure 4.10: Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and the true
mean measure λ for 20 independent replications of the experiment, with ε = 0 and n = 30.
Left: τ= 43; middle: τ= 93; right: τ= 143. For ease of comparison all three panels include
residual curves centred at y = 3/4.
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Figure 4.11: Sampling variation of the regularised Fréchet–Wasserstein mean λ̂n and the true
mean measure λ for 20 independent replications of the experiment, with ε= 0 and τ= 93. Left:
n = 30; middle: n = 50; right: n = 70. For ease of comparison all three panels include residual
curves centred at y = 3/4.

125



Chapter 4. Phase variation and Fréchet means

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−16 −12 −8 −4 0 4 8 12 16

true
0.1
0.3
1
3
5

Figure 4.12: Regularised Fréchet–Wasserstein mean as a function of the smoothing parameter
multiplier s, including residual curves. Here n = 30 and τ= 143.
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Figure 4.13: Registered point processes as a function of the smoothing parameter multiplier s.
Left: s = 0.1; middle: s = 1; right: s = 3. Here n = 30 and τ= 43.

on the bandwidth σi . Our asymptotic results (Theorem 4.4.1) guarantee the consistency of

our estimators, in particular the regularised Fréchet–Wasserstein estimator λ̂n , provided that

maxn
i=1σi → 0. In our simulations, we choose σi in a data-driven way by employing unbiased

cross validation. To gauge for the effect of the smoothing, we carry out the same estimation

procedure but with σi multiplied by a parameter s. Figure 4.12 presents the distribution

function of λ̂n as a function of s. Interestingly, the curves are nearly identical as long as s ≤ 1,

whereas when s > 1, the bias becomes more substantial.

These findings are reaffirmed in Figure 4.13, that show the registered point processes again

as a function of s. We see that only minor differences are present as s varies from 0.1 to 1,

for example in the grey (8), black (17) and green (19) processes. When s = 3, the distortion

becomes quite more substantial. This phenomenon repeats itself across all combinations of

n, τ and s tested.
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4.6. Further results on the real line

4.6 Further results on the real line

4.6.1 Convergence rates and a central limit theorem

Since the conditional mean measures Λi are discretely observed, the rate of convergence of

our estimators will be affected by the rate at which the number of observed points per process

N (n)
i increases to infinity. The latter is controlled by the next lemma, which is in fact valid for

any complete separable metric space X .

Lemma 4.6.1 (number of points grows linearly). Let N (n)
i =Π(n)

i (X ) denote the total number

of observed points. If τn/logn →∞, then there exists a constant CΠ > 0, depending only on the

distribution of Π, such that almost surely

liminf
n→∞

min1≤i≤n N (n)
i

τn
≥CΠ.

In particular, there are no empty point processes, so the normalisation is well-defined. If Π is a

Poisson process, then we have the more precise result

lim
n→∞

min1≤i≤n N (n)
i

τn
= 1 almost surely.

Remark 10. One can also show that the limit superior of the same quantity is bounded by a

constant C ′
Π. If τn/logn is bounded below, then the same result holds but with worse constants.

If only τn →∞, then the result holds for each i separately but in probability.

Proof. If Π is a binomial process (i.e. Λ̃i is the empirical measure), then N (n)
i = τn for all i and

all n and there is nothing to prove.

Let us begin with the Poisson case, in which case the argument is more transparent. In this

case N (n)
1 , . . . , N (n)

n are independent Poisson random variables with parameter τn . We can then

use a Chernoff bound as follows: if N has a Poisson(τ) distribution, then for any c > 1 and any

t ≥ 0,

P(N ≤ τ/c) =P(e−N t ≥ e−τt/c ) ≤ Ee−N t

e−τt/c
= exp

[
τ

(
e−t + t

c
−1

)]
.

The bound is optimised when t = logc, yielding

P(N ≤ τ/c) = exp−τα, α=α(c) = c−1[c −1− logc] > 0.

Since τn → ∞, this in particular shows that the probability that N (n)
i /τn < 1/c vanishes as

n →∞.
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Chapter 4. Phase variation and Fréchet means

By Bonferroni’s inequality, and since N (n)
i have the same distribution,

P

(
min

1≤i≤n
N (n)

i ≤ τn

c

)
≤ nP

(
N (n)

1 ≤ τn

c

)
≤ n exp[−α(c)τn].

If τn/logn → ∞ then for n large, the expression in the exponent is smaller than −3logn.

Summation over n of the probability on the left-hand side is therefore convergent, and the

Borel–Cantelli lemma gives

liminf
n→∞

min1≤i≤n N (n)
i

τn
≥ 1 almost surely.

One then shows the reverse inequalities by analogous calculations.

When Π is no longer Poisson, we replace the above argument with a Chernoff bound on

binomial distributions, using a very crude bound.

Denote by p the probability that Π has no points. If τ is an integer, then N (n)
i is a sum of

independent integer-valued random variables Xi . Since Xi is always an integer, we have

the lower bound Xi ≥ 1{Xi ≥ 1}. Thus N (n)
i is stochastically larger than a random variable

N ∼ B(τn ,1−p). Set q = 1−p and use the Chernoff bound as follows: for any t ≥ 0

P
(
N ≤ τq

c

)
=P

(
exp(−N t ) ≥ exp

(
−t

τq

c

))
≤ Eexp(−N t )exp

(
t
τq

c

)
=
[

sq/c
(
1−q + q

s

)]τ
,

where s = et ≥ 1. The bound is optimised when s = (c −q)/(1−q) > 1, and we obtain

P
(
N (n)

i ≤ τn q/c
)
≤βτn , β=β(q,c) = c

(
(1−q)/(c −q)

)1−q/c < 1.

One then concludes as before that if τn/logn →∞, then almost surely

liminf
n→∞

min1≤i≤n N (n)
i

τn
≥ 1−p.

Finally, we treat the case where τn are not integers. We claim that in any case, the probability

that N (n)
1 = 0 is pτn . Indeed, recall that the Laplace functional of Π(n)

1 is

f �→ Ee−Π(n)
1 f = [LΠ( f )]τn =

[
Ee−Π f

]τn
, f : X →R+.

By the bounded convergence, we may recover the zero probabilities by taking f ≡ m to be a

constant function:

P(N (n)
i = 0) = lim

m→∞Ee−mN (n)
i = lim

m→∞[LΠ(m)]τn = lim
m→∞[Ee−mΠ(X )]τn = pτn .

By infinite divisibility, N (n)
i has the same law as the sum of  τn! (the largest integer not larger

than τn) independent integer valued random variables with zero probability p ′ = pτn / τn! ≤ p.
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4.6. Further results on the real line

The same argument then gives

liminf
n→∞

min1≤i≤n N (n)
i

 τn! ≥ 1−p,

and as τn →∞, we may replace  τn! by τn , which completes the proof.

With Lemma 4.6.1 under our belt we can replace terms of the order mini N (n)
i by the more

transparent order τn . As in the consistency proof, the idea is to write

F − F̂n = (F −Fn)+ (Fn − F̃n)+ (F̃n − F̂n)

and control each term separately. The first term is corresponds to the phase variation, and

comes from the approximation of the theoretical expectation F by a sample mean Fn . The

second term is associated with the amplitude variation resulting from observing Λi discretely.

The third term can be viewed as the bias incurred by the smoothing procedure. Accordingly,

the rate at which λ̂n converges to λ is a sum of three separate terms. We recall the standard OP

terminology: if Xn and Yn are random variables, then Xn = OP(Yn) means that the sequence

(Xn/Yn) is bounded in probability, which by definition is the condition

∀ε> 0 ∃M : sup
n

P

(∣∣∣∣Xn

Yn

∣∣∣∣> M

)
< ε.

Instead of Xn = OP(Yn), we will sometimes write Yn ≥ OP(Xn). The former notation empha-

sises the condition that Xn grows no faster than Yn , while the latter stresses out that Yn grows

at least as fast as Xn (which is of course the same assertion). Finally, Xn = oP(Yn) means that

Xn/Yn → 0 in probability.

Theorem 4.6.2 (convergence rates in R). Suppose in addition to Assumptions 4 that d = 1,

τn/logn →∞ and that Π is either a Poisson process or a binomial process. Then

W2(λ̂n ,λ) ≤ OP

(
1�
n

)
+OP

(
1

4
�
τn

)
+OP (σn) , σn = 1

n

n∑
i=1

σ(n)
i ,

where all the constants in the OP terms are explicit.

Remark 11. Unlike classical density estimation, no assumptions on the rate of decay of σn are

required, because we only need to estimate the distribution function and not the derivative.

If the smoothing parameter is chosen to be σ(n)
i = [N (n)

i ]−α for some α> 0 and τn/logn →∞,

then by Lemma 4.6.1 σn ≤ max1≤i≤n σ
(n)
i = OP(τ−α

n ). For example, if Rosenblatt’s rule α= 1/5

is employed, then the OP(σn) term can be replaced by OP(1/ 5
�
τn).

One can think about the parameter τ as separating the sparse and dense regimes as in classical

functional data analysis (see also Wu, Müller, & Zhang [93]). If τ is bounded, then the setting

is ultra sparse and consistency cannot be achieved. A sparse regime can be defined as the

case where τn →∞ but slower than logn. In that case consistency is guaranteed, but some
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Chapter 4. Phase variation and Fréchet means

point patterns will be empty. The dense regime can be defined as τn $ n2, in which case the

amplitude variation is negligible asymptotically when compared with the phase variation.

The exponent −1/4 of τn can be shown to be optimal without further assumptions, but it can

be improved to −1/2 if P( fΛ ≥ ε on K ) = 1 for some ε > 0, where fΛ is the density of Λ (see

Subsection 4.6.2). In terms of T , the condition is that P(T ′ ≥ ε) = 1 for some ε and λ has a

density bounded below. When this is the case, τn needs to compared with n rather than n2 in

the next paragraph and the next theorem.

Theorem 4.6.2 provides conditions for the optimal parametric rate
�

n to be achieved: this

happens if we set σn to be of the order OP(n−1/2) or less and if τn is of the order n2 or more.

But if the last two terms in Theorem 4.6.2 are negligible with respect to n−1/2, then a sort of

central limit theorem holds for λ̂n :

Theorem 4.6.3 (asymptotic normality). In addition to the conditions of Theorem 4.6.2, as-

sume that τn/n2 →∞, σn = oP(n−1/2) and λ possesses a (piecewise) continuous density that is

bounded below on K . Then

�
n
(
tλ̂n

λ
− i

)
−→Z narrowly in L2(K ),

for a zero-mean Gaussian process Z with the same covariance operator of T (the latter viewed

as a random element in L2(K )), namely with covariance kernel

κ(x, y) = cov
{

T (x),T (y)
}

.

In view of Section 3.3, Theorem 4.6.3 can be interpreted as asymptotic normality of λ̂n in the

tangential sense:
�

n logλ(λ̂n) converges to a Gaussian random element in L2(K ).

Proof of Theorem 4.6.2. Denote the quantile function of θ ∈W2(K ) by g (θ) = F−1
θ

∈ L2(0,1) and

recall that W2(γ,θ) = ‖g (θ)−g (γ)‖ (Section 2.6). The empirical Fréchet mean λn that minimises

Fn is found by averaging the quantile functions of Λi (see Subsection 3.5.2), so that

�
n(g (λn)− g (λ)) =�

n

(
1

n

n∑
i=1

F−1
Λi

−F−1
λ

)
.

By the central limit theorem in Hilbert spaces, the above expression converges narrowly to a

Gaussian limit GP with E‖GP‖2 <∞ as n →∞. In particular,

W2(λn ,λ) = ‖g (λn)− g (λ)‖ = OP

(
n−1/2) .

Replacing λn with λ̂n , the minimiser of M̂n , results in the error

∥∥g (λn)− g (λ̂n)
∥∥=

∥∥∥∥∥ 1

n

n∑
i=1

F−1
Λi

− 1

n

n∑
i=1

F−1
Λ̂i

∥∥∥∥∥≤ 1

n

n∑
i=1

∥∥∥F−1
Λi

−F−1
Λ̂i

∥∥∥= 1

n

n∑
i=1

W2(Λi ,Λ̂i ).
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Invoking the triangle inequality, we split this again to the amplitude term and the smoothing

term:

1

n

n∑
i=1

W2(Λi ,Λ̂i ) ≤ 1

n

n∑
i=1

W2
(
Λi ,Λ̃i

)+ 1

n

n∑
i=1

W2
(
Λ̃i ,Λ̂i

)≤ 1

n

n∑
i=1

W2
(
Λi ,Λ̃i

)+√
Cψ,K σn

by Lemma 4.4.2.

Define (as in the proof of Theorem 4.4.1) Xni = W2(Λi ,Λ̃i ) and recall that

Λ̃i = Π̃(n)
i

N (n)
i

if N (n)
i > 0, and λ(0) otherwise.

Set Sni = 1{N (n)
i > 0} and write

Xni = W2(Λi ,Λ̃i )Sni +W2(Λi ,λ(0))(1−Sni ) ≤ W2(Λi ,Λ̃i )Sni +dK (1−Sni ).

The last term is zero for n large by Lemma 4.6.1 so converges at any rate: if an → ∞ is any

sequence, then

P

(
an

n∑
i=1

1−Sni > ε

)
=P

(
an

n∑
i=1

1{N (n)
i = 0} > ε

)
≤P

(
an

n∑
i=1

1{N (n)
i = 0} > 0

)
→ 0.

It remains to find the rate of the average of Xni Sni . As a first step, we replace probability

calculations by expectations, using Markov’s inequality:

P

(
an

1

n

n∑
i=1

Xni Sni > ε

)
≤ anE

∑n
i=1 Xni Sni

nε
= anEXn1Sn1

ε
.

The idea is now to replace W2 by W1 (using (3.2)), which one can evaluate in terms of distribu-

tion functions by Corollary 2.6.3. Let us introduce a = infK and b = supK , so that K = [a,b]

(since K is compact and convex). For any measure θ on R denote θ((−∞, t ]) by θ(t ). Then

EX 2
n1Sn1 ≤ dK ESn1W1

(
Λ1,

Π̃(n)
1

N (n)
1

)
= dK

∫b

a
E

∣∣∣∣∣Λ1(t )− Π̃(n)
1 (t )

N (n)
1

∣∣∣∣∣Sn1 dt = dK

∫b

a
E |Bt | dt ,

where Bt is defined by the above equation. Let us assume that Π is a Poisson process. Fix t ∈
[a,b] and notice that conditional on Λ1 and on the event N (n)

1 = k, Bt = 0 if k = 0 and otherwise

follows a centred renormalised binomial distribution, of the form Bt = B(k,Λ1(t ))/k −Λ1(t ).

The variance of Bt is smaller than 1/(4k), and this does not depend on Λ1. Thus EB 2
t |N (n)

1 ≤
Sn1/(4N (n)

1 ).

The random variable N (n)
1 follows a Poisson distribution with parameter τ = τn . Taking
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expectations and noticing that 1/k ≤ 2/(k +1), we find

E
Sn1

N (n)
1

=
∞∑

k=1

1

k
e−τ τk

k !
≤

∞∑
k=1

2e−τ τk

(k +1)!
= 2τ−1

∞∑
k=1

e−τ τk+1

(k +1)!
= 2

τ
(1−e−τ−τe−τ) ≤ 2

τ
,

so that EB 2
t ≤ (2τn)−1 and E|Bt | ≤ (2τn)−1/2. Thus (dK = b −a)

EXn1Sn1 ≤
√

dK

∫b

a
(2τn)−1/2 dt = dK (2τn)−1/4.

If instead of a Poisson process Π is a binomial process, then N (n)
1 = τn and EB 2

t ≤ (4τn)−1 so

the same result holds with an improved constant (and a shorter proof). We conclude that

W2(λ̂n ,λ) is smaller than the sum of terms of orders n−1/2, dK (2τn)−1/4,
√

Cψ,K σn and a last

one that is identically zero for n large.

Proof of Theorem 4.6.3. The hypotheses guarantee that
�

n(g (λ̂n)− g (λn)) is oP(1) and so by

Slutsky’s theorem

�
n
(
F−1
λ̂n

−F−1
λ

)
=�

n(g (λ̂n)− g (λ)) →GP narrowly in L2(0,1),

where GP is the Gaussian process defined in the proof of Theorem 4.6.2. By the continuous

mapping theorem, in order to conclude the narrow convergence

�
n(tλ̂n

λ
− i) =�

n
(
F−1
λ̂n

◦Fλ−F−1
λ ◦Fλ

)
=
[�

n
(
F−1
λ̂n

−F−1
λ

)]
◦Fλ →GP ◦Fλ,

in L2(K ), it suffices to show that h �→ h ◦Fλ is continuous from L2(0,1) to L2(K ). Once this is

shown, we can also write Z =GP ◦Fλ as the (narrow) limit of the process

�
n

(
1

n

n∑
i=1

F−1
Λi

◦Fλ−F−1
λ ◦Fλ

)
=�

n

(
1

n

n∑
i=1

tΛi

λ
− i

)
=�

n

(
1

n

n∑
i=1

Ti − i

)
,

which again by the central limit theorem in L2(K ) is a mean zero Gaussian process and has

covariance kernel

κ(s, t ) = E[(T (s)− s)(T (t )− t )] = cov(T (s),T (t )), s, t ∈ intK .

To prove the purported continuity of h �→ h ◦ Fλ, we first notice that this map is linear, so

one needs only show continuity at 0. This is a straightforward consequence of the change

of variables formula: let [a,b] = K and notice that Fλ is strictly increasing and piecewise

continuously differentiable on [a,b] with derivative bounded below by δ> 0. Hence for all

p ≥ 1

‖h ◦Fλ‖p
Lp (K ) =

∫b

a
|hp (Fλ(s))|ds =

∫Fλ(b)

Fλ(a)
|hp (t )| 1

F ′
λ

(F−1
λ

(t ))
dt ≤ 1

δ
‖h‖p

Lp (0,1),

132



4.6. Further results on the real line

so when p = 2 this map is δ−1/2-Lipschitz.

4.6.2 Optimality of the rates of convergence

One may find the term OP(1/ 4
�
τn) in Theorem 4.6.2 to be somewhat surprising, and expect

that it ought to be OP(1/
�
τn). The goal of this section is to show why the rate 1/ 4

�
τn is

optimal without further assumptions and discuss conditions under which it can be improved

to the optimal rate 1/
�
τn . For simplicity we concentrate on the case τn = n and assume

that the point process Π is a binomial process; the Poisson case being easily obtained from

the simplified one (using Lemma 4.6.1). We are thus led to study rates of convergence of

empirical measures in the Wasserstein space. That is to say, for a fixed exponent p ≥ 1 and a

fixed measure μ ∈ Wp (R), we consider independent random variables X1, . . . with law μ and

the empirical measure μn = n−1∑n
i=1δ{Xi }.

Rates of convergence of EWp (μn ,μ) to zero is a vast topic that we will only touch from a

superficial point of view. When μ is a measure on Rd , Barthe & Bordenave [10] give sufficient

conditions for Wp (μn ,μ) to be (almost surely) of the order n−1/d when d > 2p. Boissard & Le

Gouic [19] deal with measures on more general spaces in terms of covering numbers.

In the case of the real line, these rates have been extensively studied by Bobkov & Ledoux

[18]. We first give a lower bound on the rate and sketch some of their results that are relevant

for our particular application. We then show that the rate n−1/4 is optimal for W2 over the

class of compactly supported measures in R. For simplicity, we assume throughout that μ is

nondegenerate and compactly supported:

conv(suppμ) = [a,b] is compact.

First and foremost, by Proposition 3.2.5, we know that Wp (μn ,μ) → 0 almost surely. Let Fn be

the distribution function of μn and F that of μ.

Lemma 4.6.4. There exists a constant c such that for all p ≥ 1 and all n

EWp (μn ,μ) ≥ c�
n

.

Sketch of proof. It suffices to consider p = 1, because Wp ≥ W1. Let (t0, t1) be a nonempty

interval such that 0 < F (t0) ≤ F (t1) < 1. By Proposition 2.6.2 and Fubini’s theorem

W1(μn ,μ) =
∫
R
E|Fn(t )−F (t )|dt ≥

∫t1

t0

E|Fn(t )−F (t )|dt .

On that interval the random variable Fn(t) is a binomial with success parameter bounded

away from zero and one and so the its absolute deviation from its mean is bounded below by a

constant times
�

n, uniformly over t .

133



Chapter 4. Phase variation and Fréchet means

As has been shown in the proof of Theorem 4.6.2, for any n and any t

E|Fn(t )−F (t )| ≤
√

varFn(t ) ≤ 1

2

1�
n

,

and so when μ is supported on [a,b], EW1(μn ,μ) ≤ (b −a)/(2
�

n) and the optimal rate of EW1

is attained. Since varFn(t ) = F (t )(1−F (t ))/n, a more careful reflection shows that this rate is

attained if

J1(μ) =
∫
R

√
F (x)(1−F (x))dx <∞,

which is far weaker than μ having a compact support. Bobkov & Ledoux [18, Corollary 3] show

that this condition is also necessary, and extends to general p as follows. Let f denote the

density of μ if the latter is absolutely continuous and let f = 0 if μ is discrete1. Then they show

in [18, Theorem 5.10]:

Theorem 4.6.5 (rate of convergence of empirical measures). Let p ≥ 1. The condition

Jp (μ) =
∫
R

[F (t )(1−F (t ))]p/2

[ f (t )]p−1 dt <∞

is necessary and sufficient for the existence of a constant cp such that EWp (μn ,μ) ≤ cp /
�

n for

all n. When it is satisfied, we actually have [EW p
p (μn ,μ)]1/p ≤ c̃p /

�
n for all n.

This condition is satisfied when f is bounded below (in which case the support of μ must be

compact). We also have the formulae

c̃p = 5p J 1/p
p (μ), c̃2 =√

2J2(μ).

(see [18, Theorem 5.3] for a stronger result and [18, Theorem 5.1] for the better constant when

p = 2).

Let us now put this in the context of Theorem 4.6.2. In the binomial case, since each Π(n)
i and

each Λi are independent, we have

EW2(Λi ,Λ̃i )|Λi ≤
√

2J2(Λi )
1�
τn

.

(In the Poisson case we need to condition on N (n)
i and then estimate its inverse square root

as is done in the proof of Theorem 4.6.2.) Therefore, a sufficient condition for the rate 1/
�
τn

to hold is that E
�

J2(Λ) < ∞ and a necessary condition is that P(
�

J2(Λ) = ∞) = 1. These of

course hold if there exists δ> 0 such that with probability one Λ has a density bounded below

by δ. Since Λ= T #λ, this will happen provided that λ itself has a bounded below density and

T has a bounded below derivative. Bigot, Gouet, Klein & Lópes [15] show that the rate
�
τn

cannot be improved.

1More generally, f is the density of the absolutely continuous part of μ.
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4.6. Further results on the real line

In the remainder of this subsection we illustrate how the rate of EWp can be slow, even when μ

has a smooth and strictly positive density, and why the rate 1/ 4
�
τn is optimal in Theorem 4.6.2.

By Jensen’s inequality and (3.2), we have the upper bound for any μ ∈ P ([0,1]),

EWp (μn ,μ) ≤ [
EW p

p (μn ,μ)
]1/p ≤ [EW1(μn ,μ)]1/p ≤ 21/p n−1/(2p).

When μ is compactly supported the right-hand side is scaled by the length of the convex hull

of the support of μ. We show that this cannot be improved:

Proposition 4.6.6. For any rate εn → 0 there exists a measure μ on [−1,1] with positive density

there, and such that for all n

EWp (μn ,μ) ≥C (p,μ)n−1/(2p)εn .

Proof. We first show that there exists such a discrete measure, since this example (taken from

[18, Example 2.3]) provides the fundamental idea of what can go wrong. Let μ be uniform on

the two points {0,1}. The empirical measure μn is concentrated on 0 and 1 with weights k/n

and 1−k/n. If k ≤ n/2, then the optimal coupling from μ to μn is to send k/n mass to 0 and

leave the rest in place, yielding a total cost of |k/n −1/2|. The case k ≥ n/2 is analogous, and

we obtain

EWp (μn ,μ) = E
p

√
1

n

∣∣∣n

2
−k

∣∣∣= n−1/pE p

√∣∣∣n

2
−k

∣∣∣.
Since k follows a binomial distribution Zn = 2(n/2−k)/

�
n converges narrowly to a standard

Gaussian random variable Z by the central limit theorem. The convergence holds also in W2

by Theorem 3.2.1 and it also follows that E|Zn |1/p → E|Z |1/p . Thus

EWp (μn ,μ) = 2−1/p n−1/(2p)E|Zn |1/p ≈ cp n−1/(2p),

(
cp = 2−1/pE|Z |1/p = Γ((1+p−1)/2)�

π2−1/(2p)

)
,

in the sense that the ratio between both sides converges to 1 as n → ∞. This proves the

existence of some compactly supported μ satisfying the conclusion of the proposition, even

with εn = 1.

To make μ absolutely continuous we replace the Dirac masses by uniform random variables

on [0,θ] for θ < 1/2, so that μ is uniform on [0,θ]∪ [1−θ,1]. Assume again that k of the points

in μn are in the first interval, and that k ≤ n/2. Then the optimal coupling between μ and μn

will spend k/n mass from [0,θ] to send to these k points, and the remaining 1/2−k/n mass

must travel to somewhere in [1−θ,1] which is a distance of at least 1−2θ. Thus

EWp (μn ,μ) ≥ E
p

√
1

n

∣∣∣n

2
−k

∣∣∣ (1−2θ)p = (1−2θ)E p

√
1

n

∣∣∣n

2
−k

∣∣∣≈ (1−2θ)cp n−1/(2p).

In order to construct a measure with strictly positive density we will put a density that decays

very rapidly to zero in [θ,1−θ] and consequently the factor 1−2θ will depend on n but vanish
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Chapter 4. Phase variation and Fréchet means

very slowly. For convenience we change the scale of μ so the centre of the mass is at the origin.

Let μ be a measure on [−C ,C ] with distribution F and symmetric density around zero such

that F (εn) = 1/2+1/n2 and F (−εn) = 1/2−1/n2. Suppose that in μn , k points are in [−1,−εn],

n −k points in [εn ,1] and none in (−εn ,εn). Then at least |1/2−k/n| mass must travel at least

a distance of εn . We see that

EWp (μn ,μ) ≥
n∑

k=0

(
1

2
− 1

n2

)k (1

2
− 1

n2

)n−k
(

n

k

)
p

√∣∣∣∣1

2
− k

n

∣∣∣∣εn

=
(
1− 2

n2

)n

ε
1/p
n 2−n

n∑
k=0

(
n

k

)
p

√
1

n

∣∣∣n

2
−k

∣∣∣≈ cp n−1/(2p)ε
1/p
n .

Since ε1/p
n ≥ εn this completes the proof. For example, εn =√

logn gives F (x) = 1/2+exp(−1/x2)

for x > 0 close to zero.
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5 Computation of multivariate Fréchet
means

When given measures μ1, . . . ,μN are supported on the real line, computing their Fréchet mean

μ̄ is straightforward (Subsection 3.5.2). This is in contrast to the multivariate case, where,

besides the important yet special case of compatible measures, closed-form formulae are not

available. Important advances in this direction have been made by restricting or approxi-

mating the problem (Bonneel, Rabin, Peyré & Pfister [21]; Cuturi & Doucet [27]); the iterative

barycentre of Boissard, Le Gouic & Loubes [20] solves the compatible case. In this chapter, we

propose an iterative algorithm that provably converges at least to a Karcher mean without

restrictions on the measures μ1, . . . ,μN . Our algorithm is based on the differentiability proper-

ties of the Fréchet functional developed in Subsection 3.5.5 and can be interpreted as classical

steepest descent in the Wasserstein space W2(Rd ). It reduces the problem of finding the Fréchet

mean to pairwise problems, involving only the Monge–Kantorovich problem between two

measures. In the Gaussian case, the latter can be done explicitly, rendering the algorithm

particularly appealing (see Subsection 5.4.1). For more general measures the optimal maps

cannot be found analytically, but can at least be approximated numerically (Benamou &

Brenier [11]; Chartrand, Wohlberg, Vixie & Bollt [24]; Haber, Rehman & Tannenbaum [46]).

This chapter can been seen as complementary to Chapter 4. On one hand, one can use

the proposed algorithm to construct the regularised Fréchet–Wasserstein estimator λ̂n that

approximates a population version (see Section 4.3). On the other hand, it could be that

the object of interest is the sample μ1, . . . ,μN itself, but that the latter is observed with some

amount of noise. If one only has access to proxies μ̂1, . . . , μ̂N , then it is natural to use their

Fréchet mean ̂̄μ as an estimator of μ̄. The proposed algorithm can then be used in order to

compute μ̄, and the consistency framework of Section 4.4 then allows to conclude that if each

μ̂i is consistent, then so is ̂̄μ.

After presenting the algorithm in Section 5.1, we make some connections to Procrustes analysis

in Section 5.2. A convergence analysis of the algorithm is carried out in Section 5.3, after

which examples are given in Section 5.4. Some improvements of intermediary results in

the convergence analysis are postponed to Section 5.5, and an extension to infinitely many

measures is sketched in Section 5.6.
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Chapter 5. Computation of multivariate Fréchet means

The algorithm we discuss here was outlined in Zemel & Panaretos [94]. It was independently

and concurrently discovered by Álvarez-Esteban, del Barrio, Cuesta-Albertos & Matrán [5],

and we comment on similarities and differences in the end of Section 5.1.

5.1 A steepest descent algorithm for the computation of Fréchet means

Throughout this section, we assume that N is a fixed integer and consider a fixed collection

μ1, . . . ,μN ∈W2(Rd ) with μ1 absolutely continuous with bounded density,

to which it is desired to find the unique (Proposition 3.5.17) Fréchet mean μ̄. It has been

established that if γ is absolutely continuous then the associated Fréchet functional

F (γ) = 1

2N

n∑
i=1

W 2
2 (μi ,γ), γ ∈W2(Rd ),

has Fréchet derivative (Theorem 3.5.13)

F ′(γ) =− 1

N

N∑
i=1

logγ(μi ) =− 1

N

N∑
i=1

(
tμi
γ − i

) ∈ Tanγ (5.1)

at γ. Let γ j ∈ W2(Rd ) be an absolutely continuous measure, representing our current estimate

of the Fréchet mean at step j . Then it makes sense to introduce a step size τ j > 0, and to follow

the steepest descent of F given by the negative of the gradient:

γ j+1 = expγ j

(−τ j F ′(γ j )
)= [

i+τ j
1

N

N∑
i=1

logγ(μi )

]
#γ j =

[
i+τ j

1

N

N∑
i=1

(tμ
i

γ j
− i)

]
#γ j .

In order to employ further descent at γ j+1, it needs to be verified that F is differentiable at

γ j+1, which amounts to showing that the latter stays absolutely continuous. This will happen

for all but countably many values of the step size τ j , but necessarily if the latter is contained

in [0,1]:

Lemma 5.1.1 (regularity of the iterates). If γ0 is absolutely continuous and τ= τ0 ∈ [0,1] then

so is γ1.

The idea is that injective push-forwards of absolutely continuous measures stay absolutely

continuous and optimal maps between absolutely continuous measures are injective. An

average of injective maps does not have to be injective in general, but it is if the injectivity

holds in a “compatible" way. Here are the details:

Proof of Lemma 5.1.1. By [6, Proposition 6.2.12] there exist γ0-null sets N1 such that on Rd \
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N1, tμ
1

γ0
is differentiable, ∇tμ

1

γ0
> 0 (positive definite), and tμ

1

γ0
is strictly monotone:〈

tμ
1

γ0
(x)− tμ

1

γ0
(x ′), x −x ′

〉
> 0, x, x ′ ∉N1, x �= x ′,

and with weak inequalities on N2, . . . ,NN . Since tγ1
γ0

= (1−τ)i+τN−1∑N
i=1 tμ

i

γ0
, it stays strictly

monotone (hence injective) and ∇tγ1
γ0

> 0 outside N =∪Ni , which is a γ0-null set.

Let h0 denote the density of γ0 and set Σ= Rd \ N . Then tγ1
γ0

|Σ is injective and {h0 > 0} \Σ is

Lebesgue negligible because

0 = γ0(N ) = γ0(Rd \Σ) =
∫
Rd \Σ

h0(x)dx =
∫

{h0>0}\Σ
h0(x)dx,

and the integrand is strictly positive. Since |det∇tμ
i

γ0
| > 0 on Σ we obtain that γ1 = tμ

i

γ0
#γ0 is

absolutely continuous by [6, Lemma 5.5.3].

Lemma 5.1.1 suggests that the step size should be restricted to [0,1]. The next result suggests

that the objective function essentially tells us that the optimal step size, achieving the maximal

reduction of the objective function (thus corresponding to an approximate line search), is

exactly equal to 1. The lemma does not use the Euclidean structure and holds when Rd is

replaced by any separable Hilbert space.

Lemma 5.1.2 (optimal stepsize). If γ0 ∈W2(Rd ) is absolutely continuous then

F (γ1)−F (γ0) ≤−‖F ′(γ0)‖2
[
τ− τ2

2

]
and the bound on the right-hand side of the last display is minimised when τ= 1.

Proof of Lemma 5.1.2. Let Si = tμ
i

γ0
be the optimal map from γ0 to μi , and set Wi = Si −i. Then

2N F (γ0) =
N∑

i=1
W 2

2 (γ0,μi ) =
N∑

i=1

∫
Rd

‖Si − i‖2 dγ0 =
N∑

i=1
〈Wi ,Wi 〉 =

N∑
i=1

‖Wi‖2, (5.2)

with the inner product being in L2(γ0). Both γ1 and μi can be written as push-forwards of γ0

and (3.3) gives the bound

W 2
2 (γ1,μi ) ≤

∫
Rd

∥∥∥∥∥
[

(1−τ)i+ τ

N

N∑
j=1

S j

]
−Si

∥∥∥∥∥
2

Rd

dγ0 =
∥∥∥∥∥−Wi + τ

N

N∑
j=1

Wj

∥∥∥∥∥
2

L2(γ0)

.

The norm is always in L2(γ0), regardless of i . Developing the squares, summing over i = 1, . . . , N
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and using (5.2) gives

2N F (γ1) ≤
N∑

i=1
‖Wi‖2 −2

τ

N

N∑
i , j=1

〈
Wi ,Wj

〉+ τ2

N 2

N∑
i , j ,k=1

〈
Wj ,Wk

〉
= 2N F (γ0)−2Nτ

∥∥∥∥∥ N∑
i=1

1

N
Wi

∥∥∥∥∥
2

+Nτ2

∥∥∥∥∥ N∑
i=1

1

N
Wi

∥∥∥∥∥
2

,

and recalling that Wi = Si − i yields

F (γ1)−F (γ0) ≤ τ2 −2τ

2

∥∥∥∥∥ 1

N

N∑
i=1

Wi

∥∥∥∥∥
2

=−‖F ′(γ0)‖2
[
τ− τ2

2

]
.

Since τ−τ2/2 is clearly maximised at τ= 1, the proof is complete.

In light of Lemmas 5.1.1 and 5.1.2, we will always take τ j = 1. We then know that the sequence

(F (γ j )) is nonincreasing and that for any integer k,

1

2

k∑
j=0

‖F ′(γ j )‖2 ≤
k∑

j=0
F (γ j )−F (γ j+1) = F (γ0)−F (γk+1) ≤ F (γ0).

As k →∞, the infinite sum on the left-hand side converges, so ‖F ′(γ j )‖2 must vanish as j →∞.

Without this fact, convergence of (γ j ) to a Karcher mean would have been hopeless.

The steepest descent iteration is presented succinctly as Algorithm 1 (the notion of Procrustes

analysis will be explained in the next section). It was also discovered concurrently by Álvarez-

Esteban, del Barrio, Cuesta-Albertos & Matrán [5], who carry out a similar convergence analysis

(their results are equivalent to Theorem 5.3.1). Both the motivation and the techniques of

proofs differ substantially between the two approaches. Firstly, Algorithm 1 is motivated by

the geometry of the Wasserstein space, and is obtained as steepest descent; while the one

in [5] is motivated as a fixed point iteration through the special case of Gaussian measures,

where it is known that the Fréchet mean is the unique solution to a certain matrix equation

(see Section 5.4). Also, rather than directly use the geometry of monotone operators in Rd as

we do in Proposition 5.3.6, the authors of [5] take advantage of an almost-sure representation

result on the optimal transportation maps in order to prove convergence of their algorithm.

One advantage of our approach is that it almost automatically gives uniform convergence of

the optimal maps (Theorem 5.3.3), required for determining the optimal multicoupling of

μ1, . . . ,μN by means of Theorem 3.5.20.

5.2 Relationship to shape theory and Procrustes analysis

Algorithm 1 is similar in spirit to another procedure, generalised Procrustes analysis, that is

used in the field of shape theory. Given a subset B ⊆Rd , most commonly a finite collection of
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5.2. Relationship to shape theory and Procrustes analysis

Algorithm 1 Steepest descent via Procrustes analysis.

(A) Set a tolerance threshold ε> 0.

(B) For j = 0, let γ j be an arbitrary absolutely continuous measure.

(C) For i = 1, . . . , N solve the (pairwise) Monge problem and find the optimal transport map

tμ
i

γ j
from γ j to μi .

(D) Define the map T j = N−1∑N
i=1 tμ

i

γ j
.

(E) Set γ j+1 = T j #γ j , i.e. push-forward γ j via T j to obtain γ j+1.

(F) If ‖F ′(γ j+1)‖ < ε, stop, and output γ j+1 as the approximation of μ̄ and tμ
i

γ j+1
as the

approximation of tμ
i

μ̄ , i = 1, . . . , N . Otherwise, return to step (C).

labelled points called landmarks, an interesting question is how to mathematically define the

shape of B . One way to reach such a definition is is to “subtract" from B properties deemed

irrelevant for what one considers this shape should be; typically, these would include its

location, its orientation and/or its scale. Accordingly, the shape of B can be defined as the

equivalence class containing all sets obtained as g B , where g belongs to a collection G of

transformations of Rd containing all combinations of rotations, translations, dilations and/or

reflections (Dryden & Mardia [30, Chapter 4]).

If B1 and B2 are two collections of k landmarks, one may define the distance between their

shapes as the infimum of ‖B1 − g B2‖2 over the group G . In other words, one seeks to register

B2 as close as possible to B1 by using elements of the group G , with distance being measured

as the sum of squared Euclidean distances between the transformed points of B2 and those of

B1. In a sense, one can think about the shape problem and the Monge problem as dual to each

other. In the former, one is given constraints on how to optimally carry out the registration of

the points with the cost being judged by how successful the registration procedure is. In the

latter, one imposes that the registration be done exactly, and evaluates the cost by how much

the space must be deformed in order to achieve this.

The optimal g and the resulting distance can be found in closed-form by means of ordinary

Procrustes analysis [30, Section 5.2]. Suppose now that we are given N > 2 collections of

points, B1, . . . ,BN , with the goal of minimising the sum of squares ‖gi Bi − g j B j ‖2 over gi ∈ G 1.

As in the case of Fréchet means in W2(Rd ) (Subsection 3.5.6), there is a formulation in terms

of sum of squares from the average N−1∑g j B j . Unfortunately, there is no explicit solution

for this problem when d ≥ 3. Like Algorithm 1, generalised Procrustes analysis (Gower [43];

Dryden & Mardia [30, p. 90]) tackles this multimarginal setting by iteratively solving the

pairwise problem, as follows. Choose one of the configurations as an initial estimate/template,

1One needs to add an additional constraint to prevent registering all the collection to the origin.
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Chapter 5. Computation of multivariate Fréchet means

then register every other configuration to the template, employing ordinary Procrustes analysis.

The new template is then given by the linear average of the registered configurations, and the

process is iterated subsequently.

In parallel, given the current template γ j , Algorithm 1 iterates the two steps of registration

and linear averaging, but in a different manner:

(1) Registration: by finding the optimal transportation maps tμ
i

γ j
, we identify each μi with

the element tμ
i

γ j
− i = logγ j

(μi ). In this sense, the collection (μ1, . . . ,μN ) is viewed in the

common coordinate system given by the tangent space at the template γ j and is in this

sense registered to it.

(2) Averaging: the registered measures are averaged linearly, using the common coordinate

system of the registration step (1), as elements in the linear space Tanγ j . The linear

average is then retracted back onto the Wasserstein space via the exponential map to

yield the estimate at the ( j +1)-th step, γ j+1.

Notice than in the Procrustes sense, the maps that register each μi to the template γ j are t
γ j

μi ,

the inverses of tμ
i

γ j
. We will not use the term “registration maps" in the sequel, to avoid possible

confusion.

5.3 Convergence of the algorithm

In order to tackle the issue of convergence, we will use an approach that is specific to the

nature of optimal transportation. This is because the Hessian-type arguments that are used

to prove similar convergence results for steepest descent on Riemannian manifolds (Afsari,

Tron & Vidal [1]) or Procrustes algorithms (Le [61]; Groisser [44]) do not apply here, since the

Fréchet functional may very well fail to be twice differentiable.

In fact, even in Euclidean spaces, convergence of steepest descent usually requires a Lipschitz

bound on the derivative of F (Bertsekas [12, Subsection 1.2.2]). Unfortunately, F is not known

to be differentiable at discrete measures, and these constitute a dense set in W2; consequently

this Lipschitz condition is very unlikely to hold. Still, this specific geometry of the Wasserstein

space affords some advantages; for instance, we will place no restriction on the starting point

for the iteration, except that it be absolutely continuous; and no assumption on the spread of

μ1, . . . ,μN is necessary as in, for example, [1, 44, 61].

Theorem 5.3.1 (limit points are Karcher means). Let μ1, . . . ,μN ∈W2(Rd ) be probability mea-

sures and suppose that one of them is absolutely continuous with a bounded density. Then, the

sequence generated by Algorithm 1 stays in a compact set of the Wasserstein space W2(Rd ), and

any limit point of the sequence is a Karcher mean of (μ1, . . . ,μN ).

Since the Fréchet mean μ̄ is a Karcher mean (Proposition 3.5.17), we obtain immediately:
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Corollary 5.3.2 (Wasserstein convergence of steepest descent). Under the conditions of Theo-

rem 5.3.1, if F has a unique stationary point, then the sequence {γ j } generated by Algorithm 1

converges to the Fréchet mean of {μ1, . . . ,μN } in the Wasserstein metric,

W2(γ j , μ̄)−→0, j →∞.

Alternatively, combining Theorem 5.3.1 with the optimality criterion Theorem 3.5.18 shows

that the algorithm converges to μ̄ when the appropriate assumptions on {μi } and the Karcher

mean μ= limγ j are satisfied. This allows to conclude that Algorithm 1 converges to the unique

Fréchet mean when μi are Gaussian measures (see Theorem 5.4.1).

The proof of Theorem 5.3.1 is rather elaborate, since we need to use specific methods that

are tailored to the Wasserstein space. Before giving the proof, we state one more important

consequence, uniform convergence of the optimal maps tμ
i

γ j
to tμ

i

μ̄ on compacta. These maps

are important for the solution of the multicoupling problem (as established in Theorem 3.5.20),

and their convergence does not immediately follow from the Wasserstein convergence of γ j

to μ̄. We in addition automatically obtain convergence of the inverses. Both the formulation

and the proof of this result are similar to those of Theorem 4.4.3.

Theorem 5.3.3 (uniform convergence of optimal maps). Under the conditions of Corollary 5.3.2,

there exist sets A,B 1, . . . ,B N ⊆Rd such that μ̄(A) = 1 =μ1(B 1) = ·· · =μN (B N ) and

sup
Ω1

∥∥∥tμ
i

γ j
− tμ

i

μ̄

∥∥∥ j→∞−→ 0, sup
Ω2

∥∥∥t
γ j

μi − tμ̄
μi

∥∥∥ j→∞−→ 0, i = 1, . . . , N ,

for any pair of compacta Ω1 ⊆ A, Ω2 ⊆ B i . If in addition all the measures μ1, . . . ,μN have the

same support, then one can choose all the sets B i to be the same.

Proof of Theorem 5.3.1 We will prove the theorem by establishing the following facts:

1. The sequence (γ j ) stays in a compact subset of W2(Rd ).

2. Any limit of (γ j ) is absolutely continuous.

3. The mapping γ �→ ‖F ′(γ)‖2 is continuous.

Since it has already been established that ‖F ′(γ j )‖→ 0, these three facts indeed suffice.

Lemma 5.3.4. The sequence generated by Algorithm 1 stays in a compact subset of the Wasser-

stein space W2(Rd ).

Proof. Since F (γ j ) is bounded, γ j stay bounded in W2(Rd ). It was shown in the proof of

Proposition 3.5.4 that as a result of this (γ j ) is narrowly tight. We give a more direct proof of

this claim, that is valid even if Rd is replaced by a separable Hilbert space.
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Chapter 5. Computation of multivariate Fréchet means

For any ε> 0 there exists a compact convex set Kε such that μi (Kε) > 1−ε/N for i = 1, . . . , N .

Let Ai
j = (tμ

i

γ j
)−1(Kε), A j = ∩N

i=1 Ai
j . Then γ j (Ai

j ) > 1− ε/N , so that γ j (A j ) > 1− ε. Since Kε is

convex, T j (x) ∈ Kε for any x ∈ A j , so that

γ j+1(Kε) = γ j (T −1
j (Kε)) ≥ γ j (A j ) > 1−ε, j = 0,1, . . . .

We shall now show that any narrowly convergent subsequence of {γ j } is in fact convergent in

the Wasserstein space. By Theorem 3.2.1, it suffices to show that

lim
R→∞

sup
j∈N

∫
{x:‖x‖>R}

‖x‖2 dγ j (x) = 0. (5.3)

Assume momentarily that μ1, . . . ,μN have finite third moments:∫
Rd

‖x‖3 dμi (x) ≤ M , i = 1, . . . , N .

Then for any j ≥ 1 it holds that

∫
Rd

‖x‖3 dγ j (x) =
∫
Rd

∥∥∥∥∥ 1

N

N∑
i=1

tμ
i

γ j−1
(x)

∥∥∥∥∥
3

dγ j−1(x) ≤ 1

N

N∑
i=1

∫
Rd

‖tμ
i

γ j−1
(x)‖3 dγ j−1(x)

= 1

N

N∑
i=1

∫
Rd

‖x‖3 dμi (x) ≤ M .

This implies that for any R > 0 and any j > 0,∫
{x:‖x‖>R}

‖x‖2 dγ j (x) ≤ 1

R

∫
{x:‖x‖>R}

‖x‖3 dγ j (x) ≤ 1

R
M ,

and (5.3) follows. If instead of third moments μi have a moment of order 2+ε, then the same

reasoning works with R replaced by Rε and a different constant M . More generally, if for some

(nondecreasing) function H that diverges to infinity (like H(x) = loglog(x +10))∫
Rd

‖x‖2H(x)dμi (x) ≤ M , i = 1, . . . , N ,

then still (3.4) holds by the same argument. That such H must exist is a consequence of the

finiteness of the collection (μ1, . . . ,μN ), a result whose proof is postponed to Subsection 5.3.1.

A closer look at the proof shows that the structure of (γ j ) as a sequence of iterates does

not really play a role and a more general result can be established. Let us denote by A the

steepest descent iteration that maps γ j to γ j+1. Then A is a function from the set of absolutely

continuous measures of W2(Rd ) to itself. What we have just shown is that the image of A is

Wasserstein-tight, if we replace (5.3) by its more general counterpart (3.6).
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In order to show that a narrowly convergent sequence (γ j ) of absolutely continuous measures

has an absolutely continuous limit γ, it suffices to show that the densities of γ j are uniformly

bounded. Indeed, if C is such a bound, then for any open O ⊆Rd , liminfγk (O) ≤C Leb(O), so

γ(O) ≤C Leb(O) by the portmanteau lemma 2.9.1. It follows that γ is absolutely continuous

with density bounded by C . We now show that such C can be found that applies to all measures

in the image of A , hence to all sequences resulting from iterations of Algorithm 1.

Proposition 5.3.5 (uniform density bound). Let the first k measures (1 ≤ k ≤ N ) of (μ1, . . . ,μN )

be absolutely continuous with densities g i and let γ1 = A (γ0) be any (absolutely continuous)

probability measure. Then the density of γ1 is bounded by Cμ = N d mini ‖g i‖∞.

The constant Cμ of course depends only on the measures (μ1, . . . ,μN ), and is finite as long as

one μi has a bounded density. We later discuss how it can be improved (Corollary 5.5.2), as

will be necessary in order to obtain a population version of this result.

Proof. Let hi be the density of γi . By the change of variables formula, for γ0-almost any x

h1(tγ1
γ0

(x)) = h0(x)

det∇tγ1
γ0

(x)
; g i (tμ

i

γ0
(x)) = h0(x)

det∇tμ
i

γ0
(x)

, i = 1, . . . ,k.

We seek a lower bound on the determinant of ∇tγ1
γ0

(x), which by definition equals

N−d det
N∑

i=1
∇tμ

i

γ0
(x).

Such a bound is provided by the Brunn–Minkowski inequality (Stein & Shakarchi [85, Sec-

tion 1.5]) for symmetric positive semidefinite matrices

[det(A +B)]1/d ≥ [det A]1/d + [detB ]1/d

that when applied inductively yields

[
det∇tγ1

γ0
(x)

]1/d ≥ 1

N

N∑
i=1

[
det∇tμ

i

γ0
(x)

]1/d
≥ 1

N

k∑
i=1

[
det∇tμ

i

γ0
(x)

]1/d
.

From this we easily obtain an upper bound for h1:

1

h1/d
1 (tγ1

γ0
(x))

=
det1/d ∑k

i=1 ∇tμ
i

γ0
(x)

N h1/d
0 (x)

≥ 1

N

k∑
i=1

1

[g i (tμ
i

γ0
(x))]1/d

≥ 1

N

k∑
i=1

1

‖g i‖1/d∞
≥ 1

N

1

‖g i‖1/d∞
,

for any i . Let Σ be the set of points where this inequality holds; then γ0(Σ) = 1. Hence

γ1(tγ1
γ0

(Σ)) = γ0[(tγ1
γ0

)−1(tγ1
γ0

(Σ))] ≥ γ0(Σ) = 1.
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Chapter 5. Computation of multivariate Fréchet means

Thus γ1-almost surely and for all i ,

h1(y) ≤ N d‖g i‖∞,

in particular for the i minimising ‖g i‖∞.

The third statement (continuity of the gradient) is much more subtle to establish, and its rather

lengthy proof is given next. In view of Proposition 5.3.5, the uniform bound on the densities is

not a hindrance for the proof of convergence of Algorithm 1.

Proposition 5.3.6 (continuity of F ′). Let (γn) be a sequence of absolutely continuous measures

with uniformly bounded densities and suppose that W2(γn ,γ) → 0. Then ‖F ′(γn)‖2 →‖F ′(γ)‖2.

Proof. As has been established in the discussion before Proposition 5.3.5, the limit γ must be

absolutely continuous. Consequently, F ′(γ) is well-defined what needs to be shown is that∥∥∥∥∥ 1

N

N∑
i=1

tμ
i

γn
− i

∥∥∥∥∥
2

L2(γn )

−→
∥∥∥∥∥ 1

N

N∑
i=1

tμ
i

γ − i

∥∥∥∥∥
2

L2(γ)

, n →∞.

We denote the integrands by gn and g respectively and divide the proof into several steps. It is

perhaps instructive to assume in first reading that gn and g are bounded and continuous, in

which case one can jump directly to Step 2. The first of these assumptions is satisfied when the

μi have bounded supports, and the second can be obtained under the regularity conditions in

Theorem 2.8.2.

Step 0: redefinition on null sets. At a given x ∈ Rd , gn(x) can be undefined, either because

some tμ
i

γn
(x) is empty, or because it can be multivalued (see Subsection 2.9.2, p. 35). Redefine

gn(x) at such points by setting it to 0 in the former case and choosing an arbitrary represen-

tative otherwise. Apply the same procedure for g . Then gn and g are finite, nonnegative

functions (in the proper sense) throughout Rd . We claim that this modification is inconse-

quential and does not affect
∫

g dγ. Indeed, the set of ambiguity points is a γ-null set: this is a

consequence of the absolute continuity of γ, together with Remark 2.3 and Corollary 1.3 in

Alberti & Ambrosio [3] (see the paragraphs preceding Assumptions 1 for a more detailed dis-

cussion). Similarly, the value of the integral
∫

gn dγn remains unaltered after this modification.

Finally, by Proposition 2.9.8, the set of points where g is not continuous is a γ-null set, before

and after the modification.

Step 1: approximation by bounded functions. Since γn converge in the Wasserstein space,

they satisfy the uniform integrability condition (5.3) by Theorem 3.2.1, and hence the uniform

absolute continuity (3.7) that we repeat here for convenience:

∀ε> 0∃δ> 0∀n ≥ 1∀A ⊆Rd Borel : γn(A) ≤ δ =⇒
∫

A
‖x‖2 dγn(x) < ε. (5.4)
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5.3. Convergence of the algorithm

The δ’s can be chosen in such a way that (5.4) holds true for the finite collection {μ1, . . . ,μN } as

well. Fix ε> 0, set δ= δε as in (5.4), and invoke (5.3) to find an R = Rε ≥ 1 such that

∀i ∀n :
∫

{‖x‖2>R}
‖x‖2 dγn(x)+

∫
{‖x‖2>R}

‖x‖2 dμi (x) < δ

2N
.

The bound (holding γn-almost surely)

gn(x) ≤ 2‖x‖2 + 2

N

N∑
i=1

‖tμ
i

γn
(x)‖2

implies that the sets An = {x : gn(x) ≥ 4R} satisfy

An ⊆ {x : ‖x‖2 > R}∪
N⋃

i=1
{x : ‖tμ

i

γn
(x)‖2 > R}.

To deal with the sets in the union observe that

γn({x : ‖tμ
i

γn
(x)‖2 > R}) =μi ({x : ‖x‖2 > R}) < δ

2N
,

so that γn(An) < δ. We use this in conjunction with (5.4) to bound

∫
An

gn(x)dγn(x) ≤ 2
∫

An

‖x‖2 dγn(x)+ 2

N

N∑
i=1

∫
An

‖tμ
i

γn
(x)‖2 dγn(x)

≤ 2ε+ 2

N

N∑
i=1

∫
tμ

i
γn (An )

‖x‖2 dμi (x) ≤ 4ε,

where we have used the measure-preservation property μi (tμ
i

γn
(An)) = γn(An) < δ.

Define the truncation gn,R (x) = min(gn(x),4R). Then 0 ≤ gn − gn,R ≤ gn1{gn > 4R}, so∫
[gn(x)− gn,R (x)]dγn(x) ≤

∫
An

gn(x)dγn(x) ≤ 4ε, n = 1,2, . . . .

The analogous truncated function gR satisfies

0 ≤ gR (x) ≤ 4R ∀x ∈Rd and {x : gR is continuous } is of γ-full measure. (5.5)

Step 2: convergence of gn to g . Let E = suppγ. The sets

N i = (E \ E den)∪ {x : tμ
i

γ (x) contains more than one element}, i = 1, . . . , N ,

are γ-negligible and so is their union N . As n → ∞, Proposition 2.9.11 implies pointwise

convergence (in a set-valued sense) of tμ
i

γn
(x) to tμ

i

γ (x) for any i = 1, . . . , N and any x ∈ E \N .

Thus gn → g pointwise on x ∈ E \N (for whatever choice of representatives selected to define

gn); consequently, gn,R → gR on E \N .
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If E were compact, we could strengthen this to uniform convergence by Egorov’s theorem. In

order to restrict the integrands to a bounded set we invoke the tightness of the sequence (γn)

and introduce a compact set Kε such that γn(Rd \ Kε) < ε/R for all n. Clearly, gn,R → gR on

E ′ = Kε∩E \N , and by Egorov’s theorem (valid as Leb(E ′) ≤ Leb(Kε) <∞), there exists a Borel

set Ω=Ωε ⊆ E ′ on which the convergence is uniform, and Leb(E ′ \Ω) < ε/R. Let us write∫
gn,R dγn −

∫
gR dγ=

∫
gR d(γn −γ)+

∫
Ω

(gn,R − gR )dγn +
∫
Rd \Ω

(gn,R − gR )dγn ,

and bound each of the three integrals on the right-hand side as n →∞.

Step 3: bounding the first two integrals. The first integral vanishes as n → ∞, by (5.5) and

the portmanteau lemma 2.9.1, as the bounded function gR is continuous besides a γ-null set.

The second integral obviously tends to 0 as n →∞, since gn,R converge to gR uniformly on Ω.

Step 4: bounding the third integral. The integrand is smaller than 8R, so the integral is

bounded by 8Rγn(Rd \Ω). The complement of Ω⊆ E ′ = E ∩Kε \N is included in the union

N ∪ (E ′ \Ω)∪ (Rd \ E)∪ (Rd \ Kε), where the first set is Lebesgue-negligible and the second

has Lebesgue measure smaller than ε/R. The hypothesis of the densities of γn implies that

γn(A) ≤C Leb(A) for any Borel set A ⊆Rd and any n ∈N; it follows from this and γn(Rd \ Kε) <
ε/R that∣∣∣∣∫

Rd \Ω
(gn,R − gR )dγn

∣∣∣∣≤ 8R(Cε/R +γn(Rd \ E)+ε/R) = 8
(
Rγn(Rd \ E)+Cε+ε

)
.

The narrow (or even Wasserstein) convergence of γn to γ alone does not suffice for bounding

the limit γn(Rd \ E), because E is closed and the portmanteau lemma gives the inequality in

the wrong direction. Once again the uniform bound on the densities comes to our rescue.

Write the open set E1 =Rd \ E as a countable union of closed sets Ak with2 Leb(E1 \ Ak ) < 1/k,

and conclude that

limsup
n→∞

γn(E1) ≤ limsup
n→∞

γn(Ak )+ limsup
n→∞

γn(E1 \ Ak ) ≤ γ(Ak )+ C

k
= C

k
,

where we have used the portmanteau lemma again, Ak ∩ supp(γ) =� and γn(A) ≤C Leb(A).

Step 5: concluding. By Steps 3 and 4, we have for all k

limsup
n→∞

∣∣∣∣∫gn,R dγn −
∫

gR dγ

∣∣∣∣≤ limsup
n→∞

∣∣∣∣∫
Rd \Ω

(gn,R − gR )dγn

∣∣∣∣≤ 8RεC

k
+8(C +1)ε.

Letting k →∞, then incorporating the truncation error yields

limsup
n→∞

∣∣∣∣∫gn dγn −
∫

g dγ

∣∣∣∣≤ 8(C +1)ε+8ε.

2This is possible even if E1 is unbounded: let E m
1 = E1 ∩ [−m,m]d , find a closed set Am

k ⊆ Em
1 with Leb(E m

1 \
Am

k ) < 2−m /k and choose Ak =∪m Am
k , which stays closed even though the union is countable.
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The proof is complete upon noticing that ε is arbitrary.

Remark 12 (continuity of A ). One can similarly show that if W2(γn ,γ) → 0 and γn have

uniformly bounded densities, then A (γn) → A (γ). Indeed, it is sufficient to show that for all

bounded uniformly continuous f ,

∫
Rd

f

(
1

N

N∑
i=1

tμ
i

γn
(x)

)
dγn(x) →

∫
Rd

f

(
1

N

N∑
i=1

tμ
i

γ (x)

)
dγ(x), n →∞

and this is done as in Steps 3,4 and 5 in Proposition 5.3.6.

Proof of Theorem 5.3.3. Let E = suppμ̄ and set Ai = E den ∩ {x : tμ
i

μ̄ (x) is univalued}. As μ̄ is

absolutely continuous, μ̄(Ai ) = 1, and the same is true for A =∩N
i=1 Ai . The first assertion then

follows from Proposition 2.9.11.

The second statement is proven similarly. Let E i = suppμi and notice that by absolute con-

tinuity the B i = (E i )den ∩ {x : tμ̄
μi (x) is univalued} has measure 1 with respect to μi . Apply

Proposition 2.9.11. If in addition E 1 = ·· · = E N then μi (B) = 1 for B =∩B i .

5.3.1 A complete proof of Lemma 5.3.4

In this subsection we fill in the gap left at the end of the proof of Lemma 5.3.4 by showing in

Lemma 5.3.8 that if a measure has a finite second moment, then it always has a tiny bit more

then that. The idea is that if for a random variable X and a nonnegative function f , E f (X ) <∞,

then there always exists a function g that diverges to infinity but still E f (X )g (X ) <∞. In other

words, there is no “largest moment" in a generalised sense. Of course it may happen that

EX 2 <∞ but EX 2+ε =∞ for all ε> 0, but this is not a contradiction because g can be log(x +1).

For concreteness we take f (x) to be x2, since this is the application we have in Lemma 5.3.4,

but the the idea is valid more generally. To alleviate the notation, we assume in this subsection

that all functions and random variables are nonnegative (possibly infinite-valued). We write

f (x) ∈ω(g (x)) or f ∈ω(g ) if f (x)/g (x) →∞ as x →∞. In particular f ∈ω(1) means f (x) →∞.

Lemma 5.3.7. Let f be integrable and nonincreasing. Then there exists a continuous nonde-

creasing function g ∈ω(1) such that f g is integrable.

Proof. Set F (x) =∫∞
x f (t )dt and g (x) = [F (x)]−1/2. Then a change of variables gives∫∞

0
f (x)g (x)dx =

∫∞

0
f (x)[F (x)]−1/2 dx =

∫F (0)

0
u−1/2 du = 2

√
‖ f ‖1 <∞,

and g (x) →∞ because F (x) → 0 as x →∞ by dominated convergence.

Lemma 5.3.8. Let X be a random variable with EX 2 <∞. Then there exists a convex nonde-

creasing function H(x) ∈ω(x2) such that EH(X ) <∞.
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Proof. Since

∞> EX 2 =
∫∞

0
P(X 2 > t )dt ,

there exists a function g as in Lemma 5.3.7 such that

∞>
∫∞

0
P(X 2 > t )g (t )dt =

∫∞

0
P(X 2 >G−1(u))du =

∫∞

0
P(G(X 2) > u)du = EG(X 2),

where G is the primitive of g and G(0) = 0. The properties of g imply that G is convex and

invertible, and that for y < x,

G(x) ≥
∫x

y
g (t )dt ≥

∫x

y
g (y)dt = (x − y)g (y),

which, combined with g ∈ω(1), yields

liminf
x→∞

G(x)

x
≥ g (y) →∞, y →∞,

so that G(x) ∈ω(x). The function H(x) =G(x2) then has all the desired properties.

We can now complete the proof of Lemma 5.3.4. Let Z i ∼μi and define X i = ‖Z i‖, so that∫
Rd

‖x‖2 dμi (x) <∞ =⇒
∫∞

0
P(X 2

i > t )dt <∞, i = 1, . . . , N .

There exist functions g i as in Lemma 5.3.7 with∫∞

0
P(X 2

i > t )g i (t )dt <∞, i = 1, . . . , N .

The same holds with g i replaced by g = mini g i , which is still continuous, nondecreasing and

divergent. Setting H as in Lemma 5.3.8, we see that H(x) ∈ω(x2) and

M i = EH(X i ) =
∫
Rd

H(‖x‖)dμi (x) <∞, i = 1, . . . , N .

Convexity of H and ‖ ·‖ combined with monotonicity of H yield

∫
Rd

H(‖x‖)dγ j (x) =
∫
Rd

H

(∥∥∥∥∥ 1

N

N∑
i=1

tμ
i

γ j−1
(x)

∥∥∥∥∥
)

dγ j−1(x)

≤ 1

N

N∑
i=1

∫
Rd

H
(∥∥∥tμ

i

γ j−1
(x)

∥∥∥) dγ j−1(x) = 1

N

N∑
i=1

∫
Rd

H(‖x‖)dμi (x) ≤ M ,
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where M =∑N
i=1 M i /N . This implies that for any R > 0 and any j > 0,

∫
{x:‖x‖>R}

‖x‖2 dγ j (x) ≤ sup
y>R

y2

H(y)

∫
{x:‖x‖>R}

H(‖x‖)dγ j (x) ≤ M sup
y>R

y2

H(y)
,

and this vanishes with R →∞ because H(y) ∈ω(y2).

5.4 Illustrative examples

As an illustration, we implement Algorithm 1 in several scenarios for which pairwise optimal

maps can be calculated explicitly at every iteration, allowing for fast computation without

error propagation. In each case we give some theory first, describing how the optimal maps

are calculated, and then carry out Algorithm 1 on simulated examples. One prospect of future

work is to incorporate numerical schemes such as those given by [11, 24, 46] and apply the

algorithm in more general settings.

5.4.1 Gaussian measures

No example illustrates the use of Algorithm 1 better than the Gaussian case. This is so because

optimal maps between centred Gaussian measures have the explicit form (see Section 2.7)

tB
A(x) = A−1/2[A1/2B A1/2]1/2 A−1/2x, x ∈Rd ,

with a slight abuse of notation. In contrast, the Fréchet mean of a collection of Gaussian

measures does not admit a closed-form formula and is only known to be a Gaussian measure

whose covariance matrix Γ is the unique root of the matrix equation

Γ= 1

N

N∑
i=1

[
Γ1/2SiΓ

1/2]1/2
, (5.6)

where Si is the covariance matrix of μi .

Given the formula for tB
A , application of Algorithm 1 to Gaussian measures is straightforward.

The next result shows that the iterates must converge to the unique Fréchet mean, and that

(5.6) can be derived from the characterisation of Karcher means. This example was studied

independently by Álvarez-Esteban et al. [5, Section 4], who give an alternative proof. Our proof

is shorter and arguably simpler, but the proof in [5] shows the additional property that the

traces of the matrix iterates are monotonically increasing.

Theorem 5.4.1 (convergence in Gaussian case). Let μ1, . . . ,μN be Gaussian measures with zero

means and covariance matrices Si with S1 nonsingular, and let the initial point γ0 be N (0,Γ0)

with Γ0 nonsingular. Then the sequence of iterates generated by Algorithm 1 converges to the

unique Fréchet mean of (μ1, . . . ,μN ).
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Proof. Since the optimal maps are linear, so is their mean and therefore γk is a Gaussian

measure for all k, say N (0,Γk ) with Γk nonsingular. Any limit point of γ is a Karcher mean

by Theorem 5.3.1. If we knew that γ itself were Gaussian, then it actually must be the Fréchet

mean because N−1∑tμ
i

γ equals the identity everywhere on Rd (see the discussion before

Theorem 3.5.18).

Let us show that every limit point γ is indeed Gaussian. It suffices to prove that (Γk ) is a

bounded sequence, because if Γk → Γ then N (0,Γk ) → N (0,Γ) narrowly, as can be seen from

either Lehmann–Scheffé’s theorem (the densities converge) or Lévy’s continuity theorem (the

characteristic functions converge).

To see that (Γk ) is bounded, observe first that for any centred (Gaussian or not) measure μ

with covariance matrix S,

W 2
2 (μ,δ0) = trS,

where δ0 is a Dirac mass at the origin. (This follows from the singular value decomposition of

S.) Therefore

0 ≤ trΓk = W 2
2 (γk ,δ0)

is bounded uniformly, because {γk } stays in a Wasserstein-compact set by Lemma 5.3.4. If we

define C = supk trΓk <∞, then all the diagonal elements of Γk are bounded uniformly. When

A is symmetric and positive semidefinite, 2|Ai j | ≤ Ai i + Ai j . Consequently all the entries of Γk

are bounded uniformly by C , which means that (Γk ) is a bounded sequence.

From the formula for the optimal maps, we see that if Γ is the covariance of the Fréchet mean,

then

I =
N∑

i=1
Γ−1/2 [Γ1/2SiΓ

1/2]1/2
Γ−1/2

and we recover the fixed point equation (5.6).

If the means are nonzero, then the optimal maps are affine and the same result applies; the

Fréchet mean is still a Gaussian measure with covariance matrix Γ and mean that equals the

average of the means of μi , i = 1, . . . , N .

Figure 5.1 shows density plots of N = 4 centred Gaussian measures on R2 with covariances

Si ∼ Wishart(I2,2), and Figure 5.2 shows the density of the resulting Fréchet mean. In this

particular example, the algorithm needed 11 iterations starting from the identity matrix. The

corresponding optimal maps are displayed in Figure 5.3. It is apparent from the figure that

these maps are linear, and after a more careful reflection one can be convinced that their

average is the identity. The four plots in the figure are remarkably different, in accordance

with the measures themselves having widely varying condition numbers and orientations; μ3
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Figure 5.1: Density plot of four Gaussian measures in R2.
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Figure 5.2: Density plot of the Fréchet mean of the measures in Figure 5.1.

and more so μ4 are very concentrated, so the optimal maps “sweep" the mass towards zero. In

contrast, the optimal maps to μ1 and μ2 spread the mass out away from the origin.

5.4.2 Compatible measures

We next discuss the behaviour of the algorithm when the measures are compatible. Recall that

a collection C ⊆ W2(X ) is compatible if for all γ,ρ,μ ∈ C , tνμ ◦ tμγ = tνγ in L2(γ) (Definition 3.3.1).

Boissard, Le Gouic & Loubes [20] showed that when this condition holds, the Fréchet mean

of (μ1, . . . ,μN ) can be found by simple computations involving the iterated barycentre. We

again denote by γ0 the initial point of Algorithm 1, which can be any absolutely continuous

measure.

Lemma 5.4.2 (compatibility and convergence). If γ0 ∪ {μi } is compatible then Algorithm 1

converges to the Fréchet mean of (μi ) after a single step.

Proof. By definition, the next iterate

γ1 =
[

1

N

N∑
i=1

tμ
i

γ0

]
#γ0

is the Fréchet mean by Theorem 3.5.21.
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Figure 5.3: Gaussian example: vector fields depicting the optimal maps x �→ tμ
i

μ̄ (x) from the

Fréchet mean μ̄ of Figure 5.2 to the four measures {μi } of Figure 5.1. The order corresponds to
that of Figure 5.1.

In this case, Algorithm 1 requires the calculation of N pairwise optimal maps, and this can

be reduced to N −1 if the initial point is chosen to be μ1. This is the same computational

complexity as the calculation of the iterated barycentre proposed in [20].

When the measures have a common copula, finding the optimal maps reduces to finding the

optimal maps between the one-dimensional marginals (see Lemma 3.3.2) and this can be

done using quantile functions as described in Section 2.6. We next illustrate Algorithm 1 in

three such scenarios.

The one-dimensional case

When the measures are supported on the real line, there is no need to use the algorithm since

the Fréchet mean admits a closed-form expression in terms of quantile functions (see Subsec-

tion 3.5.2). We nevertheless discuss this case briefly because we build upon this construction

in subsequent examples. Given that tνμ = F−1
ν ◦Fμ, we may apply Algorithm 1 starting from one

of these measures (or any other measure). Figure 5.4 plots N = 4 univariate densities and the

Fréchet mean yielded by the algorithm in two different scenarios. At the left, the densities

were generated as

f i (x) = 1

2
φ

(
x −mi

1

σi
1

)
+ 1

2
φ

(
x −mi

2

σi
2

)
, (5.7)
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Figure 5.4: Densities of a bimodal Gaussian mixture (left) and a mixture of a Gaussian with a
gamma (right), with the Fréchet mean density in light blue.

with φ the standard normal density, and the parameters generated independently as

mi
1 ∼U [−13,−3], mi

2 ∼U [3,13], σi
1,σi

2 ∼Gamma(4,4).

At the right of Figure 5.4, we used a mixture of a shifted gamma and a Gaussian:

f i (x) = 3

5

β3
i

Γ(3)
(x −mi

3)2e−βi (x−mi
3) + 2

5
φ(x −mi

4), (5.8)

with

βi ∼Gamma(4,1), mi
3 ∼U [1,4], mi

4 ∼U [−4,−1].

The resulting Fréchet mean density for both settings is shown in thick light blue, and can be

seen to capture the bimodal nature of the data. Even though the Fréchet mean of Gaussian

mixtures is not a Gaussian mixture itself, it is approximately so, provided that the peaks are

separated enough. Figure 5.5 shows the optimal maps pushing the Fréchet mean μ̄ to the

measures μ1, . . . ,μN in each case. If one ignores the “middle part" of the x axis, the maps

appear (approximately) affine for small values of x and for large values of x, indicating how

the peaks are shifted. In the middle region, the maps need to “bridge the gap" between the

different slopes and intercepts of these affine maps.

Independence

We next take measures μi on R2, having independent marginal densities f i
X as in (5.7), and

f i
Y as in (5.8). Figure 5.6 shows the density plot of N = 4 such measures, constructed as

the product of the measures from Figure 5.4. One can distinguish the independence by the

“parallel" structure of the figures: for every pair (y1, y2), the ratio g (x, y1)/g (x, y2) does not
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Figure 5.5: Optimal maps tμ
i

μ̄ from the Fréchet mean μ̄ to the four measures {μi } in Figure 5.4.
The left plot corresponds to the bimodal Gaussian mixture, and the right plot to the Gaus-
sian/gamma mixture.
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Figure 5.6: Density plots of the four product measures of the measures in Figure 5.4.

depend on x (and vice versa, interchanging x and y). Figure 5.7 plots the density of the

resulting Fréchet mean. We observe that the Fréchet mean captures the four peaks, and their

location. Furthermore, the parallel nature of the figure is preserved in the Fréchet mean.

Indeed, by Lemma 3.5.10 the Fréchet mean is a product measure. The optimal maps, in

Figure 5.10, are the same as in the next example, and will be discussed there.

Common copula

Let μi be a measure on R2 with density

g i (x, y) = c(F i
X (x),F i

Y (y)) f i
X (x) f i

Y (y),
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Figure 5.7: Density plot of the Fréchet mean of the measures in Figure 5.6.
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Figure 5.8: Density plots of four measures in R2 with Frank copula of parameter −8.

where f i
X and f i

Y are random densities on the real line with distribution functions F i
X and

F i
Y , and c is a copula density. Figure 5.8 shows the density plot of N = 4 such measures,

with f i
X generated as in (5.7), f i

Y as in (5.8), and c is the Frank(−8) copula density, while

Figure 5.9 plots the density of the Fréchet mean obtained. (For ease of comparison we use

the same realisations of the densities that appear in Figure 5.4.) The Fréchet mean can be

seen to preserve the shape of the density, having four clearly distinguished peaks. Figure

5.10, depicting the resulting optimal maps, allows for a clearer interpretation: for instance the

leftmost plot (in black) shows more clearly that the map splits the mass around x =−2 to a

much wider interval; and conversely a very large amount mass is sent to x ≈ 2. This rather

extreme behaviour matches the peak of the density of μ1 located at x = 2.
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Figure 5.9: Density plot of the Fréchet mean of the measures in Figure 5.8.
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Figure 5.10: Frank copula example: vector fields of the optimal maps tμ
i

μ̄ from the Fréchet

mean μ̄ of Figure 5.9 to the four measures {μi } of Figure 5.8. The colours match those of
Figure 5.4.

5.4.3 Partially Gaussian trivariate measures

We now apply Algorithm 1 in a situation that entangles two of the previous settings. Let U be a

3×3 real orthogonal matrix with columns U1, U2, U3 and let μi have density

g i (y1, y2, y3) = g i (y) = f i (U t
3 y)

1

2π
�

detSi
exp

⎡⎢⎣−
(U t

1 y,U t
2 y)(Si )−1

(U t
1 y

U t
2 y

)
2

⎤⎥⎦ ,

with f i bounded density on the real line and Si ∈R2×2 positive definite. We simulated N = 4

such densities with f i as in (5.7) and Si ∼ Wishart(I2,2). We apply Algorithm 1 to this collection

of measures and find their Fréchet mean (see the end of this subsection for precise details on

how the optimal maps were calculated). Figure 5.11 shows level set of the resulting densities for

some specific values. The bimodal nature of f i implies that for most values of a, {x : f i (x) = a}

has four elements. Hence the level sets in the figures are unions of four separate parts, with

each peak of f i contributing two parts that form together the boundary of an ellipsoid in R3

(see Figure 5.12). The principal axes of these ellipsoids and their position in R3 differ between

the measures, but the Fréchet mean can be viewed as an average of those in some sense.

In terms of orientation (principal axes) of the ellipsoids, the Fréchet mean is most similar to

μ1 and μ2, whose orientations are similar to one another.

Let us now see how the optimal maps are calculated. If Y = (y1, y2, y3) ∼μi , then the random
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Figure 5.11: The set {v ∈ R3 : g i (v) = 0.0003} for i = 1 (black), the Fréchet mean (light blue),
i = 2,3,4 in red, green and dark blue respectively.

Figure 5.12: The set {v ∈ R3 : g i (v) = 0.0003} for i = 3 (left) and i = 4 (right), with each of the
four different inverses of the bimodal density f i corresponding to a colour.
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vector (x1, x2, x3) = X =U−1Y has joint density

f i (x3)exp

[
−

(x1, x2)(Σi )−1
(x1

x2

)
2

]
1

2π
�

detΣi
,

so the probability law of X is ρi ⊗νi with ρi centred Gaussian with covariance matrix Σi and

νi having density f i on R. By Lemma 3.5.10, the Fréchet mean of (U−1#μi ) is the product

measure of that of (ρi ) and that of (νi ); by Lemma 3.5.11, the Fréchet mean of (μi ) is therefore

U #(N (0,Σ)⊗ f ), f = F ′, F−1(q) = 1

N

N∑
i=1

F−1
i (q), Fi (x) =

∫x

−∞
f i (s)ds,

where Σ is the Fréchet–Wasserstein mean of Σ1, . . . ,ΣN .

Starting at an initial point γ0 =U #(N (0,Σ0)⊗ν0), with ν0 having continuous distribution Fν0 ,

the optimal maps are U ◦ ti
0 ◦U−1 =∇(ϕi

0 ◦U−1) with

ti
0(x1, x2, x3) =

(
tΣ

j

Σ0
(x1, x2)

F−1
j ◦Fν0 (x3)

)

the gradients of the convex function

ϕi
0(x1, x2, x3) = (x1, x2)tΣ

i

γ0

(
x1

x2

)
+
∫x3

0
F−1

j (Fν0 (s))ds,

where we identify tΣ
i

γ0
with the positive definite matrix (Σi )1/2[(Σi )1/2Σ0(Σi )1/2]−1/2(Σi )1/2 that

pushes forward N (0,Σ0) to N (0,Σi ). Due to the one-dimensionality, the algorithm finds the

third component of the rotated measures after one step, but the convergence of the Gaussian

component requires further iterations.

5.5 Further properties of Karcher means

The convergence proof of Algorithm 1 reveals further properties that are worth mentioning.

Recall that A is the function that takes an absolutely continuous γ ∈W2(Rd ) and applies to it

one iteration. We will prove in this section results pertaining to any measure γ in the image

of A . Such a γ will be called a descent iterate. If γ is a Karcher mean, then A (γ) = γ, so in

particular these results apply to Karcher means; in view of Propositions 3.5.16 and 3.5.17, they

also hold for Fréchet means provided that

μ1 is absolutely continuous and has a bounded density. (5.9)

Let us begin with the support.

Corollary 5.5.1 (support of algorithm iterates). The support of any descent iterate γ is included
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in the set

E = 1

N

(
suppμ1 +·· ·+ suppμN )

.

This generalises Proposition 3.5.5 (when X = Rd ) in which (μi ) have a common convex

support.

Proof. Write γ= A (ρ), so that tγρ = N−1∑tμ
i

ρ . But for ρ-almost every x, tμ
i

ρ (x) ∈ suppμi , and

so tγρ(x) ∈ E .

We next discuss an improvement of the constant in Proposition 5.3.5 that will be fundamental

in order to obtain a population version of Algorithm 1. This amelioration comes from replacing

the minimum of the density bounds by their harmonic mean. Let γ be a descent iterate and

denote its density by h. It has been established in the proof of Proposition 5.3.5 that

1

‖h‖1/d∞
≥ 1

N

N∑
i=1

1

‖g i‖1/d∞
,

if the measures μ1, . . . ,μN have densities g 1, . . . , g N . To avoid the need to introduce an extra

symbol we write ‖g i‖∞ =∞ if μi is not absolutely continuous, even though g i does not exist;

the above inequality then holds in full generality.

Corollary 5.5.2 (improved density bound). Suppose that a fraction q = n/N (1 ≤ n ≤ N ) of the

measures possess densities that are bounded by M. Then ‖h‖∞ ≤ M/qd .

Proof. Without loss generality the bound is satisfied by g 1, . . . , g n . Then

1

‖h‖1/d∞
≥ 1

N

N∑
i=1

1

‖g i‖1/d∞
≥ 1

N

n∑
i=1

1

‖g i‖1/d∞
≥ 1

N

n∑
i=1

1

M 1/d
= n

N

1

M 1/d
= q

M 1/d
,

and the result follows from taking both sides to the power −d .

As observed by Pass [71, Subsection 3.3], the fact that the number of measures N does not

appear in the bound opens the door for a population version of this result, which is the topic

of the next section.

5.6 Population version of Algorithm 1

Let Λ ∈W2(Rd ) be a random measure with finite Fréchet functional. The population version of

(5.9) is

q =P(Λ absolutely continuous with density bounded by M) > 0 for some M <∞, (5.10)
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which we assume henceforth. This condition is satisfied if and only if

P(Λ absolutely continuous with bounded density) > 0.

These probabilities are well-defined because the set

W2(Rd ; M) = {μ ∈W2(Rd ) : μ absolutely continuous with density bounded by M }

is narrowly closed (see the paragraph before Proposition 5.3.5), hence a Borel set of W2(Rd ).

In light of Theorem 3.5.15, we can define a population version of Algorithm 1 with the iteration

function

A (γ) = EtΛγ , γ ∈W2(Rd ) absolutely continuous.

The (Bochner) expectation is well-defined in L2(γ) because the random map tΛγ is measurable

(Lemma 3.4.5). Since L2(γ) is a Hilbert space, the law of large numbers applies there, and re-

sults for the empirical version carry over to the population version by means of approximations.

In particular:

Lemma 5.6.1. Any descent iterate γ has density bounded by q−d M.

Proof. Let Λ1, . . . be a sample from Λ and let qn be the proportion of measures in (Λ1, . . . ,Λn)

that have density bounded by M . Then both n−1∑n
i=1 tΛi

γ → EtΛγ and qn → q almost surely by

the law of large numbers. Pick any ω in the probability space for which this happens and

notice that by Lemma 3.4.4 and Corollary 5.5.2

A (γ) =
[

lim
n→∞

1

n

n∑
i=1

tΛi
γ

]
#γ= lim

n→∞

[
1

n

n∑
i=1

tΛi
γ

]
#γ

has a density smaller than q−d M (see the next proof for a more detailed reasoning).

Though it follows that every Karcher mean of Λ has a bounded density, we cannot yet conclude

that the same bound holds for the Fréchet mean, because we need an a-priori knowledge

that the latter is absolutely continuous. With tools previously developed, this assertion can be

established by approximation of the empirical analogue under compactness assumptions. For

a cleaner statement we restrict Λ to a compact set but this can be considerably relaxed, see

Remark 13. Incorporating Theorem 2 in Le Gouic & Loubes [42], the results are in fact valid for

any Λ with finite Fréchet functional.

Theorem 5.6.2 (bounded density for population Fréchet mean). Let K ⊂Rd be a bounded Borel

set and Λ ∈ W2(K ) be a random measure. If Λ has a bounded density with positive probability

then the Fréchet mean of Λ is absolutely continuous with a bounded density.
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Proof. Clearly Λ has a finite Fréchet functional. Let q and M be as in (5.10) and consider the

same construction of the preceding lemma. For almost every ω the empirical Fréchet mean

λn of the sample (Λ1, . . . ,Λn) has a density bounded by q−d
n (ω)M . The Fréchet mean λ of Λ is

unique by Proposition 3.5.8, and consequently λn → λ in W2(K ), as has been established in

the proof of Theorem 4.4.1. For any C > limsup q−d
n M , the density of λ is bounded by C by the

portmanteau lemma 2.9.1 (p. 31). Thus the density is bounded by q−d M .

In the same way, one shows the population version of Theorem 3.5.21:

Theorem 5.6.3 (Fréchet mean of compatible measures). Let K ⊂Rd be a bounded Borel set and

Λ ∈W2(K ) be a random measure, defined on a probability space Ω and absolutely continuous

with positive (inner) probability. If the collection {γ}∪Λ(Ω) is compatible and γ is absolutely

continuous, then [EtΛγ ]#γ is the Fréchet mean of Λ.

It is of course sufficient that {γ}∪Λ(Ω\N ) be compatible for some null set N ⊂Ω.

Remark 13 (balls in Wp+ε are compact in Wp ). As the proof shows, we may replace the compact

set W2(K ) by a compact set K ⊂W2(Rd ), provided that we know that λ̂n stay in K . An example

of such K is the set of measures μ such that for some M > 0,∫
Rd

‖x‖3 dμ(x) ≤ M .

The power 3 can be replaced by 2+ ε and in fact ‖x‖3 can be replaced by H(‖x‖) with H any

function that goes to infinity faster than x2, as is evident from (3.6).
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6 Outlook

We conclude the thesis with what we believe are interesting prospects for future work.

6.1 Extensions of Algorithm 1

Implementation. As mentioned in Section 5.4, writing a full implementation of Algorithm 1

that incorporates a numerical scheme for the solution of the pairwise problem is an important

project. Since these numerical schemes are themselves iterative, such implementation would

need to take care in managing propagation of errors.

Conditions for uniqueness of Karcher means. In general, the Fréchet functional F associated

to measuresμ1, . . . ,μN may have more than one local minimum (Karcher mean). We have given

a criterion for a local minimum to be the global minimum (Theorem 3.5.18). We conjecture

that in the setting of this result, F will in fact have only one local minimum, which is then the

Fréchet mean. More precisely, we believe that a result in the flavour of the following should be

true:

Conjecture. Suppose that μ1, . . . ,μN have densities bounded above and below (perhaps

smooth) on a (possibly smooth) convex compact K ⊂ Rd . Then F has a unique Karcher

mean, which is the Fréchet mean of μ1, . . . ,μN .

Discrete measures. Suppose that each μ1, . . . ,μN has a finite support of the same size M , with

equal weights. One can still apply Algorithm 1 in this setting. Empirical evidence shows that

there are many Karcher means that are not Fréchet means in this setup. But, can we at least

show that the Fréchet mean (in case it is unique) is also concentrated on M points? Unlike the

discrete case in Section 2.3, the argument must be related to the cost function, because the

polytope resulting from the constraints has many extreme points, and most of them are not

associated with measures supported on M points. Empirical evidence shows, however, that

the support of the Fréchet mean is indeed only M points. A more general setup is explored by

Anderes, Borgwardt & Miller [9], and perhaps their work can shed some light on this question.
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Population version. We have sketched in Section 5.6 a version of the algorithm for infinitely

many measures. It would be of interest to see under which condition the analogue of The-

orem 5.3.1 holds true. We believe that merely having a finite Fréchet functional would be

sufficient.

Convergence rates for Algorithm 1. We observed in the Gaussian case very rapid convergence

of Algorithm 1 to the Fréchet mean. Nevertheless, no analytic results in this direction are

known.

6.2 Generalising the consistency framework of Chapter 4

Beyond compactness. In [42] Le Gouic & Loubes prove a general consistency result for Fréchet

means in W2. It should therefore be possible to remove the compactness assumption in

Theorem 4.4.1 and, more generally, Section 4.4. Perhaps an assumption on the measures lying

in some finite Wasserstein ball will be required, as the uniform Lipschitz bounds (4.6) on F

and Fn still hold in such setup.

Convergence rates. Another interesting development of this work would be to extend the

convergence rates to a multivariate setting. With the results of Barthe & Bordenave [10],

controlling the rate of convergence of F̂n to F should not pose a major difficulty. Rather,

relating that rate to convergence of minimisers is not straightforward, due to the curvature of

the Wasserstein space. Finding an upper bound for the sectional curvature seems to be crucial

for the establishment of such results.
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