
Challenges in Distance-Bounding

Ioana Boureanu1 and Serge Vaudenay2

1 Akamai Technologies Limited
EMEA HQ, UK

http://people.itcarlson.com/ioana
2 EPFL

Lausanne, Switzerland
http://lasec.epfl.ch

Abstract. Smartcard-based protocols represent an increasingly large share of the wireless authentication
market, from contactless payments to remote car unlocking. Unfortunately, relay attacks pose a significant
threat to these wireless solutions. However, this risk can be mitigated through the use of distance-bounding
protocols. In this paper, we discuss the core challenges for distance-bounding, in terms of both theoretical
and practical considerations. We focus on their security, but we also explore the difficulties encountered in
their design and implementation. Moreover, we present our vision of the future of these protocols and of the
possible paths towards their secure deployment.

Keywords: distance-bounding, provable security

In the well-known chess grandmaster problem, there are two grandmasters A and B, and a mere
player C, who in fact does not know so much about chess. Grandmaster A is playing “white” against
C, and grandmaster B is playing “black” against C. C employs the following strategy. Whenever A
makes a move, C goes to the other chessboard—where he is playing against B—and replicates A’s
latest move. Then, C waits for B’s move and reproduces it on the board where he is playing against A,
and so on. Consequently, both A and B will have a hard time playing against C, even if C is no chess
expert. In this way, if there is no draw, C will win in front of one grandmaster. And, what C did in his
devious strategy is nothing else but a typical relay attack.

Nowadays, we have RFID keys to open our cars in a contactless way and, even start their engines
in the same remote manner. We carry NFC credit cards in our (real and virtual) wallets and, more
and more often, we use them to make contactless payments. All these use protocols between an RFID
device, which is often called a prover (i.e., the card), and a reader, which is often referred to as a
verifier. Typically, the aforementioned protocols require no real input, going from the (human) carrier
towards this whole RFID system (i.e., we just hold a card close enough to the reader, without any
further prompts for approval or credentials). So, these protocols are prone to relay attacks. I.e., the
signals of an honest prover/card would be captured by a malicious reader, which in turn will send
these signals to a malicious prover. The latter will replicate this further to a honest verifier/reader.
In this way, an attacker can, e.g., pay with someone else’s resources on a valid terminal, without the
victim’s or the terminal’s suspicions.

To defeat this attack, one solution consists in verifying the proximity between the authenticating
prover and the verifier. This would assume that a correct execution of the protocol is done from
precise locations, or—easier—that it is all run within a bounded area. I.e., if an intended card is close
enough to a reader, then the communication between the two should happen fast enough (and this is
measurable by the verifier). Indeed, if the interactions are to happen rapidly enough, then relaying by
adversarial parties should become virtually impossible.

Proving proximity can be achieved through distance-bounding (DB) protocols, which were intro-
duced by Brands and Chaum in 1993 [8]. The original idea came from Beth and Desmedt (1990) and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148011516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


it was that of enforcing certain security guarantees by measuring the communication-time. Within one
DB protocol run, the prover demonstrates that he is in the proximity of a verifier. In DB, the prover
also authenticates himself to the verifier.

Distance-bounding is in itself prone to some specific attacks. In a distance-fraud (DF), a prover
tries to convince the verifier that he is closer than he really is. In a mafia-fraud attack, an adversary
tries to demonstrate to an honest verifier that an honest prover is in the verifier’s proximity although
the prover is in reality far away from the verifier. The adversary could consist of two communicating
bodies located in the proximity of the prover and the verifier. This threat generalizes relay attacks,
in which the adversary passively relays messages. For instance, the prover is buying something in a
shop in which the terminal has been tampered with (by the “mafia”). This terminal is relaying the
communication to a malicious card carrying out a more expensive transaction in a fully legitimate
shop (with a terminal denoting an honest verifier). This type of attack is also often called the man-in-
the-middle (MiM) attack. In a terrorist-fraud (TF), the adversary has the same goal as in the mafia-
fraud attack, but in this case the prover is dishonest and colludes with the adversary. There are even
extensions of these attacks such as distance hijacking. This fraud involves one dishonest, far-away
prover and several honest provers, without the latter colluding with the former.3

Driven by the need to defeat relay attacks, distance bounding received more attention recently. It
appears very probable that it will be integrated in existing infrastructures. However, many challenges
lie ahead. In the following, we report the main such difficulties in the area of DB.

Challenge 1: Implementing the Time-Critical DB Phase

This challenge is intrinsic to wireless media and relaying (thus to implementation of DB, as well). It
can be summarized as follows. The computation delays encountered by, e.g., RFID tags, are orders of
magnitudes higher than the communication speeds between such a tag and a reader. This difference
leaves room for possible relaying, which would be hard to detect if we were to measure/bound the
communication times as we do in DB.

Concretely, a DB protocol starts with an initialization phase. Then, it goes through a succession
of n rounds. In each round, the verifier sends a challenge and waits for a response to arrive back
within a time bound. This waiting time corresponds to the round trip time of flight to the maximal
allowed distance to the prover, plus a small overhead due to latency. This so-called distance-bounding
phase is time-critical and it obviously imposes very fast computations at each end, typically of less
than a single clock cycle per round. (Every bit must be treated on the fly, upon arrival, with no delay,
and there is virtually no time for extra computations.) But is this achievable in practice? Can, e.g.,
RFID-based DB protocols have low enough computation latencies?

Let us then estimate some of these bounds, time-overheads, latencies, etc. Firstly, we know that
the verifier will accept a honest prover running the protocol from a distance up to some bound; let us
denote this bound as Bclose. Therefore, the (idealized) round trip time of flight between the prover and
the verifier is up to 2

c Bclose, where c is the speed of light. A honest prover like above, assuming it is
implemented using a common RFID tag, will certainly need some time to process the reception of a
challenge, to compute the response, and to process the sending of it; let us denote the total of this time
as toverhead. So, from the verifier viewpoint, the whole process (from the release of the challenge to
the arrival of the response) must take

2
c

Bclose+ toverhead.

3 We refer the interested reader to [7] for more details.

2



Secondly, it is the case that the verifier will reject a malicious prover running the protocol from a point
that is beyond a bound, which we denote as Bfar. There may be a difference ∆toverhead in the overhead
time toverhead of the honest prover and the one of the malicious prover. So, the round-trip time will
then be of

2
c

Bfar+ toverhead−∆toverhead.

Because the malicious prover could use some expensive equipment to make this time much smaller,
we consider the worst case

∆toverhead ≈ toverhead.

Hence, to make the protocol feasible, we must have

toverhead ≤
2
c
(Bfar−Bclose).

Now, let us take an example: consider the case of wireless payment at the cashier of a supermarket.
A customer queuing at the cashier, 1m away from the payment terminal, may be the victim of a relay
attack. Then, to protect him, we shall have Bfar ≤ 1m. When he wants to pay, with his contactless
credit card touching the payment terminal, the protocol should nonetheless work with Bclose ≥ 1cm.
So, we must have toverhead ≤ 6.6ns. This time is very short. To have an idea of how short this is, just
think of the fastest transmission rate of WiFi routers reaching 600 Mbps. After sending one bit, the
waiting time to send a second bit is as long as 1667ns. So, we do not even have time to send bits
in sequence. Likewise, this very short toverhead does not allow a lot of computation on the prover’s
side. Typically, the response is precomputed in a table. This imposes that the challenge is very short:
typically, 1 or 2 bits. The usual transmission rate also imposes that all bits of the challenge are sent at
the same time. As we said above, the typical “duration of a bit” is measured in microseconds, which
is way too long. Finally, the reception device must interpret the bit as soon as it “starts to arrive” and
not wait until the entire duration of the bit. Actually, as a parallel, the analog-digital conversion is
typically too slow and we may have no time to do it. So, we would rather do the “computation” of the
response in analogue mode directly.

This has another consequence: interpreting the challenge and sending the response is very likely
to make errors. So, a challenge/response round may contain a significant amount of communication
noise.

All of these time constraints on communication vs. computation seem to raise a real challenge to
any real-life DB implementation.

Challenge 2: Identifying the Security Threats

As we mentioned above, three main types of DB attacks have been distinguished: distance-fraud,
mafia-fraud and terrorist-fraud, following a terminology due to Desmedt. (See the description of
these frauds on p. 2.)

Like with other threat-models, some of these attack-scenarios for DB are less realistic than others
(e.g., mafia-fraud is the most credible, to our opinion). But, each could pose a real threat in some
(specific) environment. At the same time, as we will explain below, the DB community witnesses
that protecting against all these threats (at once) is cumbersome. So, the question associated to this
challenge is: “Whilst some frauds are harder to mount & overall protection seems hard/costly, could
real-life security live without protection against certain DB frauds?”. Here are some discussions to-
wards this question...

3



Terrorist-fraud...? First of all, we could wonder why should one even worry about terrorist-frauds
(TF) at all. Recall that in such fraud, the prover P is malicious and far away, and colludes with a
close-by adversary A to make the verifier V think that P is close to him. To fool V like this, there
is a trivial way: the prover P simply gives his secret-key to the adversary, so that A would run the
protocol on behalf of P. People think that there is no need to protect against it because malicious
provers would certainly not be willing to share their secret. So, this attack is not considered as a valid
terrorist-fraud. To be terrorist-fraud-resistant, the DB protocol-designs should make sure that helping
A pass the protocol entails A deducing P’s secret key. So, if such a helped attack occurs, then the key-
leakage reduces it to trivial one above, which – as we said– is considered an invalid terrorist-fraud,
so the protocol is not TF-vulnerable. Concretely, a terrorist-fraud is valid if A passes the protocol but
does not deduce P’s secret.

The most common technique to protect against terrorist frauds consists in making the ith bit of the
secret leak from the prover’s response-function table, in the i round. Indeed, in each round of the DB
phase, the prover calculates a response from the received challenge. Having A pass the protocol with a
good probability implies that A must know the response to all possible challenges in each round. I.e.,
A must know the full table of the response functions. Typically, the XOR of all entries in the table of
the ith round is the ith bit of the secret, making A be able to deduce it.

As an example of such attack, imagine that P runs the time-insensitive phases by himself and
gives, for each of the n time-critical rounds, a table of the response-function for A to use, so that A can
quickly reply to V , for any of V ’s challenges. We consider an attack in which P gives the correct table
of the response-function in the first (1−θ)n rounds. For the next θn rounds, he corrupts one random
(challenge) entry in the table by replacing it with a random response (which may be correct or not).
Clearly, A passes the protocol if the verifier does not ask for any of these challenges, or if he does
but the random, altered response is correct. So, A can infer the secret in which θn bits are randomly
corrupted. If θ is such that recovering θn bits by exhaustive search is intractable, then such attack does
not leak the secret and is considered a valid terrorist fraud.

There are many (good) protocols which do not offer any form of resistance to this threat. Fur-
thermore, some authors, e.g., Hermans et al. [14], even argue that resisting terrorist-fraud somehow
weakens security. Indeed, designing the protocol such that it leaks the secret in the case of such an
attack is a dangerous approach. However, we believe this weakening does not need to be the case. We
think that security proofs are there to assure that such designs (or leaks) pose no risk to honest provers.
To some extend, the lack of practical terrorist frauds could dismiss the interest in TF-protection. But,
we believe that one should rather ensure security against this type of exotic attack and thus cover for
practical scenarios that researchers have not yet imagined; such protection should of course come at a
reasonable price.

Distance-fraud...? We may also wonder about the need for distance-fraud resistance: i.e., should
we really worry about malicious provers at all? In an ideal world where all provers are honest, we
could simply focus on protection against man-in-the-middle attacks, which encompass impersonation,
relaying, etc. These latter attacks were the original motivation and remain the most important question
to address. Still, we think that it makes sense to imagine that malicious provers could exist and could
try to abuse a system. For instance, in payment systems, liability is an important question. In such
a setting, we could imagine a scenario where a prover would attack the system, then deny having
made a payment; he could use the guarantees of distance bounding (which he would have managed to
falsify) to say that he was too far to have made that payment. On a similar note, in contactless payment
system, if a prover manages to illicitly pay from far away, he could turn the previous argument around
and then use this further as an alibi to pretend he was near to the verifying point-of-sale. Conversely,

4



someone with a stolen payment token could run a distance fraud to pay from far away. So, security
against malicious provers shall not be neglected.

Challenge 3: Building up a Secure Protocol

In general, attempts to construct all-fraud-resistant distance-bounding protocols have proven flawed.
Some authors even suggested it would be impossible [1]. In Table 1, page 11, the popular distance-
bounding protocols and their vulnerabilities as best-known up to 2013 are reported. In this table, n is
the number of DB rounds and θ is a parameter of a terrorist-fraud (TF) such that recovering θn bits
by exhaustive search is intractable. As we can see, all protocols but two are vulnerable to at least one
of the classical threats (i.e., one probability is equal to 1), or some instances of the protocol are (as
explained below).

Sometimes, DB protocols are based on an underlying primitive called a pseudorandom function
(PRF). The PRF is unspecified and security is assumed to depend on the PRF assumption. Some
authors heavily use arguments such as “if f is a pseudorandom function (PRF), then this protocol is
secure against...”. In fact, in a line by Boureanu et al. [3], it was proven that, if PRFs exist, then such
statements used in semi-formal proofs are incorrect. When employed with some specific (artificially
backdoor-ed) PRFs, many protocols were shown to be indeed vulnerable to distance-fraud and/or
man-in-the-middle attacks. This result appears in Table 1 in the entries “p to 1”, as the success of the
attack varies from very low to 1, with the choice of the PRF. Except for these artificial PRFs, these
attacks may become impractical, although there is no formal proof of such statement.

In a parallel line, Kim et al. [15] proved in 2008 that many existing distance-bounding protocols
are also subject to mafia-fraud. In doing so, they exposed for the first time the importance of the return
channel in the (in)security of these protocols; the presence or the lack of a return channel respectively
model the simple facts whether the adversary is or is not able to observe the output of the protocol
(e.g., whether we see or we do not see a LED turning green or red on a card reader, suggesting the
success or the failure of an access protocol).

Finally, Hancke [12] raised the alarm on the fact that noisy communications and tolerance to them
must also be addressed in the security analysis. Indeed, Hancke showed that almost all protocols in
Table 1 (all except the SKI and Fischlin-Onete protocols) are vulnerable to terrorist-frauds when they
tolerate noisy conditions.

The figure shows a dire situation, so the question of provable security against all frauds mounted
has been standing prominently in the last two years. In the last year however, two (classes of) provably
secure DB protocols, the SKI class (2013) [5] and the Fischlin-Onete protocol (2013) [11] have been
published.

Challenge 4: A Formal Security Model

Several models for DB security have been published recently. In [1], Avoine et al. first give a com-
plete, but rather informal model for distance-bounding in 2011. They define distance-bounding as the
combination of authentication and distance-checking.

A more mature model for distance-bounding was presented by Dürholz et al. in [9] in 2011. It
presents a communication model in which notions of time or distance are only implicit. It requires
specifying protocols by explicitly distinguishing a lazy phase and a time-critical one. This model for-
malizes the three classical types of frauds and an extra notion of impersonation fraud. The threat
models are very specific, presented in terms of protocol session interleaving. That is, each type of

5



fraud must exhaustively specify what kinds of interleavings are not allowed (what is called tainted
session in [9]), leading us to many variants. Possibly due to this specificity and to their security re-
quirements being possibly too strict, the model is too strong, admitted by its authors in 2013 [10]. In
this model, certain insecurities (impersonation or terrorist-fraud) are hard-to-defend claims, leading
to unconvincing attacks. Fischlin and Onete later designed [11] a DB protocol, proven secure in their
model from [9].

In 2013, Boureanu et al. [4] introduced a formal model for distance-bounding, based on tech-
niques and definitions similar to those of interactive proofs. This model seems natural, since distance-
bounding can indeed be viewed like an interactive proof (of proximity). Along with the formal model,
Boureanu et al. introduced, in 2013 [5,4], the class of provably secure DB protocols called SKI.

To sum up (especially looking at challenge 4 and challenge 5), we can see that in the 20-year old
DB literature informal DB discussions and insecure protocols prevail, and that the formal models for
DB security has just started to take shape.

Challenge 5: Efficiency

Another question, which has not been risen before, is that of the performances of these two surviving,
provably secure protocols: SKI and Fischlin-Onete. By this, we mean the following: what is the price
to pay, in terms of number n of rounds of the DB phase, in order to achieve different security guaran-
tees? Are the protections of different frauds really conflicting in terms of communication/computation
costs? Is, e.g., TF-resistance coming at a too high price in terms of protocol rounds? We looked at an-
swering such questions, and we summarize our findings in Figure 1, on page 11. This figure is to be
read as follows. On the x-axis we have the number of DB rounds and on the y-axis the level of secu-
rity associated. I.e., if we look at the blue line, representing MiM attacks on SKI, at its represented
peak we read that an “a MiM attack on SKI that would defeat 40-bit security would require n = 150
rounds”.

To make this plot, we arbitrarily assumed that challenge/response rounds fail due to noise with
probability pnoise = 5%, and we tuned the minimal number τ of correct rounds so that the false rejec-
tion rate (FRR) would be of pFRR = 1%. The values used/obtained are linked by

pFRR = Tail(n,τ,1− pnoise),

using the tail of the binomial distribution

Tail(n,τ,ρ) =
n

∑
i=τ

(n
i

)
ρ

i(1−ρ)n−i.

The upper bound of the probability for a MiM attack onto SKI is

pMiM = Tail

(
n,τ,

2
3

)
.

We recall that

lim
n→+∞

−1
n

log2Tail(n, tn,ρ) =
(t−ρ)2

2ρ(1−ρ)
.

So, the slope of the line approaching the SKI MiM curve is

ηMiM ≈ 0.18.

6



Increasing the number of rounds by ∆n would result in increasing security against MiM by ηMiM.∆n
bits.

Similarly, the slopes of the SKI DF curve (which is also the DF and MiM curve for the Fischlin-
Onete protocol) and the SKI TF curve are

ηDF ≈ 0.11, ηTF ≈ 0.06.

As the graph in Figure 1, page 11, shows SKI requires 151 rounds for a DF-resistance of 2−20

(i.e., the probability to have a successful DF over 151 DB rounds of SKI is 2−20), 91 rounds for a
MiM-resistance of 2−20, and 315 rounds for a TF-resistance of 2−20.

Both for the SKI and the Fischlin-Onete protocols, the required number of rounds is still large.
But what would it mean for a DB protocol to offer optimal security? Note that a DB protocol

expecting τ correct rounds out of n binary-challenge rounds is always vulnerable to the following
MiM attack: the man-in-the-middle guesses ci before it arrives and asks for ri from the honest prover.
When ci arrives from the verifier, he can answer if his guess is correct. Otherwise, he sends a noisy-like
answer and continues the protocol. This attack works with probability

pMiM = Tail

(
n,τ,

1
2

)
.

This corresponds to a MiM slope of
η≈ 0.41.

Since this attack will always exist, the curve above is the optimal curve in terms of MiM-protection,
for protocols with binary challenges. This is actually reached by the recent DB2 protocol from [7].
So, we could drastically reduce the number of rounds of the SKI and the Fischlin-Onete protocols.
By comparison, DB2 needs n = 43 rounds for a MiM-security of 2−20. But the n = 123 rounds that
it needs for DF-security is suboptimal. So, the race for the optimal protocol is going on. Even though
some protocols are optimal with respect to one security metric, they are not for all of them and the
correct trade-off must be identified.

Challenge 6: Public-Key Distance Bounding

Distance-bounding protocols in the literature are based on a shared key: they assume that the prover
and the verifier share a secret. In many applications, such an assumption is unreasonable. For instance,
the wireless payment terminal at the supermarket is unlikely to share a secret with the customer’s credit
card. It would make more sense that the credit card holds a secret and has some (certified) public key.
The payment terminal would only need this public key to verify the proximity proof. Hence, there is
a need for public-key based protocols.

In the literature, only three public-key distance bounding protocols exist. There is the original
Brands-Chaum protocol (1993) [8]. It does not offer any security against terrorist-fraud. Moreover,
the Bussard-Bagga protocol (2004) was completely broken by Bay et al. in 2012 [2]. Finally, the
Hermans-Onete-Peeters protocol (2013) [14] has a security proof but it does not protect against
terrorist-fraud. However, it features privacy protection: the verifier has also a public/secret key pair
and an outside observer cannot figure out the identity of the prover.

We could however wonder why we have only two public-key distance bounding protocols, all
without terrorist-fraud protection. Actually, it is easy to transform any symmetric DB into a public-
key one: we just run a key agreement (KA) protocol (such as the famous Diffie-Hellman protocol in

7



semi-authenticated mode) to set up a symmetric key sym. Then, we run a symmetric DB protocol
with key sym. (See Figure 2, on page 11.) The symmetric DB protocol consists of two algorithms
Psymmetric(sym) and Vsymmetric(sym). This could, for instance, be the Hancke-Kuhn protocol [13].
The KA is semi-authenticated: the prover uses KAP(sk), where sk is his long-term secret key, and
the verifier uses KAV (pk), where pk is the long-term public key of the prover. But, this solution is
vulnerable to the terrorist fraud in which the prover just sends sym to the close-by adversary who runs
the symmetric DB protocol without having access to sk. Hence, building classical TF-protection into
public-key DB does not work.

So, making a provably secure public-key distance-bounding protocol resisting the three types of
fraud is still an open problem. Whenever this challenge is solved, making an efficient public-key DB
protocol will be the next hurdle.

Challenge 7: Integration

Proximity proofs must be integrated in applications, like payment systems, access-control, or remote
unlocking scenarios. For this, the development of the appropriate infrastructures is still an open prob-
lem. Let us discuss each of the above cases individually.

Secure remote unlocking. The task seems to be easy in the case of remote unlocking of cars using
a wireless key. This is because the prover and the verifier therein are stable points in the infrastruc-
ture, i.e., there is one verifier/reader on the car that will accept one key belonging to the owner of
the car. Then, the only relevant question therein lies in the key distribution problem. But key distribu-
tion should/could be completely independent from the proof of proximity protocol (that may use the
established key).

Secure access-control. For access-controls settings, e.g., entering/exiting buildings, the task of incor-
porating DB therein may seem slightly harder. That is because there are several verifiers that may
authenticate (at different points) one given prover; i.e., one person’s badge will be read by different
readers, one on each door that he/she passes through. Clearly, such readers will not store the secret
of all provers. However, we can assume that reader on the doors have secure online access to an
authentication server that holds all the keys.

For such application, implementation could be done in a straightforward manner: the reader (on
the door) could just relay communications between the prover and the authentication server, and—as
customary—measure the time taken by the challenge/response rounds to forward the timer values to
the server. We could however save a few communication steps between the server and the door. For
instance, in Figure 3, on page 12, we describe a protocol based on the SKI protocol and requiring only
one query/response steps to and from the server. Essentially, the server selects the challenges for the
verifier and sends a vector t of the commitments of all possible responses. That is, ti is a commitment
to the response ri which is expected in the round i. The commitment is to be opened with a decommit
key

ρi = PRFx(NP,NV ,L, i,ci),

(where the parameters are defined in SKI [5,4]) which must be revealed by the prover. This comes
however at the cost: the server must compute all commitments and the prover must open them.

Secure contactless payments. In the contactless payment infrastructure, the prover (an NFC creditcard
or smartphone) wants to pay the verifier. Verifiers/readers are more pervasive, and we cannot always
assume that they have a secure online access to an authentication server. It is not reasonable to assume

8



that any of these verifiers would have access to the secret of the credit-card either. So, to integrate
DB within, we need a solution based on public keys. For instance, we can assume a certificate-based
solution. The prover/tag sends the verifier/reader a certificate on his public key. I.e., this is a signature
(with extraction) on the prover’s public key made by a certification authority (e.g., the bank/bank-
group emitting the card), and the verifiers/readers hold the public keys of all (or at least “‘root”)
certification authorities ck (e.g., of all reputable banking groups). Hence, using the latter, the readers
can extract the public key of the prover. From here on, the prover and the verifier will run some public-
key-based distance bounding. We use a public-key distance bounding protocol DB such as the one by
Brands and Chaum, by Hermans, Onete, and Peeters, or one based on Figure 2, on page 11. Such a
DB protocol integrates in a contactless payment scheme with a certificate infrastructure: a credit-card
provides a certificate from the bank to the seller. The seller checks it and extracts the public key of
the credit-card. Then, they just run the distance-bounding protocol to authenticate the credit-card and
validate its proximity.

Conclusions

In this paper, we discussed the core challenges in distance-bounding, in terms of both theoretical (e.g.,
security models) and practical considerations (e.g., implementation difficulties). We also presented
our vision for the future of these protocols, the possible and advisable paths towards their secure
deployment. We focused on the security of DB, but we also explored the problems encountered in their
design, implementation and in acquiring efficiency; overall, we underlined that these four aspects do
not harmoniously coexist. As a summary, the focus was on the current co-dependent challenges to face
today if one wanted to design DB protocol that is: 1). provably secure; 2) efficient; 3). implementable
in practical wireless media. These three points above are relevant to researchers and practitioners
alike.

References

1. G. Avoine, M. Bingöl, S. Kardas, C. Lauradoux, B. Martin. A Framework for Analyzing RFID Distance Bounding
Protocols. Journal of Computer Security, vol. 19(2), pp. 289–317, 2011.

2. A. Bay, I. Boureanu, A. Mitrokotsa, I. Spulber, S. Vaudenay. The Bussard-Bagga and Other Distance-Bounding Pro-
tocols under Attacks. In Proceedings of the 8th International Conference of Information Security and Cryptology (IN-
SCRYPT’12), Beijing, China, Lecture Notes in Computer Science 7763, pp. 371–391, Springer-Verlag, 2012.

3. I. Boureanu, A. Mitrokotsa, S. Vaudenay. On the Pseudorandom Function Assumption in (Secure) Distance-Bounding
Protocols - PRF-ness alone Does Not Stop the Frauds! In Proceedings of the 2nd International Conference on Cryp-
tology and Information Security in Latin America (LATINCRYPT’12), Santiago, Chile, Lecture Notes in Computer
Science 7533, pp. 100–120, Springer-Verlag, 2012.

4. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Practical & Provably Secure Distance-Bounding. Proceedings of the 16th
Information Security Conference (ISC 2013), Dallas, Texas, USA, to appear

5. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Secure & Lightweight Distance-Bounding. In Proceedings of the Second In-
ternational Workshop in Lightweight Cryptography for Security and Privacy (LIGHTSEC’13), Gebze, Turkey, Lecture
Notes in Computer Science 8162, pp. 97–113, Springer-Verlag, 2013.

6. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Towards Secure Distance Bounding. Proceedings of the 20th International
Workshop on Fast Software Encryption (FSE’ 13), Singapore, 55–67, 2013

7. I. Boureanu, S. Vaudenay. Optimal Proximity Proofs. Eprint technical report, 2014. http://eprint.iacr.org/2014/
693.pdf

8. S. Brands, D. Chaum. Distance-Bounding Protocols (Extended Abstract). In Advances in Cryptology EUROCRYPT’93,
Lofthus, Norway, Lecture Notes in Computer Science 765, pp. 344–359, Springer-Verlag, 1994.

9. U. Dürholz, M. Fischlin, M. Kasper, C. Onete. A Formal Approach to Distance-Bounding RFID Protocols. In Proceed-
ings of the 14th Information Security Conference (ISC’11), Xi’an, China, Lecture Notes in Computer Science 7001, pp.
47–62, Springer-Verlag, 2011.

9



10. M. Fischlin, C. Onete. Subtle Kinks in Distance-Bounding: an Analysis of Prominent Protocols. In Proceedings of the
6th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WISEC’13), Budapest, Hungary, pp.
195–206, ACM, 2013.

11. M. Fischlin, C. Onete. Terrorism in Distance Bounding: Modelling Terrorist-Fraud Resistance. In Proceedings of the
11th International Conference on Applied Cryptography and Network Security (ACNS’13), Banff AB, Canada, Lecture
Notes in Computer Science 7954, pp. 414–431, Springer-Verlag, 2013.

12. G.P. Hancke. Distance Bounding for RFID: Effectiveness of Terrorist Fraud. In Proceedings of the 3rd IEEE Interna-
tional Conference on RFID-Technology and Applications (RFID-TA’12), Nice, France, pp. 91–96, IEEE, 2012.

13. G.P. Hancke, M.G. Kuhn. An RFID Distance Bounding Protocol. In Proceedings of the 1st International Conference on
Security and Privacy for Emerging Areas in Communications Networks (SecureComm’05), Athens, Greece, pp. 67–73,
IEEE, 2005.

14. J. Hermans, R. Peeters, C. Onete. Efficient, Secure, Private Distance Bounding without Key Updates. In Proceedings
of the 6th ACM Conference on Security and Privacy in Wireless and MobileNetworks (WISEC’13), Budapest, Hungary,
pp. 195–206, ACM, 2013.

15. C.H. Kim, G. Avoine, F. Koeune, F.-X. Standaert, O. Pereira. The Swiss-Knife RFID Distance Bounding Protocol. In
IProceedings of the 11th International Conference on Information Security and Cryptology (ICISC’08), Seoul, Korea,
Lecture Notes in Computer Science 5461, pp. 98–115, Springer-Verlag, 2009.

10



Protocol Success Probability
Distance-Fraud Man-in-the-middle (Mafia-Fraud) Collusion-Fraud (Terrorist-Fraud)

Brands & Chaum (1993) (1/2)n (1/2)n 1
Bussard & Bagga (2004) 1 (1/2)n 1
Čapkun et al. (2003) (1/2)n (1/2)n 1
Hancke & Kuhn (2005) (3/4)n to 1 (3/4)n 1
Reid et al. (2007) (3/4)n to 1 1 (3/4)θn

Singelée & Preneel (2007) (1/2)n (1/2)n 1
Tu & Piramuthu (2007) (3/4)n 1 (3/4)θn

Munilla & Peinado (2008) (3/4)n (3/5)n 1
Swiss-Knife (2008) (3/4)n (1/2)n to 1 (3/4)θn

Kim & Avoine (2009) (7/8)n (1/2)n 1
Nikov & Vauclair (2008) 1/k (1/2)n 1
Avoine et al. (2011) (3/4)n to 1 (2/3)n to 1 (5/6)θn

SKI (2013) (3/4)n (2/3)n (5/6)θn

Fischlin & Onete (2013) (3/4)n (3/4)n (3/4)θn

Table 1. Best-known attacks on prominent distance-bounding protocols (taken from [6, Table 1],[5, Table 1], where we
corrected herein the terrorist-fraud entries for Avoine et al. and for SKI)

0
5

10
15
20
25
30
35
40

0 50 100 150 200 250 300 350 400

SKI DF
FO DF, MiM

SKI MiM

SKI TF

Fig. 1. Security levels (in bitlength-equivalent security) in terms of the number of rounds

Verifier Prover
V (pk) P(sk)

sym= KAV (pk)
KA←−−−−−→ sym= KAP(sk)

Vsymmetric(sym)
DB←−−−−−→ Psymmetric(sym)

payment←−−−−−→

Fig. 2. A public-key DB from a symmetric one

11



Server Verifier Prover
secret: sk secret: sk

initialization phase
pick NV ,L,a,c

NP←−−−−−−−−−−−−− NP←−−−−−−−−−−−−− pick NP

M = a+PRFsk(NP,NV ,L)
M,NV ,L,c,t−−−−−−−−−−−−−→ M,NV ,L−−−−−−−−−−−−−→ a = M−PRFsk(NP,NV ,L)

x = L(sk) x = L(sk)

distance-bounding phase
for i = 1 to n
start timeri

ci−−−−−−−−−−−−−→

stop timeri
ri←−−−−−−−−−−−−− ri = F(ci,ai,xi)

verification phase
open commitments

ρ←−−−−−−−−−−−−− release commitment keys for the ri’s

verify time and bound
OutV−−−−−−−−−−−−−→

Fig. 3. DB integrated in access-control based on SKI

12


