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ABSTRACT 

 
Class posterior distributions have recently been used quite 
successfully in Automatic Speech Recognition (ASR), either 
for frame or phone level classification or as acoustic 
features, which can be further exploited (usually after some 
"ad hoc" transformations) in different classifiers (e.g., in 
Gaussian Mixture based HMMs). In the present paper, we 
show preliminary results showing that it may be possible to 
perform speech recognition without explicit subword unit 
(phone) classification or likelihood estimation, simply 
answering the question whether two acoustic (posterior) 
vectors belong to the same subword unit class or not. In this 
paper, we first exhibit specific properties of the posterior 
acoustic space before showing how those properties can be 
exploited to reach very high performance in deciding (based 
on an appropriate, trained, distance metric, and hypothesis 
testing approaches) whether two posterior vectors belong to 
the same class or not. Performance as high as 90% correct 
decision rates are reported on the TIMIT database, before 
reporting kNN phone classification rates. 
 

Index Terms— Posterior feature space, posterior-based 
metrics, posterior space properties, kNN classifier. 
 

1. INTRODUCTION 
 
Posterior probabilities are currently often used as additional 
acoustic features to improve Automatic Speech Recognition 
(ASR) systems [1,2]. These features are usually extracted by 
a Multilayer Perceptron (MLP) using spectral-based features 
such as MFCC or PLP as input. In this approach, each 
output unit of the MLP is associated with a particular phone 
(or subword unit) and is trained to generate a posteriori 
probability distributions over the output classes conditioned 
on the input acoustic observation sequence [3]. While 
allowing for discriminant training, such an approach also 
has the advantage of accommodating acoustic context by 
providing several frames at the MLP input. The MLP in the 
case of posterior features performs a nonlinear discriminant 
transformation, which projects the input feature space onto a 
nonlinear sub-space of maximum possible sound class 
discriminatory information. This projection is expected (and 

has been shown) to be able to suppress (to some extent) the 
non-relevant variability (including noise), while preserving 
the speech discriminatory information, thus resulting in a set 
of features highly rich in contextual and phonetic 
information which could be considered as “optimal phone 
detectors”. 

These appealing properties make posterior probabilities 
powerful features for ASR systems, and are now part of 
many state-of-the-art systems. However, these features also 
exhibit very specific statistical properties (like much 
squeezed, non-Gaussian, distributions) and metric spaces, 
which do not make them very suitable to Gaussian Mixture 
Model (GMM)-based HMM. In this case, the usual 
“solution” is to “gaussianize and decorrelate” the posterior 
features by applying a log function, followed by a PCA 
transform [2]. However, recent studies have used posterior 
features directly in Kullback-Leibler (KL)-based HMM 
models where the reference KL-HMMs are parameterized 
by multinomial distributions [1].  

The goal of the present work is to better understand the 
properties of the posterior acoustic space (assumed to be 
close enough to a binary space) and see how new families of 
ASR systems could emerge from those properties. 
Following our intuition, and encouraged by previous studies 
on the properties of binary spaces [5] showing that, the 
probability that two vectors are orthogonal is equal to 1 for a 
large enough dimensional binary space, the first goal of this 
paper is thus to show evidence that inter-class posterior 
vectors are indeed often orthogonal. Based on this fact, we 
then studied several approaches to see how accurately we 
could predict whether two posterior vectors belong or not to 
the same “class” (phone, phone in context, etc). This 
problem was approached by using standard hypothesis 
testing using different metrics well suited to capture the 
orthogonality/sparsity properties of the space. In this paper, 
this problem will be referred to as “pairwise classification” 
(likelihood that two vectors belong to the same class), as 
opposed to “full classification” (likelihood that a specific 
vector belong to one of the K possible classes). While our 
conclusions open up new perspectives towards novel ASR 
approaches, we also provide here “full classification” rates 
by simply incorporating our distance metrics into kNN 
classifiers.  
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2. POSTERIOR-BASED DISTANCE MEASURES 
 
2.1 Angle-based Similarity Measure 
 
To gain insight into the orthogonality and sparsity properties 
of (high dimensional) posterior feature spaces, we started by 
measuring the relative angle between multiple pairs of 
posterior feature vectors, belonging or not to the same 
phonetic class. This angular distance between two K-
dimensional posterior vectors xi and xj = (xj1, xj2, …, xjK)T 
was defined as:  
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where xik = p(ωk|yi), the a posteriori probability that the 
correct class associated with yi is ωk, from the set of all 
possible subword unit (phonetic) classes, k = 1, …, K. These 
posterior probabilities are estimated on a wide training 
database by a large MLP where we have regular (e.g., 
MFCC, PLP) d-dimensional features yi at the input and K 
output classes. 

As exploited in Section 3, angles between a large 
number of training vector pairs belonging or not to the same 
class (known during training) were calculated according to 
(1). The distribution of those angles was then approximated 
by an histogram, similar to the one described in Section 3. 
This histogram clearly displayed two separate distributions 
with very small overlap, one for the “same class angles” and 
one for the “different class angles”. Interestingly, the 
intersection of those two distributions was around 80-85° 
(hence close to 90°), thus confirming that inter-class 
posteriors are often very close to orthogonality. In other 
words, posterior features associated to a class are nearly 
orthogonal to any given posterior features belonging to the 
other classes. This conclusion can also be interpreted as 
“class-specific sparsity”.  

To exploit this property we investigated a geometric 
extension of the kNN classifier. First, the distance of the test 
sample to the training data is computed as the cosine 
function of the feature vectors. Then, the nearest neighbors 
are defined as the samples which lie in a hypercone defined 
by a specified angle originated from the test data. This angle 
could be interpreted as a look-angle into the space. 
Subsequently, the classification is performed based on 
voting to find the dominating class of training data which 
are geometrically in the nearby samples. By specifying the 
look-angle, we fix the maximum value for the relative angle 
up to which the labels will be counted in kNN majority 
voting. This procedure eliminates the need to find the 
optimal k values by cross-validation. Instead, the look-angle 
is specified based on how restrictively the orthogonality 
assumption is exploited. We call this extension of the NN 
classifier the Geometric NN (GNN) classifier. 

For some of the test vectors, and for a given look angle, 
there are not enough neighbors to take a reliable decision. 
By specifying a minimum value of k under which the 
decision is considered unreliable, the GNN also provides an 
interesting tool to distinguish vectors whose classification is 
not as reliable as the other ones. These vectors are labeled as 
“unreliable”. This capability opens new research 
opportunities to further improve the classification accuracy 
(by means of post-processing of these uncertainties in the 
feature space). This latter point being outside our present 
scope, we do not exploit further this particular capability of 
the GNN in this paper. 
 
2.2 MLP-based Similarity Measure 
 
As a possible “universal” distance estimator, we also 
considered using an MLP as a similarity measure and to 
estimate the probability that two posterior vectors are part of 
the same (phonetic) class or not [4]. 

As illustrated in Figure 1, the parameters of this “pair 
similarity MLP” (referred to as MLP-s) are trained over a 
very large set of feature vector pairs. For each input pair, the 
target output of the MLP-s is fixed to 1 when the two 
vectors belong to the same class and to 0 otherwise. 

 
Figure 1: The MLP-s is composed of 2xd input units, H hidden 

units (optimized on a cross-validation database) and 2 output units 
(although one could be enough, we observed that training was 

faster with two output units) 
 

However, after having trained and tested (on an 
independent test set) different MLP topologies (but always 
yielding very good performances), we were prompted to 
prove that the MLP-s optimal output, trained to minimize 
the average Mean Squared Error (MSE), was nothing else 
but the scalar product of the two posterior vectors associated 
with the input vector pairs {(yi,yj)}, whatever they were 
(PLP, MFCC, posterior features, etc). It is indeed 
extensively discussed and theoretically proved in [6] that 
minimization (in the MLP parameters space, hence the MLP 
weights) of 
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over all the training data pairs {(yi,yj)} will, at best, result in 
the optimal MLP output: 
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where g(yi,yj) is the observed output (given input feature 
vectors yi and yj), p(ωk|yi) are the “theoretical” posterior 
probabilities, and t(yi,yj) is the 1/0 target output, depending 
whether the two vectors belong to the same class or not. On 

yi 
(d dimensions) 

 

MLP-s 
(2 x d) x H x 2 yj 

(d dimensions) 

1 (useful output) 

0 (complementary 
output) 



 

 

TIMIT, as used here, but also in general, this information is 
known for the training data (e.g., from a preliminary training 
and resulting segmentation). Taking into account the 
definition of posterior feature vectors given in Section 2.1, 
with the caveat that our posterior features xi are estimates of 
the true posteriors p(ωk|yi), (3) simply becomes: 
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Given (4) it is now obvious that it is not even necessary 
to (expensively) train (or run during testing) MLP-s and  
that the optimal solution (according to MSE cost function) is 
simply obtained by the Posterior Scalar Product (PSP) of the 
best posterior estimates that can be obtained from the two 
input vectors (whatever they are). The comparisons and uses 
of this will be performed in our hypothesis tests (explained 
in Section 3) to decide whether they belong to the same 
class or not. As in Section 2.1, those “best” posterior 
estimates are assumed to be given by an MLP with yi at the 
input (usually within 9 frames of acoustic context), and 
yielding the posterior vector estimate xi at its output. 

Of course, both the angle distance defined in Section 2.1 
and this PSP are measures of “orthogonality” of the inter-
class posterior (close to binary) features. These two 
intra/inter-class distance measures will now be used in a 
standard hypothesis testing approach to decide whether two 
posterior vectors belong to the same class or not. In the 
experimental section, these two distance measures will be 
compared to more classical ones like Euclidian, Kullback-
Leibler, and Bhattacharyya distances. 
 

3. HYPOTHESIS TESTING 
 
Now that we have defined proper distance measures, we can 
address the following question: "Given two feature vectors, 
what is the probability that these belong to the same 
(phonetic) class or not, whatever the class ωk (k=1,…,K) 
is?". This is a standard hypothesis testing problem where, 
given two vectors xi and xj and a distance measure 
dij=d(xi,xj) between them, we have to decide whether they 
belong to the same class or not. We thus aim at classifying 
vector pairs as belonging to class S (“same class”) or class D 
(“different class”). 

As illustrated in Figure 2, we first estimate (on the 
training or cross-validation data) the continuous 
distributions p(dij|S) and p(dij|D) by two histograms [7,8], 
and then determine the “optimal” decision threshold τ 
(minimizing Bayes’ risk) by their intersection. In this case, 
τ = 0.06.  

In our work, the decision threshold τ was picked by 
hand, but it will be estimated automatically in the future. In 
the test phase, classification is then simply performed by 
comparing dij with that decision threshold τ. Final accuracy 
is assessed using the test pairs made from a set of test 
vectors independently drawn from the same population. Of 
course, as shown below, the choice of the correct distance  

 
Figure 2: Histogram of the "Scalar Product"-based similarity dij 
between same-class (grey) and different-class (black) posterior 

feature vectors. Decision threshold τ at 0.06. 
 

metric is critical, and depends on the topological properties 
of the feature space. Therefore, in addition to our angle-
based and PSP distances, experiments have also been 
conducted with other distance/divergence measures, such as 
Euclidian, Kullback-Leiber (KL), and Bhattacharyya (BT). 

 
4. EXPERIMENTS 

 
4.1. Acoustic Front-End  

 
All experiments were performed on the TIMIT database. A 
three layered MLP was trained on TIMIT and used to 
estimate the phone posterior probabilities xik = p(ωk|yi), 
where 

• k=1, …, K (K=40 in this case) 
• yi are standard d-dimensional features (13 PLP 

coefficients, together with their delta and delta-
delta parameters, resulting in 39-dimensional 
acoustic features). 

The data consisted of 3,000 training utterances from 375 
speakers, 696 cross-validation utterances from 87 speakers, 
and 1,344 test utterances from 168 speakers. This MLP had 
351 input nodes corresponding to the concatenation of nine 
frames of 39 dimensional acoustic vectors, one hidden layer 
with 2,000 units, and 40 output units, each of them being 
associated with one of the K phone classes. 
 
4.2. Histogram-based Hypothesis Tests 
 
The classification accuracies obtained over training and test 
pair sets of posterior feature vectors, for the different 
metrics are summarized in Table 1. The tuning of the 
optimal decision point was performed using 20,000,000 
training pairs, while the test accuracy was computed using 
4,000,000 test pairs. In [6], we discuss in details how the 
training data set was built to compensate for the obvious 
strong bias towards the D class (which has a much higher 
prior probability) without modifying the phonetic class 
priors p(ωk). 



 

 

Table 1: Pairwise classification accuracies over 4 millions test 
posterior feature pairs, using several distances: Euclidian (Eucl), 

Kullback-Leibler (KL), Bhattacharyya (BT), Angle, Posterior 
Scalar Product (PSP) and MLP-s 

     Dist 
 
Pairs 

Eucl 
(%) 

KL 
(%) 

BT 
(%) 

Angle 
(%) 

PSP 
(%) 

MLP-s 
(%) 

Trai-
ning 84.4 88.4 89.3 89.7 90.2 89.9 

Test 78.8 85.4 86.6 87.5 88.5 85.4 

 
From Table 1, it is clear that the PSP metric performs 

better than all the others, while the angle-based distance is 
the second best (which was expected since the latter is 
simply the PSP divided by the product of the norms of the 
two vectors belonging to the pair). Thus, starting from the 
“simple” Euclidian distance, improved performance is 
achieved when using metrics exploiting the properties of the 
a posteriori probability space, like KL, BT, Angle and, 
finally, PSP (as also supported by theory)1.  

 
4.3. kNN Classification 
 
The k-Nearest Neighbor (k-NN) classifier is a simple but 
effective classification method which associates an 
unknown sample to the class the most frequently 
represented within its k nearest neighbors. Since kNN is 
non-parametric, there is no need to assume any knowledge 
about the underlying statistical distribution. Assuming that 
enough training data is available and using the “proper 
metric”, kNN will minimize Bayes risk, while providing 
good estimates of a posteriori distribution [8].   

To further validate the above key results (which are at 
the center of the present paper), we also performed kNN-
based classification. This was done over 410,920 test 
vectors, and tuning of the “optimum” k value on a cross-
validation set of 204,657 vectors. The classification 
accuracies obtained over the test posterior feature vectors2, 
for the different metrics, are given in Table 2. When using 
GNN, the minimum number of neighbors to make a decision 
was chosen equal to 40. GNN accuracy is computed on 
reliable samples, “unreliable” ones being left undecided.  As 
it could be seen, a small fraction of unreliable samples 
significantly contributes to degrade the overall classification 
performance, resulting in approximately the same “full 
classification” performance as the classical approaches. 

Actually, the main goal of this section was to show that 
whatever metric is used, and in spite of the very high 
“pairwise classification” accuracies that can be reached, it is 
                                                   
1 We also have applied the Euclidian, Angle and Scalar Product 
metrics to the PLP features space. The performance was much 
worse (around 10% absolute decrease in accuracy). 
2 Again, the classification of PLP features (instead of posterior 
features) provided much worse results (50% accuracy only for the 
Euclidian distance). 

Table 2: kNN classification accuracies for the posterior feature 
vectors 

          Dist 
 
Test  
vector set 

Eucl 
(%) 

KL 
(%) 

BT 
(%) 

PSP 
(%) 

Look-
Angle 

(°) 
GNN 
(%) 

Un-
reliable 
Samples 

(%) 
0.5 82.3 22 Test 

vectors 68.3 68.5 68.2 68.3 1 78.5 15 
1.5 76.2 11 Optimum 

k value 260 200 20 5 17 68.6 0 
 
still very difficult to beat the best “full classification” 
accuracies obtained with modern methods. 

 
5. CONCLUSIONS 

 
In this paper, we provided evidence that posterior features 
have interesting orthogonality and sparsity properties, which 
could be exploited to reach high “pairwise classification” 
accuracies. In this context, the Posterior Scalar Product 
(PSP), which has been shown here to be the optimal solution 
that can be achieved when training an MLP on such task, 
yields the best performance, just above the angle-based 
distance. Using these distances in kNN to perform “full 
classification”, we see that we reach again the same 
performance as reported in the literature. As a conclusion, 
this work led us to start developing new ASR approaches 
exploiting the high performances of posterior 
vector/sequence “pairwise classification” and our distance 
metrics  (instead of the explicit classification used in the 
state-of-the-art ASR systems). 
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