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Abstract The fractional Laplacian operator (−∆)s on a bounded domain Ω can be realized as
a Dirichlet-to-Neumann map for a degenerate elliptic equation posed in the semi-infinite cylinder
Ω × (0,∞). In fact, the Neumann trace on Ω involves a Muckenhoupt weight that, according to
the fractional exponent s, either vanishes (s < 1/2) or blows up (s > 1/2). On the other hand, the
normal trace of the solution has the reverse behavior, thus making the Neumann trace analytically
well-defined. Nevertheless, the solution develops an increasingly sharp boundary layer in the vicinity
of Ω as s decreases. In this work, we extend the technology of automatic hp-adaptivity, originally
developed for standard elliptic equations, to the energy setting of a Sobolev space with a Muckenhoupt
weight, in order to accommodate for the problem of interest. The numerical evidence confirms that
the method maintain exponential convergence. Finally, we discuss image denoising via the fractional
Laplacian. In the image processing community, the standard way to apply the fractional Laplacian
to a corrupted image is as a filter in Fourier space. This construction is inherently affected by the
Gibbs phenomenon, which prevents the direct application to “spliced” images. Since our numerical
approximation relies instead on the extension problem, it allows for processing different portions
of a noisy image independently and combine them, without complications induced by the Gibbs
phenomenon.
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1 Introduction

Fractional PDE’s have recently become a topic of substantial research activity because of their ability
to describe phenomena with memory effects which elude the reach of standard PDE’s. Among others,
fractional calculus has proved a viable tool in material science [2], finance [7], image processing [3],
porous media flow [22], and bioengineering applications, such as anomalous diffusion in biological
tissues [16].

The fractional Laplacian operator is of special interest in fractional calculus. Caffarelli and Silvestre,
[5], have shown that such operator can be realized as a Dirichlet-to-Neumann map for a degenerate
elliptic equation posed on the half-space R+

n := Rn × (0,∞). The degeneracy is caused by a weight
function that, depending upon the fractional exponent, either vanishes or blows up on the boundary
∂R+

n = Rn. This result has been adapted to the case of a bounded domain Ω ⊂ Rn in [4], [6], [21],
thus obtaining a degenerate elliptic boundary value problem problem posed on the infinite cylinder
C := Ω × (0,∞). Since the weight function belongs to the so-called Muckenhoupt class, the problem
can be understood in the framework of weighted Sobolev spaces, and the standard theory carries
through with minor modifications.

By employing separation of variables, see Appendix A, it can be shown that the solution to the
extension problem decays to zero away from Ω, thus allowing for the truncation of C to a (large)
bounded domain, and the approximation of the problem through numerical techniques such as hp-
finite elements. At the same time, due to the fractional exponent, either the Muckenhoupt weight or
the gradient of the solution blows up on Ω. The flexibility of varying both h and p, along with an
automatic adaptive strategy, could ensure that the solution is properly captured in a neighborhood
of Ω.

The paper is organized as follows. In Section 2 we recall theoretical results about the fractional
Laplacian, including a trace theorem which was proved by Nochetto et al. [18]. Section 3 is devoted
to numerical experiments that were conducted using the hp2d finite element library [8]. In Section 4
our numerical machinery is employed for the solution of the space-fractional diffusion equation, which
is used as a tool for image denoising. Finally, in Section 5 we draw conclusions from this work.

2 Preliminary Results

The fractional Laplacian (−∆)s is a pseudo-differential operator defined by

F [(−∆)su](ξ) = |ξ|2s F [u](ξ) (1)

where F [·] indicates the Fourier transform. When u belongs to the Schwartz class S of functions on
Rn and s > −n/2, i.e., the right-hand-side of (1) is a tempered distribution, and (−∆)su is a tempered
distribution as well. By duality, the previous definition extends to a subspace of the space of tempered
distributions S′, see, e.g., Silvestre [19]. In the case −n/2 < s < 0, [20], the fractional Laplacian can
be expressed as the convolution integral with the Riesz kernel, i.e.,

(−∆)su(x) = Cn,s

∫
Rn

u(y)

|x− y|n−2s
dy (2)

where Cn,s is a suitable constant.
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When Rn is replaced by a bounded domain Ω, there is no unique way to define the fractional Laplacian.
For example, a possible definition that rests upon restricting the integral in (2) to Ω, would lead to
the so-called “regional” fractional Laplacian [13]. In this work, we pursue a different approach and
consider the spectral decomposition of the homogeneous Dirichlet Laplace operator to define fractional
powers of such an operator through classical spectral theory, [4,6]. When Ω is a Lipschitz domain, as
we shall henceforth assume, the spectrum of −∆ is discrete and positive, and accumulates at infinity.
Thus, we formally define

(−∆)su =
∑
k

µskukϕk (3)

where uk =
∫
Ω
uϕk are the Fourier coefficients of u, and {µk}, {ϕk} are the eigenvalues and eigen-

vectors of −∆, respectively.

Since −∆ : H1
0 (Ω)→ L2(Ω) is an unbounded self-adjoint operator, by virtue of the theory of Hilbert

scales presented by Magenes and Lions [15], we can define the interpolation space

[
H1

0 (Ω), L2(Ω)
]
θ

:= dom

(
(−∆)

1−θ
2

)
(4)

for 0 ≤ θ ≤ 1. Furthermore, the space on the left-hand side of (4) is the space H̃s(Ω), where s = 1−θ.
Let us recall that, if Hs(Rn) is the scale of Sobolev spaces defined through the Bessel potential (see
[17], Chapter 3) and Hs(Ω) is the space of restrictions to an arbitrary domain Ω, we define

Hs
0(Ω) closure of D(Ω) in Hs(Ω)

H̃s(Ω) closure of D(Ω) in Hs(Rn)

The definition trivially implies that H̃s(Ω) ⊂ Hs
0(Ω) and, in the case of Ω being a Lipschitz domain

and s being different from a half-integer, it can be shown that the two spaces coincides.

The fractional Laplacian, see [4,6,21], can be realized as the restriction to Ω of the following degenerate
elliptic problem on the semi-infinite cylinder C := Ω × (0,∞):

−div(yα∇u) = 0 in Ω × (0,∞) (5a)

u = 0 on ∂Ω × [0,∞) (5b)

(yα∇u) · ν = dsf on Ω × {0} (5c)

Here α = 1 − 2s, y ∈ R+ is the extension variable, ν is the external normal vector to Ω × (0,∞),

ds = Γ (1− s)1
2

s+1
is a constant, and Eqs (5b) (5c) are to be understood in the sense of the trace in

a weighted Sobolev space. Then, for f ∈ L2(Ω), it is possible to show that u|Ω solves (−∆)su = f in
Ω and u = 01 on ∂Ω, see Appendix A for a detailed discussion.

Problem (5) is degenerate in the sense that the coefficient yα does not belong to L∞(C) as in the
standard theory. On the other hand, since the function w := yα belongs to the Muckenhoupt class A2,
we can recast the problem in the weighted Sobolev space H1(C;w), endowed with the inner product

(u, v) =

∫
C
w∇u · ∇v +

∫
C
wuv

1 Additional regularity on u is in fact needed for this condition to be well-defined. Because of a shift-type result
[14], it is sufficient to assume f ∈ Ht(Ω), for t > 1/2− 2s.
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and the corresponding norm ‖u‖2 = (u, u). For a theory of Sobolev spaces with Muckenhoupt weights,
see [12]. Using integration by parts and proceeding formally, (5) is equivalent to the following varia-
tional problem:

Find u ∈ H1
0,Γ0

(C;w) :

∫
C
yα∇u · ∇v = ds

∫
Ω

fv ∀ v ∈ H1
0,Γ0

(C;w) (6)

where H1
0,Γ0

(C;w) is the space of objects in H1(C;w) with null trace on Γ0 := ∂Ω × (0,∞). Since w
does not depend on x ∈ Ω, a trace result on Γ0 trivially holds. In the case of the trace on Ω, it was
shown in [18] that v 7→ v|Ω is a continuous operator of H1(C, w) onto H̃s(Ω). Therefore the right-hand

side of the variational equality is well defined for every load f that belongs to H−s(Ω) = H̃s(Ω)′,
and the integral is indeed interpreted as a duality pairing. Finally, since a Poincaré-type inequality
for H1

0,Γ0
(C;w) holds, [18], the Lax-Milgram Lemma implies the existence of a unique solution to (6).

3 Finite Elements Approximation

The variational formulation (6) immediately allows for a finite element approximation of the fractional
Laplacian. The asymptotic expansion of the Bessel function of the second kind Ks (Appendix A)
implies that the solution develops a boundary layer as we approach Ω. On the other hand, as shown
in [18], ∇u decays exponentially as y ↑ ∞. Thus, we can select a sufficiently large value of y, replace C
by a bounded computational domain Chp = Ω× (0, L), and impose a homogeneous Dirichlet condition
on Ω × {y = L}. Alternatively, we could employ an Absorbing Boundary Condition to terminate the
computational domain.

We shall rely upon the hp2d finite element library [10], to conduct numerical experiments. This choice is
motivated by the fact that hp2d supports automatic hp-adaptivity for elliptic problems, and optimal
h-refinements and p-enrichments are automatically selected via an error indicator that relies upon
H1-projection based interpolation, see [9].

For the purpose of numerical simulations, we choose Ω = (0, 1), Chp = (0, 1)2, and employ the
manufactured solution

u =

{
sin(πx) exp(−πy) s = 1

2

sin(πx) (πy)sKs(πy) otherwise

for computing the load function f = 1
ds

limy↓0 y
αuy. The Bessel function of the second kind Ks is

evaluated using the implementation of Amos, see [1]. Although we employ the exact solution to impose
an non-homogenous boundary condition on Ω × {y = 1}, numerical evidence suggests that we could
assume a homogeneous condition as well, thus validating our strategy of domain truncation.

Let u0 be the restriction of the exact solution u on Ω × {y = 1}, let Vh be an H1-conforming finite
element space on Chp and let u0,h be a lift of u0 in Vh. The finite element approximation of (6) is:

Find uh ∈ u0,h + Vh :

∫
Chp

yα∇uh · ∇vh = ds

∫
Ω

f vh ∀ vh ∈ V (7)

We employ adaptive quadrature for the integration of both the stiffness matrix and the load vector.
The hp2d library supports fully variable order elements. This means that a quadrilateral element has
independent orders of approximation for each edge and element interior which, because of the tensor
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product structure, has a horizontal and vertical order of approximation. The initial mesh is comprised
of just one isotropic second order quadrilateral element.

The adaptive strategy of the hp2d library is based on the idea of comparing the approximate solution
uhp on the current grid to a solution uh/2 p+1 on a finer grid in order to determine an optimal mesh
for the next step. The optimal mesh is understood as a mesh that maximizes the rate of decrease of a
properly constructed error indicator. The existing implementation was expanded in order to account
for the appropriate energy setting. Ideally, the hp-algorithm terminates when a given tolerance ε,
defined as: ∣∣uhp − uh/2 p+1

∣∣
w,1∣∣uh/2 p+1

∣∣
w,1

< ε

is reached. Here |u|2w,1 =
∫
w |∇u|2 indicates the seminorm in H1

0,Γ0
(Chp;w).

The objective of the numerical experiments is to study the convergence rates of
∣∣u−uh∣∣ and

∣∣(u−uh)|Ω
∣∣

in H1
0,Γ0

(Chp;w) and H̃s(Ω), respectively. According to the trace theorem from Section 2, these rates

shall coincide. In the context of h-estimates for Q1 finite element approximations, the following result
has been proved in [18]:

|u− uh|w,1 ≤ O
(

# degrees of freedom−
1

n+1

)
where n is the Euclidean dimension of Ω. This estimate was obtained for graded meshes, hence the
use of the number of degrees of freedom (dof’s) rather than the mesh size h. To the best of our
knowledge, no p-estimate is available, thus no hp-estimate can be immediately obtained through a
standard scaling argument. The numerical results suggest that exponential convergence is achieved
by our numerical scheme.

The case s = 1/2, Figure 1, reduces to the standard Laplacian with a Neumann boundary condition
on Ω and will be regarded as a benchmark for the fractional Laplacian. The tolerance ε = 0.01 is
reached within 4 iterations of the hp-algorithm on a mesh with 30 dof’s, see Figure 1(a). Because the
solution to the problem is regular, the hp-algorithm has produced only p-enrichments. Figure 1(b)
illustrates the convergence curves, obtained by forcing 25 iterations. The convergence curves for the
error and error indicator are practically indistinguishable. The trace of the error on Ω exhibits the
same behavior as the error and error indicator on Chp.

When s < 1/2, causing the gradient of the solution u on Ω to become increasingly singular as s
approaches 0, we shall expect the method to degrade as smaller and smaller values of s are selected.
We set ε = 0.01 and perform numerical experiments for s = 0.48, 0.25, and 0.05, illustrated in
Figures 2–4. For s = 0.48, the desired tolerance is reached within 7 iterations of the hp-algorithm
on a mesh with 165 dof’s, see Figure 2(a). In the case s = 0.25, the algorithm needs 27 iterations
to reach the desired tolerance on a mesh with 5817 dof’s, see Figure 3(a). The final mesh features
heavy h-refinements in a layer adjacent to Ω, while high orders of approximation are employed in the
elements farther away from Ω. In both cases, see Figure 2(b) and Figure 3(b), the convergence appears
to be of exponential type. In the case s = 0.25, because of the nature of adaptive quadrature, the
heavy h-refinements that occur where the gradient of the solution is singular cause the computation
of the error to eventually fail. This problem could be circumvented by limiting adaptive quadrature
in a neighborhood of Ω. Nevertheless, we are confident that the results are meaningful because the
error and error indicator exhibit the same behavior for the first 21 iterations. Lastly, in the case
s = 0.05, after 40 iterations the hp-algorithm terminates at ε = 0.1089 on a mesh with 13576 dof’s,
see Figure 4(a). Despite failing to reach the desired error tolerance, the trace of the error on Ω reaches
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a relative error of less than 1% in 27 iterations, on a mesh with 3959 dof’s. As in the previous case,
the computation of the norm of the error eventually fails. Although exponential convergence on the
extended domain is lost, the trace of the error on Ω seems to attain nearly exponential convergence,
see Figure 4(b).

In the case s > 1/2, because of the increasingly singular behavior of the weight function y1−2s as s
approaches 1, we expect a deterioration of the numerical results as s increases. We select ε = 0.01 as
before, and perform numerical experiments for s = 0.55, 0.65, and 0.75, see Figures 5–7. In the first
case, 12 iterations and 296 dof’s are needed to reach the desired tolerance. Because of the smoothness
of the solution, the hp-algorithm has favored p-enrichments, see Figure 5(a). To highlight convergence
rates, 25 iterations of the hp-algorithm are performed. Figure 5(b) suggests that, after a pre-asymptotic
region, the error, the error indicator, and the trace of the error on Ω exhibit exponential convergence.
When s = 0.65, the desired tolerance is reached within 16 iteration on a mesh with 774 dof’s, see
Figure 5(a). The behavior of the error, the error indicator and the trace of the error on Ω is similar
to the previous case, see Figure 5(b) for results over 25 iterations. In the last case, 15 iterations of
the hp-algorithm and a final mesh with 451 dof’s, see Figure 7(a), are needed to reach the desired
tolerance. We conjecture that the decrease in the number of dof’s is a consequence of the increased
regularity of the gradient of the solution, which overcompensates for the singular behavior of the
weight function. Figure 7(b) shows the behavior of the error, the error indicator and the trace of
the error on Ω for 25 iterations. Although good agreement between the error and error indicator is
observed, as a consequence of the increased blow up of the weight function, the trace of the error on
Ω begins to drift away. For completeness, we ran a convergence test for a larger value of s, namely
s = 0.85, see Figure 8. While good agreement between the error and error indicator is still observed
over the first few iterations, the behavior of the trace of the error on Ω becomes increasingly erratic
because of the poor performance of adaptive integration. Let us emphasize that is not a limitation
of the method, but rather a numerical integration issue that could be resolved with an appropriate
quadrature strategy for singularities of the type y−1+ε.

4 Fractional Diffusion and Image Denoising

The goal of image denoising is to enhance the visual quality of an image by eliminating features which
are random and uncorrelated. In general, noise tends to corrupt the higher frequency content of most
images. A standard technique is to apply a suitable lowpass filter, e.g., a Gaussian function, to the
image FFT to attenuate the high frequency components. However, because of the lack of periodicity,
the final image exhibits a Gibbs phenomenon at its edges. Although this issue can be overcome by
applying the filter to a periodic extension of the image, this same strategy does not apply to image
splicing, and the Gibbs phenomenon will pollute the final image. Although techniques for removing
the Gibbs phenomenon are known, [11], they are complicated and lack robustness.

A different approach, overcoming the Gibbs phenomenon altogether, is to apply the diffusion equation
to the noisy image. By recalling the expression of the Green function for the heat operator, this is
equivalent to apply a time-varying Gaussian filter to the noisy image. It is well-established in the
literature that the heat operator diffuses too rapidly to preserve sharp edges. Thus, it is natural to
consider the fractional diffusion equation:

∂u

∂t
= ∆su in Ω × {t > 0}

u(x, 0) = u0(x) on Ω × {t = 0}
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for some exponent s < 1. This approach has been followed in [3] in which the authors exploit the
factorization ∆s = ∆∆s−1, and approximate the fractional part through filtering of the FFT, and the
Laplacian through a standard finite difference scheme. We approximate ∆s directly, via the extension
problem.

A gray-scale image is a discrete function I that maps each pixel, identified to an element of the grid
{1, . . . ,m}× {1, . . . , n}, to a value in the interval [0, 1]. We employ our R× (0,∞) implementation by
addressing each image slice Ii := Ii,1→n independently. For each slice Ii, we build the initial condition
u0 and approximate the fractional diffusion equation with an implicit time scheme, namely:

uk+1 − uk

δt
= ∆suk+1 , k = 0, 1, . . .

for a suitable time-step δt and exponent s. We shall exploit the possibility of varying both s and δt
with each time-step iteration. Ideally, an optimal computational grid should be determined through
the hp-adaptive scheme at each time step. In practice, we select a single fractional exponent s = s
and produce one optimal grid to employ for each s. This choice is justified since s will vary over a
modest range.

The extension problem requires the initial condition u0 to vanish on ∂Ω. We construct u0 by sub-
tracting the piecewise linear interplant defined by the knot vector{

(0, 0) ; (Ii,1,
1

n+1 ) ; (Ii,n,
n
n+1 ) ; (0, 1)

}
from the piecewise linear interpolant of Ii:{

(0, 0) ; (Ii,1,
1

n+1 ) ; . . . ; (Ii,n,
n
n+1 ) ; (0, 1)

}
Thus, u0 is a continuous function on [0, 1], vanishes on [0, 1

1+n ]∪ [ n
n+1 , 1] and has the desirable feature

of not having a sharp boundary layer in a neighborhood of the endpoints.

Appropriate values for s and δt are selected through an indicator E that measures the relative change
in u between subsequent time-steps as compared to the relative change in the gradient of u. A natural
definition for E is:

E(s, δt) =

∣∣‖uk‖ − ‖uk+1‖
∣∣

‖uk‖

(
‖∇uk‖∣∣‖∇uk‖ − ‖∇uk+1‖

∣∣
)2

(8)

where ‖ · ‖ is a suitable norm. The choice of raising the inverse relative error in the gradient to
the second power is arbitrary. In fact, any power strictly greater than one appears to be a reasonable
choice. When ‖·‖ is the L1 norm, then E(s, ·) is the family of curves in Figure 9. The following strategy
suggests itself: for each decreasing value of s, select δt that minimizes E(s, ·). However, as s decreases,
the “convexity” of each curve decreases, which makes finding its minimum increasingly challenging.
Numerical experiments have shown that redefining the indicator as E δts yields appropriate values for
the time-step.

The adaptive denoising strategy is described in full details in Algorithm 1. It relies upon control
parameters s0, δt0, ε0, ε1, ε2 which are to be set manually. Pathological cases, such as a spike function
and a step function, were employed to assess the performance of the strategy. The quality of an image
is a subjective concept and the results should literally be evaluated according to the “eyeball” norm.
In order to facilitate this, gray-scale images, whose vertical cross sections coincide with the original,
corrupted and denoised functions were constructed as well. The results about the denoising of a



8 Paolo Gatto, Jan S. Hesthaven

spike function are shown in Figure 10. While an improvement at each step is visible, the decrease of
the relative L1 error is only minimal, thus providing empirical evidence of the unique nature of the
“eyeball” norm. Finally, a comparison between denoising via fractional and standard Laplacian in the
case of a step function is made in Figure 11.

We applied the denoising algorithm to two images, see Figure 12 and Figure 13, and compared it to
a similar algorithm that relies on the standard Laplacian. In the case of standard diffusion, based
on numerical experiments, we chose ‖ · ‖ to be the L2 norm. Because of this different energy setting,
the correction factor δts turned out to be inappropriate. Each image was corrupted by adding a
random noise uniformly distributed on [−0.1, 0.1]. As a first test, we picked the “peppers” image that
is ubiquitous in the literature, see Figure 12; a second test was performed on an image of the David
by Michelangelo, see Figure 13. The peppers image was manipulated by cutting it vertically into four
strips, independently denoising each strip, and splicing it back together. In the case of the David, only
three vertical strips were employed. As it can be observed from the images, the fractional Laplacian
in fact preserves sharp edges better than the standard Laplacian, hence enhancing the contrast.
Furthermore, no effects are present due to the vertical cuts where the splicing occurred. Finally,
through a partition of unity, our methodology extends to the case of denoising images that partially
overlap onto each other, which is indeed the situation encountered in several practical applications.

Algorithm 1: adaptive denoising strategy.

User provided parameters: s0, δt0, ε0, ε1, ε2

construct u0 from slice Ii;
set s = s0, δt = δt0;
solve for u1;
set s = (1− ε0)s, k = 1, E = huge;
while ‖uk‖ ≥ (1− ε1)‖u1‖ do

solve for uk+1;
compute E;
if E has decreased then

store uk+1;
update E;
δt = (1 + ε2)δt;

else
retrieve previously determined uk+1;
update uk = uk+1;
set E = huge, s = (1− ε0)s, k = k + 1;

end

end

5 Conclusions

The fractional Laplacian can be realized as a Dirichlet-to-Neumann map for a degenerate elliptic
equation. The main objective of this work is to employ the technology of hp-adaptivity, developed
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for standard elliptic problems, to obtain a robust numerical scheme for the solution of the fractional
Laplacian in a bounded domain Ω. This was achieved by extending the hp-algorithm developed in
[10,8], to the context of a Sobolev space with a weight in the Muckenhoupt class. Since the weight
degenerates on a portion of the boundary, particular care had to be taken when evaluating the energy
norms that drive the adaptive strategy. As illustrated through a number of numerical examples,
the adaptive strategy produces meshes that exhibit, in a layer adjacent to the domain Ω, a fine
grading that would otherwise be extremely challenging to determine with a manual, ad hoc strategy.
Furthermore, although no theoretical result is available at the moment, we showed numerical evidence
that hp-finite elements exhibit exponential convergence for this particular degenerate elliptic problem.
Finally, as an application, we employed the fractional Laplacian for image denoising by solving a space-
fractional diffusion equation. The implicit Euler method was used for performing the time-stepping.
The results confirm the conjecture that the fractional Laplacian preserves sharper edges during the
denoising process as compared to a standard diffusion equation. In the context of image processing,
the fractional Laplacian is consistently understood and implemented as a filter in the frequency space,
which makes it susceptible to the Gibbs phenomenon. Since our implementation relies instead on the
extension problem, the Gibbs phenomenon is circumvented. Thus, our numerical approximation of
the fractional Laplacian is suitable for image splicing.

Acknowledgements This work was partially supported by NSF DMS-1115416, by OSD/AFOSR FA9550-09-1-0613
and by AFOSR FA9550-12-1-0463. The authors would like to thank Johnny Guzman for many fruitful discussions.

A Extension problem: separation of variables

Our goal is to construct a solution to the extension problem (5) via separation of variables and show that the
restriction of such a solution to Ω coincides with the solution of the fractional Laplacian as defined in (3) through
the eigenmodes of the Dirichlet Laplace operator. Let us recall 5:

−div(yα∇u) = 0 in Ω × (0,∞) (9a)

u = 0 on ∂Ω × [0,∞) , (9b)

(yα∇u) · ν = dsf on Ω × {0} (9c)

where ds is a suitable constant to be determined, and (9b) (9b) are understood in the sense of the trace. We shall
assume f ∈ L2(Ω). If we let u(x, y) = X(x)Y (y), then equation (9a) can be separated as follows:

α

y

Y ′

Y
+
Y ′′

Y
= −

∆X

X
= c2 .

Using the boundary condition (9b), it is immediate that X coincides with the eigenmodes {ϕk} of the Dirichlet
Laplace problem on Ω, and the separation constant c2 must be an eigenvalue µk of such a problem. Thus, X = ϕk,
and c2 = µk. With the separation constant determined, we move to the ordinary differential equation for Y . In the

case α = 0, i.e., s = 1/2, we obtain Y = exp(−µ1/2k y). Namely, we discarded the solutions associated with exp(µ
1/2
k y)

because of the energy assumption u ∈ H1(C, w). In the case α 6= 0, function Y satisfies the following equation:

y2 Y ′′ + αy Y ′ − (µ
1/2
k y)2Y = 0 .

By seeking a solution Y of the form (µ
1/2
k y)s g(µ

1/2
k y), after lengthy yet trivial computations, we arrive at a modified

Bessel equation for g:

(µ
1/2
k y)2g′′(µ

1/2
k y) + (µ

1/2
k y)g′(µ

1/2
k y)−

(
(µ

1/2
k y)2 + s2)g(µ

1/2
k y) = 0 .
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The general solution is given by a linear combination of Is and Ks, i.e., the modified Bessel function of the first kind
and second kind, respectively. As in the previous case, because of the energy assumption, we discard the solutions
associated to Is. Thus, if we define:

ψk = exp(−µ1/2k y) for s = 1
2

; ψk = (µ
1/2
k y)sKs(µ

1/2
k y) otherwise

we obtain the following expression:

u(x, y) =
∑
k

uk ϕk(x)ψk(y)

where the coefficients uk are to be determined through (9c). Since we are dealing with smooth functions, the left-hand
side of (9c) reduces to the limit limy↓0−yαuy . In the case of s = 1/2, we immediately obtain that:

uy(x, 0) =
∑
k

uk ϕk(x)ψ′k(0) = −
∑
k

ukµ
1/2
k ϕk(x)

Since {ϕk} is a complete orthogonal set for L2(Ω), we also have that f =
∑
k fkϕk. Equation (9c) implies that

fk = ukµ
1/2
k for all k’s and, thus, (−∆)1/2u = f on Ω as desired. In the case s 6= 1/2, in order to make use of

equation (9c), we employ the following properties of function Ks:

1. Ks(z) = K−s(z);

2. K′s(z) = − 1
2

[
Ks−1(z) +Ks+1(z)

]
;

3. Ks(z) ' 1
2
Γ (s)

(
1
2
z
)−s

, z ↓ 0 , s > 0.

We have that:

lim
y↓0

yαψ′k = lim
y↓0

yα
[
s(µ

1/2
k y)s−1µ

1/2
k Ks(µ

1/2
k y) + (µ

1/2
k y)sµ

1/2
k K′s(µ

1/2
k y)

]
= lim
y↓0

yα
[
sµ
s/2
k ys−1Ks(µ

1/2
k y)− µ(s+1)/2

k ys 1
2

[
Ks−1(µ

1/2
k y) +Ks+1(µ

1/2
k y)

]]
= lim
y↓0

yα
[
sµ
s/2
k ys−1Ks(µ

1/2
k y)− µ(s+1)/2

k ys 1
2

[
K1−s(µ

1/2
k y) +Ks+1(µ

1/2
k y)

]]
= lim
y↓0

yα
[
sµ
s/2
k ys−1 1

2
Γ (s)

(
1
2
µ
1/2
k y

)−s
+

− µ(s+1)/2
k ys 1

2

[
1
2
Γ (1− s)

(
1
2
µ
1/2
k y

)s−1
+ 1

2
Γ (s+ 1)

(
1
2
µ
1/2
k y

)−s−1]]
= lim
y↓0

yα
[
Γ (s+ 1) 1

2

1−s
y−1+

− Γ (1− s) 1
2

s+1
µsky

2s−1 − Γ (s+ 1) 1
2

1−s
y−1

]
= lim
y↓0

y1−2s
[
− Γ (1− s) 1

2

s+1
µsky

2s−1
]

= −Γ (1− s) 1
2

s+1
µsk

= −dsµsk

where we defined ds := Γ (1− s) 1
2

s+1
. Therefore equation (9c) can be equivalently written as

lim
y↓0

yα
∑
k

ukϕk(x)ψ′k(y) = ds
∑
k

ukµ
s
k ϕk(x) =

∑
k

fk ϕk(x)

where, by virtue of the fact that {ϕk} is a complete set, we have that f =
∑
k fkϕk. Thus, fk = dsukµ

s
k for all k’s

and (−∆)su = dsf on Ω.
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4. C. Brändle, E. Colorado, and A. de Pablo. A concave-convex elliptic problem involving the fractional Laplacian.
ArXiv e-prints, June 2010.

5. L. Caffarelli and L. Silvestre. An extension problem related to the fractional laplacian. Communications in
Partial Differential Equations, 32(8):1245–1260, August 2007.

6. A. Capella, J. Dávila, L. Dupaigne, and Y. Sire. Regularity of radial extremal solutions for some non local
semilinear equations. ArXiv e-prints, April 2010.

7. P. Carr, H. Geman, D.B. Madan, and M. Yor. The fine structure of asset returns: An empirical investigation.
Journal of Business, 75:302–332, 2002.

8. L. Demkowicz. Computing with hp-adaptive finite elements. Vol. 1, volume 12 of Chapman & Hall/CRC Applied
Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, 2007.

9. L. Demkowicz and J. Kurtz. Projection-based interpolation and automatic hp-adaptivity for finite element
discretizations of elliptic and maxwell problems. 21(September):1–15, 2007.

10. L. Demkowicz, W. Rachowicz, and Ph. Devloo. A fully automatic hp-adaptivity. J. Sci. Comput., 17(1-4):117–
142, December 2002.

11. A. Gelb and D. Gottlieb. The resolution of the Gibbs phenomenon for “spliced” functions in one and two
dimensions. Computers & Mathematics with Applications, 33(11):35–58, June 1997.

12. V. Gol’dshtein and A. Ukhlov. Weighted Sobolev spaces and embedding theorems. Transactions of the American
Mathematical Society, 361(7):3829–3850, 2009.

13. Q.Y. Guan and Z.M. Ma. Reflected symmetric α-stable processes and regional fractional laplacian. Probability
theory and related fields, 134(4):649–694, 2006.
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(a) Optimal mesh (ε = 0.0088), # dof = 30.

(b) Convergence rates (the Error curve overlays the Indicator curve).

Fig. 1 Case s = 1/2. The colors of the optimal mesh represent the orders of approximation of the element, according
to the color scale on the right. The optimal mesh is comprised a single element with horizontal order of approximation
equal to five, and vertical order of approximation equal to four.
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(a) Optimal mesh (ε = 0.008), # dof = 165.

(b) Convergence rates.

Fig. 2 case s = 0.48. The colors of the optimal mesh represent the orders of approximation of the elements, see
Figure 1.
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(a) Optimal mesh (ε = 0.0091), # dof = 5817.

(b) Convergence rates.

Fig. 3 Case s = 0.25. The colors of the optimal mesh represent the orders of approximation of the elements, see
Figure 1.



Numerical approximation of the fractional Laplacian via hp-finite elements 15

(a) Optimal mesh (ε = 0.1089), # dof = 13576.

(b) Convergence rates.

Fig. 4 Case s = 0.05. The colors of the optimal mesh represent the orders of approximation of the elements, see
Figure 1.
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(a) Optimal mesh (ε = 0.0097), # dof = 296.

(b) Convergence rates.

Fig. 5 Case s = 0.55. The colors of the optimal mesh represent the orders of approximation of the elements, see
Figure 1.
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(a) Optimal mesh (ε = 0.0083), # dof = 774.

(b) Convergence rates.

Fig. 6 Case s = 0.65. The colors of the optimal mesh represent the orders of approximation of the elements, see
Figure 1.
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(a) Optimal mesh (ε = 0.0080), # dof = 451.

(b) Convergence rates.

Fig. 7 Case s = 0.75. The colors of the optimal mesh represent the orders of approximation of the elements, see
Figure 1.
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Fig. 8 Case s = 0.85. Convergence rates.

Fig. 9 Behavior of indicator E defined by (8) for different values of s. As s decreases, the tail of E becomes
increasingly flat.
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(a) Original image. (b) Corrupted image.

(c) Step 2: rel. error = 48.55% (d) Step 4: rel. error = 48.53% (e) Step 6: rel. error = 48.49%

(f) Step 8: rel. error = 48.39% (g) Step 10: rel. error = 47.88% (h) Step 12: rel. error = 46.58%

Fig. 10 Adaptive denoising strategy of Algorithm 1 applied to a unit spike function. The signal was corrupted by a
random noise uniformly distributed on [−0.1, 0.1]. Twelve steps were required for the denoising process. Gray-scale
images, whose vertical cross-sections coincide with the original, noisy and denoised functions are shown. While an
improvement at each step is visible with respect to the “eyeball” norm, the decrease of the L1 relative error is only
minimal.
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(a) Adaptive denoising of a unit step function.

(b) Original image (c) Corrupted image

(d) Denoised image (fractional
Laplacian).

(e) Denoised image (standard
Laplacian).

Fig. 11 Adaptive denoising strategy of Algorithm 1 applied to a unit step function. The signal was corrupted by a
random noise uniformly distributed on [−0.1, 0.1]. Gray-scale images, whose vertical cross-sections coincide with the
original, noisy and denoised functions are shown in order to assess the quality of the result in the “eyeball” norm.
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(a) original image (b) noisy image

(c) denoised image (Laplacian) (d) denoised image (fractional Laplacian)

Fig. 12 “Peppers” image denoising. The original image (top left) was corrupted by adding a uniformly distributed
random noise (top right). The image was cut vertically into four parts, and each sub-image was processed indepen-
dently by applying the standard Laplacian (bottom left) and fractional Laplacian (bottom right). Pairwise comparison
of details from the processed images shows that the fractional Laplacian preserves sharper details than the standard
Laplacian. No Gibbs phenomenon can be observed on the vertical cuts.
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(a) original image (b) noisy image

(c) denoised image (Laplacian) (d) denoised image (fractional Laplacian)

Fig. 13 David image denoising. The original image (top left) was corrupted by adding a uniformly distributed
random noise (top right). The image was cut vertically into three parts, and each sub-image was processed inde-
pendently by applying the standard Laplacian (bottom left) and fractional Laplacian (bottom right). Comparison of
the processed images shows that the fractional Laplacian preserves sharper details than the standard Laplacian. No
Gibbs phenomenon can be observed on the vertical cuts.
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