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ABSTRACT

Detection of visually salient image regions is useful for applications
like object segmentation, adaptive compression, and object recogni-
tion. Recently, full-resolution salient maps that retain well-defined
boundaries have attracted attention. In these maps, boundaries are
preserved by retaining substantially more frequency content from
the original image than older techniques. However, if the salient
regions comprise more than half the pixels of the image, or if the
background is complex, the background gets highlighted instead of
the salient object. In this paper, we introduce a method for salient
region detection that retains the advantages of such saliency maps
while overcoming their shortcomings. Our method exploits fea-
tures of color and luminance, is simple to implement and is com-
putationally efficient. We compare our algorithm to six state-of-the-
art salient region detection methods using publicly available ground
truth. Our method outperforms the six algorithms by achieving both
higher precision and better recall. We also show application of our
saliency maps in an automatic salient object segmentation scheme
using graph-cuts.

Index Terms— Image saliency, segmentation, content-aware
image re-targeting, seam carving.

1. INTRODUCTION

Visual saliency is the perceptual quality that makes an object, per-
son, or pixel stand out relative to its neighbors and thus capture
our attention. The focus of this paper is the automatic detection
of visually salient regions in images. This has applications such
as adaptive content delivery [1], adaptive region-of-interest based
image compression, image segmentation [2], object recognition, and
content aware image resizing [3]. Our algorithm finds low-level, pre-
attentive, bottom-up saliency. It is inspired by the biological concept
of center-surround contrast, but is not based on any biological model.

Current methods of saliency detection can be computationally
expensive and often generate saliency maps that have low resolution
or poorly defined borders. In addition, some methods produce higher
saliency values in the vicinity of object edges instead of generating
maps that uniformly cover the whole object. These drawbacks of-
ten arise from failing to exploit appropriate spatial frequency con-
tent of the original image, as analyzed by Achanta et al [4]. They
introduce a frequency-tuned approach to estimate center-surround
contrast using color and luminance features that offers three advan-
tages over existing methods: uniformly highlighted salient regions
with well-defined boundaries, full resolution, and computational ef-
ficiency. This leads to a global saliency estimation approach that
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Fig. 1. Top row images are original images. Bottom row images are
the corresponding saliency maps using our algorithm.

relies on the premise that there is no information available about the
scale of the object. While this method outperforms several existing
methods in terms of precision, recall and speed, in the presence of
large salient objects or complex backgrounds, it may fail to correctly
highlight the salient regions.

In this paper we rely on the hypothesis that with respect to the
image borders we can make assumptions about the scale of an ob-
ject. We thus vary the bandwidth of the center surround-filtering near
image borders using symmetric surrounds. Our algorithm retains the
advantages of accuracy, speed, and simplicity, while at the same time
overcoming the drawbacks of existing methods. We prove its effec-
tiveness by performing a precision-recall comparison with six other
methods on a publicly available ground truth database of 1000 im-
ages and in a graph-based segmentation scheme.

2. SALIENCY COMPUTATION METHODS

Saliency has been referred to as visual attention [5, 1], unpredictabil-
ity, rarity, or surprise [6]. Saliency estimation methods can broadly
be classified as biologically based, purely computational, or those
that combine the two ideas. In general, most methods employ a low-
level approach of determining contrast of image regions relative to
their surroundings using one or more features of intensity, color, and
orientation.

Itti et al. [7] base their method on the biologically plausible
architecture proposed by Koch and Ullman [8]. They determine
center-surround contrast using a Difference of Gaussians (DoG) ap-
proach. Frintrop et al. [9] present a method inspired by Itti’s method,
but they compute center-surround differences with square filters and
use integral images to speed up the calculations.

Some methods are purely computational [1, 10, 11, 12] and
are not explicitly based on biological vision principles. Ma and
Zhang [1] and Achanta et al. [12, 4] estimate saliency using center-
surround feature distances. Hu et al. [10] estimate saliency by
applying heuristic measures on initial saliency measures obtained by
histogram thresholding of feature maps. Gao and Vasconcelos [13]
maximize the mutual information between the feature distributions
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Fig. 2. Band-pass filtering output with progressively increasing bandwidth from left to right (values in brackets show spatial frequency range).
The high frequency cut-off is kept the same while the low-frequency cut-off is reduced. Pixels that are far removed from the salient object’s
boundaries need small cut-off frequencies to be successfully detected as salient.

of center and surround regions in an image, while Hou and Zhang
[11] rely on frequency domain processing.

The third category of methods are those that incorporate ideas
that are partly based on biological models and partly on computa-
tional ones. For instance, Harel et al. [14] create feature maps with
Itti’s method but perform their normalization using a graph based
approach. Other methods use a computational approach like maxi-
mization of information [15] that represents a biologically plausible
model of saliency detection.

Some algorithms take a multi-scale approach [7, 12], while oth-
ers operate on a single scale [1, 10]. Depending on the features used,
either feature maps are created separately and combined to obtain
the final saliency map [1, 10, 9, 16], or a combined saliency map is
obtained directly [1, 12].

3. LIMITATIONS OF EXISTING METHODS

The saliency maps generated by several methods suffer from low
resolution [7, 1, 14, 9, 11]. Itti’s method produces saliency maps
that are 1/256th the original image size in pixels, while Hou and
Zhang [11] output maps of size 64 × 64 pixels for any input image
size. Some exceptions are the algorithms presented by Achanta et al.
[12, 4] that output saliency maps of the same size as the input image.

Some methods may generate maps that have ill-defined object
boundaries [7, 14, 9], limiting their usefulness in certain applica-
tions. Some others highlight the salient object boundaries but fail to
highlight the entire salient region [1, 11], or, highlight smaller salient
regions better than larger ones [12].

These limitations are explained from a frequency domain per-
spective by Achanta et al. [4] to be the consequence of limiting
the range of spatial frequency content retained from the original im-
age. The authors then propose a frequency-tuned algorithm for com-
puting saliency maps that exploits almost all of the low frequency
content and most of the high frequency content to obtain high qual-
ity saliency maps using color and intensity features. Their saliency
map is obtained by computing the Euclidean distance of the aver-
age CIELAB vector of all pixels of an input image with each pixel
(also a CIELAB vector) of a Gaussian blurred version (using a
3× 3 or 5× 5 binomial kernel) of the same input image:

S(x, y) = ‖Iµ − If (x, y)‖ (1)

where S(x, y) is the pixel saliency value at position (x, y), Iµ is the
average of all CIELAB pixel vectors of the image, If (x, y) is the
correspondingCIELAB image pixel vector in the Gaussian filtered
version of the original image, and ‖‖ is the L2 norm (i.e. Euclidean
distance in CIELAB color space). The CIELAB color space is
used since Euclidean distances in this color space are approximately
perceptually uniform.

The resulting saliency maps have uniformly highlighted salient
regions with well-defined boundaries, which are proven to be an

improvement over several state-of-the-art methods [4] for the given
ground truth based database. However, in images where the salient
region is very large, or the background is complex, the saliency maps
highlight the background instead. This happens because in comput-
ing the average CIELAB vector for the image in Eq. 1, the salient
region contributes more to the image average than the rest of the im-
age, thereby generating lower S(x, y) values than the pixels of the
background.

4. OUR SALIENCY DETECTION ALGORITHM

Achanta et al. [4] treat the entire image as the common surround (ab-
stracted as the average image CIELAB color vector) for any given
pixel. The implicit premise is that in the absence of any knowl-
edge of the scale of the salient object, it is best to pass all the low-
frequency content. We base our new saliency detection algorithm
on the premise that we can make assumptions about the scale of the
object of detection based on its position in the image.

In Fig. 2 we note that the more central a pixel is within the salient
object, the smaller has to be the low-frequency cut-off for detecting
it. However, how central a pixel can be inside an object is limited by
how far the pixel is from the boundary. That is, a pixel belonging to a
salient object near the boundary will be less central inside the object.
Therefore, assuming the salient object is fully within the image, and
not cut-off by the image borders, we can afford to vary the bandwidth
of the center-surround filter by increasing the low-frequency cut-off
as we approach the image borders.

(A) (B)

Fig. 3. (A) In the method of [4], for a pixel at the center (red) or
elsewhere (blue), the surround regions used for computing saliency
remains the same, namely the whole image area. (B) Our new al-
gorithm uses surround regions (sub-images) that are symmetric w.r.t
the pixel whose saliency needs to be computed. This leads to varying
center-surround bandwidth depending on the distance of the pixel
from the image borders.

In effect, as we approach the image borders we should use a
more local surround region. We choose to do this by making the
surround symmetric around the center with respect to the image bor-
ders as illustrated in Fig. 3 (B). This increases the low-frequency



cut-off of the center-surround filter. By choosing a symmetric sur-
round for each pixel (as the center), we implicitly treat each pixel to
be at the center of its own sub-image (see Fig. 3 (B)). This is dif-
ferent from the method of Achanta et al. [4], where the entire image
is used as the common global surround (abstracted as the average
image CIELAB color vector) for any given pixel, resulting in an
asymmetric surround for pixels that are not at the center of the im-
age. This is explained graphically in Fig. 3 (A). Thus, for an input
image of width w and height h, the symmetric surround saliency
value at the given pixel Sss(x, y) is obtained as:

Sss(x, y) = ‖Iµ(x, y)− If (x, y)‖ (2)

where Iµ(x, y) is the average CIELAB vector of the sub-image
whose center pixel is at position (x, y) as given by:

Iµ(x, y) =
1

A

x+xo∑
i=x−xo

y+yo∑
j=y−yo

I(i, j) (3)

with offsets xo, yo, and area A of the sub-image computed as:

xo = min(x,w − x) (4)
yo = min(y, h− y)
A = (2xo + 1)(2yo + 1)

The sub-images obtained in Eq. 3 using Eq. 4 are the maximum
possible symmetric surround regions for a given pixel at the center.
Consequently, the closer a pixel is to the edges, the narrower is its
surround. To compute the CIELAB averages of these sub-images,
we take the computationally efficient approach of using integral im-
ages as done by [12, 9]. Examples of our saliency maps using our
algorithm are shown in Figures 1 and 4. The advantage of narrowing
the bandwidth near the borders is that the background is usually less
highlighted. The disadvantage though is that if the salient object is
cut by the image borders, i.e it is not completely inside the image, it
is treated as background and is less likely to be detected.

Orig. IT98 MA03 HA06 HO07 AC08 AC09 MSSS

Fig. 4. Visual comparison of saliency maps. Our method MSSS pro-
duces saliency maps that have well-defined borders, highlight whole
object regions, and suppress the background better than most meth-
ods even in the presence of complex backgrounds or when the salient
object is very large.
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Fig. 5. Precision-recall curve using groundtruth. Our new method
MSSS shows the best precision-recall performance.

5. COMPARISON WITH STATE-OF-THE ART

We compare the our saliency maps with six state-of-the-art methods.
The six saliency detectors are Itti et al. [7], Ma and Zhang [1], Harel
et al. [14], Hou and Zhang [11], Achanta et al. [12], and Achanta et
al. [4], hereby referred to as IT98, MA03, HA06, HO07, AC08, and
AC09, respectively. We refer to our proposed method as MSSS (for
maximum symmetric surround saliency)1.

In order to perform an objective comparison of the quality of the
saliency maps with other methods, we use the precision-recall based
method used by Achanta et al. [4]. For a given saliency map, with
saliency values in the range [0, 255], we perform simple binarization
at each threshold value from 0 to 255, and compute the precision and
recall values with respect to the ground truth data2 from Achanta et
al. [4]. The resulting precision versus recall curve is shown in Fig.
5. The algorithmic complexity of MSSS is linear in the number of
pixels, i.e. O(N). It is only marginally slower than AC09, which is
the fastest full-resolution saliency detection algorithm to our knowl-
edge.

6. GRAPH BASED SEGMENTATION

Graph cuts based methods are popular for image segmentation ap-
plications. Boykov and Jolly [17] perform interactive segmentation
using graph cuts. They require a user to provide scribble based input
to indicate foreground and background regions. A graph cuts based
algorithm then segments foreground from background. We use a
similar approach, however, instead of the user indicating the back-
ground and foreground pixels using scribbles, we use the saliency
map to assign these pixels automatically.

As in the graph cuts formulation proposed by Boykov and Jolly
[17], we assign binary values of salient or non-salient to a vector
V = [V1, V2....V|P |] of size |P |, the number of pixels in an image.
We seek an optimal cut between pixels belonging to salient and non-

1Source code for our method MSSS can be downloaded at http://
ivrg.epfl.ch/supplementary_material/RK_ICIP2010

2http://ivrg.epfl.ch/supplementary_material/RK_
CVPR09



salient regions. We use graph cuts to minimize the energy E(V ):

E(V ) = λE1(V ) + E2(V ) (5)

where E1(V ) accounts for the saliency value as obtained using
Eq. 2, and E2(V ) (Eq. 6) promotes coherence among similar pixel
neighbors. λ ≥ 0 specifies the relative importance of saliency value
versus pixel similarity. E2(V ) penalizes the assignment of different
labels to neighboring pixels with similar CIELAB vectors.

E2(V ) =
∑

{p,q}∈N

exp
−(‖I(p)−I(q)‖)

2σ2 × 1

dist(p, q)
(6)

where N is the set of 8-connected neighboring pixels q around each
pixel p of the image and dist is the spatial distance between the
pixels. We use λ = 1.0 and σ = 10.0 in our work. A few exam-
ple results of segmentation are shown in Fig. 6. The segmentation
scheme strongly depends on the quality of the saliency map. The
output is better if the boundaries are well defined, the salient region
is well highlighted, and the background is well suppressed. Thus,
our method MSSS has an advantage over other saliency detection
techniques for such an application.

Fig. 6. Salient object segmentation using graph cuts. From left to
right, original image followed by output obtained using IT98, MA03,
HA06, HO07, AC08, AC09, and MSSS. Our method MSSS is well
suited for object segmentation using graph cuts.

7. CONCLUSIONS

We present a novel saliency detection algorithm based on the idea of
maximum symmetric surround. This method improves upon six ex-
isting state-of-the-art algorithms in precision and recall with respect
to a ground truth database. Our algorithm uses low-level features of
color and luminance. It is computationally efficient, easy to imple-
ment, and provides full resolution saliency maps that successfully
suppress the background. We demonstrate the use of our saliency
maps in salient object segmentation using graph-cuts.
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