
OpenBuildNet Framework for Distributed
Co-Simulation of Smart Energy Systems

Truong X. Nghiem, Altuğ Bitlislioğlu, Tomasz Gorecki, Faran A. Qureshi, Colin N. Jones
Automatic Control Laboratory, École Polytechnique Fédéral de Lausanne, Lausanne, Switzerland

Abstract—The complexity and diversity of future energy sys-
tems will require co-simulation solutions that enable the integra-
tion of tools from multiple domains for research and development.
We introduce an open-source framework, OpenBuildNet, for
distributed co-simulation of large-scale smart energy systems.
Using a loose-coupling approach to co-simulate parallel processes,
it can leverage and seamlessly integrate specialized simulation and
computation tools in a common platform. Users can therefore ben-
efit from the capabilities of state-of-the-art and widely used tools
in each domain. OpenBuildNet is scalable and highly flexible as it
uses a decentralized architecture, message-based communication,
and peer-to-peer data exchange between subsystem nodes. It also
provides a set of easy-to-use software tools tailored for researchers
and engineers. This paper presents the architecture and tool suite
of OpenBuildNet, and demonstrates its usefulness in a case study
of controlling multiple buildings for demand response.

I. INTRODUCTION

Energy systems are undergoing a substantial change in scale
and complexity. On the grid and supply side, the embedding
of distributed resources such as renewable energy sources and
distributed storage systems, advanced control and optimization
algorithms, communication networks, and the mass adoption of
electric vehicles will all contribute to the significant increase
in complexity of future grids. On the demand side, energy
efficiency has always been an important goal. Future energy
systems will require a tighter cooperation between the demand
side and the grid, e.g., through demand side management. As
the largest energy consumer in the world, the building sector
is experiencing growing research and applications of advanced
control and optimization techniques along these directions (see
[1] for an extensive review).

While most research has focused either on a single building
with little interaction with the grid or on a power grid with
oversimplified demand side models, studies of the integrated
system supported by large-scale, high-fidelity simulations are
scarce. One reason is the lack of tools that can take on the
complexity, heterogeneity, and scale of such simulations, while
still ensuring the detailed and high-quality simulation of each
subsystem. Specialized simulation platforms exist for each
domain, e.g., MATPOWER [2] for power systems, EnergyPlus

The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement n. 307608: BuildNet, the
Swiss National Science Foundation under the GEMS project (Green Energy
Management of Structures, grant n. 200021 137985), and the NRP 70 Energy
Turnaround Project (Integration of Intermittent Widespread Energy Sources
in Distribution Networks: Storage and Demand Response, grant n. 407040
15040/1).

[3] for buildings, Matlab for control and optimization. How-
ever, none of them can handle the increasing interdependencies
between the components of the entire system, which has led
to the recent development and adoption of co-simulation in
energy system research and applications. This paper presents
OpenBuildNet, an open-source framework for distributed co-
simulation, where specialized and sophisticated simulation
tools in various fields are incorporated in a common platform
to study the interdependencies between the subsystems.

A. Goals, Target Users, and Main Contributions

The main goal of OpenBuildNet is to provide a framework
and software tools for large-scale distributed co-simulation of
complex systems, with intended applications in smart energy
systems such as smart buildings, power grids, and optimization-
based controllers. Most of the time, such co-simulation systems
are heterogeneous, which involves subsystems of different
types and on potentially vastly different time scales. For
example, a smart grid simulation may contain buildings, which
have very slow thermal dynamics and fast electrical system
dynamics, and the power grid with a very fast sub-second
time scale. Furthermore, subsystems come in different forms
and sizes: from large and highly sophisticated simulators such
as EnergyPlus, to moderately complex controllers prototyped
in Matlab or Python, to simple rule-based controllers im-
plemented in C. OpenBuildNet aims to support simulation
systems composed of many heterogeneous sub-simulators dis-
tributed over multiple networked computers. It allows inte-
gration of specialized or legacy tools into the co-simulation
to lower the barrier for adoption and reuse their industrial-
strength, highly developed functionality.

OpenBuildNet targets researchers and engineers in control,
optimization, and computer science, who wish to apply their
expertise and techniques to smart energy systems. The recent
proliferation of optimization-based and machine learning meth-
ods particularly calls for co-simulation tools that are sophisti-
cated enough for the intended multi-disciplinary applications,
and at the same time are intuitive and accessible to these users.
With OpenBuildNet, researchers and engineers can comfort-
ably implement large-scale heterogeneous co-simulations from
within their familiar scientific computing environments and
languages such as Matlab and Python. They can fully utilize
the functionality of these environments, including most impor-
tantly the debugging capability of a single subsystem as well as
the entire co-simulation system. We found that these features
are particularly important for research and development.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148025965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A main contribution of OpenBuildNet is the development
of an open, scalable, and flexible framework for distributed co-
simulations. Its scalability comes from the facts that the local
sub-simulators are CPU-bound and loosely coupled by bound-
ary states at discrete time instants, and that they exchange data
directly with each other through peer-to-peer communications
(cf. Section II). These help minimize the communication over-
head and scale up the distributed computation. It also means
that OpenBuildNet is highly flexible as the sub-simulators
have freedom in how they communicate, therefore easing the
integration of new simulation tools and the transition from sim-
ulation to real-world implementations. Another contribution is
a rich suite of software tools that are tailored to the needs
of our target users (see Section II-B). We have demonstrated
OpenBuildNet in a case study of distributed control of multiple
buildings for demand response in Section III.

B. Related Work

The growing need for large-scale and complex energy sys-
tem simulation solutions has generated several co-simulation
tools in recent years. In this section, we will review some
of the related tools. Among the most widely used is the
Building Controls Virtual Test Bed (BCVTB) [4]. It can couple
simulation tools such as EnergyPlus and Matlab to a graphical
modeling and simulation environment through simple master–
client architecture and TCP socket communication. The sim-
ple co-simulation mechanism and communication protocol of
BCVTB lower the barrier to use it, but also limit its support
for complex simulation systems. In addition, the master–
client approach makes it difficult to debug code and use the
interactive development capability of a scientific computing
environment like Matlab. Based on the same technology as
BCVTB but targeting more specific applications are VirGIL [5]
and SmartBuilds [6]. Using BCVTB’s communication proto-
col, MLE+ [7] enables a better integration between EnergyPlus
and Matlab, but still has most of BCVTB’s limitations.

GridLAB-D [8] is a comprehensive power distribution sim-
ulation and analysis tool, which also includes building models
and control algorithms. However, its co-simulation capability is
limited, e.g., it does not provide an EnergyPlus interface and its
Matlab interface is primitive. GridSpice [9] brings GridLAB-
D to computing clusters for distributed smart grid simulations,
focusing on the power distribution and transmission systems.

Originating in the automotive industry, Functional Mock-up
Interface (FMI) is a standardized interface to support model
exchange and co-simulation of dynamic models using XML
files and compiled C code. Recently, there has been increasing
support for FMI in energy system simulation platforms, e.g.,
in EnergyPlus and BCVTB. Although FMI does not provide
any simulation platform, several simulation software packages
supporting FMI are freely available [10], [11].

A common feature of the aforementioned tools is that agents
exchange data through a centralized master that controls the
simulation. In contrast, OpenBuildNet adopts a decentralized,
peer-to-peer communication model where agents exchange
data with each other directly. This distinction can increase

the scalability and flexibility of OpenBuildNet as explained in
Section II-A. Finally, we remark that most of the above tools,
e.g., FMI and GridLAB-D, can complement OpenBuildNet and
add to the toolbox that OpenBuildNet provides to researchers
and engineers, as we plan to do in Section IV.

II. OVERVIEW OF OPENBUILDNET FRAMEWORK

A. OpenBuildNet Architecture

This section briefly describes the architecture and the most
important concepts of OpenBuildNet from the users’ per-
spective. A developer who wishes to extend the framework
might need to understand the low-level specifications, which
are available on our website at https://sites.google.com/site/
buildnetproject.

1) Nodes as the Building Blocks: A distributed co-
simulation in OpenBuildNet is a synchronous simulation dis-
tributed to multiple computation nodes. The nodes run their
own local simulations in parallel, which are synchronized and
driven by a global clock at discrete time instants. A global
synchronization mechanism is required because nodes, as sub-
simulators, often realize dynamical systems with differing
sampling rates and computation speed. This heterogeneity
and multi-timescale nature is particularly typical in the target
applications of OpenBuildNet in large-scale energy systems.

OpenBuildNet considers the node model illustrated in Fig-
ure 1. Nodes exchange data with other nodes through ports.
The ports of a node represent its abstract interface to the
external environment. A physical port is a port whose data
exchanges are synchronized and strictly managed by the global
clock. As a result, a physical port is either an input or an output
exclusively. In contrast, a data port is not synchronized nor
managed by the global clock and can possibly be bidirectional.
Each node and port must have a unique valid identifier,
which is a sequence of alphanumeric and the underscore (“ ”)
characters and may only begin with a letter. For example, input
port i1 in Figure 1 is uniquely identified by Node/i1.

Because in practice a node may consist of multiple sub-
systems, it is functionally divided into computation blocks (or
blocks for short). For instance, a building node may simulate
both the fast electrical system dynamics and the slow thermal
dynamics as two blocks. A block is essentially a computation
unit that may read certain inputs and may compute the values
of certain outputs of the node containing it. This computation
is triggered either periodically at a sampling time associated
with the block, or non-periodically by requests during run-
time, or both. Each block must have a non-negative sampling
time. The blocks of a node may have different sampling times.
For example, the node illustrated in Figure 1 has two periodic
blocks and a non-periodic block (T = 0).

2) Distributed Network of Nodes: A simulation system is
therefore a network of nodes connected in a certain topology.
In OpenBuildNet a system node, called the System Manage-
ment Node (SMN), synchronizes the computation of all other
nodes and drives the entire simulation. As its name suggests,
it also manages the entire node network besides running the
simulation, e.g., adding nodes to the network and handling

Node

Block 2

(T = 30s)

Block 1

(T = 10min)

Block 3

(T = 0)

Input

Ports

Output

Ports

i1

i2

i3

i4

i6

i5

o1

o2

o3

o4

o5

d1

Fig. 1. Model of a node in OpenBuildNet with physical input (output) ports
depicted on the left (right) and a data port. Blocks 1 and 2 are executed every
10 minutes and 30 seconds respectively, block 3 is non-periodic.

System link
Node P2P link

SMN

node1 node2 node3

Fig. 2. OpenBuildNet network of nodes: the SMN manages the entire network
and coordinates the co-simulation through system communication connections
with the nodes (dashed lines). Nodes communicate directly with each other
through their ports and peer-to-peer communication links (solid lines).

system errors. Every node must connect to and communicate
with the SMN in order to participate in the co-simulation. This
architecture is illustrated in Figure 2.

Nodes can be distributed across multiple computers over a
communication network (possibly the Internet). Furthermore,
nodes exchange data with each other through their ports
and direct peer-to-peer links, i.e., their communications are
not routed through the SMN. This decentralized architecture
reduces the communication overhead and helps OpenBuildNet
scale up without difficulty.

3) Execution and Synchronization: The execution of a
block of a node is split into two stages. In the first stage, called
output update, the block computes and sends out its outputs.
This computation may depend directly on the current values
of certain inputs; in that case the block is said to have direct
feedthrough from those inputs. In the second stage, called state
update, the block updates its internal states.

OpenBuildNet blocks are loosely coupled and only their
boundary states are synchronized during the output update
stage at discrete-time steps, by exchanging data through their
input and output ports. This synchronization mechanism is
controlled by the SMN via system messages. The interdepen-
dencies between blocks determined by their direct feedthrough
properties and the system topology define a partial order
between them at any time instant. The SMN enforces the
relative order between blocks by issuing system messages in
a precise order decided by a graph-based algorithm. It also
detects algebraic loops, situations in which two blocks have
circular dependency between them and their synchronization
cannot be resolved. Blocks that have no relative order between
them can be executed simultaneously and hence enjoy the
computational speed-up benefit of distributed computation.

Details on the synchronization mechanism of OpenBuild-
Net, its mathematical semantics and results on its correctness

can be found in the technical documents on our website.

B. OpenBuildNet Tool Suite

This section briefly describes the current implementation of
OpenBuildNet, summarized in Figure 3 and explained below.

• The communication network is a distributed messaging
system used to transport messages between all nodes.
Currently, MQTT1 and Yarp2 are supported. On top of
that is the structured data interchange format which
encodes and decodes messages between nodes. The cur-
rent implementation uses Google’s Protocol Buffer3.

• The OBN SMN Library implements all functionality
of the SMN in C++. This library is used by the OBN
Server, which provides a scripting language called OSS
(OpenBuildNet Server Script), based on Chaiscript4, for
configuring and performing OpenBuildNet simulations.

• On the client side, the OBN Node Library in C++
implements all functionality of an OpenBuildNet node.
However, creating a node with this library requires pro-
gramming in C++ and re-compiling the code on every
change, which are inconvenient considering the target
users and applications of OpenBuildNet. For this reason,
a collection of components were developed on top of this
library to facilitate the use of OpenBuildNet.

• The OBN External Interface library provides a con-
sistent interface between OpenBuildNet and an external,
often high-level, language to program nodes. Packages for
Matlab, Python and Julia are provided. Matlab and Python
are popular among engineers and researchers - our target
users - while Julia5 is a promising new programming
language for technical computing. Most importantly, these
packages enable rapid and interactive development as well
as convenient debugging of OpenBuildNet simulation
code in these scientific environments.

• OBNNode Scripting (ONS) is a Chaiscript-based script-
ing language to program nodes, with support for com-
mon mathematical and linear algebra functions. It is
lightweight and intended for creating simple nodes.

• Finally, a library of ready-made nodes commonly used in
energy system simulations is provided. Currently, nodes
representing buses and loads on power grids are available.
In addition, a customized version of EnergyPlus called
EnergyPlus-OBN with built-in support for OpenBuildNet
was developed. It allows immediate use of any EnergyPlus
model as a co-simulation node in OpenBuildNet.

The OBN External Interface provides a consistent node
programming interface across multiple languages, subject to
syntax differences. The workflow is always the same: a node
object is created, followed by all its ports, then callback
functions are defined for the output update and state update

1An ISO standard lightweight messaging protocol; http://mqtt.org.
2Yet Another Robot Platform; http://yarp.it.
3https://developers.google.com/protocol-buffers
4An embedded scripting language for C++: http://chaiscript.com
5http://julialang.org

Communication network (MQTT, Yarp) and structured data interchange format (ProtoBuf)

OBN Node Library (C++)

OBN Toolbox
for Matlab OBNNode

Scripting

OBN Node Library

OBN SMN Library (C++)

OBN ServerBus node,

Electrical loads,

EnergyPlus-OBNOBN External Interface Library

OBN Pkg
for Julia

OBN Lib
for Python

Fig. 3. The OpenBuildNet tool suite: the colored boxes represent libraries and programs developed as part of OpenBuildNet.

Create node and ports
node = OBNNode(’plant’)
node . x = x0
u = node . c r e a t e i n p u t (’u’ , ’vector’ , ’double’)
y = node . c r e a t e o u t p u t (’y’ , ’vector’ , ’double’)
Define and assign callbacks
def c a l c y () :

y . s e t (np . d o t (C , node . x) + np . d o t (D, u . g e t ()))
def c a l c x (node) :

node . x = np . d o t (A, node . x) + np . d o t (B , u . g e t ())
node . o n b l o c k o u t p u t (0 , c a l c y)
node . o n b l o c k s t a t e (0 , c a l c x , node)
node . run () # Run simulation

(a) Python node

Create node and ports
node = OBNNode("plant")
x = x0
u = c r e a t e i n p u t (node ,"u" , V ec t o r { F l o a t 6 4 })
y = c r e a t e o u t p u t (node ,"y" , V ec t o r { F l o a t 6 4 })
Define and assign callbacks
o n b l o c k o u t p u t (node , 0) do

s e t (y , C∗x + D∗ g e t (u))
end
o n b l o c k s t a t e (node , 0) do

g l o b a l x
x = A∗x + B∗ g e t (u)

end
run (node) # Run simulation

(b) Julia node
Fig. 4. Implementation of the linear plant node example in different languages.
A, B, C, D, and x0 are assumed to exist and thus not included in the code.

of each block. For example, consider a plant node described
by a discrete-time linear system of the form

x(t+ T) = Ax(t) +Bu(t); y(t) = Cx(t) +Du(t)

where x, u, y are the state, input, and output vectors re-
spectively, and A, B, C, and D are matrices of appropriate
dimensions. The self-explanatory code snippets in Figure 4
implement this node in different languages.

III. CASE STUDY: DISTRIBUTED CONTROL OF BUILDINGS
FOR DEMAND RESPONSE

This section presents a simulation study to demonstrate
the capabilities of OpenBuildNet. We consider a peak-shaving
demand response (DR) application in a mid-voltage distribu-
tion grid, which serves electricity to commercial buildings of
various sizes. Some of these buildings are responsive to DR
incentives. The simulation includes internal dynamics of the
buildings, their controllers that regulate internal variables and
respond to DR signals, and their interaction with the power
grid, resulting in the bus voltage and branch power flow values.

The case study includes several layers of interaction be-
tween nodes, as depicted in Figure 5. The nodes in each layer
operates in various time scales, such as the fast power flow
evolution and slow thermal dynamics of the buildings. In the

Grid Solver

Bus BusBus

Feeder Dynamic LoadPV

DR Manager

Static Load

Load Controller

Grid
Simulation

Layer

Load
Simulation

Layer

Control
Layer

Fig. 5. Structure of the co-simulation system in the case study.

following we will summarize the structure and implementation
of the case study, and some simulation results.

A. Simulation of the distribution grid

For the simulation of the power flow variables in an electric-
ity distribution grid, we use MATPOWER [2], which provides
a general powerflow solver for balanced networks, under
steady state conditions. The simulation of the grid requires:
(a) a grid node, which solves the power flow equations and
determines the power injections and voltage levels; and (b)
nodes representing buses in the grid, which receive inputs from
the user nodes and send out the fixed power flow variables
to the grid node. The user nodes may represent feeders,
generators or loads and multiple users might be connected to
the same bus, as shown in Figure 5.

B. Simulation of buildings

In this case study, we populate the distribution grid with
commercial buildings and solar panels. The power demand
of the ‘static’ buildings and the output of solar panels are
not controlled and are pre-determined, whereas the power
consumption of the ‘dynamic’ buildings, which are responsive
to DR signals, are determined by their controllers. For the
simulation of dynamic buildings, we use two different pieces of
software, Matlab and EnergyPlus, to demonstrate the capability
to integrate various types of software and languages.

1) Buildings with Economic Model Predictive Control:
We consider a subset of buildings to be controlled by Model
Predictive Control (MPC) [12].

a) Modeling: The MPC-controlled buildings are origi-
nally modeled in EnergyPlus, obtained from [13], which are
too complex to use for MPC. We use OpenBuild [14] to
automatically extract a linear thermodynamic model of each
building from its EnergyPlus data files. OpenBuild also outputs
for each building the disturbance sequences that capture solar
gains, internal gains and the effect of the ambient temperature.

AHU

Chiller
Coil &
Piping

Duct &
VAV Box

Duct &
VAV Box

Duct &
VAV Box

Thermal
Zone

Thermal
Zone

Thermal
Zone

(ṁ, T)V AV

(ṁ, T)AHU

Tzones

Tamb

Pcomp qcool

(ṁ, T)CW
vcoil

Return
Duct

T in
AHU

Fig. 6. Diagram of the HVAC system, which consists of a chiller, a chilled
water (CW) loop, an air handling unit (AHU), duct system and variable air
volume (VAV) boxes. ṁ is mass flow rate, T temperature, Pcomp the electrical
power consumption of the chiller, qcool the heat power extracted from the
chilled water loop, vcoil the valve control parameter of the cooling coil inside
the AHU. The controlled variables are ṁVAV. The input air temperature T in

AHU
depends on both zone temperatures Tzones and ambient temperature Tamb, due
to the mixing of internal and external air in the return duct.

As the resulting model does not capture the dynamics of
the HVAC or the electrical power consumption of the building,
we couple it with an extra layer of HVAC model. We choose
to model a forced-air system as described in Figure 6, and
size it according to the maximum heating/cooling demand of
the building model. In this study we consider the cooling
period. To simplify the model, we neglect the mass transport
dynamics and only consider thermal dynamics of the transport
media: water between the heat pump / chiller and AHU, and
air in the duct system. The model is described by a continuous
time nonlinear ordinary differential equation, which is solved
numerically during the simulations.

b) Control: Each building is controlled by a two-level
hierarchical controller. In the upper layer, an MPC controller
optimizes the electrical power consumption cost over a finite
horizon and specifies the thermal power input to the zones
in the building. The model used in this layer captures only
thermal dynamics. In order to have an estimate of the electrical
energy used by the HVAC system, we use a time varying
coefficient of performance (COP) estimation. For the cooling
case it can be estimated as COP = η Tcold

(Thot−Tcold)
, where η

describes the efficiency of the heat pump. Tcold can be taken
as equal to the water temperature at the evaporator Tevap, and
Thot can be taken as the ambient temperature Tamb. We use
the disturbance values provided by OpenBuild for the ambient
temperature prediction, whereas Tevap is regulated by the lower
level controller at a known fixed value.

The finite horizon MPC problem can be written as
min.eT

∑N
i=0 π(i)eE(i)

s.t. ∀i, xT(i+ 1) = AxT(i) +BeT(i) +DdT(i)

eE(i) = COP(i)eT(i), yT(i) = CxT(i)

emin
T 6 eT(i) 6 emax

T , ymin
T 6 yT(i) 6 ymax

T

where N is the horizon length, π is the electricity price. The
variables xT, eT, dT and yT describes state, input, disturbance
and output for the linear thermal dynamics. The input to
thermal dynamics eT is the thermal energy over the sampling
period. The output yT describes the mean zone temperatures,
which are constrained to lie inside the comfort limits. The
electrical energy consumption eE is related to eT through the
forecast time varying COP.

The lower level controller consists of multiple proportional-

eTuHerefT

yH

π yT
MPC BAS

HVAC
Dynamics

Thermal
Dynamics

Fig. 7. Block diagram of the building control structure. The upper level MPC
controller provides thermal energy eT set-points to the building automation
system (BAS). The BAS consists of three PI control loops that control the
output of the HVAC system yH, which consist of cooling power injected to
the zones eT , water temperature at the evaporator of the chiller Tevap, and the
air supply temperature that exits the AHU, TAHU .

integral (PI) controllers, which control the internal tempera-
tures of the HVAC system as well as the thermal cooling/heat-
ing power input to the zones. See Figure 7 for details.

c) Implementation: The building node has two blocks:
‘Thermal’ and ‘HVAC’. The output of the ‘HVAC’ block is
updated every 15 seconds by simulating the HVAC system
controlled by the BAS. At each sampling of the block, the
average electric power consumption and the thermal power
output of the HVAC block is updated. The ‘Thermal’ block
receives the thermal power output and simulates a linear
system at a slower sampling interval of 10 minutes. Total
power consumption of the node includes both the HVAC
system and the uncontrollable loads in the building, the data for
which is obtained from [15]. We implement large and medium
sized office building nodes, and the MPC controller nodes, in
Matlab. We use Yalmip [16] for parsing and Mosek [17] for
solving the optimization problems.

2) Buildings with Rule Based (RB) Control: RB controllers
for DR are also considered, which temporarily adjust the zone
temperature setpoints of a building by 1.5 ◦C during the DR
event to curtail its power demand. The buildings with RB
controllers are simulated with the customized EnergyPlus-
OBN software, while their RB controllers are implemented
with OBNNode Script (ONS). Each building outputs its power
demand at every 10 minutes. A variety of buildings are sim-
ulated, including two office buildings, a residential apartment
building, a hospital, a hotel and a supermarket.

C. Case study

We simulate a DR application aiming to reduce the peak
power injection at the feeder node. The specific grid model
for the study is taken from [18] and describes a mid-voltage
distribution grid with 47 buses. The implementation requires
co-simulation of 42 nodes, summarized in the following table.

Node Type Software Tools # nodes

Matlab Building MATLAB, OpenBuild 4
MPC Controller MATLAB, Yalmip, Mosek 4
EnergyPlus Building EnergyPlus 6
Rule-based Controller OBNNode script 6
Static Building, Solar Panel C++ 14 + 5
DR Manager MATLAB 1
Grid solver, multibus C++ 2

Apart from the nodes required for the grid and dynamic
buildings, there are nodes that outputs data for static buildings,
solar panels and a DR Manager which provides price forecast
and DR signals. Utilizing the modular design of the Open-
BuildNet framework, we distribute the nodes to three standard
office computers. The study takes 36 minutes clock-time for

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

0

2

4

6

Clock time

A
ct

iv
e

Po
w

er
[M

W
] nominal

DR
diff.

Fig. 8. Comparison of the daily active power injection at the feeder, with and
without DR. The dark gray region shows the effective DR period, whereas the
light gray region shows the 1-hour recovery period.

0

20

40

Te
m

pe
ra

tu
re

[°
C

] Zones Ambient Supply Air Chiller

0

100

200

Po
w

er
[k

W
]

Electric Consumption
Total Cooling

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

50

100

150

200

Clock time

Pr
ic

e
[C

/M
W

h]

Fig. 9. Results of the DR case-study for a medium office building with 18
thermal zones. The top figure shows the evolution of mean zone temperatures,
supply air temperature into the zones, and chilled water temperature at
the chiller. One can observe the pre-cooling before the DR event, which
reduces almost all zone temperatures to the minimum comfort constraint. In
contrast, the reduced power consumption during the DR event results in zone
temperatures reaching maximum comfort constraints.

24 hours simulation time, which would take several hours on
a single computer. The communication between the computers
is established with MQTT.

As seen from Figure 8, without DR, a peak power con-
sumption of about 5.16 MW occurs in the late afternoon.
Based on this observation we determine the DR period to be
between 14:00-20:00. In order to avoid a kick back effect,
there is a recovery period of one hour after the main DR
event. During the event, rule-based controllers receive DR ‘on’
signal, whereas MPC controllers receive an increased price
signal. Pre-determined electricity price throughout the day is
broadcast by the DR Manager, therefore the MPC controllers
apply pre-cooling before the period of increased price, as can
be observed in Figure 9. Overall, the contribution of the con-
trolled buildings results in an average active power reduction
of 0.38 MW and a maximum reduction of 0.85 MW during
the DR period. We omit the results concerning the powerflow
variables due to space constraints in this manuscript.

IV. CONCLUSIONS

We introduced OpenBuildNet, an open-source distributed
co-simulation framework for smart energy systems. It provides
a rich set of software tools tailored for researchers and en-
gineers in control, optimization and computer science, who

wish to apply their methods to energy system applications. We
demonstrated the usefulness of OpenBuildNet in a distributed
co-simulation case study that employed multiple simulators
of different types, from the high-fidelity and sophisticated
building energy simulator EnergyPlus to optimization-based
controllers prototyped in Matlab.

OpenBuildNet is being extended in several directions.
Support for distributed co-simulations on cloud-computing
services such as the Amazon Web Services is being imple-
mented, as well as support for more programming languages
and platforms. Adding interfaces with more domain-specific
simulation software and other related technologies such as FMI
and BACnet will complement its power and functionality. In
addition, more and larger-scale case studies will be developed
to demonstrate advanced methods in control, optimization and
computer science in smart energy applications.

REFERENCES

[1] M. Maasoumy, A. Sangiovanni-Vincentelli et al., “Smart connected
buildings design automation: Foundations and trends,” Foundations and
Trends in Electronic Design Automation, vol. 10, pp. 1–143, 2016.

[2] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education,” IEEE Transactions on Power
Systems, vol. 26, no. 1, pp. 12–19, Feb. 2011.

[3] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl et al., “Ener-
gyPlus: creating a new-generation building energy simulation program,”
Energy and buildings, vol. 33, no. 4, pp. 319–331, 2001.

[4] M. Wetter, “Co-simulation of building energy and control systems with
the building controls virtual test bed,” Journal of Building Performance
Simulation, vol. 4, no. 3, pp. 185–203, 2011.

[5] S. Chatzivasileiadis, M. Bonvini, J. Matanza, R. Yin et al., “Cyber-
physical modeling of distributed resources for distribution system op-
erations,” Proc. IEEE, vol. 104, no. 4, pp. 789–806, 2016.

[6] S. Duerr, C. Ababei, and D. M. Ionel, “Smartbuilds: An energy and
power simulation framework for buildings and districts,” in Energy
Conversion Congress and Exposition (ECCE), 2015 IEEE, 2015.

[7] W. Bernal, M. Behl, T. X. Nghiem, and R. Mangharam, “MLE+: a
tool for integrated design and deployment of energy efficient building
controls,” in ACM BuildSys’12, 2012, pp. 123–130.

[8] D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An agent-based
simulation framework for smart grids,” Journal of Applied Math., 2014.

[9] K. Anderson, J. Du, A. Narayan, and A. El Gamal, “Gridspice: A
distributed simulation platform for the smart grid,” IEEE Trans. Ind.
Informat., vol. 10, no. 4, pp. 2354–2363, 2014.

[10] V. Galtier, S. Vialle, C. Dad, J.-P. Tavella et al., “FMI-based distributed
multi-simulation with DACCOSIM,” in Symposium on Theory of Mod-
eling & Simulation, 2015, pp. 39–46.

[11] F. Cremona, M. Lohstroh, S. Tripakis, C. Brooks, and E. A. Lee,
“FIDE: an FMI integrated development environment,” in Annual ACM
Symposium on Applied Computing. ACM, 2016, pp. 1759–1766.

[12] J. M. Maciejowski, Predictive control: with constraints. Pearson, 2002.
[13] US Department of Energy: Office of Energy Efficiency and Renewable

Energy, “Commercial Reference Buildings.” [Online]. Available:
http://energy.gov/eere/buildings/commercial-reference-buildings

[14] T. Gorecki, F. Qureshi, and C. Jones, “Openbuild : An integrated
simulation environment for building control,” in Control Applications
(CCA), 2015 IEEE Conference on, 2015, pp. 1522–1527.

[15] “OpenEI Datasets.” [Online]. Available: http://en.openei.org/datasets
[16] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in

MATLAB,” in 2004 IEEE International Symposium on Computer Aided
Control Systems Design, 2004, pp. 284–289.

[17] M. ApS, “The MOSEK optimization toolbox for MATLAB manual.
Version 7.1 (Revision 28).” 2015.

[18] L. Gan, N. Li, U. Topcu, and S. H. Low, “Exact Convex Relaxation of
Optimal Power Flow in Radial Networks,” IEEE Trans. Autom. Control,
vol. 60, no. 1, pp. 72–87, Jan. 2015.

