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Experimental Section 

 

A.  Chemicals and Reagents 

All manipulations were carried out under an inert N2(g) atmosphere using glovebox 

techniques. Solvents were purified using a two-column solid-state purification system 

(Innovative Technology, NJ, USA) and transferred to the glovebox without exposure to air. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc., and were 

degassed and stored over activated 3Å molecular sieves. All other reagents were purchased 

from commercial sources. Liquid compounds were degassed by standard freeze-pump-thaw 

procedures prior to use.  

 

B.  Physical Methods 

The 1H and 13C NMR spectra were recorded on a Bruker Avance 400 spectrometer. The 

chemical shifts (δ) are given in parts per million relative to internal standard d8-THF (3.62 

and 1.79 ppm). IR spectra were recorded on solid samples on a Varian 800 FT-IR 

spectrometer using attenuated total reflection (ATR) sampling techniques. Elemental analyses 

were performed on a Carlo Erba EA 1110 CHN instrument at EPFL. X-ray diffraction studies 

were carried out in the EPFL Crystallographic Facility. Data collection was performed at low 

temperature using four-circle kappa diffractometers equipped with CCD detectors. Data were 

reduced and then corrected for absorption. Solution, refinement and geometrical calculations 

for all crystal structures were performed by the SHELX software package.  

 

C.  Synthetic Methods and Characterization data 

1  Synthesis of complex 5 from compound 1. 
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4-Chloro-3,5-dimethylpyridine hydrochloric acid salt (1, 7 g, 39.5 mmol, synthesized 

according to the literature) 1 was dissolved in water (30 mL) and Et2O (30 mL), then NaHCO3 

(3.65 g, 1.1 eq) in water (20 mL) was added slowly. The mixture was stirred for 15 min and 

then extracted with ether (30 mL) three times. The combined organic phases were 

concentrated. The residue was purified by column chromatography on SiO2 to yield the 

product 4-chloro-3,5-dimethylpyridine (4.3 g, 77%). 1H NMR (400 MHz, CDCl3, 25°C): δ 

8.28 (s, 2H), 2.36 (s, 6H) ppm.  

Potassium permanganate (10.1 g, 2.1 eq) was added in 100 mL of water and heated to 80oC. 

Once the KMnO4 was dissolved, 4-chloro-3,5-dimethylpyridine (4.3 g, 30.5 mmol) was added 

slowly.2 After this addition, the temperature was raised to 100oC. The mixture was stirred 

until the purple color disappeared. When the temperature came down to 80oC, another part of 

KMnO4 (10.1 g, 2.1 eq) was added carefully. The mixture was then heated to 100oC. After 3 h, 

the purple color again disappeared. After cooling to room temperature, it was filtrated. The 

liquid layer was concentrated to about 40 mL, then concentrated sulfuric acid (98%, 4 mL) 

was added slowly. The precipitate was filtered and dried in vacuo to give the dicarboxylic 

acid as a white solid 2 (3g, 49%). 1H NMR (400 MHz, CD3OD, 25°C): δ 9.00 (s, 2H) ppm. 

HRMS: m/z (ESI) calculated [M+H]+: 201.9907, measured: 201.9903. 

To the dicarboxylic acid 2 (1.6 g, 8 mmol) in dry DCM (40 mL), SOCl2 (2 mL) and DMF 

(0.2 mL) were added at room temperature. The mixture was heated to reflux for 2.5 h and 

concentrated to dryness. Dry toluene (10 mL) was added and concentrated again. Then the 

residue was dissolved in dry DCM (40 mL), Et2NH (1.2 g, 2 eq) and triethylamine (1.8 g, 2.2 

eq) were added. The mixture was stirred overnight. It was quenched by water and extracted 

with DCM. The combined organic phases were concentrated. The residue was purified by 

column chromatography (DCM / MeOH =10:1) on SiO2 to yield the product 3 (1.7 g, 70%). 
1H NMR (400 MHz, CDCl3, 25°C): δ 8.50 (s, 2H), 3.81 (bs, 2H), 3.40 (bs, 2H), 3.17 (bs, 4H), 

1.28 (t, J = 7.2 Hz, 6H), 1.10 (t, J = 7.2 Hz, 6H) ppm. 13C NMR (100 MHz, CDCl3, 25°C): δ 

164.5, 147.7, 136.6, 133.1, 42.9, 39.3, 14.1, 12.5 ppm. HRMS: m/z (ESI) calculated [M+Na]+: 

334.1298, measured: 334.1302. 

The mixture of dicarboxamide 3 (0.45 g, 1.4 mmol) and Lawesson's reagent [2,4-bis(4-

methoxyphenyl)-2,4-dithioxo-1,3,2,4-dithiadiphosphetane] (0.32 g, 0.55 eq) in toluene (5 mL) 

was stirred for 2 h at 60oC. Then another part of Lawesson's reagent (0.32 g, 0.55 eq) was 

added and stirred for an additional 3 h. After concentration, the residue was subjected to 

column chromatography on SiO2 to yield the crude product which was further purified by 

recrystallization to give product 4 (0.29 g, 58%). 1H NMR (400 MHz, MeOD, 25°C): δ 8.39 
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(s, 2H), 4.52-3.84 (m, 2H), 3.95-3.84 (m, 2H), 3.58-3.42 (m, 4H), 1.41 (t, J = 7.2 Hz, 6H), 

1.21 (t, J = 7.2 Hz, 6H) ppm. 13C NMR (100 MHz, MeOD, 25°C): δ 192.7, 147.8, 140.8, 

134.8, 49.6, 47.9, 14.7, 11.8 ppm. HRMS: m/z (ESI) calculated [M+H]+: 344.1022, measured: 

344.1033. 

Compound 4 (69 mg, 0.2 mmol) was dissolved in benzene (10 mL) and Ni(cod)2 (55 mg, 0.2 

mmol, 1 eq) was added. The mixture turned black. After stirring at 100oC for 20 h, the 

reaction was cooled to room temperature and filtered to give a black red solid. This solid was 

put in benzene (10 mL) and stirred for another 2 h. The product was obtained after filtration 

as a dark red powder solid 5 (55 mg, 69%) that was suitable for elemental analysis. Further 

recrystallization was made in DMF/Et2O to give the crystal for X-ray diffraction study. Anal. 

Calcd for C15H22ClN3NiS2: C, 44.75; H, 5.51; N, 10.44. Found: C, 44.76, H, 5.70, N, 10.26. 
1H NMR (400 MHz, DMSO, 25°C): δ 8.36 (s, 2H,), 4.22-4.00 (m, 8H), 1.56-1.38 (m, 12H) 

ppm. 13C NMR (100 MHz, DMSO, 25°C): δ 196.4, 186.0, 144.5, 144.0, 51.2, 50.4, 13.4, 10.9 

ppm. 

Crystallographic details of complex 5. A total of 29852 reflections (-13 ≤ h ≤ 13, -12 ≤ k ≤ 

13, -29 ≤ l ≤ 29) were collected at T = 120(2) K in the range of 2.26 to 30.00o of which 11108 

were unique (Rint = 0.0517); MoKα radiation (λ = 0.71073 Å). The structure was solved by the 

Direct method. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms 

were placed in calculated idealized positions. The residual peak and hole electron densities 

were 0.628 and -0.575 eÅ-3, respectively. The absorption coefficient was 1.339 mm-1. The 

least squares refinement converged normally with residuals of R(F) = 0.0619, wR(F2) = 

0.1047 and a GOF = 1.119 (I > 2σ(I)). C16.50H25.50N3.50S2ClNiO0.50, Mw = 439.18, space group 

P-1, triclinic, a = 9.6962(6), b = 9.7447(7), c = 21.021(2) Å, α =86.499(8)o, β = 84.034(7)o, γ 

= 89.455(6)o, V = 1971.7(3) Å3, Z = 4, ρcalcd = 1.479 Mg/m3. CCDC-1486993 contain(s) the 

supplementary crystallographic data for this work. These data can be obtained free of charge 

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

2  Synthesis of complex 7 from compound 4. 
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Compound 4 (0.66 g, 2 mmol) was dissolved in benzene (3 mL) and CH3I (1.8 mL) was 

added. After stirring at 100oC overnight, the reaction was cooled to room temperature and 

filtered to give the salt as a yellow solid  (6, 0.85 g, 92%) with some impurity, all of which 

was directly used in the next step. 1H NMR (400 MHz, CD3OD, 25°C): δ 9.00 (s, 2H,), 4.39 

(s, 3H), 4.38-4.31 (m, 2H), 4.08-4.00 (m, 2H), 3.79-3.70 (m, 2H), 3.64-3.56 (m, 2H), 1.43 (t, 

J = 7.2 Hz, 6H), 1.31 (t, J = 7.2 Hz, 6H) ppm. HRMS: m/z (ESI) calculated [M-I]+: 358.1178, 

measured: 358.1180. 

Compound 6 (97 mg, 0.2 mmol) was dissolved in benzene (25 mL) and Ni(cod)2 (55 mg, 0.2 

mmol, 1 eq) was added. The mixture turned black immediately. After stirring at room 

temperature for 20 h, the reaction was filtered to give a black solid. This solid was put in 

benzene (10 mL) and stirred for another 2 h. The product was obtained after filtration as a 

black powder solid 7 (95 mg, 87%). Further recrystallization was made in DMF/Et2O to give 

crystals that were suitable for X-ray diffraction study and elemental analysis. Anal. Calcd for 

C16H25ClIN3NiS2: C, 35.29; H, 4.63; N, 7.72. Found: C, 35.33, H, 4.72, N, 7.86. 1H NMR 

(400 MHz, DMSO, 25°C): δ 8.22 (s, 2H,), 4.22 (s, 3H), 4.19-4.05 (m, 8H), 1.54-1.36 (m, 12H) 

ppm. 13C NMR (100 MHz, DMSO, 25°C): δ 197.9, 193.7, 145.0, 138.5, 52.7, 51.8, 49.3, 14.2, 

11.7 ppm. 

Crystallographic details of complex 7. A total of 14265 reflections (-12 ≤ h ≤ 8, -14 ≤ k ≤ 

15, -21 ≤ l ≤ 22) were collected at T = 139.99 (10) K in the range of 4.44 to 75.37o of which 

4275 were unique (Rint = 0.0365); CuKα radiation (λ = 1.54184 Å). The structure was solved 

by the Direct method. All non-hydrogen atoms were refined anisotropically, and hydrogen 

atoms were placed in calculated idealized positions. The residual peak and hole electron 

densities were 1.293 and -0.868 eÅ-3, respectively. The absorption coefficient was 15.983 

mm-1. The least squares refinement converged normally with residuals of R(F) = 0.0316, 

wR(F2) = 0.0832 and a GOF = 1.042 (I > 2σ(I)). C16H25N3S2ClNiI, Mw = 544.57, space group 

P21/c, monoclinic, a = 9.90168(16), b = 12.10351(18), c = 17.9225(3) Å, α =90o, β = 

103.0346(16)o, γ = 90o, V = 2092.58(6) Å3, Z = 4, ρcalcd = 1.729 Mg/m3. CCDC-1486994 

contain(s) the supplementary crystallographic data for this work. These data can be obtained 

free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 

D. Computational Details 

The geometries of relevant compounds were optimized at the M06/def2-SVP level in 

implicit acetonitrile solvent [SMD solvation model 3] using the “ultrafine” grid in 
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Gaussian09.4 Structures were confirmed to be minima or transition states on the potential 

energy surface via examination of vibrational frequencies (zero imaginary frequencies for 

minima, one for transition states). Reported free energies include unscaled free energy 

corrections determined at the same theoretical level. The M06 free energies were 

complemented by single point computations on the optimized M06 geometries using a 

density-dependent dispersion correction appended to the PBE0 functional (PBE0-dDsC) with 

the TZ2P basis set as implemented in ADF. The reported PBE0-dDsC free energies include 

solvation corrections (in acetonitrile) determined at the same theoretical level using COSMO-

RS, also as implemented in ADF.5,6 Hirshfeld-I charges were determined at the M06/def2-

SVP level using an in-house modified version of QChem.7 DORI maps were computed on a 

grid with a modified version of DGrid8 and Paraview9 was used to visualize the results.  
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E.  Dehydrogenation of alcohol mediated by nickel complexes and isolation of 10  

A solution of a Ni complex (0.02 mmol), DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), 

alcohol or lithium alkoxide (1 equiv. or 5 equiv.) in solvent (1 mL) was stirred at 100oC for 10 

h under nitrogen atmosphere. Then water was added to quench the reaction. The reaction was 

separated by adding EtOAc. Decane (20 L) was added as an internal standard and the 

reaction was detected by GC-MS. The yields of products were conducted using standard 

equations which were drawn according the ratios of the pure products in different amounts to 

the internal standard. The different trials are summarized in Table S1. 

The reaction (Table S1, Entry 6) was cooled to room temperature after 3 h. After removing 

the solvent in vacuo, DCM (4 mL) and water (4 mL) were added. The organic layer was 

extracted by water three times (4 mL). The combined aqueous layer was concentrated. The 

residue was purified by preparative TLC using a solvent mixture (hexane / DCM / MeOH = 

5:5:2 v/v/v) as eluent to afford compound 10 (1.9 mg, 21%) with some impurities. Further 

purification led to decomposition of the compound. 

Compound 10 can also be prepared by another procedure: In the NMR tube, to complex 7 (4 

mg) in CD3CN (0.5 mL), HCl in dioxane (25 uL, 4M) was added. The tube was put in an oil 

bath at 50oC until the reaction completely finished (detected by NMR). The solution was 

concentrated to give compound 10 in quantitative yield.  
1H NMR (400 MHz, CD3OD, 25°C): δ 8.90 (d, J = 1.2 Hz, 2H,), 8.35 (t, J = 1.2 Hz, 1H), 

4.38 (s, 3H), 4.14 (q, J = 7.2 Hz, 4H), 3.63 (q, J = 7.2 Hz, 4H), 1.39 (t, J = 7.2 Hz, 6H), 1.24 

(t, J = 7.2 Hz, 6H) ppm. 13C NMR (100 MHz, CD3OD, 25°C): δ 190.3, 144.4, 142.1, 137.4, 

50.2, 47.7, 14.1, 11.3 ppm. HRMS: m/z (ESI) calculated [M-I]+: 324.1568, measured: 

324.1570. m/z (ESI negative) calculated [I]-: 126.9039, measured: 126.9052. 

For the reaction with deuterium benzyl alcohol (-D2-8), the calculated [M-I]+ for D-10 is 

325.1625, measured 325.1626. From the 1H NMR, the deuterium percent at the C4 position is 

above 97%, while at the C2 position it is 17% (See Figure S6). 
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Table S1. The alcohol oxidation mediated by Ni pincer complexes.[a] 

 
 

 

Entry Nickel Pincer Alcohol 

(equiv.) 

Base 

(equiv.) 

Solvent Yield[b] 

1 7 8 (5) --- DMF 11% 

2 7 8 (5) NMI (5) DMF 14% 

3 7 8 (5) DBU (5) DMF 38% 

4 7 8 (5) DBU (5) DMSO 48% 

5 7 8 (5) DBU (5) CH3CN 62% 

6 7 8 (1) DBU (1) CH3CN 64% 

7 7 11 (1) --- CH3CN 25% 

8 7 11 (5) --- CH3CN 0 

9[c] 7 12 (1) DBU (1) CH3CN 49% 

10 7 13 (1) DBU (1) CH3CN 53% 

11 5 8 (1) DBU (1) CH3CN 8% 

12 5 8 (5) DBU (5) CH3CN 10% 

13 NiCl2 8 (1) DBU (1) CH3CN 5% 

 

[a] The reactions were conducted on a 0.02 mmol scale in solvent (1.0 mL) under N2. [b] The yields 

were determined by GC using n-decane as the internal standard. [c] While (S)-1-phenylethanol was 

used, it gave the same result, with no detected racemization of (S)-1-phenylethanol. 
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Table S2. Computed electronic energies, free energy corrections, and solvation corrections 

for relevant compounds. 

 

Compound M06/def2-SVP 

Electronic 

Energy (hartree) 

M06/def2-SVP 

Free Energy 

Correction 

(hartree) 

PBE0-

dDsC/TZ2P//M06/def2-SVP 

Electronic Energy (hartree) 

COSMO-RS 

Solvation 

Correction 

(kcal/mol) 

5 ‐3512.350072  0.300993 ‐11.561404 ‐27.074

7 ‐3552.045998  0.337850 ‐12.228410 ‐63.399

DBU ‐422.170761  0.181025 ‐6.254432 ‐6.163

H+-DBU ‐422.650126  0.192071 ‐6.224073 ‐48.548

H+-DBU-Cl- ‐882.848194  0.189994 ‐6.559690 ‐26.837

8 - Benzylalcohol ‐346.279951  0.100982 ‐4.414223 ‐7.895

9 - Benzaldehyde ‐345.082472  0.078790 ‐4.082740 ‐5.995

11A ‐4320.543994  0.670656 ‐22.963765 ‐60.781

11TS(AB) ‐4320.494164  0.661847 ‐22.910974 ‐68.551

11B ‐3552.790903  0.347103 ‐12.599371 ‐34.363

12A ‐4320.538049  0.669142 ‐22.957083 ‐60.780

12TS(AB) ‐4320.510811  0.667431 ‐22.925478 ‐63.530

12B ‐3552.786132  0.345321 ‐12.596798 ‐33.212

13A ‐3437.641631  0.449738 ‐16.314187 ‐63.747

13A ‐3437.622227  0.450525  ‐16.304460  ‐54.437 

13TS(AB) ‐3437.605502  0.447836  ‐16.285389  ‐54.563 

13B ‐3092.520962  0.345714 ‐12.199366 ‐54.261

14A ‐4280.839826  0.624949 ‐22.272158 ‐33.660

14TS(AB) ‐4280.787435  0.624789 ‐22.207968 ‐45.396

14B ‐3513.056528  0.307958 ‐11.784275 ‐67.500

15A ‐4280.835218  0.626082 ‐22.269875 ‐33.828

15TS(AB) ‐4280.785969  0.622856 ‐22.201770 ‐44.913

15B ‐3513.055434  0.307536 ‐11.794228 ‐60.509

16A ‐3397.945340  0.410571 ‐15.646973 ‐26.859

16A ‐3397.920687  0.410857  ‐15.624194  ‐22.916 

16TS(AB) ‐3397.904362  0.405873  ‐15.604145  ‐23.665 

16B ‐3052.822461  0.307953 ‐11.521827 ‐21.749
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Figure S1. UV-Vis spectra. (top) UV-Vis spectra of complex 5 and complex 7 in CH3CN. 

Concentration: 30 M (5) and 40 M (7). (bottom) UV-Vis spectra of ligand 4 and ligand 6 

(bottom). Concentration: 120 M (4) and 60 M (6).  

  



S11 
 

 

 

Figure S2. Electronic structures. Hirshfeld-I charges (A,B) and frontier orbitals (C-F) of 

complexes 5 (A, C, E) and 7 (B, D, F) computed at the M06/def2-SVP level. Molecular 

orbital energies given in atomic units. 
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Figure S3. Mulliken charges (M06/def2-SVP). The charges for 5 (left) and  for 7 (right). 
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Figure S4. DORI = 0.9 isosurface for 5. The isosurface is color coded with sgn(2)(r) 

ranging from -0.01 au (red) to 0.01 au (blue). 
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Figure S5. a) DORI = 0.9 isosurface for 7. The isosurface is color coded with sgn(2)(r) 

ranging from -0.01 au (red) to 0.01 au (blue). b) DORI map in the plane of the pyrdinium ring 

of 7. Isocontour lines of DORI[ρ]∈{0.01, 0.50, 0.99} are plotted in white and DORI values 

range from 0 (blue) to 1 (red). 
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Figure S6. 1H NMR spectra indicating the formation of deuterated 10. (a) The 1H NMR 

spectrum of the crude aqueous layer from the dehydrogenation reaction using ,-D2-benzyl 

alcohol (top). (b) The 1H NMR spectrum of deuterium compound 10 after preliminary 

purification (middle). (c) The 1H NMR spectrum of compound 10 (bottom). 
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Figure S7. 3D representations of M06/def2-SVP optimized geometries of selected points in 

the potential mechanisms of 7. 
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Figure S8. Potential mechanisms for the transformation of benzyl-alcohol to benzaldehyde 

utilizing 5. 
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Figure S9. 3D representations of M06/def2-SVP optimized geometries of selected points in 

the potential mechanisms of 5. 
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Figure S10. The IR spectrum of complex 5 collected in the solid-state.  
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Figure S11. The IR spectrum of complex 7 collected in the solid-state.  
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Figure S12. The 1H NMR spectrum of compound 3.  
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Figure S13. The 13C NMR spectrum of compound 3.  
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Figure S14. The 1H NMR spectrum of compound 4.  
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Figure S15. The 13C NMR spectrum of compound 4.  
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Figure S16. The 1H NMR spectrum of compound 5.  
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Figure S17. The 13C NMR spectrum of compound 5.  
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Figure S18. The 1H NMR spectrum of compound 7.  
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Figure S19. The 13C NMR spectrum of compound 7.  
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Figure S20. The 1H NMR spectrum of compound 10.  
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Figure S21. The 13C NMR spectrum of compound 10.  
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