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Abstract

Privacy has recently gained an importance beyond the field of cryptography. In that regard,

the main goal behind this thesis is to enhance privacy protection. All of the necessary math-

ematical and cryptographic preliminaries are introduced at the start of this thesis. We then

show in Part I how to improve set membership and range proofs, which are cryptographic

primitives enabling better privacy protection. Part II shows how to improve the standards for

Machine Readable Travel Documents (MRTDs), such as biometric passports.

Regarding set membership proofs, we provide an efficient protocol based on the Boneh-

Boyen signature scheme. We show that alternative signature schemes can be used and we

provide a general protocol description that can be applied for any secure signature scheme.

We also show that signature schemes in our design can be replaced by cryptographic accu-

mulators. For range proofs, we provide interactive solutions where the range is divided in

a base u and the u-ary digits are handled by one of our set membership proofs. A general

construction is also provided for any set membership proof. We additionally explain how to

handle arbitrary ranges with either two range proofs or with an improved solution based on

sumset representation. These efficient solutions achieve, to date, the lowest asymptotical

communication load. Furthermore, this thesis shows that the first efficient non-interactive

range proof is insecure. This thesis thus provides the first efficient and secure non-interactive

range proof.

In the case of MRTDs, two standards exist: one produced by the International Civil Aviation

Organization (ICAO) and the other by the European Union, which is called the Extended

Access Control (EAC). Although this thesis focuses on the EAC, which is supposed to solve all

privacy concerns, it shows that both standards fail to provide complete privacy protection.

Lastly, we provide several solutions to improve them.

Keywords: cryptography, privacy, set membership, range proof, machine readable travel

document, MRTD, sumset representation, proof of knowledge, zero-knowledge, NIZK, sigma

protocol, commitment, public key cryptography, digital signature, cryptographic accumulator,

biometric passport, electronic passport, extended access control, EAC, terminal revocation.
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Résumé

Les problèmes liés à la sphère privée ont gagné cette dernière décénie une importance qui

va au-delà du domaine de la cryptographie. De ce fait, l’enjeux principale de cette thèse est

d’amméliorer la protection de la sphère privée. Dans un premier temps, les prérequis mathé-

matiques et cryptographiques seront expliqués. La première partie de cette thèse se consacre

donc à l’amélioration de primitives cryptographiques liées à la sphère privée (appartenance à

un ensemble, appartenance à un intervalle). La seconde partie de cette thèse se concentre sur

l’amélioration des standards régissant les documents de voyage lisible à distance (MRTDs)

tels que les passeports biométriques.

En ce qui concerne l’appartenance à un ensemble, notre solution se base sur les signa-

tures numériques proposées par Boneh et Boyen. Nous montrons par la suite que notre

construction peut s’adapter à d’autres signatures numériques, ainsi qu’aux accumulateurs

cryptographiques. Pour ce qui est de l’appartenance à un intervalle, nous proposons des

solutions interactives où l’intervalle est decomposé en base u et où les subdivisions sont

résolues par des apartenances à un ensemble, notamment celles que nous élaborons. Nous

expliquons aussi comment prendre en charge des intervalles arbitraires soit en combinant

deux appartenances à un intervalle, soit grâce à une unique apartenance basée sur une re-

présentation par somme d’ensembles. Jusqu’à présent, ces solutions sont les plus efficaces

asymptotiquement vis à vis des communications. Nous prouvons également que le premier

protocole pour une appartenance non-interactive à un intervalle est défaillant. Ainsi nous

proposons la première alternative sécurisée.

Dans le cas des MRTDs, deux standards existent. Le premier est sous la responsabilité

de l’Organisation de l’Aviation Civile Internationale (OACI), tandis que le second, appelé

Controle d’Accès Étendu (EAC), a été mandaté par l’Union Européenne. Bien que cette thèse

se concentre à l’étude de l’EAC, nous fournissons une analyse de la sécurité liée à la sphère

privée des deux standards. Des solutions pour les améliorer sont aussi fournies.

Mots Clés : cryptographie, sphère privée, appartenance à un ensemble, appartenance à un

intervalle, document de voyage lisible à distance, MRTD, représentation par somme d’en-

sembles, preuve de connaissance, preuve à divulgation nulle, NIZK, protocole sigma, mise

en gage, cryptographie asymétrique, signature numérique, accumulateur cryptographique,

passeport biométrique, passeport électronique, contrôle d’accès étendu, EAC, révocation de

terminaux.
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Chapter 1

Introduction

The intuitive concept of privacy is the ability of a person to control her personal information

dissemination. With the development of electronic services (e-voting, e-taxes, e-cash, . . . ),

and with the introduction of internet social networks such as Facebook and Google+, concerns

about privacy increased significantly. Privacy is of even greater concern when children are

involved. In that regard, social networks have limited their access to children above 13 years

old. This is further confirmed by the International Telecommunication Union (ITU), which

launched the Child Online Protection (COP) Initiative [ITU15]. Furthermore, this concern

about privacy is being strengthened by the threat of identity theft.

The first and main issue of interest in this thesis, targets specific cryptographic protocols called

set membership and range proofs, which consist of proving that a secret element belongs to a

public set. These protocols are considered building blocks in cryptography and need to meet

several security requirements, such as revealing absolutely no information about the element,

except its membership of the public set. Set membership proofs allow users to prove that

their committed secret belongs to a small public set of elements, whilst keeping their secret

hidden. A typical example can be given in the case of e-voting, where users are the voters,

their committed secret is their vote in their secret ballot, and the public set is, for instance, the

public list of candidates in an election. By using a set membership proof, voters can show the

validity of their vote without revealing the vote itself. Note that for set membership proofs,

the public set is usually of a small size with no specific structure. Range proofs are a special

case of set membership proofs, where the public set is an integer interval of possibly large

size. Moreover, as the elements in an integer interval occur in consecutive order, special

techniques can be applied to improve efficiency. Range proofs could thus be used to enforce

age restrictions when combined with certified electronic identities.

The second issue of concern is the privacy relating to Machine Readable Travel Documents

(MRTDs) such as biometric passports. MRTDs hold the details of our certified national identity.

These are privacy sensitive and thus need to be protected accordingly. The initial standards
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Chapter 1. Introduction

regarding MRTDs focused on border control surveillance security and set aside privacy. As

a consequence, an unlimited right was given to terminals, the reading devices of border

controls, to read the data of any MRTD. Several attempts have been made later in order to

provide better privacy, notably by defining a new standard called the Extended Access Control

(EAC). Unfortunately, major flaws remained due to the hardware choices for MRTDs. One

of the flaws that is studied in this thesis, concerns the revocation of the rights belonging

to the terminal of a border patrol. Indeed, the standards for biometric passports have no

proper revocation mechanism for border patrols. This problem is referred to as the terminal

revocation problem.

1.1 Motivation

The initial motivation behind set membership and range proofs as a cryptographic building

block, came from the way cryptographers traditionally defined and constructed cryptographic

protocols [Gol01, Gol04]. Informally, a cryptographic protocol is a secure protocol that im-

plements a specific functionality. However, the definition of security is often based on an

idealized model of potential adversaries. One common example is the security model that

restricts the behavior of adversaries by disallowing them to actively disrupt the procedure

of protocols. In this model, adversaries are only allowed to gather information from honest

communications. Therefore, they are called semi-honest. However, in order to provide security

against any type of adversaries, honest communications need to be enforced. Set membership

and range proofs help enforce honest communication by providing a means of verifying that

private parameters are chosen from the correct corresponding sets.

Further important applications were later found for set membership and range proofs. For

instance, they have an important impact on several online services, such as in the case of

e-services (electronic voting, electronic taxation, ...). For electronic voting, a set membership

proof can be used to prove that a ballot is valid without revealing the value of the ballot. This

is of particular interest to countries that have compulsory voting [IIDEA02], such as Brazil

and Australia. In electronic taxation, range proofs could be used to attest range taxation for

incomes and wealth, without leaking any other information. Whereas Switzerland has some

initial projects regarding e-services [ODIHR12], some countries such as Estonia have already

rolled out complete systems [EEC15], despite security flaws [SFD+14].

Set membership and range proofs also occur in the context of anonymous credentials [BNF12,

GGM14]. Assume that a user is issued a credential containing a number of attributes such as

nationality. Furthermore assume that the user needs to prove she is from a European country.

As the list of European countries is public, the user has to show that she possesses a credential

containing one of those countries as a nationality, without leaking her specific country. This

can be simply achieved with the help of set membership proofs. Furthermore, range proofs

applied to age can also bring a solution in the framework of the Child Online Protection (COP)

2



1.1. Motivation

Initiative [ITU15]. For example, a user with passport credentials or with a certified electronic

identity (eID) might wish to prove that her age is within some range, such as greater than 18,

or between 13 and 18 in the case of a teen-community website. Therefore, internet platforms

and websites with age restrictions can enforce these restrictions by applying range proofs on

the age contained within an eID. The COP Initiative was launched in 2008 by the International

Telecommunication Union (ITU) with the objective of protecting children in the online world.

Range proofs also have an important implication in e-cash and in e-auction scenarios, where

participants are required to prove solvency, with the constraint that they are not willing to

provide the exact amount present in their bank accounts for obvious privacy concerns. Lastly,

some cryptographic protocols require the freshness of some confidential timestamps to be

checked, which is a direct application of range proofs.

Regarding MRTDs, privacy is a big concern for their owners. For instance in Switzerland,

49.9% of electors voted against the introduction of the biometric passport on the 17th May

2009 [FCoS09], presumably for privacy reasons. The importance of providing a good survey on

the standards for MRTDs (such as the EAC) is motivated by the fact that the available standards

neglect privacy and revocation issues. This carelessness induces serious security threats. In

the case of terminal revocation, any stolen border patrol reader will be able to stealthy read

all the private information contained in passports without the consent of the holder nor his

awareness. Stolen data can help an attacker in the process of identity theft, and even allow him

to circumvent biometric protections such as face and fingerprint recognition. Furthermore,

a stolen terminal can be set to collect the data of all surrounding MRTDs, which will allow

an attacker to build a rogue database of stolen identities. Lastly, a stolen terminal coupled

with a monitoring system gives an attacker the ability to monitor a location for specific targets,

whether specific individuals or some specific group of persons (selected, for instance, by

nationality). This last threat is of major concern as it could be the scenario of an untraceable

terrorist attack. Assume that an attacker chooses to target citizens of a specific country, and

sets its system in a large transit hub (such as an airport) or in a large transport vehicle (such as

an airplane). The rogue terminal will scan its surroundings, and when the requirements set by

the attacker are met (for instance a large group of a targeted nationality), the terrorist attack

would be triggered. Moreover, once the system of this scenario has been set up, the attacker

can walk away freely before the attack is triggered. Hence, the terminal revocation problem

raises the issue of targeted terrorist attacks.
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1.2 Results and Contributions

This thesis incorporates the results of five publications from the author [CCs08, CLs10, CLZ12,

CV09, Cha13] (see Section 1.4), together with some extensions, corrections, and unpublished

results.

Regarding set membership proofs, this thesis presents several efficient interactive solutions,

where “interactive” informally means that both participants exchange messages to com-

plete the protocol. The first solution is a protocol based on the Boneh-Boyen signature

scheme [BB04], which remains at the time of writing the most efficient protocol for set

membership proofs. This thesis also shows that alternative signature schemes can be em-

ployed, by providing a set membership proof based on the Camenisch-Lysyanskaya signature

scheme [CL02b]. Although the idea of using the alternative signature scheme from Camenisch-

Lysyanskaya was presented in [CCs08], the construction and details of the protocol are exclu-

sively presented in this thesis. Furthermore, this thesis also provides a general construction

for any secure signature scheme. Lastly and as described in [CL02a], this thesis shows that

set membership proofs can be based on cryptographic accumulators instead of signature

schemes, with the example of the Camenisch-Lysyanskaya accumulator.

This thesis provides one of the first classifications of range proofs. Then, with the use of the

set membership proofs mentioned above, interactive range proofs are constructed for ranges

of the type
[
0,u�

)
, where the elements of the range are decomposed in base u. This thesis

provides a concrete construction with the Boneh-Boyen based set membership proof, as well

as a general protocol for any set membership proof. This thesis then argues how to use known

methods (OR and AND compositions) in order to handle arbitrary ranges. Moreover, this

thesis exclusively provides the details for handling arbitrary ranges with the AND composition.

The details for the OR composition have been set aside as several drawbacks were overlooked

in [CCs08] and are explained in this thesis. Another unpublished result is the construction of

a range proof based on a variant of the set membership proof of Arfaoui et al. [ALT+15a]. It

should be noted that this last protocol can be deduced from our general protocol.

Furthermore, this thesis shows that number consecutiveness in range proofs can be further

exploited with a better decomposition. This thesis improves the decomposition introduced

in [LAN02] to obtain a sumset representation of integer intervals. It should also be noted that

the bound for the decomposition achieved in this thesis is better than the published results

from [CLs10]. Thus, by combining this new representation of integers with novel properties

and theorems from the number theory field, as well as new results in additive combinatorics,

this thesis provides the most efficient interactive range proof.

As some e-services forbid interactions, this thesis develops the first efficient and secure non-

interactive range proof, without random oracles, which has been published in [CLZ12]. Note

that “non-interactive” protocols informally restrict communications to one single transmitted

message. Furthermore, “random oracles” are theoretical entities that map given inputs to
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perfectly random outputs. Random oracles are often employed to prove the security of non-

interactive protocols. However their use is controversial as some security issues regarding their

concrete implementation were raised in [CGH98, CGH04]. Note as well that minor details

from [CLZ12] are corrected in this thesis. This thesis also shows that one of the first attempts to

produce a secure and efficient non-interactive range proof [YHM+09] is intrinsically insecure.

In the case of MRTDs, this thesis first recalls the threats linked to Radio Frequency IDentifi-

cation (RFID) chips, which were chosen as a hardware component in the implementation of

MRTDs. RFID chips, also called RFID tags, are hardware components that use electromagnetic

fields to wirelessly transmit data. This thesis then surveys the two existing standards for

MRTDs and their updates. The first standard [ICAO08] was produced by the International

Civil Aviation Organization (ICAO) and this thesis shows that this standard possesses serious

weaknesses regarding the data privacy of MRTDs. This thesis then surveys the alternative

standard proposed by the German Federal Office for Information Security (BSI), called the

Extended Access Control (EAC), at the request of the European Union. Despite some security

advantages such as anti-cloning protection, this thesis shows that privacy concerns remain

the same in the first version of the EAC [BSI08a], as in the ICAO standard. Finally, this thesis

surveys the current EAC version (EACv2 [BSI15a, BSI15b, BSI15c, BSI15d]) and demonstrate

that despite some claims [Nit09] as to the security improvements it brings, several flaws re-

garding privacy are still of concern, notably the terminal revocation problem. These surveys

are updated to match the latest version of the EAC (February 2015), as the versions studied in

the initial publications [CV09, Cha13] precede the latest version.

Lastly, this thesis provides several solutions as to how to enhance the different standards

for MRTDs. The first solution that is provided, performs a minor hardware upgrade on

MRTDs with the introduction of an RFID switch, that will allow the use of the RFID chip

only when needed. The second solution that this thesis suggests in [CV09], was to replace

some components of the ICAO standard with its more secure counterpart described in the

EACv2. This suggestion was accepted in February 2013 by the ICAO working group in charge

of the ICAO standard [ICAO13], and will be enforced in January 2018. This thesis also suggests

a minor behavioral improvement for holders of MRTDs, to reduce the threat of terminals

with expired certificates. As MRTDs only have an approximation of the current date, this

minor behavioral improvement consists of updating this approximative date more often,

especially before traveling. Finally, the major contribution that this thesis provides regarding

MRTDs, is the elaboration of a significant solution for terminal revocation, that only require

upgrading the underlying protocol. The details of this solution are provided as an extension

of [Cha13] and its main idea consists of enforcing terminal collaboration in order to achieve

the authentication of terminals.
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1.3 Thesis Outline

In order to explain the core elements of this thesis, Chapter 2 introduces the required essential

preliminaries. Notations and some basic definitions are provided in Section 2.1. The security

models of the protocols described in this thesis, as well as their security assumptions, are

explained and defined in Section 2.2. Section 2.3 is devoted to defining proofs, arguments,

proofs of knowledge, and their corresponding security properties, which constitute set mem-

bership and range proofs. Section 2.4 describes all of the cryptographic primitives that are

used as building blocks for our solutions. Section 2.5 is devoted to threshold cryptography, as

it is the basis of our solution for terminal revocation.

The core of this thesis is then divided into two main parts. Part I focuses on set membership

and range proofs. Part II studies the case of the Extended Access Control and Machine

Readable Travel Documents (MRTDs).

Part I

Chapter 3 provides results regarding set membership proofs.

The description and definition of this primitive is given in Section 3.1. Section 3.2 describes

prior and related work. Then, the Boneh-Boyen signature scheme based set membership

proof is explained in Section 3.3, together with its security proof and efficiency analysis. Set

membership proofs based on alternative signature schemes are discussed in Section 3.4, with

a concrete solution based on the Camenisch-Lysyanskaya signature scheme, and with a gen-

eralization for any signature scheme. Cryptographic accumulators based set membership

proofs are explained in Section 3.5 with the example of the Camenisch-Lysyanskaya dynamic

accumulator.

Chapter 4 focuses on results for interactive range proofs.

The description and definition of this primitive is given in Section 4.1. Section 4.2 describes

prior work, related work, and provides a classification for interactive range proofs. Section 4.3

is dedicated to our results regarding interactive range proofs based on set membership proofs,

including a range proof for range
[
0,u�

)
using our Boneh-Boyen signature scheme based

set membership proof, its security proof and efficiency analysis, methods on how to handle

arbitrary ranges with their respective security and efficiency analysis, a description of how

to construct a range proof based on any secure set membership proof, and an example of

such a construction based on a variant of the Arfaoui et al. set membership proof. Section 4.4

explains and proves the decomposition of integer intervals into a sumset representation. The

sumset based range proof, together with its security and efficiency analysis, is thus described

in Section 4.5, which concludes with a concrete example and efficiency comparisons between

state of the art interactive range proofs.
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Chapter 5 explains the result of this thesis regarding non-interactive range proofs.

The explanation of this primitive and its definitions are given in Section 5.1. Section 5.2 gives

an overview of prior and more recent work, as well as related work. Furthermore, the Yuen

et al. non-interactive range proof is proven insecure in Section 5.3. Section 5.4 provides an

equality subargument (between a lifted BBS encryption and a knowledge commitment) and its

security proof, which are necessary for our non-interactive range proof. The latter is presented

in Section 5.5, together with its security and efficiency proofs.

Part II

Chapter 6 surveys Machine Readable Travel Documents (MRTDs) and their related standards.

After a brief introduction in Section 6.1, Section 6.2 presents prior and related work. The

threats relating to the standard for RFID chips are recalled in Section 6.3. Section 6.4 surveys

the ICAO standard for MRTDs. Section 6.5 briefly surveys the first version of the EAC standard

for MRTDs. More details on the EAC standard are provided with a survey of its second version

in Section 6.6. The conclusions of these surveys are provided in Section 6.7.

Chapter 7 mainly aims at providing enhancements to the EAC standard.

After a brief introduction in Section 7.1, Section 7.2 presents prior and related enhancements

for MRTDs. Section 7.3 recommends the incorporation of a small hardware improvement in

the form of an RFID switch in new MRTDs. Section 7.4 explains an enhancement of the ICAO

standard, which has been accepted by the relevant ICAO working group. Section 7.5 provides

a small recommendation on behavioral practices for MRTDs holders. Section 7.6 explains a

suggested solution, together with its security and efficiency analysis, for the resolution of the

terminal revocation problem.

Lastly, the conclusions of this thesis are provided in Chapter 8.
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1.4 List of Publications by the Author

The publications by the author that were included in this thesis, are listed in the following.

Each of them is described briefly and the contributions made by the author specified. Special

presentations of these publications are also mentioned.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat1.

Efficient protocols for set membership and range proofs.

In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture Notes in Computer

Science, pages 234-252. Springer, 2008

[CV09] Rafik Chaabouni and Serge Vaudenay.

The extended access control for machine readable travel documents.

In Arslan Brömme, Christoph Busch, and Detlef Hühnlein, editors, BIOSIG, vol-

ume 155 of LNI, pages 93-103. GI, 2009.

[CLs10] Rafik Chaabouni, Helger Lipmaa, and abhi shelat1.

Additive combinatorics and discrete logarithm based range protocols.

In Ron Steinfeld and Philip Hawkes, editors, ACISP, volume 6168 of Lecture Notes

in Computer Science, pages 336–351. Springer, 2010.

[CLZ12] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang.

A non-interactive range proof with constant communication.

In Angelos D. Keromytis, editor, Financial Cryptography, volume 7397 of Lecture

Notes in Computer Science, pages 179–199. Springer, 2012.

[Cha13] Rafik Chaabouni.

Solving terminal revocation in EAC by augmenting terminal authentication.

In Arslan Brömme and Christoph Busch, editors, BIOSIG, volume 212 of LNI,

pages 273–280. GI, 2013.

Publications [CCs08, CLs10, CLZ12] relate to set membership and range proofs.

Publications [CV09, Cha13] relate to Machine Readable Travel Documents (MRTDs) and the

Extended Access Control (EAC).

Publication [CCs08] introduced the concept of signature based set membership proofs with

efficient secure protocols, and used them to construct efficient secure interactive range proofs.

Inspired by Berry Schoenmakers [Sch01, Sch05], the author proposed the application of a u-

ary decomposition for range proofs, where the digits would be proven with a set membership

proof. This publication was presented at the Asiacrypt 2008 conference.

Publication [CLs10] improved the concept of decomposition for range proofs, with a multi-

base decomposition called the sumset representation of integer intervals. This resulted in

1Note that abhi shelat requires his name to be written in lower case.
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an efficiency gain by a factor of roughly 2, when handling arbitrary ranges. The sumset

decomposition is a generalization of the binary sumset decomposition introduced in [LAN02].

The author provided corrections to the general sumset decomposition as the generalization

was intricate. This publication was presented at the ACISP conference in 2010.

Publication [CLZ12] proved the first attempt to produce a secure efficient non-interactive

range proof without random oracles [YHM+09] to be insecure, and provided a novel protocol

as an answer. The insecurity proof of [YHM+09] was achieved by the author. This publication

was presented at the Financial Cryptography conference in 2012.

Publication [CV09] is a general survey of the standards for MRTDs. This publication also stated

the remaining problems of these standards and suggested some improvements. The author

studied the different standards, analyzed them, identified some of the remaining problems,

and elaborated the suggested improvements. This publication was first presented at the

BIOSIG conference in 2009. The author was then also invited by the Arab ICT Organization to

present this publication at the First Arab Forum on “e-transactions Security & the Public Key

Infrastructure (PKI)”, in 2010.

Publication [Cha13] provided a solution to the terminal revocation problem present in the

EAC. This solution is based on the threshold RSA signature of Shoup [Sho00] and only requires

a software upgrade. This single-authored publication was presented at the BIOSIG conference

in 2013.
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Chapter 2

Preliminaries

This chapter will introduce the various notations and definitions, as well as the important

preliminaries necessary for understanding the construction of our protocols. Section 2.1

introduces general notations as well as the Bachmann-Landau notations (also known as the

big O notation), defines the notion of indistinguishability, recalls bilinear groups, and lastly

defines some specific notions of combinatorics. The security models, which prove the security

of the solutions presented in this thesis, are explained in Section 2.2. The definitions relating

to cryptographic proofs, arguments, and proofs of knowledge are provided in Section 2.3,

together with some definitions for related security properties (zero-knowledge, witness hiding,

witness indistinguishability). Section 2.4 recalls some common definitions regarding different

protocols and building blocks used in cryptography, as well as some specific protocols used

in this thesis as building blocks. Lastly, Section 2.5 is dedicated to the notion of threshold

cryptography, which will be essential for the solution provided in Chapter 7.

Beside the original citations, three main references were used to compile the majority of the

definitions and notions presented in this chapter:

• “A Classical Introduction to Cryptography” by Serge Vaudenay [Vau06],

• the “Encyclopedia of Cryptography and Security” [vTJ11],

• and the “Foundations of Cryptography” by Oded Goldreich [Gol01, Gol04].

2.1 Notations and Definitions

The goal of this section is to clarify notations and to recall some basic definitions in mathe-

matics and in cryptography, that will be necessary for understanding the following chapters.

Regarding notations, probabilistic polynomial-time algorithms will be denoted by PPT algo-

rithms. Interactive Turing Machines will be denoted as ITM (see Section 2.3.1). The size of
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a set F will be denoted |F|. The absolute value of an element x will be denoted |x|. The bit

length of an element x will be denoted ‖x‖. The bit length of an element taken in a group

G will be denoted ‖G‖. The primordial security parameter will be denoted by κ. In some

cases, a secondary security parameter will be needed. It will be denoted k and will usually be

dependent on κ. Moreover, security parameters will be expressed in the unary numeral system,

where a number n is represented by a n-long sequence of 1, denoted by 1n . Z+ denotes the set

of positive integers excluding 0. For n ∈N, Zn denotes the cyclic group of order n. Z∗n denotes

the multiplicative group of all invertible elements in Zn . The set {xi }i∈I is the set of elements

xi indexed by the countable index set I.

The next two definitions recall the notions of safe prime and of quadratic residuosity. It is

important to not confuse safe primes with strong primes. A strong prime p is a large prime

such that p−1 and p+1 have a large prime factor. Moreover, the large prime factor q of p−1

is such that q−1 also has a large prime factor.

Definition 2.1 (Safe prime)

A safe prime p is a prime number equal to p = 2q+1, where q is another prime number. In

the case of a safe prime p = 2q+1, q is called a Sophie-Germain prime.

Definition 2.2 (Quadratic residuosity)

A quadratic residue modulo n is an element a ∈Z∗n such that ∃b ∈Z∗n : a ≡ b2 (mod n). The

set of all quadratic residues modulo n is denoted QRn ⊆Z∗n.

2.1.1 Bachmann-Landau notations

The Bachmann-Landau notations provide notations that describe the asymptotic growth of

functions. Five distinctive asymptotical growths for a function f (n) can be distinguished,

regarding the function g (n) to which it is being compared to: O
(
g (n)

)
, o

(
g (n)

)
, Ω

(
g (n)

)
,

ω
(
g (n)

)
, and Θ

(
g (n)

)
.

Definition 2.3 (O(·) notation)

Let f (n) and g (n) be two functions. The notation f (n)=O
(
g (n)

)
or f (n) ∈O

(
g (n)

)
means

that f is asymptotically dominated by g , up to a constant factor:

∃A > 0, ∃n0, ∀n >n0 :
∣∣ f (n)

∣∣	 A · ∣∣g (n)
∣∣ .

Definition 2.4 (o(·) notation)

Let f (n) and g (n) be two functions. The notation f (n)= o
(
g (n)

)
or f (n) ∈ o

(
g (n)

)
means

that f is asymptotically dominated by g :

∀A > 0, ∃n0, ∀n > n0 :
∣∣ f (n)

∣∣	 A · ∣∣g (n)
∣∣ .

Note that o
(
g (n)

)
implies O

(
g (n)

)
.
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Definition 2.5 (Ω(·) notation)

Let f (n) and g (n) be two functions. The notation f (n)=Ω
(
g (n)

)
or f (n) ∈Ω(

g (n)
)

means

that f asymptotically dominates g , up to a constant factor:

∃A > 0, ∃n0, ∀n > n0 :
∣∣ f (n)

∣∣
 A · ∣∣g (n)
∣∣ .

Note that f (n)=Ω
(
g (n)

)⇐⇒ g (n)=O
(

f (n)
)
.

Definition 2.6 (ω(·) notation)

Let f (n) and g (n) be two functions. The notation f (n)=ω
(
g (n)

)
or f (n) ∈ω(

g (n)
)

means

that f asymptotically dominates g :

∀A > 0, ∃n0, ∀n > n0 :
∣∣ f (n)

∣∣
 A · ∣∣g (n)
∣∣ .

Note that ω
(
g (n)

)
implies Ω

(
g (n)

)
.

Definition 2.7 (Θ(·) notation)

Let f (n) and g (n) be two functions. The notation f (n)=Θ
(
g (n)

)
or f (n) ∈Θ(

g (n)
)

means

that f is asymptotically bounded by g :

∃A1 > 0, ∃A2 > 0, ∃n0, ∀n >n0 : A1 · g (n)	 f (n)	 A2 · g (n).

Note that Θ
(
g (n)

)
implies both O

(
g (n)

)
and Ω

(
g (n)

)
.

2.1.2 Indistinguishability

The indistinguishability property is an essential measure that is used for security proofs.

Informally, this measure aims to assess the distance between two distributions. In order to do

so, it relies on a distinguisher algorithm and on the notion of negligible functions.

Definition 2.8 (Family)

A family is a sequence of random variables indexed by a countable index set. For instance the

family X = {Xi }i∈I is the sequence of random variables Xi indexed by the countable index set

I.

Definition 2.9 (Distinguisher)

A distinguisher D is a PPT algorithm that takes some input and outputs either 1 or 0. It

is used to compare two given families X , Y of random variables with identical index set I .

The distance between X and Y is the family of Pr[D (Xn ,1n)= 1]−Pr[D (Yn ,1n)= 1] for n ∈ I .

When Y is the family of random variables with uniform distribution, this becomes a measure

of the randomness of X . Furthermore, the notation D (Xn ,1n) will be used to include an

emphasis on the security parameter and on the index set.
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Definition 2.10 (Negligible)

A function f :N→ [0,1] is said to be negligible in n if for every positive polynomial p(·), there

exists a n0 ∈N such that for every n > n0, the following holds:

f (n)< 1

p(n)
.

Indistinguishability between two families reflects how close they are in terms of their respec-

tive random variable. Three levels of indistinguishability precision can be differentiated:

computational, statistical and perfect.

Definition 2.11 (Computational Indistinguishability)

Two families Xn, Yn with identical index set N are said to be computationally indistin-

guishable if for any distinguisher D, the function |Pr[D (Xn ,1n)= 1]−Pr[D (Yn ,1n)= 1]| is

negligible in n. In other words, for every positive polynomial p(·), there exists an index n0 ∈N
such that for every n > n0, the following holds:

∣∣Pr
[
D

(
Xn ,1n)= 1

]−Pr
[
D

(
Yn ,1n)= 1

]∣∣< 1

p(n)
.

To express that two families are computationally indistinguishable, the following notation is

used:

{Xn}=c {Yn}.

Definition 2.12 (Statistical Indistinguishability)

Let Xn, Yn be two families over a finite domain X and with identical index set N. These

families are said to be statistically indistinguishable if their statistical distance is negligible

in n. Hence, the two families Xn, Yn are statistically indistinguishable if, for every positive

polynomial p(·), there exists an index n0 ∈N such that for every n > n0 and every element

a ∈X , the following holds:

1

2

∑
a∈X

|Pr[Xn = a]−Pr[Yn = a]| < 1

p(n)
.

To express that two families are statistically indistinguishable, the following notation is used:

{Xn}=s {Yn}.

Definition 2.13 (Perfect Indistinguishability)

Two families Xn, Yn with identical index set N are said to be perfectly indistinguishable if for

every element a ∈ Xn and every index n ∈N, the following holds:

Pr[Xn = a]= Pr[Yn = a] .

To express that two families are perfectly indistinguishable, the following notation is used:

{Xn}=p {Yn}.
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2.1.3 Bilinear Groups

Bilinear groups are special algebraic groups that define a function e, called a bilinear map or a

pairing function. The properties of this latter function are essential in many cryptographic

applications. Let PGa(1κ) be an asymmetric bilinear group generator that on input 1κ outputs

a description of a bilinear group parambp := (p,G1,G2,GT,e)←PGa(1κ) such that p is a κ-bit

prime, G1, G2 and GT are multiplicative cyclic groups of prime order p, and e :G1×G2→GT

is an admissible bilinear map (pairing). Let G∗1 =G1 \{1}, G∗2 =G2 \{1} and let g1 ∈G∗1 , g2 ∈G∗2
be generators of G1 and G2 respectively. The admissible bilinear map e is such that

• for all a,b ∈Zp it holds that e(g a
1 , g b

2 )= e(g1, g2)ab ;

• e(g1, g2) �= 1 generates GT;

• it is efficient to decide membership in G1, G2 and GT;

• group operations and the bilinear map are efficiently computable;

• generators are efficiently samplable, and the descriptions of the groups and group

elements are O(κ) bit long.

Furthermore, in the case of symmetric bilinear groups, G2 =G1. Moreover, the (symmetric)

bilinear group generator will be denoted PG(1κ). If not specified, bilinear groups will imply the

symmetric case. It is important to notice that following the results of [GPS08, AMOR14, GKZ14],

symmetric bilinear groups are now considered either insecure or unpractical, and therefore

the asymmetric case should be enforced in practice. This thesis kept the use of symmetric

pairings for Chapter 3 and Chapter 4 in an effort to remain easy to understand. Their use was

nevertheless dropped in Chapter 5.

2.1.4 Combinatorics

Chapter 5 requires an understanding of several notions of combinatorics and additive com-

binatorics that are explained hereafter. The following additive combinatorics definitions are

taken from [TV06]. Let Λ, Λ1 and Λ2 be subsets of some additive group, such as Z or Zn .

Definition 2.14 (Sum set)

The sum set of Λ1 and Λ2 is Λ1+Λ2 = {λ1+λ2 : λ1 ∈Λ1∧λ2 ∈Λ2}.

Definition 2.15 (Difference set)

The difference set of Λ1 and Λ2 is Λ1−Λ2 = {λ1−λ2 : λ1 ∈Λ1∧λ2 ∈Λ2}.

Definition 2.16 (Iterated sumset)

The iterated sumset of Λ by s ∈Z+ is sΛ= {∑s
i=1λi : λi ∈Λ

}
.
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Definition 2.17 (Dilation)

The dilation of Λ by s ∈Z+ is s ·Λ= {sλ : λ ∈Λ}.

Definition 2.18 (Restricted sumset)

The restricted sumset of Λ is 2̂Λ= {λ1+λ2 : λ1 ∈Λ∧λ2 ∈Λ∧λ1 �=λ2}⊆Λ+Λ.

Definition 2.19 (Progression-free set)

A set Λ = {λi } ⊂ Z+ is a progression free set, if no three of its elements are in arithmetic

progression, so that λi +λ j = 2λk only if i = j = k.

Let r3(N ) denote the cardinality of the largest progression free set that belongs to {1, . . . , N }.

Elkin showed in [Elk10] that

r3(N )=Ω
((

N · log1/4
2 N

)
/22
�

2log2 N
)

.

It is also known from [San11] that r3(N )=O(N (loglog N )5/ log N ). Thus, the minimal N such

that r3(N )=n is ω(n), while according to Elkin, N =n1+o(1).

Theorem 2.1 ([Lip12a](Theorem 1, Section 3))

For any n > 0, there exists N = n1+o(1), such that {1, . . . , N } contains a progression free subset

Λ of odd integers of cardinality n.

2.2 Security Models

Cryptographic primitives and protocols should convince users that they are secure. In order

to confirm that, exact mathematical proofs are desirable. When achieved, they are called

security proofs. Unfortunately, perfect security is not always feasible [Gol01] and often leads

to inefficient protocols. To produce efficient but nonetheless secure cryptographic protocols,

the security proofs rely on security models that define time and computational restrictions,

as well as any additional advantages. Hereafter, three of the most used models are explained.

The standard model is the most common model used. It focuses on time and computational

restrictions by means of complexity assumptions called computational hardness assumptions.

The random oracle model introduces the advantage of random functions. Note that this is

different from random sampling. The common reference string model provides a specific

bit string to participants of a cryptographic protocol. Finally, knowledge assumptions are

non-standard restrictions that give evidence about the “knowledge” of the prover.

2.2.1 Standard Model

The standard model, as defined by Naccache in the “Encyclopedia of Cryptography and Secu-

rity” [vTJ11], assumes that the adversaries are only probabilistic and computationally bounded
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in polynomial time. They are thus called probabilistic polynomial-time (PPT) adversaries.

Therefore, this model defines security based on mathematical problems which are considered

hard to solve in polynomial time. To meet this criteria, these problems rely on complexity

assumptions called computational hardness assumptions. The security is then guaranteed

as long as its corresponding computational hardness assumptions hold (i.e. as long as the

corresponding mathematical problems remain hard to solve). Security is thus defined with

arguments of security instead of proofs of security. Nevertheless, the cryptographic literature

refers to them as security proofs. This abuse of terminology will be kept in this thesis as well.

2.2.2 Computational Hardness Assumptions

Computational hardness assumptions, as mentioned above, are complexity assumptions

where some specific mathematical problems are assumed to be computationally hard to

resolve in polynomial time. Alternative complexity assumptions are sometimes used such as

decisional hardness assumptions, where the veracity of a statement is computationally hard to

attest in polynomial time.

Computational Hardness Assumption A computationally hard problem is a mathematical

problem that is computationally hard to solve under certain parameters, generated by the

algorithm of the challenger Cgen. The computational hardness assumption is thus defined

regarding a computationally hard problem and Cgen. A computational hardness assumption

states that given Cgen and for any PPT adversary A , the adversary is able to solve the corre-

sponding computationally hard problem with a probability that is negligible in terms of the

security parameter κ.

Decisional Hardness Assumption A decisional hard problem is a mathematical problem

that requires a distinguisher D to decide on the veracity of a statement under certain parame-

ters, generated by the algorithm of the challenger Cgen. The decisional hardness assumption

is defined regarding a decisional hard problem, Cgen, and a distinguisher D. A decisional

hardness assumption states that given Cgen and for any distinguisher D, the distinguisher is

able to solve the corresponding decisional hard problem with a distance probability that is

negligible in terms of the security parameter κ.

Historically, the two best studied computationally hard problems in cryptography are the

factorization problem and the discrete logarithm problem (DLog problem). Both of these

problems led to the establishment of subsequent computationally hard problems.

Computationally Hard Problem 2.1 (Factorization Problem)

Given n, the product of two prime numbers, find its factorization as n = p ·q. The related

computational hardness assumption is thus called the factorization assumption.
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Computationally Hardness Assumption 2.1 (Factorization Assumption)

Let Cgen output (n, p, q) on input 1κ such that
∥∥p

∥∥= ∥∥q
∥∥=κ and n = pq. The factorization

assumption relative to Cgen states that for any PPT adversary A ,

Pr
[

(n, p, q)←Cgen (1κ) , (p, q)←A (n) : n = pq
]

is negligible in κ.

Note that the 768-bit number named “RSA-768” (from the RSA cryptosystem) was factored

in 2009 by Kleinjung et al. in [KAF+10]. Thus, 1024-bit numbers are now considered at risk.

Furthermore, the now famous RSA public key cryptosystem [RSA78] (see Section 2.4.3 for a

reminder of public key cryptosystems) was introduced in 1978 by Rivest, Shamir and Adleman.

The computational hardness assumption associated with this cryptosystem, was followed

by several important ones including the strong RSA assumption, which is necessary for the

set membership proofs presented in sections 3.4 and 3.5. Recall that an RSA modulus n is

equal to the product of two large primes p and q , hence n = pq . The RSA ciphertext c of a

message m is obtained by computing c =me (mod n), where e is coprime to
(
(p−1)(q−1)

)
.

Deciphering c is achieved by computing m = cd (mod n), where d is part of the secret key as

d = e−1 (mod (p−1)(q−1)).

Computationally Hard Problem 2.2 (RSA Problem [RSA78])

Given an RSA public key (n,e) with e > 1, and an RSA ciphertext c, find a message m such

that c =me (mod n).

Computationally Hardness Assumption 2.2 (RSA Assumption)

Let Cgen output (n, p, q,e,c) on input 1κ such that p, q are primes,
∥∥p

∥∥ = ∥∥q
∥∥ = κ, n = pq,

e > 1 is coprime to
(
(p−1)(q−1)

)
, and c ∈R Zn. The RSA assumption relative to Cgen states

that for any PPT adversary A ,

Pr
[

(n, p, q,e,c)←Cgen (1κ) , (m)←A (n,e,c) : c =me (mod n)
]

is negligible in κ.

Computationally Hard Problem 2.3 (Strong RSA Problem [FO97])

Given an RSA modulus n and an RSA ciphertext c, find a pair (m, e) such that e > 1 and

c =me (mod n). The related computational hardness assumption is called the Strong RSA

assumption.

Computationally Hardness Assumption 2.3 (Strong RSA Assumption)

Let Cgen output (n, p, q,c) on input 1κ such that p, q are primes,
∥∥p

∥∥= ∥∥q
∥∥=κ, n = pq, and

c ∈R Zn. The strong RSA assumption relative to Cgen states that for any PPT adversary A ,

Pr
[

(n, p, q,c)←Cgen (1κ) , (m,e)←A (n,c) : c =me (mod n) ∧ e > 1
]

is negligible in κ.

Another subsequent result is the decisional composite residuosity assumption, which was

introduced by Paillier in [Pai99] as a conjecture.
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Decisional Hard Problem 2.4 (DCR Problem [Pai99])

Assuming that n is an RSA modulus (n = pq), and given a number x, decide if x is an nth

residue modulo n2, that is if there exists a number y ∈Z∗
n2 such that x = yn (mod n2). The

related decisional hardness assumption is called the DCR assumption.

Decisional Hardness Assumption 2.4 (DCR Assumption [Pai99])

Let Cgen output (n, p, q, y, z) on input 1κ such that p, q are primes,
∥∥p

∥∥= ∥∥q
∥∥= κ, n = pq,

and y, z are uniformly random variables taken independently in Zn2 . Let x = yn (mod n2).

The DCR assumption relative to Cgen, states that the distributions x and z are computation-

ally indistinguishable in terms of the security parameter κ.

The discrete logarithm (DLog) problem is defined as follows:

Computationally Hard Problem 2.5 (Discrete Logarithm (DLog) Problem)

Given a finite (multiplicative) abelian group G, a generator g of G, and a random element y ∈
G, find the smallest integer x such that y = g x . Moreover, x is called the discrete logarithm of y

as x = logg y. The related computational hardness assumption is called the DLog assumption.

Computationally Hardness Assumption 2.5 (DLog Assumption)

Let Cgen output (G, p, g , y) on input 1κ such that
∥∥p

∥∥=κ, g has order p, g generates G, and

y ∈R G. The DLog assumption relative to Cgen states that for any PPT adversary A ,

Pr
[

(G, p, g , y)←Cgen (1κ) , x ←A (G, p, g , y) : y = g x
]

is negligible in κ.

Although Shoup showed in [Sho97] that the computational complexity in recovering x is of

Ω
(�

q
)

where qis the largest prime dividing the group order when only using group operations,

Bouvier et al. announced in [BGI+14], that they were able to solve the DLog problem for a

group Zp , with p being a 596-bit safe prime by using the specific properties of Zp (and by

using the number field sieve algorithm).

Diffie and Hellman introduced in [DH76] the Diffie-Hellman (DH) problem. Initially, this

problem related to their key agreement protocol, where two parties interact with each other in

order to set up a common secret key over some insecure communication channel. Moreover,

the DH problem opened the way to several related problems that were used in numerous

protocols, including the set membership proof presented in Section 3.3, and the range proofs

presented in Chapter 4 and in Chapter 5.

Computationally Hard Problem 2.6 (Diffie-Hellman (DH) Problem)

Given a finite (multiplicative) abelian group G, a generator g of G, and random elements

g x , g y ∈G, compute g x y . The related computational hardness assumption is called the DH

assumption.

Computationally Hardness Assumption 2.6 (DH Assumption)

Let Cgen output (G, p, g , x, y) on input 1κ such that
∥∥p

∥∥ = κ, g has order p, g generates G,

and x, y are random elements in the group order. The DH assumption relative to Cgen states
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that for any PPT adversary A ,

Pr
[

(G, p, g , x, y)←Cgen (1κ) , h←A (G, p, g , g x , g y ) : h = g x y
]

is negligible in κ.

The DH problem is considered hard for groups G=Z∗p with large prime p ([Vau06]), where

the size of p should be as large as for the DLog problem.

Decisional Hard Problem 2.7 (Decisional Diffie-Hellman (DDH) Problem)

Given a finite (multiplicative) abelian group G, a generator g of G, and three elements

g x , g y , g z ∈G, decide if z
?= x y. The related computational hardness assumption is called

the DDH assumption.

Decisional Hardness Assumption 2.7 (DDH Assumption)

Let Cgen output (G, p, g , x, y, z) on input 1κ such that
∥∥p

∥∥= κ, g has order p, g generates G,

and x, y, z are uniformly random variables taken independently in Zp . The DDH assumption

relative to Cgen states that the distributions
(
g x , g y , g x y

)
and

(
g x , g y , g z

)
are computationally

indistinguishable in terms of the security parameter κ.

It is important to note here, that the DDH assumption does not hold for G=Z∗p , where p is

prime, as the Legendre symbol, which identifies quadratic residues, provides information on

the decisional problem z
?= x y . Nevertheless, if G is selected as the set of kth power residues

modulo a large prime p, such that (p−1)
k is also a large prime, then the DDH assumption is

believed to hold. These groups are called Schnorr groups. Furthermore, Schnorr groups with

k = 2 are the set of quadratic residues QRp for a safe prime p.

Computationally Hard Problem 2.8 (q-Strong DH (q-SDH) Problem [BB04])

Assume that G1 and G2 are two cyclic groups of prime order p, where G1 =G2 is possible.

Assume that the two generators g1 and g2 respectively generate G1 and G2. The q-Strong

Diffie-Hellman problem consists of outputting a pair
(
c, g 1/(x+c)

1

)
, where c ∈Z∗p , given the

tuple
(
g1, g2, g x

2 , . . . , g (xq )
2

)
, where x ∈R Z∗p . In order to define G1 and G2, the q-SDH prob-

lem is often associated with the asymmetric pairing generator PGa(1κ). In the case of G1 =G2,

the q-SDH problem is thus associated with the symmetric pairing generator PG(1κ). The

related computational hardness assumption is called the q-SDH assumption.

Computationally Hardness Assumption 2.8 (q-SDH Assumption)

Let Cgen output (G1,G2, p, g1, g2, x, q) on input 1κ such that p is prime,
∥∥p

∥∥= κ, g1, g2 have

order p, g1 generates G1, g2 generates G2, x ∈R Z∗p , and q ∈N. The q-SDH assumption

relative to Cgen states that for any PPT adversary A ,

Pr

[
(G1,G2, p, g1, g2, x, q)←Cgen (1κ) , (c, s)←A

(
G1,G2, p, g1, g2, g x

2 , . . . , g (xq )
2

)
:

s = g 1/(x+c)
1

]

is negligible in κ.
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A recent study by Cheon [Che06] shows a “weakness" in the q-SDH assumption. His results

imply that the SDH problem has a computational complexity reduced by a factor of
�

q from

that of the discrete logarithm problem. Hence the generic computational complexity to recover

x is O
(√|G2|/q

)
group operations instead of Ω

(√|G2|
)

as claimed in [Sho97]. Nevertheless,

this “weakness" is not relevant when q is a very small number compared to |G2|. In this thesis,

it is assumed that q is less than 15 bits, whereas |G2| is either greater than 256 bits (in the case

of symmetric bilinear groups), or greater than 512 bits (in the asymmetric case).

Computationally Hard Problem 2.9 (Reverse Double Pairing Problem [AFG+10])

Assume that G1 and G2 are asymmetric bilinear groups. Given u, v ∈G2, the reverse double

pairing problem consists of finding elements s, t ∈ G1 \ {1} such that e(s,u) = e(t , v). The

related computational hardness assumption is called the reverse double pairing assumption.

Computationally Hardness Assumption 2.9 (Reverse Double Pairing Assumption [AFG+10])

Let Cgen output (parambp,u, v) on input 1κ such that parambp := (p,G1,G2,GT,e)←PGa(1κ),

and u, v ∈R G2. The reverse double pairing assumption relative to Cgen states that for any

PPT adversary A ,

Pr

[
(parambp,u, v)←Cgen (1κ) , (s, t )←A (parambp,u, v) :

e(s,u)= e(t , v) ∧ s, t ∈G1 \ {1}

]
is negligible in κ.

Furthermore, Abe et al. showed in [AFG+10] that the DDH assumption implies the reverse

double pairing assumption. Note that in [Gro11], Groth has referred to this assumption as the

“computational double pairing assumption".

Decisional Hard Problem 2.10 (Decision Linear (DLIN) Problem [BBS04])

Given a finite (multiplicative) abelian group G of prime order p, three generators u, v, h of G,

and three group elements ua , vb , hc ∈G, decide if a+b
?= c (mod p). The related decisional

hardness assumption is called the DLIN assumption.

Decisional Hardness Assumption 2.10 (DLIN Assumption)

Let Cgen output (G, p,u, v,h, a,b,c) on input 1κ such that p is prime,
∥∥p

∥∥=κ, u, v,h are three

random generators of G, and a,b,c are uniformly random variables taken independently in

Zp . The DLIN assumption relative to Cgen states that the distributions
(
ua , vb ,ha+b

)
and(

ua , vb ,hc
)

are computationally indistinguishable in κ.

Here again, the DDH assumption implies the DLIN assumption, by solving the following

request in the DLIN problem:(
u, v, h, ua , vb , hc

)
← (

g x , v �= 1, g , g z , 1, g y ) .

The Λ-Power Symmetric Discrete Logarithm (Λ-PSDL) assumption is necessary for the pro-

tocols in Chapter 5. It was introduced by Lipmaa in [Lip12a] and originates from a related
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assumption in [GJM02]. Assume that an asymmetric pairing generator PGa(1κ) outputs the

parameters parambp := (p,G1,G2,GT,e)←PGa(1κ). Assume that g1 and g2 are respectively

generators of G1 and G2. Assume that Λ= {λi }i∈Zn
⊂N such that ∀i < j : 0<λi <λ j , and that

x ∈R Z∗p \ {1}.

Computationally Hard Problem 2.11 (Λ-PSDL Problem [Lip12a])

Given parambp and
(
g xi

1 , g xi

2

)
i∈{0}∪Λ, compute x. The related computational hardness as-

sumption, called the Λ-PSDL assumption, states that PGa is Λ-PSDL secure.

Computationally Hardness Assumption 2.11 (Λ-PSDL Assumption [Lip12a])

LetPGa output (parambp) and Cgen output (g1, g2,Λ, x) on input 1κ. The Λ-PSDL assumption

relative to Cgen states that PGa is Λ-PSDL secure if for any PPT adversary A ,

Pr
[

(parambp)←PGa(1κ), (g1, g2,Λ, x)←Cgen (1κ) , x ←A
(
parambp,Λ,

(
g xi

1 , g xi

2

)
i∈{0}∪Λ

)]
is negligible in κ.

An alternative definition exists by restricting the input to parambp and
(
g xi

t

)
i∈{0}∪Λ, where

t ∈ {1,2}. In this case, it is said that PGa is Λ-PDL secure in G1 for t = 1 (respectively in G2 for

t = 2). Furthermore, Lipmaa provided a proof in [Lip12a] that the Λ-PSDL assumption holds

in the generic group model for any Λ = {λi }i∈Zn
⊂N such that ∀i < j : 0 < λi < λ j . This last

model is a security model that idealizes reality. Its idealization provides to all participants, a

random encoding of a group, together with the corresponding oracles for group operations. It

should nevertheless be mentioned that this model has been criticized by Dent in [Den02], as

it posses problems when constructing concrete instantiations.

The last two problems presented hereafter are used in related prior protocols ([DJ01, dMW06]),

and are explained for purposes of clarity and comparison.

Assume the following definitions: a literal is either a boolean variable or its negation; a clause

is an expression of literals linked with disjunctions (OR: ∨); and a boolean expression is in

the conjunctive normal form (CNF), if it is an expression of clauses linked with conjunctions

(AND: ∧).

Decisional Hard Problem 2.12 (Boolean 3-Satisfiability (3SAT) Problem)

Given a boolean expression in the CNF with at most three literals in each clause, decide if it is

satisfiable.

The unproven exponential time hypothesis [IP99] implies that the 3SAT problem cannot be

solved in time faster than eo(n), where n is the number of variables in the corresponding

boolean expression.
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2.2.3 Random Oracle Model and Hash Functions

Some cryptographic protocols request the usage of random functions. These functions output

values that are truly random in function of the input. Unfortunately, in order to do so, they

require a true randomness source which renders them unpractical. Thus, hash functions

are used in their stead. Hash functions are deterministic functions that should meet two

conditions: they need to be efficiently computable in polynomial time; and it should be hard

to find two different inputs that would induce the same output. Their aim is to be hard to

invert as well as hard to predict. Nevertheless, they raise concerns when proving security, as

their output is deterministic and not truly random.

To provide some security evidence, an extended model was presented in [BR93] by Bellare and

Rogaway: the random oracle model. In this idealized model, security is proven by replacing

hash functions with idealized random functions available to all parties, which are called

random oracles. A random oracle returns a truly random value when queried with a new

input, otherwise it returns the corresponding previously randomly drawn value. Thus, security

is proven by considering the underlying hash functions as ideal random functions. This

idealization led to several critiques from Canetti, Goldreich, and Halevi in [CGH98, CGH04],

and from Goldwasser and Kalai in [GK03]. They showed that some protocols are secure in the

random oracle model but insecure under any instantiations of hash functions. These critiques

have been minimized by Bleumer in [vTJ11], by pointing out that these cases are usually

avoided in the cryptographic literature. Counterbalancing the arguments of Bleumer, Bitansky

et al. gave more criticism against the random oracle model in [BDG+13]. They showed that

proving security for presumably safer protocols (statistically sound proofs, see Section 2.3.1)

can also be problematic in the standard model. The random oracle model is nevertheless

often preferred in the construction of some specific protocols, such as non-interactive zero-

knowledge proofs (see Section 2.3.6), due to its practicality when deploying corresponding

protocols. In particular, the random oracle model does not require any trusted third party, and

often protocols constructed in this model are more efficient. For these reasons, this model is

frequently relied on by some practitioners to construct their protocols.

Hash functions in practice take arbitrary length inputs and output fixed length results. Hash

functions can either be instantiated with a key (they are thus called keyed hash functions) or

without (unkeyed hash functions).

Although unkeyed hash functions are preferably used, keyed hash functions are used to pro-

duce Message Authentication Code (MAC) algorithms. A MAC algorithm solves the problem

of authenticating a large message over an insecure channel. This problem also includes check-

ing the integrity of messages. The solution provided consists of sharing a secret common key

between the sender and the receiver, and using this key to produce a small hash digest (called

a MAC value or simply a MAC) that will be appended to the message. Informally, the security

is based on the difficulty of recovering the secret key, as well as the difficulty of producing a

MAC value without the knowledge of the secret key.
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Regarding unkeyed hash functions, three security properties need to be presented.

(First) Preimage Resistance: Given a hash digest y , finding x such that y = h(x) must be

computationally infeasible.

Second Preimage Resistance: Given a message x and its corresponding hash digest h(x),

finding a second different message x ′ �= x such that h(x)= h(x ′) must be computation-

ally infeasible.

Collision Resistance: Finding two different messages x �= x ′, such that h(x)= h(x ′) must be

computationally infeasible.

Hash functions that satisfy both the first and second preimage resistance security properties,

are called one-way hash functions. If they additionally satisfy the collision resistance security

property, they are then called collision resistant (or collision intractable) hash functions. Un-

der certain conditions detailed by Rogaway and Shrimpton in [RS04], the collision resistance

property implies both the first and second preimage resistance properties.

One of the most important standards regarding hash functions, is provided by the National

Institute of Standards and Technology (NIST) with the Secure Hash Algorithm (SHA) family

of hash functions ([NIST15a, NIST15b]). The latest update of the SHA family is referred to

as SHA-3 [NIST15b]. This update is the result of a public competition won by Bertoni et

al. with their hash function named Keccak [BDPA13]. At present, it is not meant to replace

the preceding update SHA-2 [NIST15a], and it is considered an alternative standard. Note

that SHA-512 corresponds to the hash function in SHA-2 that outputs 512-bit hash digests.

Although available in [NIST15a, NIST15b], details of the design of the SHA family are not

relevant for this thesis.

2.2.4 Common Reference String Model

In some settings a trusted third party is necessary at the beginning of cryptographic protocols,

to provide a trusted common setup for the parameters of protocols. This happens for instance

in the case where participants distrust each others but still need some trusted common

parameters. To cover this necessity, the Common Reference String (CRS) model [BFM88]

provides all participants with the same setup parameters. These parameters can take various

forms, such as a uniformly random bit string, or descriptions of parameters (public keys with

discarded secret keys, bit lengths, distributions, functions, elements, or sets taken from public

distributions, ...). These common setup parameters form a set that is called the common

reference string (crs). The main application of the CRS model appears in the construction

of non-interactive zero-knowledge proofs, as explained in Section 2.3.6. In situations where

a higher level of trust in cryptography is needed, and participants cannot rely on unproven

heuristics such as in the random oracle model, the CRS model offers a good alternative,

although it requires a trusted third party to generate the crs. The CRS model will thus be used
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to construct the non-interactive protocols presented in Chapter 5. Although this model allows

the achievement of efficient results once participants have access to the crs, it is important to

keep in mind that the crs itself needs to be transmitted. Thus its size should be kept as small

as possible.

2.2.5 Knowledge Assumptions

Knowledge assumptions, which should not be confused with proofs of knowledge (see Sec-

tion 2.3.3), define the inference between the ability to perform some specific computations

(without interaction) and the knowledge required to perform these computations. Informally,

assume that some computations Γ can be performed solely with the help of a secret element

sk. Then the knowledge assumption states that if the adversary can compute Γ, then it can be

inferred that the adversary “knows” sk.

The first knowledge assumption was introduced in 1991 by Damgård in [Dam91]. In 2008,

Canetti and Dakdouk gave, in [CD08], a first abstraction of knowledge assumption with the

notion of extractable functions, where the extractability property of these function ensures

the knowledge assumption. Extractable functions are either one-way or collision resistant

functions (similarly to hash functions). Furthermore, they assume the existence of an extractor

XA defined for a PPT ITM A (see Section 2.3.1), such that when given the same inputs

(including the random tape) and code of A , XA outputs a preimage.

Although some specific knowledge assumptions are well defined and accepted, the general

definition of a knowledge assumption has not yet been formally set and is still debated within

the cryptographic community [GS12b, BCPR14]. The following definition attempts to provide

some indications as to how to define knowledge assumptions, and should not be considered a

formally matured definition.

Definition 2.20 (Knowledge Assumption)

Assume that A is a PPT ITM with1 auxiliary input x and random tape r . The length of the

auxiliary input x is restricted to a polynomial in the security parameter κ (see [BCPR14] for

more details), and is either partially or completely generated by the algorithm of the chal-

lenger Cgen. Moreover, x is sometimes referred to as the auxiliary information. A knowledge

assumption is defined with respect to an extractable one-way function f , and states that

for any A (x,r ) that achieves the computation of f and outputs y in the image of f , there

exists an extractor XA (x,r, y) that takes as input (x,r, y) and outputs a preimage of y with

probability
(
1−μ(‖x‖)

)
, where μ is a negligible function in the length of x.

Note that in [GS12b], f is called a Knowledge Commitment Protocol instead of an extractable

function. Lastly, both [GS12b] and [BCPR14] noted that some restrictions need to be added

1The exact quantification of x and r depends on the specific knowledge assumption.
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to this latter definition, regarding the length and the nature of the auxiliary input x. Impos-

sibility results occur when these restrictions are not made. Nevertheless, several knowledge

assumptions were proven secure in the generic group model. Recall that this last model is an

idealization of reality, as is the random oracle model, and that it has been criticized by Dent

in [Den02] for having the same problems as the random oracle model.

This overview on knowledge assumptions aims to introduce the Λ-Power Knowledge of Expo-

nent (Λ-PKE) assumption that will be used in Chapter 5, and which was initially formalized

in [Lip12a]. Given the parameters of an asymmetric bilinear pairing parambp generated by

an asymmetric pairing generator PGa(1κ), the Λ-PKE security is defined for either G1 or G2.

Furthermore, assume that the corresponding generator is g , that (α̂, x) is a pair of secret pa-

rameters, and that Λ= {λi }i∈Zn
⊂N such that ∀i < j : 0<λi <λ j . The Λ-PKE then informally

states that given
(
g xi

, g α̂xi
)

i∈{0}∪Λ, it is infeasible to produce a pair (c, ĉ) such that ĉ = cα̂,

without knowing variables (ai )i∈{0}∪Λ such that c =∏
i∈{0}∪Λ

(
g xi

)ai
. Assume that g1 and g2 are

respectively generators of G1 and G2.

Knowledge Assumption 2.1 (Λ-PKE [Lip12a])

Let t ∈ {1,2} determine which group (G1 or G2) the Λ-PKE security is defined for. Let PGa

output (parambp) on input (1κ) and Cgen output (gt ,Λ, α̂, x) on input (parambp,1κ). The Λ-

PKE assumption relative to Cgen, states that PGa is Λ-PKE secure in G1 for t = 1 (respectively

in G2 for t = 2), if for any PPT adversary A there exists a PPT extractor algorithm XA such

that

Pr

⎡⎢⎢⎣
(parambp)←PGa(1κ), (gt ,Λ, α̂, x)←Cgen

(
parambp,1κ

)
,(

(c, ĉ) ; (ai )i∈{0}∪Λ
)← (A ∥ XA )

(
parambp,

(
g xi

t , g α̂xi

t

)
i∈{0}∪Λ

)
:

ĉ = cα̂ ∧ c �=∏
i∈{0}∪Λ

(
g xi

t

)ai

⎤⎥⎥⎦ is negligible in κ,

where the notation
(
y ; z

)← (A ∥ XA ) (χ) means that with the same random tape and on

input χ, the adversary A outputs y and the extractor XA outputs z.

Moreover, the Λ-PKE assumption is derived from the q-PKE assumption of Groth [Gro10],

where Λ is replaced by the set {1, . . . , q}. Groth proved in [Gro10] that the q-PKE assumption

holds in the generic group model, and his proof naturally extends to the case of Λ. Note

that historically, the q-PKE assumption derives from the Knowledge-of-Exponent (KEA3)

assumption of Bellare and Palacio [BP04], which itself comes from the Knowledge-of-Exponent

(KEA) assumption of Damgård [Dam91]

2.3 Proofs and Arguments

Although ambiguous, proofs (or proof systems) and arguments refer here to some specific

protocol constructions, and should not be confused with security proofs. A proof system
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usually involves two types of participants: provers and verifiers. Sometimes, a trusted third

party is also involved. The goal of a proof system is to convince PPT verifiers of the veracity of

a statement held by provers. Arguments are a weaker version of proof systems, where provers

are limited to being PPT. An additional variant of proof systems, called a proof of knowledge

(PK), requires provers to know a witness of the statement being proven.

Furthermore, proofs may have a supplementary security property that limits the amount

of information that verifiers can obtain. The zero-knowledge (ZK) security property states

that apart from the veracity of the statement, no information is obtained by verifiers. Weaker

notions exist such as witness hiding (WH) and witness indistinguishability (WI), where the

security is focused on how much information verifiers are able to obtain regarding the witness

of provers. The last characterization of proofs and arguments targets their interaction model.

The latter can be either interactive or non-interactive depending on whether provers and

verifiers are allowed to reply to messages exchanged, or if a single message is sent from the

prover to potential verifiers.

Last but not least, arguments are often wrongly called proofs in the cryptographic literature,

especially regarding range proofs (see chapters 4 and 5). Although this abuse of terminology is

also used in the rest of this thesis, the distinction will be preserved in this section.

2.3.1 Interactive Proofs

An interactive proof protocol, sometimes called an interactive proof system, aims to convince

some verifiers of the veracity of a statement to which provers hold some secret evidence. In

order to convince verifiers, it is assumed that more than one message is exchanged, hence

the interactive designation. If the protocol succeeds to convince verifiers, then it is said that

verifiers accept the veracity of the statement being proven, or simply that verifiers accept. The

size of the proof protocol should be relatively small and its verification should be efficient.

This is formalized with the complexity class N P.

Definition 2.21 (Complexity Class N P [Gol01] (Definition 1.3.2, Section 1.3))

A formal language LR for a relation R is the set of elements x, called words, that are con-

strained by the set of rules defined by the relation R. A language LR is in the complexity class

N P if there exists a boolean relation R ⊆ {0,1}∗ × {0,1}∗ and a polynomial p such that R can

be recognized in deterministic polynomial time, and x ∈ LR if and only if there exists a w such

that ‖w‖ 	 p(‖x‖) and (x, w) ∈R.

Statements are thus of the form x ∈ LR , where the common input is x and where provers hold

a witness w such that (x, w) ∈ R. Formally, provers and verifiers are defined as interactive

Turing machines (ITMs), where verifiers are PPT ITMs and provers are unrestricted ITMs. The

complete formal definition of an ITM is described by Goldreich in [Gol01], and briefly recalled

here.
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Definition 2.22 (Interactive Turing Machine [Gol01] (Definition 4.2.1, Section 4.2))

An interactive Turing machine (ITM) is a deterministic multi-tape Turing machine. ITMs

are considered in pairs. Moreover, apart from the basic tapes of a Turing machine (read-only

input tape, read-only random tape, read-and-write work tape, and write-only output tape),

ITMs additionally have two communication tapes (read-only input communication tape, and

write-only output communication tape) and an active/idle indication tape (read-and-write

switch tape). The additional tapes model the interaction process. The input communication

tape of an ITM corresponds to the output communication tape of the other ITM. The switch

tape determines which ITM is active and which is idle.

Lastly, the security proof of interactive proof protocols is obtained from two security condi-

tions: completeness and soundness. The completeness condition states that for any honest

prover and any honest verifier, if x ∈ LR , verifiers accepts the veracity of the statement being

proven with a probability of at least C . In general, protocols with perfect completeness are pre-

ferred, which implies that C = 1. Informally, this means that the protocol will always succeed

with honest interactions. The soundness condition states that for any (potentially malicious)

prover and any honest verifier, if x ∉ LR , verifiers will accept the veracity of the statement being

proven with probability at most S , where S is ideally negligible. This condition prevents any

malicious provers from convincing verifiers of a false statement. Note that the probabilities

C and S are called, respectively, the completeness error and the soundness error. They are

defined by the means of functions in the length of x or equivalently in the security parameter

κ, and are respectively named completeness and soundness bounds. The formal definition

of an interactive proof can be found in [Gol01], in the definition of “Generalized Interactive

Proof ” (Definition 4.2.6, Section 4.2). The following is an informal reminder of that definition,

where the existence of a setup algorithm, in charge of generating the inputs of P and V , will be

implicitly assumed.

Definition 2.23 (Interactive Proof)

Assume that a generator algorithm Pgen (1κ) selects a pair (x, w) in the relation R. An interac-

tive proof for language LR , is the composition of a verifier V and a prover P, such that V is

PPT ITM with input x (bounded in length by the security parameter κ), P is an unrestricted

ITM with provided input (x, w) ∈R, and where the completeness and soundness conditions

with respect to LR hold. The interactive proof is thus denoted (P,V )LR or simply (P,V ) if LR is

clear from the context.

2.3.2 Interactive Argument

Interactive arguments, also known as computationally sound proof systems, are interactive

proof protocols where malicious provers in the soundness notion are restricted to being PPT

ITMs. This restriction also applies to adversaries. Therefore, the (computational) soundness is

defined for all (including malicious) PPT provers, where cheating is feasible with negligible
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probability in the security parameter κ. In general, the security is based on computational

hardness assumptions, as these assumptions assume PPT adversaries.

2.3.3 Proofs of Knowledge (PK)

The definition of proofs of knowledge was initiated by the work of Feige, Fiat, and Shamir

in [FFS88]. It was then developed by the work of Bellare and Goldreich in [BG92], and extended

by Goldreich in [Gol01]. Informally, a proof of knowledge is an interactive proof such that

the soundness condition additionally requires that the verifier V accepts only if the prover

P “knows” x ∈ LR . This concept of knowledge is captured with the help of a PPT ITM, called

the knowledge extractor K , such that when given access to a successful prover P , K outputs a

witness for x ∈ LR . Note that in the cryptographic literature regarding proofs of knowledge, P is

often assumed to be PPT. Although the term arguments of knowledge would be more suitable,

these protocols are still referred to as proofs of knowledge.

Definition 2.24 (Proof of Knowledge [Gol01] (Definition 4.7.2, Section 4.7.1))

A proof of knowledge is an interactive argument that has the following extended soundness

condition with a knowledge error2 μ(κ).

Denote x as the common input. For the prover P, denote y as its auxiliary input, and r as its

random tape. There exists a polynomial q and a probabilistic oracle machine K such that

for every prover P, every x ∈ LR , and every y,r ∈ {0,1}∗, machine K satisfies the following

condition:

Denote by S the probability that the verifier V accepts, on input x, when inter-

acting with the prover P. If S >μ(κ), then, on input x and with oracle access to

P, machine K outputs a witness w for x ∈ LR within an expected number of steps

bounded by q(κ)
S −μ(κ) .

The oracle machine K is called a universal knowledge extractor, or more simply a knowledge

extractor. Proofs of knowledge will be denoted PK {(w,r ) : x ∈ LR }, where the elements (w,r )

represent the elements the knowledge of which is being proved, and x ∈ LR the statement

related to the proof of knowledge.

Furthermore, note the existence of some alternative (weaker) definitions. For instance, the

running time of the extractor is commonly assumed to run in expected polynomial-time

instead of strict polynomial-time. Another notable example is the definition from [Lin01,

Lin03] where the soundness condition is replaced with a weaker version called a witness-

extended emulation. Informally, in this latter definition, the extractor K is replaced with an

emulator running in expected polynomial-time (and not PPT), which outputs an emulation of

2The knowledge error μ is often associated to the maximum probability with which a verifier V can be convinced
on input x �∈ LR .
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a successful proof produced by the adversary, together with a witness corresponding to the

emulation.

2.3.4 Zero-Knowledge (ZK)

Introduced by Goldwasser, Micali, and Rackof in [GMR85, GMR89], zero-knowledge is an

important security property for proofs, arguments, and proofs of knowledge. This property

aims to protect provers against malicious verifiers which attempt to gain more knowledge than

that which is intended. Informally, the goal of ZK is that verifiers learn “no” knowledge besides

that which is intended, even when they deviate from the protocol execution. Regarding a

proof protocol where the statement x ∈ LR is being proven, ZK guarantees that verifiers will

only learn the veracity of the statement, without any additional knowledge, hence the term

zero-knowledge. This security property is achieved by showing that the interaction with the

prover can be efficiently simulated without the help of the prover, and thus without his private

inputs and without the witness w of x ∈ LR . This simulation is performed by a PPT ITM,

called the simulator. Furthermore, the collection of messages exchanged in a proof protocol is

called the transcript of the proof protocol. Hence, the goal of the simulator is to simulate the

transcript.

Definition 2.25 (Zero-Knowledge)

Let (P, V )LR be a proof protocol regarding the language LR , between a prover P and a verifier

V . Let tr (P, V ∗)LR be the sequence of random variables defining the transcript distribution

between any verifier V ∗ and the prover P. Let trsi m be the sequence of random variables

defining the simulated transcript distribution, where the simulated transcript is output by

the simulator. Note that the sole input of the simulator is the common input x.

The zero-knowledge property of (P, V )LR depends on the indistinguishability relation between

tr (P, V ∗)LR and trsi m. Thus the proof protocol (P, V )LR is said to be:

• perfectly zero-knowledge if for all x ∈ LR ,

tr (P, V ∗)LR and trsi m are perfectly indistinguishable
(
tr (P, V ∗)LR =p trsi m

)
.

• statistically zero-knowledge if for all x ∈ LR ,

tr (P, V ∗)LR and trsi m are statistically indistinguishable
(
tr (P, V ∗)LR =s trsi m

)
.

• computationally zero-knowledge if for all x ∈ LR ,

tr (P, V ∗)LR and trsi m are computationally indistinguishable
(
tr (P, V ∗)LR =c trsi m

)
.

Recall that the indistinguishability relation is explained in Section 2.1.2. This definition of

zero-knowledge is applicable to arguments as well as to proofs of knowledge, by considering

the prover P as a PPT ITM. Furthermore, if the definition is restricted to honest verifiers (V ∗

is restricted to honest verifiers), then the security property achieved is called honest verifier

zero-knowledge (HVZK). It can also be noted that more diverse forms of zero-knowledge exist

(see [Gol01], Chapter 4).
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2.3.5 Weaker ZK with witness security

Feige and Shamir introduced in [FS90] two weaker versions of zero-knowledge, where security

focuses on the witness of the statement. The first one, called witness hiding (WH), states that

(cheating) verifiers are unable to compute a witness for the statement, even after interacting

with the honest prover, unless verifiers were able to do so prior to any interactions with the

honest prover. The second security property, called witness indistinguishability (WI), states

that (cheating) verifiers are unable to identify which witnesses are held by the prover, even if

all witnesses are known to the verifiers. Furthermore, Feige and Shamir also showed in [FS90]

that WH can be instantiated from WI protocols.

Definition 2.26 (Witness Indistinguishability [FS90] (Definition 3.1, Section 3))

Let tr
(
P(x,w), V(x,ỹ)

)LR be the sequence of random variables defining the transcript distribu-

tion of a proof protocol (P, V )LR , where x is the common input, w is the witness of the prover

P and ỹ is the auxiliary input that the verifier V might have.

(P, V )LR is witness indistinguishable (WI) regarding LR , if for any (potentially malicious) ver-

ifier V ∗, for any long enough common input x, for any witnesses w1, w2 such that (x, w1) ∈R

and (x, w2) ∈ R, the following holds: tr
(
P(x,w1), V ∗

(x,ỹ)

)LR
and tr

(
P(x,w2), V ∗

(x,ỹ)

)LR
are per-

fectly indistinguishable.

WI is sometimes referred to as perfect witness indistinguishability to differentiate it with the

statistical case, where tr
(
P(x,w1), V ∗

(x,ỹ)

)LR
and tr

(
P(x,w2), V ∗

(x,ỹ)

)LR
are statistically indistin-

guishable.

2.3.6 Non-Interactive (NI) Proofs

Interactive proofs (as well as arguments and PK) also have a non-interactive (NI) variant.

The essential difference with non-interactive proofs is that all interactions consist of a single

message sent by the prover to the verifier. Verifiers are thus passive in the sense that they send

no messages to provers. NI proofs were initially introduced in the context of non-interactive

zero-knowledge (NIZK) proofs [BFM88, SMP87, BSMP91]. Furthermore, it has been shown

in [GO94] that NIZK proofs require some setup assumptions, such as provided with the CRS

or with the random oracle model. Therefore, the standard model alone is insufficient for

NIZK proofs. Moreover, zero-knowledge for NIZK proofs, in the context of the CRS model, is

achieved if both the CRS and the proof can be simulated.

Definition 2.27 (NIZK Proofs)

A non-interactive argument for language LR consists of the next PPT algorithms: a CRS

generator Gencrs, a prover P, and a verifier V . For crs←Gencrs(1κ), P (crs; x, w) produces an

argument π. The verifier V (crs; x,π) outputs either 1 (accept) or 0 (reject).
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A non-interactive argument (Gencrs,P,V ) is perfectly complete, if for all crs← Gencrs(1κ)

and all (x, w) ∈R, V (crs; x,P (crs; x, w)) outputs 1. A non-interactive argument (Gencrs,P,V )

is computationally (adaptively) sound, if for all non-uniform PPT adversaries A ,

Pr
[
crs←Gencrs(1κ), (x,π)←A (crs) : x �∈ LR ∧V (crs; x,π) outputs 1

]
is negligible in κ.

A non-interactive argument (Gencrs,P,V ) is perfectly witness indistinguishable, if (given

that there are several possible witnesses) it is impossible to tell which witness the prover used.

That is, if crs←Gencrs(1κ) and ((x, w0), (x, w1)) ∈R2, then the distributions P (crs; x, w0) and

P (crs; x, w1) are equal.

(Gencrs,P,V ) is perfectly zero-knowledge, if there exists a polynomial-time simulator Si m =
(Si m1,Si m2) with a simulation trapdoor td, such that for all stateful interactive non-uniform

PPT adversaries A ,

Pr

[
crs←Gencrs(1κ), (x, w)←A (crs),π← P (crs; x, w) :

(x, w) ∈R∧A (crs,π) outputs 1

]

= Pr

[
(crs,td)← Si m1(1κ), (x, w)←A (crs),π← Si m2(crs, x,td) :

(x, w) ∈R∧A (crs,π) outputs 1

]
.

(Gencrs,P,V ) is computationally zero-knowledge if these two probabilities are computation-

ally indistinguishable.

Definition 2.28 (NIZK Proofs of Knowledge)

A non-interactive zero-knowledge proof of knowledge is a non-interactive zero-knowledge

argument that has the following extended soundness condition with a knowledge error2μ(κ).

Let crs be generated by the CRS generator Gencrs(1κ). The non-uniform PPT adversary A is

given crs as input, and outputs x (the common input) together with its corresponding proof π.

Denote S as the probability that a verifier V accepts on input (crs; x,π). The knowledge

extractor XA is a probabilistic oracle machine that takes as input x ∈ LR , the crs, and the

random tape of A .

The extended soundness condition holds if there exists a polynomial q, and a knowledge

extractor XA , such that if S >μ, then XA outputs a witness w for x ∈ LR within an expected

number of steps bounded by q(κ)
S −μ(κ) .

Identically to proofs of knowledge, non-interactive zero-knowledge proofs of knowledge will

be denoted N I Z K -PK {(w,r ) : x ∈ LR }.

Since their introduction, the importance of NIZK proofs rose and they are now considered an

important part of cryptography. NIZK proofs can be either constructed directly in the CRS
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model (by using, for instance, a general methodology), or by converting an interactive equiva-

lent proof using generic transformations. Notable examples of such generic transformations,

are the use of the Fiat-Shamir heuristic [FS86], the Lindell transform [Lin15], and the CPSV

transform [CPSV16]. These three transformations are restricted to particular interactive proofs

called Σ-protocols (see Section 2.4.1) and will result in a security proven in the random oracle

model. Although the Fiat-Shamir heuristic yields very efficient protocols, it is considered

controversial as some insecurity results were shown in [CGH98, CGH04]. Alternatively, the

Groth-Sahai method [GS08, GS12a] is the most popular general methodology for obtaining

a NIZK proof in the CRS model, even though this method is focused on protocols based on

bilinear pairings. Nevertheless, both the random oracle model and the CRS model will be

considered in this thesis for the sake of completeness. This will allow users to select their

protocols according to the security model they need.

2.4 Protocols and Building Blocks

This section explains the majority of the protocols and building blocks that are needed to

understand the various results of this thesis. The set membership proofs of Chapter 3 and

the interactive range proofs of Chapter 4 are all based on Σ-protocols, which are explained

in Section 2.4.1. Commitment schemes, public key cryptosystems, signature schemes, and

accumulators are respectively defined in sections 2.4.2, 2.4.3, 2.4.5, and 2.4.6, together with

the specific instantiations needed for this thesis. Lastly, the non-interactive range proof

of Chapter 5 requires the lifted BBS cryptosystem, the Hadamard product argument and

the Lipmaa permutation argument, which are respectively explained in sections 2.4.4, 2.4.7,

and 2.4.8.

2.4.1 Σ-Protocols

Σ-protocols are interactive zero-knowledge proofs (or arguments) of knowledge that follow a

specific interaction pattern with special security properties. The interaction pattern consists

of three messages (a,c,r ). The first message a is sent by the prover to the verifier and is

usually a commitment to the randomness of the prover. The second message c is a sufficiently

large random challenge, sent by the verifier to the prover. The last message r is a specific

response from the prover, that allows the verifier to achieve the proof of knowledge by running

a deterministic check on his inputs and the messages exchanged.

The special security properties that need to be met are perfect completeness, special soundness,

and special honest verifier zero-knowledge (SHVZK). The perfect completeness property is

identical to the one for proofs of knowledge. The special soundness property only restricts

the oracle access to the prover for the knowledge extractor. For any x ∈ LR and on any

pair of accepting interactions (a,c,r ) and (a,c ′,r ′) such that c �= c ′, the knowledge extractor
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tries to output the witness w , given as input (x, a,c,c ′,r,r ′). The SHVZK property implies

the HVZK property for a transcript of the form (a,c,r ), with the additional property that,

given a uniformly chosen challenge c, the simulator outputs an accepting interaction (a,c,r ).

Moreover, computationally indistinguishability of the simulated transcript is usually assumed

in SHVZK.

Definition 2.29 (Σ-Protocols)

A Σ-protocol for language LR is an interactive zero-knowledge proofs (or arguments) of

knowledge (P,V ) where the transcript (or conversation) is of the form (a,c,r ). The messages a

and r are computed by P, and c is a challenge randomly chosen by V . The verifier accepts if

φ(x, a,c, z)= 1 for some efficiently computable predicate φ, where x is the common input of

P and V .

A Σ-protocol must satisfy three security requirements: completeness, special soundness and

special honest verifier zero-knowledge (SHVZK). A Σ-protocol is perfectly complete when

a honest prover convinces honest verifiers with probability 1. A Σ-protocol has the special

soundness property when the knowledge extractor K can efficiently recover a witness w

such that (x, w) ∈ R, from two accepting transcripts3 (a,c,r ) and (a,c ′,r ′), where c �= c ′.
A Σ-protocol has the SHVZK property if there exists a PPT simulator Si m that can first

randomly pick c∗, then find r∗ and a∗ such that the transcript (a∗,c∗,r∗) is accepting and

the distribution (a∗,c∗,r∗) is computationally indistinguishable from the distribution of

accepting transcripts between honest provers and honest verifiers. Finding r∗ and a∗ is

usually achieved by (randomly) picking r∗ first, and deducing a∗ after.

The terminology of Σ-protocols was introduced by Cramer in [Cra97], although this type of

protocols was used before (as early as in [FS86]). In [CDS94], Cramer et al. showed that the

special soundness imply the standard soundness of proofs of knowledge. Furthermore, it is

possible to convert a Σ-protocol that is SHVZK to plain ZK as shown by Cramer, Damgård, and

MacKenzie in [CDM00].

2.4.2 Commitment Schemes

A commitment scheme is one of the basic cryptographic primitives. The concept of commit-

ment schemes was introduced by Blum in [Blu81] and its terminology by Even in [Eve81],

although they were implicitly used by Shamir et al. in [SRA81].

Informally, a commitment can be seen as a vault with a safe deposit box. A party, called the

committer will put his message into the safe and lock it. He will then be able to transmit the

vault with the assurance that it is safely hidden in the vault. Meanwhile, the other parties

will want to have the insurance that the committer will not be able to cheat by providing a

wrong opening sequence to another hidden safe box inside the vault, containing a message

3Recall that K has a rewindable oracle access to P .
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that is different to the initial one. Therefore there is a need to define two conflicting security

properties of commitments, the hiding and the binding requirements.

Thus, a commitment scheme is a protocol enabling the committer to commit to a message

of his choice. This means that the committer will be able to fix his decision upon a message

and disclose that he has done so without revealing the content of his message. He will be tied

to his decision through a mathematical object called the commitment linked to his hidden

message. In a later phase, when the committer will be asked to reveal his message, the other

parties, called verifiers, will have the means to verify that his revealed message is indeed

unconditionally linked to his commitment. The hiding requirement prevents verifiers from

learning the content of the commitment. The binding requirement prevents the committer

to cheat when opening his commitment. Here, cheating means opening the commitment

to a different value than the initial message committed in the commitment. The following

definitions are inspired by the definitions of Goldreich in [Gol01].

Definition 2.30 (Commitment Scheme)

A (non-interactive) commitment scheme C is the combination of three algorithms: Gen,

Commit, and Open, representing respectively the parameters generation, the commit, and

the open algorithm. The Gen(1κ) algorithm generates parameters p for the scheme based on

a given security parameter κ. The commit algorithm Commit(p,m,r ) runs on input (p,m,r )

where m is a message string taken in the message space M and r is a random tape. Commit

produces a pair of values (c,o) representing respectively the commitment as a committed

string and an opening string. For simplicity, the sub-algorithm that produces the commitment

c in the commit algorithm Commit, will be denoted Com(p,m,r ) or Com(m,r ) if p is clear

from the context. The open algorithm Open(c,m,o) runs on input (c,m,o) and outputs 1 or

0, whether the commitment c successfully opens to the message m or not.

Once the commitment parameters have been generated by Gen, the committer C will run

Commit and transmit the commitment c to potential verifiers V . In order to open the commit-

ment, the committer C just needs to transmit the initial message m together with the opening

string o to the verifiers V , who will run the checking algorithm Open.

The hiding security requirement in a commitment scheme refers to the difficulty or impos-

sibility for an adversary to determine the message m from c. It ensures the committer that

his commitment will leak no information about his message choice. Depending on the in-

distinguishability property (see Section 2.1.2) of the commitments, three strengths of hiding

commitments exist, namely computationally, statistically, and perfectly hiding commitments.

A computationally hiding commitment is secure against a computationally bounded adversary.

A statistically hiding commitment will resist against computationally unbounded adversaries.

Lastly, there exist no adversaries able to break a perfectly hiding commitment.

Definition 2.31 (Hiding)

For a given commitment scheme C and any security parameter κ, assume that c1 and c2 are

any two commitments on different messages m1 and m2 respectively. The hiding property
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Common Input: p ←Gen(1κ).
Prover Input: (m,r ).

Commit Phase
C c � V Commiter runs (c,o)←Commit(p,m,r ) and sends c.

Open Phase
C m,o � V Commiter sends m,o.

Verifier checks that Open(c,m,o)
?= 1.

Protocol 2.1 – General commitment scheme with security parameter κ

states that an adversary A cannot distinguish a commitment to m1 from a commitment to

m2. This means that an adversary A given as input either (κ, p,c1) or (κ, p,c2), will have

a computationally, statistically, or perfectly indistinguishable output distribution. This

indistinguishability relation defines the hiding property type.

Formally, let (ci )κ denote the sequence of random variables representing the commitment

distribution from Com on input mi , and indexed with the security parameter κ. The hiding

property of the commitment scheme C depends on the indistinguishability relation between

{(c1)κ} and {(c2)κ}. A commitment scheme is said to be:

• computationally hiding

if {(c1)κ} and {(c2)κ} are computationally indistinguishable ({(c1)κ}=c {(c2)κ}).

• statistically hiding

if {(c1)κ} and {(c2)κ} are statistically indistinguishable ({(c1)κ}=s {(c2)κ}).

• perfectly hiding

if {(c1)κ} and {(c2)κ} are perfectly indistinguishable
(
{(c1)κ}=p {(c2)κ}

)
.

The binding security requirement in a commitment scheme refers to the difficulty or impossi-

bility of a committer opening the value of his commitment c to two different messages m1, m2.

The goal is to ensure that the committer is bound to his initial choice once his commitment is

created and published. A computationally binding commitment will bind computationally

bounded committers. Lastly, there exists no committer that can open one of his commitments

to two different messages, if his commitments are perfectly binding.

Definition 2.32 (Binding)

Denote by C ∗ the ITM representing a cheating committer with input parameter p. Denote by

β the probability that C ∗ is able to output a commitment that he can successfully open into
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two different messages m1,m2 ∈M with corresponding openings o1,o2:

β= Pr

[
p ←Gen

(
1κ

)
, (c,m1,m2,o1,o2)←C ∗(p) :

m1 �=m2 ∧ Open(c,m1,o1)= 1 ∧ Open(c,m2,o2)= 1

]

A commitment scheme is said to be:

• computationally binding

if there exists a security parameter κ0 ∈N such that for every κ> κ0, for every positive

polynomial q(·), and for every computationally bounded PPT ITM C ∗,

β is negligible in κ: β< 1

q(κ)
.

• perfectly binding

if there exists no ITM C ∗ that is able to succeed. Hence β= 0 for all C ∗.

Definition 2.33 (Security of Commitment Schemes)

A commitment scheme C is said to be secure if it satisfies the hiding and binding security

requirements. The indistinguishability reached in these security requirements will define the

security level of the commitment scheme.

Notice that statistically and perfectly hiding commitments (Definition 2.31) protect against

computationally unbounded verifiers, whereas perfectly binding commitments (Definition 2.32)

protect against computationally unbounded committers. The following theorem states that

any two of these hiding/binding security achievements are mutually exclusive.

Theorem 2.2 (Binding and Hiding Antagonistic Protections)

Perfectly binding commitment schemes cannot be achieved simultaneously with either a

statistically or a perfectly hiding security requirement.

Proof (informal)

Suppose that a commitment schemes C achieves perfectly binding security, and either statisti-

cally or perfectly hiding security.

Then, when creating a commitment c from message m and random tape r , the perfectly

binding requirement states that a computationally unbounded committer cannot open c to

another message m′. This implies that Com is injective. Hence a computationally unbounded

adversary could compute the corresponding m and r of c, breaking the statistically/perfectly

hiding security requirement.

In order to satisfy the statistically/perfectly hiding security requirement, there must exist a

r ′ and m′ �=m that leads to the same commitment c on m. However, in this case, a computa-

tionally unbounded committer will also be able to find them, breaking the perfectly binding

security requirement.
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Pedersen Commitment

The Pedersen commitment4 presented in [Ped91] is perfectly hiding and computationally

binding. Its computational hardness assumption is based on the discrete logarithm problem

(DLog problem). In the setup phase of the commitment, the generation algorithm chooses

a group G of prime order q such that
∥∥q

∥∥= κ, where κ is the security parameter. A random

element h together with a random generator g is picked in G such as logg h is unknown

(especially from the committer).

The commitment is of the form c = g mhr . Here m,r ∈Zq and computation is performed in

G . The value m represents the secret message of the committer, and r a uniformly random

number of his choice. To open the commitment, the committer simply reveals m and r , to let

the prover check that c = g mhr .

This scheme is perfectly hiding, as a commitment c could hold a commitment to any value

of m. For any m′ �=m, the corresponding r ′ = r + (m−m′) logg h (mod q) yields the same

commitment c. Hence it is important to keep the value of logg h unknown. The binding

property holds as it is computationally infeasible to find logg h, thanks to the DLog assumption.

The Pedersen commitment could also be used without the knowledge of the group order q , in

order to introduce more mathematical properties in the exponent, as will be seen later.

Fujisaki-Okamoto Commitment

This commitment was introduced by Fujisaki and Okamoto in [FO98] and refined later by

Damgård and Fujisaki in [DF02]. It is a statistically hiding and computationally binding com-

mitment scheme based on the hardness of factorization. The parameters generation algorithm

Gen(1κ) outputs three elements (n, g ,h). The first element n, of length κ, is the product of

two safe primes. n is called a special RSA modulus. h ∈QRn is picked as a quadratic residue

modulo n and g is taken from the group generated by h. It is assumed that given (n, g ,h), an

estimate on the order of Zn can be efficiently computed as or d (Zn)	 2B . The commitment

on a message m with randomness r ∈R Z2B+κ is computed as Com
(
(n, g ,h),m,r

) = g mhr

(mod n).

Commitments in the CRS Model

Some additional definitions are provided here for the commitment used in the non-interactive

range proof presented in Chapter 5.

A batch commitment scheme (Gen,Com) for n elements in a bilinear group consists of two PPT

algorithms: a randomized CRS generation algorithm Gen, and a randomized commitment

4Note that an earlier version with a slight modification was also present in [CDvdG87].
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algorithm Com. Let t ∈ {1,2} determine which group (G1 orG2) the batch commitment scheme

is defined for. Here, Gent (1κ,n) produces a common reference string crst . Depending on the

context of the commitment, assume a parameter d ∈ {1,2,3}. The commitment algorithm

Comt (crst , a,r ), with a = (a1, . . . , an), outputs a commitment value A in Gd
1 if t = 1 or in Gd

2 if

t = 2. Furthermore the commitment Comt (crst , a,r ) is opened by revealing (a,r ).

A commitment scheme (Gen,Com) is computationally binding in group G1 (respectively G2)

for t = 1 (respectively for t = 2), if for every non-uniform PPT adversary A and positive integer

n (polynomial in κ), the probability

Pr

[
crst ←Gent (1κ,n), (a1,r1, a2,r2)←A (crst ) :

a1 �= a2 ∧ Comt (crst , a1,r1)=Comt (crst , a2,r2)

]

is negligible in κ. A commitment scheme (Gen,Com) is perfectly hiding in group G1 (respec-

tively G2) for t = 1 (respectively for t = 2), if for any positive integer n (polynomial in κ), for

crst ∈Gent (1κ,n), for any two messages a1, a2, and for any randomness r1,r2, the distributions

Comt (crst , a1,r1) and Comt (crst , a2,r2) are equal.

A trapdoor commitment scheme has three additional efficient algorithms: Gentd, Comtd,

and Opentd. The first algorithm Gentd is the trapdoor CRS generation algorithm that takes

inputs t , n, and 1κ, and that outputs a trapdoor td and a common reference string crs∗

with the same distribution as Gent (1κ,n). The second algorithm Comtd is a randomized

trapdoor commitment that takes crs∗ and a randomizer r as inputs, and outputs the value

Comt (crs∗,0,r ). Lastly, Opentd is the trapdoor opening algorithm that takes crs∗, td, a, and r

as an input and outputs an r ′ such that Comt (crs∗,0,r )=Comt (crs∗, a,r ′).

Finally, an extractable commitment scheme is a commitment scheme (Gen,Com) with an

additional extractor E = (X1, X2) such that: X1(1κ) creates a common reference string crs∗

(indistinguishable from the real crs) and a trapdoor td ; and X2(crs∗,td, A) returns (a,r ) such

that A = Com(crs, a,r ), given that A is a valid commitment. An extractable commitment

scheme can only be computationally hiding.

Groth-Lipmaa Knowledge Commitment

The non-interactive range proof presented in Chapter 5 requires the Groth-Lipmaa knowledge

commitment scheme in the CRS model, defined in [Gro10, Lip12a] and described as follows.

CRS generation:

Generate a set Λ = {λi }i∈Zn
⊂N such that ∀i < j : 0 < λi < λ j , with n polynomial in

κ. Given a bilinear group generator PG, set parambp = (p,G1,G2,GT,e)←PG(1κ). Let

g1 ∈G1 and g2 ∈G2 be generators, and choose random α̂, x ∈R Zp . Fix t ∈ {1,2}. The

common reference string is crst =
(
parambp, gt , ĝ t ,

(
gt ,λi , ĝ t ,λi

)
i∈Zn

)
, where gt ,λi = g xλi

t ,
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and ĝ t ,λi = g α̂xλi

t .

Commitment: To commit to a = (a0, . . . , an−1) ∈ Zn
p , one chooses a random r ∈R Zp , and

computes:

Comt (crst , a,r )= (g r
t ·

n−1∏
i=0

g ai

t ,λi
, ĝ r

t ·
n−1∏
i=0

ĝ ai

t ,λi
).

Let t = 1. Fix a commitment key crs1 that in particular specifies g2, ĝ2 ∈G2. A commitment

(A, Â) ∈G2
1 is valid, if e(A, ĝ2)= e(Â, g2). The case of t = 2 is dual.

According to [Lip12a], the Groth-Lipmaa knowledge commitment scheme is statistically

hiding and computationally binding in group G1 for t = 1 (or G2 for t = 2) under the Λ-PSDL

assumption in the corresponding group. If the Λ-PKE assumption holds in G1 (respectively

G2), then for any PPT algorithm A that outputs some valid knowledge commitments, there

exists a non-uniform PPT extractor XA that, given the same inputs as of A together with the

random tape of A , extracts the contents of these commitments. This knowledge commitment

scheme is also trapdoor, with the trapdoor being td= x. After using the trapdoor commitment

to produce a commitment A←Comt (crs,0,r )= g r
t for r ∈R Zp , the committer can open it to

(a, r −∑n−1
i=0 ai xλi ) for any a.

2.4.3 Public Key Cryptosystems

Also called asymmetric cryptosystems, public key cryptosystems5 enable anyone to encrypt

a message, called plaintext, for a particular recipient. However, encrypted messages, called

ciphertexts, can be decrypted only by the intended recipient. Three algorithms compose public

key cryptosystems: a PPT key generator, a PPT encryption, and a deterministic decryption.

The key generator produces two keys, a public and a secret one, for each recipients. The public

key is made public for anyone who wants to send an encrypted message to their corresponding

recipient. The secret key, also called private key, is secretly kept by its owner. The encryption

algorithm takes as input a message together with the public key of the intended recipient, and

outputs the corresponding ciphertext. The decryption algorithm requires the proper secret

key to decrypt a ciphertext into its corresponding message.

Definition 2.34 (Public Key Cryptosystem (PKC))

A public key cryptosystem is the combination of three algorithms: Gen, Enc, and Dec,

representing respectively the PPT key generator, the PPT encryption, and the deterministic

polynomial-time decryption algorithm. The key generator algorithm Gen(1κ) generates a

public key pk and a secret key sk for a specific user U , based on a given security parameter

κ. The encryption algorithm Enc(m,pk) takes as input the message m and the public key

pk. Enc(m,pk) outputs the ciphertext γ of m encrypted with pk. The decryption algorithm

Dec(γ,sk) takes as input the secret key sk and a ciphertext γ produced with the public key pk

5The term “cryptosystem” has sometimes ambiguous meaning in the cryptographic literature. In this thesis it
will refer to encryption schemes.
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corresponding to sk. Dec(γ,sk) outputs the decryption m of γ. A public key cryptosystem is

said to be correct if for every pair (pk,sk) generated by Gen,

Pr
[
(pk,sk)←Gen

(
1κ

)
, m =Dec

(
Enc(m,pk),sk

)]= 1.

Although several notions of security exist for public key cryptosystems, only semantic security

against chosen plaintext attacks will be briefly explained hereafter. More details can be found

in Chapter 9 of [Vau06] and in Section 5.4 of [Gol04]. Semantic security was introduced by

Goldwasser and Micali in [GM84] and captures the notion that ciphertexts reveal no infor-

mation on their plaintext. The latter notion is illustrated by the indistinguishability property

of ciphertexts of different messages, even when the plaintexts are chosen by the adversary.

Therefore, semantic security against chosen plaintext attacks is referred to as IND-CPA security.

Definition 2.35 (IND-CPA [Vau06] (Section 9.3.7))

Semantic security against chosen plaintext attacks (IND-CPA) in the context of public key

cryptosystems is defined through the following game for a PPT adversary. The challenger

generates a fresh key pair and gives the public key to the adversary, enabling him to perform

encryption on any messages of his choice. The adversary selects two different plaintexts

(m1,m2) and sends them to the challenger. The challenger randomly chooses one of the

messages, encrypts it, and sends the resulting ciphertext to the adversary. Then, the adversary

attempts to guess which message from (m1,m2) has been encrypted.

A public key cryptosystem is IND-CPA if in the previous game, adversaries have negligible

probability (in the security parameter κ) to distinguish between an encryption of m1 and an

encryption of m2.

2.4.4 BBS Cryptosystem

Boneh, Boyen, and Shacham introduced in [BBS04] a cryptosystem based on the DLIN prob-

lem (see Section 2.2.2), which they called the linear encryption. In this thesis, it will be

referred to as the BBS cryptosystem. Their scheme assumes the presence of a description

of a bilinear group (p,G1,G2,GT,e) with a generator g1 of G1. The secret key is composed

by the pair sk= (sk1,sk2) such that sk1,sk2 ∈R Z∗p . The corresponding public key is the triplet

pk= (
g1, f ,h

)= (
g1, g 1/sk1

1 , g 1/sk2
1

)
. To encrypt a message m ∈G1 with randomness r f ,rh ∈Z∗p ,

the encryption algorithm outputs the ciphertext c = (c1,c2,c3)=
(
m · g r f +rh

1 , f r f , hrh

)
. To de-

crypt a ciphertext c = (c1,c2,c3), the decryption algorithm outputs c1

(
csk1

2 · csk2
3

)−1
. Assuming

the DLIN assumption holds, the BBS cryptosystem is semantically secure against a chosen

plaintext attack (IND-CPA secure).

Lipmaa and Zhang proposed in [LZ12] a lifted version of the BBS cryptosystem. The modifica-

tion brought by this lifted version, is to move the message m in the exponent of c1, thus the
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encryption becomes c = (c1,c2,c3)=
(
g

m+r f +rh

1 , f r f , hrh

)
. To decrypt, the discrete logarithm

of c1

(
csk1

2 · csk2
3

)−1
is returned. Therefore, decryption for large messages m is infeasible due to

the DLog assumption. For the decryption to succeed, it is thus necessary for m to be small.

Identically to the BBS cryptosystem, this lifted version is IND-CPA secure under the DLIN

assumption.

2.4.5 Digital Signature Schemes

A digital signature scheme, sometimes formally called public-key signature scheme, is a

scheme used to convince any verifier that a given user has “seen and approved” a given mes-

sage. The concept of seeing and approving a message is sometimes referred to as validating a

message. Moreover, the result of this validation process should be universally verifiable. More

details on digital signature schemes can be found in Section 10.1 of [Vau06] and in Chapter 6

of [Gol04].

Definition 2.36 (Digital Signature Scheme)

A digital signature scheme is the collection of three PPT algorithm
(
Gen, Sign, Verif

)
, respec-

tively the key generator, the signature and the verification algorithms. The key generator

Gen(1κ) outputs
(
sk, pk

)
that correspond respectively to the secret and private key of the sig-

nature scheme. Let M be the message space of the signature scheme. The signature algorithm

Sign(sk, m) takes as input the secret key of the signature scheme, a message m ∈M to be

signed, and outputs the signature σ. The verification algorithm Verif(pk, m, σ) takes as input

the public key of the signature scheme, a message m, and a signature σ to be verified. If the

verification of the signature σ is correct, then Verif outputs 1, otherwise it outputs 0. Where

the verification of the signature is correct, the signature is said to be valid. A digital signature

scheme is said to be correct if for every pair (pk,sk) generated by Gen,

Pr
[
(pk,sk)←Gen

(
1κ

)
, Verif

(
pk, m, Sign(sk, m)

)= 1
]= 1.

The security of signature schemes is based on two properties: unforgeability, and non-

repudiation. The unforgeability of signatures is the security property that protects against

forging (finding or computing) a valid signature on a message m ∈M without the secret key

(see Section 6.1.4 of [Gol04]). This latter type of attack is called a signature forgery and is

divided into several classes depending on the inputs and advantages of the attacker [Vau06].

Non-repudiation prevents signers from denying their valid signatures. As there is no for-

mal definition for non-repudiation, and several interpretations for this notion co-exist, the

following informal definition is given as a general understanding of it.

Definition 2.37 (Unforgeability)

A digital signature scheme
(
Gen, Sign, Verif

)
is said to be (existentially) unforgeable if the

following holds: any PPT adversary given pk will succeed to output a valid signature for a

message m that has not been signed previously, with at most a negligible probability in κ.
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Definition 2.38 (Non-repudiation)

Given a valid signature σ on m that verifies with the public key pk corresponding to sk, a

non-repudiable digital signature scheme forbids the signer from denying having signed m, if

he is the sole holder of sk.

A naïve example of a digital signature scheme is the plain RSA signature scheme which is

derived from the RSA public key cryptosystem [RSA78] (see Section 2.2.2). In the plain RSA

signature scheme, a signature on message m is computed as σ=md (mod n). The verification

of σ is achieved by checking that m
?=σe (mod n). Recall that the RSA modulus n = pq is the

product of two primes, and 1= ed (mod (p−1)(q−1)) where (n,e) is the public key and (n,d)

is the secret key. As explained in [Vau06] (Section 10.2.2), the plain RSA signature scheme

suffers several security flaws (such as existential forgery) and needs to be modified in order to

be used as a secure digital signature scheme.

Full Domain Hash (FDH) Signature Scheme

Bellare and Rogaway introduced in [BR93, BR96] the full domain hash (FDH) signature scheme.

Its security proof was presented in the random oracle model and with the computational

hardness assumption of the RSA problem (see Section 2.2.2 for an explanation of RSA and

its related problem). The key generator Gen(1κ) runs the key generator of the RSA public

key cryptosystem and retrieves (n,e,d). It then outputs
(
sk,pk

)
such that sk = (n,d) and

pk= (n,e). Furthermore, it provides all parties an oracle access to a collision resistant hash

function F that takes any string as input, and outputs for each new query a uniformly random

element in Z∗n . Identical queries will result in the same output. The signature σ on a message

m is obtained by computing σ = (F (m))d (mod n). The verification process is achieved

by checking if F (m)
?= σe (mod n). Lastly, note that Coron provided in [Cor00] a stronger

security proof for the FDH signature scheme which enables the use of smaller RSA modulus.

Boneh-Boyen Signature Scheme

Boneh and Boyen introduced a signature scheme in [BB04] that is existentially unforgeable

under a weak chosen message attack. Recall that existential forgery means that the adversary is

able to produce a valid pair (m,σ) from the public key of the signature scheme, but without

any control over which m will be produced.

Definition 2.39 (Weak Chosen Message Attack)

A weak chosen message attack is defined through the following game. The adversary begins

by choosing and outputting q messages
(
m1, . . . ,mq

)
, before seeing the public key (hence the

“weak” version)6. The challenger generates a fresh key pair and gives the public key to the

6In contrast, for a chosen message attack the selection of messages is done after seeing the public key.
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adversary, together with signatures
(
σ1, . . . ,σq

)
on

(
m1, . . . ,mq

)
. Then, the adversary attempts

to output a valid signature σ on a message m �∈ {m1, . . . ,mq }. If the adversary succeeds in

doing so, it is said that he wins the game.

Therefore, existential unforgeability under a weak chosen message attack means that no

PPT adversary A has non-negligible probability of winning the game of the weak chosen

message attack. Furthermore, the security of the Boneh-Boyen signature scheme is based on

the q-Strong DH problem (see Section 2.2.2).

The Boneh-Boyen signature scheme is achieved as follows. The key generator Gen(1κ) outputs

sk ∈R Z∗p and pk = (
p, g ,G1,GT,e, y

)
, where

(
p, g ,G1,GT,e

)
are the parameters of a bilinear

pairing, and y = g sk. The signature on a message m is achieved by computing σ= g 1/(sk+m).

The verification is thus done by checking if e(σ, y · g m)
?= e(g , g ).

2.4.6 Cryptographic Accumulators

Benaloh and de Mare introduced the concept of cryptographic accumulators in [BdM93],

which are algorithms that concentrate a large set of values into a single small element called the

accumulator, such that for each value included in the accumulator there exists a corresponding

witness to efficiently prove its membership, and such that it is infeasible to find such a witness

for elements that were not included. Research in the field of accumulators has notably

led to the results of Camenisch and Lysyanskaya in [CL02a], with dynamic accumulators,

where elements can be added and removed at unit cost (independently of the number of

accumulated elements) even after setting up an accumulator. The following accumulator

definition is derived from [CL02a].

Definition 2.40 (Cryptographic Accumulator [CL02a])

A secure accumulator for a family of inputs {Xκ} is a family of families of functions G = {Fκ}

with the following properties:

Efficient generation: There is a PPT algorithm Gen that on input 1κ produces a random

element f of Fκ, together with some auxiliary information about f , denoted t f .

Efficient evaluation: f ∈ Fκ is a polynomial-size circuit7 f : U f × Xκ→U f that, on input

(u, x) ∈U f × Xκ, outputs a value v ∈U f , where U f is an efficiently samplable input

domain for the function f ; and Xκ is the intended input domain whose elements are to

be accumulated.

Quasi-commutative: For allκ, for all f ∈ Fκ, for all u ∈U f , for all x1, x2 ∈ Xκ, f ( f (u, x1), x2)=
f ( f (u, x2), x1). If X = {x1, . . . , xm}⊂ Xκ, then f (u, X ) denotes f ( f (. . . (u, x1), . . .), xm).

7Recall that a circuit is a computational model that processes inputs through a sequence of functions. See [Vol99]
for a formal definition and more details. Although polynomial-size circuits could be simulated by an ITM with an
advice string (see [AB09] and the complexity class P/pol y), the definitions of cryptographic accumulators have
historically used circuits as they are more convenient when handling functions with fixed length inputs.

44



2.4. Protocols and Building Blocks

Witnesses: Let v ∈U f and x ∈ Xκ. A value w ∈U f is called a witness for x in v under f if

v = f (w, x).

Security: Let U ′
f ×X ′κ denote the domains for which the computational procedure for func-

tion f ∈ Fκ is defined (thus U f ⊆U ′
f , Xκ ⊆ X ′κ). For all PPT adversaries Aκ,

Pr

[
f ←Gen(1κ), u ∈R U f , (x, w, X )←Aκ( f ,U f ,u) :

X ⊂ Xκ, w ∈U ′
f , x ∈ X ′κ, x ∉ X , f (w, x)= f (u, X )

]

is negligible inκ. Moreover, note that only the legitimate accumulated values (x1, . . . , xm)

must belong to Xκ. The forged value x can belong to a possibly larger set X ′κ.

The accumulator of Camenisch and Lysyanskaya in [CL02a] recalled hereafter, is based on the

strong RSA assumption (see Section 2.2.2). The main idea is to use modular exponentiation

to incorporate prime elements into the accumulator, which is initially picked as a quadratic

residue. Let Fκ be the family of functions that correspond to exponentiations modulo a special

RSA modulus n of length κ. Recall that a special RSA modulus is the product of two safe

primes. Choosing f ∈ Fκ amounts to choosing a random modulus n = pq of length κ, where

p = 2p ′ +1, q = 2q ′ +1, and p,p ′,q ,q ′ are all prime. Thus, the auxiliary information t f is the

factorization of n. The input domain for f is set to U f = {u ∈QRn : u �= 1} and U ′
f =Z∗n . Let Xκ

be the set of primes {e : e �= p ′, q ′ ∧ A 	 e 	 B}, where A and B can be chosen with arbitrary

polynomial dependence on the security parameter κ, as long as 2< A and B < A2. Let Xκ be

denoted as X A,B and let X ′κ = X ′A,B be any subset of the set of integer from [2, A2−1] such that

X A,B ⊆ X ′A,B . The accumulating function f is thus

f (u, x)=ux (mod n)

and is denoted by fn,A,B (or by fn or f when it does not cause confusion) as the function f

corresponding to modulus n and domain X A,B . Lastly, note that

f ( f (u, x1), x2)= f ( f (u, x2), x1)= f (u, {x1, x2})=ux1x2 (mod n).

2.4.7 Hadamard Product Argument

Assume that (Gencom ,Com) is a knowledge commitment scheme. Recall that a Hadamard

product of two vectors a and b (of length n) is equal to their entrywise product vector c , that

is, c j = a j ·b j for j ∈Zn . In a Hadamard product argument, the prover aims to convince the

verifier that for three given commitments (A, Â), (B , B̂), and (C ,Ĉ ), he knows how to open

them as (A, Â) = Com1(ĉrs1; a;ra), (B , B̂) = Com1(ĉrs1;b;rb), and (C ,Ĉ ) = Com1(ĉrs1;c ;rc ),

such that c j = a j ·b j for j ∈ Zn . The corresponding Hadamard product statement will be

denoted as
�

(C ,Ĉ )
�= �

(A, Â)
�◦�(B , B̂ ,B2)

�
, where B2 is the equivalent of B in G2: B2← g rb

2 ·
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∏n−1
i=0 g bi

2,λi
. Groth [Gro10] proposed an efficient (weakly)8 sound and non-interactive witness

indistinguishable (NIWI) Hadamard product argument that was refined by Lipmaa [Lip12a],

who used the theory of progression free sets and asymmetric pairings to optimize the argument

of Groth. Additionally, this Hadamard product argument has been further optimized in [FLZ13]

and in [Lip14a]. Protocol 2.2 has a full description of the Hadamard product argument of

Lipmaa [Lip12a]. More details can be found in [Lip11], which is the full version of [Lip12a].

The main idea of Protocol 2.2 is to construct an argument π× ← (π, π̂) such that e(g1,π) =
e(A,B2)/e(C ,D), where D is a fixed public element in G2: D ←∏n−1

i=0 g2,λi . Furthermore, to

prove that the prover knows how to open the commitment of the argument, π× should also

satisfy e(g1, π̂)
?= e(ĝ1,π).

System parameters: Let n = pol y(κ) be the length of the vectors in the Hadamard
product. Let Λ = {λi : i ∈Zn} be a progression free set of odd integers, such
that λi+1 >λi > 0. Let Λ̂ := {0}∪Λ∪2̂Λ.

CRS generation Gencrs×(1κ):
Let parambp := (p,G1,G2,GT,e)← PGa(1κ). Let α̂, x ←Zp . Let g1 ←G1 \ {1}

and g2←G2 \{1}. Denote gt ,�← g x�

t and ĝ t ,�← g α̂x�

t for t ∈ {1,2} and � ∈ Λ̂. Let
D ←∏n−1

i=0 g2,λi . The CRS is crs← (parambp; (g1,�, ĝ1,�)�∈{0}∪Λ, (g2,�, ĝ2,�)�∈Λ̂,D).
Let ĉrs1← (parambp; (g1,�, ĝ1,�)�∈{0}∪Λ).

Common inputs: (A, Â,B , B̂ ,B2,C ,Ĉ ),
where (A, Â)←Com1(ĉrs1; a;ra), (B , B̂)←Com1(ĉrs1;b;rb),
B2← g rb

2 ·
∏n−1

i=0 g bi

2,λi
, (C ,Ĉ )←Com1(ĉrs1;c ;rc ), such that ai bi = ci for i ∈Zn .

Argument generated by the prover:
NIZK-PK

{
(a,ra ,b,rb ,c ,rc ) :

�
(C ,Ĉ )

�= �
(A, Â)

�◦�(B , B̂ ,B2)
�}

Let I1(�) := {
(i , j ) : i , j ∈Zn ∧ j �= i ∧λi +λ j = �

}
. For � ∈ 2̂Λ, the prover sets

μ� ←
∑

(i , j )∈I1(�)(ai b j − ci ). He sets π← g ra rb
2 ·∏n−1

i=0 g ra bi+rb ai−rc

2,λi
·∏�∈2̂Λ gμ�

2� ,

and π̂← ĝ ra rb
2 ·∏n−1

i=0 ĝ ra bi+rb ai−rc

2,λi
·∏�∈2̂Λ ĝμ�

2� . He sends π× ← (π, π̂) ∈G2
2 to the

verifier as the argument.

Verification
(
crs; (A, Â,B , B̂ ,B2,C ,Ĉ ),π×

)
:

The verifier checks that e(A,B2)/e(C ,D)
?= e(g1,π) and e(g1, π̂)

?= e(ĝ1,π).

Protocol 2.2 – Hadamard product argument
�

(C ,Ĉ )
� = �

(A, Â)
� ◦ �

(B , B̂ ,B2)
�

from [Lip12a]

Theorem 2.3 ([Lip12a](Theorem 4, Section 5))

The Hadamard product argument in Protocol 2.2 is perfectly complete and perfectly witness in-

8Note that here, the soundness is expressed in the inability for a PPT adversary to output an accepting argument
together with openings to its corresponding commitments such that the restrictions for the Hadamard product
argument are violated. Therefore this notion of soundness is weaker than computational soundness, where a PPT
adversary is unable to provide an accepting argument from a false statement.
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distinguishable. If the asymmetric bilinear group generatorPGa is Λ̂-PSDL secure, then a non-

uniform PPT adversary has negligible chance of outputting i np× ← (A, Â,B , B̂ ,B2,C ,Ĉ ) and

an accepting argumentπ× ← (π, π̂) together with opening witness w× ← (
a,ra ,b,rb ,c ,rc , ( f ′s )s∈Λ̂

)
such that

• (A, Â)=Com1(ĉrs1; a;ra),

• (B , B̂)=Com1(ĉrs1;b;rb),

• B2 = g rb
2 ·

∏n−1
i=0 g bi

2i ,

• (C ,Ĉ )=Com1(ĉrs1;c ;rc ),

• (π, π̂)= (g
∑

s∈Λ̂ f ′s xs

2 , ĝ
∑

s∈Λ̂ f ′s xs

2 ),

• and for some i ∈Zn, ai bi �= ci .

For the product argument to be useful in more complex arguments, the verifier should addi-

tionally check the validity of commitments: e(A, ĝ2) = e(Â, g2), e(B , ĝ2) = e(B̂ , g2),

e(g1,B2) = e(B , g2), and e(C , ĝ2) = e(Ĉ , g2). Note that ( f ′s )s∈Λ̂ is the opening of (π, π̂). This

can be seen as (π, π̂) = (
∏

s∈Λ̂ g
f ′s
2,s ,

∏
s∈Λ̂ ĝ

f ′s
2,s) and both g2,s and ĝ2,s are in the common refer-

ence string crs.

Theorem 2.4 ([Lip12a](Theorem 5, Section 5))

For any n > 0 and y = n1+o(1), let Λ⊂Zy be a progression free set of odd integers as guaranteed

by Theorem 2.1, such that |Λ| = n. The communication (argument size) of the Hadamard

product argument is 2 elements from G2. The computational complexity of the prover is

Θ(n2) scalar multiplications in Zp and n1+o(1) exponentiations in G2. The computational

complexity of the verifier is dominated by 5 bilinear pairings. The CRS consists of n1+o(1)

group elements.

Finally, as noted in [Lip12a], if a, b, and c are boolean vectors then the computational com-

plexity of the prover is Θ(n2) scalar additions in Zp and n1+o(1) exponentiations in G2.

2.4.8 Lipmaa Permutation Argument

In a permutation argument, the prover aims to convince the verifier that for a given permuta-

tion � from Zn to Zn , and two commitments (A, Ã) and (B , B̃), he knows how to open them as

(A, Ã)=Com1(c̃rs1; a;ra) and (B , B̃)=Com1(c̃rs1;b;rb), such that b j = a�( j ) for j ∈Zn . Denote

this non-interactive argument by �
(�

(A, Ã)
�)= �

(B , B̂ , B̃)
�

, where the commitment (B , B̂) is

equivalent to the commitment (B , B̃) with respect to the CRS ĉrs1: (B , B̂)=Com1(ĉrs1;b;rb).

Groth [Gro10] proposed an efficient (weakly)9 sound and non-interactive witness indistin-

guishable (NIWI) permutation argument that was further refined by Lipmaa [Lip12a], who

9Note that as for the Hadamard product argument, weakly soundness is defined here as the inability for a PPT
adversary to output an accepting argument together with openings to its corresponding commitments such that
the initial restrictions are violated.
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used the theory of progression free sets and asymmetric pairings to optimize the argument of

Groth. This permutation argument has been further improved by Fauzi et al. in [FLZ13] and

the latest improvement has been provided by Lipmaa in [Lip14a]. The Lipmaa permutation

argument in [Lip12a] is described in Protocol 2.3. Further details can be found in [Lip11],

which is the full version of [Lip12a].

Let TΛ(i ,�) := ∣∣{ j ∈Zn : 2λ�(i )+λ j = 2λ�( j )+λi
}∣∣, clearly TΛ(i ,�) 
 1. The main idea of the

product argument is to prove that a�(i ) = bi for i ∈Zn by using two subarguments. The first one

shows that for separately committed a∗i , a∗i = TΛ(�−1(i ),�) ·ai for i ∈Zn , which is equivalent

to a∗
�(i ) = TΛ(i ,�) · a�(i ). This is achieved with a Hadamard product argument (π×, π̂×) for�

(A∗, Â∗)
�= �

(A, Â)
�◦�(T ∗, T̂ ∗,T ∗2 )

�
. The second subargument shows that a∗

�(i ) = TΛ(i ,�) ·bi

for i ∈ Zn and is achieved with the following verification e(A∗,D)/e(B ,E�)
?= e(g1,π�) (see

section 6 of [Lip11] for the analysis of completeness). Thus, from a∗
�(i ) = TΛ(i ,�) · a�(i ) and

a∗
�(i ) = TΛ(i ,�) ·bi , one obtains that a�(i ) = bi for i ∈Zn . This permutation argument will be

used only with fixed permutations � and thus the element E� (and its counterpart Ẽ� in base

g̃2) can be put in the CRS. Furthermore, Fauzi et al. noticed in [FLZ13] that the elements(
T ∗, T̂ ∗,T ∗2

)
can also be put in the CRS, as they will be fixed by the permutation �. Last but

not least, notice that Λ̂∪ Λ̃= {0}∪ Λ̃, where Λ̃ is defined in Protocol 2.3.

Theorem 2.5 ([Lip12a](Theorem 6, Section 6))

The permutation argument described in Protocol 2.3 is perfectly complete and perfectly wit-

ness indistinguishable. If the asymmetric bilinear group generatorPGa is Λ̃-PSDL secure, then

a non-uniform PPT adversary has negligible chance of outputting i npper m ← (A, Ã,B , B̂ , B̃ ,�)

and an accepting argument πper m ← (A∗, Â∗,π×, π̂×,π�, π̃�) together with a witness

w per m ← (a,ra ,b,rb , a∗,ra∗ , ( f ′(×,�))�∈Λ̂, ( f ′(�,�))�∈Λ̃),

such that

•
(

A, Ã
)=Com1 (c̃rs1; a;ra),

•
(
B , B̂

)=Com1 (ĉrs1;b;rb),

•
(
B , B̃

)=Com1 (c̃rs1;b;rb),

•
(

A∗, Â∗
)=Com1 (ĉrs1; a∗;ra∗),

• (π×, π̂×)=
(

g
∑

�∈Λ̂ f ′(×,�)

2 , ĝ
∑

�∈Λ̂ f ′(×,�)

2

)
,

• (π�, π̂�)=
(

g

∑
�∈Λ̃ f ′(�,�)

2 , g̃

∑
�∈Λ̃ f ′(�,�)

2

)
,

• a∗i = TΛ

(
�−1 (i ) ,�

) ·ai , for i ∈Zn, and

• for some i ∈Zn, a�(i ) �= bi .

For the permutation argument to be useful in more complex arguments, the verifier should

additionally check the validity of commitments: e(Ã, g2) = e(A, g̃2), e(B̂ , g2) = e(B , ĝ2), and

e(B̃ , g2)= e(B , g̃2).
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System parameters: Same as in Protocol 2.2, but let
Λ̃ :=Λ∪{

2λk −λ j
}

i ,k∈Zn
∪2̂Λ∪ (

{
2λk +λi −λ j

}
i , j ,k∈Zn∧i �= j \ 2 ·Λ).

CRS generation Gencrsp er m(1κ):
Let parambp := (p,G1,G2,GT,e)←PGa(1κ). Let α̂, α̃, x ←Zp . Let g1←G1 \ {1}
and g2←G2 \ {1}. Let ĝ t ← g α̂

t and g̃ t ← g α̃
t for t ∈ {1,2}.

Denote gt ,�← g x�

t , ĝ t ,�← ĝ x�

t , and g̃ t ,�← g̃ x�

t for t ∈ {1,2} and � ∈ {0}∪ Λ̃.
Let (D,D̃)← (∏n−1

i=0 g2,λi ,
∏n−1

i=0 g̃2,λi

)
.

The CRS is
crs← (parambp; (g1,�, ĝ1,�, g̃1,�)�∈{0}∪Λ, (g2,�)�∈{0}∪Λ̃, (ĝ2,�)�∈Λ̂, (g̃2,�)�∈Λ̃,D,D̃).
Let ĉrs1←

(
parambp; (g1,�, ĝ1,�)�∈{0}∪Λ

)
, c̃rs1←

(
parambp; (g1,�, g̃1,�)�∈{0}∪Λ

)
.

Common inputs: (A, Ã,B , B̂ , B̃ ,�),
where � is a permutation from Zn to Zn , (A, Ã)←Com1(c̃rs1; a;ra),
(B , B̂)←Com1(ĉrs1;b;rb), and (B , B̃)←Com1(c̃rs1;b;rb),
such that b j = a�( j ) for j ∈Zn .

Argument generated by the prover:
NIZK-PK

{
(a,ra ,b,rb) : �

(�
(A, Ã)

�)= �
(B , B̂ , B̃)

�}
1. Let (T ∗, T̂ ∗,T ∗2 )← (

∏n−1
i=0 g TΛ(�−1(i ),�)

1,λi
,
∏n−1

i=0 ĝ TΛ(�−1(i ),�)
1,λi

,
∏n−1

i=0 g TΛ(�−1(i ),�)
2,λi

).

2. Let ra∗ ←Zp ,
(A∗, Â∗)←Com1(ĉrs1;TΛ(�−1(0),�) ·a0, . . . , TΛ(�−1(n−1),�) ·an−1;ra∗).
Create an argument (π×, π̂×) for

�
(A∗, Â∗)

�= �
(A, Â)

�◦�(T ∗, T̂ ∗,T ∗2 )
�

.

3. Let Λ̃′� := 2̂Λ ∪ (
{
2λ�( j )+λi −λ j : i , j ∈Zn ∧ i �= j

}
\ 2 · Λ) ⊂

{−λn−1+1, . . . ,3λn−1}.

4. For � ∈ Λ̃′�, set I1(�) as in Protocol 2.2,

I2(�) :=
{

(i , j ) : i , j ∈Zn ∧ j �= i ∧ 2λ�(i )+λ j �=λi +2λ�( j )

∧ 2λ�( j )+λi −λ j = �

}
,

and
μ�,�←

∑
(i , j )∈I1(�)

a∗i −
∑

(i , j )∈I2(�)
bi .

5. Let (E�, Ẽ�)← (
∏n−1

i=0 g2,2λ�(i )−λi ,
∏n−1

i=0 g̃2,2λ�(i )−λi ).

6. Let π�←Dr ∗a ·E−rb
� ·∏�∈Λ̃′� g

μ�,�

2,� , π̃�← D̃r ∗a · Ẽ−rb
� ·∏�∈Λ̃′� g̃

μ�,�

2,� ,

Send πper m ← (A∗, Â∗,π×, π̂×,π�, π̃�) ∈G2
1×G4

2 to the verifier as the argument.

Verification
(
crs; (A, Ã,B , B̂ , B̃ ,�),πper m

)
:

Let (E�, Ẽ�) and (T ∗, T̂ ∗,T ∗2 ) be computed as above. If (π×, π̂×) verifies,
e(A∗,D)/e(B ,E�) = e(g1,π�), e(A∗, ĝ2) = e(Â∗, g2), and e(g1, π̃�) = e(g̃1,π�),
then the verifier accepts the argument. Otherwise, the verifier rejects it.

Protocol 2.3 – Permutation argument �
(�

(A, Ã)
�)= �

(B , B̂ , B̃)
�

from [Lip12a]
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Theorem 2.6 ([Lip12a](Theorem 7, Section 6))

The permutation argument has a common reference string of length n1+o(1) and communica-

tion of 6 group elements (2 elements from G1 and 4 elements from G2). The computational

complexity of the prover is Θ(n2) scalar additions in Zp and n1+o(1) exponentiations in G2.

The computational complexity of the verifier is dominated by 12 bilinear pairings.

2.5 Threshold Cryptosystems

Threshold cryptosystems are a fundamental notion for the terminal revocation solution pre-

sented in Chapter 7. In the following, the focus is set on the case of threshold RSA signatures

as they provide a good balance between security and efficiency considering the protocol

participants in the Extended Access Control (see Chapter 6). Indeed, the computational power

of Machine Readable Travel Documents (such as e-passports) is much more limited compared

to the one of terminals. Furthermore, this threshold signature scheme is based on secret

sharing, which is explained hereinafter.

2.5.1 Secret Sharing

The notion of secret sharing was introduced by Shamir in [Sha79] and independently by Blakley

in [Bla79]. It aims at dividing the knowledge of a secret among � servers. The motivation

behind it was to protect a secret against the corruption of some servers. To achieve secret

sharing, Shamir used Lagrange interpolation to divide the secret into multiple shares. The

main idea is that any polynomial function f of degree t can be reconstructed from t+1 distinct

points. f (0) is considered to be the secret s to be shared. If given t or less points, the function

cannot be reconstructed. Hence every participant will be given a point of the function as a

secret share. Mathematically speaking, f is defined as follows:

f (x)=
t∑

i=0
ai · xi . (2.1)

As mentioned, the secret is s = f (0)= a0. Every participant i > 0 will be provided the secret

share si = f (i ). Given a set of participants Ψ with |Ψ| = t+1, f can be reconstructed as follows:

f (x)= ∑
j∈Ψ

s j ·λΨ
x, j , (2.2)

where λΨ
x, j are the Lagrange coefficients defined by

λΨ
x, j =

∏
i∈Ψ\ j

(i −x) · (i − j )−1 (2.3)
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and with x �∈Ψ. Moreover, note that the inversion present in the Lagrange coefficients requires

working in a field. This restriction can be relaxed although there would be a loss in efficiency.

For instance, the computation of f (x) could be replaced with the computation of imax ! · f (x),

where imax is larger or equal than the largest index among participants.

When secret sharing is used, the participant or authority in charge of reconstructing the

secret will obviously learn the secret. This is of course not a desirable property and to be

instantiated in practice, secret sharing needs some modifications. Ideally, the goal would be

to share (to divide) the secret among � servers, with the constraint that servers could perform

computations based on the secret without reconstructing it. One such application is threshold

cryptography, with the additional constraint that to be able to use the secret, t +1 servers

need to collaborate. Thus, using the secret is achieved without being able to reconstruct it.

Furthermore, no t or less servers could use the secret. The solution presented in Chapter 7

uses threshold signatures rather than threshold decryption. Nevertheless, the latter could still

be used although negatively impacting efficiency.

2.5.2 Threshold Signatures

Participants in a threshold signature scheme consist of � signers Si , a trusted dealer T , a

verifier V , and an adversary A . The scheme itself is composed of a set of five algorithms:

(KG ,Σi ,Σv ,Σc ,Vσ). The trusted dealer T runs KG in order to generate all the parameters and

keys of the threshold signature scheme. Then T publishes the public parameters and sends

to each Si its respective secret key. Each signer Si is thus able to create a partial signature

by running algorithm Σi . The resulting partial signatures can be verified with algorithm Σv .

To combine the necessary partial signatures into the general signature σ, a signer Si runs

algorithm Σc . Lastly, the signature σ can be verified with algorithm Vσ. In the following, a

description of these five algorithms is provided.

Key generation: KG(1κ, t ,�)−→ (pk, {sk1, . . . ,sk�}, {vk1, . . . ,vk�},vk).

The key generation algorithm, run by T , takes the security parameter κ, the threshold

parameter t , and the number of participants � as input. It outputs the public key pk of

the system, � secret keys ski together with their corresponding verification keys vki and

the general verification key vk of the system.

Partial signing: Σi (m,pk,vk,ski ,vki )−→ (σi , [πi ]).

The partial signature algorithm, run by Si , takes as input a message m, the general

public key pk, the general verification key vk, and the secret share ski with its verification

key vki . It outputs a partial signature σi with an optional verification proof πi on the

validity of σi . For reasons of simplicity, the notation Σi (m,pk,vk,ski ,vki ) is shortened

to Σi (m) when there is no confusion.

Partial signature verification: Σv (m,pk,vk,σi ,πi ,vki )−→ {0,1}.

The partial signature verification algorithm, run by any verifier V , takes as input a mes-
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sage m, the general public key pk, the general verification key vk, the partial signature

σi , its corresponding verification proof πi and verification key vki . It checks the validity

of σi and outputs the result. The verification of σi with πi is used to achieve robustness.

For simplicity reasons, the notation Σv (m,pk,vk,σi ,πi ,vki ) is shortened to Σv (σi ,πi )

when there is no confusion.

Partial signature combining: Σc (m,pk, {σi }Ψ)−→σ.

The combining share algorithm, run by any Si , takes as input a message m, the public

key pk, and a set Ψ of size t +1 of valid partial signatures σi . It outputs the signature

σ of m. For simplicity reasons, the notation Σc (m,pk, {σi }Ψ) is shortened to Σc ({σi }Ψ)

when there is no confusion.

Signature verification: Vσ(m,σ,pk)−→ {0,1}.

The signature verification algorithm, run by any verifier V , takes as input a message m,

its signature σ, and the public key pk. It checks the validity of σ and outputs the result.

For simplicity reasons, the notation Vσ(m,σ,pk) is shortened to Vσ(m) when there is no

confusion.

Threshold Signature Security Requirements. The security requirements for threshold sig-

natures are robustness, threshold security, existential unforgeability, and optionally proactive

security.

• Robustness states that if all partial signatures used to create a signature σ on message m

are valid then the signature σ is a valid signature of m.

• The threshold security requirement states that any authorized subsets of t +1 or more

signers can produce a valid threshold signature on message m, but no other coalitions.

This imply that no subset of t or less signers can produce a valid threshold signature.

• A threshold signature scheme is said to be existentially unforgeable if a computationally

bounded adversary is unable to perform an adaptive chosen message attack. The goal

of such an attack is to forge a valid partial signature or a valid signature on a chosen

message, while having access to a signature oracle and while taking into account the

responses from this signature oracle. Only in the case of forging a valid signature, the

adversary is additionally allowed to corrupt up to t signers.

• Proactive security states that an update mechanism exists for signers to update their

secret key share, without modifying the general public key of the system (nor the general

verification key).

2.5.3 Threshold RSA

As the plain RSA signature scheme [RSA78] suffers several security flaws (see [Vau06], Sec-

tion 10.2.2), threshold RSA is usually based on a variant of the plain RSA signature scheme,

such as the Full Domain Hash (FDH) signature scheme from Bellare and Rogaway [BR93,

52



2.5. Threshold Cryptosystems

BR96, Cor00] (see Section 2.4.5). Let p and q be two large primes such that n = pq . Let ed

(mod ϕ(n))= 1, where ϕ is the Euler’s Totient function. Hence ϕ(n)= (p−1)(q−1). The public

key of this system is (n,e). Let F be the hash function used in the FDH signature scheme.

Hence F hashes from any message space M into the full domain Z∗n . To obtain a signature σ

on a message m, the signer computes σ= (F (m))d (mod n). Hence d is part of the private key

of the signer. To verify the signature, it suffices to check the following: F (m)
?=σe (mod n).

To obtain the threshold version of the FDH variant of the RSA signature scheme, the secret d

needs to be shared among � servers. Assume the presence of a trusted party in charge of the

key generation algorithm. In the case of the Extended Access Control (Chapter 7), this trusted

party will be the Document Verifier (DV). To share d , secret sharing will be used. However this

cannot be done directly as revealing ϕ(n) to the signers would allow them to factorize n and

thus compute d from e. Hence a single signer would be able to sign on behalf of the entire

group. Extensive research has been undertaken regarding threshold RSA signatures and the

solution regarding terminal revocation proposed in Chapter 7 is based on the threshold RSA

signature of Shoup [Sho00]. Depending on the number of servers � and the threshold value t ,

solutions from King [Kin00] and Desmedt-Frankel [DF94] could also be considered.

Shoup [Sho00] suggested the use of safe primes for the RSA modulus. Hence n = pq =
(2p ′ +1)(2q ′ +1) such that p, p ′, q and q ′ are primes. Let ñ = p ′q ′. The value of ñ will not be

revealed and should be kept secret from all parties. If proactive security is not needed, then

ñ can be safely erased after the key generation phase. The public exponent e will be chosen

as a prime with e > �. d will be picked such that ed ≡ 1 (mod ñ) and shared using the secret

sharing of Shamir (see Section 2.5.1). Hence the secret share of signer i will be of the form

di = f (i ) (mod ñ), where f is defined by the equation (2.1) of Section 2.5.1. Let QRn be the

set of all quadratic residues modulo n. Recall that QRn is thus the subgroup of squares in Z∗n .

The general verification key vk will be randomly chosen in QRn . The verification key of signer

i will be set as vki = vkdi ∈QRn . To compute the Lagrange coefficients, the trick explained at

the end of Section 2.5.1 is used with imax = �. Let Δ= (�!).

To generate a partial signature σi on message m, signer i will first compute x =F (m) and then

σi = x2Δdi . The validity proof πi of σi consists of proving the statement logvk (vki )= logx4Δ

(
σ2

i

)
.

This can be achieved with a small variant of the NIZK proof of Chaum and Pedersen in [CP92],

for proving discrete logarithm equality in the random oracle model. Note that the requirement

for a variation originates from the fact that computations are performed in a group of unknown

order.

Protocol 2.4 illustrates the discrete logarithm equality argument πi , which is briefly described

hereafter. Recall that the prover knows the discrete logarithm ski = di = logvk (vki ), however

the order of vk is unknown. The goal of the prover (the signer in the threshold RSA) is to

convince verifiers that given the two group elements (R,S)= (
x4Δ,σ2

i

)
, the following statement

holds: logvk vki = logR S. To do so, the prover picks a sufficiently large random a ∈R Z2‖n‖+2L1 ,
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Common inputs: (H ,vk,vki ,R,S,L1),
where L1 is a security parameter, H : QR6

n → 1L1 is a hash function,
vk,vki ∈QRn are verification keys such that vki = vkski ,
R,S ∈QRn such that R = x4Δ and S =σ2

i .

Argument generated by the prover:

NIZK-PK
{

(ski ) : vki = vkski ∧σ2
i = (x)4Δski

}
The prover picks a large element a ∈R Z2‖n‖+2L1 . Let A = vka and B = Ra . The
prover computes c =H (vk,R,vki ,S, A,B) and z = a+c · ski .
He sends πi ← (c, z) to the verifier as the argument.

Verification (H ,vk,vki ,R,S,πi ):

The verifier checks that c
?=H (vk, R, vki , S, vkzvk−c

i , Rz S−c ).

Protocol 2.4 – Discrete logarithm equality argument logvk (vki )= logx4Δ

(
σ2

i

)
(variant of Chaum and Pedersen [CP92])

where L1 is a secondary security parameter (Shoup suggests L1 = 128)10, and computes

A = vka , B = Ra , c =H (vk,R,vki ,S, A,B), and z = a+ c · ski . Note that H is a hash function

that maps six group elements to an L1 bit integer. The NIZK proof will thus consist of πi =
(c, z). Indeed, any verifier can be convinced of the veracity of the statement by checking if

c
?=H (vk,R,vki ,S,vkzvk−c

i ,Rz S−c ). However, this proof would lose soundness if the prover

is free to choose vki . More details can be found in Section 3 of [BPW12]. In the case of the

solution presented in Chapter 7, vki is fixed by a trusted third party and then given to the

prover.

Lastly, combining the t +1 valid partial signatures σ j , with j ∈Ψ and Ψ ⊂ {1, . . . ,�}, means

computing the signature σ =
(∏

j∈Ψσ
2ΔλΨ

0, j

j

)α
xβ (mod n), where α and β are obtained by

solving α ·4Δ2+β ·e = 1 (mod ñ) with the extended Euclidean algorithm. Notice that α and β

can be precomputed by the trusted authority. Finally, the verification of σ is the same as in the

FDH signature scheme.

Therefore, the algorithms composing the threshold RSA signature presented by Shoup [Sho00]

are as follows:

• KG(1κ, t ,�)−→ (pk, {sk1, . . . ,sk�}, {vk1, . . . ,vk�},vk):

pk= (
n,e,Δ,F ,α,β

)
, where n,e,F are obtained from the parameters of the FDH signa-

ture scheme, Δ= �!, and α,β are obtained by solving α ·4Δ2+β ·e = 1 (mod ñ) with the

extended Euclidean algorithm.

10Note that according to Shoup, the coefficient 2 in front of L1 is set in order to strengthen the zero-knowledge
simulatability.
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ski = di =∑t
j=0 a j · i j (mod ñ), ∀i ∈ {1, . . . ,�}, with a0 = d and a j>0 ∈R Zñ .

vk ∈R QRn and vki = vkski , ∀i ∈ {1, . . . ,�}.

• Σi (m,pk,vk,ski ,vki )−→ (σi , [πi ]):

σi = (F (m))2Δski .

πi =NIZK-PK
{

(ski ) : vki = vkski ∧σ2
i = (F (m))4Δski

}
.

• Σv (m,pk,vk,σi ,πi ,vki )−→ {0,1}.

The partial signature verification algorithm checks the NIZK-PK πi .

• Σc (m,pk, {σi }Ψ)−→σ.

σ=
(∏

j∈Ψσ
2ΔλΨ

0, j

j

)α
(F (m))β (mod n), where λΨ

0, j are computed as in equation (2.3).

• Vσ(m,σ,pk)−→ {0,1}.

The signature verification algorithm performs the following check: F (m)
?=σe (mod n)

More details as well as the security proof of the threshold RSA signature scheme of Shoup can

be found in [Sho00].
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Chapter 3

Set Membership Proofs

In this chapter, we first present in Section 3.1 the set membership proof primitive. Section 3.2

introduces prior work achieved in this field, explains subsequent results, emphasizes the use

of cryptographic accumulators, and presents some related work. Section 3.3 then gives a

solution for the set membership proof based on the Boneh-Boyen signature scheme [BB04].

Section 3.4 shows that other signature schemes could also be used. This is demonstrated using

the signature scheme proposed by Camenisch and Lysyanskaya in [CL02b]. Last but not least,

Section 3.5 presents an alternative solution based on accumulators. The results of Section 3.3

and Section 3.5 are published at Asiacrypt 2008 [CCs08], as a joint work with Jan Camenisch

and abhi shelat1. Even though the theoretical idea behind Section 3.4 was set out in [CCs08],

the actual protocol is detailed exclusively here.

3.1 Set Membership Proof Primitive

The problem we are trying to solve in this chapter is called the set membership proof problem.

It can be easily explained using the following game. Consider the existence of a public set Φ

and two players. The public set could be for instance a set of names or a set of parameters.

The first player secretly chooses an element σ from the public set, and digitally commits to it.

Let us name the first player the prover. As his name indicates, his goal is to prove a specific

statement to the second player, who becomes the verifier. The statement that the prover

wants to prove is that the element he has picked (and that he has committed to) is indeed

contained in the public set. In other words, he wants to prove that the element contained in his

commitment, is a member of the public set. However, two main constraints are involved. On

the one hand, the prover wants to keep his value secret, revealing no additional information

besides the set membership proof of his committed element and the fact that he is able to open

his commitment to such a value. However, on the other hand, the verifier wants to be sure that

1Note that abhi shelat requires his name to be written in lower case.
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the prover is unable to cheat. The first constraint can be achieved by way of a zero-knowledge

property, while the second constraint needs to be insured with a soundness property.

The main motivation behind set membership proofs as a cryptographic building block, comes

from the challenges brought when cryptographic protocols in an idealized model need to

be adapted to face malicious adversaries. Furthermore, they are also important for other

applications, such as in the context of anonymous credentials. Consider a user who is is-

sued a credential containing a number of attributes such as an address, and assume that

the user needs to prove that she lives in a European capital. In this case, a list of all such

cities is given and the user has to show that she possesses a credential containing one of

those cities as an address (without of course, leaking the city the user lives in). Another ex-

ample is where a user who has a subscription to a journal (for instance the news and the

sports sections). Assume that some general sections are only accessible to subscribers of

specific lists. Using a set membership proof, the user can efficiently show that she is a sub-

scriber to one of the required kinds. Online card games also need set membership proofs,

in order to prove that a given card, played face down, is a valid card without revealing the

value of the card. This need has been mentioned by Barnett and Smart in [BS03]. Addition-

ally, the need for set membership proofs also arises in an electronic election or an e-voting

scheme, as pointed out by Cramer et al. in [CGS97]. Assume that in an electronic election

or an e-voting scheme, a user is required to prove that his ballot contains a valid name or a

valid vote respectively. These proofs are straightforward to solve by a set membership proof.

Definition 3.1 (Proof of Set Membership)

Let C = (Gen,Com,Open) be the generation, the commit and the open algorithm of a string

commitment scheme. For an instance c, a proof of set membership with respect to commit-

ment scheme C and set Φ is a proof of knowledge for the following statement:

PK
{
(σ,ρ) : c ←Com(σ; ρ)∧σ ∈Φ}

Remark: The proof system is defined with respect to any commitment scheme. Thus, in

particular, if Com is perfectly hiding, then the language LR consists of all commitments c

(assuming that R is non-empty). Thus, for soundness, it is important that the protocol is

a proof of knowledge. Furthermore, the statement being proven is the ability to open a

commitment to an element contained in a public set. That is different from the claim that a

commitment contains an element from a given public set, as the latter case gives no warranty

that the prover knows the element in the commitment. Last but not least, it is important to

note that in this chapter, proofs of set membership are, in fact, interactive arguments. As there

is an absence of restriction on the commitment scheme used, a commitment scheme that is

not perfectly binding (see Definition 2.32) will yield a proof system that is only computationally

sound, in other words: an argument (see Section 2.3.2). The computationally bounded prover

will know only one way of opening his commitment and cannot deduce other ways. As prior

and present works refer to the problem as a “proof”, this term will be used here.
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In order to solve the interactive set membership proof problem, we present three honest

verifier zero-knowledge solutions. The restriction to honest verifiers can be explained on two

grounds. Firstly and as explained in Section 2.4.1, there is a standard technique proposed by

Cramer, Damgård, and MacKenzie in [CDM00] that can be used to transform an honest verifier

zero-knowledge proof system into a general zero-knowledge one. Moreover, this technique is

perfectly adapted to the special Σ protocols presented hereafter to solve the set membership

proof problem. Secondly, the majority of other proof techniques are usually presented as

honest verifier protocols. This is especially the case for range proofs. As one of the range

proofs presented in Chapter 4 is based on the following set membership proofs, having the

protocols in the honest verifier model allows for more accurate comparisons.

The first and main solution for set membership proof is based on the Boneh-Boyen signa-

tures [BB04]. It requires that the strong Diffie-Hellman assumption holds. The second solution

intends to show that other signature schemes can be used instead of the Boneh-Boyen signa-

tures. We illustrate this with the Camenisch-Lysyanskaya signature scheme [CL02b]. In this

second solution, the strong RSA assumption is needed instead of the strong Diffie-Hellman

assumption. Note that the use of signature schemes for set membership proofs is a complete

novelty introduced in [CCs08]. The third solution aims at replacing signature schemes in our

set membership proof protocol with cryptographic accumulators. We use the cryptographic

accumulator presented by Camenisch and Lysyanskaya [CL02a], which is also based on the

strong RSA assumption.

Non-interactive set membership proof solutions can be obtained from their interactive ver-

sions by using standard techniques, such as for example the Fiat-Shamir heuristic [FS86].

These techniques often require an additional computational hardness assumption or an ex-

tended model in order to prove their security. For instance, the Fiat-Shamir heuristic requires

the random oracle model, which assumes the existence of random oracles. Under this as-

sumption, the Fiat-Shamir heuristic has been proven secure against chosen message attacks,

by Pointcheval and Stern [PS96]. However, although this model enables the obtention of

efficient protocols, it has been shown in [CGH98, CGH04] that some protocols in the random

oracle model become insecure in the plain model. Moreover, Goldwasser and Tauman ex-

plained in [GK03] that some digital signatures obtained after a Fiat-Shamir transformation

are simply insecure. A better alternative to the Fiat-Shamir heuristic would be the Lindell

transform [Lin15] or the CPSV transform [CPSV16], where zero-knowledge is achieved in the

standard model, and only the soundness requires the use of random oracles. In the case

that random oracles need to be completely avoided, a solution based on the Groth-Sahai

method [GS08, GS12a] could be used.
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3.2 Prior and Related Work

The first concerns regarding membership proofs appeared when Ohta, Okamoto, and Koyama

started to look into the problem of membership authentication in [OOK90]. In their paper,

the focus of membership targets the authentication of a user to a privilege group, without

revealing the identity of the user. To prove their membership status in a given group, all users

of the group are provided with the same secret. This has been pointed out by Shu, Matsumoto,

and Imai in [SMI91], where they provided a solution based on the discrete logarithm problem

and on the difficulty of extracting modular roots. However their solution requires, in terms

of the security parameter, a linear amount of exponentiations for both provers and verifiers,

as well as a linear amount of transmitted elements. A similar protocol has been proposed

later by Damgård and Jurik in [DJ01], where set membership proof is achieved by showing

that a ciphertext encodes one valid plaintext from a given set of plaintexts. Their protocol is

based on a generalization of the encryption scheme of Paillier [Pai99]. Hence the encryption

of a plaintext σ ∈ Zns is achieved with C = E(σ,r ) = gσr ns
(mod ns+1), where n is an RSA

modulus, s is a natural number, g is a generator of an ns order group G, and r is a random

element from a group H isomorphic to Z∗n . To show that C is the encryption of the plaintext

σ ∈Φ, a prover performs a proof of knowledge that one of the elements ui =C ·g−i is an (ns)th

power, where i ∈Φ. However, both prover and verifier need to perform O(|Φ|) exponentiations

and the communication complexity is also O(|Φ|) group elements.

De Mare and Wright provided an alternative solution for set membership proofs in [dMW06],

based on the hardness of the boolean 3-satisfiability (3SAT) problem. However, the elements

composing the set are not public and the set size is restricted to, at most, up to a hundred

elements.

Regarding subsequent results, Bayer and Groth provided, in [BG13, Bay13], a construction

for set membership and set non-membership proofs without relying on either a trusted third

party, or on signing the set elements. This however comes with a price in terms of both com-

munication and computation. For a set Φ of size |Φ|, their argument requires a communication

complexity of O(log |Φ|) group elements. As for the computational complexity, both provers

and verifiers need to compute O(log |Φ|) exponentiations. Regarding non-membership proofs,

Blazy, Chevalier, and Vergnaud recently proposed, in [BCV15], a non-interactive argument

based on the decisional Diffie-Hellman assumption.

Another subsequent result is provided by Canard et al. in [CCJT13], where they proposed a

non-interactive set membership proof without any security proof, based on the Fiat-Shamir

heuristic. Their scheme is based on a threshold variant of the ElGamal encryption [ElG84] and

on a new variant of Boneh-Boyen signatures [BB04] that does not require pairing computations.

Regarding the computational complexity of the prover, their set membership proof requires

15 exponentiations. Their communication complexity, despite being composed of a single

message, is larger by a factor of 5. Moreover they require at least 2, and at most 3, verifiers.

The computational complexity of verifiers is smallest when there are only 2 verifiers, although
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it would still require 21 exponentiations. If the verifiers collude however, they will be able to

decrypt the ciphertext containing a signature on the secret element of the prover, and hence

to deduce his secret element from the uniqueness of the signature. To address these issues,

Arfaoui et al. [ALT+15b, ALT+15a] worked on a similar version, also based on the random

oracle model, without the use of encryption. Their protocol can be seen as a special case of the

general signature based set membership proof mentioned in Section 5.1 of [CCs08], which is

explained in Protocol 3.3. Their solution is to simply use the variant of Boneh-Boyen signatures

presented in [CCJT13] in conjunction with Protocol 3.3. Compared to the Boneh-Boyen

signature based set membership proof presented in Section 3.3, they achieve exactly the same

communication complexity but gain in terms of prover and verifier computational complexity.

Where the verifier is issuing the signatures, he needs to compute 4 additional exponentiations

instead of 2 pairings, while the prover needs to perform 5 additional exponentiations instead

of one pairing. Moreover, if the verifier is not the one issuing the signatures, the computational

complexity gain for the prover remains the same. In this case, the verifier needs to do an

additional exponentiation for one less pairing.

Benaloh and de Mare introduced, in [BdM93], the notion of cryptographic accumulators,

based on the strong RSA assumption. Their use is to merge a set of elements into a single short

accumulator, as well as producing a witness for each element proving that it has indeed been

integrated into the accumulator. In [BdM93], Benaloh and de Mare proposed a membership

testing where the secret choice is revealed. The exact same issue affects [BP97] by Barić and

Pfitzmann. This issue was first solved by Camenisch and Lysyanskaya in [CL02a], with the

introduction of dynamic accumulators, also under the strong RSA assumption. Dynamic

accumulators not only allow the addition of elements into the accumulator, but also the

deletion of elements. However, restrictions apply on the elements that can be accumulated.

For instance, only prime numbers can be accumulated and the largest value has to be strictly

smaller than the square of the smallest value.

Further work has been accomplished in order to improve accumulators ([San99, GTH02, TX03,

Ngu05, AWSM07, LLX07, WWP07, PTT08, DT08, GTH09, Lip12b, FLZ14]) such as integrating

composite numbers [TX03], providing non-membership protocols [LLX07, DT08, Lip12b,

FLZ14], improving efficiency [GTH02, GTH09, PTT08], or using other computational hardness

assumptions such as the q-strong Diffie-Hellman assumption [Ngu05]. However, all of these

schemes require the secret element to be revealed in order to achieve the set membership

proof.

Guo et al. proposed in [GMSV13] a related method called membership encryption. They hide

the set description and attributes in a privacy preserving token P (G). Their encryption method

is performed on a public element x and the token P (G). Decryption is then possible only if the

user is holding the membership assertion x ∈G. Guo et al. claimed that their method could

be used to achieve the set membership proof of a secret element in a public set, however their

method would leak the value of the secret element.
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Buhrman et al. in [BMRV00], Radhakrishnan et al. in [RSV02], Ostrovsky et al. in [ORS04], Kate

et al. [KZG10] and Garg et al. in [GR15] focus on a different aspect of set membership proofs.

In their papers, they consider different representations of sets in order to efficiently show the

membership of a public element x into these sets. Hence they aim at answering questions

of the form “is the public element x contained in the private set Ψ”. Similarly, Micali, Kilian,

and Rabin [MRK03] assess the problem in which a polynomial-time prover wants to commit

to a finite secret set Ψ of strings so that, later on, he can, for any string x, reveal with a proof

whether x ∈Ψ or x �∈Ψ without leaking any knowledge beyond the membership assertions.

In particular, the proofs do not reveal the elements nor the size of Ψ. Their solution is non-

interactive and based on the computational hardness assumption of the discrete logarithm

problem.

A particular aspect of set membership proofs appears when the set is a range of consecutive

integer elements. This case is handled by range proofs rather than set membership proofs, as

special techniques can be applied in order to increase efficiency. This matter will be explained

in chapters 4 and 5.

Figure 3.1 provides some complexity comparisons between the protocols presented in this

chapter and schemes from the literature with similar security goals. The asymptotical commu-

nication complexities are provided in terms of group elements. Assumptions based on the

DLog problem require groups of size 256 bits. These groups will be denoted Gd . Assumptions

based on the factorization problem require groups of size 2048 bits. These groups will be

denoted G f . The groups GT required for pairings are of size 3072 bits. Computational com-

plexities are provided in terms of exponentiations (exp.) and pairings. Note that setup costs

are here left aside, although they will be given later for the protocols presented in this thesis.

Schemes Communication
Computational

Prover Verifier

[SMI91] O(|Φ|) O(|Φ|) exp. O(|Φ|) exp.
[DJ01] O(|Φ|) O(|Φ|) exp. O(|Φ|) exp.
[BG13, Bay13] O(log |Φ|) O(log |Φ|) exp. O(log |Φ|) exp.
[CCJT13] 8 |Gd |+9

∣∣G f
∣∣ 15 exp. 21 exp.

[ALT+15a] 6 |Gd |+ |GT| 8 exp. 7 exp.

Protocol 3.1
6 |Gd |+ |GT| 3 exp., 1 pairing 3 exp., 2 pairings

([BB04] signature based)
Protocol 3.2

19 |Gd |+6
∣∣G f

∣∣ 14 exp. 13 exp.
([CL02b] signature based)
Protocol 3.4

19
∣∣G f

∣∣ 18 exp. 15 exp.
([CL02a] accumulator based)

Figure 3.1 – Complexity comparisons for set Φ

64



3.3. Boneh-Boyen Signature Based Set Membership Proof

3.3 Boneh-Boyen Signature Based Set Membership Proof

Here we present a set membership proof protocol that is inspired by the oblivious transfer

protocol presented by Camenisch, Neven, and shelat [CNs07]. The basic idea is that the verifier

first sends the prover a signature on every element in the set Φ. The prover therefore receives

a signature on the particular element σ to which C is a commitment. The prover then “blinds”

this received signature and performs a proof of knowledge that she possesses a signature on

the committed element. Notice that the communication complexity of this proof depends on

the cardinality of Φ, in particular because the first message of the verifier contains a signature

on every element in Φ. The rest of the protocol, however, requires only a constant number of

group elements to be sent. The novelty of this approach is that the first verifier message can

be re-used in other proofs of membership; indeed, this property is used to achieve the results

for range proofs in Chapter 4.

Computational assumptions. The protocol in this section requires Pedersen commitments,

symmetric2 bilinear groups, associated computational hardness assumptions, as well as the

q-Strong Diffie Hellman assumption (q-SDH, see Section 2.2.2), with |Φ| = q . Note that the q-

SDH assumption implies the DLog assumption. Let PG be a symmetric bilinear pairing group

generator that on input 1κ outputs descriptions of multiplicative cyclic groups G1 and GT of

prime order p where
∥∥p

∥∥= k = (
2κ+ log2 q

)
. Let G∗1 =G1 \ {1} and let g ∈G∗1 . The generated

groups are such that there exists an admissible symmetric bilinear map e : G1×G1 →GT,

meaning that

• for all a,b ∈Zp it holds that e(g a , g b)= e(g , g )ab ;

• e(g , g ) �= 1;

• and the bilinear map is efficiently computable.

Boneh-Boyen signatures. The set membership proof presented in this section relies on the

elegant Boneh-Boyen short signature scheme [BB04] which is explained in Section 2.4.5 and

briefly recalled here. The signer’s secret key is x ∈R Z∗p and the corresponding public key

is y = g x . The signature on a message m is s = g 1/(x+m). Verification is done by checking

that e(s, y · g m)= e(g , g ). Let us also recall here the following unforgeability property of the

Boneh-Boyen short signature [BB04], paraphrased below:

Lemma 3.1 ([BB04](Lemma 1, Section 3.1))

Suppose the q-Strong Diffie Hellman assumption holds in (G1,G1). Then the basic Boneh-

Boyen signature scheme is q-secure against an existential forgery under a weak chosen mes-

sage attack.

2Note that asymmetric bilinear groups could and should be used in practice as explained in Section 2.1.3. The
use of symmetric bilinear groups here is solely to help readers understand the protocol.
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Informally, this lemma states that under some specific assumptions, Boneh-Boyen signatures

are unforgeable. This property will be needed to prove the soundness of the set membership

proof described in this section. The reader is briefly reminded that the q-Strong Diffie Hellman

assumption holds in (G1,G1), if an adversary has a negligible advantage in outputting a pair(
m, g 1/(x+m)

)
, when given as input

(
g , g x , g x2

, · · · , g xq
)
, where g is a generator of G1. For a

more detailed and formal definition, see Section 2.2.2. A weak chosen message attack on a

signature scheme consists of retrieving signatures on chosen messages, that were queried by

the adversary before seeing the signature scheme public key. Furthermore, the Boneh-Boyen

q-security property of a signature scheme informally consists of the unforgeability property

when the attacker is allowed to query a signing oracle for strictly less than q messages of

his choice. Further details regarding the weak chosen message attack and q-security can

be found in Section 2.4.5. Last but not least, recall that Cheon provided a warning on the

hardness of the q-Strong Diffie Hellman assumption in [Che06]. His results state that the

computational complexity of recovering the secret element x is O
(√

p/q
) =O

(
2(k−log q)/2

)
group operations, where p is the k-bit prime order of G1. Hence, as explained in Section 2.2.2,

particular attention needs to be given to the choice of p and the value of q , unless the value q

is small enough compared to p. In practice, the binary length of p is often greater than 256

bits, for a value of q smaller than 15 bits. This leads to a computational complexity of an attack

strictly higher than 2120 group operations. Hence in order to obtain a 128 bit security (meaning

that the computational complexity is higher than 2128 group operations), the restriction on

the security parameter k is k 
 256+ log2 q .

Protocol explanation. The Boneh-Boyen signature based set membership proof is depicted

in Protocol 3.1. The common input includes the following elements: a description of G1

and GT, as provided by the pairing group generator PG for the Boneh-Boyen signature; two

generators g and h of G1 for the Pedersen commitment; the public set Φ ⊂ Z|G1|; and a

Pedersen commitment C to one element in Φ. As |G1| = p, this implies that Φ ⊂ Zp . The

prover input additionally contains elements σ and r such that C = gσhr and σ ∈Φ.

The first message exchanged consists of the Boneh-Boyen public key y of the verifier together

with signatures Ai on every element contained in Φ. Here, x ∈Z∗p is the Boneh-Boyen secret

key of the verifier. Note that instead of the verifier signing the elements in Φ, a trusted third

party can be employed. Moreover, picking x ∈Z∗p should be done such that −x is not present

in Φ, as it is impossible to produce a signature on −x. Indeed, an honest verifier would be

required to compute A−x = g
1

x−x . As for the malicious verifier, he would need to provide a

signature A−x such that e(g , g )= e(A−x , y · g x ) for y = g−x . In all cases, the correctness of the

public key y and signatures Ai should be checked by the prover (and by the verifier if a trusted

third party generated them). It is important to note here that regarding the security proof,

this first message can be considered as a setup cost, and therefore the rest of the protocol will

appear as a Σ-protocol.

The second message, which is sent by the prover to the verifier, is a blinding VP on the
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signature of σ, achieved by an exponentiation with a random secret v . At each step, every

element is checked for correctness, such as verifying that an element is in the correct group.

However many of these checks are only necessary when compiling from the honest verifier

zero-knowledge model to the full zero-knowledge proofs. As previously mentioned, only

the honest verifier case is presented here. The standard checks are provided for the sake of

completeness.

Common Input: g ,h, a commitment C , and a set Φ.

Prover Input: σ,r such that C = gσhr and σ ∈Φ.

P y,{Ai }� V • Verifier picks x ∈R Z∗p such that −x �∈Φ and

sends y ← g x and Ai ← g
1

x+i , ∀i ∈Φ.

• Prover checks that y ∈G∗1 , Ai ∈G∗1 and

that e(g , g )
?= e(Ai , y · g i ), ∀i ∈Φ.

P VP � V • Prover picks v ∈R Z∗p and sends VP ← Av
σ.

• Verifier checks that VP ∈G∗1 .

Prover and Verifier run PK{(σ,r, v) : C = gσhr ∧ VP = g
v

x+σ }

P a,D � V • Prover picks s, t ,m ∈R Z∗p and

sends a← e
(
V −s

P g t , g
)

and D ← g shm .

• Verifier checks that a ∈GT and D ∈G∗1 .

P c� V • Verifier sends a random challenge c ∈R Z∗p .

• Prover checks that c ∈Z∗p .

P zσ,zv ,zr� V • Prover sends zσ← s−σc, zv ← t − vc, and zr ←m− r c.

• Verifier checks that zσ, zv , zr ∈Z∗p , that D
?=C c hzr g zσ and

that a
?= e

(
VP , y

)c ·e (
V −zσ

P g zv , g
)

Protocol 3.1 – Set membership proof protocol for set Φ,
based on Boneh-Boyen signatures

Once the verifier has received the blinded signature, the prover and verifier engage in a proof

of knowledge that the blinded signature corresponds to the secret σ contained in the initial

commitment. The prover selects three random parameters s, t , and m in Z∗p that will be used

to blind his secret elements σ, v , and r respectively.

The initial message of the proof of knowledge is then a commitment D on the secret ran-

domness s used by the prover, and a group element a ∈GT which is a bilinear pairing on the

blinded signature VP using the same secret randomness s committed in D . At the end of the

protocol, a will allow the verifier to check that VP contains a valid blinded signature. Note, in
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addition, that D ∈G∗1 . If D = 1 then the prover would be able to retrieve the discrete logarithm

of h in base g by outputting logg h =−s/m (mod p).

After this step, the verifier challenges the verifier with the challenge c . The prover replies to the

verifier with the elements zσ, zv , and zr . These will allow the verifier to complete the proof of

knowledge by verifying that the following two equations hold:

D
?= C c hzr g zσ (3.1)

a
?= e

(
VP , y

)c ·e (
V −zσ

P g zv , g
)

. (3.2)

Recall again that q = |Φ| is supposedly a small number (bellow 15 bits length) compared to p

(above 256 bits length). The attack from Cheon [Che06] on the q-Strong Diffie-Hellman as-

sumption states that the computational complexity of recovering the secret key x is of O
(√

p/q
)

group operations, instead of O
(�

p
)

group operations. Hence the computational complexity

reduction of O
(�

q
)

is, in our case, polynomially bounded. Nevertheless, in order for the

computational complexity of recovering the secret key x to be higher than 2κ group operations

(which is often called a κ-bit security), the security parameter k should be k 
 2κ+ log2 |Φ|.
Theorem 3.2

If the |Φ|-Strong Diffie-Hellman assumption associated with a pairing generator PG holds,

then Protocol 3.1 is a zero-knowledge argument of set membership for the set Φ.

Proof

To show that Protocol 3.1 is a zero-knowledge argument of set membership, three security

properties need to be satisfied: the completeness of the protocol, the special soundness property,

and the special honest verifier zero-knowledge property.

The completeness of the protocol follows by inspection. In particular, the two last equalities

hold as follows. Recall that a = e
(
V −s

P g t , g
)
. Hence,

e
(
VP , y

)c ·e (
V −zσ

P g zv , g
) = e(VP , y)c · e(VP , g )−zσ · e(g , g )zv

= e(VP , g x )c · e(VP , g )−s+σc · e(g , g )t−vc

= e(VP , g )xc · e(VP , g )−s · e(VP , g )σc · e(g , g )t · e(g , g )−vc

= e(VP , g )xc+σc · e(g , g )−vc · e(VP , g )−s · e(g , g )t

= e(g
v

x+σ , g )(x+σ)c · e(g , g )−vc · e(VP , g )−s · e(g , g )t

= e(g v , g )c · e(g , g )−vc · e(VP , g )−s · e(g , g )t

= e(g , g )vc · e(g , g )−vc · e(VP , g )−s · e(g , g )t

= e(VP , g )−s · e(g , g )t = e
(
V −s

P g t , g
) = a.

Similarly, as D = g shm , the following holds:

C c hzr g zσ = (gσhr )c · hm−r c · g s−σc = gσc hr c · hm−r c · g s−σc

= gσc+s−σc · hr c+m−r c = g shm

= D.
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The special soundness follows from the extraction property of the proof of knowledge and the

unforgeability of the Boneh-Boyen signature. This extraction property and how its extractor

works will be explained first. Finally, a demonstration will be provided, explaining that if a

malicious prover P∗ is able to convince a verifier, then the extractor using this prover P∗ can

either be used to break the unforgeability property of the Boneh-Boyen signature (Lemma 3.1),

or to create σ ∈Φ and r such that C = gσhr .

The extraction property of the proof of knowledge implies that for any prover P∗ that convinces

V with probability S , there exists an extractor which interacts with P∗ and outputs a witness

(σ,r, v)within an expected number of steps bounded by q(κ)
S −μ(κ) , where μ is the knowledge

error, q is a positive non zero polynomial, and κ is the security parameter. Moreover, following

standard techniques ([BG92, Gol01]), the extractor obtains two related accepting transcripts

tr and tr ′, for different challenges c �= c ′ but with the same initial elements
{

y, {Ai },VP , a,D
}
:

tr = {
y, {Ai },VP , a,D,c, zσ, zv , zr

}
,

tr ′ = {
y, {Ai },VP , a,D,c ′, z ′σ, z ′v , z ′r

}
.

Then, the witness can be obtained by computing:

σ= zσ− z ′σ
c ′ −c

; r = zr − z ′r
c ′ −c

; v = zv − z ′v
c ′ −c

;

and its correctness can be confirmed with the following checks:

C
?= gσhr ; VP

?= Av
σ.

The extractor succeeds since (c ′ −c) is invertible in Zp .

If a malicious prover P∗ is able to convince verifiers, then P∗ can be (almost) directly used to

mount a weak chosen-message attack against the Boneh-Boyen signature scheme.Indeed, the

attacker will first learn all of the signatures of the elements in Φ. Then, as P∗ has succeeded

in convincing V , the extractor will output the witness (σ,r, v) by interacting with P∗, for

VP = g
v

x+σ and C = gσhr . Hence, if v �= 0 (as shown below) then V (1/v)
P is a valid signature of

σ. Due to the unforgeability property of the Boneh-Boyen signature scheme, the extractor

outputs σ ∈Φ and r such that C = gσhr .

The following proof by contradiction, shows that v is a non zero element and hence invertible

in Z∗p . Recall that a valid transcript necessarily satisfies the verification equation (3.2). Hence,

the related transcripts tr and tr ′, used by the extractor, satisfy the equalities:

a = e
(
VP , y

)c ·e (
V −zσ

P g zv , g
)

, and

a = e
(
VP , y

)c ′ · e
(
V
−z ′σ

P g z ′v , g
)

. (3.3)

The proof by contradiction shows that if c �= c ′ and v = 0, then the extracted σ will fail to pass
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the verification equation for the correctness of its signature:

e(g , g )
?= e(Aσ, y · gσ).

As the extractor is assumed to have obtained two related transcripts tr and tr ′, for different

challenges c �= c ′, the following holds:

v = 0 =⇒ zv − z ′v
c ′ −c

= 0

=⇒ zv = z ′v (3.4)

=⇒ e
(
VP , y

)c ·e (
V −zσ

P g zv , g
)= e

(
VP , y

)c ′ · e
(
V
−z ′σ

P g zv , g
)

(3.5)

=⇒ e(VP , g x )c · e(VP , g )−zσ = e(VP , g x )c ′ · e(VP , g )−z ′σ (3.6)

=⇒ e(VP , g )xc−zσ = e(VP , g )xc ′−z ′σ

=⇒ xc− zσ = xc ′ − z ′σ (mod p) (3.7)

=⇒ x(c−c ′)= zσ− z ′σ (mod p) (3.8)

=⇒ σ= zσ− z ′σ
c ′ −c

=−x (mod p) (3.9)

Due to equation (3.4), z ′v is replaced by zv in equation (3.3) to obtain equation (3.5). As

e(g , g ) �= 0 by definition (GT is a multiplicative group), equation (3.5) can be divided by

e(g , g )zv to obtain equation (3.6). Since VP �= 1 we have e(VP , g ) �= 1, which implies equa-

tion (3.7). Furthermore, as c �= c ′, equation (3.8) can be divided by (c ′ − c). As a result, equa-

tion (3.9) will fail the check e(g , g )
?= e(Aσ, y · gσ), for any signature Aσ ∈G∗1 .

1. Si m retrieves y, {Ai } from V ∗ (or from a trusted third party).

2. Si m chooses σ ∈R Φ, v ∈R Z∗p and computes VP ← Av
σ.

3. Si m runs the simulator of PK{(σ,r, v) : C = gσhr ∧ VP = g
v

x+σ }.

(a) On challenge c ∈Z∗p , Si m chooses zσ, zv , zr ∈R Z∗p .

(b) Finally, Si m computes a← e(VP , g )−zσ−σc e(g , g )zv+vc and D ←C c hzr g zσ .

4. Si m returns the transcript {y, {Ai },VP , a,D,c, zσ, zv , zr }.

Figure 3.2 – Simulator for the set membership proof protocol

Finally, to prove special honest verifier zero-knowledge, we construct a simulator Si m for any

verifier V ∗, as depicted in Figure 3.2. The goal of the simulator Si m is to simulate all possible

interactions with any honest prover P . Si m will first follow the initialization and the blinding

instructions honestly, using a random σ ∈R Φ and a random v ∈R Z∗p to compute VP . Then

Si m runs the simulator of the Σ-protocol PK
{

(σ,r, v) : C = gσhr ∧ VP = g
v

x+σ
}

. Hence, on the

challenge c ∈Z∗p , the simulator first picks zσ, zv , zr in Z∗p randomly, and then computes a, D
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as follows:

a = e(VP , g )−zσ−σc e(g , g )zv+vc ,

D = C c hzr g zσ .

The output of the simulator is a transcript {y, {Ai },VP , a,D,c, zσ, zv , zr }, which has an identical

probability distribution to a normal transcript between regular provers and verifiers. We can

easily see that y , {Ai } and c are identical in both transcripts, as they are provided by the verifier.

VP has the same probability distribution as it is computed with a valid σ ∈Φ and a random

v ∈R Z∗p . As s, t ,m are randomly picked in Z∗p , they impose the same randomness towards

zσ, zv , zr . Hence zσ, zv , zr also have the same probability distribution. It is straightforward to

see that D has the same probability distribution as it is computed from the same elements

with the same distributions. Last but not least, as s = zσ+σc and t = zv + vc, a has the same

probability distribution for the same reasons as for D . Since G1 is a prime-order group, then

the blinding is perfect in the first two steps of the simulator; thus the zero-knowledge property

follows from the zero-knowledge property of the Σ-protocol in the third step.

Communication and Computational Complexity. As the first message of Protocol 3.1 can

be regarded as a setup procedure, it will not be included in the complexity analysis. Never-

theless, its cost is mentioned here for comparison purposes. The first message consists of |Φ|
signatures and the public key y , which sum up to |Φ|+1 group elements for the communi-

cation, |Φ|+1 exponentiations for the verifier (or the trusted third party), and |Φ|+1 bilinear

pairings for the prover in the non-honest verifier model.

Overall, the communication complexity of Protocol 3.1 consists of 2 group elements in G1, 1

group element in GT and 4 elements in Z∗p . Regarding computational complexity, the honest

verifier setting is assumed. Hence, the prover computational cost is dominated by 3 exponen-

tiations and 1 pairing. The verifier computational cost is dominated by 3 exponentiations and

2 pairings.

3.4 Alternative Signature Based Set Membership Proof

The set membership proof protocol presented in Section 3.3 makes the verifier produce signa-

tures on the set elements, send them to the prover, and then requires the prover to show that

he knows a signature (from the verifier) and the element he holds. In other words, this last step

requires the prover to be able to prove the knowledge of a signature on a value that he has com-

mitted to, using the Pedersen commitment scheme. Concretely, the weak signature scheme by

Boneh and Boyen is employed. The following is a discussion on alternative signature schemes

which allow the whole protocol to be based on different assumptions. Apart for the weak

Boneh-Boyen signature scheme, there are other signature schemes that could be employed.
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In terms of assumptions, one notable alternative would be the one by Camenisch and Lysyan-

skaya [CL02b] that is based on the strong RSA assumption. It is not hard to adapt the protocol

given in Section 3.3 to that signature scheme, in particular as Camenisch and Lysyanskaya gave

protocols to prove knowledge of a committed value in their paper [CL02b]. It should further

be mentioned that Pointcheval and Sanders recently developed an improvement of [CL02b]

in [PS15], where signatures consists of two group elements instead of three, with the help of

specific computational assumptions (notably the LRSW assumption [LRSW99]). However, the

solution presented in Section 3.3 remains the most efficient one. The alternatives discussed in

this section are of similar efficiency.

Computational assumptions. The protocol in this section requires the notion of quadratic

residues modulo n, special RSA modulus, the strong RSA assumption, and the Fujisaki-

Okamoto commitment scheme ([FO98, DF02], see Section 2.4.2). An RSA modulus n = pq is

called special if p and q are both safe primes. Hence n = (2p ′ +1)(2q ′ +1), where p ′ and q ′ are

both Sophie-Germain primes. The strong RSA assumption is explained in Section 2.2.2. As a

brief reminder, this assumption states that for a random a ∈Z∗n , it is hard to compute e 
 3

and the eth root of a, where n is an RSA modulus. Recall in addition that for the commitment,

instead of performing computations in a group of prime order as for a Pedersen commitment,

the Fujisaki-Okamoto commitment uses the set QRn of quadratic residues modulo a special

RSA modulus n.

Camenisch-Lysyanskaya signatures. The set membership proof in this section relies on the

Camenisch-Lysyanskaya signature scheme in [CL02b] which is explained hereafter. The

signer’s secret key is a safe prime p̃ such that ñ = p̃ q̃ is a special RSA modulus of binary length

2k, where k is the general security parameter. The corresponding public key is (ñ, a,b,c),

where a,b,c ∈R QRñ \ {1}3. The signature on a message m of binary length �m , is a tuple

(s,e, v) such that ve ≡ ambsc (mod ñ), where e is a random prime number of binary length

�e 
 �m +2, s is a random number of binary length �s > 2k +�m , and where v is obtained

with v = (ambsc)e−1
(mod ñ). To verify a signature (s,e, v) on a message m against a public

key (ñ, a,b,c), a verifier runs the predicate Verify(ñ,a,b,c)(m, s,e, v) which consists of checking

that ve ≡ ambsc mod ñ. Camenisch and Lysyanskaya suggested the following values for the

security parameters: k = 512, �m = 160, �e = 162, �s = (2k+�m+160)= 1344. Let us also recall

the security property of the Camenisch-Lysyanskaya signature scheme [CL02b], paraphrased

below:

Theorem 3.3 ([CL02b](Theorem 1))

The Camenisch-Lysyanskaya signature scheme is secure under the strong RSA assumption.

More precisely, if a forger breaks the signature scheme in time p(k) with probability ε(k), then

the strong RSA assumption can be broken in time O(p(k)) with probability Ω(ε(k)/p(k)).

3Note that the requirement of removing the element 1 from QRñ is missing in the original version [CL02b].
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Protocol explanation. The Camenisch-Lysyanskaya signature based set membership proof

is depicted in Protocol 3.2. The common input includes the following elements: the pub-

lic parameters of a Fujisaki-Okamoto commitment (a safe RSA modulus n = pq and two

generators g ,h ∈QRn); the public set Φ of elements with binary length smaller than �m ; a

Fujisaki-Okamoto commitment C to one element in Φ and security parameters �e ,�s . The

security parameters �e ,�s are used to define the length of the signature elements ei , si re-

spectively. The prover input additionally contains an element σ ∈Φ and r ∈Z∗|G| such that

C = gσhr .

Common Input: g ,h, a commitment C , a set Φ,

and security parameters �m , �s , �e .

Prover Input: σ,r such that C = gσhr and σ ∈Φ.

P (ñ,a,b,c), {(si ,ei ,vi )}� V • Verifier picks two safe primes p̃, q̃ , sets ñ← p̃ q̃ ,

picks a,b,c ∈R QRñ \ {1},

picks random numbers si of length �s , ∀i ∈Φ,

picks random primes ei ∈R
(
2�e−1, 2�e

)
, ∀i ∈Φ,

computes vi ←
(
ai bsi c

)1/ei , ∀i ∈Φ,

sends (ñ, a,b,c) and (si ,ei , vi ), ∀i ∈Φ.

• Prover checks for every i ∈Φ that ei ∈R
(
2�e−1, 2�e

)
and

that vei

i ≡ ai bsi c.

Prover and Verifier run

PK{(σ,r, sσ,eσ, vσ) : C = gσhr ∧ Verify(ñ,a,b,c)(σ, sσ,eσ, vσ)= 1}

Protocol 3.2 – Set membership proof protocol for set Φ,
based on Camenisch-Lysyanskaya signatures

The first message exchanged consists of the Camenisch-Lysyanskaya signature public key

(ñ, a,b,c) of the verifier, together with a signature (si ,ei , vi ) on every element of i ∈Φ. The

secret key of the verifier is the safe prime p̃ which allows him to factorize ñ = p̃ q̃ into two

safe primes. Obviously, (p̃,n) should be coprime as well as (q̃ ,n), otherwise the owner of the

factorization n = pq would be allowed to produce signatures on behalf of the verifier, and

hence to break the unforgeability property of the Camenisch-Lysyanskaya signature scheme.

As in the case of Section 3.3 with the Boneh-Boyen signature scheme, standard checks should

be performed such as verifying the correctness of signatures (si ,ei , vi ) on every element i ∈Φ.

Once the signatures are delivered to the prover and their correctness has been verified, the

prover and the verifier engage in an honest verifier zero-knowledge proof of knowledge of

a signature, such that the signature corresponds to the element hidden in the commitment
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C of the prover. Camenisch and Lysyanskaya provided two protocols achieving this proof of

knowledge of a signature in [CL02b], both based on the strong RSA assumption. Their first

protocol is intended to be comprehensive rather than optimized, while the second one is

focused on optimization. For the sake of completeness, the optimized protocol is detailed in

Appendix A. Let us recall their security property, which is paraphrased from [CL02b]:

Lemma 3.4 ([CL02b] (Lemma 8 and lemma 15))

Assume that C = gσhr is a Fujisaki-Okamoto commitment on the elementσ ∈Φwith random-

ness r ∈Z∗|G|, as defined in protocol 3.2. Let (s,e, v) be a Camenisch-Lysyanskaya signature

on the element σ as defined in [CL02b]. Let VerifyPK be the verification algorithm of the

Camenisch-Lysyanskaya signature scheme, where PK is the public key. The two Camenisch-

Lysyanskaya protocols in [CL02b] for proof of knowledge of a signature are zero-knowledge

proofs of knowledge of the values (σ,r, s,e, v) such that VerifyPK (σ, s,e, v)= 1.

Theorem 3.5

If the strong RSA assumption holds, then Protocol 3.2 is a zero-knowledge argument of set

membership for the set Φ.

Proof

Recall that the underlying proof of knowledge

PK{(σ,r, sσ,eσ, vσ) : C = gσhr ∧ Verify(ñ,a,b,c)(σ, sσ,eσ, vσ)= 1}

is detailed in Appendix A.

The completeness of the protocol follows from the completeness of the underlying proof of

knowledge.

The special soundness property follows from the unforgeability of the Camenisch-Lysyanskaya

signature scheme (Theorem 3.3) and from the extraction property of the Camenisch-Lysyanskaya

proof of knowledge of a signature (Lemma 3.4). The goal of the extractor is to produce a valid

signature on an opening σ of C , by invoking the underlying extractor of the proof of knowledge

of a signature. Moreover, the extractor is actually identical to the one of the underlying proof

of knowledge. Indeed, if the extractor of the proof of knowledge of a signature succeeds and

outputs a witness (σ,r, sσ,eσ, vσ), either it can be directly used to break the unforgeability of

the Camenisch-Lysyanskaya signature scheme as (sσ,eσ, vσ) would be a valid signature of σ,

or the witness contains σ ∈Φ and an opening (σ,r ) of C . However, if this extractor fails, then a

reduction can be made to break the strong RSA assumption.

In order to prove special honest verifier zero-knowledge, the simulator follows the initialization

steps honestly, then invokes the simulator of the underlying honest verifier zero-knowledge

proof of knowledge of a signature.

Communication and Computational Complexity. As in the case of Protocol 3.1, the first

message of Protocol 3.2 can be regarded as a setup procedure, and thus will not be included
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in the complexity analysis. Nevertheless, we mention its cost for comparison purposes. The

first message consists of |Φ| signatures and the public key (ñ, a,b,c). For the communication,

this amounts to 4+|Φ| elements in Zñ , |Φ| elements of length �e and |Φ| elements of length �s .

The verifier (or the trusted third party) will be required to perform 3 |Φ| exponentiations. The

prover in the non-honest verifier model, will also be required to perform the same amount of

exponentiations.

Overall, the complexity of Protocol 3.2 is identical to the Camenisch-Lysyanskaya proof of

knowledge of a signature. The communication complexity sums up to 6 group elements and 9

elements in the size of the group order. Regarding computational complexity for the honest

verifier setting, the prover computational cost is dominated by 14 exponentiations. The verifier

computational cost is dominated by 13 exponentiations.

Common Input: a commitment C , a set Φ,

the commitment scheme parameters Paramcom,

and the signature scheme parameters Paramsign.

Prover Input: σ,r such that C =Commit(σ,r ) and σ ∈Φ.

P Pub, {Ai }� V • Verifier picks his secret key Sk,

generates the corresponding public key Pub,

computes the signature Ai = SignSk (i ), ∀i ∈Φ,

sends Pub and {Ai }, ∀i ∈Φ.

• Prover checks for every i ∈Φ that

VerifyPub (i , Ai )= 1.

Prover and Verifier run

PK{(σ,r, A) : C =Commit(σ,r ) ∧ VerifyPub(σ, A)= 1}

Protocol 3.3 – Set membership proof protocol for set Φ,
based on a general signature scheme

Using Alternative Signature Schemes. The general idea of using a set membership proof

based on a signature scheme consists of two steps. At first, the prover is given signatures on

every element of the public set Φ. This allows the prover to select the signature corresponding

to his secret element σ ∈Φ. The signatures can be provided by either the verifier or a trusted

third party. In the second step, the prover runs a zero-knowledge proof of knowledge of a

signature with the verifier, to ensure that the prover knows a valid signature on his secret

element that he has previously committed to. The assumptions needed are inherited from the

ones used in the commitment scheme, in the signature scheme, and in the proof of knowledge
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needed. A general description is provided in Protocol 3.3, where Paramsign, Sign, and Verify

refer respectively to the parameters, the signature algorithm, and the verification algorithm of

the signature scheme. Pub and Sk are, respectively, the public key and the secret key of the

signer. As for the commitment scheme used, Paramcom refers to the public parameters of the

commitment, and the commit algorithm Commit(m,r ) returns a commitment to the message

m under randomness r . Note that depending on the commitment and signature scheme used,

the proof of knowledge will force some restrictions on the message space provided by the

public set Φ.

3.5 Accumulator Based Set Membership Proof

The reasons that signature schemes were employed in the previous two sections, is that the

prover needed to show that he committed to a value for which he knows an authenticator

without revealing that value or the authenticator. Now it turns out that exactly the same goal

can be achieved with cryptographic accumulators with similar complexities.

Cryptographic accumulators are briefly recalled here, as they are explained in more detail in

Section 2.4.6. A cryptographic accumulator is an algorithm that allows a user to compress

a list of elements into a single accumulator value. For each element, there exists a witness

attesting to the fact that the element is indeed contained in the accumulator value. For

some cryptographic accumulators, there exist efficient proof systems that allow a prover

holding an accumulated element and its corresponding witness to prove to a verifier in zero

knowledge that he is privy to an element that is contained in the accumulator. Camenisch and

Lysyanskaya have given details of such an accumulator in [CL02a], with the introduction of

dynamic accumulators (see Section 2.4.6). They also provided a protocol that a committed

value is contained in the accumulator based on the strong RSA assumption. However, their

proof of knowledge needs to be modified in order to be used in a set membership proof

protocol, as only primes in a restrictive integer range are allowed to be accumulated.

The idea of building an efficient set membership proof with dynamic accumulator is very sim-

ilar to the signature based one. The verifier adds each element of the set into the accumulator

and sends the accumulator value to the prover together with the corresponding witness for

each element. The prover then proves to the verifier that the value he has committed to is

contained in the accumulator produced by the verifier, by using the appropriate witness.

Computational assumptions. As in Section 3.4, the accumulator based set membership

proof requires Pedersen commitments, the notions of quadratic residues, and special RSA

modulus, as well as the accumulator associated computational hardness assumptions. In this

case, the dynamic accumulators of Camenisch and Lysyanskaya are based on the strong RSA

assumption.
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3.5. Accumulator Based Set Membership Proof

Camenisch-Lysyanskaya accumulators. The dynamic accumulators of Camenisch and Lysyan-

skaya [CL02a] are briefly recalled here, as they are explained in more detail in Section 2.4.6.

Assuming a special RSA modulus ñ = (2p̃+1)(2q̃+1) of length k, the message space of the ele-

ments to be accumulate is the set of prime numbers e, such that e �∈ {p̃, q̃} and 2< A 	 e < A2.

These requirements come from the structure of the accumulator and the way in which ele-

ments are accumulated. Indeed, to add an element e into the accumulator v ∈QR∗ñ , the user

computes v ′ = ve (mod ñ). The witness of an element e contained in an accumulator v ∈QR∗ñ
is the element we = v1/e (mod ñ). To check that an element e is indeed contained in the

accumulator v , the following verification is performed: v
?= (we )e (mod ñ). Last but not least,

we recall the security theorem of the Camenisch-Lysyanskaya dynamic accumulators [CL02a],

paraphrased below:

Theorem 3.6 ([CL02a](Theorem 2))

Under the strong RSA assumption, the Camenisch-Lysyanskaya accumulator scheme is a

secure dynamic accumulator.

Common Input: g ,h, a commitment C , a set Φ.

Prover Input: σ,r such that C = gσhr and σ ∈Φ.

P ñ, v, g̃ , h̃, Θ� V • Verifier picks a safe prime product ñ = (2p̃+1)(2q̃+1),

picks u, g̃ , h̃ ∈R QRñ ,

picks ai ∈ {0,1}k̄ such that ei = i ·2k +ai are prime, ∀i ∈Φ,

computes v ← u2
∏

ei (mod ñ) ; wi ← v1/ei (mod ñ), ∀i ∈Φ,

sends ñ, v , g̃ , h̃, and Θ← {(ei , wi ) : i ∈Φ}.

• Prover checks the correctness of ñ, v, g̃ , h̃, Θ.

• Prover and Verifier run PK{(α) : g̃ = h̃α (mod ñ)}.

P W, R, Ce � V • Prover picks r1,r2,re ∈Z�ñ/4�,
sends W ←wσh̃r1 (mod ñ), R ← g̃ r1 h̃r2 (mod ñ),

and Ce ← g̃ eσ h̃re (mod ñ).

• Verifier checks that W, R, Ce ∈QRñ .

Prover and Verifier run

PK{(σ,r,eσ, aσ,re ,r1,r2) : C = gσhr ∧ Ce = g̃ eσ h̃re (mod ñ) ∧
Ce = (g̃ 2k

)σg̃ aσ h̃re (mod ñ) ∧ Reσ = g̃ r1eσ h̃r2eσ (mod ñ) ∧
v =W eσ h̃−r1eσ (mod ñ) ∧ aσ ∈ [−2k−1,2k−1]}

Protocol 3.4 – Set membership proof protocol for set Φ,
based on Camenisch-Lysyanskaya accumulators

77



Chapter 3. Set Membership Proofs

Protocol explanation. One complication that needs to be dealt with here, is that the accu-

mulator only allows the accumulation of prime numbers, whereas the set Φ is composed of

arbitrary bits strings. A mapping thus need to be encoded. This can be done as follows: let

Φ be our set, where the elements i ∈ Φ are assumed to be integers; let ei = i 2k + ai , where

ai < 2k̄ < 2k is selected so that ei is prime. The security parameter k̄ defines the length of

elements ai . Moreover, it is required that A2−1< q/2, where q is the order of the Pedersen

commitment group. This requirement is inherited from the requirements of the proof of

knowledge that ei is accumulated in v (see Appendix B and [CL02a]). With this encoding, the

verifier can produce a proof of knowledge that eσ corresponds to his committed element σ,

and that eσ is accumulated in v . Hence the Camenisch-Lysyanskaya accumulator based set

membership proof depicted in Protocol 3.4 is obtained.

The common input includes the following elements: the description G of a Pedersen commit-

ment group; two generators g and h of G for the Pedersen commitment; the public set Φ ; and

a Pedersen commitment C to one element in Φ. The prover input additionally contains the

elements σ ∈Φ and r ∈Z∗|G| such that C = gσhr .

The first step consists of a message sent by the verifier to the prover, followed by a small proof

of knowledge. This first message consists of the accumulator v , public parameters (ñ, g̃ , h̃)

for the accumulator, and a set Θ regrouping the witnesses wi for the accumulated element ei

corresponding to the elements i ∈Φ. Furthermore, the verifier possesses the primes p̃ and q̃

that decompose ñ = (2p̃+1)(2q̃+1), as well as the element u used to generate the accumulator

v . As was the case for the non-honest verifier model, standard checks should be performed

such as verifying the correctness of the elements ñ, v, g̃ , h̃, Θ. The proof of knowledge that

follows aims at convincing the prover that g̃ ∈ 〈h̃〉. The straightforward way to achieve this, is

that the prover runs the proof of knowledge PK{(α) : g̃ = h̃α (mod ñ)} with the verifier using

binary challenges. Another, more efficient, way is described by Bangerter et al. [BCM05], based

on the work of Cramer [Cra97].

The second step, is the core of the set membership proof. A reply is provided from the prover

to the verifier, that consists of a blinding W on the witness wσ, and additionally of two

commitments R, Ce . The commitment R is a commitment on the randomness used for the

blinding W . The commitment Ce is a commitment on the prime eσ corresponding to the

committed element σ. In both this step and the previous one, every element is checked for

correctness, such as verifying that an element is in the correct group. However, these checks

are only necessary when compiling from the honest verifier zero-knowledge model to the full

zero-knowledge proofs. Here again, only the honest verifier case is of concern. The standard

checks are provided for the sake of completeness.

The last stage of this second step, is a proof of knowledge that eσ corresponds to the σ in

the initial commitment of the prover, and that eσ is also contained in the accumulator. The

resulting proof of knowledge is given in Appendix B, where the accumulator proof given

by Camenisch and Lysyanskaya [CL02a] is adapted to this setting. This adaptation mainly
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concerns the fact that the correspondence between eσ and the committed σ needs to be

additionally proven to hold. For this to work, the prover needs to show that eσ = σ2k + aσ

holds, for some aσ known to the prover. Here it is, of course, important that this aσ be at most

of length k̄ < k bits. This can be enforced efficiently, provided that k̄ is a couple of bits smaller

than k, where in practice the difference should be about 300 bits for this to work. More precise

accuracy could be achieved with the range proofs presented in Chapter 4 and in Chapter 5.

However, for this specific purpose, they would be less efficient.

Theorem 3.7

If the strong RSA assumption holds, then Protocol 3.4 is a zero-knowledge argument of set

membership for the set Φ.

Proof

The completeness of the protocol follows from the completeness of the underlying proofs of

knowledge.

The special soundness property follows from the security property of the Camenisch-Lysyanskaya

accumulator scheme (Theorem 3.6) and from the extraction property of the proof of knowl-

edge of a committed accumulated element described in Appendix B. This extraction property

is directly derived from the extraction property of the Camenisch-Lysyanskaya proof of knowl-

edge that a committed value is accumulated ([CL02a], Theorem 3). The extractor goal is to

produce a valid pair (eσ, wσ) on σ, such that wσ is a witness that eσ has been accumulated in

v , and eσ =σ2k +aσ, where aσ ∈ [−2k−1,2k−1]. This is achieved by invoking the underlying

extractor for the proof of knowledge of a committed accumulated element, as this extractor

directly provides the necessary elements. If σ �∈ Φ, this can be directly used to break the

security property of the Camenisch-Lysyanskaya accumulator scheme as wσ would be a valid

witness for a prime eσ that has not been accumulated. However, if the extractor fails, then a

reduction can be made to break the strong RSA assumption.

To prove special honest verifier zero-knowledge, the simulator follows the first step honestly.

It then randomly selects σ ∈R Φ, honestly computes and sends W,R,Ce to the verifier V ∗, and

invokes the simulator of the underlying honest verifier zero-knowledge proof of knowledge of

a committed accumulated element.

Communication and Computational Complexity. As the first message of Protocol 3.4 can

be regarded as a setup procedure, it will not be included in the complexity analysis. Neverthe-

less, its cost is mentioned for the purpose of comparison. The first message consists of the set

Θ, the accumulator v and public parameters (ñ, g̃ , h̃). For the communication, these elements

can be approximated with an upper bound of 4+2 |Φ| elements in Zñ . The verifier will be re-

quired to perform 1+|Φ| exponentiations for the witnesses and the accumulator computation.

The prover in the non-honest verifier model will be required to perform |Φ| exponentiations

for checking the correctness of the witnesses. Note also, that for many applications, the param-

eters ñ, v , g̃ , h̃, and Θ only needs to be computed and published once (possibly by a trusted

79



Chapter 3. Set Membership Proofs

third party). In this case the communication and computational complexity of Protocol 3.4

becomes independent of the number of elements in the set Φ.

With regard to the communication complexity, the exchanged elements have, at most, a

length of k bits, where k is the security parameter defining the length of ñ. Thus, instead of

mentioning the precise size of each element, it will simply be implied that group elements

have at most up to k bits of length. The communication complexity therefore includes 3

group elements for the proof of knowledge PK{(α) : g̃ = h̃α (mod ñ)}, the three commitments

W,R,Ce , and lastly, 13 group elements for the remaining proof of knowledge of a committed

accumulated element. Overall, the communication complexity sums up to 19 group elements.

Regarding computational complexity, the honest verifier setting is assumed. The prover

computational cost is dominated by 18 exponentiations. The verifier computational cost is

dominated by 15 exponentiations.

Remark: Recall that for the primes ei that could be accumulated, the range restriction is

[A, B ] with 2 < A and B < A2. This restriction is mainly due to the fact that operations are

achieved in QRñ . The author of this thesis conjectures that by working in the group of τ power

residues modulo ñ, the upper bound B can be set to B < Aτ, however the lower bound would

be changed to τ < A. Note that these groups are slightly different to Schnorr groups as the

modular computations are performed with a special RSA modulus instead of a prime number.

This conjecture should also be applicable in the case of [CL02a].
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Interactive Range Proofs

This chapter starts by presenting, in Section 4.1, the range proof primitive in its basic inter-

active version. Section 4.2 then continues with prior and recent work on interactive range

proofs, as well as some related work. In Section 4.3, a family of range proofs based on the set

membership proof primitive are presented. This will be achieved by using the Boneh-Boyen

signature based set membership proof from Section 3.3. Section 4.4 introduces and explains

the sumset representation of integer intervals. Based on the notion of sumsets, a more effi-

cient range proof is presented in Section 4.5. The main results of Section 4.3 are published

at Asiacrypt 2008 [CCs08], as a joint work with Jan Camenisch and abhi shelat1. The main

theory and results of Section 4.4 and Section 4.5 are published in the proceedings of ACISP

2010 [CLs10], as a joint work with Helger Lipmaa and abhi shelat. Lastly, note that Protocol 4.4

in Section 4.3 is unpublished as it is a direct result of [CCs08].

4.1 Interactive Range Proofs Primitive

The problem tackled in this chapter is closely related to the set membership proof problem

explained in the previous chapter. Indeed the range proof problem can be seen as a special

case of the set membership proof problem, when the set Φ consists of all integers that are

within a given range [A, B ]. Hence Φ= {x ∈N : A 	 x 	B}, where A,B ∈N. For more clarity, we

recall the game of the set membership proof problem and describe the range proof problem

by way of a similar game between a prover and a verifier. In the range proof game, the prover

wants to convince the verifier of the veracity of a specific statement. This statement is that

his secret element σ that he picked (and fixed in a commitment available to any verifier) is

included in the public range [A, B ], where A,B ∈N. This game comes with the same concerns

as for the set membership proof problem. The prover wants to reveal no information besides

the fact that his secret element belongs to the public range [A, B ], and that he is able to open

1Note that abhi shelat requires his name to be cited in lower case.
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his commitment to such an element. As for the verifier, he wants to be sure that the prover is

unable to cheat. Hence zero-knowledge and soundness properties are respectively needed to

address these concerns. In this chapter, the focus is on the general interactive version of range

proofs. Non-interactive range proofs will be the topic of the next chapter.

The need for range proofs started with the need to adapt cryptographic protocols constructed

in idealized models, into protocols secure against any (malicious) adversary. Range proofs

became even more necessary with the rise of electronic communications. As several online

services became more and more complex, the need for complex cryptographic building boxes

followed. Services such as anonymous credentials, e-cash, e-auctions, electronic elections,

and e-voting are all examples of services that require range proof primitives. Hence range

proofs are now considered a basic cryptographic building block. In the case of anonymous

credentials, a typical example is age restriction services. Assume that a user needs to prove

that her age is greater than 18 years to access some adult content, or between 13 and 18 in

the case of teen-community websites; these can be ensured with range proofs performed on

their hidden age contained in a passport credentials or electronic identities (or e-ID). These

cases can be generalized to any timestamp credential that the owner wishes to keep secret. In

the case of e-cash and e-auctions, range proofs become useful in providing range information

on the size of portfolios or on the bid range. This can be illustrated with a user accessing a

private investment platform or a fiscal arrangement platform (also called lump sum taxation

in Switzerland). In these cases, a user needs to prove that the size of his portfolio is within

some range in order to access these platforms. However, they also wish to keep their exact

fortune a secret from these platforms. In the case of e-auctions, not only are users requested

to prove that their portfolio is large enough to participate in the auctions, but for some specific

auctions with sealed bids, such as blind auctions or Vickrey auction, bidders might need

to prove that their bids are higher than a minimum threshold. Last but not least, electronic

elections or e-voting with, respectively, a very large number of candidates or choices, can

benefit from range proofs to attest the validity of ballots, as explained by Damgård and Jurik

in [DJ01]. However, where the voting choices are small, such as in [CGS97] where there is only

a choice between yes and no, the set membership proof primitive should be used instead of

range proofs.

Definition 4.1 (Range Proof )

Let C = (Gen,Com,Open) be the generation, the commit, and the open algorithm of a string

commitment scheme. A range proof with respect to the commitment scheme C is a special case

of the set membership proof in which the set Φ is a sequence of consecutive integers Φ= [A,B ]

for A,B ∈N. Hence, for an instance c, a range proof with respect to commitment scheme C

and integer range [A,B ] is a proof of knowledge for the following statement:

PK
{
(σ,ρ) : c ←Com(σ; ρ)∧σ ∈ [A,B ]

}
, where A,B ∈N.

Remark: As in the case of set membership proofs, the proof system for range proofs is defined

for any commitment scheme. Moreover, the statement being proven is the ability of the prover
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to open his commitment to an element contained in the public range [A,B ]. Furthermore, it is

important to note that interactive range proofs are, in fact, interactive arguments, for the exact

same reasons as for set membership proofs. Since the cryptographic literature (past, present,

and related) refers to the problem as a “range proof”, that term is used in this thesis. Some

additional explanations are provided in the remark in Section 3.1.

A naïve solution would be to use a set membership proof to solve the range proof problem.

More efficient solutions can be obtained by exploiting the structure of Φ, as it is a consecutive

integer range in the case of range proofs. Nevertheless, if the range is very small (under

7 elements), then it would be more efficient to directly employ the set membership proof

protocol presented in Section 3.3.

Two honest verifier zero-knowledge solutions will be presented in this chapter, based on

three moves protocols called Σ-protocols (see Section 2.4.1). The focus on honest verifiers is

justified by the availability of the Cramer et al. transformation [CDM00] that converts honest

verifier zero-knowledge proof systems so as to be secure against any verifier. Moreover, this

transformation is well adapted for Σ-protocols. In these protocols, the prover sends an initial

message containing some elements determining the randomness used to blind his secrets.

The verifier then provides the prover with an unpredictable, random challenge, allowing the

prover to reply with a final message in order to complete the proof system. Furthermore, the

restriction of honest verifiers protocols facilitates comparisons with other range proofs, as the

majority restrict themselves to this model.

The primary solution for range proofs used in this thesis is explained in Section 4.3. This

solution is tightly linked to the set membership proof primitive, as it divides the integer range

at hand into a u-base decomposition in order to obtain integer intervals that are small enough

to be handled by a set membership proof protocol. The computational hardness assumptions

required are identical to the ones needed for the set membership proof primitive. This solution

offers two important improvements for range proofs. Initially applied using signature based

set membership proofs, the technique of this solution was the first one to introduce the u-base

decomposition of ranges and combine it with a proof of knowledge of a signature. The second

improvement to range proofs is the asymptotical bound for the communication complexity,

with respect to the honest verifier zero-knowledge security. Indeed, the communication

complexity achieved by this solution is O
(

k
logk−loglogk

)
group elements, with the security

parameter k = log(B − A).

The second solution provides a constant factor 2 improvement on the communication com-

plexity, compared to the primary solution. To achieve this improvement, the primary solution

is modified so that it uses a sumset representation of the range instead of a specific u-base de-

composition. Sumset representations of integer ranges will be explained in Section 4.4 before

presenting the second solution in Section 4.5. Sumsets are classified in additive combinatorics

as a multi-base decomposition. Furthermore, the computational hardness assumptions for

this second solution are left unchanged from the primary solution.
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4.2 Prior and Related Work

Known range proofs can be classified into four categories, according to their underlying

techniques:

1. Σ-response2 range testing ([BCDvdG87, CFT98a, CFT98b, FO98]);

2. positivity testing ([Bou00, Lip03, Gro05, Sce09]);

3. range decomposition

([BG97, Mao98, DJ01, Sch01, LAN02, CCs08, CLs10, MN10, Gro11, CCJT13]); and

4. proof of signature knowledge2 ([TS06, CCs08, CLs10]).

Historically speaking, the first solution to range proofs was created in 1987 by Brickell, Chaum,

Damgård, and van de Graaf in [BCDvdG87]. Their solution was based on the discrete logarithm

assumption and was achieved using a range check on the response message from a Σ-protocol.

Therefore this technique is designated as a Σ-response range testing. Unfortunately, too many

drawbacks follow from this technique. In their protocol, a prover holding a secret element

σ ∈ [0,B ] can only prove that σ ∈ [−B ,2B ] after repeating the proof in parallel k times, where k

defines the soundness security of the protocol (the success probability of a malicious prover

is upper bounded by 21−k ). This inaccuracy in the range being proven is specific to this

technique, and is measured with a factor called expansion rate δ. In the case of [BCDvdG87],

the expansion rate is δ = 3. The Σ-responses are often computed as m = σ · c + r , where r

is a random element that has been committed to at the beginning of the protocol and c is

a random challenge provided by the prover. Checking solely the range of m cannot provide

an accurate range proof with an expansion rate of δ= 1, and at the same time ensuring the

zero-knowledge property of the proof.

Following the lead of Brickell et al. [BCDvdG87], two other solutions were produced based

on the Σ-response range testing. Using the same computational hardness assumption (namely

the discrete logarithm assumption), Chan, Frankel, and Tsiounis overcame in [CFT98a, CFT98b]

the need to repeat the proof k times. However, they ended up with a larger expansion rate of

δ= 22k+3 and a probabilistic completeness of
(
1−2−k−1

)
for a soundness security of 2−k . This

means that the completeness of their protocol will fail with probability 2−k−1 and a malicious

prover will succeed with a probability of at most 2−k . Moreover, for a secret element σ ∈ [0,2H ],

the range statement being proven is σ ∈ [−2H+2k+2, 2H+2k+2].

Although very similar to [CFT98a, CFT98b], Fujisaki and Okamoto used the strong RSA as-

sumption in [FO98] (see Section 2.2.2). They achieved perfect completeness in computations

performed with an RSA modulus N of size k, instead of computations modulo a prime p

as in [BCDvdG87, CFT98a, CFT98b]. For a secret element σ ∈ [A,B ], the expansion rate that

they obtained is δ= 2O(k)+1. Hence, for an RSA modulus N of 1024 bits, the expansion rate

2The use of this designation is specific to this thesis and is not mentioned elsewhere.

84



4.2. Prior and Related Work

becomes δ
 21025. Furthermore, their scheme is statistically witness indistinguishable (see

Section 2.3.5) and not honest verifier zero-knowledge.

In order to limit the drawbacks of the Σ-response range testing, Boudot proposed, in [Bou00],

to solve arbitrary range proofs σ ∈ [A,B ] with two positivity tests B−σ
 0 and σ−A 
 0. In his

solutions, the Fujisaki-Okamoto commitment scheme (see Section 2.4.2) is used to commit to

σ. Each positivity test m 
 0 is solved by finding the largest square x2 	m. Thus, the positivity

test is obtained by showing that m = x2+ xε 
 0, where the commitment to x2 is proven to

contain a square using a group of unknown order, and xε ∈
[
0, 2

�
B − A

]
is proven with the

Chan et al. method [CFT98b]. As the latter method induces inaccuracy in the range proof,

Boudot solves this issue by artificially increasing the secret with a positive constant 2T , where

T = 2(2k+3)+ (B − A). The positivity test becomes m2T = x̃2+ x̃ε 
 0, where x̃2 is the largest

square x̃2 	m2T and x̃ε ∈ [0, 2
√

2T (B − A)]. Using Chan et al. method on x̃ε will now convince

the verifier that:

|x̃ε| 	
(
2
√

2T (B − A)
)
·22k+2

	
(
21+T /2

�
B − A

)
·22k+2

	 2T /2+2k+3
�

B − A

	 2T /222k+3(B − A)1/2

< 2T /22(2k+3)(2(B−A))1/2, as B − A > 0

< 2T /22(2k+3)2(B−A)/2

< 2T /22(2k+3)+(B−A)/2

< 2T /22T /2

< 2T .

Note that here, |x̃ε| is the absolute value of x̃ε. The verifier is thus convinced that m is of the

form m2T = x̂2+ x̂ε, with x̂ε ∈ ]−2T , 2T [. This implies that m is of the form m = x̂22−T + x̂ε2−T .

As m has to be an integer, (x̂ε2−T ) ∈ ]−1, 1[, and x̂2 
 0, these imply that m 
 0. Note also

that the computational hardness assumption required in [Bou00] is the same as for [CFT98b],

namely the strong RSA assumption. Furthermore, the interactive version of the Boudot range

proof is a 7 round protocol, where 28 elements are transmitted for roughly 32’000 bits. Note

that the number of elements transmitted is independent of the range size. This protocol

therefore becomes advantageous for large ranges. Moreover, the verifier needs to compute 24

exponentiations, while the prover needs to compute 29 exponentiations.

In the category of positivity testing, Lipmaa recalled, in [Lip03], a Lagrange theorem from 1770,

that stated that any positive integer m can be represented as the sum of four integer squares,

m =∑4
i=1

(
x2

i

)
. In order to compute these squares, Lipmaa provided an improved algorithm

by combining the initial one proposed by Rabin and Shallit in [RS86] with an algebraic trick

produced by Cornacchia in 1908 (and described in Section 1.5.2 of [Coh10]) to represent a

prime p of the form p = 1 (mod 4) as the sum of two squares. Hence, to solve the positivity
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testing on an integer m, Lipmaa proves in [Lip03] that m is the sum of four integer squares. His

protocol requires the strong RSA assumption, and a positivity test is achieved by transmitting

16 elements for roughly 18’000 bits. Hence both [Bou00] and [Lip03] are comparable in terms

of communication complexity, if two positivity tests from [Lip03] are used to achieve the

range proof σ ∈ [A,B ]. Furthermore, the protocol presented in [Lip03] is a Σ-protocol, and

as such requires only 3 rounds of communication. Moreover, the verifier needs to perform

18 exponentiations for one positivity test performed on an integer m. As for the prover, his

computation complexity is dominated by 18 exponentiations and a polylogarithmic time

complexity O
(
(logm)2

)
to find the four squares x2

i , such that m = ∑4
i=1

(
x2

i

)
. Last but not

least, the protocol by Lipmaa in [Lip03] has perfect completeness, which is a missing property

in [Bou00].

Similarly to the Lagrange theorem, Legendre produced, in 1798, a theorem stating that any

positive integer m �= 4a(8b+7), for positive integers a and b, can be represented as the sum of

three squares. Using this latter theorem instead of the Lagrange theorem, Groth proposed,

in [Gro05], to use the exact same techniques as in [Lip03] with three squares instead of four.

To compute the three squares, Groth uses an algorithm by Rabin and Shallit [RS86] with the

Cornacchia enhancement, as it was used in the case of computing the four squares for [Lip03].

Hence, Groth reduces the problem of proving m 
 0, to the problem of proving 4m+1
 0, as

4m+1 can always be represented as the sum of three squares, due to the Legendre theorem.

This saves the prover and the verifier from having to compute 4 exponentiations. Furthermore,

the communication complexity is reduced to 14’720 bits, as 13 elements need to be transmit-

ted independently of the range size, instead of 16 in the case of [Lip03].

Scemama suggested, in [Sce09], to solve general range proofs of the form σ ∈ [A,B ] by solv-

ing the positivity test (B −σ)(σ− A) 
 0. In order to do so, he uses the positivity test of

Boudot [Bou00], to prove that (σ− A)(σ−B)=−(x2+xε)	 0. By doing so, Scemama obtains a

9 round protocol with probabilistic completeness. The communication complexity consists of

24 elements transmitted for roughly 28’500 bits. The computation complexity of the verifier is

reduced to 21 exponentiations and that of the prover is reduced to 27 exponentiations.

A third approach to range proofs is to perform a range decomposition. The idea is to decom-

pose the secret element σ into some base, and then prove that the decomposition of σ is

composed by elements of that base. The most trivial decomposition is the binary decompo-

sition ([BG97, Mao98, DJ01, Sch01, LAN02, Sch05, MN10, Gro11, CCJT13]). More advanced

techniques involve the use of u-ary decomposition ([CCs08]) and general multi-base decom-

position ([CLs10]).

The binary decomposition range proof was introduced in 1997 by Bellare and Goldwasser

in [BG97]. In order to prove that σ ∈ [0, 2k −1], which means that σ is a k-bits string, they

decompose σ in its binary form σ =∑k−1
i=0 σi 2i . Each σi is committed, then proven to be a

binary element using a 1-out-of-2 elements proof of knowledge provided by Cramer, who

privately disclosed it to Bellare and Goldwasser. The 1-out-of-2 elements proof of knowledge

is obtained by applying the results of [CDS94] to the Schnorr protocol [Sch91]. This proof

technique is referred to as an “OR-proof” in the current literature. It is then sufficient to prove
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the correspondence between the σi commitments and the commitment to σ. The verifier

is then convinced that the secret σ lies in [0,2k −1] since there were only k commitments.

Moreover, the security of [BG97] relies on the discrete logarithmic assumption to provide

perfect witness indistinguishability (see Section 2.3.5), a weaker security property than perfect

zero-knowledge. The computational complexity for both the prover and the verifier is O(k)

exponentiations, while O(k) group elements are transmitted. Note that the protocol presented

in [Mao98] by Mao, is very similar to [BG97]. The sole improvement provided by Mao targets

the correspondence between the commitment to σ and its binary decomposition commit-

ments. Mao showed that this correspondence requires one exponentiation fewer when the

randomnesses of the binary decomposition commitments sum up to the randomness of the

commitment to σ.

Instead of the discrete logarithmic assumption, in [DJ01] Damgård and Jurik proposed the

same structure as in [BG97, Mao98] while using the decisional composite residuosity assump-

tion (DCR assumption) from Paillier [Pai99]. Informally, this assumption captures the difficulty

of deciding if a random element x ∈R Z∗
n2 is a n’th power in Z∗

n2 , where n is an RSA modulus.

Here, x being a n’th power in Z∗
n2 , implies that it can be written as x = yn (mod n2), for a

y ∈Z∗
n2 . For more details on the DCR assumption, see Section 2.2.2. The protocol proposed

in [DJ01] uses computations modulo ns+1, for any s 
 1. Unfortunately, the asymptotical

communication and computational complexities of this latter protocol are unchanged when

compared to the previous range proofs using the binary decomposition method.

Schoenmakers in [Sch01, Sch05] studied and discussed how to solve a more general case

σ ∈ [0,B ] where 2k−1 <B 	 2k , from the binary decomposition of [BG97, Mao98]. His method

consists of achieving the range proof σ ∈ [0,B ] with either a conjunction or a disjunction of

two binary decomposition range proofs:

σ ∈ [0,B ] ⇐⇒ σ ∈ [0,2k ] ∧ σ ∈ [B −2k ,B ]

σ ∈ [0,B ] ⇐⇒ σ ∈ [0,2k−1] ∨ σ ∈ [B −2k−1,B ].

He also introduced several recursive relations which can be used to reduce the number of

basic proofs of knowledge required when committing to the individual bits of the secret. More

precisely, he writes the upper bound B of the positive range [0,B ] as either the product or the

sum of two numbers. By performing this scheme recursively, he decreased the amount of work

needed. However, the overall communication complexity still consists of O(k) transmitted ele-

ments for a computational load of O(k) exponentiations. Nevertheless, Schoenmakers noticed

that for k 	 27, the binary decomposition range proof is more efficient with regards to the

communication complexity, when compared to the positivity test from Groth method [Gro05].

Note also that the techniques of Schoenmakers for reducing certain ranges to other more

convenient ranges can be used with any range proof technique.

Lipmaa, Asokan, and Niemi explained, in [LAN02], an interesting method for the range proof

σ ∈ [0,B ], based on a binary sumset representation. As the sumset representation will be

explained in more details in Section 4.4, only the binary case is stated here. The secret element

is decomposed as σ=∑�logB�
i=0 σi B i , where σi ∈ {0,1} and B j =

⌊
B+2i

2i+1

⌋
. This can be seen as a
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generalization of the method introduced in [DJ01], which works only where B = 2k −1. Hence

the same asymptotical communication and computational load are achieved for the same

computational hardness assumptions.

An alternative protocol based on the discrete logarithmic assumption has been proposed

by Moran and Naor in [MN10], where they substitute the k proofs of knowledge that the ele-

ments σi are binary, with a proof that the set (σi , 1−σi ) : σ=∑k−1
i=0 σi 2i is a shuffle of the set

{C0, C1}k , where C0 and C1 are respectively commitments to 0 and 1. Although the idea seems

more elegant, the burden of the shuffle argument increases the computational complexity to

O(k2) exponentiations and requires O(k2) group elements to be transmitted.

Groth subsequently proposed another solution based on the binary decomposition method

in [Gro11]. By using a rather complicated method based on commitments of commitments,

he claims to achieve a range proof with communication complexity of O(k1/3) group elements.

His protocol relies on the common reference string model (see Section 2.2.4) and requires 7

rounds of communication. Furthermore, the computational hardness assumption needed

is the reverse double pairing assumption in asymmetric bilinear groups (for more details

see Section 2.2.2). As for the security proof, soundness is achieved by the use of a witness-

extended emulation (see Section 2.3.3). When studying this protocol, special care should be

taken, as some small inaccuracies are present. For instance, the range proof uses a batch proof

argument in which the elements cu j and cv j should be sent in step 5 instead of step 3. Last

but not least, the computational complexity is higher than claimed. A prover will need to

compute O(k2/3) exponentiations and O(k2/3) pairings, while a verifier will need to compute

O(k1/3) exponentiations and O(k1/3) pairings. These inaccuracies were notified to the author,

who provided us with a private corrected version. A public corrected version should soon be

published.

More recently, Canard et al. presented, in [CCJT13], a general range proof σ ∈ [A,B ] inspired

by the binary sumset representation of Lipmaa et al. [LAN02] with the Fischlin lemma on

binary representations, as described in [Fis01]. Informally, the Fischlin lemma states that for

any type of binary representation, when comparing representations of two different elements,

the higher order bits are identical. Furthermore, the first occurrence of a difference reveals

a 0 bit for the smaller element and a 1 bit for the larger element. Moreover, the range proof

protocol is provided without any security proofs. It should be further noted that although

their protocol claims to use a multi-base decomposition, it is in fact a simple binary sumset

representation. Their protocol could therefore be enhanced by using the general sumset

representation. Moreover, they claim that their range proof protocol is only interesting for

ranges that are smaller than 25 = 32, which would lead to a communication load of at least 30

group elements (requiring the DDH assumption). For this kind of restriction, set membership

proof protocols are more efficient, as shown in Figure 3.1.

The u-ary decomposition for range proofs was introduced by Camenisch, Chaabouni, and

shelat in [CCs08] and will be discussed in Section 4.3. Furthermore, this method was enhanced

by Chaabouni, Lipmaa, and shelat, in [CLs10], by applying general sumset representations of

ranges, and is regarded as a multi-base decomposition. This will be detailed in Section 4.5.
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Regarding signature based range proofs, Teranishi and Sako proposed, in [TS06], to simply

apply their signature based set membership proof primitive for the range proof. Camenisch et

al. in [CCs08], followed by Chaabouni et al. in [CLs10] provide a much more efficient solution,

by combining the base decomposition method with proofs of signature knowledge.

It should be noted that in comparison with the notion of range proofs that we defined earlier,

the protocols presented by Nergiz et al. in [NNPC10] and Wu et al. in [WHLD14], are slightly

different as the statement σ ∈ [
α,β

]
being proven should also hide the range

[
α,β

]
in which

the membership is proven.

Last but not least, a comparison between relevant protocols, based on a concrete example, is

provided in Figure 4.6 at the end of this chapter.

4.3 Set Membership Based Range Proofs

In this section, the general range proof problem σ ∈ [A,B ] is reduced to solving the range

proof problem σ ∈ [0,u�). Furthermore, this latter problem is solved by decomposing the

range in the u-ary base, for some optimally chosen u. Thus, each element σ of the range

[0,u�) can be identified with � elements σ j ∈ [0,u−1] such that σ =∑�−1
j=0 σ j u j . Hence, in

order to show that a commitment holds a secret element σ ∈ [0,u�), it suffices to show that its

decomposition in the u-ary base leads to � commitments of elements in the range [0,u−1].

Therefore, the key technique is to use a set membership proof protocol in order to prove that

each committed digit σ j is indeed a digit in base u. Note that in the case of u = 2, this becomes

a simple binary decomposition. Writing the secret in base-u (instead of base 2) is indeed an

obvious step. However, using prior methods, doing so does not reduce the communication

complexity, nor the computational complexity. Using prior methods, proving that a committed

digit is a u-ary digit requires (u−1) OR-proofs, forcing complexities to be linear in the security

parameter. By using the set membership proof primitives introduced in the previous chapter,

the complexities can be reduced both asymptotically as well as in practice for many frequently

occurring ranges. This will be explained using the particular example of the Boneh-Boyen

signature based set membership proof from Section 3.3.

The key insight is the design of a scheme that can reuse the elements from the u-ary base

proof, in all � proof instances. Specifically, the verifier can send one list of u signatures

representing the u-ary digits, and the prover can use this same list to prove that all � digits are

indeed u-ary digits. Thus, the total communication complexity of our approach is O(u+�).

With appropriately selected values for u and �, we show that this approach yields a proof

of size O
(

k
logk−loglogk

)
group elements, where k is the security parameter. Compared to

previous literature results, this leads to better asymptotical and practical complexities for both

communication and computation loads.

Note, however, that if the range is small or the same range is used for many protocols, then it is
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more efficient to employ the set membership proof protocol directly. This choice is implicitly

contained in the choice of u and �. Indeed, for �= 1, the range proof presented in this section

is identical to the set membership proof on which it is initially based.

Computational assumptions. The protocol in this section depends solely on the choice of

the set membership proof primitive and on the commitment scheme used. These choices will

dictate the necessary computational hardness assumptions. For the Boneh-Boyen signature

based set membership proof in conjunction with Pedersen commitments, the range proof

requires bilinear groups (see Section 2.1.3), associated computational hardness assumptions

as well as the q-Strong Diffie Hellman assumption (see Section 2.2.2). The computational

hardness assumptions relating to bilinear groups, as well as bilinear groups altogether, can

be relaxed if the protocol employs the techniques from Canard et al. in [CCJT13] in order to

compute Boneh-Boyen signatures without pairings. This matter will be discussed at the end

of this section, as the focus will be on the original version presented in [CCs08].

Let PG be a pairing3 group generator that on input 1κ outputs descriptions of multiplicative

groups G1 and GT of prime order p where
∥∥p

∥∥= κ. Let G∗1 =G1 \ {1} and let g ∈G∗1 . Let e be

the corresponding admissible bilinear map e : G1×G1 →GT. Recall that for all a,b ∈Zp it

holds that e(g a , g b)= e(g , g )ab , that e(g , g ) �= 1, and that e is efficiently computable.

Protocol explanation. The first range proof presented here in Protocol 4.1 is based on the

set membership proof from Section 3.3. The common input includes the following elements: a

description of G1 and GT, as provided by the pairing group generator PG for the Boneh-Boyen

signature; two generators g and h of G1 for the Pedersen commitment; the parameters u

and � defining the public range [0,u�) such that u� < |G1|; and a Pedersen commitment C to

one element in [0,u�). As |G1| = p, this implies that Zu ⊂Zp . The prover input additionally

contains elements σ and r such that C = gσhr and σ ∈ [0,u�).

Notice that the first message exchanged is identical to the first message of the Boneh-Boyen

signature based set membership proof protocol (see Protocol 3.1 in the previous chapter),

where Φ = Zu . Hence this first message consists of the Boneh-Boyen public key y of the

verifier together with signatures Ai on every element contained in Zu . Here, x ∈Z∗p is the

Boneh-Boyen secret key of the verifier. As an alternative, a trusted third party can be employed

to produce the signatures on every element of Zu . Moreover, picking x ∈Z∗p should be done

such that −x is not present in Zu . It would not be possible for the honest verifier to produce

a signature on the element −x, as he would need to perform an inversion of 0 modulo p.

As for the malicious verifier, it would not be possible to provide a signature Ai such that

e(g , g )= e(Ai , y ·g i ) for y = g−i . In all cases, the correctness of the public key y and signatures

Ai should be checked by the prover (and by the verifier if a trusted third party generated them).

3Note that here, the use of symmetric bilinear groups is to ease explanations. In practice, asymmetric bilinear
groups could and should be used as explained in Section 2.1.3.
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For the second message, the prover decomposes his secret σ in base u to obtain the u-ary

digits {σ j }, such that σ=∑�−1
j=0

(
σ j u j

)
. For each u-ary digit σ j , the prover selects a random

secret v j and composes a blinding Vj on the signature Aσ j of σ j . This blinding is achieved by

the exponentiation
(

Aσ j

)v j . The second message is then the collection of the blindings: {Vj },

for j ∈Z�. Recall that the protocol presented here is performed in the honest verifier model.

The standard checks, such as verifying that an element is in the correct group, are mainly

provided for the sake of completeness. However, they become necessary when compiling

from the honest verifier zero-knowledge model to the full zero-knowledge proofs.

Common Input: g ,h,u,�, and a commitment C .

Prover Input: σ,r such that C = gσhr and σ ∈ [0,u�).

P y,{Ai }� V • Verifier picks x ∈R Z∗p such that −x �∈Zu and

sends y ← g x and Ai ← g
1

x+i , ∀i ∈Zu .

• Prover checks that y ∈G∗1 , Ai ∈G∗1 and

that e(g , g )
?= e(Ai , y · g i ), ∀i ∈Zu .

P {Vj } � V • Prover picks v j ∈R Z∗p and sends Vj ← A
v j
σ j

,

for every j ∈Z�, such that σ=∑�−1
j=0

(
σ j u j

)
.

• Verifier checks that Vj ∈G∗1 , ∀ j ∈Z�.

Prover and Verifier run

PK

{(
{σ j },r, {v j }

)
: C = hr g

∑�−1
j=0(σ j u j ) ∧

Vj = g
v j

x+σ j , ∀ j ∈Z�

}

P {a j },D � V • Prover picks s j , t j ,m ∈R Z∗p for every j ∈Z� and

sends a j ← e
(
V
−s j

j g t j , g
)

and D ← hm g
∑�−1

j=0(s j u j ).

• Verifier checks that a j ∈GT, ∀ j ∈Z�, and D ∈G∗1 .

P c� V • Verifier sends a random challenge c ∈R Z∗p .

• Prover checks that c ∈Z∗p .

P
{zσ j },{zv j },zr� V • Prover sends zr ← (m− r c),

and zσ j ← (s j −σ j c), zv j ← (t j − v j c) for every j ∈Z�.

• Verifier checks that zσ j , zv j , zr ∈Z∗p for every j ∈Z�,

that D
?=C c hzr g

∑�−1
j=0

(
zσ j u j

)
and

that a j
?= e

(
Vj , y

)c ·e
(
V
−zσ j

j g zv j , g
)

for every j ∈Z�.

Protocol 4.1 – Interactive range proof protocol for range [0,u�)

After the blindings of the u-ary digit signatures have been transmitted, the prover and verifier

engage in a proof of knowledge that the blinded signatures Vj correspond to the secret u-ary
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digits σ j , and that these digits are the u-ary decomposition of the secret σ contained in the

initial commitment. To do so, the prover selects the random parameters s j , t j , and m in Z∗p
that will be used to blind his secret elements σ j , v j , and r respectively. The initial message of

the proof of knowledge is then a commitment D on the secret random elements s j used by the

prover, and the group elements a j ∈GT which are bilinear pairings on the blinded signature

Vj using the corresponding secret randomness s j contained in the commitment D . At the end,

a j will allow the verifier to check that Vj contains a valid blinded signature. Note as well that

D ∈G∗1 . If D = 1, the prover would be able to retrieve the discrete logarithm of h in base g by

outputting:

logg h =
−∑�−1

j=0

(
s j u j

)
m

(mod p).

Following this step, the verifier challenges the prover with a single challenge c . After receiving

this challenge, the prover replies with the elements zσ j , zv j , and zr . These will allow the

verifier to complete the proof of knowledge by verifying that the following equations hold:

D
?= C c hzr g

∑�−1
j=0

(
zσ j u j

)

a j
?= e

(
Vj , y

)c ·e
(
V
−zσ j

j g zv j , g
)

, ∀ j ∈Z�.

Theorem 4.1

If the u-Strong Diffie-Hellman assumption associated with a pairing generator PG holds,

then Protocol 4.1 is a zero-knowledge range argument for the range [0,u�).

Proof

Recall that (G1,GT)←PG(1k ), p = |G1| and that u� < p < 2k . Similarly to the case of the Boneh-

Boyen signature based set membership proof primitive, u is much smaller than p. The attack

from Cheon [Che06] on the u-Strong Diffie-Hellman assumption states that the computational

complexity of recovering the secret key x is of O
(√

p/u
)

group operations, instead of O
(�

p
)

group operations. Hence the computational complexity reduction of O
(�

u
)

is, in our case,

polynomially bounded. Furthermore, in order for the computational complexity of recovering

the secret key to be higher than 2κ group operations (κ-bit security), the difference between

u and p should be higher than 2κ bits. This implies that for a κ-bit security, the security

parameter k should be k 
 2κ+ log2 u.

To show that Protocol 4.1 is a zero-knowledge range argument, three security properties need

to be met: the completeness of the protocol, the special soundness property, and the special

honest verifier zero-knowledge property.

The completeness of the protocol follows by inspection. In particular, the last equalities hold
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as follows. Recall that D = hm g
∑�−1

j=0(s j u j ). Hence,

C c hzr g
∑�−1

j=0

(
zσ j u j

)
= C c ·hm−r c · g

∑�−1
j=0((s j−σ j c)u j )

= C c ·hmh−r c · g
∑�−1

j=0(s j u j )g−
∑�−1

j=0(σ j cu j )

= C c ·
(
hr g

∑�−1
j=0(σ j u j )

)−c
·hm g

∑�−1
j=0(s j u j )

= hm g
∑�−1

j=0(s j u j )

= D.

Similarly, as a j = e
(
V
−s j

j g t j , g
)
, the following holds:

e
(
Vj , y

)c ·e
(
V
−zσ j

j g zv j , g
)
= e(Vj , y)c ·e(Vj , g )−zσ j ·e(g , g )zv j

= e(Vj , g x )c · e(Vj , g )−s j+σ j c · e(g , g )t j−v j c

= e(Vj , g )xc · e(Vj , g )−s j · e(Vj , g )σ j c · e(g , g )t j · e(g , g )−v j c

= e(Vj , g )xc+σ j c · e(g , g )−v j c · e(Vj , g )−s j · e(g , g )t j

= e(g
v j

x+σ j , g )(x+σ j )c · e(g , g )−v j c · e(Vj , g )−s j · e(g , g )t j

= e(g v j , g )c · e(g , g )−v j c · e(Vj , g )−s j · e(g , g )t j

= e(g , g )v j c · e(g , g )−v j c · e(Vj , g )−s j · e(g , g )t j

= e(Vj , g )−s j · e(g , g )t j

= e
(
V
−s j

j g t j , g
)

= a.

The special soundness follows from the extraction property of the proof of knowledge and the

unforgeability of the Boneh-Boyen signature scheme (Lemma 3.1). The extraction property

is almost identical to the one related to the Boneh-Boyen signature based set membership

proof protocol (for more details see the proof of Theorem 3.2). The difference appears in the

witness that is output by the extractor. In the set membership proof protocol, the extractor

outputs a witness (σ,r, v), whereas in this range argument, the witness will be (σ,r, {v j }). The

computations performed by the extractor will be explained first. A demonstration will also be

provided, showing that if a malicious prover P∗ is able to convince a verifier, then the extractor

interacting with this prover P∗ can either be used to break the unforgeability property of the

Boneh-Boyen signature, or to create σ ∈ [0,u�) and r such that C = gσhr .

At first, the extractor obtains two related transcripts tr and tr ′, for different challenges c �= c ′

but with the same initial elements
{

y, {Ai }, {Vj }, {a j },D
}
:

tr = {
y, {Ai }, {Vj }, {a j },D,c, {zσ j }, {zv j }, zr

}
tr ′ =

{
y, {Ai }, {Vj }, {a j },D,c ′, {z ′σ j

}, {z ′v j
}, z ′r

}
.
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Then, the witness (σ,r, {v j }) can be obtained by computing:

σ=
∑�−1

j=0

(
zσ j − z ′σ j

)
u j

c ′ −c
; r = zr − z ′r

c ′ −c
; v j =

zv j − z ′v j

c ′ −c
.

Notice that for the same reasons as in the proof of Theorem 3.2, v j �= 0, for every j ∈ Z�.

Moreover, the extractor succeeds since (c ′ −c) is invertible in Zp .

In the case that a malicious prover P∗ convinces a verifier V , then P∗ can be (almost) directly

used to mount a weak chosen-message attack against the Boneh-Boyen signature scheme

exactly as in the case of the Boneh-Boyen signature based set membership proof protocol. In

the beginning, the attacker learns all of the signatures of the elements in Zu . As P∗ succeeds

in convincing V , the extractor will output the witness (σ,r, {v j }), with Vj = g
v j

x+σ j and C = gσhr ,

where σ =∑�−1
j=0

(
σ j u j

)
. Hence, as v j �= 0 then V

(1/v j )
j is a valid signature of σ j . Due to the

unforgeability property of the Boneh-Boyen signature scheme, the extractor outputs σ ∈ [0,u�)

and r such that C = gσhr .

1. Si m retrieves y, {Ai } from V ∗ (or from a trusted third party).

2. Si m chooses σ ∈R [0,u�), v j ∈R Z∗p for every j ∈Z�, and

computes Vj ← A
v j
σ j

where σ=∑�−1
j=0

(
σ j u j

)
.

3. Si m runs the simulator of

PK

{(
{σ j },r, {v j }

)
: C = hr g

∑�−1
j=0(σ j u j ) ∧

Vj = g
v j

x+σ j , ∀ j ∈Z�

}
:

(a) On challenge c ∈Z∗p , Si m chooses {zσ j }, {zv j }, zr ∈R Z∗p .

(b) Finally, Si m computes D ←C c hzr g
∑�−1

j=0

(
zσ j u j

)
and

a j ← e(Vj , g )−zσ j −σ j c e(g , g )zv j +v j c for every j ∈Z�.

4. Si m returns the transcript
{

y, {Ai }, {Vj }, {a j },D,c, {zσ j }, {zv j }, zr
}

.

Figure 4.1 – Simulator for the interactive range argument protocol

The special honest verifier zero-knowledge property follows from the perfect blinding of the

signatures in the first phase, and the corresponding special honest verifier zero-knowledge

property of the underlying proof of knowledge. Moreover, the interactions between any verifier

V ∗ and any honest prover P can be efficiently simulated with the help of the simulator Si m,

depicted in Figure 3.2. The simulator Si m will first follow the initialization and the blinding

instructions honestly, using a random σ ∈R [0,u�) and random v j ∈R Z∗p to compute every Vj .

Then Si m runs the simulator of the Σ-protocol for the underlying proof of knowledge:

PK

{(
{σ j },r, {v j }

)
: C = hr g

∑�−1
j=0(σ j u j ) ∧

Vj = g
v j

x+σ j , ∀ j ∈Z�

}
.
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On the challenge c ∈ Z∗p and for every j ∈ Z�, the simulator first randomly picks

zσ j , zv j , zr in Z∗p , then computes a j and D as follows:

a = e(Vj , g )−zσ j −σ j c e(g , g )zv j +v j c ,

D = C c hzr g
∑�−1

j=0

(
zσ j u j

)
.

The output of the simulator is a transcript
{

y, {Ai }, {Vj }, {a j },D,c, {zσ j }, {zv j }, zr
}

, which has an

identical probability distribution to a normal transcript between regular provers and verifiers.

We can easily see that y , {Ai }, and c are identical in both transcripts, as they are provided by

the verifier. The elements Vj have the same probability distribution as they are computed

from a valid σ ∈ [0,u�) and random v j ∈R Z∗p . As s j , t j , and m are randomly picked in Z∗p ,

they respectively impose the same randomness towards zσ j , zv j , and zr . Hence zσ j , zv j , zr

have the same probability distribution as well. It is straightforward to see that D has the same

probability distribution as it is computed from the same elements with the same distributions.

Last but not least, as s j = zσ j +σ j c and t j = zv j +v j c , a j has the same probability distribution

for the same reasons as for D . Last but not least, since G1 is a prime-order group, the blinding

is perfect in the first two steps of the simulator; thus the zero-knowledge property follows from

the zero-knowledge property of the Σ-protocol in the third step.

Communication and Computational Complexity. As the first message of Protocol 4.1 should

be regarded as being part of the setup procedure, it will not be included in the complexity

analysis. Nevertheless, its cost is mentioned for the general purposes of comparison and

analysis. This message consists of u signatures and the Boneh-Boyen public key y . These

sum up to (u+1) group elements of G1 for the communication, (u+1) exponentiations in G1

for the verifier (or the trusted third party), and (u+1) bilinear pairings for the prover in the

non-honest verifier model.

Protocol 4.1 can be analyzed in two phases. the first phase consists of the prover sending �

blinded signatures Vj , which sum up to � group elements in G1. The second phase consists of

the underlying proof of knowledge, with 3 messages exchanged. The prover sends � group

elements in GT and one group element in G1, to which the verifier replies with a single

challenge element in Z∗p . The last message, sent by the prover, consists of (2�+1) elements

from the group Zp . Overall, if ‖G1‖, ‖GT‖, and
∥∥Zp

∥∥ correspond, respectively, to the binary

size of the group elements in G1, GT, and Zp , then the overall communication load Com

according to parameters u and � becomes:

Com(u,�)= � · (‖G1‖+‖GT‖+2 ·∥∥Zp
∥∥)+ (‖G1‖+2 ·∥∥Zp

∥∥) .

Note that the choice of u and � are correlated with the size of the range. Hence a range

proof for the range [0,B) imposes the restriction u� 
 B , where u and � are chosen to be as

small as possible. This restriction implies that B 
 u 
 2. For the purpose of comparison,
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assume that the size of the range is (k −1) bits, in order to comply with the restrictions of

the protocol: B 	 u� < |G1| < 2k . The choice u = 2 and �= (k−1) corresponds to the settings

of the binary decomposition protocol, which leads to a total communication complexity of

O(k) group elements. As for the other limit, the choice u = B and � = 1 corresponds to the

signature based set membership proof. Although this would lead to a constant communication

complexity, with 7 group elements being transmitted, the cost of the setup phase would

become exponential in k with the need to compute and transmit O(2k ) signatures.

A more suitable choice of u is afforded by Protocol 4.1, as it allows more flexibility in the values

of u. This can be demonstrated with the following choice for u:

u = logB

loglogB
= k−1

log(k−1)
(4.1)

=⇒ u =O

(
k

logk

)
.

The restriction u� 
 B implies that �
 logB
logu = k−1

logu . Furthermore, when taking into account

equation (4.1), this restriction becomes:

�
 k−1

logu
=⇒ �
 k−1

log(k−1)− loglog(k−1)

=⇒ �=O

(
k

logk− loglogk

)
.

This results in a total communication complexity of:

Com(u,�)=O

(
k

logk− loglogk

)
,

which is asymptotically smaller than O(k).

Furthermore, not only is Protocol 4.1 asymptotically better, it also performs well for realistic

concrete parameters. In that regard, the concrete optimization needs to take into account the

setup cost. This leads to a general communication load of:

GenCom(u,�)= c1u+c2�+c3, (4.2)

where c1, c2, and c3 are constants such that:

c1 = ‖G1‖ ,

c2 = ‖G1‖+‖GT‖+2 ·∥∥Zp
∥∥ , and

c3 = 2 · ‖G1‖+2 ·∥∥Zp
∥∥ .

By including in equation (4.2) the approximation �≈ logB
logu , the general communication load
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becomes:

GenCom(u,�)= c1u+ c2 logB

logu
+c3. (4.3)

A minimum can thus be found with respect to u, by setting the derivative of equation (4.3) to

0, and by attempting to solve the resulting equation:

d

du
GenCom(u,�)= c1− c2 logB

u
(
logu

)2 = 0,

which simplifies to:

u
(
logu

)2 = c2

c1
logB. (4.4)

Unfortunately, equation (4.4) cannot be solved analytically. However, given c1, c2 and B , the

numerical method of Kelly Black presented in [Bla97] can be used to find u.

Last but not least, regarding computational complexity, the honest verifier setting is assumed.

Hence, the prover computational cost is dominated by (3�+2) exponentiations and � pairings.

The verifier computational cost is dominated by (2�+4) exponentiations and 2� pairings.

Handling Arbitrary Ranges. Protocol 4.1 works for the range [0,u�). In order to handle an

arbitrary range [A,B ], an improvement to the folklore reduction described by Schoenmakers

in [Sch01] and [Sch05] can be used. First, it is straightforward to see that [A,B ]= [A,B +1). To

achieve minimum communication complexity, the criteria for u in equation (4.4) becomes

u
(
logu

)2 = c2

c1
log(B +1− A). (4.5)

Suppose, initially, that B + 1 = A+u�. Then [A,B ] = [A, A+u�). Therefore, proving that

σ ∈ [A,B ] is equivalent to proving that σ− A ∈ [0,u�).

Now suppose that u�−1 <B+1− A <u� and that 0< A <B . The following inequalities relation

is thus obtained:

B +1−u� < A <B <B +1< A+u�.

Hence, [A,B ]= [A,B +1)= [A, A+u�)∩ [B +1−u�, B +1). Notice the absence of inequality

between B and u�. This means that u� <B may occur and therefore it might not be possible

to decompose σ as σ =∑�−1
j=0

(
u jσ j

)
. Furthermore, it is important to note that even if A <

σ< u�, this does not imply that for all j ∈Zu , α j <σ j , where α j and σ j are, respectively, the

decomposition of A and σ.

To show that σ ∈ [A,B ], it suffices to show that (σ− A) and
(
σ+u�−B −1

)
are both in [0,u�).
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Common Input: g ,h,u,�, A,B , and a commitment C .

Prover Input: σ,r such that C = gσhr and σ ∈ [A,B ].

P y,{Ai }� V • Verifier picks x ∈R Z∗p such that −x �∈Zu and

sends y ← g x and Ai ← g
1

x+i , ∀i ∈Zu .

• Prover checks that y ∈G∗1 , Ai ∈G∗1 and

that e(g , g )
?= e(Ai , y · g i ), ∀i ∈Zu .

P {Vj },
{
Ṽ j

}
� V • Prover picks v j , ṽ j ∈R Z∗p ,

sends Vj ← A
v j

Υ j
and Ṽ j ← A

ṽ j

Ψj
for every j ∈Z�,

such that (σ− A)=∑�−1
j=0

(
Υ j u j

)
,

and
(
σ+u�−B −1

)=∑�−1
j=0

(
Ψj u j

)
.

• Verifier checks that Vj ,Ṽ j ∈G∗1 , ∀ j ∈Z�.

Prover and Verifier run

PK

⎧⎨⎩
(
{Υ j }, {Ψj },r, {v j }, {ṽ j }

)
: C g−A = hr g

∑�−1
j=0(Υ j u j ) ∧

C g u�−B−1 = hr g
∑�−1

j=0(Ψj u j )

∧
Vj = g

v j
x+Υ j

∧
Ṽ j = g

ṽ j
x+Ψj , ∀ j ∈Z�

⎫⎬⎭
P {a j },{ã j },D� V • Prover picks s j , t j , t̃ j ,m ∈R Z∗p for every j ∈Z� and

sends D ← hm g
∑�−1

j=0(s j u j ),

a j ← e
(
V
−s j

j g t j , g
)
, and ã j ← e

(
Ṽ j
−s j g t̃ j , g

)
.

• Verifier checks that a j , ã j ∈GT, ∀ j ∈Z�, and D ∈G∗1 .

P c� V • Verifier sends a random challenge c ∈R Z∗p .

• Prover checks that c ∈Z∗p .

P

{
zΥ j

}
,
{

zΨj

}
,zr�{

zv j

}
,
{

zṽ j

} V • Prover sends zr ← (m− r c),

zΥ j ← (s j −Υ j c), zΨj ← (s j −Ψj c),

zv j ← (t j − v j c) and zṽ j
← (t̃ j − ṽ j c) for every j ∈Z�.

• Verifier checks for every j ∈Z� that zΥ j , zΨj , zv j , zṽ j
, zr ∈Z∗p ,

that D
?=C c g−Ac hzr g

∑�−1
j=0

(
zΥ j u j

)
,

that D
?=C c g

(
u�−B−1

)
c hzr g

∑�−1
j=0

(
zΨj u j

)
,

that a j
?= e

(
Vj , y

)c ·e
(
V
−zΥ j

j g zv j , g
)

and

that ã j
?= e

(
Ṽ j , y

)c ·e
(
Ṽ j
−zΨj g zṽ j , g

)
.

Protocol 4.2 – Interactive range proof protocol for range [A,B ],
with AND composition
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Note that (σ− A) can always be decomposed in base u with � digits as 0	 (σ− A)<B+1−A <
u�. Similarly,

(
σ+u�−B −1

)
can also always be decomposed with � digits as:

0<u�− (B +1− A) ,

0<u�+ A−B −1	
(
σ+u�−B −1

)
,

0<u�−1+σ−B 	 u�−1< u�.

Furthermore, the u signatures and the verification key need to be sent only once for both sub-

sets. The resulting proof can be achieved with an AND composition as shown in Protocol 4.2.

The major modification compared to the use of two distinct basic range proofs, is the use of

a same challenge c, with identical elements D and zr . As both A and B are public, the same

commitment C can be used for both subsets. Furthermore, the verification checks on D by the

verifier need to be adapted as well. The first check of the verifier, D
?=C c g−Ac hzr g

∑�−1
j=0

(
zΥ j u j

)
,

ensures that (σ− A)=∑�−1
j=0

(
Υ j u j

)
. Similarly, the second check D

?=C c g
(
u�−B−1

)
c hzr g

∑�−1
j=0

(
zΨj u j

)
ensures that

(
σ+u�−B −1

)=∑�−1
j=0

(
Ψj u j

)
. The third check:

a j
?= e

(
Vj , y

)c ·e
(
V
−zΥ j

j g zv j , g
)

,

ensures that 0	Υ j < u. This implies that 0	σ− A < u� which is equivalent to showing that

σ ∈ [A, A+u�). The fourth and last check:

ã j
?= e

(
Ṽ j , y

)c ·e
(
Ṽ j
−zΨj g zṽ j , g

)
,

ensures that 0	Ψj <u. This implies that 0	σ+u�−B−1<u� which is equivalent to showing

that σ ∈ [B +1−u�, B +1). The latter concludes the range proof with an AND composition.

With the additional sending of 4� extra elements, the communication complexity becomes:

ComAN D (u,�)= 2� · (‖G1‖+‖GT‖+2 ·∥∥Zp
∥∥)+ (‖G1‖+2 ·∥∥Zp

∥∥) .

As for the computational cost of the prover, it will be dominated by (6�+2) exponentiations

and 2� pairings. The computational cost of the verifier will be dominated by (4�+7) exponen-

tiations and 4� pairings.

Corollary 4.2

If the u-Strong Diffie-Hellman assumption associated with a pairing generator PG
(
1k

)
holds,

where k is the security parameter, then Protocol 4.2 is a zero-knowledge range argument for

the range [A,B ], with communication complexity of O
(

k
logk−loglogk

)
group elements.

Proof

To show that Protocol 4.2 is a zero-knowledge range argument, three security properties need

to be met: the completeness of the protocol, the special soundness property, and the special

honest verifier zero-knowledge property.

99



Chapter 4. Interactive Range Proofs

1. Si mAN D retrieves y, {Ai } from V ∗ (or from a trusted third party).

2. Si mAN D chooses σ ∈R [A,B ], v j , ṽ j ∈R Z∗p for every j ∈Z�,

computes Vj ← A
v j

Υ j
where (σ− A)=∑�−1

j=0

(
Υ j u j

)
, and

Ṽ j ← A
ṽ j

Ψj
where

(
σ+u�−B −1

)=∑�−1
j=0

(
Ψj u j

)
.

3. Si mAN D runs the simulator of

PK

⎧⎨⎩
(
{Υ j }, {Ψj },r, {v j }, {ṽ j }

)
: C g−A = hr g

∑�−1
j=0(Υ j u j ) ∧

C g u�−B−1 = hr g
∑�−1

j=0(Ψj u j )∧
Vj = g

v j
x+Υ j

∧
Ṽ j = g

ṽ j
x+Ψj , ∀ j ∈Z�

⎫⎬⎭ :

(a) On challenge c ∈Z∗p , Si mAN D chooses {s j }, {zv j }, {zṽ j
}, zr ∈R Z∗p , and

computes for every j ∈Z�:
zΥ j ← (s j −Υ j c), and
zΨj ← (s j −Ψj c).

(b) Finally, Si mAN D computes D ←C c g−Ac hzr g
∑�−1

j=0

(
zΥ j u j

)
, and for every j ∈Z�

a j ← e(Vj , y)c ·e(Vj , g )−zΥ j ·e(g , g )zv j , and
ã j ← e(Ṽ j , y)c ·e(Ṽ j , g )−zΨj ·e(g , g )zṽ j .

4. Si mAN D returns the transcript:{
y, {Ai }, {Vj }, {Ṽ j }, {a j }, {ã j },D,c, {zΥ j }, {zΨj }, {zv j }, {zṽ j

}, zr

}
.

Figure 4.2 – Simulator for the interactive range argument protocol,
with AND composition

The completeness follows from the completeness property of Protocol 4.1 proven in Theo-

rem 4.1 and from the decomposition in base u of (σ− A) and
(
σ+u�−B −1

)
. As 0	 (σ− A)<

u� and 0< (
σ+u�−B −1

)< u�, their decomposition consists of � digits:

(σ− A)=
�−1∑
j=0

(
Υ j u j

)
, such that 0	Υ j < u, and

(
σ+u�−B −1

)
=

�−1∑
j=0

(
Ψj u j

)
, such that 0	Ψj < u.

Recall that for B +1= u�, the AND decomposition is not needed as the range argument for

σ ∈ [A,B ] is equivalent to the range argument for (σ− A) ∈ [0,u�).

The special soundness property follows from the special soundness of Protocol 4.1. The main

difference in this case, is that the witness output by the extractor is
(
σ,r, {v j }, {ṽ j }

)
and is

computed as follows:

σ= A+
∑�−1

j=0

(
zΥ j − z ′Υ j

)
u j

c ′ −c
; r = zr − z ′r

c ′ −c
; v j =

zv j − z ′v j

c ′ −c
; ṽ j =

zṽ j
− z ′ṽ j

c ′ −c
.
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Identically to the case of Theorem 4.1, a malicious prover P∗ that convinces a verifier can be

(almost) directly used to perform a weak chosen-message attack against the Boneh-Boyen

signature scheme. Valid signatures can be obtained with V (1/v j )
j and with Ṽ j

(1/ṽ j ) for Υ j and

Ψj respectively. Recall that for every j ∈Z�, v j �= 0 and ṽ j �= 0 for the same reasons as in the

proof of Theorem 4.1 and of Theorem 3.2.

The special honest verifier zero-knowledge property is inherited from the same property of

Protocol 4.1. The simulator Si mAN D of the interactions between any verifier V ∗ and any

honest prover P is described in Figure 4.2. Although Si mAN D is slightly different from the

simulator Si m (Figure 4.1), their conclusions are identical. The probability distribution of the

transcript output by Si mAN D is identical to the one of a normal interaction between regular

provers and verifiers. Note that the requirement D
?=C c g

(
u�−B−1

)
c hzr g

∑�−1
j=0

(
zΨj u j

)
is also met.

Further optimization can be achieved if the additional restriction B +1− A < 2u�−1 is met.

Indeed, in this case the AND composition based on the range [0,u�) can be replaced with an

OR composition (also known as OR-proof) based on the range [0,u�−1). The decomposition

becomes:

[A,B ]= [A,B +1)= [A, A+u�−1)∪ [B +1−u�−1,B +1).

The OR composition for proving that σ ∈ [A,B ] is directly obtained by applying the “proof of

OR” presented by Cramer et al. in [CDS94] (Corollary 12 and 13) with Protocol 4.1 for the range

[0,u�−1). The drawback of this proof technique is that it imposes the weaker security property

of witness hiding (see Section 2.3.5), instead of the zero-knowledge security property.

Corollary 4.3 ([CDS94](Corollary 12))

Let protocol Θ be a three round public coin, honest verifier zero-knowledge proof of knowledge

for relation R, which satisfies the special soundness property. Then for any n,d there is a

protocol with the same round complexity as Θ in which the prover shows that he knows d out

of n witnesses without revealing which d witnesses are known.

Note that public coin means that the verifier sends solely a uniformly random challenge in the

Σ-protocol.

Corollary 4.4 ([CDS94](Corollary 13))

Consider the protocol guaranteed by Corollary 4.3, let n = 2 and d = 1, i.e. the prover proves

that he knows at least 1-out-of-2 solutions. For any generator G generating pairs in R, this

protocol is witness hiding over G2.

The resulting protocol consists of running two range proofs in parallel: an honest and a

simulated one. The following explanations are provided for the case that σ ∈ [A, A+u�−1).

The alternative case is easily obtained by swapping the subsets for the honest and simulated

sub-range proofs. The subset [A, A+u�−1) will be called the true subset, as it contains σ.
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1. Si ms honestly retrieves y, {Ai } from V (or from a trusted third party).

2. Si ms chooses σ ∈R [B +1−u�−1,B +1), v j ∈R Z∗p for every j ∈Z�−1, and

computes Ṽ j ← A
v j

Ψj
where

(
σ+u�−1−B −1

)=∑�−2
j=0

(
Ψj u j

)
.

3. Si ms runs the simulator of

PK

{(
{Ψj },r, {v j }

)
: C g u�−1−B−1 = hr g

∑�−2
j=0(Ψj u j ) ∧

Ṽ j = g
v j

x+Ψj , ∀ j ∈Z�−1

}
:

(a) Si ms chooses cs , {zΨj }, {z̃v j }, z̃r ∈R Z∗p .

(b) Finally, Si ms computes D̃ ←C cs g
(
u�−1−B−1

)
cs hz̃r g

∑�−2
j=0

(
zΨj u j

)
and

ã j ← e(Ṽ j , g )−zΨj −Ψj cs e(g , g )z̃v j +v j cs for every j ∈Z�−1.

4. Si ms returns the transcript
{

y, {Ai }, {Ṽ j }, {ã j },D̃ ,cs , {zΨj }, {z̃v j }, z̃r
}

.

Figure 4.3 – Simulator for the simulated range argument protocol σ ∈ [B +1−u�−1,B +1)

The subset [B +1−u�−1,B +1) does not necessarily contain σ and hence will be called the

simulated subset. The simulated range proof corresponds to the simulated subset. In order

to perform the simulated range proof, the prover will use the simulator Si ms described in

Figure 4.3. Note that y and {Ai } are honestly retrieved from the verifier, but the challenge cs

is chosen by the prover. The elements {zΨj }, {z̃v j }, z̃r from the simulator Si ms will be sent to

the verifier only after the prover has retrieved the challenge c from the verifier. Additionally,

the prover also sends cB ← cs . The honest range proof for the true subset is performed as

described in Protocol 4.1 with minor modifications. The target range is [0,u�−1) instead

of [0,u�), and in order to prove that σ ∈ [A, A+u�−1), the digits σ j are replaced with the

digits Υ j such that (σ− A)=∑�−2
j=0

(
Υ j u j

)
. Hence the check of the verifier on D is modified as

D
?=C cA g−AcA hzr g

∑�−2
j=0

(
zΥ j u j

)
, where cA ← (c−cs). The prover is also required to send cA to the

verifier, who will additionally check that c
?= cA + cB . To complete the OR composition, the

verifier also needs to check that:

D̃
?=C cB g

(
u�−1−B−1

)
cB hz̃r g

∑�−2
j=0

(
zΨj u j

)
, and

ã j
?= e

(
Ṽ j , y

)cB ·e
(
Ṽ j
−zΨj g z̃v j , g

)
.

The range proof with OR composition requires less elements to be sent compared to the AND

composition, even thought the two challenges cA and cB need to be sent:

ComOR (u,�)= 2 ·Com(u,�−1)−∥∥Zp
∥∥+2 ·∥∥Zp

∥∥
= 2 · [(�−1) · (‖G1‖+‖GT‖+2 ·∥∥Zp

∥∥)+ (‖G1‖+2 ·∥∥Zp
∥∥)]+∥∥Zp

∥∥
= 2� · (‖G1‖+‖GT‖+2 ·∥∥Zp

∥∥)+ (∥∥Zp
∥∥−2 · ‖GT‖

)
.
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The gain for the communication load is of
(‖G1‖+2 · ‖GT‖+

∥∥Zp
∥∥) bits, when compared to the

AND composition. The prover computational cost will be dominated by 6� exponentiations

and 2(�−1) pairings. Finally, the verifier computational cost will be dominated by (4�+6)

exponentiations and 4(�−1) pairings.

Corollary 4.5

If the u-Strong Diffie-Hellman assumption associated with a pairing generator PG
(
1k

)
holds,

where k is the security parameter, then the OR composition described above is a witness hiding

range argument for the range [A,B ], with communication complexity of O
(

k
logk−loglogk

)
group elements.

Proof

Theorem 4.1, Corollary 4.3, and Corollary 4.4 imply that the OR composition is a witness hiding

range argument. Let Θ be the Protocol 4.1. Then Θ is a public coin protocol as the verifier sends

only a random challenge. Furthermore, it satisfies honest verifier zero-knowledge and special

soundness (Theorem 4.1). Hence Θ meets the requirements from Corollary 4.3. Therefore,

from Corollary 4.4, the OR composition is a witness hiding range argument.

Last but not least, proving that σ ∈ [A,B ] where A < 0 can be reduced to one of the previous

cases by showing that σ− A ∈ [0,B − A].

Common Input: u,�, and a commitment C ;

the commitment scheme parameters Paramcom;

and the set membership proof parameters Paramsmem.

Prover Input: σ,r such that C =Commit(σ,r ) and σ ∈ [0,u�).

Prover and Verifier run

PK
{(

{σ j },r
)

: C = hr g
∑�−1

j=0(σ j u j ) ∧
σ j ∈Zu , ∀ j ∈Z�

}

Protocol 4.3 – Interactive range proof protocol for range [0,u�),
from a general set membership proof

Using Alternative Set Membership Proof. Protocol 4.1 can be adapted to use any appropri-

ate alternative set membership proof. Moreover, when combined with a generic set member-

ship proof, a generalization of the u-ary decomposition for range proofs is obtained. This is

described in Protocol 4.3. The prover needs to show that his secret element can be decom-

posed in � digits, and that each of these digits is in Zu using the generic set membership proof.

The range proof σ ∈ [0,u�) is thus obtained from the following proof of knowledge:

PK
{(

{σ j },r
)

: C = hr g
∑�−1

j=0(σ j u j ) ∧
σ j ∈Zu , ∀ j ∈Z�

}
.
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In order to achieve overall minimal communication complexity, the communication load of

the set membership proof will dictate the values of parameters u and �.

An alternative set membership proof example is to use a variant of the set membership proof

of Arfaoui et al. from [ALT+15a], which is essentially a Boneh-Boyen based set membership

proof without pairings. This variant, although exclusively introduced in this thesis, can be

easily deduced from [ALT+15a]. The resulting range proof is described in Protocol 4.4, where

the boxed elements correspond to the elements that differ from Protocol 4.1. Regarding the

underlying set membership proof, the main difference with the original version of Arfaoui et

al. is the way signatures are verified. Protocol 4.4 uses pairings for checking the validity of

the signatures, thus bilinear groups and associated computational hardness assumptions are

still needed. This requirement can be relaxed, but will induce a high efficiency cost. Indeed,

in the original protocol of Arfaoui et al., the verification of the signatures Ai is performed

with the proof of knowledge described in Figure 4.4, repeated for every signature Ai . The

1. The prover (V in the range proof) randomly picks si ∈R Zp .

2. Prover V sends ai ← Asi

i and bi ← g si to the verifier P .

3. Verifier P sends a challenge ci ∈R Zp .

4. Prover V sends the reply ri ← si +ci · x to the verifier P .

5. Verifier P checks that Ari

i
?= ai

(
g A−i

i

)ci and that g ri
?= bi yci .

Figure 4.4 – Proof of knowledge PK
{
(x) : y = g x ∧

Ax
i = g · A−i

i

}
variant of their method improves both the computational complexity and the communication

load. Both the prover and the verifier no longer need to compute bilinear pairings in the

range proof. Hence the overall computational complexity of the prover is reduced to (3�+2)

exponentiations, and that of the verifier is reduced to (2�+3) exponentiations. Regarding the

communication complexity, the elements a j ∈GT are all replaced with the elements E j ∈G1.

Thus the communication load becomes:

Com(u,�)= 2� · (‖G1‖+
∥∥Zp

∥∥)+ (‖G1‖+2 ·∥∥Zp
∥∥) .

Note, however, that this communication complexity holds for the basic range proof σ ∈ [0,u�).

In order to handle arbitrary ranges, the same technique described before should be used,

namely the AND composition (see Protocol 4.2). Thus the communication load for arbitrary

ranges [A,B ] becomes:

ComAN D (u,�)= 4� · (‖G1‖+
∥∥Zp

∥∥)+ (‖G1‖+2 ·∥∥Zp
∥∥) .

Regarding the computational cost of the AND composition, the computational cost of the

prover will be dominated by (6�+2) exponentiations, and that of the verifier will be dominated

by (4�+6) exponentiations.
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4.3. Set Membership Based Range Proofs

Common Input: g ,h,u,�, and a commitment C .

Prover Input: σ,r such that C = gσhr and σ ∈ [0,u�).

P y,{Ai }� V • Verifier picks x ∈R Z∗p such that −x �∈Zu and

sends y ← g x and Ai ← g
1

x+i , ∀i ∈Zu .

• Prover checks that y ∈G∗1 , Ai ∈G∗1 and

that e(g , g )
?= e(Ai , y · g i ), ∀i ∈Zu .

P {Vj } � V • Prover picks v j ∈R Z∗p and sends Vj ← A
v j
σ j

,

for every j ∈Z�, such that σ=∑�−1
j=0

(
σ j u j

)
.

• Verifier checks that Vj ∈G∗1 , ∀ j ∈Z�.

Prover and Verifier run

PK

{(
{σ j },r, {v j }

)
: C = hr g

∑�−1
j=0(σ j u j ) ∧

Vj = g
v j

x+σ j , ∀ j ∈Z�

}

P

{
E j

}
,D
� V • Prover picks s j , t j ,m ∈R Z∗p for every j ∈Z� and

sends E j ←V
−s j

j g t j and D ← hm g
∑�−1

j=0(s j u j ).

• Verifier checks that E j ,D ∈G∗1 , ∀ j ∈Z�.

P c� V • Verifier sends a random challenge c ∈R Z∗p .

• Prover checks that c ∈Z∗p .

P
{zσ j },{zv j },zr� V • Prover sends zr ← (m− r c),

and zσ j ← (s j −σ j c), zv j ← (t j − v j c) for every j ∈Z�.

• Verifier checks that zσ j , zv j , zr ∈Z∗p for every j ∈Z�,

that D
?=C c hzr g

∑�−1
j=0

(
zσ j u j

)
and

that E j
?=V

cx−zσ j

j g zv j for every j ∈Z�.

Protocol 4.4 – Interactive range proof protocol,
based on Arfaoui et al. set membership proof
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Theorem 4.6

If the u-Strong Diffie-Hellman assumption associated with a pairing generator PG holds,

then Protocol 4.4 is a zero-knowledge range argument for the range [0,u�).

Proof

The proof to show that Protocol 4.4 is a zero-knowledge range argument, is identical to the

proof of Theorem 4.1 with minor modifications. Completeness is achieved, as the following

holds:

V
cx−zσ j

j g zv j =V
cx−s j+cσ j

j g t j−cv j

=V
c(x+σ j )
j V

−s j

j g−cv j g t j

= g
v j

(x+σ j ) ·c(x+σ j )
g−cv j V

−s j

j g t j

=V
−s j

j g t j

= E j .

Special soundness is achieved in the same way as in Theorem 4.1. The simulator for the special

honest verifier zero-knowledge is achieved as described in Figure 4.1, with a modification in step

3b: the computations of a j are replaced with the computations of E j ←V
−zσ j −σ j c

j g zv j +v j c .

4.4 Sumset Representation of Integer Intervals

Using the u-ary decomposition, handling arbitrary ranges [A,B ] almost doubles the communi-

cation load as well as the computational complexity when compared to the basic [0,u�) range

proof. This is essentially due to the use of two basic range proofs in order achieve the flexibility

of arbitrary ranges. A better solution is therefore achieved when the range decomposition

allows some flexibility in the base decomposition, as is the case with multi-base decomposi-

tion. Such decomposition can be obtained with a sumset representation of integer intervals.

Informally, although this decomposition uses u-ary digits, the base corresponding to the digits

is more flexible. For σ ∈ [0, H ], the following explains how to derive the sumset representation

σ=ω′ +∑�−1
i=0 σi Gi , where Gi are public parameters, σi ∈Zu , ω′ ∈ [0, H ′], 0	H ′ < u−1, and

2	 u�H . Here, H ′ = (
H − (u−1) ·⌊ H

u−1

⌋)
as all sub-intervals [0, (u−1)] are already included

by the elements σi . Moreover, the aim is to find minimal � for any fixed value of H and

u. Handling arbitrary ranges [A,B ] will be achieved by proving that σ− A ∈ [0, H ], where

H =B − A.

An intuitive explanation of the sumset representation will be provided first. Suppose that H

and u are fixed, and let H0 = H . Then clearly σ ∈ [0, H0] and σ =ω1+σ0G0, where σ0 ∈Zu ,

ω1 ∈ [0, H1]= [0, H0− (u−1)G0], and G0 is defined as G0 := �(1+H0)/u�. This can be derived

from the goal to divide [0, H0] into u smaller (possibly overlapping) intervals of equal size

H1 such that H1 is minimal. The sub-intervals should start at periodic positions jG0, for
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4.4. Sumset Representation of Integer Intervals

some G0 and for 0 	 j 	 (u−1). Ideally, the start of each new sub-intervals should be just

after the end of each previous sub-intervals. This would imply that G0 = 1+H1. To guarantee

overlapping and ensure that there are no isolated elements between sub-intervals, the start

of each sub-intervals should be before or equal to the ideal case. Therefore, G0 	 1+H1.

Furthermore, in order to reach the upper limit H0, the following condition must also holds:

H0 = (u−1)G0+H1. Thus, the optimal case when H1 =G0−1, implies that H0 = uG0−1 or

G0 = (1+H0)/u. Since G0 has to be an integer, it has to be set as G0 = �(1+H0)/u�. Finally, as

stated above, H1 =H0− (u−1)G0.

These formulas reduce the case [0, H0] to a smaller case [0, H1] that can be solved similarly.

Recursively, σ=ω′ +∑
j σ j G j , with ω′ ∈ [0, H ′], σ j ∈Zu , and where

G j =
⌊

1+H j

u

⌋
, and (4.6)

H j+1 =H j − (u−1)G j (4.7)

=H j −
⌊

1+H j

u

⌋
· (u−1).

This process is carried out for as long as H j 
 u−1. It stops when the interval [0, H j+1] is small

enough so that it cannot be covered by u different non-empty intervals, that is, if H j+1 < u−1.

At that point and as the recursive process is completed, the number � of steps in this recursive

process can be defined as �(u, H) := j +1. Furthermore, H ′ can be set as H ′ =H� =H j+1.

For example, with H = 57 (thus σ ∈ [0,57]) and u = 4 (σi ∈ [0,3]), it can be verified that

σ = 14σ0+4σ1+σ2. As (4−1) | 57, this implies that H ′ = 0. By way of providing a further

example with H = 160 and u = 4:

σ= 40σ0+ω1, with ω1 ∈ [0,40]

= 40σ0+10σ1+ω2, with ω2 ∈ [0,10]

= 40σ0+10σ1+2σ2+ω3, with ω3 ∈ [0,4]

= 40σ0+10σ1+2σ2+σ3+ω′, with ω′ ∈ [0,1].

The recursive process is now complete since 1<u−1= 3.

Lemma 4.7

Let H j and G j be defined respectively as in equations (4.7) and (4.6), then the sequence H j

is a finite monotone (strictly) decreasing sequence, the sequence G j is a finite monotonic

decreasing sequence (G j+1 	 G j ), and 0 	 H� 	 u −2, where H� is the last element of the

sequence H j .

Proof

Showing that the sequence H j is monotone decreasing, can be proved by induction. In order

to do so, two steps need to be demonstrated: H1 <H0 and H j+1 <H j .
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First, consider the case of H1:

H1 =H0− (u−1)G0

=H0− (u−1) ·
⌊

1+H0

u

⌋
<H0− (u−1)

(
1+H0

u
−1

)
<H0− (u−1)

(
1+H0−u

u

)
<H0−

(
u−1

u

)
(H0− (u−1))

<H0.

The last inequality is achieved as H0 > (u−1) and u 
 2. Thus, for all j < � and as H j 
 (u−1),

the following holds:

H j+1 =H j − (u−1)G j

=H j − (u−1) ·
⌊

1+H j

u

⌋
<H j − (u−1)

(
1+H j

u
−1

)
<H j − (u−1)

(
1+H j −u

u

)
<H j −

(
u−1

u

)(
H j − (u−1)

)
<H j .

As H j+1 <H j , then the sequence H j is monotone decreasing. This sequence is also finite as it

stops when H� < u−1.

Thus, regarding the sequence G j , the following holds:

G j+1 =
⌊

1+H j+1

u

⌋
	

⌊
1+H j

u

⌋
=G j .

Thus, the sequence G j is a monotonic decreasing sequence. It is also finite as it has one

element less than the sequence H j .
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Recall that the sequence H j stops when H� <u−1, therefore H� 	 u−2. Furthermore, H� is

necessarily positive:

H ′ =H� =H�−1− (u−1) ·
⌊

1+H�−1

u

⌋

H�−1− (u−1)

(
1+H�−1

u

)

 (uH�−1− (u−1)(1+H�−1)) ·u−1


 (uH�−1− (u−1)− (u−1)H�−1) ·u−1


 (H�−1− (u−1)) ·u−1


 0.

This concludes the proof.

The following lemma gives an upper bound for the number of steps in the decomposition pro-

cess. This result is slightly better than the one presented in [CLs10], as shown in Corollary 4.9.

Lemma 4.8

In the case of a range [0, H ], and its decomposition with H j and G j are defined respectively as

in equations (4.7) and (4.6), then the decomposition process is guaranteed to stop in � steps,

where �= �(u, H)	 1+ logu (H − (u−2))− logu 2.

Proof

Recall that the decomposition process stops when H� < u−1. This implies that H�−1 
 u−1

2u0+ (u−2). Furthermore, it can be shown by induction that H j 
 2u�− j−1+ (u−2). In that

case, the first step consists of supposing that H j+1 
 2u�− j−2+ (u−2). Therefore, the following

implications unfold:

H j =H j+1+ (u−1)G j

=H j+1+ (u−1) ·
⌊

1+H j

u

⌋

 2u�− j−2+ (u−2)+ (u−1)

(
1+H j − (u−1)

u

)
=⇒ uH j 
 2u�− j−1+u(u−2)+ (u−1)H j − (u−1)(u−2)


 2u�− j−1+ (u−2)+ (u−1)H j

=⇒H j 
 2u�− j−1+ (u−2).
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As H =H0, it implies that H 
 2u�−1+ (u−2). Therefore:

H 
 2u�−1+ (u−2)

=⇒ u�−1 	 H − (u−2)

2

=⇒ u� 	 u

2
(H − (u−2))

=⇒ �	 logu

(u

2
(H − (u−2))

)
=⇒ �	 1+ logu (H − (u−2))− logu 2.

Corollary 4.9

In the case of a range [0, H ], its decomposition process is guaranteed to stop in �	 ⌈
logu (H)

⌉
steps. Moreover, the case H 	 uL implies that �	 L.

Proof

The proof follows from Lemma 4.8. First, note that the following relations hold:

�	 1+ logu (H − (u−2))− logu 2= 1+ logu (H +2−u)− logu 2

< 1+ logu (H +2−u)	 1+ logu (H) .

Thus �< 1+ logu (H) implies that �	 ⌈
logu (H)

⌉
. Therefore H 	uL implies that �	 L.

Lemma 4.7 and 4.8 lead to the following theorem:

Theorem 4.10

Let u 
 2, H 
 u. Let G j , H j be defined respectively as in equations (4.6) and (4.7). Let H ′

be defined as before (H ′ < u − 1). Denote � = �(u, H) as defined previously. The sumset

representation of σ ∈ [0, H ] is therefore σ=ω′ +∑�−1
j=0 σ j G j , where σ j ∈Zu, ω′ ∈ [0, H ′], and

�	 1+ logu (H − (u−2))− logu 2. Furthermore, if (u−1) |H then H ′ = 0.

Proof

Recall that H ′ =H�. The decomposition is provided with equations (4.6) and (4.7). Lemma 4.7

proves that the decomposition is complete. Lemma 4.8 provides the proof for the upper bound

on �. As H ′ =H − (u−1) ·⌊ H
u−1

⌋
, it implies that if (u−1) |H then H ′ = 0.

Semi-Closed Form for G j and H j . While the presented recursive formulas for G j and H j+1

are efficient, it is desirable to have a closed form for both of them. The following construction

achieves semi-closed forms, which are formulas that only depend on u, j , and H .
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Assume the basic u-ary decomposition H = ∑L−1
j=0 h j u j with h j ∈ Zu . For any j 	 L, write

ĥ j := ⌊
H/u j

⌋
, that is, H = u j ĥ j +∑ j−1

i=0 ui hi . This implies the following:

H =u j ĥ j +
j−1∑
i=0

ui hi (4.8)

=⇒ u j ĥ j +
j−1∑
i=0

ui hi =u j+16h j+1+
j∑

i=0
ui hi

=⇒ u j ĥ j = u j+16h j+1+u j h j

=⇒ ĥ j = u6h j+1+h j . (4.9)

Define the notation �x� := r , such that 0	 r < u−1 and r ≡ x (mod (u−1)). It is important

for the theorem bellow, to keep in mind the following properties resulting from this notation:

(u−1) | a⇐⇒ �a�= 0

(u−1) | a⇐⇒ �a+b�= �b��a�= 0⇐⇒ �a+b�= �b��a�= a⇐⇒ 0	 a < (u−1)�a+b�= �a+ �b��
0	 a+ �b�< (u−1)⇐⇒ �a+b�= a+ �b� .

Theorem 4.11

Let G j , H j be defined respectively as in equations (4.6) and (4.7), let ĥ j =
⌊

H/u j
⌋

and H =∑L−1
j=0 h j u j , then:

H j = ĥ j +
�∑ j−1

i=0 hi

�
for 0< j 	 �, and

G j =6h j+1+
⌊

1+h j+�∑ j−1
i=0 hi�

u

⌋
, for 0< j < �.

Proof

The proof is achieved by induction. This is accomplished by showing the veracity of the

induction basis ( j = 1) and then proving the induction step for j 
 1.

First, H0 = ĥ0 can be derived from the definition of ĥ j =
⌊

H
u j

⌋
. As ĥ j =u6h j+1+h j , G0 can be

reformulated as

G0 =
⌊

1+H0

u

⌋
=

⌊
1+ ĥ0

u

⌋

=
⌊

1+uĥ1+h0

u

⌋

= ĥ1+
⌊

1+h0

u

⌋
.
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Thus, H1 can be derived as follows:

H1 =H0− (u−1)G0 = ĥ0− (u−1)G0 =

=
(
uĥ1+h0

)
− (u−1)

(
ĥ1+

⌊
1+h0

u

⌋)
= ĥ1+h0− (u−1)

⌊
1+h0

u

⌋
= ĥ1+ �h0�

For the last equality, if h0 < (u−1) then h0− (u−1)
⌊

1+h0
u

⌋
= h0 = �h0� and if h0 = (u−1) then

h0− (u−1)
⌊

1+h0
u

⌋
= (u−1)− (u−1)= 0= �h0�. Now, G1 can be derived as follows:

G1 =
⌊

1+H1

u

⌋
=

⌊
1+ ĥ1+ �h0�

u

⌋

=
⌊

1+uĥ2+h1+ �h0�
u

⌋

= ĥ2+
⌊

1+h1+ �h0�
u

⌋
.

This concludes the induction basis. The induction step hypothesis assumes that

H j = ĥ j +
�

j−1∑
i=0

hi

	

=u6h j+1+h j +
�

j−1∑
i=0

hi

	
, and

G j =6h j+1+

9999:1+h j +
�∑ j−1

i=0 hi

�
u

;;;;< .

Then

H j+1 =H j − (u−1)G j

=
(

u6h j+1+h j +
�

j−1∑
i=0

hi

	)
− (u−1) ·

9999:1+h j +
�∑ j−1

i=0 hi

�
u

;;;;< .
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Thus to prove that H j+1 =6h j+1+
�∑ j

i=0 hi

�
, the following needs to be shown:

�
j∑

i=0
hi

	
= h j +

�
j−1∑
i=0

hi

	
− (u−1) ·

9999:1+h j +
�∑ j−1

i=0 hi

�
u

;;;;< (4.10)

for j < �, and h j ,hi ∈Zu . Note that 0 <
(
1+h j +

�∑ j−1
i=0 hi

�)
< 2u−1. In order to show the

veracity of equation (4.10), consider the following three cases.

Case 1:
�∑ j−1

i=0 hi

�
= 0. Then the left hand side of equation (4.10) is

�
j∑

i=0
hi

	
=

�
h j +

j−1∑
i=0

hi

	

=
�

h j +
�

j−1∑
i=0

hi

		
= �h j � .

The right hand side of equation (4.10) is h j − (u − 1)
⌊

1+h j

u

⌋
. If h j < (u − 1) then h j − (u −

1)
⌊

1+h j

u

⌋
= h j = �h j � and if h j = (u−1) then h j − (u−1)

⌊
1+h j

u

⌋
= (u−1)− (u−1)= 0= �h j �.

Thus equation (4.10) holds for
�∑ j−1

i=0 hi

�
= 0.

Case 2:
�∑ j−1

i=0 hi

�
�= 0 and

(
1+h j +

�∑ j−1
i=0 hi

�)
< u. Then

(
h j +

�∑ j−1
i=0 hi

�)
< (u−1) and the

left hand side of equation (4.10) is�
j∑

i=0
hi

	
=

�
h j +

j−1∑
i=0

hi

	

= h j +
�

j−1∑
i=0

hi

	
.

As the right hand side of equation (4.10) is also equal to h j +
�∑ j−1

i=0 hi

�
, equation (4.10) holds

in this case.

Case 3:
�∑ j−1

i=0 hi

�
�= 0 and

(
1+h j +

�∑ j−1
i=0 hi

�)

 u. Then 0 	

(
h j − (u−1)+

�∑ j−1
i=0 hi

�)
<

(u−1) and the left hand side of equation (4.10) is�
j∑

i=0
hi

	
=

�
h j − (u−1)+

j−1∑
i=0

hi

	

= h j − (u−1)+
�

j−1∑
i=0

hi

	
.
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As u 	
(
1+h j +

�∑ j−1
i=0 hi

�)
< 2u−1, then

⌊
1+h j+�∑ j−1

i=0 hi�
u

⌋
= 1. Thus the right hand side of

equation (4.10) is h j+
�∑ j−1

i=0 hi

�
−(u−1), which is equal to the left hand side of equation (4.10).

These three cases cover all possibilities for equation (4.10). Therefore, this equation holds.

Thus H j+1 =6h j+1+
�∑ j

i=0 hi

�
, which completes the proof for H j = ĥ j +

�∑ j−1
i=0 hi

�
. For the

sequence G j , it follows that:

G j =
⌊

1+H j+1

u

⌋

=

9999:1+6h j+1+
�∑ j

i=0 hi

�
u

;;;;<
=

9999:1+u6h j+2+h j+1+
�∑ j

i=0 hi

�
u

;;;;<
=6h j+2+

9999:1+h j+1+
�∑ j

i=0 hi

�
u

;;;;< .

This concludes the proof for the sequence G j .

The semi-closed form for G j in the binary case u = 2 was claimed in [LAN02] without a proof.

Fortunately, their claim follows straightforwardly from Theorem 4.11. Furthermore, note that

in [LAN02], the upper limit of the summation in the decomposition of σ ∈ [0, H ] is wrongly set

to
⌊

log2 H
⌋

instead of
(⌊

log2 H
⌋−1

)
.

Corollary 4.12 (Binary case, [LAN02])

If u = 2 then G j =6h j+1+
⌊

1+h j

u

⌋
=

⌊
H+2 j

2 j+1

⌋
.

Proof

Theorem 4.11 shows that G j =6h j+1+
⌊

1+h j+�∑ j−1
i=0 hi�

u

⌋
. However, u = 2 implies that

�∑ j−1
i=0 hi

�
=

0. Thus G j =6h j+1+
⌊

1+h j

u

⌋
. By definition, the following holds: 6h j+1 =

⌊
H

u j+1

⌋
=

⌊
H

2 j+1

⌋
. Thus
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G j =
⌊

H
2 j+1

⌋
+
⌊

1+h j

u

⌋
. As ĥ j =u6h j+1+h j , the following hold:

h j = ĥ j −u6h j+1

=
⌊

H

u j

⌋
−u

⌊
H

u j+1

⌋
=

⌊
H

2 j

⌋
−2

⌊
H

2 j+1

⌋
;

=⇒G j =
⌊

H

2 j+1

⌋
+
999:1+

⌊
H
2 j

⌋
2

;;;<−⌊
H

2 j+1

⌋

=
⌊

1

2

⌊
H +2 j

2 j

⌋⌋
=

⌊
H +2 j

2 j+1

⌋
.

4.5 Sumset Based Range Proofs

The results of Theorem 4.10 allow for a more efficient range proof to be built, based on sumset

decomposition. The efficiency gain appears when handling arbitrary ranges, as it would

require the use of a single range proof instead of the AND composition with two range proofs.

The general range proof problem σ ∈ [A,B ] is reduced to solving the range proof (σ−A) ∈ [0, H ],

with H = B − A. Thus, the rest of this section focuses on the range proof problem σ ∈ [0, H ].

Theorem 4.10 shows that σ ∈ [0, H ] can be decomposed as σ = ω′ +∑�(u,H)−1
j=0 σ j G j , with

σ j ∈Zu and ω′ ∈ [0, H ′]. Recall that G j are public elements. Also recall that Theorem 4.10

states that if (u−1) |H then H ′ = 0 and there is no element ω′. In the latter, proving that all of

the elements σ j are in Zu can be achieved efficiently with the same set membership proof,

exactly as in Protocol 4.1 or 4.4. However, the existence of ω′ ∈ [0, H ′] imposes the need to

choose between two solutions:

1. either an additional set membership proof for ω′ needs to be added to the protocol,

2. or the range [0, H ] needs to be artificially increased,

to obtain a proof of the form σ(u−1) ∈ [0, H(u−1)].

The modification achieved in the second option takes advantage of the property brought

by (u − 1) | H(u − 1), which is the suppression of the element ω′ as H ′ = 0. Furthermore,

when using either Protocol 4.1 or 4.4, multiplying the range by (u−1) implies that � will be

increased by 1, as H 	 uL implies that H(u−1)< uL+1, and thus �	 L+1. Increasing � by 1

implies an additional communication of 4 elements
(
V�, (a�, or E�), zσ�

, zv�

)
. This additional

communication load is identical to the cost of an additional set membership proof regarding
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the basic communication load. However, in the case of the first solution for ω′, where an

additional set membership proof is needed, the setup cost will increase. This increase amounts

to H ′ additional elements that correspond to the signatures of the elements in ZH ′ , and to the

public key of the signature scheme. Therefore, the second solution, with the artificial increase

of the range [0, H ], is the most efficient solution.

An alternative solution suggested in [CLs10], is to use the OR-proof instead of the additional

set membership proof, to prove that ω′ is one of the elements in [0, H ′]. However, as OR-proofs

have linear complexity, they are less efficient for individual elements when compared to set

membership proofs. Furthermore, their security is restricted to witness indistinguishability

(see Section 2.3.5), therefore OR-proofs should be discarded as a solution for this specific task.

Note that the range proof enhancement techniques of [CLs10], that are explained in this

section, apply to any range proof based on range decomposition. Moreover, the range proof

presented in [CLs10] is built upon Protocol 4.1. The solution presented here is built upon

Protocol 4.4, as it is slightly more efficient. The aim is to prove that for a commitment C , C u−1

commits to a value in [0,(u−1)H ] by using Protocol 4.4. As (u−1) |H(u−1), Theorem 4.10

states that H ′ = 0 and thus σ(u−1)=∑�(u,H(u−1))−1
j=0 σ j G j .

Computational assumptions. The computational hardness assumptions required for the

range proof in this section are identical to those for Protocol 4.4, namely the u-Strong Diffie-

Hellman assumption as well as bilinear groups (see Section 2.1.3) and their associated compu-

tational hardness assumptions. Note that here again, Pedersen commitments are chosen as

the commitment scheme used.

Protocol explanation. The sumset based range proof is presented in Protocol 4.5. As it

is based on Protocol 4.4, the necessary modifications to change the u-ary decomposition

to a sumset decomposition are highlighted by boxing the elements that differ. Recall that

the elements G j are computed either recursively as in equation (4.6), with H0 =H(u−1), or

with the semi-closed form as described in Theorem 4.11, where ĥ j =
⌊

H(u−1)
u j

⌋
and H(u−

1) =∑L−1
j=0 h j u j . The sumset decomposition will define the value � 	 L+1 for H 	 uL . The

decomposition of σ(u−1) will require to prove the set membership of � elements σ j ∈Zu , as

σ(u−1)=∑�−1
j=0 σ j G j .

For the underlying proof of knowledge, recall that raising the commitment to the power

(u−1) is equivalent to multiplying the secret σ by (u−1). As the elements σ j are all in Zu ,

Protocol 4.4 remains the same regarding the set membership proofs σ j ∈Zu . However, their

composition towards C (u−1) has to be changed. Thus the computation of D needs to be

modified as D = hm(u−1)g
∑�−1

j=0(s j G j ) and the verification check on D becomes:

D
?=C c(u−1)hzr (u−1)g

∑�−1
j=0

(
zσ j G j

)
.
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Common Input: g ,h,u,�← �(u, H(u−1)) ,{
G j

}
j∈Z�

, and a commitment C .

Prover Input: σ,r such that C = gσhr and σ ∈ [0, H ].

P y,{Ai }� V • Verifier picks x ∈R Z∗p such that −x �∈Zu and

sends y ← g x and Ai ← g
1

x+i , ∀i ∈Zu .

• Prover checks that y ∈G∗1 , Ai ∈G∗1 and

that e(g , g )
?= e(Ai , y · g i ), ∀i ∈Zu .

P {Vj } � V • Prover picks v j ∈R Z∗p and sends Vj ← A
v j
σ j

,

for every j ∈Z�, such that σ(u−1)=
�−1∑
j=0

(
σ j G j

)
.

• Verifier checks that Vj ∈G∗1 , ∀ j ∈Z�.

Prover and Verifier run

PK

{(
{σ j },r, {v j }

)
: C (u−1) = hr (u−1)g

∑�−1
j=0(σ j G j ) ∧

Vj = g
v j

x+σ j , ∀ j ∈Z�

}

P {E j },D � V • Prover picks s j , t j ,m ∈R Z∗p for every j ∈Z� and

sends E j ←V
−s j

j g t j and D ← hm(u−1)g
∑�−1

j=0(s j G j ) .

• Verifier checks that E j ,D ∈G∗1 , ∀ j ∈Z�.

P c� V • Verifier sends a random challenge c ∈R Z∗p .

• Prover checks that c ∈Z∗p .

P
{zσ j },{zv j },zr� V • Prover sends zr ← (m− r c),

and zσ j ← (s j −σ j c), zv j ← (t j − v j c) for every j ∈Z�.

• Verifier checks that zσ j , zv j , zr ∈Z∗p for every j ∈Z�,

that D
?=C c(u−1)hzr (u−1)g

∑�−1
j=0

(
zσ j G j

)
and

that E j
?=V

cx−zσ j

j g zv j for every j ∈Z�.

Protocol 4.5 – Interactive range proof protocol for range [0, H ]
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Theorem 4.13

If the u-Strong Diffie-Hellman assumption associated with a pairing generator PG holds,

then Protocol 4.5 is a zero-knowledge range argument for the range [0, H ].

Proof

The proof to show that Protocol 4.5 is a zero-knowledge range argument, is identical to the

proof of Theorem 4.6 with minor modifications. Completeness is achieved as Theorem 4.10

ensures that σ(u−1)=∑�−1
j=0 σ j G j . Special soundness is achieved similarly as in Theorem 4.6,

with the difference that σ is extracted with the following formula:

σ=
∑�−1

j=0

(
zσ j − z ′σ j

)
G j

c ′ −c
.

The simulator for the special honest verifier zero-knowledge is achieved as described in Fig-

1. Si m retrieves y, {Ai } from V ∗ (or from a trusted third party).

2. Si m chooses σ ∈R [0, H ], v j ∈R Z∗p for every j ∈Z�, and

computes Vj ← A
v j
σ j

where σ(u−1)=∑�−1
j=0 σ j G j .

3. Si m runs the simulator of

PK

{(
{σ j },r, {v j }

)
: C (u−1) = hr (u−1)g

∑�−1
j=0(σ j G j ) ∧

Vj = g
v j

x+σ j , ∀ j ∈Z�

}
:

(a) On challenge c ∈Z∗p , Si m chooses {zσ j }, {zv j }, zr ∈R Z∗p .

(b) Finally, Si m computes D ←C c(u−1)hzr (u−1)g
∑�−1

j=0

(
zσ j G j

)
and

E j ←V
−zσ j −σ j c

j g zv j +v j c for every j ∈Z�.

4. Si m returns the transcript
{

y, {Ai }, {Vj }, {E j },D,c, {zσ j }, {zv j }, zr
}

.

Figure 4.5 – Simulator for the interactive range argument protocol,
based on the sumset decomposition

ure 4.5. Note that it is essentially the same simulator as for Theorem 4.6, with the appropriate

modifications for the sumset decomposition.

Communication and Computational Complexity. The communication load and computa-

tional complexity formulas are identical to the ones of Protocol 4.4. Moreover, the computation

of u is achieved in the same way as in Protocol 4.4. However, the parameter � is computed

as � = �(u, H(u−1)) 	 L+1 for H 	 uL . This implies that � is increased by one when com-

pared to Protocol 4.4. Furthermore, the complexities in this case apply for arbitrary ranges,

which makes them roughly twice as efficient. Thus, for the range [A,B ] with H = B − A, the

communication load is

Com(u,�)= 2� · (‖G1‖+
∥∥Zp

∥∥)+ (‖G1‖+2 ·∥∥Zp
∥∥) .
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The computational complexity of the prover amounts to (3�+2) exponentiations, and the one

of the verifier consists of (2�+3) exponentiations.

Concrete Example and Comparisons The performance of the different methods depends

on the application at hand as well as the assumptions one is willing to make. Assume, at

first, that all possible assumptions are acceptable. For intervals containing 7 elements or

less, employing the set membership proof presented in Section 3.3 directly would be more

efficient. Beyond 7, elements and for ranges smaller than 122 bits, the sumset based range

proof presented in Protocol 4.5 outperforms all other existing range proofs. For ranges that

are larger than 122 bits, the square decomposition method by Lipmaa in [Lip03] and by Groth

in [Gro05] are favorable as they are mostly independent of the size of the interval. However, the

prover will need to run the Rabin-Shallit algorithm (or an equivalent algorithm) to represent

numbers as the sum of four squares (three in the case of [Gro05]) and this kind of algorithm

has a quadratic complexity in the bit-length of the number to be decomposed. This means

that for a n bit-length number, the complexity will be O(n2).

Note that the different existing protocols have different security goals. In order to provide

meaningful comparisons, one has to set a unique security objective and perform the com-

plexity computations accordingly. The security goal is set to 128 bit security for this thesis,

meaning that a cheating prover will succeed with a soundness probability of at most 2−128.

For the protocols presented in this chapter, this security goal implies that the security pa-

rameter k has to be k 
 256+ log2 u. Recall that the security parameter defines the size of

the group G1 (‖G1‖ = k). In the following, it is considered that ‖G1‖ = 256 to ease compar-

isons with other protocols. Nevertheless, when used in practice, the size of G1 should be

‖G1‖ = 256+ log2 u. Previous range proofs were often defined with a 80 bit security goal,

therefore their complexities become significantly higher with the 128 bit security objective.

As the protocols in this chapter require bilinear pairings, it is important to recall that the sizes

of G1 and GT will depend on the security objectives. Galbraith, Paterson, and Smart provide

a detailed explanation in [GPS08] on which size to use for G1 and GT according to different

security settings and requirements. Two different recommendations are specified here. For

a 128 bit security, NIST [NIST12] recommends to use ‖G1‖ = 256 bits and ‖GT‖ = 3072 bits.

However, Lenstra [Len06] recommends the use of ‖G1‖ = 256 bits and ‖GT‖ = 4440 bits.

Before explaining the details of the comparisons, a concrete example is provided. Assume

that a bank wants to provide special offers from a third party to its young clients. However

the exact age of clients should not be divulged to the third party. This offer targets those who

are born between 1990 and 1998 (not included). The conversion of the birth date into the

Unix Epoch system, results in a target range of [631152000,883612800]. Figure 4.6 provides a

comparison amongst the relevant protocols, ordered by communication complexity. Figure C.1

in Appendix C provides a comparison regarding computational complexity, with the same

order as in Figure 4.6.
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Scheme Communication Complexity

CCs_AND_Lenstra
63264 bits

(Protocol 4.2 with [Len06] recommendations)
CCs_AND_NIST

54528 bits
(Protocol 4.2 with [NIST12] recommendations)
Lipmaa [Lip03]

36352 bits
(Sum of 4 squares)
Boudot [Bou00]

32294 bits
(Square + CFT [CFT98b])
Groth [Gro05]

29440 bits
(Sum of 3 squares)
Scemama [Sce09]

28668 bits
(Square + CFT [CFT98b])
CCs_AND_Arfaoui

19200 bits
(AND composition with Protocol 4.4)
Groth [Gro11]

12032 bits
(binary decomposition of commitments of commitments)
Sumset based range proof

11008 bits
(Protocol 4.5)

Figure 4.6 – Communication load comparison for range proof [631152000,883612800]

The first schemes discussed, are the ones of Lipmaa [Lip03] and Groth [Gro05]. Both of them

are based on the sum of squares, and were initially defined for 80 bit security. Moreover, they

are focused on positivity testing, which means that two range proofs are required in order to

handle arbitrary ranges. The communication load equation is solely provided here, with the

values of the parameters. The details of those parameters can be found in [Lip03]:

Com[Lip03] = 2 ·
(
6‖G‖+14k+5B +10‖F (k)‖+ 5

2
‖M‖

)
,

Com[Gro05] = 2 · (5‖G‖+11k+4B +8‖F (k)‖+2‖M‖) ,

where ‖M‖ =B = ‖G‖ = 1024, k = 128, and ‖F (k)‖ = 256.

The schemes of Boudot [Bou00] and Scemama [Sce09] are both based on the conjunction of a

square proof with the Chan et al. method [CFT98b]. Here again, these schemes were designed

with 80 bit security. The communication load equation is solely provided here, with the values

of the parameters. The details of those parameters can be found in [Bou00]:

Com[Bou00] = 14+7s+58t +18‖n‖+5‖b‖+7‖b−a‖ ,

Com[Sce09] = 12+6s+50t +16‖n‖+5‖b‖+6‖b−a‖ ,

where s = 40, t = 128, ‖n‖ = 1024, and ‖b‖ = ‖b−a‖ = 512. Note that the upper bound of the

range has to be lower than 512 bits for both of these schemes.
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The second scheme of Groth [Gro11] achieves a weaker security than existing range proofs.

Moreover, it requires a non-intuitive description with a binary decomposition of commitments

of commitments. Due to the difficulty of understanding the protocol itself, several mistakes

are present in the original paper. A preliminary corrected version has been privately disclosed

to the author of this thesis. Although the security proof is still difficult to analyse, a corrected

version should be publicly released soon. The communication load achieved by the protocol

in the corrected version of [Gro11], amounts to 17+10
(
log2 (B − A)

)1/3 group elements.

The CCs_AND_Lenstra and the CCs_AND_NIST schemes correspond to Protocol 4.2 with the

recommendations for group size from Lenstra [Len06] and from NIST [NIST12] respectively.

Recall that the communication load of Protocol 4.2 is:

ComProtocol 4.2(u,�)= 2� · (‖G1‖+‖GT‖+2 ·∥∥Zp
∥∥)+ (‖G1‖+2 ·∥∥Zp

∥∥) .

The values of
∥∥Zp

∥∥, ‖G1‖, and ‖GT‖ depend on the recommendations used. Computing u

is achieved by solving equation (4.5) (Section 4.3), which will determine � as u� > (B − A).

Note that equation (4.5) depends on the values of
∥∥Zp

∥∥, ‖G1‖, and ‖GT‖, thus different

recommendations will lead to different values for u and �. The following communication load

equations are therefore obtained:

ComCCs_AND_Lenstra(26,6)= 2 ·6 · (256+4440+2 ·256)+ (256+2 ·256)

= 63264 bits,

ComCCs_AND_NIST(22,7)= 2 ·7 · (256+3072+2 ·256)+ (256+2 ·256)

= 54528 bits.

Considering the communication load of previous range proofs with similar security require-

ments, CCs_AND_Lenstra becomes more efficient when �	 2. CCs_AND_NIST becomes more

efficient when � 	 3. If the computation of u is restricted with equation (4.5), this leads to

ranges that are smaller in size than 169 in the case of CCs_AND_Lenstra, and ranges that are

smaller in size than 2744 in the case of CCs_AND_NIST. These limits are obtained by solving

the following equations4:

�	 28668− (‖G1‖+2 ·∥∥Zp
∥∥)

2 · (‖G1‖+‖GT‖+2 ·∥∥Zp
∥∥) , and

u logu 	 � ·
(‖G1‖+‖GT‖+2 ·∥∥Zp

∥∥)
‖G1‖

.

4The first equation is obtained from ComProtocol 4.2(u,�)	Com[Sce09].
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The CCs_AND_Arfaoui scheme corresponds to the AND composition applied to Protocol 4.4.

The principal advantage of this scheme is that it replaces the elements from GT with elements

from G1. Thus the communication load becomes:

ComCCs_AND_Arfaoui(u,�)= 4� · (‖G1‖+
∥∥Zp

∥∥)+ (‖G1‖+2 ·∥∥Zp
∥∥) .

As no elements from GT are transmitted, the more restrictive recommendations from

Lenstra [Len06] will only impact the computational complexity of the prover during the

setup phase. Finding the value of u will also be achieved by solving equation (4.5), how-

ever the value of c2 is changed to c2 = 2 · ‖G1‖+2 ·∥∥Zp
∥∥. Therefore, equation (4.5) becomes

u
(
logu

)2 = 4log(B +1− A). This implies that u = 11 which in turn implies that �= 9. Thus,

the communication load sums up to ComCCs_AND_Arfaoui(11,9) = 19200 bits. Compared to

previous range proofs with similar security requirements, the CCs_AND_Arfaoui scheme is

more efficient for �	 13. This is obtained by solving:

�	 28668− (‖G1‖+2 ·∥∥Zp
∥∥)

4 · (‖G1‖+
∥∥Zp

∥∥) .

The restriction (B − A) < u� implies that u
(
logu

) 	 4�. Therefore, the CCs_AND_Arfaoui

scheme is more efficient for ranges smaller than 50 bits.

Last but not least, the communication load of the sumset based range proof presented in

Protocol 4.5, is obtained by:

ComProtocol 4.5(u,�)= 2� · (‖G1‖+
∥∥Zp

∥∥)+ (‖G1‖+2 ·∥∥Zp
∥∥) .

Note that the computation of u is identical to the one of the CCs_AND_Arfaoui scheme.

However, the definition of � differs from the previous cases. The value of � for the sumset

based range proof is equal to the � for the CCs_AND_Arfaoui scheme plus one. Therefore,

ComProtocol 4.5(11,10)= 11008 bits. Compared to previous range proofs with similar security

requirements, the sumset based range proof is more efficient for �	 26. This is obtained by

solving:

(�+1)	 28668− (‖G1‖+2 ·∥∥Zp
∥∥)

2 · (‖G1‖+
∥∥Zp

∥∥) .

The restriction (u−1)H <u�+1 implies that u
(
logu

)	 4�. Therefore, the sumset based range

proof is more efficient for ranges smaller than 122 bits. Above this limit, the sum of squares

method becomes more efficient.
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In the contentious case of [Gro11], their range proof is supposed to be more efficient for ranges

between 39 and 941 bits. Bellow 39 bits, the sumset based range proof remains more efficient,

and above 941 bits, the sum of squares method from [Gro05] becomes more efficient. The lower

bound limit can be derived by assuming that 4� = u(log2 u), that 4log2 (B − A) = u(log2 u)2,

and by solving:

0	
(
17+10

(
log2 (B − A)

)1/3
)
− (4(�+1)+3) .

The upper bound is found by solving: 29440

(
17+10

(
log2 (B − A)

)1/3
)
‖G1‖ .
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Chapter 5

Non-Interactive Range Proofs,
Without Random Oracles

This chapter starts by presenting the non-interactive range proof primitive in Section 5.1.

Section 5.2 then describes prior and related work, as well as the recent results of Fauzi, Lipmaa,

and Zhang [FLZ13], and Lipmaa [Lip14b, Lip16]. The difficulties in creating a non-interactive

range proof will be illustrated in Section 5.3, by showing that the non-interactive range proof

of Yuen et al. [YHM+09] is insecure. Section 5.4 will explain a non-interactive subargument

that is necessary for the non-interactive range proof presented in Section 5.5. The main results

of sections 5.3, 5.4, and 5.5 are published in the proceedings of FC 2012 [CLZ12] as a joint work

with Helger Lipmaa and Bingsheng Zhang.

5.1 Non-Interactive Range Proofs Primitive

In this chapter, the problem being solved is an extension of the range proof explained in the

previous chapter. This extension restricts the type of interactions between the prover and

the verifier. In the last chapter, provers and verifiers were allowed to interact with each other,

meaning that they could reply to one another until the necessary messages were exchanged

to complete the range proof. In this chapter, the interactions are suppressed and communi-

cations are reduced to a single message sent by the prover to any verifiers. The focus in this

chapter is, therefore, to provide non-interactive zero-knowledge (NIZK) range arguments to

solve the non-interactive range proof primitive. The straightforward solution consists of using

a generic transformation of the interactive protocols in order to obtain their non-interactive

counterpart in the random oracle model (see Section 2.3.6). The goal of this chapter is to

provide an alternative without the random oracle model. The security will thus be proven in

the common reference string model (see Section 2.2.4) instead of the random oracle model.

Users will thus have the possibility of selecting protocols according to which security model

suits them best, as explained in Section 2.3.6.
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In addition to the usual interest for range proofs (as explained in Section 4.1), the non-

interaction property is also gaining popularity. Indeed, an increasing number of applications

require some statements to be verified multiple times by different parties, provided that these

verifiers are disallowed to interact with provers. Thus, the non-interaction property solves

the problem by sending (or broadcasting) a single message containing the entire proof of a

statement to be proven. Concrete examples of applications that require non-interactive range

proofs include e-voting and e-auctions. Non-interactive range proofs are also starting to be

considered as cryptographic building blocks, as they are included in new primitives such as

graded signatures.

In the case of e-voting, the validity of ballots needs to be verified. Not only does this verification

need to be performed by the tallying server when votes are being cast, verification also needs

to be possible by third parties for election monitoring purposes. However, these third parties

do not have access to voters. Instead they receive validity proofs as single non-interactive

messages. Therefore, non-interactive range proofs are essential for election monitoring in

e-voting. A similar requirement is present in e-auctions. For instance, in the case of proxy

auctions, the auction server manages bids, updates the current price of items to the winning

bid, and keeps the maximum bid of the winning client private. However, the trust of users

in the auction server is questionable as it could artificially set the price to the maximum

bid of the winning client. Hence, clients need to check the correctness of all of the updates

performed on the price of the item, as well as the current price, without being able to contact

the other bidders. This is achieved by transmitting non-interactive proofs to the clients,

as demonstrated in [CHS04]. The new primitive called graded signatures was introduced

recently by Osmanoglu in [Osm15]. In this primitive, the signature process of registered users

is assimilated as a positive grade. Thus, the aim of the primitive is to collect and combine these

signatures into a general graded signature, that conceals the identity of the signers. Osmanoglu

shows in [Osm15] how to construct such a graded signature scheme from a non-interactive

range proof.

Definition 5.1 (Non-Interactive Range Proof )

Let C = (Gencom ,Com,Open) be the generation, the commit, and the open algorithm of a

string commitment scheme in the common reference string (CRS) model. A non-interactive

range proof with respect to the commitment scheme C in the CRS model is a special case of

the interactive range proof, where communications are reduced to a single message and a

common reference string is assumed to be shared among users. Hence, for an instance c, a

non-interactive range proof with respect to commitment scheme C and integer range [A,B ] is

a non-interactive zero-knowledge proof of knowledge (NIZK-PK) for the following statement:

NIZK-PK
{
(σ,ρ) : c ←Com(σ; ρ)∧σ ∈ [A,B ]

}
, where A,B ∈N.

Remark: As in the case of interactive range proofs, the proof system for non-interactive

range proofs is defined for any commitment scheme. The statement being proven is the ability

for the prover to open his commitment to an element contained in the public range [A,B ]. It is
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also important to note that non-interactive range proofs are often non-interactive arguments,

for the same reasons as for interactive range proofs. Since the cryptographic literature (past,

recent, and related) refers to the problem as a “non-interactive range proof”, that term is used

in this thesis. Some additional explanations are provided in the remarks that are in Section 4.1

and Section 3.1.

An alternative definition can be obtained by replacing the string commitment scheme with a

public key cryptosystem.

Definition 5.2 (Non-Interactive Range Proof with respect to public key cryptosystems)

Let E = (Genpkc ,Enc,Dec) be the generation, the encryption, and the decryption algorithm

of a public key cryptosystem. A non-interactive range proof with respect to the public key

cryptosystem E is a special case of the non-interactive range proof with respect to the com-

mitment scheme C in the CRS model. For an instance e, a non-interactive range proof with

respect to the public key cryptosystem E and integer range [A,B ], is a non-interactive proof of

knowledge for the following statement:

NIZK-PK
{
(σ,ρ) : e ← Enc(σ; ρ)∧σ ∈ [A,B ]

}
, where A,B ∈N.

Remark: In Definition 5.2, the proof system for non-interactive range proofs is defined for

any public key cryptosystem. The statement being proven is the ability for the prover to

decrypt his ciphertext into an element contained in the public range [A,B ] .

The common approach to construct non-interactive arguments is to apply known generic

transformations to interactive arguments. However, generic transformations often require

specific conditions and impose drawbacks. For instance, several generic transformations such

as the Fiat-Shamir heuristic [FS86], require the security to be proven in the random oracle

model.

A better, but more complex, approach is to directly construct the non-interactive argument

with a security proof alongside it. Unfortunately, the difficulty of this approach can easily lead

to insecure protocols. This is, for instance, the case with the protocol presented by Yuen et al.

in [YHM+09]. The insecurity of their protocol is demonstrated in Section 5.3, where the main

idea of the attack comes from using Pedersen commitments in a group of known order. As they

rely on the Lagrange theorem to prove that a non-negative number is the sum of four squares,

their protocol can only conclude that the sum of four squares is computed modulo the group

order. Hence an attacker can prove that any number is “non-negative” and completely break

the protocol in [YHM+09].

A correct solution is achieved in Section 5.5, where the NIZK range proof presented works in

the common reference model for an encrypted secret σ, with respect to the lifted BBS public

key cryptosystem [LZ12, BBS04] (see Section 2.4.4). Note that if σ needs to be committed, one

can use the lifted BBS cryptosystem as a perfectly binding commitment. The construction of

the NIZK range proof is achieved by using recent NIZK arguments by Groth and Lipmaa [Gro10,
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Lip12a]. It also uses the additive combinatorics results from Section 4.4, that decompose the

range proof σ ∈ [0, H ] based on the fact that (u−1)σ ∈ (u−1)·[0, H ] if and only if σ=∑�−1
i=0 Giσi

and σi ∈ [0,u−1], where Gi are as defined in Section 4.4. However, in contrast to Section 4.5,

the proof that σi ∈ Zu is done without the use of a signature scheme, but rather with a

recursive use of the method in Section 4.4 and from [LAN02]. This recursive method shows

that σi =∑�v−1
j=0 G ′jσ

′
j ,i with σ′j ,i ∈ [0,1]. Here, �v := ⌊

log2(u−1)
⌋

. By using the commitment

scheme of [Gro10, Lip12a] that enables the succinct commitment to a vector (σ0, . . . ,σ�−1),

and the Hadamard product argument of [Gro10, Lip12a] (see Section 2.4.7), all �v small range

proofs can be done in parallel. The new range proof does not rely on the random oracle

model nor use any proofs of knowledge of signatures. Furthermore, the NIZK range proof

achieves sublinear communication and computational complexity by using the Groth-Lipmaa

knowledge commitment [Gro10, Lip12a] (see Section 2.4.2) in conjunction with the lifted BBS

cryptosystem [LZ12, BBS04] (see Section 2.4.4).

As a brief reminder, to commit to a vector a = (a0, . . . , an−1), the Groth-Lipmaa knowledge com-

mitment first takes the following as input: a common reference string crst , a, and randomness

r . It then outputs the commitment
(

A, Â
)

such that(
A, Â

)=Comt (crst ; a;r )

=
(

g r
t

n−1∏
i=0

g ai

t ,λi
, ĝ r

t

n−1∏
i=0

ĝ ai

t ,λi

)
,

where gt ,λi and ĝ t ,λi are parameters contained in crst such that ĝ t ,λi = g α̂
t ,λi

for some secret

α̂, and gt ,λi = g xλi

t for some secret x and where {λi }i∈Zn
⊂N is such that ∀i < j : 0< λi < λ j .

Furthermore, t ∈ {1,2} defines either a generator g1 ∈G1 or g2 ∈G2.

The lifted BBS cryptosystem [LZ12, BBS04] encrypts a message σ with randomness r f and rh

with the following ciphertext: (
cg ,c f ,ch

)= Encpk
(
crs1;σ;r f ,rh

)
=

(
g

r f +rh+σ
1 , f r f ,hrh

)
,

where the secret key is sk= (sk1,sk2) and the public key is pk= (
g1, f ,h

)= (
g1, g 1/sk1

1 , g 1/sk2
1

)
.

Further details can be found in Section 2.4.4.

The NIZK range proof described in this chapter requires a subargument that a knowledge-

committed value is equal to a lifted BBS encrypted value. A novel solution for this subargument

is described in Section 5.4, where the use of knowledge assumptions enables this subargu-

ment to be computationally more efficient than the one constructed by using Groth-Sahai

proofs [GS08, GS12a], while keeping an identical communication load.
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5.2 Prior, Recent, and Related Work

Although the interest in interactive range proofs started as early as 1987 with the work of

Brickell et al. in [BCDvdG87], it is only in 2009 that the first NIZK range proof without random

oracles was proposed by Di Crescenzo, Herranz, and Sáez in [CHS04]. However their solution

is mainly of theoretical value. Their range proof targets statements of the form σ> L, where σ

is decomposed in its binary form. Using the technique of Fischlin [Fis01] (although not cited),

they reduce the complexity of their algorithm to the bit length of L. Let n = log2 L be the bit

length of L, then the proof system of [CHS04] requires at least n NIZK proofs of quadratic non

residuosity from [SCP94].

The second attempt was undertaken by Yuen et al. in [YHM+09]. Their scheme uses the

Lagrange theorem to decompose a positive number as the sum of four squares, similarly to

the interactive version proposed by Lipmaa in [Lip03]. However the scheme in [YHM+09] uses

Pedersen commitments with known group order, which render the scheme insecure as will be

demonstrated in Section 5.3.

The range proof from Rial et al. [RKP09] combines the range proof of [CCs08] (described

in Protocol 4.1 and explained in Section 4.3) with the Groth-Sahai NIZK proofs [GS08] and

P-signatures [BCKL08]. However, the [RKP09] range proof is not claimed to be zero-knowledge,

but only non-interactive witness indistinguishable (NIWI). It is nevertheless claimed in [RKP09]

that NIZK should be achievable with the techniques from Groth-Sahai [GS08].

The range proof of Chaabouni, Lipmaa, and Zhang in [CLZ12], which is the focus of this

chapter, opened the way for two more recent improvements [FLZ13, Lip14b, Lip16]. The

improvement proposed by Fauzi, Lipmaa, and Zhang in [FLZ13] is to replace the permutation

argument used in [CLZ12] by a shift argument. This replacement made it possible for them

to obtain a protocol that is computationally more efficient with a slight communication

efficiency improvement as well. Furthermore, the latest improvements brought by Lipmaa

in [Lip14b, Lip16], enhance not only the shift argument, but also the product argument

needed in [CLZ12] and in [FLZ13]. These enhancements allow for a major improvement in

the computational complexity and in the communication load.

A related argument to the NIZK range proof is described in [FLZ14] with the construction

of several NIZK set operations. The most notable set operation achieved is the pairwise

multiset sum equality test (PMSET), where the prover aims to show that for four committed

sets A1,A2,A3, and A4, all the elements contained in A1 and in A2 appear as many times

as in A3 and in A4, regardless of their sorting or of their set membership proof. The PMSET

argument then allows them to achieve other set operations such as the NIZK subset argument,

the NIZK set intersection and union argument, or the NIZK set difference argument.
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5.3 Breaking the COCOON 2009 NI Range Proof

In [YHM+09], Yuen et al. proposed a non-interactive range proof. This section shows that

their argument is not secure.

Their goal was to prove that a committed secret σ is in some range [A,B ]. To do so they prove

that both (σ− A) and (B −σ) are non-negative by making use of the Lagrange theorem stating

that any non-negative integer can be decomposed as the sum of four squares. Hence,

σ− A =
4∑

j=1
x2

1 j and B −σ=
4∑

j=1
x2

2 j , (5.1)

for some xi j . The range proof of [YHM+09] is based on (symmetric) bilinear groups of com-

posite order, that is, on bilinear groups (n,G1,GT,e), where n = pq . To commit to a message σ,

the committer picks a random1 r ∈Zq and computes C = gσhr , where g is a random generator

of G1 (of order n), and h is a random generator of the subgroup Gq of G1 with order q . Given

C , σ is uniquely determined in Zp , as C q = gσq .

In their range proof, the prover finds the witnesses xi j of equation (5.1) and outputs a proof

π=
({

C1 j ,C2 j
}

j∈{1,2,3,4} ,C ,ϕ1,ϕ2

)
,

where

C ≡ gσhr ∈G1,

Ci j ≡ g xi j hri j ∈G1 for i ∈ {1,2} and j ∈ {1,2,3,4},

ϕ1 ≡ g−r+2
∑4

j=1 r1 j x1 j ·h
∑4

j=1 r 2
1 j ∈G1,

ϕ2 ≡ g r+2
∑4

j=1 r2 j x2 j ·h
∑4

j=1 r 2
2 j ∈G1.

The verifier checks if

e(h,ϕ1)= e(g AC−1, g )
4∏

j=1
e(C1 j ,C1 j ), and (5.2)

e(h,ϕ2)= e(C g−B , g )
4∏

j=1
e(C2 j ,C2 j ). (5.3)

Now assume that a malicious prover P� picks an integer σ∗ ∈ {
0, . . . , p−1

}
\[A,B ]. This implies

that either (σ∗ − A) or (B −σ∗) is negative as an integer. Suppose (B −σ∗)< 0, then P� chooses{
x∗2 j

}
j∈{1,2,3,4}

such that n+ (B −σ∗) =∑4
j=1(x∗2 j )2. Then P� sets C ← gσ∗hr , C2 j ← g x∗2 j hr2 j ,

ϕ1 as above, and ϕ2← g r+2·∑4
j=1 r2 j x∗2 j ·h

∑4
j=1 r 2

2 j . Let h = gα for some α. It is easy to see that the

1In [YHM+09], the scheme uses r ∈Zn to facilitate their security proof.

130



5.4. Equality Subargument of a lifted BBS Encryption and a Knowledge Commitment

verification equation (5.3) still holds:

e(C g−B , g )
4∏

j=1
e(C2 j ,C2 j )= e(g , g )(σ∗−B)+αr+∑4

j=1(x∗2 j+αr2 j )2

= e(g , g )(σ∗−B)+αr+∑4
j=1(x∗2 j )2+∑4

j=1 α
2r 2

2 j+2
∑4

j=1 αr2 j x∗2 j

= e(g , g )
α·

(
r+2

∑4
j=1 r2 j x∗2 j+α·

∑4
j=1 r 2

2 j

)
= e(h,ϕ2).

An identical construction can be made for the case that (σ∗ − A)< 0, where the focus will be

put on the verification equation (5.2). Therefore, it can be concluded that P� is a polynomial

time adversary who can always break the scheme. Hence, the NIZK range proof in [YHM+09]

is not sound.

5.4 Equality Subargument of a lifted BBS Encryption

and a Knowledge Commitment

The range proof of Section 5.5 requires a subargument that if (Ac , Âc ) is a knowledge-commitment

of some σ (with n = 1 and some randomness r̃ = rc + r f + rh), and (Ag , A f , Ah) is a lifted BBS

ciphertext of some σ′ (with randomness r = r f + rh), then σ = σ′. That is, Ac = g r̃
1 gσ

1,λ0
=

g
r f +rh+rc

1 gσ
1,λ0

and (Ag , A f , Ah)= (g
r f +rh+σ
1 , f r f ,hrh ) for randomness (rc ,r f ,rh) and public key

( f ,h). The generator g1,λ0 will be required in Section 5.5.

Computational assumptions. Beyond the need for asymmetric bilinear groups (see Sec-

tion 2.1.3) and the associated computational hardness assumptions, the Groth-Lipmaa knowl-

edge commitment additionally requires both the Λ-power symmetric discrete logarithm

(Λ-PSDL) assumption and the Λ-power knowledge of exponent (Λ-PKE) assumption. Let

PGa be an asymmetric pairing group generator that on input 1κ outputs descriptions of mul-

tiplicative cyclic groups G1, G2, and GT of prime order p where
∥∥p

∥∥ = κ. Let G∗1 =G1 \ {1},

G∗2 =G2 \ {1} and let g1 ∈G∗1 , g2 ∈G∗2 . The generated groups are such that there exists an

admissible bilinear map e :G1×G2→GT, meaning that:

• for all a,b ∈Zp it holds that e(g a
1 , g b

2 )= e(g1, g2)ab ;

• e(g1, g2) �= 1; and

• the bilinear map is efficiently computable.

One can implement an optimal asymmetric Ate pairing [HSV06] over a subclass of Barreto-

Naehrig curves [BN05] very efficiently [GSNB11] (in that case, at a security level of 128-bits, an

element of G1/G2/GT can be represented in, respectively, 256/512/3072 bits).

131



Chapter 5. Non-Interactive Range Proofs, Without Random Oracles

TheΛ-PSDL assumption illustrates the difficulty for an adversary to produce the secret element

x from the set
{

g xi

1 , g xi

2

}
i∈{0}∪Λ, where Λ = {λi }i∈Zn

⊂N such that ∀i < j : 0 < λi < λ j . The

Λ-PKE assumption regarding a bilinear group G1 for t = 1 or G2 for t = 2, states that given

the set
{

g xi

t , g α̂xi

t

}
i∈{0}∪Λ where α̂ is secret, an adversary A can output a pair (c, ĉ) such that

ĉ = c α̂, only if he knows a set {ai }i∈{0}∪Λ such that c =∏
i∈{0}∪Λ

(
g xi

t

)ai
. Note that t defines the

generators g1 ∈G1 \ {1} and g2 ∈G2 \ {1}. The Λ-PSDL and Λ-PKE assumptions from [Lip12a]

are formally explained in Sections 2.2.2 and 2.2.5. The lifted BBS cryptosystem requires the

decision linear (DLIN) assumption. This assumption states that for either a bilinear group G1

for t = 1 or G2 for t = 2, the adversary is unable to distinguish between gσ+τ
t and g z

t for random

σ, τ, z, when the adversary input is
(

f ,h, f σ,hτ
)

with f , h taken randomly from the bilinear

group corresponding to t . Therefore, the Λ-PSDL, the Λ-PKE, and the DLIN assumptions are

needed for the subargument of this section.

System parameters: Λ= {λi }i∈Zn
⊂N such that ∀i < j : 0<λi <λ j .

Common reference string generator Gencrs_sub(1κ):
Set parambp := (p,G1,G2,GT,e)←PGa(1κ);
Generate random αg ,α f ,αh , α̂,αg /c , x ∈R Z∗p ;
Let g1 ∈R G1 \ {1} and g2 ∈R G2 \ {1},

denote g1,λ0 ← g xλ0

1 , g̊1← g
αg

1 , ĝ1← g α̂
1 , ĝ1,λ0 ← g α̂

1,λ0
,

g2,λ0 ← g xλ0

2 , g̊2← g
αg

2 , ĝ2← g α̂
2 , ĝ2,λ0 ← g α̂

2,λ0
,

g̊1, f ← g
α f

1 , g̊1,h ← gαh
1 , g̊1,g /c ← g

αg /c

1 ,

g̊2, f ← g
α f

2 , g̊2,h ← gαh
2 , g̊2,g /c ← g

αg /c

2 ,

and g̊1,λ0 ← g
αg /c

1,λ0
;

Set the common reference string

crs←
{
parambp; g1, g1,λ0 , g̊1, ĝ1, ĝ1,λ0 , g̊1, f , g̊1,h , g̊1,g /c , g̊1,λ0 ,

g2, g2,λ0 , g̊2, ĝ2, ĝ2,λ0 , g̊2, f , g̊2,h , g̊2,g /c

}
;

A third party also creates sk := (sk1,sk2) ∈R (Z∗p )2,

and sets pk := ( f ,h, f̊ , h̊)← (g 1/sk1
1 , g 1/sk2

1 , g̊ 1/sk1

1, f , g̊ 1/sk2

1,h ).

Common inputs: (crs; pk, Ag , A f , Ah , Ac ),

where (Ag , A f , Ah)=
(
g

r f +rh+σ
1 , f r f , hrh

)
,

and Ac = g r̃
1 gσ

1,λ0
= g

r f +rh+rc

1 gσ
1,λ0

.

Protocol 5.1a – Setup of the equality subargument
of a knowledge committed value and its lifted BBS encryption

Protocol explanation. The subargument of this section, described in Protocol 5.1a and 5.1b,

is constructed by combining ideas from [GS08, GS12a] and [Gro10, Lip12a]. Intuitively, for
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Argument generated by the prover:

NIZK-PK
{

(σ,r f ,rh , r̃ ) :
(

Ag , A f , Ah
)= (

g
r f +rh+σ
1 , f r f , hrh

) ∧
Ac = g r̃

1 gσ
1,λ0

}
Set rc ← (r̃ − r f − rh), Âc ← ĝ r̃

1 ĝσ
1,λ0

, Åg /c ← g̊σ−rc
1,g /c g̊−σ1,λ0

,(
Åg , Å f , Åh

)← (
g̊

r f +rh+σ
1 , f̊ r f , h̊rh

)
.

Pick random R f ,Rh ∈R Z∗p .

Set
(
C f , Ĉ f

)← (
g

R f

2 g
r f

2,λ0
, ĝ

R f

2 ĝ
r f

2,λ0

)
∈G2

2,(
Ch , Ĉh

)← (
g Rh

2 g rh

2,λ0
, ĝ Rh

2 ĝ rh

2,λ0

)
∈G2

2,(
πg , π̊g

)← (
g

r̃+R f +Rh

1 , g̊
r̃+R f +Rh

1

)
∈G2

1,(
π f , π̊ f

)← (
f R f , f̊ R f

)
∈G2

1,

(πh , π̊h)←
(
hRh , h̊Rh

)
∈G2

1.

Send to the verifier the argument:

πce ← (
Åg , Å f , Åh , Âc , πg , π̊g , C f ,Ĉ f ,π f , π̊ f , Ch ,Ĉh ,πh , π̊h , Åg /c

)
.

Verification
(
crs; (Ag , A f , Ah , Ac ),πce

)
:

Verify that

e( f̊ , g2)
?= e( f , g̊2, f ), e(h̊, g2)

?= e(h, g̊2,h),

e(Åg , g2)
?= e(Ag , g̊2), e(Å f , g2)

?= e(A f , g̊2, f ),

e(Åh , g2)
?= e(Ah , g̊2,h), e(Âc , g2)

?= e(Ac , ĝ2),

e(π̊g , g2)
?= e(πg , g̊2), e(π̊ f , g2)

?= e(π f , g̊2, f ), e(π̊h , g2)
?= e(πh , g̊2,h),

e(g1,Ĉ f )
?= e(ĝ1,C f ), e(g1,Ĉh)

?= e(ĝ1,Ch),

and e(Åg /c , g2)
?= e(Ag /Ac , g̊2,g /c ).

Verify that

e( f ,C f )
?= e(π f , g2) ·e(A f , g2,λ0 ),

e(h,Ch)
?= e(πh , g2) ·e(Ah , g2,λ0 ),

and e(g1,C f Ch)
?= e(πg A−1

c , g2) ·e(Ag , g2,λ0 ).

Protocol 5.1b – Equality subargument of a knowledge committed value
and its lifted BBS encryption
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every multi-exponentiation hσ1
1 . . .hσm

m = t that needs to be proven, a verification equation

e(h1,Com(σ1))·· · ··e(hm ,Com(σm))= e(π, g2)e(t ,Com(1)) is provided, where π “compensates”

for the fact that Com(σi ) are probabilistic commitments. In addition, knowledge commit-

ments are used (though for small values 0 or 1 of n) so that all committed values can be

extracted. Since the argument uses three committed values (σ, r f , and rh) and three equa-

tions, according to Figure 4 of [GS07]2 (the full version of [GS08, GS12a]), the corresponding

pure Groth-Sahai argument has a length of 15 group elements. The subargument presented

here has the same length, but is computationally more efficient.

Theorem 5.1

The argument in Protocol 5.1b is a perfectly complete and perfectly zero-knowledge argument

that for some σ ∈Zp , r̃ ,r f ,rh ∈Z∗p , Ac = g r̃
1 gσ

1,λ0
and (Ag , A f , Ah) = (g r f +rh+σ, f r f ,hrh ). If

the {λ0}-PSDL assumption and the {λ0}-PKE assumption (in both G1 and G2) hold, then this

argument is computationally sound.

Clearly, this argument has a CRS of length Θ(1), its argument consists of 11 elements of

G1 and 4 elements of G2. The computational complexity of the prover is dominated by 13

exponentiations in G1 and 8 exponentiations in G2. The computational complexity of the

verifier is dominated by 33 pairings.

Proof

To show that the argument described in Protocol 5.1b is a NIZK argument, three security prop-

erties are proven: perfect completeness, computational soundness, and perfect zero-knowledge.

PERFECT COMPLETENESS: all verification equations hold as follows:

e( f̊ , g2) = e( f , g2)α f = e( f , g̊2, f );

e(Åg , g2) = e(Ag , g2)αg = e(Ag , g̊2);

e(Åh , g2) = e(Ah , g2)αh = e(Ah , g̊2,h);

e(π̊g , g2) = e(πg , g2)αg = e(πg , g̊2);

e(π̊h , g2) = e(πh , g2)αh = e(πh , g̊2,h);

e(g1,Ĉ f ) = e(g1,C f )α̂ = e(ĝ1,C f );

e(h̊, g2) = e(h, g2)αh = e(h, g̊2,h);

e(Å f , g2) = e(A f , g2)α f = e(A f , g̊2, f );

e(Âc , g2) = e(Ac , g2)α̂ = e(Ac , ĝ2);

e(π̊ f , g2) = e(π f , g2)α f = e(π f , g̊2, f );

e(g1,Ĉh) = e(g1,Ch)α̂ = e(ĝ1,Ch);

e(Åg /c , g2) = e(g̊σ−rc
1,g /c g̊−σ1,λ0

, g2) = e(g
(σ−rc )·αg /c−σ·αg /c ·xλ0

1 , g2) = e(gσ−rc
1 g−σxλ0

1 , g2)αg /c

= e(gσ−rc
1 g−σ1,λ0

, g̊2,g /c ) = e(Ag /Ac , g̊2,g /c ).

2This publication has several versions. The one referred here is the version published in April 2016.
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e( f ,C f )= e( f , g
R f

2 g
r f

2,λ0
)= e( f , g

R f

2 ) ·e( f , g
r f

2,λ0
)

= e( f R f , g2) ·e( f r f , g2,λ0 )

= e(π f , g2) ·e(A f , g2,λ0 ).

e(h,Ch)= e(h, g Rh
2 g rh

2,λ0
)= e(h, g Rh

2 ) ·e(h, g rh

2,λ0
)

= e(hRh , g2) ·e(hrh , g2,λ0 )

= e(πh , g2) ·e(Ah , g2,λ0 ).

e(Acπ
−1
g , g2) ·e(g1,C f Ch)= e(g r̃

1 gσ
1,λ0

· g−r̃−R f −Rh

1 , g2) ·e(g1, g
R f +Rh

2 ) ·e(g1, g
r f +rh

2,λ0
)

= e(gσ
1,λ0

· g−R f −Rh

1 , g2) ·e(g
R f +Rh

1 , g2) ·e(g
r f +rh

1 , g2,λ0 )

= e(gσ
1 , g2,λ0 ) ·e(g

r f +rh

1 , g2,λ0 )

= e(g
r f +rh+σ
1 , g2,λ0 )

= e(Ag , g2,λ0 ).

COMPUTATIONAL SOUNDNESS: By the {λ0}-PKE assumption in G1/G2, one can open the next

values:

(
Ac , Âc

) = (
g r̃

1 gσ
1,λ0

, ĝ r̃
1 ĝσ

1,λ0

)
,(

Ag , Åg
) = (

gσ′′
1 , g̊σ′′

1

)
,(

A f , Å f
) = (

f r f , f̊ r f

)
,(

Ah , Åh
) = (

hrh , h̊rh

)
,(

C f ,Ĉ f
) = (

g
R f

2 g
r ′f
2,λ0

, ĝ
R f

2 ĝ
r ′f
2,λ0

)
,

(
Ag /Ac , Åg /c

) = (
g
σ′r
1 g−σ

′
1,λ0

, g̊
σ′r
1,g /c g̊−σ

′
1,λ0

)
,(

πg , π̊g
) = (

g
r ′′σ
1 , g̊

r ′′σ
1

)
,(

π f , π̊ f
) = (

g
r ′′f
1 , g̊

r ′′f
1, f

)
,

(πh , π̊h) =
(
g

r ′′h
1 , g̊

r ′′h
1,h

)
,

and
(
Ch ,Ĉh

) = (
g Rh

2 g
r ′h
2,λ0

, ĝ Rh
2 ĝ

r ′h
2,λ0

)
.

Since Ac = g r̃
1 gσ

1,λ0
, Ag = gσ′′

1 , and Ag /Ac = g
σ′r
1 g−σ

′
1,λ0

, it implies that gσ′′
1 = g

σ′r+r̃
1 gσ−σ′

1,λ0
. Thus, if

σ �=σ′, an adversary can compute xλ0 ← (σ′′ −σ′r − r̃ )/(σ−σ′), and from this compute x and

thus break the {λ0}-PSDL assumption. (To verify whether x is the correct root, the adversary

can check that g xλ0

1 = g1,λ0 .) Thus σ=σ′, and thus also σ′′ =σ′r + r̃ and Ag = g
σ′r+r̃
1 .

As C f = g
R f

2 g
r ′f
2,λ0

, π f = g
r ′′f
1 , A f = f r f , and e( f ,C f ) = e(π f , g2) · e(A f , g2,λ0 ), this implies that

e( f , g
R f

2 g
r ′f
2,λ0

)= e(g
r ′′f
1 , g2)e( f r f , g xλ0

2 ), for an unknown x. Taking the discrete logarithm in both

sides of the last equation, the following is obtained:

R f /sk1+ r ′f xλ0 /sk1 = r ′′f + r f xλ0 /sk1

⇐⇒ (r f − r ′f )xλ0 =R f − r ′′f · sk1.

If r f �= r ′f , then xλ0 could be computed, and from it x can be derived which would break the
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{λ0}-PSDL assumption. Therefore, r f = r ′f and also C f = g
R f

2 g
r f

2,λ0
. Moreover, π f = g

r ′′f
1 = f R f .

With the same reasoning, rh = r ′h is obtained and therefore Ch = g Rh
1 g rh

1,λ0
and πh = hRh .

As C f = g
R f

2 g
r f

2,λ0
, Ch = g Rh

2 g rh

2,λ0
, πg = g

r ′′σ
1 , Ac = g r̃

1 gσ
1,λ0

, Ag = g
σ′r+r̃
1 , and e(g1,C f Ch)= e(πg A−1

c , g2)·
e(Ag , g2,λ0 ), this implies that

e(g1, g
R f +Rh+(r f +rh )xλ0

2 )= e(g
r ′′σ
1 g−r̃

1 g−σ1,λ0
, g2) ·e(g

σ′r+r̃
1 , g2,λ0 )= e(g

r ′′σ−r̃+(σ′r−σ+r̃ )xλ0

1 , g2)

for an unknown x. Taking the discrete logarithm in both sides of the last equation, the equation

becomes R f +Rh+(r f +rh)xλ0 = r ′′σ−r̃+(σ′r−σ+r̃ )xλ0 . Again, if (r f +rh) �= (σ′r−σ+r̃ ), then it is

possible to compute xλ0 and thus also x. Thus, σ′r+r̃ = r f +rh+σ, and thus also r ′′σ = r̃+R f +Rh .

This means that Ac = g r̃
1 gσ

1,λ0
and (Ag , A f , Ah)= (g

r f +rh+σ
1 , f r f ,hrh ).

PERFECT ZERO-KNOWLEDGE: to prove computational zero-knowledge, the following simulator

(Si m1,Si m2) is constructed. Si m1 creates a CRS according to the protocol together with a trap-

door td= (αg ,α f ,αh , α̂,αg /c , x). On input (crs, pk, Ag , A f , Ah , Ac , td), Si m2 picks z f , zh ∈R Zp ,

then sets C f ← g
z f

2 , π f ← f z f A−xλ0

f , Ch ← g zh
2 , πh ← hzh A−xλ0

h , and πg ← g
z f +zh

1 Ac A−xλ0

g . The

elements C f and Ch have the same distribution as the honestly generated ones, as z f and zh

have respectively the same distributions as
(
R f + r f xλ0

)
and

(
Rh + rh xλ0

)
. The success of the

verification equations can be checked for the choices of π f , πh , and πg . For example:

e(π f , g2)e(A f , g2,λ0 )=e( f z f A−xλ0

f , g2) ·e(A f , g2,λ0 )= e( f z f , g2)e(A−xλ0

f , g2)e(A f , g2,λ0 )

=e( f z f , g2)= e( f ,C f ),

and finally, e(Acπ
−1
g , g2) · e(g1,C f Ch)= e(g

−z f −zh

1 Axλ0

g , g2) · e(g1, g
z f +zh

2 )= e(Ag , g2,λ0 ). Hence

π f , πh , and πg will be accepted by the verification. Moreover, because these verification

equations fix π f , πh , and πg uniquely (given the inputs of Si m2 and as C f ,Ch are set with the

correct distribution), the tuple
(
C f ,π f ,Ch ,πh ,πg

)
comes from the correct distribution

Si m2 creates the knowledge elements (Åg , Å f , Åh , Âc , π̊g ,Ĉ f , π̊ f ,Ĉh , π̊h , Åg /c ) by using the

trapdoor, which will result in elements with the same distribution as the honestly generated

ones. For example, Åg /c ← (Ag /Ac )αg /c and Åg ← A
αg
g . The simulated argument will thus be:

πce ← (
Åg , Å f , Åh , Âc , πg , π̊g , C f ,Ĉ f ,π f , π̊ f , Ch ,Ĉh ,πh , π̊h , Åg /c

)
.

As the simulator Si m2 outputs an accepting argument πce with the exact same distribution as

the one from the honest prover, the argument achieves perfect zero-knowledge.

Remark: Professor Groth pointed out that the initial description [CLZ12] of the equality

subargument had the value Åg /c set to Åg /c = g̊σ
1,g /c . This is obviously an issue for the zero-

knowledge property, as a simulator Si m2, without the knowledge of σ, cannot produce the

element Åg /c with the same distribution as the prover would. Furthermore, perfect zero-
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knowledge is achieved with the corrected version present in this thesis, contrarily to the

claimed computational zero-knowledge from the initial description.

5.5 Lifted BBS Encryption Based Non-Interactive Range Proof

In the NIZK range proof presented in this section, the prover has an encrypted σ ∈Zp , and his

aim is to convince the verifier that σ ∈ [0, H ]. The encryption protocol used comes from the

lifted BBS cryptosystem (Genpkc ,Enc,Dec), as described in Section 2.4.4. It can be thought of

as a perfectly binding commitment scheme as long as decryption is not necessary. The Lipmaa

computationally binding knowledge commitment scheme (Gencom ,Com,Open), as described

in Section 2.4.2, will be used here to obtain a sublinear argument. Furthermore, the range

proof is based on results from Section 4.4. As a reminder, for H > 0, u > 1, and �(u, H) defined

as in Section 4.4,Theorem 4.10 states that σ ∈ [0, H ] if and only if for some σi ∈ [0,u−1], the

following holds:

(u−1)σ=
�(u,(u−1)H)−1∑

i=0
Giσi ,

where Gi ∈Z are values defined by equations 4.6 and 4.7. Moreover, for the binary decom-

position case (where u = 2), Lemma 4.8 implies that � 	 log2 H , which in turn implies that

�	 ⌊
log2 H

⌋
as � must be an integer. Therefore, from Corollary 4.12 and Theorem 4.10, it can

be concluded that σ ∈ [0, H ] if and only if for some σi ∈ [0,1], the following holds:

σ=
�log2 H�−1∑

i=0

⌊
H +2i

2i+1

⌋
σi .

The precise values of �(u, H) and Gi are not important for the protocol explanation. It is

sufficient to know that they can be efficiently evaluated.

Computational assumptions. The NIZK range proof of this section uses the Hadamard

product argument (see Section 2.4.7), the Lipmaa permutation argument (see Section 2.4.8),

and the subargument for lifted BBS encryption of a Lipmaa knowledge committed value

(explained in the previous section). The following assumptions are therefore required for the

NIZK range proof presented in this section: the bilinear groups associated computational

hardness assumptions (see Section 2.1.3), the Λ-power symmetric discrete logarithm (Λ-PSDL)

assumption, the Λ-power knowledge of exponent (Λ-PKE) assumption, and the decision linear

(DLIN) assumption. The Λ-PSDL and the DLIN assumptions are explained in Section 2.2.2.

The Λ-PKE assumption is explained in Section 2.2.5.
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System parameters: H ,u,Gi ,�,�v := ⌊
log2(u−1)

⌋
, and G ′j := ⌊

(u−1+2 j )/2 j+1
⌋

,
a progression-free set Λ= {λi }i∈Z�

⊂N such that ∀i < j : 0<λi <λ j ,
Λ̂ := {0}∪Λ∪2̂Λ,
Λ̃ :=Λ∪{

2λk −λ j
}

i ,k∈{0,...,�−1}∪2̂Λ∪ ({
2λk +λi −λ j

}
i , j ,k∈{0,...,�−1}∧i �= j \ 2 ·Λ

)
.

Common reference string generator Gencrs_ni r p (1κ):
Set parambp := (p,G1,G2,GT,e)←PGa(1κ);
Generate random α̂, α̃,αg ,α f ,αh ,αg /c , x ∈R Z∗p ;
Let g1 ∈R G1 \ {1} and g2 ∈R G2 \ {1},

denote gt ,s ← g xs

t , ĝ t ,s ← g α̂xs

t , g̃ t ,s ← g α̃xs

t , where s ∈ {0}∪ Λ̃, and t ∈ {1,2} ,

g̊1← g
αg

1 , g̊1,g /c ← g
αg /c

1 , g̊1, f ← g
α f

1 , g̊1,h ← gαh
1 ,

g̊2← g
αg

2 , g̊2,g /c ← g
αg /c

2 , g̊2, f ← g
α f

2 , g̊2,h ← gαh
2 ,

and g̊1,λ0 ← g
αg /c

1,λ0
;

Set D ←∏�−1
i=0 g2,λi , D̃ ←D α̃, Erot←∏�−1

i=0 g2,2λrot(i )−λi , Ẽrot← E α̃
rot

and
(
T ∗, T̂ ∗,T ∗2

)← (∏�−1
i=0 g

TΛ,rot(i )
1,λi

,
∏�−1

i=0 ĝ
TΛ,rot(i )
1,λi

,
∏�−1

i=0 g
TΛ,rot(i )
2,λi

)
,

where TΛ,rot(i )= ∣∣{ j ∈Z� : 2λi +λ j = 2λrot( j )+λrot−1(i )
}∣∣;

Set the common reference string

crs←

⎧⎪⎨⎪⎩
parambp;

(
g1,s , ĝ1,s , g̃1,s

)
s∈{0}∪Λ , g2,

(
ĝ2,s

)
s∈Λ̂ ,(

g2,s , g̃2,s
)

s∈Λ̃ ,
{

g̊ t , g̊ t ,g /c , g̊ t , f , g̊ t ,h
}

t∈{1,2} ,

g̊1,λ0 , D, D̃ , Erot, Ẽrot, T ∗, T̂ ∗, T ∗2

⎫⎪⎬⎪⎭ ;

Set crs1←
{
parambp;

(
g1s , ĝ1s , g̃1s

)
s∈{0}∪Λ

}
⊂ crs,

ĉrs1←
{
parambp;

(
g1s , ĝ1s

)
s∈{0}∪Λ

}
⊂ crs, and

c̃rs1←
{
parambp;

(
g1s , g̃1s

)
s∈{0}∪Λ

}
⊂ crs;

The prover creates a secret key sk := (sk1,sk2) ∈R (Z∗p )2,

and sets pk := ( f ,h, f̊ , h̊)←
(
g 1/sk1

1 , g 1/sk2
1 , g̊ 1/sk1

1, f , g̊ 1/sk2

1,h

)
.

Common inputs: (pk, Ag , A f , Ah , Ac , Âc ), where (Ag , A f , Ah)= (g r+σ
1 , f r f ,hrh )

and (Ac , Âc )=
(
g r̃

1 gσ
1,λ1

, ĝ r̃
1 ĝσ

1,λ1

)
, for r = r f + rh and r̃ = r + rc .

Protocol 5.2a – Setup of the non-interactive range proof protocol for the range [0, H ]
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Argument generated by the prover:

NIZK-PK
{

(σ,r f ,rh) :
(

Ag , A f , Ah
)= (

g
r f +rh+σ
1 , f r f , hrh

) ∧
σ ∈ [0, H ]

}
1. Compute (σ0, . . . ,σ�−1) ∈Z�

u such that (u−1)σ=∑�−1
i=0 Giσi .

2. For i ∈Z� compute
(
σ′0,i , . . . ,σ′

�v−1,i

)
∈Z�v

2 such that σi =∑�v−1
j=0 G ′j ·σ′j ,i .

3. For j ∈Z�v :

• Let r j ∈R Z∗p ,
(
B ′j , B̂ ′j

)
←Com1

(
ĉrs1;σ′j ,0, . . . ,σ′j ,�−1;r j

)
,

B ′j ,2← g
r j

2 ·
∏�−1

i=0 g
σ′j ,i

2,λi
.

• Create a Hadamard product argument
(
π′j , π̂′j

)
for

�(
B ′j , B̂ ′j

)�
=

�(
B ′j , B̂ ′j

)�
◦
�(

B ′j , B̂ ′j ,B ′j ,2

)�
.

4. For i ∈Z�, let ci ←∑�−1
k=i Gkσk .

5. Set r ′0,r ′1,r ′2 ∈R Z∗p ,
(
B †, B̂ †

)←Com1
(
ĉrs1;G0σ0, . . . ,G�−1σ�−1;r ′0

)
,(

C ,Ĉ ,C̃
)←Com1

(
crs1;c ;r ′1

)
,

and
(
Crot,Ĉrot,C̃rot

)←Com1
(
crs1;c1, . . . ,c�−2,c�−1,c0;r ′2

)
.

6. Create a Hadamard product argument
(
π×1 , π̂×1

)
for

�(
B †, B̂ †

)� =

(∏�v−1

j=0

(
B ′j

)G ′
j
,
∏�v−1

j=0

(
B̂ ′j

)G ′
j

)�
◦�(

Com1 (ĉrs1;G0, . . . ,G�−1;0) ,
∏�−1

i=0 g Gi

2,λi

)�
.

7. Create Lipmaa permutation argument
(

A∗, Â∗,π×2 , π̂×2 ,πrot
2 , π̂rot

2

)
for

rot
(�(

C ,C̃
)�)= �(

Crot,Ĉrot,C̃rot

)�
.

8. Create a Hadamard product argument
(
π×3 , π̂×3

)
for

�(
C /B †,Ĉ /B̂ †

)� =�(
Crot,Ĉrot

)�◦�(Com1 (ĉrs1;1,1, . . . ,1,0;0) ,
∏�−2

i=0 g2,λi

)�
.

9. Create a Hadamard product argument
(
π×4 , π̂×4

)
for

�(
Au−1

c , Âu−1
c

)� =�(
C ,Ĉ

)�◦ �(Com1 (ĉrs1;1,0, . . . ,0,0;0) , g2,λ0

)�.

10. Create an equality subargument πce
5 that Ac commits to the same value

that
(

Ag , A f , Ah
)

encrypts, using the argument from Section 5.4.

11. Send to the verifier the argument:

π←
((

B ′j , B̂ ′j ,B ′j ,2,π′j , π̂′j
)

j∈Z�v

,
(
B †, B̂ †

)
,
(
C ,Ĉ ,C̃

)
,
(
Crot,Ĉrot,C̃rot

)
,(

π×1 , π̂×1
)

,
(

A∗, Â∗,π×2 , π̂×2 ,πrot
2 , π̂rot

2

)
,
(
π×3 , π̂×3

)
,
(
π×4 , π̂×4

)
,πce

5 .

)

Protocol 5.2b – Argument of the non-interactive range proof protocol
for the range [0, H ]

139



Chapter 5. Non-Interactive Range Proofs, Without Random Oracles

Verification
(
crs; (pk, Ag , A f , Ah , Ac , Âc ),π

)
: The verifier does the following:

1. For j ∈Z�v :

(a) Check that e(B ′j , g2)= e(g1,B ′j ,2) and e(B ′j , ĝ2)= e(B̂ ′j , g2).

(b) Verify the Hadamard product argument (π′j , π̂′j )
for the corresponding inputs.

2. For K ∈ {
Ac ,B †,C ,Crot

}
: check that e(K , ĝ2)= e(K̂ , g2).

3. For K ∈ {C ,Crot}: check that e(K , g̃2)= e(K̃ , g2).

4. Verify the Hadamard product arguments (π×1 , π̂×1 ), (π×3 , π̂×3 ), (π×4 , π̂×4 ), the
Lipmaa permutation argument (A∗, Â∗,π×2 , π̂×2 ,πrot

2 , π̂rot
2 ), and the equal-

ity subargument πce
5 for the corresponding inputs.

Protocol 5.2c – Verification of the non-interactive range proof protocol
for the range [0, H ]

Protocol explanation. The NIZK range proof of this section is detailed in Protocols 5.2a, 5.2b,

and 5.2c. Its basic idea is explained hereinafter. The common input for both parties is equal to

a lifted BBS encryption (Ag , A f , Ah) of σ, accompanied by a knowledge component Â such

that (A, Â) is at the same time a knowledge commitment to σ. In the setup of the protocol,

u > 1 has to be chosen according to the communication objectives. A short proof will impose

a large u and a large CRS. If the CRS needs to be small, which is obtained with a small u, this

will lead to a longer proof. After a u > 1 has been chosen, let � = �(u, (u−1)H) be defined

as in Section 4.4. According to Theorem 4.10, σ ∈ [0, H ] if and only if for Gi computed from

equations 4.6 and 4.7 one has (u−1)σ=∑�−1
i=0 Giσi for some σi ∈Zu . Thus, the first step of the

prover is to decompose σ into σi . Then the prover shows by using parallel versions of the range

proof from [LAN02], that for i ∈Z�, σi ∈Zu . Note that the range proof in [LAN02] is the binary

version of the sumset based range proof presented in Section 4.5. Showing that σi ∈Zu is done

by writing σi as σi =∑�v−1
j=0 G ′jσ

′
j ,i , where �v =

⌊
log2(u−1)

⌋
, G ′j =

⌊
(u−1+2 j )/2 j+1

⌋
, for some

σ′j ,i ∈ {0,1}. The latter results from the binary case of Theorem 4.10 and from Corollary 4.12.

Showing that σ′j ,i ∈ {0,1} is achieved by using a Hadamard product argument. This product

argument will be performed on commitments on (σ′j ,0, . . . ,σ′j ,�−1) for j ∈ Z�v . These last

commitments will be informally denoted B ′j .

The prover then commits to the vector c = (c0, . . . ,c�−1), where c j =∑�−1
i= j Giσi , and shows that

the values c j are correctly computed by using a small constant number of Hadamard product

and Lipmaa permutation arguments. Moreover (and informally), the prover first computes the

values c j in the forth step of the protocol, then he creates in the fifth step, the commitments B †

on (G0σ0, . . . ,G�−1σ�−1), C on (c0, . . . ,c�−1), and Crot on (c1, . . . ,c�−1,c0). The sixth step of the

protocol uses a Hadamard product argument to show that B † has been correctly formed, from

G ′j and from the commitments B ′j . The seventh step uses a permutation argument to show that

Crot is a correct rotation permutation by one element of C . Then, in the eighth step, the prover
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uses a Hadamard product argument to show that c j+1 = c j −G jσ j , with c�−1 =G�−1σ�−1. This

latter argument is obtained from the commitment on (c1, . . . ,c�−1,0), which is derived from

Crot. It shows that:

(c1, . . . ,c�−1,0)= (c0, . . . ,c�−1)− (G0σ0, . . . ,G�−1σ�−1) .

Thus, the verifier will be convinced that c j = ∑�−1
i= j Giσi . But then, by Theorem 4.10, c0 =∑�−1

i=0 Giσi ∈ [0, (u−1)H ]. After this step, the prover shows, using a single Hadamard prod-

uct argument, that (Au−1
c , Âu−1

c ) commits to (c0,0, . . . ,0). This will imply that the secret σ

committed in (Ac , Âc ) is indeed in the range [0, H ]. The last required step links the secret σ

contained in the knowledge commitment (Ac , Âc ) to the lifted BBS encryption (Ag , A f , Ah) of

σ with randomizers (r f ,rh), where r = r f +rh . This last step is achieved with the subargument

explained in Section 5.4.

As in [Lip12a], in a few cases, instead of computing two different commitments Comt (ĉrst ; a;r )=
(g r

t ·
∏

g ai

t ,λi
, ĝ r

t ·
∏

ĝ ai

tλi
) and Comt (c̃rst ; a;r )= (g r

t ·
∏

g ai

t ,λi
, g̃ r

t ·
∏

g̃ ai

t ,λi
), the following composed

commitment is computed:

Comt (crst ; a;r )= (g r
t ·

∏
g ai

t ,λi
, ĝ r

t

∏
ĝ ai

t ,λi
, g̃ r

t ·
∏

g̃ ai

t ,λi
).

Theorem 5.2

Let u > 1. Let H = pol y(κ) and � = �(u, (u − 1)H) be defined as in Section 4.4. Let Λ =
{λi }i∈Z�

⊂N be such that∀i < j : 0<λi <λ j . Let Λ̂ := {0}∪Λ∪2̂Λ, and Λ̃ as in Protocol 5.2a.

Let rot be a permutation from Z� to Z�, where rot(i )= i −1 if i > 0, and rot(0)= �−1. Define

Gi with equations 4.6 and 4.7. The argument detailed by Protocols 5.2a, 5.2b, and 5.2c, is

perfectly complete. If the asymmetric bilinear group generator PGa is Λ-PKE secure and DLIN

secure in G1, then the argument detailed by Protocols 5.2a, 5.2b, and 5.2c, is computationally

zero-knowledge. If PGa is Λ̃-PSDL secure and Λ-PKE secure in both G1 and G2, then the

argument detailed by Protocols 5.2a, 5.2b, and 5.2c, is computationally sound.

Proof

To show that the argument described by Protocols 5.2a, 5.2b, and 5.2c, is a NIZK argument,

three security properties are proven: perfect completeness, computational soundness, and

computational zero-knowledge.

PERFECT COMPLETENESS: Recall that in the case of the product arguments, the inputs of the

prover are (A, Â,B , B̂ ,B2,C ,Ĉ ). Within this proof, it is presumed that (B , B̂ ,B2) (assuming B2 is

correctly defined, that is, e(B , g2)= e(g1,B2)) commits to the same values as (B , B̂).

The pairing verifications (for example, that e(K , ĝ2) = e(K̂ , g2)) hold by construction of the

protocol. Since (B ′j , B̂ ′j ) commits to (σ′j ,0, . . . ,σ′j ,�−1) for binary σ′j ,i then the argument (π′j , π̂′j )

verifies.

Note that
(∏�v−1

j=0 (B ′j )G ′
j ,
∏�v−1

j=0 (B̂ ′j )G ′
j

)
commits to (σ0, . . . ,σ�−1). Thus argument (π×1 , π̂×1 ) ver-

ifies. Since (Crot,Ĉrot) commits to a rotation of (C ,Ĉ ), then (A∗, Â∗,π×2 , π̂×2 ,πrot
2 , π̂rot

2 ) verifies.
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Since (Crot,Ĉrot) commits to (c0, . . . ,c�−1,0) and (C /B †,Ĉ /B̂ †) commits to

(c0−G0σ0,c1−G1σ1, . . . ,c�−1−G�−1σ�−1)= (c0, . . . ,c�−1,0),

then (π×3 , π̂×3 ) verifies. Finally, since (u−1)σ =∑�−1
i=0 Giσi and c0 =∑�−1

i=0 Giσi , then (π×4 , π̂×4 )

verifies.

COMPUTATIONAL SOUNDNESS: let A be a non-uniform PPT adversary who creates a statement

(pk, Ag , A f , Ah , Ac , Âc ) and an accepting range proof π. By the DLIN assumption, the lifted

BBS cryptosystem is IND-CPA secure, and thus the adversary obtains no information from

(Ag , A f , Ah). By the Λ-PKE assumption, there exists a non-uniform PPT extractor XA that,

running on the same inputs and seeing A ’s random tape, extracts the following openings:(
Ac , Âc

)= (
g r̃

1 gσ
1,λ0

, ĝ r̃
1 ĝσ

1,λ0

)
,(

B ′j , B̂ ′j
)
=Com1

(
ĉrs1;b′′′j ;r j

)
for j ∈Z�v ,(

B †, B̂ †
)
=Com1

(
ĉrs1;b†;r ′0

)
,(

C , Ĉ
)=Com1 (ĉrs1;c ;r ′1

)
,(

Crot, Ĉrot

)=Com1 (ĉrs1;crot;r ′2
)

,(
π×1 , π̂×1

)= (∏
s∈Λ̂

g
f ′(×1,s)

2,s ,
∏
s∈Λ̂

ĝ
f ′(×1,s)

2,s

)
,

(
A∗, Â∗

)=Com1 (ĉrs1; a∗;ra∗
)

,(
π×2 , π̂×2

)= (∏
s∈Λ̂

g
f ′(×2,s)

2,s ,
∏
s∈Λ̂

ĝ
f ′(×2,s)

2,s

)
,

(
πrot

2 , π̂rot
2

)= (∏
s∈Λ̃

g
f ′(rot2,s)

2,s ,
∏
s∈Λ̃

g̃
f ′(rot2,s)

2,s

)
,

(
π×3 , π̂×3

)= (∏
s∈Λ̂

g
f ′(×3,s)

2,s ,
∏
s∈Λ̂

ĝ
f ′(×3,s)

2,s

)
, and

(
π×4 , π̂×4

)= (∏
s∈Λ̂

g
f ′(×4,s)

2,s ,
∏
s∈Λ̂

ĝ
f ′(×4,s)

2,s

)
.

The extractor XA will also create the openings that correspond to πce
5 . Since the Λ̃-PSDL

assumption is supposed to hold, all the following is true. In the contrary (in the case that it is

not true), one can efficiently test it, and thus break the PSDL assumption.

Since e(B ′j , g2) = e(g1,B ′j ,2) for j ∈Z�v , then (B ′j , B̂ ′j ,B j ,2) commits to b′′′j . Therefore, due to

the Λ̂-PSDL assumption, Theorem 2.3, the fact that the adversary knows the openings of((
B ′j , B̂ ′j

)
,
(
π′j , π̂′j

))
, and since (π′j , π̂′j ) verifies, then σ′j ,i ∈ {0,1} for all j ∈Z�v and i ∈Z�.

Thus, by Theorem 4.10, b = (σ0, . . . , σ�−1) := (
∑�v−1

j=0 G ′jσ
′
j ,0, . . . ,

∑�v−1
j=0 G ′jσ

′
j ,n) ∈Z�

u , and thus

(
∏�v−1

j=0 (B ′j )G ′
j ,
∏�v−1

j=0 (B̂ ′j )G ′
j ) commits to b with σi ∈Zu .
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Due to the Λ̂-PSDL assumption, Theorem 2.3, the fact that the adversary knows the openings

of
((

B ′j , B̂ ′j
)

,
(
B †, B̂ †

)
,
(
π×1 , π̂×1

))
, and since

(
π×1 , π̂×1

)
verifies, then σ†

i =Giσi .

Due to the Λ̃-PSDL assumption, Theorem 2.3, Theorem 2.5, the fact that the adversary knows

the openings of
((

C ,C̃
)

,
(
Crot,Ĉrot

)
,
(

A∗, Â∗,π×2 , π̂×2 ,πrot
2 , π̂rot

2

))
, and since(

A∗, Â∗,π×2 , π̂×2 ,πrot
2 , π̂rot

2

)
verifies, then crot,�−1 = c0 and crot,i−1 = ci for �−1
 i 
 1.

Due to the Λ̂-PSDL assumption,Theorem 2.3, the fact that the adversary knows the openings

of
((

Crot,Ĉrot

)
,
(
C ,Ĉ

)
,
(
B †, B̂ †

)
,
(
π×3 , π̂×3

))
, and since

(
π×3 , π̂×3

)
verifies, then c�−1−G�−1σ�−1 =

crot,�−1 = 0 and ci −Giσi = crot,i = ci+1 for �−1 > i 
 0. Therefore, c�−1 =G�−1σ�−1, c�−2 =
G�−2σ�−2 +G�−1σ�−1, and by induction ci = ∑�−1

j=i G jσ j for i ∈ Z�. This implies that c0 =∑�−1
i=0 Giσi for σi ∈Zu .

Due to the Λ̂-PSDL assumption, Theorem 2.3, the fact that the adversary knows the openings of((
C ,Ĉ

)
,
(

Ac , Âc
)

,
(
π×4 , π̂×4

))
, and since

(
π×4 , π̂×4

)
verifies, then

(
Ac , Âc

)= (
g r̃

1 gσ
1,λ0

, ĝ r̃
1 ĝσ

1,λ0

)
com-

mits to (σ, 0, . . . , 0) such that (u−1)σ=∑�−1
i=0 Giσi for σi ∈Zu , and therefore by Theorem 4.10,

σ ∈ [0, H ].

Due to the {λ0}-PSDL assumption and since πce
5 verifies, then

(
Ag , A f , Ah

)
encrypts σ ∈ [0, H ].

COMPUTATIONAL ZERO-KNOWLEDGE: to prove computational zero-knowledge, the follow-

ing simulator Si m = (Si m1,Si m2) is constructed. Firstly, Si m1 creates a correctly formed

common reference string together with a simulation trapdoor td= (
α̂, α̃,αg ,α f ,αh ,αg /c , x

)
.

After that, the prover creates a statement i nput r̃ := (
pk, Ag , A f , Ah , Ac , Âc

)
and sends it to the

simulator Si m. Secondly, Si m2
(
crs; i nput r̃ ;td

)
uses a knowledge extractor to extract (a, r̃ )

from the random coins of the prover and
(

Ac , Âc
)
. The goal of the simulator Si m is to simulate

the argument of an honest prover. Therefore, the statement i nput r̃ is considered to have been

generated by an honest prover. This implies that a = (σ, 0, . . . , 0) with σ ∈ [0, H ]. Thus, using

the fact that the knowledge commitment scheme is also trapdoor, the simulator computes

r ′′ ←σxλ0+ r̃ , which implies the equality Ac = g r ′′
1 . Since both r̃ and r ′′ are uniformly random,

r ′′ does not leak any information on the input of the prover. Thereafter, the simulator creates

all commitments
(
B ′j , B̂ ′j ,B ′j ,2

)
j∈Z�v

,
(
B †, B̂ †

)
,
(
C ,Ĉ ,C̃

)
, and

(
Crot,Ĉrot,C̃rot

)
as in the argument,

but replacing a with 0 and r̃ with r ′′. Therefore, all of the aforementioned commitments just

commit to 0. Thus, the simulator can simulate all product and permutation arguments, the

equality subargument of Section 5.4, and form the general simulated argument πsi m . Clearly,

this simulated argument πsi m is perfectly indistinguishable from the real argument π.

Note that the use of a cryptosystem makes achieving perfect zero-knowledge impossible.

Furthermore, (Ac , Âc ) is provided by the prover and not generated during the argument. To

achieve zero-knowledge, one must be able to open (Ac , Â) having been given only the CRS

trapdoor. That is, one has to use an extractable commitment scheme [Cre02, ACP09]. It is easy

to see that the knowledge commitment scheme is extractable, however, extractability is only

achieved under the PKE assumption.
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Theorem 5.3

Let u > 1. Let Λ be defined as in Theorem 2.1 and let � = �(u, (u − 1)H) 	 1− logu 2+
logu ((u−1)H − (u−2))	 ⌈

logu (H)
⌉

, where �(·, ·) is defined as in Section 4.4.

Let �v =
⌊

log2(u−1)
⌋

. Assume that the Hadamard product argument from Section 2.4.7 and

the Lipmaa permutation argument from Section 2.4.8 are used. The range proof described

with Protocols 5.2a, 5.2b, and 5.2c, has a common reference string of length �1+o(1) elements,

a communication complexity of 2�v +21 elements from G1 and 3�v +14 elements from G2.

The computational complexity of its prover is dominated by Θ(�2�v ) scalar multiplications

in Zp and �v ·�1+o(1) exponentiations (in G1 or G2). The computational complexity of its

verifier is dominated by 9�v +72 pairings.

Proof

The CRS is composed of: the parameters of the asymmetric bilinear groups
(
parambp

)
, (9+3 |Λ|)

group elements in G1, and
(
10+ ∣∣Λ̂∣∣+2

∣∣Λ̃∣∣) group elements in G2. As the following hold,

|Λ| = �,∣∣Λ̂∣∣= 1+�+�(�−1)

= �2+1,∣∣Λ̃∣∣	 �+�2+�(�−1)+�2(�−1)

	 �3−�2,

the CRS length is composed of:
(
parambp

)
, (9+3�) group elements in G1, and less than(

2�3−�2+11
)

group elements in G2. Therefore, the CRS length is �1+o(1) elements.

The communication complexity is composed of:

• �v tuples (B ′j , B̂ ′j ,B ′j 2,π′j , π̂′j ),

where each tuple has 2 elements of G1 and 3 elements of G2,

• 8 extra elements from G1,

• 3 Hadamard product arguments, where each argument has 2 elements from G2,

• the permutation argument, which has 2 elements from G1 and 4 elements from G2,

• and the equality subargument πce ,

which has 11 elements from G1 and 4 elements from G2.

Thus, in total, the communication complexity is of 2�v +8+2+11= 2�v +21 elements from

G1 and 3�v +3 ·2+4+4= 3�v +14 elements from G2.

The computational complexity of the prover is dominated by �v +3 Hadamard product ar-

guments (Θ(�2) scalar multiplications in Zp and �1+o(1) exponentiations in bilinear groups

each), by the permutation argument (Θ(�2) scalar additions in Zp and �1+o(1) exponentia-

tions in bilinear groups), and by the equality subargument (13 exponentiations in G1 and 8

exponentiations in G2). In total, the computational complexity of the prover is thus domi-
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nated by Θ(�2 ·�v )=Θ(�2 · logu) scalar multiplications in Zp and �v ·�1+o(1) = �1+o(1) · logu

exponentiations in bilinear groups.

The computational complexity of the verifier is dominated by verifying �v + 3 Hadamard

product arguments (5 pairings each), the permutation argument (12 pairings), and the equality

subargument πce (33 pairings). In addition, the verifier performs 4�v +4 ·2+2 ·2= 4�v +12

pairings. The total number of pairings is thus 9�v +72.

The communication complexity is minimized when �v (and thus u) is as small as possible, that

is, u = 2. Then �v =
⌊

log2 1
⌋= 0. In this case the communication consists of 21 elements from

G1 and 14 elements from G2. The same choice u = 2 is also optimal for the computational

complexity of the verifier (72 pairings). As noted before in Section 5.4, at the security level of

2128, elements of G1 can be represented in 256 bits, and elements of G2 in 512 bits. Thus, at

this security level, if u = 2 then the communication is 21 ·256+14 ·512= 12544 bits. Therefore,

the communication complexity is even smaller than that of positivity testing based arguments

like [Bou00, Lip03, Gro05, Sce09].

The optimal computational complexity for the prover is achieved when the number of ex-

ponentiations, �1+o(1) ·�v = (logu H)1+o(1) · ⌊log2(u−1)
⌋

, is minimized. This happens when

u =H . The computation of the prover is then dominated by Θ(log H) scalar multiplications

and exponentiations. Moreover, in this case the CRS length �1+o(1) is constant.

Finally,the summatory length of the CRS and the communication may be required to be

minimal, that is, �1+o(1)+Θ(�v ). Considering � 	 logu H and �v 	 log2 u, the sum becomes

(logu H)1+o(1)+Θ(logu). This sum can be approximately minimized by choosing u = 2
�

log H .

Then the summatory length becomes
(
log H

)1/2+o(1). In this case, it would make sense to

change the role of groups G1 and G2 to get better efficiency. The efficiency of the lifted BBS

encryption based non-interactive range proof (Protocols 5.2a, 5.2b, and 5.2c) in all three cases,

is given in Figure 5.1.
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Chapter 6

Machine Readable Travel Documents

In this chapter, which is with minor revisions based on sections of [CV09] and [Cha13], the

Machine Readable Travel Document (MRTD) standard evolution is surveyed and the remain-

ing problems explained. The next chapter will propose directions and solutions for the next

upgrades in order to suppress these problems. In Section 6.2 an overview will be provided

of prior and related work. Section 6.3 will then explain and give the drawbacks of the Radio

Frequency IDentification (RFID). The International Civil Aviation Organization (ICAO) stan-

dard will be explained in Section 6.4, and the Extended Access Control (EAC) version 1 (EACv1)

and version 2 (EACv2) respectively in Sections 6.5 and 6.6. Conclusions will be provided in

Section 6.7.

6.1 Introduction

Since 2004, a majority of countries have adopted the ICAO standard [ICAO04a, ICAO04b] for

Machine Readable Travel Documents (MRTDs). Among other things, this standard specifies

how to store and use biometrics in passports in order to have more secure identification of the

holder. Since it is based on the RFID technology [ISO10a], an access control is necessary for

privacy protection. The optional one proposed in the ICAO standard is based on symmetric-

key cryptography with a key printed on the passport. It is called Basic Access Control (BAC),

offers very little privacy protection, and is the only mechanism which can be used to protect

mandatory data groups (DGs) containing the identifiers of holders.

In response to the initial weak standard for MRTDs produced by the ICAO, the European

Union has mandated the Federal Office for Information Security (BSI) to provide and main-

tain a stronger standard for MRTDs. In that regard, the BSI has issued the Extended Access

Control (EAC) which provides a stronger privacy protection for MRTDs. Its first initial release,

EACv1 [BSI06], was made in 2006 to have a reasonably secure privacy protection for other data

groups. It is based on public-key cryptography and requires a public key infrastructure to be
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deployed for readers. Since passports are not online, they cannot receive certificate revocation

lists. Thus, revocation can only be based on expiration dates. Unfortunately, passports do not

have a clock, so they can only compare the validity period with the latest accepted certificate

date. EACv1 protects against cloning but only where it is being used in a country with the

ability to read EAC compatible MRTDs. Although not mandatory, countries with the ability

to read EACv1 compatible MRTDs but being unauthorized to pass terminal authentication,

could use privacy-enhanced protocols.

The second and latest version EACv2 [BSI15a, BSI15b, BSI15c, BSI15d] was introduced in

2009 and corrected in 2012 and in 2015. EACv2 makes sure that passports are only read by

authorized terminals, which puts an end to the cloning issue. Indeed, EACv2 goes further by

protecting access to ICAO-mandatory data groups, even for countries unauthorized to read

other data groups. It was believed that with the introduction of EACv2 in 2009, the majority

of threats were solved. Unfortunately, ICAO-mandatory data groups must be readable by

countries not implementing EAC so this protocol is likely to be bypassed for interoperability

reasons. Furthermore, several flaws and threats remain. The major flaw that can be pointed

out is the absence of a good terminal revocation. The other issues are now considered marginal

as they are or will gradually be solved with the evolution of previous standards (notably the one

from the ICAO [ICAO08, ICAO13]). However, no progress has been made regarding terminal

revocation nor with regard to terminal authentication.

6.2 Prior and Related work

A substantial amount of work has already been achieved on MRTDs. Juels, Molnar, and Wagner

[JMW05] presented one of the first (if not the first) security analysis on e-passports in 2005.

They identified several flaws in the ICAO standard, namely clandestine scanning, clandestine

tracking, skimming then cloning, eavesdropping, biometric data-leakage, and weaknesses in

the cryptographic setups of the ICAO standard. Kc and Karger [KK05] presented their research

on similar tracks in 2005 and introduced some other attacks, namely the “splicing” attack

and the “fake finger” attack. In 2006, Kosmerlj et al. [KFHS06] studied the weakness of facial

recognition. Hoepman et al. [HHJ+06] focused in 2006 on passive attacks against the Basic

Access Control (BAC) and provided some thoughts on biometrics. They showed that the

entropy of the symmetric key used between the reader and the MRTD is less than 80 bits,

and can easily be guessed. Regardless of the knowledge of this secret key, they also explained

how a MRTD can be traced back to individuals or groups in the classical case of skimming.

Hancke [Han06] and Carluccio et al. [CLRPS06] reported experimental attacks against BAC in

2006. Hancke showed a practical eavesdropping together with a relay attack, and Carluccio

et al. emphasized the traceability issue of MRTDs. Liu et al. [LKLRP07] explained how to

make a passive decryption attack. In 2009, Danev, Heydt-Benjamin, and Čapkun [DHBC09]

demonstrated how to identify individual MRTDs through the physical-layer of RFID tags. They

explained that this fact can help in the determination of cloned passports whilst on the other

hand suppressing location privacy.
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In 2007, Hlaváč and Rosa [HR07] studied the case of Active Authentication (AA) and presented

a man-in-the-middle cloning attack against AA. AA is also subject to a challenge semantics

attack as shown in [BSI08a] and explained in section 6.4.

In 2006, Lehtonen et al. [LMSF06] proposed a potential solution for MRTDs. As a necessary

optical contact has to be achieved between a reader and the MRTD to retrieve the MRZinfo,

they proposed to combine an optical memory device with the actual RFID chip. This would

enable the establishment of a secure channel, as a line of sight is necessary. Eavesdropping

and skimming will therefore no longer be possible. Herrigel and Zhao [HZ06] proposed to

use a digital watermarking technique to increase the seed entropy, which would be readable

by optical scanning. However the main disadvantage of these two papers is that a hardware

improvement needs to be performed on passports.

Vaudenay and Vuagnoux [VV07] presented a survey on existing protocols for MRTD and their

corresponding weaknesses in 2007, namely the ICAO standards (BAC and AA) and the EU

standard (EAC). In the same year, Monnerat, Vaudenay, and Vuagnoux [MVV07] focused on the

privacy concerns attached to the release of the passport Security Object Document (SOD). The

latter leaks the hash of protected data groups and evidence on private data (see also [Vau07]).

In 2007, Lekkas and Gritzalis [LG07] worked on the possibility of using the ICAO standard in

order to build a globally interoperable Public Key Infrastructure. However they drew negative

conclusions due to several issues such as the lack of a passport revocation mechanism. In 2008,

Pasupathinathan, Pieprzyk, and Wang [PPW08a, PPW08b, PPW08c] achieved a formal security

analysis on the Australian e-passport and identified several flaws in EACv1, after which they

proposed an enhanced version called OSEP. They introduced the need to execute terminal

authentication before chip authentication. In 2008, Abid and Afifi [AA08] incorporated the use

of elliptic curves in OSEP.

All of these studies pushed the Bundesamt für Sicherheit in der Informationstechnik (BSI), in

charge of the EAC standardization, to present a new version (EACv2) in October 2008 [BSI08b].

Nithyanand [Nit09] released the first survey on EACv2 in 2009. It claimed that EACv2 solved

all of the previous problems except one vulnerability. It is possible to use a reader with an

expired certificate to read passports whose internal date is outdated. Unfortunately, this is not

the only problem left within EACv2. The current version of EAC is Version 2.20 published in

February 2015. It is split into four parts [BSI15a, BSI15b, BSI15c, BSI15d] and contains several

minor changes compared to the 2.0 version released in 2008 [BSI08b].

6.3 ISO Standard for RFID

In order to discover the RFID tags in proximity, according to the ISO standard for RFID

[ISO10a], readers send a discovery signal. Any RFID tag receiving this signal will reply with

a specific identifier in order to allow readers to enter in communication with them. For

regular RFID tags, this identifier is constant to enable an easy way to track chips. However
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this property is not always desirable for tags, especially when location privacy needs to be

protected. This is the case for MRTDs. The solution proposed by the ISO standard is to

use a session-dependent randomly generated identifier. This solution has been adopted by

almost all countries. Unfortunately, there are discrepancies in the way it is implemented

[MVV07]. There are other protocol implementation differences such as availability of optional

features, lower layer protocols, and speed of transmission, which allow for the identification

of a passport nationality [VV07].

It is a well known fact that privacy must be addressed accross all protocol layers [AO05]. As a

matter of fact, recent work by Danev et al. [DHBC09] shows that any RFID tag can be accurately

identified according to its physical-layer communication properties, namely by some kind

of radio fingerprint. Although their work uses this property to enable cloning detection, the

straightforward drawback is the tag tracking feature.

Furthermore, the distance to eavesdrop or to interact with RFID tags is highly underestimated.

According to an announcement by the Swiss Federal Office of Communication (OFCOM)

[BK08] in November 2008, and even though currently commercialized readers can interact only

within a few centimeters, it would be possible to access MRTD from far away (up to 25 meters)

by changing readers antenna. In addition, it was announced that radio communication

between a legitimate reader and a passport induce a signal on the power line that can be

captured 500 meters away.

6.4 ICAO Standard and BAC

Following the ICAO standard, passports must provide passive authentication for two manda-

tory data groups (DGs):

• Data group DG1 is a digital copy of the printed Machine Readable Zone (MRZ) which

includes some basic information about the holder: name, nationality, gender, date of

birth, as well as passport serial number and expiration date.

• Data Group DG2 is a digital picture of the face which is optimized for automatic face

recognition.

Passive authentication is performed by means of the Security Object of the Document (SOD),

which is essentially a digital signature on the list of the hash of data groups together with the

certificate of the verifying key. This certificate is computed by the issuing country and the root

verifying key of the PKI is assumed to be authenticated by special protocols. Following the

state of the art in cryptography, digital signatures are unforgeable and identities can no longer

be forged maliciously.

Biometric identification is mostly performed by 2D facial recognition, and soon will be by
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fingerprint as well. It could use iris recognition but this technology does not appear to be

implemented yet. Nevertheless, 2D-facial recognition is fairly weak and fingerprints could be

faked. Fake fingerprints can be made using candy [Mat02] or medecine against constipation

[BT09].

Passports could limit themselves to providing DG1, DG2, and SOD in a passive way. Indeed,

they could be printed using a 2D barcode or a Quick Response (QR) Code, but ICAO preferred

RFID-based technology in order to accommodate more data and functionalities in the future.

Radio access then opened the way to privacy threats, forcing passports to be secured with

some access control.

The ICAO standard includes an optional Basic Access Control (BAC), based on 3DES [ISO10b],

which essentially consists of making the reader prove that it knows a piece of information on

the printed MRZ. This information called MRZinfo consists of the passport serial number,

the date of birth of the person, and the expiration date of the passport. That is, BAC uses

symmetric-key cryptography with an access key which is printed on the passport. Further-

more, MRZinfo has a low entropy (roughly 56 bits as explained in [ICAO06]). BAC is currently

implemented in almost every passport, as the ICAO standard has been internationally im-

posed.

The BAC protocol is followed by some key agreement to open secure messaging. Again, it is all

based on symmetric cryptography with a low-entropy initial key (the MRZinfo), so it does not

resist passive adversaries.

The ICAO standard also includes an optional Active Authentication (AA) protocol which is

based on a digital signature scheme. The MRTD authenticates itself by signing with its private

key, a presumably random challenge from the reader. As this private key is securely stored and

used in the chip of the MRTD, AA protects against cloning attacks but is time-consuming for

the powerless chip. The AA protocol is currently implemented and used in Belgium and the

Czech Republic. Unfortunately, AA is not secure against man-in-the-middle attacks [HR07]

and leads to privacy concerns by adding the threat of challenge semantics [BSI09a]. A challenge

semantics attack happens in the case where the reader chooses an unpredictable verifiable

challenge, such as a signature of its location, date, and time. As the signature provided by

the MRTD is transferable, it will attest to anyone trusting the reader that the MRTD was at a

specific location, date, and time.

There are two clear advantages to the ICAO passports: the identities are unforgeable, and

access to the chip requires knowing MRZinfo. Unfortunately, the drawbacks are many. First

of all, the cryptographic protocols used do not resist passive adversaries. Since AA is seldom

used, the ICAO standard does not resist cloning attacks. Furthermore, MRZinfo grants an

unlimited permanent access: once the adversary obtains it, he can access the chip without the

consent of the holder. Contrarily to popular belief, the release of DG2 and SOD is not privacy

insensitive. Releasing DG2 means releasing an optimized picture which is used as a reference

template for biometric recognition. Once an adversary obtains it, he can train himself to
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match the template. Releasing DG2 can therefore ease identity theft. Furthermore, some

countries, such as Switzerland, have put in place a national database storing all biometrics

of their citizens. If the database gets compromised, identity theft will be even easier as the

adversary will simply run a search on the closest match present in the database (excluding

himself). Hence the assumption 2.3 in section IV of [ICAO06] is wrong.

“The digitally stored image of the face is assumed not to be privacy-sensitive

information. The face of the MRTD holder is also printed in the MRTD and can be

readily perceived.”

In addition, releasing SOD means providing transferable evidence of the correctness of the

identity. For instance, it could be used as an undeniable identity proof against whistle blowers,

which would compromise their safety if they need to remain anonymous.

6.5 EAC v1

The European EAC standard [BSI06, BSI08a] was made to add better protection for non-

mandatory data groups such as DG3: the fingerprint template. It includes:

• secure messaging based on Elliptic Curve Diffie-Hellman [CR00];

• a chip authentication protocol, protecting against cloning attacks; and

• a terminal authentication protocol.

Terminal authentication is meant to be mandatory for accessing non-mandatory data groups,

but mandatory data groups must remain readable without EAC due to the ICAO standard

interoperability.

In the terminal authentication protocol, the reader proves that he owns the secret key as-

sociated to a given public key. Typically, this proof consists of signing a challenge from the

passport. The public key has a certificate chain whose root belongs to the home country of

the passport. That is, authorization is given to readers by signing a certificate with a given

validity period. The problem with this method is that passports do not have any reliable clock.

They keep a trusted past date in memory, which plays the role of a clock. When they check the

validity of a certificate, they only check that the expiration date is posterior to the clock value.

If verification succeeds and the issuing date of the certificate is posterior to the clock value,

the clock value is updated. Clearly, passports which do not run terminal authentication often,

will not even have a reliable approximation of the current date. Others may have a date which

is accurate within a range of a few weeks. Consequently, a terminal certificate may be usable a

long time after expiration.

154



6.6. EACv2

The details of the general PKI required to authenticate readers will be given in the following

section.

The advantage of EAC compared to ICAO, is the introduction of anti-cloning protection, a

better key agreement resisting passive adversaries, and that readers are given time-limited

privileges. One of the remaining problems is that revocation is based on a weak clock. Privacy

issues relating to the release of DG2 and SOD to everyone remain. The hash of protected data

groups also leaks from the SOD [BSI09a].

6.6 EACv2

EACv2 was initially released in 2008. The latest update was provided in the BSI TR-03110

Technical Guideline [BSI15a, BSI15b, BSI15c, BSI15d]. It was released in February 2015 as

version 2.2. It specifies the mutual authentication between terminal readers and all kinds of

MRTDs, including biometric passports.

The aim of EACv2, with its mutual authentication, is threefold. It first of all allows authorities

to verify that a MRTD is genuine. It also allows authenticated terminals to access sensitive

data contained in the MRTDs, such as fingerprints. Lastly, it provides a secure channel

between the MRTD and the terminal. This authentication process relies on an international

Public Key Infrastructure (PKI), described in [BSI09b] and in the EACv2 standard [BSI15c].

This PKI is mainly composed of three entity types : Country Verifying Certificate Authorities

(CVCAs), Document Verifiers (DVs), and terminals. Each participating country will possess a

national CVCA that will act as a national root authority. The national CVCA will be in charge

of issuing national MRTDs and DVs certificates (especially foreign DVs certificates). DVs are

organizational units within countries, in charge of managing a group of terminals, notably

by issuing their certificates. Their role is to enable the certification link between its terminal

readers and CVCAs. Hence they need to apply for a DV certificate at each CVCAs corresponding

to the country of MRTD that might be encountered by its terminals. DVs are also in charge of

creating and maintaining terminal certificates for each terminal location. The validity period

and the access rights of the terminal certificate are inherited from the DV certificate. Obviously,

these authorizations can be further reduced by a decision of the DV in charge of the terminal.

In the same way, the validity period and the access rights contained in the DV certificate is

decided by the CVCA issuing the certificate.

The access rights for all data groups are encoded in binary in each certificate, as an object

identifier. These rights are set according to the role of the certificate holder (inspection

systems, authentication terminals or signature terminals). A member in the certificate chain

cannot provide more access rights than it has itself. Thus, to determine the access rights of a

particular reader, the MRTD has to compute the boolean AND of all the binary authorizations

contained in the certificate chain.
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Furthermore, two types of terminals can be distinguished: integrated terminals and dis-

tributed terminals. An integrated terminal is a unique hardware device including a single

reader. A distributed terminal is composed of a terminal control center, several readers, and a

permanent, secure online channel between all readers and the terminal control center.

The EACv2 general authentication procedure is composed of four steps in the following order:

Password Authenticated Connection Establishment (PACE), Terminal Authentication, Passive

Authentication, and Chip Authentication. PACE is a Diffie-Hellman key agreement protocol

based solely on a shared password. This password is either known by the MRTD bearer, or is

directly printed on the MRTD. The goal of PACE is twofold: on one hand it provides a password

based mutual authentication, and on the other hand it arranges a secure messaging channel

with ephemeral symmetric sessions keys, one for encryption and another one for the Message

Authentication Code (MAC). MACs are codes that help attest the authenticity of messages, even

when sent over an insecure channel (see Section 2.2.3). Nevertheless, PACE yields a secure

authenticated key agreement as proven by Bender, Fischlin, and Kügler in [BFK09]. Once PACE

has succeeded, the MRTD is ensured that the terminal has knowledge of the shared password

and thus gives access to its less-sensitive data. Moreover, all further communications are

protected against eavesdroppers as secure messaging is put in place. However, an adversary

with knowledge of the shared password, obtained either by guessing or by social engineering,

will be able to mount a man-in-the-middle attack.

Terminal Authentication is then performed as the second step of the EACv2. Regarding termi-

nal authentication and terminal revocation, no progress was made between version 2.01 in

2009 and the current version 2.20 of the EAC standard of 2015. Detailed explanations about

them will be provided below. After the terminal has been authenticated, Passive Authenti-

cation enables terminals to confirm that a MRTD has not been altered. This step does not

protect against cloning attacks. In order to achieve cloning protection, Chip Authentication is

performed. This last step insures that the MRTD is genuine.

6.6.1 Terminal Authentication

A complete description of the terminal authentication can be found in Section 3.3 of [BSI15b].

It is essentially composed of three major phases. First, the terminal sends a certificate chain

starting from the CVCA certificate corresponding to the MRTD country. The chain ends with

the certificate of the terminal itself. In the second phase, the MRTD checks the certificates

contained in the certificate chain with a Certificate Validation process (section 2.5 of [BSI15c]).

The third phase consists of setting up an authenticated ephemeral Diffie-Hellman key pair for

the terminal. The resulting ephemeral public key will then be used to secure messages from

the MRTD to the terminal.

If the terminal authentication succeeds, the MRTD will grant access rights to its sensitive

data, according to the terminal effective authorization. The terminal effective authorization is
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derived from the certificate chain as the smallest authorization set present in all certificates of

the certificate chain.

6.6.2 Terminal Revocation

The terminal revocation status is checked during the terminal Certificate Validation (section

2.5 of [BSI15c]). Surprisingly enough, the revocation process is performed only with the

expiration date contained in the certificate and with a “Current Date” approximation stored

in the MRTD. The major problem, as expressed in [CV09], is that MRTDs do not have a

reliable clock. This is why they try to approximate the current date. Unfortunately, due to the

requirements for this approximation, the “Current Date” could be outdated by as much as a

month. Indeed, this update is executed solely with the date of certificate creation, contained

in a certificate issued by the same country as the MRTD. Note that there is no passport control

within the Schengen zone. For departures from the Schengen zone, an identity control will be

required only at the last Schengen airport before a non-Schengen country. More information

can be found in [Eur06]. As it is quite rare for a MRTD to encounter a terminal of its own

country, the update will be executed with the date of certificate creation contained in foreign

DV certificates. These are issued by the same country as the MRTD one.

Hence, a stolen terminal can still be used for a long period of time, even if its expiration date

has passed. This is an important threat that must not be neglected. Without a proper terminal

revocation scheme, a stolen terminal could be set up to use solely EACv1 without PACE, and

thus be used to detect and target individuals or a specific group of persons, while the attacker

is absent from the crime scene. Even in the case where EACv2 with PACE has to be used, if the

shared password is compromised, then all sensitive data will be accessed after completion of

the terminal authentication.

Oliver Bausinger from BSI claimed during the BIOSIG 2013 conference, that this issue is

solved with distributed terminals and only integrated terminals remain vulnerable. Indeed,

Section 1.2.1 of [BSI09b] mentions the following regarding integrated terminals:

“The disadvantage of this architecture is, that a stolen reader can be used to

perform Terminal Authentication at least as long as the current CV certificate is

valid.”

Moreover, Section 1.2.2.1 of [BSI09b] contains the same argument regarding distributed

terminals, as that of Oliver Bausinger :

“The advantage of this architecture is, that a stolen reader cannot be used for

Terminal Authentication. Therefore each reader can be operated easily in an

insecure environment.”
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Unfortunately the solution provided by distributed terminals introduces a single point of

failure with the dedicated online terminal control center. As soon as this server fails, the entire

terminal authentication procedure is stalled for all readers. The permanent online channel

required for them is also a potential target for attackers. In highly visited border controls,

this can become a major drawback or even a potential threat. An attacker only needs to jam

communication between readers and the terminal control center in order to paralyze an entire

border control.

6.7 Conclusion

Putting aside the weak ICAO standard, EACv2 resolves one of the issue of EACv1, namely the

privacy issue linked to releasing DG1, DG2, and SOD. The main difference introduced by this

version is in the order of authentication between a chip and the terminal that is attempting to

read it. In this new specification, the terminal authentication must be performed before the

chip authentication. EACv2 even introduces a replacement for BAC, named PACE. PACE is a

state-of-the-art password-based access control resisting active attacks. Another improvement

is that the access password for PACE is now a specific secret printed inside the passport and

no longer private data which has other purposes such as the MRZinfo.

This modification could be considered, at first glance, a major improvement. Indeed, by

forcing authentication of the terminal before the chip authentication, the release of DG2 and

SOD is restricted to officially allowed terminals only. However, this is not the case in the full

view of the specifications. A careful read of the specifications of the EACv2 in [BSI15a] reveals

the following in a footnote of section 2.4.1:

“For an ICAO-compliant ePassport application the MRTD chip MUST grant access

to all less-sensitive data (e.g. DG1, DG2, DG15, etc. and the Document Security

Object).”

What this note states is that if compatibility with ICAO is required, then the MRTD must

behave as in the ICAO standard. In other words, any fake terminal reader can require the

MRTD to use the crippled ICAO standard.

Furthermore, the date contained in the MRTD is still an approximation of the current date.

The date is updated only with national domestic certified dates, by means of certificate effective

dates (date of the certificate generation), contained in a national domestic CVCA certificate, a

DV authorization certificate issued by the national domestic CVCA, or an accurate terminal

certificate. The latter is a terminal certificate issued by an official domestic DV. As a MRTD will

rarely encounter a domestic terminal, it is more likely that its date will be updated through the

certificate effective date contained in a foreign DV. Hence the revocation of terminals is far

from being solved with the current EACv2 standard.
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Enhancing the EAC

This chapter, which is based on a revised version of [CV09], and on an extension of [Cha13],

proposes several enhancements and solutions for the next EAC upgrades. Section 7.2 em-

phasizes the prior attempts to solve the issues associated with EACv2. Section 7.3 proposes

a light hardware modification for new passports. Section 7.4 discusses an ICAO standard

improvement that consists of replacing its Basic Access Control (BAC) with the Password

Authenticated Connection Establishment (PACE) of EACv2. In the event that no hardware

modification will be tolerated, Section 7.5 suggests to increase domestic controls in order

to improve the time-based revocation of terminals. Furthermore, Section 7.6 presents a full

solution for terminal revocation, which limits itself to a software upgrade.

7.1 Introduction

Two types of threat are studied in this chapter. The first one is related to the threat of a stolen

integrated terminal device. These are considered to be Portable Computing Devices (PCD) in

the Technical Guideline TR-03110 [BSI15a, BSI15b, BSI15c, BSI15d]. An integrated terminal,

as explained in [BSI09b], consists of a single reader with an integrated hardware security

module and a proximity coupling device. Moreover, a stolen integrated terminal could still

be used to read MRTDs, as long as its certificate has not expired. This threat applies even

with an expired certificate if the date approximated in the MRTD is outdated. Hence there

is no real revocation system present for terminals. This is a known problem for the BSI, and

is even mentioned in [BSI09b] (Section 1.2.1). The second type of threat originates from an

inside attack. This incites for the study of the threat case where a compromised terminal has

remained in place, acting maliciously. With the current standard, a stolen or compromised

terminal could be used to target a group of persons, for instance by nationality, or a specific

person, such as Politically Exposed Persons (PEPs).

The implications of these threats are threefolds. First of all, they introduce an obvious privacy

breach in the sense that any compromised integrated terminal will have an illegitimate access
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to all MRTD data including biometrics. From there, an attacker can filter and target specific

individuals, or even groups with specific attributes, such as a specific nationality. Moreover,

the terminal can be used to acquire all information from all MRTDs that come in geographic

proximity with it, in order to build an illegitimate database of biometrics. With this kind of

database, attackers can train themselves and select the closest match for a cloned identity.

Lastly, efficiency needs to be taken into account. In [Fri], it is mentioned that more than 56

millions passengers traveled through Frankfurt airport in 2011. As around half of them are

only transfer passengers, and thus do not necessarily need a passport control, big hubs need

to process more than 2 million passport checks per month.

7.2 Prior and Related Work

As shown in the previous chapter, there is still room for improvement in the EAC standard. In

that regard, some results have already been proposed.

In 2009, Monnerat, Pasini, and Vaudenay [MPV09] constructed an Offline Non-Transferable

Authentication Protocol to achieve a Zero-Knowledge proof of knowledge of a valid SOD,

which has been neglected by the BSI.

Regarding the issue of terminal revocation, it has received only a small amount of interest as

the BSI community is convinced that the Password Authenticated Connection Establishment

(PACE) protocol mitigates this threat, as explained in [BDFK12]. Indeed, when executing

EACv2, PACE is the initial phase before Terminal Authentication. After its successful comple-

tion, the MRTD is ensured that the terminal has knowledge of a shared password, and can

proceed with Terminal Authentication. However, no guarantees are provided in the obtention

of this password. If the shared password has been obtained by social engineering, or read

directly by eavesdropping on the MRTD, then a successful terminal authentication will allow

the stolen terminal to access all sensitive data contained in the MRTD. This issue has been

raised by Belguechi et al. in [BLR12]. Unfortunately, the BSI concentrate on the protection of

biometric data and do not provide a solution for terminal revocation.

Li et al. in [LZJX10] also mention the threat of terminal revocation, but concentrate on pre-

senting the Singapore solution that implicates Authorized Smartcard with Identity Based

Cryptography. Hence, to solve terminal revocation they require heavy hardware modifications.

In [BB13], Buchmann and Baier presented two solutions for terminal revocation. Both of their

solutions imply that MRTDs communicate securely with a trusted home server. In their first

solution, this communication is needed twice: it is first used to retrieve the current authenti-

cated and precise date with the Network Time Protocol (NTP), and it is also used to identify the

terminal revocation status by accessing an Online Certificate Status Protocol (OCSP) server. In

their second solution, MRTDs transfer the entire authentication check to the trusted home

server with the Server-based Certificate Validation Protocol (SCVP).
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Not only do both of these solutions require new heavy hardware incorporation, they also

require the establishment of a secure and permanent high speed bandwidth connection be-

tween dedicated country servers and every potential terminal in the world. This might become

an issue for mobile terminals aboard international cruise ships, with poor and unreliable

connectivity. Furthermore, both of their solutions introduce several single points of failure.

Indeed, if one of the network links or if one of the servers for either NTP, OCSP, or SCVP fails,

both of their entire terminal revocation solutions become unusable.

7.3 Light Hardware Improvement

Currently, it is easy to distinguish between passports from different countries without any

direct contact with them. The only way to protect against this is to prevent the chip from

responding. In order to avoid traceability of passports, the solution that people currently have

is to place their MRTD in a Faraday cage. Obviously this solution is cumbersome. For the case

of biometric passports, a better solution would be to incorporate an RFID switch to deactivate

the chip. Some sensors could even detect if the passport is opened or closed and manipulate

the switch accordingly. This last solution can be accomplished by placing a secondary RFID

tag antenna in the back cover of the passport, and joining both antennas with a NAND gate.

When the passport is closed, the RFID tag would simply ignore all discovery signals sent by

readers, as both antenna will provide a power source. In order to interact with the RFID tag,

the passport would need to be opened, allowing for a single antenna to be powered. This

solution is logical, as the access password for PACE printed inside the passport is supposed to

be scanned by border patrols. The main drawback, although being cheap, is that it involves a

small physical modification to passports (for instance an additional RFID tag antenna and a

NAND gate).

7.4 Improving ICAO Standard

Several changes need to be made to the current EACv2 specifications as well as to the ICAO

standard. The first issue to be considered for the ICAO is that BAC should be abolished and

replaced by PACE. For interoperability between the EAC and the ICAO standard, the latter

should stop mandating the availability of DG1, DG2, and SOD without PACE from the EAC.

Moreover, EAC would have to be implemented outside Europe in order to fully deploy its

capacity. As for the EAC and ICAO standards, they only require eliminating a few lines in

their specifications. This proposed enhancement has been taken into account, and the ICAO

working group ISO/IEC JTC1 SC17 WG3 mentioned in [ICAO13] that:

“At present the fact that BAC MUST always be present on the eMRTD ensures that

inspection systems that do not support PACE (yet) will still be able to access the
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MRTD’s chip. To access eMRTDs supporting only PACE, inspection systems MUST

support PACE. In its meeting on 19-21 February 2013 the NTWG concluded that as

of the date 01 January 2018 eMRTDs supporting only PACE will be considered to

be ICAO compliant. The chosen date should provide enough time for inspection

system owners and vendors to implement the necessary modifications to their

systems.”

Deployment does not necessarily imply a heavy PKI for terminals. A country not ready to

have such a PKI could still use a dummy one with a single key shared between all readers.

The passport issuing country, aware of this, could adjust the read access to mandatory data

groups and maintain the possibility of stopping the renewal of a certificate for this key if the

reading country does not make enough effort to avoid leakage of its secret key. EAC-reading

is a matter of software update and is inexpensive. A first step has been made by the ICAO

towards mandatory pure EAC, however BAC will still be present for MRTDs supporting it.

7.5 Improving Behavioral Practices

To be more accurate in the date contained in the MRTD, a solution would be to have identity

checks even when leaving a domestic country or a community space if the community space

members trust each others. For instance, some domestic clock-update booths could be made

available on a voluntary basis before departure. As the identity check will correspond to an

interaction with an accurate terminal, the date in the MRTD will be updated with the terminal

certificate effective date. The date contained in the MRTD is still an approximation in this

scenario, but with a reduced date error when compared to EACv2. Ideally, future chips should

be equipped with a real clock. If no improvements are made to the EAC standard, the only

solution left for holders of MRTDs to maintain their privacy, is to shield their MRTD in a

Faraday cage.

7.6 Solving Terminal Revocation

The new method presented in this section uses threshold signatures in order to verify the

revocation status of terminals. The background is explained in detail in Section 2.5 and in

particular in Sections 2.5.2 and 2.5.3. Document Verifiers (DVs) in the EAC standard are here

assumed to be trusted participants. In general, several terminals are present. If the number

of terminals is considered too low, this scheme can easily be modified to provide equivalent

properties. It is also assumed that a communication channel between terminals exists. This

is a common feature of terminals nowadays, such as the 3MT M Mobile ID Reader. Moreover,

the modifications needed to enable this method are solely software upgrades: no hardware

modification to MRTDs is required.
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Let us now see how to go from threshold signatures to terminal revocation. The main idea

is to introduce terminal collaboration in order to achieve terminal authentication. Terminal

revocation will thus be achieved with the help of neighboring terminals. Protocol 7.1 depicts

the general view of how the EAC terminal authentication should be augmented to provide a

better revocation mechanism. The terminal interacting directly with the MRTD will be called

the requesting terminal Tr , as it will request collaboration from neighboring terminals to

achieve authentication. The set of terminals participating in a specific terminal authentication

is denoted by TΨ. This set includes Tr . Furthermore, Ψ will be the index set of these terminals.

MRT D Tr TΨ

Certificate
Validation

Cer tDV , Cer tTr��

��DH Key Agreement��

rM
rM �� rM �� Check revocation status

Check σ [Check σ]
σ��

σ=
Si g nSKDV

(
HF D H

(
I DTr , rM

))σ��

E AC Ter mi nal Authenti cati on

Protocol 7.1 – Augmented terminal authentication

The additional interactions needed for terminal revocation are added after the EAC terminal

authentication is performed and before giving access rights to Tr for the MRTD sensitive data.

They consist of three main steps. In the first step, the MRTD generates a fresh random nonce

rM , that will be transmitted to Tr and forwarded to the set TΨ. In the second step, TΨ will check

the revocation status of Tr . As terminals have real clocks and better computation capabilities

than MRTDs, they will be able to check this revocation status much more efficiently. In the

third and final step, TΨ will produce, with the shared DV secret key SKDV , a full domain

hash (FDH) threshold signature σ. This signature will be performed on the MRTD challenge

rM joined with the identity I DTr of the requesting terminal. This signature σ will then be

forwarded to the MRTD which will check it against the DV public key. If the check succeeds,

then the MRTD will be ensured that the terminal Tr is authentic and non-revoked.

Following the classification of authentication protocols proposed by Park, Boyd, and Dawson

in [PBD00], this proposed addition is an origin authentication protocol with forced challenge,

where the prover signs with his secret key a random nonce generated by the verifier. The inclu-

sion of the terminal Tr identity in the signature is necessary to avoid a Lowe attack [Low96].
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The identity of the MRTD is unnecessary when sending the challenge as the objective is only

to provide a strong argument that Tr is not revoked. Moreover, linkage to this identity might

raise a privacy issue. The disclosure of the signature would reveal the location of the MRTD at

a given time if it is joined with a timestamped signature.

The security assumptions will be specified first. Detailed explanations will then be provided

on how to extend terminal authentication in order to achieve a better terminal revocation.

Thereafter, some efficiency improvements will be discussed. The security requirements will

then be explained, a complete security proof will be provided, and a general analysis will

conclude this section.

Security Assumptions

Regarding the environment, the same structure of participants as the EAC model is assumed,

however some clarifications are provided. Each DV is responsible for � terminals (� differs

from one DV to the other), where DVs and terminals are polynomial-time algorithms. DVs

play the role of trusted authority amongst their terminals. The existence of secure and authen-

ticated channels between all � terminals is assumed. This is easily achieved with public key

encryption as it is the same DV (a trusted party) that issued every terminal key pairs. When a

terminal is stolen, its certificate will be revoked. This revocation will disable its use. Moreover,

the lack of online connectivity should apply only to CVCAs and DVs as they are Public Key

Generators. As such, they should be turned offline once their keys setup generation has been

achieved (as explained in [Sha84]). This is not the case for terminals. As for MRTDs, recall that

they have no internal clock. Regarding time, MRTDs should therefore consider it as indicative

but not decisive.

Furthermore, attackers are assumed to be computationally bounded. Focus will be placed on

threats relating to terminals, as they are somehow neglected in the current EAC. Nevertheless,

both CVCAs and DVs are assumed to be honest. The threshold security requirement, where

the adversary can corrupt up to t terminals among �
 2t +1, is also assumed to hold. This

last assumption can be lessened if proactive security is included (Section 2.5.2). After each

revocation, the value ’0’ would be shared amongst the remaining valid terminals, and added

to their current shares. More details on the matter will be explained in the general analysis of

Section 7.6. With proactive security, t has to be set such that no more than t terminals could

be corrupted before a resharing.

Adversaries will be expected to be either passive adversaries, where attackers corrupt targets

by reading their contents, their secrets, and all the communications involving them, or active

adversaries, where attackers will additionally be allowed to change the behavior of corrupted

terminals. Lastly, adversaries will be restricted to static adversaries, meaning that the adver-

sary will select which terminals to corrupt before the start of the protocol. Moreover, the

adversary is free to corrupt them whenever he wants to. When a terminal is corrupted, all his

communications will be revealed to the adversary. Dynamic adversaries are set aside, as the

corresponding solutions will induce a high loss of efficiency. Nevertheless, it would still be
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possible to handle dynamic adversaries by using a threshold signature scheme secure against

them [LY12].

Regarding revocation, only the case of accurate revocation is considered, meaning that cor-

rupted terminals are immediately identified and thus revoked, and non-revoked terminals

are considered honest and non-corrupted. This limitation makes sense as the initial goal

of the suggested solution is to protect MRTDs against stolen terminals. Corrupted and non-

revoked terminals are outside the scope of the adversarial model considered. It is important

to note here that any non-revoked malicious participant will always be able to succeed in an

authentication if the participant behaves honestly. Moreover, the threat of a cloned terminal is

not covered with the following solution, as it will be explained in more detail in the general

analysis of Section 7.6.

Augmented Terminal Authentication

Protocol 7.3 gives the general structure of the additional part to the current terminal authen-

tication protocol. The required Setup phase, depicted in Protocol 7.2, is very similar to the

original EAC one.

Ti (1	i	�) DV CV C A

(
pk, {ski }�i=1

)
←KG(1k , t ,�)

Cer tr eq ��

Cer tDV��
Cer tDV , Cer tTi , ski , pk

��

Protocol 7.2 – Terminal authentication setup

DVs are in charge of the setup phase. They will first run a key generation algorithm KG to

obtain the system public key pk and the different terminal secret key shares ski intended for

each terminal Ti . The secret key shares ski are shares of the DV secret key SKDV . They are

computed such that every terminal authentication will require the collaboration of at least

t +1 terminals. Hence, the following scheme tolerates up to t corrupted terminals. As long as

t +1 honest terminals are available, terminal authentication will be able to proceed. Recall

that Ψ is the index set of terminals participating in a specific terminal authentication. Hence

Ψ⊂ {1, · · · ,�} and |Ψ| 
 t +1. Furthermore, the system public key pk includes the DV public

key PKDV , the verification key vki of each terminal, as well as some system parameters.
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After KG has been run, the DV will have to contact CVCAs from every other country with a

certificate request, in order to obtain its DV certificates. Hence, a DV will have one certificate

for each country whose MRTDs may likely encounter the terminals of that DV. This is already

the case with the current EAC. The difference in certificates is that they will additionally

include PKDV . They will not include the entire pk as only PKDV is used in the interaction

between MRTDs and terminals. Moreover, certificates will contain additional information

regarding how many terminals are required to collaborate with the requesting terminal Tr in

order to complete its authentication (parameter t ), as well as how many terminals are present

under the DV (parameter �).

The DV first receives its certificates. Each terminal i then receives the public key of the system

pk, its corresponding secret key ski , its certificate and the DV certificates, all from the DV.

Once the Setup phase has been completed, SKDV can be safely erased. Future interactions

will include terminals and MRTDs only. Hence the DV can be turned offline as described in

the EAC standard.

MRT D (PKDV ) Tr (pk, skr ) Ti �=r (pk, ski )

M ∈R M
M �� M̃ =F (I DTr , M)

M �� Check revocation status

σr =Σi=r (M̃) M̃ =F (I DTr , M)

Check Σv (σi ,πi ) (σi ,πi )=Σi (M̃)
σi ,πi��

Check
Vσ(F (I DTr , M))

σ=Σc ({σi }Ψ)
σ��

Protocol 7.3 – Terminal authentication with revocation

The terminal authentication takes place after the setup phase and the Certificate Chain

Validation process. Protocol 7.3, which depicts the general terminal authentication, makes use

of Section 2.5.2 notations. At first, a MRTD will select a random challenge M in the message

space M . It will then challenge the requesting terminal Tr with this random challenge M .

Moreover M must be independent from the MRTD identity, otherwise a tracking threat would

arise in relation to location privacy. Indeed, in the case where M is related to the MRTD

identity, the signature will prove that a given identity was at a specific location at a specific

time. Maliciously replaying this challenge does not pose any real threat as it will only reveal a

previous valid signature for the authenticity and the non revocation status of a given terminal.

As the communication channel between the MRTD and the terminal is only secured with

PACE, there is no authentication guarantee or revocation status check provided on the terminal
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certificate. They will be provided on the ability of the terminal to perform the signature on the

MRTD challenge. After the certificate is validated by verifying the correctness of the signature,

the MRTD will be able to use the keys contained in the certificate to establish a secure and

authenticated channel.

In order to get a valid signature on the MRTD challenge, the requesting terminal Tr will have

to collaborate with at least t other terminals. The revocation process takes place during the

terminal collaboration. It will be the role of other terminals to determine the revocation status

of Tr . To do so, an honest Tr will contact solely non revoked terminals for the collaboration.

Any standard strong revocation mechanism can then be used here. The basic solution is to

apply Certificate Validation as described in Section 2.5 of [BSI15c], except that a real clock

can now be used. The advantage of this solution is that no additional hardware is introduced.

Nevertheless, more complex solutions can also be used, such as Certificate Revocation Lists

(CRL) or the Online Certificate Status Protocol (OCSP), if an OCSP responder is set up under

the DV authority and is just for terminal interactions.

The constant participation of the DV in the revocation process should be avoided as it breaks

the principle of closing the Public Key Generator (PKG) after key generation (as mentioned

in [Sha84]). Furthermore, the case of OCSP introduces two drawbacks. It requires the intro-

duction of additional hardware, and the OCSP responder becomes a single point of failure.

The CRL solution should be favored, as it can be manually pushed towards terminals when

necessary. The CRL size remains small as it targets only collaborating terminals under a same

DV.

If a CVCA considers that the threshold t used in an organizational unit managed by a DV is too

low, it can request the participation of a special terminal that will act as a revocation server.

Nevertheless, as was the case for the OCSP, this method introduces a single point of failure

with the revocation server. Ideally, the set up of the organizational unit under a DV should

include enough terminals for the revocation process. As CVCAs provide foreign DVs the ability

to read their passport, it would be desirable that these DVs protect this privilege, and avoid

its misuse. If the number of terminals required is low (in a hotel, for example), then these

terminals should join the infrastructure of another existing DV organizational unit.

If the requesting terminal Tr is revoked, then its request will simply be ignored by other honest

terminals. If the Tr status is still valid (not revoked) then partial signatures σi can be computed

and sent to it, possibly with verification proofs πi . Moreover, the partial signatures will also

contain the identity of the terminal Tr requesting this signature. To include this identity,

terminals will use a full domain hash function F on the MRTD challenge M and on the Tr

identity I DTr . The hash outputs should cover the full input domain of the signature scheme, in

other words the message space of the signature scheme. Tr will then collect all valid t partial

signatures and combine them with its own to create a full domain hash (FDH) threshold

signature σ on the MRTD challenge. This global signature σ will be sent to the MRTD as a

proof of authenticity and its non revocation status.
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It is important to note here that F should be second-preimage resistant. This requirement is

a necessary condition to avoid relay attacks. For a given legitimate challenge M and an honest

terminal I DTr , an attacker with the ability to undertake a second-preimage attack could

forge a request MA to Tr such that F (I DTr , MA ) =F (I DTA
, M), where TA is a terminal

corrupted and controlled by the adversary. The requirement that all terminals compute

independently F (I DTr , M) is also essential. If this computation is achieved solely by the

MRTD and transmitted to Tr for signature, an adversary controlling a rogue terminal could

mount a man-in-the-middle attack. Such an attack would consist of three main steps. First, the

adversary would initiate an interaction with a MRTD by sending it his identity I DTA
. Then the

adversary, pretending to be a MRTD, would initiate an interaction with a legitimate terminal

Tr . In this interaction, the adversary would simply ignore the identity of Tr . To obtain a valid

signature on F (I DTA
, M), the adversary can simply forward it to Tr , as F (I DTA

, M) has been

computed and sent by the MRTD. If F (I DTr , M) is computed solely by Tr and later by the

MRTD in the verification step, terminals Ti would have no means to verify if the terminal

interacting directly with the MRTD is indeed Tr , and another similar attack could be achieved.

Once the MRTD receives the global threshold signature σ, the MRTD will have to verify it with

the global public key of the DV, PKDV . If the check is successful, the MRTD can be ensured that

either the terminal is able to forge signatures on behalf of the DV (for instance the terminal

knows the DV secret or it can cheat on its revocation status), or that the terminal has gone

through a threshold signature involving revocation checks. As the DV is assumed to have

correctly achieved the initial setup and that terminals communicate over an authenticated

channel, the MRTD is ensured of the non revocation status of the terminal.

At this point, any efficient, unforgeable, robust, and secure threshold signature scheme can be

used. Optionally, it can also be proactive secure. All of these properties are achieved by the

threshold RSA signature of Shoup [Sho00], explained in Section 2.5.3. This choice is favored

for its efficiency and simplicity. A detailed description of the KG in the DV setup phase follows

in Protocol 7.4, whereas the description of the protocol is given in Protocol 7.5. Both cases

follow the notation introduced in Section 2.5.3.

In the KG , note that some precomputations are done by the DV for its terminals, namely the Δ

computation, as well as the computation of parameters a and b. Furthermore, if proactive

security is targeted, then the KG must also provide ñ as part of the DV secret key SKDV . The

latter will be explained in the general analysis of Section 7.6. In all cases, once the setup phase

has been entirely completed, the DV secret d from SKDV can be safely erased. Note, however,

that this is not meaningful in the case of proactive security because p and q can be recovered

from (n, ñ), and hence computing the inverse of e (mod ñ) is easy.

After the setup phase, the threshold signature of Shoup [Sho00] is used and applied to the

general case (Protocol 7.3), which results in Protocol 7.5. The Lagrange coefficients λΨ
0, i are

computed as in equation 2.3. For obvious reasons, the best choice for |Ψ| is |Ψ| = t +1. This

implies that Tr will only need to contact t other non revoked terminals. Moreover, after
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receiving their credentials, each terminal can define a preferred set Ψ, which would include

themselves. This would allow them to precompute the Lagrange coefficients corresponding

to their set Ψ. Nevertheless, if a terminal from their preferred set Ψ fails to reply or fails to

provide a valid verification proof, then the requesting terminal can contact other terminals

and recompute the Lagrange coefficients for the new set Ψ. As for the choice of the one-

way permutation FTr (I DTr , M), it can only be based on SHA-512 as this is the best hash

function implemented in current MRTDs. In order to provide a uniform output in Z∗n , which

is the message space of the chosen signature scheme (threshold RSA), Bellare and Rogaway

suggested in [BR96] to concatenate the same hash function where the hash input would be

appended with a constant and a counter ctri . As I DTr can be used as the constant, F would

correspond to:

FTr (I DTr , M)= SHA-5120(I DTr ‖ctr0‖M)...SHA-512i (I DTr ‖ctri‖M)...

Furthermore, to obtain the right output length, the last hash block can be truncated as sug-

gested by Bellare and Rogaway in [BR93]. Unfortunately, the output will not be perfectly

uniform in Z∗n , as a modular operation will still be required. Last but not least, there is a
(n−ϕ(n))

n probability that FTr fails to provide a valid output, corresponding to the cases where

the output falls in Zn \Z∗n .

An efficiency gain can be obtained by altering the way in which the verification proofs are

conducted. This will be explained in the next section.
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DV

Choose n as a composite RSA modulus from 2 safe primes:
n= (2p+1)(2q+1) ; and ñ = pq .

Pick e,d such that ed= 1 (mod ñ).

Set SKDV =d and PKDV = (n, e).

Set Δ= �!.

Pick v ∈R QRn , where QRn is the subgroup of squares in
Z∗n .

Compute a,b such that a ·4Δ2+b ·e ≡ 1 (mod ñ)
(with the Extended Euclidean Algorithm).

Set Ω= {
0, · · · ,2‖n‖+2L −1

}
, where L is a security parameter

(at least 128 according to [Sho00]).

Set H as a hash function that has L bits output.

Pick IDTi ∈R Z∗ñ , for all 1	 i 	 �.

Pick a function f (x)=
t∑

i=0
fi xi (mod ñ)

with f0 = SKDV and fi �=0 ∈R Zñ .

Set vki = v ski , where ski = f (i ) for all 1	 i 	 �.

Set pk= (
PKDV , Δ, v, a, b, Ω, H ,

{
I DTi , vki

}
∀i

)
.

DV
Certreq �� CV C A

DV CV C A
CertDV��

DV
CertDV , CertTi

, ski, pk
�� Ti

Protocol 7.4 – DV key generation and setup

170



7.6. Solving Terminal Revocation

M
R

T
D

(P
K

D
V

)
T

r
(p

k
,

sk
r

)
T

i�=
r

(p
k

,
sk

i)

M
∈ R

Z
∗ n

M
��

M̃
=

F
(I

D
T

r
,

M
)

M
��

C
h

ec
k

re
vo

ca
ti

o
n

st
at

u
s

σ
r
=

M̃
2Δ

sk
r

r i
∈ R

Ω
;

M̃
=

F
(I

D
T

r
,

M
)

;
σ

i
=

M̃
2Δ

sk
i

c i
=

H
( v,

M̃
4Δ

,
v

k
i,
σ

2 i
,

v
r i

,
M̃

4Δ
r i
)

z i
=

sk
i
·c i
+r

i

C
h

ec
k
π

i:
π

i
=

(c
i,

z i
)

σ
i,
π

i
��

c i
? =

H
( v,

M̃
4Δ

,
v

k
i,
σ

2 i
,

v
z i

v
k
−c

i

i
,

M̃
4Δ

z i
σ
−2

c i
i

)
C

h
ec

k
if

σ
e

? =
F

(I
D

T
r
,

M
)

σ
=

( ∏ i∈
Ψ

σ
2a

Δ
λ
Ψ 0,

i

i

) ·M̃
b

(m
o

d
n

)
σ

��

P
ro

to
co

l7
.5

–
Te

rm
in

al
au

th
en

ti
ca

ti
o

n
w

it
h

re
vo

ca
ti

o
n

171



Chapter 7. Enhancing the EAC

Efficiency Analysis and Enhancement

In Protocol 7.5, the MRTD computation is dominated by one single exponentiation. The

terminal communicating directly with the MRTD and in charge of combining the partial

signatures, has a computational complexity dominated by (5t +4) exponentiations. However,

this computational cost can be reduced to (t +4) exponentiations as explained below. For the

collaborating terminals, the computational cost is dominated by 4 exponentiations. Simple

squaring is considered as a multiplication.

With regard to computational costs, several modifications can be made to reduce them.

First, the terminal in charge of combining partial signatures could perform the robustness

checks only if the resulting combined signature is invalid. Hence instead of computing 4t +1

exponentiations, the validity of the signature can be checked first with a single exponentiation,

as depicted in Protocol 7.6.

The overhead, in time, should be less than 0.1 seconds, assuming 30 MHz CPU for MRTDs, 520

MHz CPU for terminals, 802.11g wireless communication between terminals (net average of 22

Mbit/s) and 200 Kbit/s communication speed between MRTDs and terminals. Each message

sent is around 1 Kbit except the messages from collaborating terminals that are around 3 Kbits.

Note that in Protocol 7.4, the DV precomputes Δ and (a, b). It can go even further by precom-

puting the Lagrange coefficients λΨ
0, j ,∀Ψ, and storing them in each terminal during the set up

phase. The drawback of this method is that it requires a storage space in terminals. This can

be an issue as there are (t +1)C t+1
�

= �!
t !(�−t−1)! Lagrange coefficients to compute.

Furthermore, in the case of a large � (�> 100), the exponentiation by Δ to obtain the general

signature will greatly slow down the system. In this scenario, the threshold signature scheme

of Gennaro et al. [GHKR08] will be preferable as it would be more efficient.

The existence of multisignatures should also be noted. These are a type of threshold signature,

where the identity of signers is provided in the general signature. However, even the latest

result in multisignatures that can be used here, namely the scheme from Boldyreva [Bol03],

would imply a significant decrease in efficiency.

Finally, a modest efficiency gain could be obtained by using the threshold signatures of

King [Kin00], which are derived from the Desmedt-Frankel [DF94] scheme. However, the

gain in efficiency achieved necessitates a more complex implementation and a higher storage

requirement.
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Security Requirements

The solution suggested here for terminal revocation is simple but uncommon. Authentication

is achieved by means of authorization to perform a threshold signature given after a revocation

check. Hence, the security requirements have to be clarified in order to provide an acceptable

security proof. They include the following:

• MRTDs privacy;

• signature scheme unforgeability, threshold security, and robustness;

• randomness freshness;

• signature freshness and second preimage resistance for the hash function;

• revocation implications; and

• completeness and soundness.

Furthermore, the scheme can have proactive security as an optional requirement, depending

on the complexity tolerated and the security targeted.

Before going into the details of these requirements, three oracles that will be accessible by the

adversary for the security proof are defined: OΣi , Oσ, and Op . Passive adversaries will only be

allowed to query Op , while active adversaries may use all three of them.

Oracle OΣi (I DTr , M , {I DTi }). Upon being queried with a challenge M , an identity I DTr , and

a set of identities I DTi , the oracle OΣi checks the revocation status of all identities. If I DTr is

revoked, then⊥i is returned for all I DTi . Otherwise, OΣi runs the partial signature algorithm

of the threshold signature scheme for each non-revoked identity I DTi with input message

F
(
I DTr , M

)
. At the end, the oracle returns all partial signatures σi with their verification

proof πi , corresponding to the non-revoked identities in {I DTi }. For the revoked identities

contained in {I DTi },⊥i is returned.

Oracle Oσ(I DTr , M). Upon being queried with a challenge M and a non-revoked identity

I DTr , Oσ returns a signature σ such that σe =F
(
I DTr , M

)
. Otherwise,⊥i is returned.

Oracle Op . For a random choice of (I DTr , M , {I DTi }), where the identities are not revoked,

Op returns the outputs of Oσ(I DTr , M) and of OΣi (I DTr , M , {I DTi }).

MRTDs privacy. The MRTD privacy should be protected at all time before the completion of

augmented terminal authentication. In other words, no information regarding time or the

MRTD identity should be extractable from the MRTD challenge. Hence the challenge must

be completely independent from the MRTD identity, and from time too. This means that the

challenge should not contain them, nor be derived from them.
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Unforgeability, threshold security and robustness. The signature scheme used must be

existentially unforgeable, to provide security against existential forgery under an adaptive

chosen message attack where the adversary is allowed to query the signing oracles OΣi and Oσ.

This unforgeability requirement prevents an attacker A from forging a valid signature σ or a

valid partial signature σi for F
(
I DTA

, M
)
, where I DTA

is the identity of a terminal controlled

by A .

As threshold security is assumed, the signature will have to be threshold secure and robust, as

defined in Section 2.5.2.

Randomness freshness. Replaying a given challenge should happen only with negligible

probability, in order to ensure the freshness of the authentication procedure.

Signature freshness. Terminals should not be able to reuse previously emitted signature,

except with negligible probability. To enforce this, F is required to be second preimage

resistant. This is so as to avoid that an attacker A , upon receiving a challenge M , forges a

challenge MA such that

F
(
I DTA

, M
)=F

(
I DTr , MA

)
,

in which case A would be able to pass any authentication by requesting a signature on MA

from terminal Tr .

Revocation implications. For revocation, terminals that are revoked should be forbidden

from participating in any authentication procedure. They should not be able to succeed in

any terminal authentication request except with negligible probability.

Completeness. In the ideal case where there are no adversaries and where all participants

are honest, the protocol should always succeed with overwhelming probability.

Definition 7.1 (Completeness)

A protocol for terminal authentication is said to be complete if the following holds:

If all participants are honest and non-revoked, the MRTD should accept the authentication

procedure with overwhelming probability.

Soundness. This property exhibits the fact that Tr should not be able to cheat, except with

negligible probability. To achieve that, consider the advantage of the adversary in winning

some specific games. The case of passive adversaries is taken into account with the game 7.1,

while game 7.2 handles the case of active adversaries. In both cases, the goal of the attacker A

is to produce a valid signature σA such that the requesting MRTD will accept it. Furthermore,

A is allowed to query oracle Op for both passive and active attacks. In the case of active

adversaries, A will additionally be allowed to query oracles OΣi and Oσ, with one restriction.

The oracles can not be queried with the pair (I DP , M), where M is the challenge sent by the

verifier MRTD and I DP is the identity of the prover expected by the verifier MRTD. At the end

of the game, A produces a signature σA and wins the game if the verifier MRTD accepts it.
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Game 7.1 – Soundness game for passive adversaries (SGpa)

1. A selects t terminals to corrupt. This set is fixed.

2. The DV Key Generation and Setup are run. A retrieves (Cer tDV , pk) and for
each corrupted terminal Ti , A also retrieves (Cer tTi , ski ).

3. A interacts solely with Op .

4. A selects a terminal TA from his set of corrupted terminals. TA will be the
terminal interacting with the MRTD, hence I DTA

is sent to the MRTD.

5. The MRTD generates a random challenge M and sends it back to A .

6. A interacts again with Op .

7. A outputs a guess on σA and wins the game if the signature is accepted by
the MRTD. In other words, A wins if σA is a correct signature for the pair
(I DTA

, M).

Game 7.2 – Soundness game for active adversaries (SGaa)

1. A selects t terminals to corrupt. This set is fixed.

2. The DV Key Generation and Setup are run. A retrieves (Cer tDV , pk) and for
each corrupted terminal Ti , A also retrieves (Cer tTi , ski ).

3. A interacts with Op , with OΣi and with Oσ, in a completely free manner.

4. A selects a terminal TA from his set of corrupted terminals. TA will be the
terminal interacting with the MRTD, hence I DTA

is sent to the MRTD.

5. The MRTD generates a random challenge M and sends it back to A .

6. A interacts again with Op , with OΣi , and with Oσ, with the restriction that the
pair (I DTA

, M) can be fed neither to the oracle OΣi nor to the oracle Oσ.

7. A outputs a guess on σA and wins the game if the signature is accepted by
the MRTD. In other words, A wins if σA is a correct signature for the pair
(I DTA

, M).
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The advantage of A is defined as the probability that A has to win the previous games:

Ad vA
SGpa

for passive adversaries, and Ad vA
SGaa

for active adversaries.

Definition 7.2 (Soundness)

A protocol for terminal authentication is sound against passive adversaries if A has a negli-

gible advantage in the game 7.1:

Ad vA
SGpa

∈O (1/n) .

It is sound against active adversaries if A has a negligible advantage in the game 7.2:

Ad vA
SGaa

∈O (1/n) .

Proactive security. Recall that proactive security is defined in Section 2.5.2. In this case, the

attacker is allowed to corrupt more than t terminals, as long as no more than t terminals are

corrupted, and hence revoked, before a secret resharing.

Definition 7.3 (Global security)

A protocol for terminal authentication is considered secure if it is complete, sound, and if it

achieves all previous security requirements.

Security Proof

In order to achieve authentication, terminals have to provide undeniable evidence of their

authenticity and non revocation status. This section will prove that the security requirements

for the protocols depicted in 7.5 and in 7.6 are all met.

It is easy to see that the challenge M is indeed picked randomly, independently from time and

from the MRTD identity. Hence the privacy requirement is provided.

The underlying threshold signature scheme used is the RSA threshold signature from [Sho00].

This guarantees existential unforgeability, threshold security, and robustness.

The probability that a given challenge is replayed against a specific terminal identity is:

1∣∣Z∗n∣∣ = 1

ϕ(n)
= 1

4ñ
∈O (1/n) .

As this probability is negligible, the randomness freshness is ensured.

The signature scheme unforgeability requirement, combined with the second preimage re-

sistance of the hash function F , enables signature freshness. Indeed, reusing a previously

emitted signature would imply one of the following three cases:
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1. That the randomness freshness requirement failed, which happens with negligible

probability as seen above.

2. That the adversary A was able to obtain an identical hash function F output from two

different inputs, where one of the inputs is fixed and the other one is selected by A . This

case breaks the second preimage resistance of F .

3. That A was able to obtain the same signature for two different F outputs. This case

breaks the unforgeability security of the signature scheme.

As concerns revocation, any revoked terminal TA will be completely ignored by all other

honest terminals. These latter terminals will refuse to reply to any partial signatures requests

from TA , and they will also avoid contacting TA for any partial signature requests. Hence,

revoked terminals are isolated. Their success probability in passing a terminal authentication

procedure is limited to guessing the correct signature for a given challenge. Due to the

signature freshness security property, this probability is negligible (O (1/n)).

Lemma 7.1 (Completeness)

Assuming an honest MRTD, honest non-revoked terminals, and a robust threshold signature

scheme, the protocol depicted in Protocol 7.3 is complete with overwhelming probability.

Proof

As all participants are assumed to be honest and non-revoked, Tr will pass the revocation check

from the contacted group of t non-revoked terminals Ti . The terminals Ti will be able to com-

pute their partial signatures and their corresponding verification proofs, if FTr

(
I DTr , M

) ∈Z∗n .

As Ti are also honest, their verification proofs and partial signatures will both be correct. Due

to the robustness of the threshold signature scheme, Tr will succeed to verify their partial

signatures and will correctly compute the general signature σ, using these t valid partial

signatures and its own partial signature. The probability that FTr

(
I DTr , M

) ∈Z∗n is equal to:

Pr
[
FTr

(
I DTr , M

) ∈Z∗n] = ϕ(n)

n
.

Hence the verification check by the MRTD will always succeed with overwhelming probability,

which completes the proof.

Corollary 7.2 (Completeness)

Assuming an honest MRTD, honest non-revoked terminals, and a robust threshold signature

scheme, Protocol 7.5 and Protocol 7.6 are complete with overwhelming probability.

Proof

For Protocol 7.5, the proof is straightforward from Lemma 7.1 as Protocol 7.3 is a generalization

of Protocol 7.5. As for Protocol 7.6, the robustness property of the threshold signature scheme

ensures that the combined general signature will be valid, as all partial signatures are also

valid. Hence it is also straightforward from Lemma 7.1 that Protocol 7.6 is complete.

178



7.6. Solving Terminal Revocation

Lemma 7.3 (Soundness)

Assuming threshold security and existential unforgeability for the threshold signature scheme

used, accurate revocation, and a second preimage resistant full domain hash F , the protocol

depicted in Protocol 7.3 is sound against passive and active adversaries.

Proof

In order to achieve this proof, its transposition will be proven: if an adversary A is able to

win in games SGpa or SGaa , depicted respectively in game 7.1 and game 7.2, then A is able to

break one of the lemma assumptions.

Let us first consider the case of active adversaries playing the game SGaa .

A first selects up to t terminals for corruption and retrieves their secrets after the DV Key

Generation and Setup are run. Corrupted terminals are immediately identified and revoked,

due to the accurate revocation assumption. A revoked terminal is implicitly considered as

corrupted. Due to the unforgeability of the threshold signature scheme and as long as no more

than t terminals are corrupted, the adversary will not be able to recover SKDV . Furthermore,

A is allowed to interact with the oracles Op , OΣi , and Oσ. From it, A will collect signatures

and partial signatures for chosen and random combinations of challenges MA and identities

I DTr . After A selects the terminal TA interacting with the MRTD, the latter will challenge A

with M . A will continue to interact with the oracles, without querying the MRTD challenge,

and at the end of the game will output a valid signature σ on M for identity I DTA
.

To begin with, A could have received, from Op , either the signature on (I DTA
, M), or a sig-

nature on a different pair but with the same hash value M̃ =F
(
I DTA

, M
)=F

(
I DTr , MA

)
.

Both cases could happen with a negligible probability in O(1/n). As they are negligible, it

can be assumed for the rest of the proof that A did not receive them. If the existential un-

forgeability assumption is considered valid, and if F is indeed second preimage resistant,

then TA being revoked implies that A is able to produce a signature solely from the t cor-

rupted terminals, breaking the threshold security assumption. If TA was not revoked, it

would be the accurate revocation assumption that would be failing. If the signature scheme

used is now considered threshold secure and that the accurate revocation is successful, then

either A breaks the second preimage resistance of F or the existential unforgeability assump-

tion. Indeed, either A has produced a σ from a forged different pair
(
I DTr , MA

)
, on which

F
(
I DTA

, M
)=F

(
I DTr , MA

)
, or A can be used as a black box in order to forge signatures

for new choices of M , by simply challenging A with these new choices of M , breaking the

existential unforgeability assumption.

In order to be able to produce σ while all the lemma assumptions hold, A would then need to

know the DV secret key SKDV . Hence Ad vA
SGaa

∈O (1/n).

The proof for passive adversaries playing the game SGpa is identical, except that A is re-

stricted to using Op only. Hence, A is not allowed to make specific queries for his choices

of
(
I DTr , MA

)
. The main implication is that even if a passive adversary is able to break the

second preimage resistance of F , it will still need to wait for Op to provide the corresponding

signature. Hence Ad vA
SGpa

∈O (1/n).
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Corollary 7.4 (Soundness)

Assuming threshold security and existential unforgeability for the threshold signature scheme

used, accurate revocation and a second preimage resistant full domain hash F , Protocols 7.5

and 7.6 are sound against passive and active adversaries.

Proof

For Protocol 7.5, the proof is straightforward from Lemma 7.3 as Protocol 7.3 is a generalization

of Protocol 7.5. As for Protocol 7.6, if at least one of the partial signatures is invalid, the Lagrange

interpolation will fail to provide a valid signature σ. Hence it is also straightforward from

Lemma 7.3 that Protocol 7.6 is sound.

Theorem 7.5

Assuming threshold security and existential unforgeability for the robust threshold signature

scheme used, accurate revocation and a second preimage resistant full domain hash F , the

protocol depicted in Protocol 7.3 is secure.

Proof

The proof is straightforward from Lemma 7.1 and from Lemma 7.3.

Corollary 7.6

Assuming threshold security and existential unforgeability for the robust threshold signature

scheme used, accurate revocation and a second preimage resistant full domain hash F ,

Protocols 7.5 and 7.6 are secure.

Proof

The proof is straightforward from Corollary 7.2 and from Corollary 7.4.

General Analysis

A stolen or malicious terminal will not be able to authenticate itself, nor to impersonate

another valid terminal. A corrupted collaborating terminal will learn no information except

that a MRTD with some random challenge has requested an authentication process. However,

a corrupted terminal interacting with a MRTD will be granted access to the MRTD sensitive

data if the corrupted terminal behaves honestly. As long as at most t terminals are corrupted,

the DV secret key used to authenticate terminals remains protected.

In the case that the requesting terminal is non-revoked and compromised, the adversary could

gain access to sensitive data from the MRTDs that it encounters. However in order to do so, the

requesting terminal will have to collaborate honestly with the other terminals. This adversarial

behavior can be mitigated by monitoring the network and making sure that terminals only

communicate with other known terminals.

When the requesting terminal is honest and some collaborating terminals are corrupted and

non-revoked, these terminals will be easily identified if they fail to provide valid verifica-

tion proofs on their partial signatures. Moreover, the adversary will only learn contents of

challenges without being able to link them to the MRTDs that generated them.

180



7.6. Solving Terminal Revocation

Proactive security can be achieved by frequently renewing the global secret of the threshold

signature scheme. This can be done efficiently by resharing the same secret by means of

sharing the “secret” value ’0’ and adding the obtained partial secrets to the previous ones.

This technique can be easily explained by the Lagrange interpolation. Assume the general

secret is contained in f (0) and that another function g , with g (0) = 0 is shared and added

to the previous secret shares. The resulting addition will form another function f̂ such that

f̂ (0) = f (0). This method reduces the threat of terminal keys being exposed. In order to

compromise the general secret key, an adversary would have to obtain t +1 key shares in the

same time frame. This allows DV certificates to protect their general secret used for threshold

signature throughout their entire period of validity. Notice that this step is highly efficient if

performed by the DV. The DV would generate the additional secret key shares and distribute

them to their corresponding terminal. Verification keys will also have to be redistributed

to every participant. However, this can also be achieved without the DV by using secure

multiparty computation techniques [DK01], although this will imply a loss of efficiency.

In conclusion, a stolen terminal will not be able to authenticate itself. A corrupted collaborat-

ing terminal will learn no information except that a MRTD has requested an authentication

process. However, a corrupted requesting terminal interacting with a MRTD will be granted

access to the MRTD sensitive data if the terminal behaves honestly with the other collaborating

terminals. As long as at most t terminals are corrupted, the secret key used to authenticate

terminals remains protected. Furthermore, in case of proactive security, the leakage of the

secret key can be achieved only if at least t +1 key shares are compromised within the same

time frame of a resharing phase. These security properties are desirable as they improve

the current state of the EAC. By lowering the trust in terminals, the level of trust in the DV is

increased. This is an acceptable change as DVs are less exposed than terminals.

Remarks

Where the requesting terminal Tr is both corrupted and not revoked remains an open problem.

SKDV would remain protected but the adversary would be able to collect data from passports.

A potential mitigation would be to perform a continuous network analysis to check if terminals

are connected with illegitimate entities.

It is important to note that the solution presented in this chapter does not solve the problem of

a malicious DV. Indeed the DV can lower the requirements for its terminal in order to retrieve

as much data as possible among the people who transit its borders. Hence if a country is

subject to privacy infringement or if a country is known to disrespect the privacy of people,

DVs from that country should be forbidden to access sensitive information contained in

MRTDs. The only alternative solutions to disrespectful DVs and/or countries are expensive

and cumbersome. For instance, a possibility would be the solution provided by Buchmann

and Baier in [BB13], where the authentication and revocation of terminals are enabled by a

home server from the MRTD country.
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Conclusion

Due to a high level of public interest in privacy and e-services, this thesis focused on:

• improving cryptographic primitives necessary for enhancing privacy protection; and

• surveying and improving the standards for Machine Readable Travel Documents.

In relation to the former, two primitives were studied and improved: set membership and

range proofs. Moreover, solutions for range proofs were provided in the interactive and non-

interactive communication models. For the latter, the ICAO and the EAC standards were

surveyed, and improvements were elaborated.

For set membership proofs, a first solution was constructed based on the Boneh-Boyen

signature scheme. The scheme relies on proving that a signature for the committed secret

element is known to the prover. This thesis argued that other signature schemes could be

employed and provided an example with the Camenisch-Lysyanskaya signature scheme,

although slightly less efficient. This thesis then provided a general explanation of how to

build a set membership proof based on any secure signature scheme. Furthermore, this

thesis showed that cryptographic accumulators could also replace signature schemes in the

construction of set membership proofs. The most efficient secure protocol for set membership

proof is currently the one based on the Boneh-Boyen signature scheme. A variant of this

scheme was proposed by Arfaoui et al. in [ALT+15a], which attempted with limited success, to

reduce the computation complexity of verifying the Boneh-Boyen signatures.

Regarding interactive range proofs, this thesis improved range decomposition methods and

combined them with a proof of signature knowledge. This led to efficient protocols, where

elements are first decomposed and their digits are then proven with the set membership

proofs developed in this thesis. The interactive range proofs schemes presented in this thesis

reached the efficient asymptotical communication complexity of O
(

κ
logκ−loglogκ

)
, where κ is

the security parameter. Furthermore, the author of this thesis conjectures that this communi-
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cation complexity is an asymptotical lower bound, with current commitment schemes. This

bound might be lowered by using different security requirements, especially for commitments.

A possible solution might be achieved with commitments built on unconventional security

requirements. For instance, if a secret element is outside a given range, its commitment would

no longer be hiding and the secret would be leaked.

It is important to keep in mind that the choice of protocol for interactive range proofs is

dependent on the range size and the security desired. If the range size is larger than 2256

for 1024 bits group elements or 21642 for 20 bytes group elements, then the Groth positivity

test method [Gro05] is more efficient than the schemes presented in this thesis, regarding

the communication complexity. If it is acceptable to lower the security requirements from

zero-knowledge to witness indistinguishability, then for a range size that is larger than 232,

Groth binary decomposition [Gro11] is supposed to be more efficient, although it induces a

7 rounds protocol. For range sizes smaller than 232 or if zero-knowledge is preferred, then

the sumset based range proof presented in this thesis remains the most efficient and secure

choice. Last but not least, for very small ranges (for instance less than 32 elements), the set

membership proof primitives presented in this thesis are more efficient.

For efficient non-interactive range proofs without random oracles, this thesis proved the

insecurity of the first attempted protocol, which was elaborated by Yuen et al. in [YHM+09].

This thesis then presented a construction of a flexible solution based on the sumset decompo-

sition, on the Λ-PKE knowledge assumption, on a lifted version of the BBS cryptosystem, on a

Hadamard product argument, and on the Lipmaa permutation argument. The protocol result-

ing from this solution achieves a minimal communication complexity of 35 group elements, in

the binary sumset decomposition case. Although this protocol was the most efficient solution

when published, the current state of the art is provided by Lipmaa in [Lip14b, Lip16], which

achieves a constant communication complexity of 11 group elements.

Concerning MRTDs, this thesis explained the threats linked to the hardware choice of RFID

chips. This thesis surveyed the ICAO standard and explained the weaknesses of its terminal

authentication procedure, which is based on the Basic Access Control (BAC) protocol. This

thesis surveyed both versions of the EAC standard (EACv1 and EACv2), explained the improve-

ments achieved by these standards, and their remaining drawbacks, notably the lack of privacy

control on the data contained in the MRTDs, the weaknesses of the terminal authentication

protocol, and more importantly, the terminal revocation problem.

The outcome of the survey on the ICAO standard presented in this thesis, demonstrated that

the BAC should be replaced by its equivalent from the EACv2 standard, namely the Password

Authenticated Connection Establishment (PACE). This recommendation was adopted in

February 2013 by the ICAO working group ISO/IEC JTC1 SC17 WG3 [ICAO13]. Furthermore,

this thesis recommended the introduction of an RFID switch in MRTDs, in order to easily

enable privacy protection. However, it has been mentioned to the author of this thesis by the

German Federal Office for Information Security (BSI), that it would be too difficult to obtain the
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approval for hardware modifications regarding MRTDs. Hence, terminal revocation remains

based on the expiration date of their certificate, while MRTDs only have a poor approximation

of the current date. In an attempt to reduce this problem, this thesis recommended to increase

the updates of the date approximation of MRTDs. Furthermore, this thesis elaborated a

better solution to resolve the terminal revocation problem. This solution requires terminals to

collaborate in order to authenticate themselves, which solves the threat of an isolated rogue

terminal.

Open Problems. Remark that the set membership and range proofs presented in this thesis

are all dependent on the discrete logarithm computational hardness assumption. Hence they

are not quantum secure. Constructing set membership and range proofs that are quantum

secure remains an open problem. A potential solution might be obtained from latices. A further

remaining open problem consists of proving the asymptotical lower bound O
(

κ
logκ−loglogκ

)
for the computational complexity of range proofs. Regarding MRTDs, the standardization

authorities are aware of the solutions presented in this thesis and their implementation is

hindered by a lack of political will.
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Appendix A

Proof of Knowledge of a
Camenisch-Lysyanskaya Signature

The proof of knowledge of a Camenisch-Lysyanskaya signature suggested in Figure 3 of [CL02b],

is detailed here. This proof of knowledge is needed in Protocol 3.2 in Section 3.4. The objective

of the proof of knowledge is the following:

PK {(x,r, s,e, v) : Cx = g x hr ∧ Verify(ñ,a,b,c̃)(x, s,e, v)= 1},

where the predicate Verify is the verification algorithm of the Camenisch-Lysyanskaya signa-

ture, as defined in Section 3.4.
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Common Input: g ,h, commitment Cx ,

g̃ and h̃ for a commitment scheme modulo ñ,

public key (ñ, a,b, c̃)

of the Camenisch-Lysyanskaya signature scheme,

commitments Cv and Cw ,

and security parameters �e , �m , �n .

Prover Inputa: x,r such that Cx = g x hr mod n,

s,e, v, w,rw such that ve = ax bsc mod ñ,

such that Cv = v g̃ w and Cw = g̃ w h̃rw .

P t1,t2,t3 � V • Prover picks uniformly at random values of length �n :

rx , rρ , rs , re , rδ, rγ,

• Prover sends t1← g rx hrρ ,

t2←C re
w g̃−rδ h̃−rγ , and

t3←C re
v g̃−rδa−rx b−rs .

P c� V • Verifier picks uniformly at random c of length �n ,

P sx ,sr ,sξ,sε,sδ,sγ� V • Prover sends sx ← rx −cx, sr ← rρ−cr ,

sξ← rs −cs, sε← re −ce,

sδ← cδ− rδ, where δ=we and

sγ← cγ− rγ, where γ= rw e.

• Verifier checks that t1
?=C c

x g sx hsr ,

that t2
?=C

sξ
w g̃ sδ h̃sγ , and

that t3
?=C sε

v ·a−sx b−sξ c̃c · g̃ sδ .

Protocol A.1 – Proof of knowledge of a Camenisch-Lysyanskaya Signature

aThe prover also needs to additionally run, in parallel, two range proofs for x ∈
(
2�m−1, 2�m

)
and for

e ∈
(
2�e−1, 2�e

)
.
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Proof of Knowledge of a Committed
Accumulated Element

The proof of knowledge, used in Section 3.5, is specified here. Its goal is to prove that a

committed value is contained in a given accumulator. This protocol is based on the results

of Camenisch and Lysyanskaya from [CL02a]. The difference between the following proof of

knowledge and their result is that the committed element is not necessarily a prime number

corresponding to their requirements. Hence a mapping is needed. The objective of the proof

of knowledge is the following:

PK {(σ,r,eσ, aσ,re ,r1,r2) : C = gσhr ∧ Ce = g̃ eσ h̃re (mod ñ) ∧
Ce = (g̃ 2k

)σg̃ aσ h̃re (mod ñ) ∧ Reσ = g̃ r1eσ h̃r2eσ (mod ñ) ∧
v =W eσ h̃−r1eσ (mod ñ) ∧ aσ ∈ [−2k−1,2k−1]}
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Common Input: g ,h, commitment C , set Φ,

ñ, accumulator v , g̃ , h̃, set §,

auxiliary commitments W, R, Ce .

Prover Input: σ,r such that C = gσhr and σ ∈Φ,

r1,r2,re ,eσ, wσ, aσ such that (eσ, wσ) ∈ §, eσ =σ2k +aσ,

such that W =wσh̃r1 (mod ñ), R = g̃ r1 h̃r2 (mod ñ),

and Ce = g̃ eσ h̃re (mod ñ).

Verifier Input: p̃, q̃ such that ñ = (2p̃+1)(2q̃+1).

P t1,t2,t3,t4,t5 � V • Prover picks rσ,rρ ∈R Zq
a,

picks rε ∈R

(
−B2k ′+k ′′ , B2k ′+k ′′

)
,

rξ ∈R

(
−�ñ/4�2k ′+k ′′ , �ñ/4�2k ′+k ′′

)
,

rα ∈R

(
−2k̄+k ′+k ′′ , 2k̄+k ′+k ′′

)
,

rδ,rγ ∈R

(
−�ñ/4�B2k ′+k ′′ , �ñ/4�B2k ′+k ′′

)
,

sends t1← g rσhrρ , t2← g̃ rε h̃rξ , t3←
(
g̃ 2k

)rσ
g̃ rα h̃rξ ,

t4←Rrε g̃−rδ h̃−rγ and t5←W rε h̃−rδ .

P c� V • Verifier picks and sends c ∈R {0,1}k ′ ,

P sσ,sρ ,sε,sξ,sα,sδ,sγ� V • Prover sends sσ← rσ− cσ (mod q), sρ← rρ−cr (mod q),

sends sε← rε−ceσ, sx i ← rξ−cre , sα← rα−caσ,

sδ← cδ− rδ, where δ= r1eσ and

sγ← cγ− rγ, where γ= r2eσ.

• Verifier checks that t1
?=C c g sσhsρ , that t2

?=C c
e g̃ sε h̃sξ ,

that t3
?=C c

e

(
g̃ 2k

)sσ
g̃ sα h̃sξ ,

that t4
?=Rsε g̃ sδ h̃sγ , t5

?= vcW sε h̃sδ ,

and that sα ∈ [−2k−2, 2k−2].

Protocol B.1 – Proof of knowledge of a committed accumulated element σ ∈Φ
aHere, q is the order of the Pedersen commitment group.
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Appendix C

Computational Complexity
Comparisons of
Interactive Range Proofs

Schemes
Computational Complexity

Prover Verifier

CCs_AND (6�+2) exp., (4�+7) exp.,
(Protocol 4.2) 2� pairings 4� pairings
Lipmaa [Lip03]

36 exp. + O(k2) op. 36 exp.
(Sum of 4 squares)
Boudot [Bou00]

29 exp. 24 exp.
(Square + CFT [CFT98b])
Groth [Gro05]

28 exp. + O(k2) op. 28 exp.
(Sum of 3 squares)
Scemama [Sce09]

27 exp. 21 exp.
(Square + CFT [CFT98b])
CCs_AND_Arfaoui

(6�+2) exp. (4�+6) exp.
(AND composition with Protocol 4.4)
Groth [Gro11] (binary decomposition O(k2/3) exp., O(k1/3) exp.,

of commitments of commitments) O(k2/3) pairings O(k1/3) pairings
Sumset based range proof

(3�+5) exp. (2�+5) exp.
(Protocol 4.5)

Figure C.1 – Complexity comparison for range [A,B ], with k = log2 B ,
u�−1 <B +1− A <u�, and 128 bit security. Complexities are provided

in terms of exponentiations (exp.) and pairings.
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