
Multiplex: Unifying Conventional and Speculative
Thread-Level Parallelism on a Chip Multiprocessor

Chong-Liang Ooi, Seon Wook Kim, Il Park,
Rudolf Eigenmann, Babak Falsafi‡, and T. N. Vijaykumar

Electrical and Computer Engineering‡

Carnegie Mellon University
Pittsburgh, PA 15213

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907

mux@ecn.purdue.edu, http://www.ece.purdue.edu/~mux

ABSTRACT
Recent proposals for Chip Multiprocessors (CMPs) advocate spec-
ulative, or implicit, threading in which the hardware employs pre-
diction to peel off instruction sequences (i.e., implicit threads)
from the sequential execution stream and speculatively executes
them in parallel on multiple processor cores. These proposals aug-
ment a conventional multiprocessor, which employs explicit
threading, with the ability to handle implicit threads. Current pro-
posals focus on only implicitly-threaded code sections. This paper
identifies, for the first time, the issues in combining explicit and
implicit threading. We present the Multiplex architecture to com-
bine the two threading models. Multiplex exploits the similarities
between implicit and explicit threading, and provides a unified
support for the two threading models without additional hardware.
Multiplex groups a subset of protocol states in an implicitly-
threaded CMP to provide a write-invalidate protocol for explicit
threads.

Using a fully-integrated compiler infrastructure for automatic gen-
eration of Multiplex code, this paper presents a detailed perfor-
mance analysis for entire benchmarks, instead of just implicitly-
threaded sections, as done in previous papers. We show that neither
threading models alone performs consistently better than the other
across the benchmarks. A CMP with four dual-issue CPUs
achieves a speedup of 1.48 and 2.17 over one dual-issue CPU,
using implicit-only and explicit-only threading, respectively. Mul-
tiplex matches or outperforms the better of the two threading mod-
els for every benchmark, and a four-CPU Multiplex achieves a
speedup of 2.63. Our detailed analysis indicates that the dominant
overheads in an implicitly-threaded CMP are speculation state
overflow due to limited L1 cache capacity, and load imbalance and
data dependences in fine-grain threads.

1 INTRODUCTION
Improvements in CMOS fabrication processes continue to increase
on-chip integration and transistor count to phenomenal levels. Tra-
ditional monolithic superscalar architectures use the increasing
transistor counts in extracting instruction-level parallelism (ILP) to
achieve high performance. Unfortunately, superscalar architectures
are not only becoming less effective in improving the clock speed
[23,18,1] and extracting ILP, but are also worsening in design com-
plexity [17] across chip generations. Instead, many researchers and
vendors are exploiting the increasing number of transistors to build
chip multiprocessors (CMPs) by partitioning a chip into multiple
simple ILP cores [10,27,15]. As in traditional multiprocessors,
CMPs extract thread-level parallelism (TLP) from programs by
running multiple — independent or properly synchronized — pro-
gram segments, i.e., threads, in parallel.

Recent proposals for CMPs advocate speculative, or implicit,
threading in which the hardware employs prediction to peel off
instruction sequences (i.e., implicit threads) from the sequential
execution stream and speculatively executes them in parallel on
multiple cores [27,26,15,28,31,8,30]. Many of the proposals
extend a conventional multiprocessor with the ability to handle
implicit threads. Conventional multiprocessors employ explicit
threading, where the software explicitly specifies the partitioning
of the program into threads and uses an application programming
interface to dispatch and execute threads on multiple cores in par-
allel. To maintain program correctness, implicitly-threaded archi-
tectures rely on the extended multiprocessor hardware to track
dependence among threads and verify correct speculation. Upon a
misspeculation, the hardware rolls back the system to a state con-
forming to sequential semantics. To allow proper rollback, implicit
threading requires buffering all speculative threads’ program state
[27]. State-of-the-art cache-based buffering techniques extend
hardware cache-coherence protocols to handle speculation
[12,16,28,8].

While there are opportunities to exploit both threading models in a
single CMP to optimize performance across a wide spectrum of
applications, some previous proposals primarily focus on execut-
ing the entire programs as implicit threads irrespective of whether
there are provably-parallel code sections in a program that can run
as explicit threads [12]. Other proposals tacitly assume that the
hardware can support explicit threading by default, and focus on
evaluating their design for only implicitly-threaded code sections

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147949681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[16,28,8]. This paper takes the first step towards evaluating a
hybrid architecture to combine the two threading models, and pre-
sents a detailed analysis of execution overheads and compiler
trade-offs given the choice of two threading models for analyzable
code sections.

We propose the Multiplex architecture to capitalize on the similari-
ties among the hardware resources in explicitly-threaded and
implicitly-threaded CMPs and unify support for both threading
models in a single CMP. We have developed a fully-integrated
compiler to automate code generation for implicit, explicit, and
Multiplex CMPs. The main contributions of this paper are:

• Using the compiler and cycle-accurate simulation we show that
neither threading architecture alone performs consistently bet-
ter than the other across the benchmarks. A CMP with four
dual-issue CPUs on average achieves a speedup (over a single
dual-issue CPU) of 1.48 and 2.17 using implicit-only and
explicit-only threading respectively. Multiplex matches or out-
performs the better of the two CMPs for every benchmark and,
on average, achieves a speedup of 2.63;

• We present the Multiplex Unified Coherence and Speculation
(MUCS) protocol which provides unified support for explicit
and implicit threads in a single application, without additional
hardware. MUCS groups a subset of protocol states in a previ-
ously-proposed protocol for an implicitly-threaded CMP [12]
to provide a state-of-the-art write-invalidate protocol for
explicit threads;

• We present a detailed execution time breakdown analysis of
the entire programs including both implicit and explicit sec-
tions. Our results indicate that the dominant overheads in an
implicitly-threaded CMP are speculation state overflow due to
limited L1 cache capacity, and load imbalance and data depen-
dence overhead in fine-grain threads;

• Parallel code sections can be transformed into either implicit or
explicit threads. We present evidence that a naive thread selec-
tion of explicit threads whenever possible would lead to infe-
rior performance due to high explicit thread dispatch overhead
in fine-grain threads.

In the following section, we describe current explicit and implicit
architectures. In Section 3, we introduce Multiplex. Section 4 pre-
sents a discussion of key factors effecting performance in the two
architectures. Section 5 presents the simulation methodology and
results. Section 6 presents a summary of related work. Finally,
Section 7 presents a summary and concludes the paper.

2 BACKGROUND: EXECUTING EXPLICIT
& IMPLICIT THREADS
In this section, we briefly describe and provide examples of thread
execution and the required hardware support in explicitly-threaded
and implicit-threaded CMPs. While there are key differences in
thread dispatch, execution, and communication in these CMPs, the
dominant fraction of hardware resources required — e.g., CPU
cores and shared memory — is similar and can be exploited by a
CMP supporting both models.

In explicitly-threaded architectures, the application software either
eliminates data dependence through advanced parallelizing com-
piler analysis and techniques, or specifies every instance of data
dependence using a synchronization primitive (e.g., a barrier).
Moreover, software specifies inter-thread control dependence
using a thread dispatch primitive (e.g., a fork call).

Figure 1 shows a simple example of a program running on an
explicitly-threaded CMP. In this example, the main thread executes
sequentially (not shown) on CPU0, and forks parallel explicit child
threads so that each CPU executes the function parallel_compute
simultaneously. The function includes a pair of loops, where each
thread executes a fraction of the loop iterations. The first loop
computes and writes to array A. In the second loop, every loop iter-
ation is dependent on the value of A[2] created by CPU0 in the first
loop and stored in its L1. The CPUs’ L1 cache controllers imple-

FIGURE 1: An example of explicit threading execution.

time

store A[2]

load A[2]

second loop

barrier

iteration 0 iteration N iteration 2N iteration 3N

L1

CPU0

A[2]

 A[2]

load A[2]

miss

L1/L2 interconnect

missread

fil
l A

[2
]

fr
om

 C
P

U
0

first loop

 A[2] A[2]

main()
{
 fork(parallel_compute);
 parallel_compute();

 serial_compute();

}
parallel_compute()
{
 for(i=id*N; i<id*(N+1); i++)
 A[i] = A[i] + X;
 barrier();
 for(i=id*N; i<id*(N+1); i++)
 ... = A[2] + Y;
}

L1

CPU1

A[2]

L1

CPU3

A[2]

L1

CPU2

ment a snoop cache-coherence protocol which identifies A[2]’s
most recent copy to be in CPU0’s L1, and copies it into other
CPUs’ L1s (e.g., CPU1 and CPU3) on demand.

In contrast, in implicitly-threaded architectures, inter-thread data
and control dependences are implicit in the sequential program
order. The hardware infers the existence of data dependence —
e.g., between a memory read instruction and a preceding program-
order memory write instruction to the same location. Similarly, the
hardware resolves inter-thread control flow dependence. Because
hardware receives no information from software, it relies on
dependence prediction and speculation techniques to guess the
missing information and deliver high performance.

Figure 2 shows a simple example of a program running on an
implicit-threaded CMP. In this example, a loop computes over
array A with loop iterations that have unknown dependences at
compile time. A compiler for an implicitly-threaded architecture
(e.g., the Multiscalar compiler [33]) partitions the loop and assigns
each implicit thread a single loop iteration. Unlike explicitly-
threaded architectures, implicitly-threaded architectures rely on
hardware prediction to dispatch threads. As shown in the example,
the predictor selects and dispatches subsequent loop iterations,
starting from iteration 0, on the CPUs in cyclic order. Because iter-
ation 0 is the “oldest” thread executing in program order, it is guar-
anteed to complete and is said to be “non-speculative”. Dispatch
prediction for a thread is only verified when all preceding threads
complete, therefore all threads except for iteration 0 are “specula-
tive” and may be “squashed” if mispredicted.

Assume that iterations 0, 1, 2, and 3 access the same element A[2].
Upon missing on a load from A[2], CPU0’s thread obtains a copy
of the corresponding cache block from L2 and marks the block as
non-speculative. After a few cycles, CPU1’s thread (i.e., the specu-
lative iteration 1) misses on a store to A[2], and the protocol sup-
plies a copy of the block from L2. CPU1 then creates a
speculatively renamed version of the block, denoted by A[2]v1,
without invalidating CPU0’s copy (as would be done in explicitly-
threaded architectures), and marks the block as speculative dirty.
When CPU3’s thread misses on a load from A[2], the protocol sup-

plies CPU1’s version of the block, A[2]v1, because CPU1 is the
closest preceding thread, and CPU3 marks its own copy as specu-
latively loaded.

Next, CPU2 misses on a store to A[2], it creates yet another specu-
lative renamed version of the block, A[2]v2, without invalidating
A[2]v1. The protocol subsequently squashes CPU3 (and any future
threads) because CPU3 prematurely loaded CPU1’s version,
A[2]v1, instead of the sequentially correct CPU2’s version, A[2]v2.
Squashing CPU3 also invalidates the blocks speculatively accessed
by CPU3. The protocol maintains the program order between
CPU1’s and CPU2’s versions, as part of the protocol state to pro-
vide the correct version for future accesses to A[2]. CPU3 re-exe-
cutes and loads A[2]v2 from CPU2.

Upon completion, the threads “commit” in sequential order, mark-
ing the speculatively accessed blocks as non-speculative (or com-
mitted). Because all future iterations access different elements of
A, cache blocks accessed in those iterations are first marked as
speculative, and then committed without causing any squashes.
Because the L1 caches maintain the program order among all data
assesses (for both loads and stores) to track dependences and guar-
antee correct execution, speculative data are not allowed to leave
the caches; any capacity and conflict problems causing a specula-
tive block replacement stall the CPU until it becomes non-specula-
tive, resulting in substantial performance loss.

3 MULTIPLEX: UNIFYING EXPLICIT/
IMPLICIT THREADING
In this paper, we propose Multiplex, an architecture that unifies
explicit and implicit threading on a chip multiprocessor. Multiplex
obviates the need for serializing unanalyzable program segments
by using implicit threading’s speculative parallelization. Multiplex
avoids implicit threading’s speculation overhead and performance
loss in compiler-analyzable program segments by using explicit
threads. Multiplex capitalizes on the similarities between implicit
and explicit CMP hardware to support both threading models on
the same set of execution cores with minimal modifications to an
implicit CMP.

FIGURE 2: An example of implicit threading execution.

for(i=0;i<N;i++)
 A[B[i]] = A[C[i]] + X;

time

iteration 0 iteration 1 iteration 2 iteration 3

L1/L2 interconnect

load A[2]
store A[2]

store A[2]

load A[2]fill A[2]v2

from CPU2

fill A[2]v1

from CPU1

re-execute

A[2]v1read A[2]v2read squash A[2]v2 miss

load A[2]

L1

CPU3

A[2]v2
A[2]v1

L1

CPU2

A[2]v2

L1

CPU1

A[2]v1

L1

CPU0

A[2]

read

squash

The key mechanisms required for a threading model are: (1) thread
selection, a mechanism to partition the code into distinct instruc-
tion sequences, (2) thread dispatch, a mechanism to assign a
thread to execute on a CPU, and (3) data communication and spec-
ulation, mechanisms to propagate data (i.e., register and memory)
values among independent threads, to allow implicit threads to
privatize data in multiple caches under the same memory address,
and to guarantee correct program execution. In the following sub-
sections, we present hardware and compiler mechanisms for thread
selection and dispatch, and data communication and speculation to
unify explicit and implicit threading within a single application.

Figure 3 illustrates a Multiplex CMP. Our Multiplex CMP is
loosely derived from the Wisconsin Multiscalar [27,12]. As in tra-
ditional small-scale multiprocessors, a Multiplex CMP includes a
small number of conventional CPU cores with first-level instruc-
tion and data caches and a shared level-two cache [21]. As in Mul-
tiscalar, Multiplex includes support for speculative thread dispatch
consisting of a dispatch unit and a thread descriptor cache; register
communication queues; and memory communication, speculation,
and disambiguation through level-one data caches. Multiplex uni-
fies cache coherence with memory renaming and disambiguation
in level-one caches through a single snoopy bus protocol.

3.1 Thread Selection
Multiplex relies on a unified compiler infrastructure to generate
both explicit and implicit threads. Unlike state-of-the-art compilers
which are limited to compiling for a specific threading model, in
Multiplex the compiler has the opportunity to choose between two
threading models to maximize performance on a per program and
per program segment basis. The choice between threading models
depends on program and system characteristics.

To minimize execution overhead due to speculation, the Multiplex
compiler always searches first for statically parallelizable program
segments and partitions profitable sections into explicit threads.
Explicit threads maximize the parallelism exploited, minimize the

parallelization overhead by selecting coarse-grain threads, elimi-
nate speculation overhead, and realize the raw hardware speeds of
multiple CMP cores. Multiplex relies on a state-of-the-art parallel-
izing compiler to analyze programs and generate explicit threads.
These compilers (e.g., Polaris [4], SUIF [14]) use a myriad of tech-
niques to test [5,25,11] and eliminate data dependence in program
segments [2,32,24,13]. Moreover, these compilers increase thread
performance in analyzable program segments through code trans-
formations to optimize for memory hierarchy locality and commu-
nication latency [14].

Once the compiler selects appropriate program segments to exe-
cute as explicit threads, the compiler chooses the rest of the pro-
gram as implicit threads. These program segments typically
consist of those with control flow or data dependences that are
unanalyzable at compile time. Multiplex extracts parallelism from
implicit threads at runtime with the help of hardware speculation.
Unlike explicit threading where software invokes thread dispatch
using an application-programming interface, in implicit threading
the software merely specifies thread boundaries and not the control
flow among them [33]. The hardware in turn predicts and specula-
tively dispatches threads at runtime to maintain instruction execu-
tion flow in accordance with the sequential execution semantics.
Multiplex also relies on the compiler to generate implicit threads,
and thereby benefits from many key transformation techniques
available at compile time to improve implicit thread performance
[33]. Implicit threads are typically fine-grain so as to minimize the
likelihood of speculative state overflow.

Key advantages to unifying thread selection. There are scenarios
in which there is a trade-off between the two threading models for
statically parallelizable programs. Loops with small bodies that
iterate for a small number of times are best executed as implicit
threads due to the high explicit dispatch overhead and low implicit
data speculation overhead. Moreover, program segments that are
not evenly partitionable into thread numbers that are multiples of
CPUs will result in a significant load imbalance if executed
entirely as explicit threads. The compiler can peel off the tail part
of such a program segment and execute it in parallel with subse-
quent program segments as implicit threads to eliminate the load
imbalance. The compiler’s flexibility in choosing the threading
model helps complement the strengths of both models, thereby
improving application performance. This issue will be discussed in
further detail in Section 5

3.2 Thread Dispatch
In Multiplex, dispatching a thread on a CPU involves: (1) assign-
ing a program counter to the CPU indicating the address of the first
instruction belonging to the thread, (2) assigning a private stack
pointer to the CPU, and (3) implementing a dispatch “copy”
semantics copying the stack and register values prior to the dis-
patch to all dispatched threads; as in conventional threading mod-
els, Multiplex uses a single address space for all the threads and
requires copy semantics only for stacks and registers (and not
memory) upon dispatch.

To minimize thread dispatch overhead, Multiplex supports explicit
thread dispatch directly in the instruction set. A fork instruction
takes an argument in an architectural register, and assigns it to the
program counter of all other CPUs. Once dispatched, threads pro-

CPU0

Thread
TD$

L1I L1D

L1/L2 Interconnect

L2

CPU1 CPU2

FIGURE 3: A Multiplex CMP. The figure depicts the
anatomy of a Multiplex CMP. The blocks appearing in a light
shade of gray are components used in a conventional
(explicitly-threaded) multiprocessor including the processing
units, the L1 instruction caches, the system interconnect, and
the L2 cache. The blocks appearing in a dark shade of gray are
components enabling implicit and hybrid implicit/explicit
threading in Multiplex including the thread dispatch unit, the
thread descriptor cache (TD$), the L1 data caches, and the
register communication mechanism.

Dispatch

L1I L1D L1I L1D L1I L1D

CPU3

ceed until the execution reaches a stop instruction. Upon thread
completion, an application may dispatch new threads through sub-
sequent executions of the fork instruction. The Multiplex system
initialization library allocates private stacks for all CPUs, and uses
a setsp instruction to assign the pre-allocated stacks to individ-
ual CPUs. Because fork requires a register “copy” semantics, the
library call forks threads indirectly through a “wrapper” procedure
that copies the necessary register into individual CPU stacks prior
to invoking thread code.

Multiplex dispatches implicit threads in program order [27]. The
thread dispatch unit (Figure 3) uses the current implicit thread to
predict and dispatch a subsequent thread. Threads dispatch, exe-
cute, and commit sequentially. A control or data dependence viola-
tion results in squashing threads in program order, and
redispatching threads. A thread descriptor embedded in the code
prior to the thread code fragment includes addresses of possible
subsequent dispatch “target” threads. The thread dispatch unit
includes a thread predictor that selects one of the target threads to
dispatch. The thread descriptor also includes the information nec-
essary to identify register values a thread depends which must be
communicated from previously dispatched threads [27]. To accel-
erate thread dispatch, a thread descriptor cache (Figure 3) caches
recently referenced thread descriptors.

Selecting and switching dispatch mode. Multiplex selects the
threading “mode” (i.e., implicit or explicit) at dispatch time. In
Multiplex, the compiler includes a mode bit (set for explicit
threads and reset for implicit threads) in every thread descriptor
indicating the threading mode. The hardware maintains a global
mode bit indicating the current mode. As a first step towards
implementing hardware to support both threading modes, we pre-
clude overlapping execution of threads from different modes.
Therefore, upon switching from executing implicit threads to
explicit threads, Multiplex suspends thread dispatch until all spec-
ulation completes and all threads commit. Upon switching from
explicit to implicit threads, Multiplex suspends dispatch until all
instructions from all explicit threads have committed.

3.3 The MUCS Protocol
Much like all modern architectures, Multiplex uses registers and
memory to store program state. As in Multiscalar, implicit threads
in Multiplex share both register and memory state among each
other. Explicit threads, however, execute as in shared-memory
multiprocessors and only share memory and not register state.
Because register communication in Multiplex is identical to that in
Multiscalar, we do not discuss register communication any further
and refer the reader to [6,27]. In this section we focus on memory
data communication and speculation among threads.

Both explicit CMPs and proposals for scalable implicit CMPs
[21,28,12] rely on snoopy bus-based protocols to maintain mem-
ory data integrity. In both CMPs, the CPUs’ private caches enable
efficient data sharing by making copies of accessed data close to
each CPU. The main responsibility of the memory system is to
track the copies so that the correct copy is delivered upon a mem-
ory access. In explicit CMPs, the memory system locates the most-
recently written copy either from main memory (if there is no
cached dirty copy) or from another cache (if it has a dirty copy) for

loads, and ensures that no stale copies exist in other caches (e.g.,
through invalidations or updates) for stores.

In implicit CMPs, the memory system provides similar support but
in the presence of speculative loads and stores. As in explicit
CMPs, in implicit CMPs multiple processors may read-share data
and maintain multiple copies which the protocol will guarantee to
be coherent. Unlike explicit CMPs, implicit CMPs also allow pro-
cessors to maintain multiple versions of data to co-exist to respect
the sequential program order of memory accesses. The memory
system tracks loads to detect (and squash) any load that prema-
turely accesses a location before a prior (program-order) store is
complete. The memory system also creates a new version for every
store and tracks the program order among the multiple versions.

Multiplex unifies coherence and versioning into a single protocol
called the Multiplex Unified Coherence and Speculation (MUCS)
protocol. MUCS uses a finite-state machine with two sets of state:
(1) states which implement coherence among multiple copies of (a
single version of) data in both implicit and explicit machine
modes, and (2) states which implement speculation to maintain
program order among multiple versions in the implicit mode.

MUCS is derived from SVC [12], a speculative versioning proto-
col for an implicit CMP. As in SVC, the key design objective for
MUCS is to minimize speculation overhead in two respects. First,
dependence resolution in the common case should be handled
within the cache, minimizing the frequency of bus transactions.
Second, thread commits/squashes should only require en masse
cache operations and preclude examining individual cache blocks
to update state. The exact details of the SVC protocol state and
transitions are published in [12]. In the following, we briefly
describe the protocol states and transitions in MUCS and show

FIGURE 4: A high-level state transition diagram for MUCS

committed
statesexplicit

access, use = 0
commit = 1
squash = 0

squashed
states
use = 0

commit = 0
squash = 1

speculative
states

commit = 0
squash = 0 implicit access

thread squash

implicit
speculative

thread
commit

version consolidation,
explicit invalidation

implicit
speculative version

consolidation

implicit
speculative

implicit
non-speculative
access

access

access

states in implicit mode

states in both modes transitions in implicit mode

access

explicit access,
implicit non-

speculative access

Invalid
valid = 0

transitions in both modes

how MUCS derives a write-invalidate coherence protocol for the
explicit mode by simply adding protocol transitions to SVC.

Figure 4 shows a high-level state transition diagram for MUCS.
The figure depicts a breakdown of states used in implicit mode
only, and states shared between the implicit and explicit modes.
The committed states implement a state-of-the-art write-invalidate
protocol actively used in the explicit mode. The squashed states
correspond to blocks accessed speculatively by (prior) squashed
implicit threads and left behind in those states. The speculative
states are those states corresponding to references by speculative
implicit threads. A cache block can only be placed in squashed or
speculative states by implicit threads. An attempt to evict a block
in a speculative state suspends execution on a CPU until all prior
threads commit, and the current thread becomes the head of the
ring. Invalid corresponds to an invalidated block in either mode.

Table 1 summarizes the protocol state bits and semantics in
implicit and explicit modes. A missing load will cause a cache fill
from the latest version of the cache block in program order. The
use bit indicates a speculative load by a thread so that a store by
preceding (program-order) threads can detect dependence viola-
tion. A store from an earlier thread squashes a future thread (and
all its successors) that has the use bit set for the block.

The dirty bit records all modified blocks — i.e., blocks that have
been stored to. When a store creates a new version, the block in
preceding CPUs are marked potentially stale with the stale bit.
Such blocks are only potentially stale because the new version
itself is speculative and may be squashed later. While the use bit
clearly distinguishes all speculatively-loaded blocks, the dirty bit is
set for all stored blocks whether speculative or non-speculative.
MUCS sets the commit bit on thread commits and clears the bit
(i.e., commit bit cleared indicates speculative) on accesses from
speculative threads. When a thread commits, all the commit bits in
the entire cache are set en masse.

To avoid scanning the cache for invalidating the blocks touched by
a squashed thread, MUCS uses a squash bit. When a thread is
squashed, the squash bits in the entire cache are all set en masse.
MUCS also clears all the use bits en masse on a thread squash.
Access to a block with the squash bit set forces a miss and clears
the squash bit.

MUCS uses the cyclic thread dispatch order among the CPUs to
infer the program order among multiple versions. Unfortunately, it
does not suffice to solely rely on the cyclic order to determine pro-
gram order because the position of the oldest thread in the system
rotates from one CPU to the next (as threads commit). To avoid
this problem, MUCS consolidates the versions from a previous
cyclic order at the next access. Versions from a previous order are
guaranteed to be committed or squashed. MUCS locates and writes
back the most recent committed dirty version and invalidates all
the other committed/squashed versions.

Switching between implicit and explicit modes. Because explicit
threads may access data which was last accessed by an implicit
thread, explicit threads may encounter blocks with squash or stale
bit set. MUCS treats these explicit mode accesses as misses, con-
solidates the most recent committed version via a bus snoop, and
supplies the consolidated version to the requesting CPU. Because
explicit mode accesses are indistinguishable from committed
implicit mode accesses, there is no overhead for switching from
implicit to explicit mode, or vice versa.

Much as other conventional coherence protocols, MUCS can
employ optimizations such as exclusive caching and/or snarfing
[9]. These optimizations have been employed by SVC and are
applicable to MUCS as well. Much like other speculative protocols
[12,29,16,8], MUCS can optimize away false squashes by main-
taining protocol state at finer (e.g., word) than cache block granu-
larity. In this paper, we take the first step towards unifying implicit
and explicit threading and do not explore the granularity issue.

4 KEY PERFORMANCE FACTORS
Multiplex combines the performance advantages of explicit and
implicit threading models. There are key factors affecting the per-
formance of either model. Therefore, to gain insight on Multiplex’s
performance, we qualitatively evaluate these factors in this section.
In Section 5, we present simulation results that corroborate our
intuition from this discussion.

Thread size. Thread size is a key factor affecting performance in
both explicit-only and implicit-only CMPs. Larger threads help (1)
increase the scope of parallelism, and may help reduce the likeli-
hood of data dependence across threads, and (2) reduce the impact

Table 1: MUCS protocol state and actions.

State bit Action

use set per access in implicit mode by speculative
loads executed before a store;
used only in implicit mode to flag premature loads
violating store-to-load order;
cleared for the entire cache en masse upon thread
commit or squash in implicit mode

dirty set by all stores in both modes;
used to write back a version on invalidation in
explicit mode and version consolidation in both
modes;
cleared on write back to next level in both modes

commit set for the entire cache en masse at thread commit
in implicit mode and set per access in explicit
mode;
used in both modes to allow replacements of com-
mitted dirty versions;
cleared on every access in implicit mode

stale set only in implicit mode on store miss from a suc-
ceeding CPU with a potentially more recent ver-
sion, and by cache fills if a succeeding CPU has an
uncommitted/unsquashed dirty versions;
used in both modes to force misses (if commit bit
set), and to consolidate the most recent committed
version among multiple committed/squashed ver-
sions of a previous cyclic order;
cleared in both modes for the consolidated version

squash set for the entire cache en masse upon thread
squash in implicit mode;
used in both modes to force misses on the next
access to the block;
commit bit has precedence over squash bit;
cleared on every access in implicit mode, and in
both modes for the consolidated version

valid set per cache fill on cache misses in both modes;
used in both modes to determine validity of tag
(not data), and allow replacements;
cleared on invalidation in explicit mode, and in
both modes for all committed/squashed versions
other than the consolidated version

of thread dispatch/completion overhead. Larger threads, however,
increase the likelihood of speculative state overflow — i.e., over-
flow of blocks in the speculative state due to the limited capacity of
L1 caches — in implicit-only CMPs, by increasing the required
storage to maintain speculatively produced data.

Load imbalance. A key shortcoming of explicit-only CMPs is
their inability to exploit parallelism in program segments that are
not analyzable at compile time. Unfortunately, even a small degree
of unknown dependences prevents a parallelizing compiler from
generating explicit threads, resulting in a serial program segment.
Explicit-only CMPs’ performance depends on the fraction of over-
all execution time taken by the serial program segments. Multiplex
can execute the serial program segments as implicit threads, signif-
icantly improving performance over explicit-only CMPs in pro-
grams with large serial segments.

In implicit-only CMPs, load imbalance is highly dependent on the
control flow regularity across threads. For instance, inner loops
with many input-dependent conditional statements may result in a
significant load imbalance across the CPUs. Explicit-only CMPs
use coarse-grain threads in which control flow irregularities across
basic blocks within a thread often have a cancelling effect, reduc-
ing the overall load imbalance across threads. Control flow irregu-
larities only impact performance in Multiplex for program
segments that execute as implicit threads.

Data dependence. Parallelizing compilers can often eliminate
known data dependences (e.g., through privatization or reduction
optimization). Unknown data dependences, however, result in
serial program segments in explicit-only CMPs, reducing perfor-
mance. Using fine-grain threads in implicit-only CMPs often
causes high data dependence and communication across adjacent

threads. Data dependence contributes to threading overhead
because a dependent thread must at a minimum wait for data to be
produced. While dependences through registers are synchronized,
memory dependences may incur additional speculation overhead
when memory synchronization hardware is unable to prevent
unwanted speculation [20]. Multiplex increases opportunity for
eliminating thread dependence by executing compile time analyz-
able program segments as explicit threads.

Thread dispatch/completion overhead. Thread dispatch/comple-
tion overhead only plays a major role for fine-grain threads, where
the overhead accounts for a large fraction of thread execution time.
In explicit-only CMPs, thread dispatch incurs the overhead of
copying of stack parameters and register values. Thread comple-
tion incurs the overhead of flushing the CPU load/store queues to
make memory modifications visible to the system. Explicit-only
CMPs, however, use fine-grain threads only when the compiler can
not analyze dependences among larger thread bodies. Multiplex
can execute such fine-grain threads as implicit threads, thereby
reducing the thread dispatch/completion overhead.

Speculative state overflow. Data speculation in implicit-only
CMPs is limited by the amount of buffering data caches can pro-
vide. Speculation requires buffering all versions, causing data
caches to fill up quickly and overflow for memory-intensive
threads and/or long-running threads. Because, speculative data are
not allowed to leave the caches, execution for a speculative thread
overflowing in the cache stops until all prior threads commit and
the thread becomes non-speculative. While data speculation is
always performed in implicit-only threads, threads are not always
data-dependent. Multiplex significantly reduces the data specula-

Table 2: System configuration parameters.

Processing Units

CPUs 4 dual-issue, out-of-order

L1 i-cache 8K, 2-way, 1 cycle hit

L1 d-cache 8K, Direct Map,
16-byte block, 1-cycle hit,
byte-level disambiguation

Squash buffer size 64 entries

Reorder buffer size 32 entries

LSQ size 32 entries

Functional units 3 integer, 1 floating-point,
1 memory

Branch predictor path-based, 4 targets

System

Thread Predictor path-based, 2 targets

Descriptor Cache 16K, 2-way, 1-cycle hit

Shared L2 2M, 8-way, 64-byte block,
9-cycle hit and transfer

L1/L2 interconnect snoopy split-transaction bus,
32-bit wide

Memory latency 80 cycles

Table 3: Applications and input sets.
S indicates scaled down number of loop iterations in the
interest of reduced simulation time.

name input #of inst (billions)

SPECfp95 Benchmarks

fpppp train 0.470

apsi train 2.847

turb3d trainS 0.332

applu train 0.649

wave5 trainS 0.114

su2cor test 1.114

tomcatv test 0.440

hydro2d test 1.141

swim test 0.753

mgrid trainS 2.810

Perfect Benchmarks

flo52 std 3.466

arc2d stdS 1.530

trfd std 3.405

tion overhead by execution independent threads as explicit threads,
obviating the need for speculation.

5 PERFORMANCE EVALUATION
In this section, we quantitatively evaluate a Multiplex CMP’s per-
formance and compare it against that of an “implicit-only” and
“explicit-only” CMP using simulation. We first give a brief over-
view of our compiler infrastructure, the experimental methodol-
ogy, and the application and input parameters we use. Next we
present the following results: (1) Multiplex performs as well or
better than the best of implicit-only or explicit-only CMPs by
allowing optimal threading mode selection within and across
applications, (2) implicit-only CMPs’ key sources of overhead are
limited capacity in L1 caches to maintain speculative data, and
load-imbalance and data dependence in fine-grain threads, (3)
selecting larger threads may help remove data dependences and
alleviate load imbalance in fine-grain implicit threads but prohibi-
tively increase the likelihood of speculative state overflow, and (4)
naive selection of provably-parallel code as explicit threads is sub-
optimal for fine-grain threads with high thread dispatch overhead.

5.1 Methodology and Infrastructure
We have developed a cycle-accurate simulator of a Multiplex
CMP. Our simulator models multiple ILP CPU cores and pipe-
lines, the memory hierarchy, and an implementation of the Multi-
plex threading mechanisms in detail. Table 2 summarizes the
processor and system configuration parameters we use in this
study. The CMP includes four dual-issue out-of-order cores, each
with L1 instruction and data caches, backed up by an L2 cache.
The simulator models the thread dispatch unit, descriptor cache,
and the register communication queues for the implicit mode, the
dispatch and synchronization instructions for the explicit modes,
and the MUCS protocol.

Our compiler infrastructure integrates Polaris [4], a state-of-the-art
parallelizing preprocessor generating explicit threads, with the
Multiscalar compiler [33], a gcc-based compiler for generating
implicit threads. Our compiler infrastructure is fully automated,
except for the selection of explicit versus implicit threads, which is
done semi-automatically (discussed in Section 5.4). We compile

the benchmarks as is, without modifying the source code. To eval-
uate and compare Multiplex against explicit-only and implicit-only
architectures, the compiler allows for generating implicit-only and
explicit-only threads when compiling applications.

We use a combination of benchmarks from the SPECfp95 [7] and
the Perfect [3] suites. Table 3 shows the benchmarks, the used
input data sets and the number of instructions executed for each
benchmark. In the interest of simulation turnaround time, we scale
down the number of outer loop iterations for some of the applica-
tions. This change in input set has a minimal impact on our perfor-
mance results since the inherent communication/computation
characteristics of the applications remain the same. We do not
evaluate integer benchmarks because our compiler infrastructure
can parallelize only Fortran programs.

5.2 Base Case Results
Figure 5 compares speedups for the Multiplex CMP against the
explicit-only and the implicit-only CMPs. We measure speedup
relative to a superscalar processor configured identically as one of
Multiplex’ CPUs. Because Multiplex differs from an implicit-only
architecture in both the compiler and the architecture, the figure
also shows, as a reference point, the performance of the implicit-
only CMP with a compilation scheme close to the one for Multi-
plex. This scheme selects threads from outer parallel loop instead
of innermost loops.

The figure divides the applications into two classes: class 1 appli-
cations favor the implicit-only CMP and class 2 applications favor
the explicit-only CMP. The results indicate that there is a signifi-
cant performance disparity between the explicit-only and the
implicit-only CMPs across the applications. In class 1 applica-
tions, the implicit-only CMP achieves on average 42% higher
speedups and at best 78% higher speedups than the explicit-only
CMP. In contrast, in class 2 applications the explicit-only CMP
achieves on average 45% higher speedups and at best 147% higher
speedups than the implicit-only CMP.

Multiplex always performs best. In all applications, Multiplex
makes the correct choice between the explicit and implicit thread-
ing models, always selecting the better of the two. Multiplex on

FIGURE 5: Performance of Multiplex, implicit-only, and explicit-only CMPs. In class 1 applications, implicit-only outperforms
explicit-only and vice versa in class 2 applications. In all applications, Multiplex matches or exceeds the performance of the better
alternative. Choosing larger threads for implicit-only execution always performs worse.

S
pe

ed
up

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Implicit-Only (Multiplex-like Threads)Implicit-Only Explicit-Only Multiplex

Class 1 Class 2

hy
dr

o2
d

tr
fd

flo
52

m
gr

id

sw
im

su
2c

or

to
m

ca
tv

ar
c2

d

w
av

e5

ap
pl

u

ap
si

tu
rb

3d

fp
pp

p

average achieves a speedup of 2.63, improving speedups by 21%
over explicit-only and 41% over implicit-only CMPs. In seven
applications, Multiplex improves speedups over the better of the
two on average by 10%. To better understand application perfor-
mance on each architecture, we evaluate the key factors affecting
performance in the next section.

The implicit-only performance with the large-thread selection
scheme used in Multiplex is always worse than with the basic
scheme. These results show that it is not possible to improve
implicit-only performance by simply selecting threads from com-
piler-recognized parallel loops, as is done in Multiplex. We will
discuss this further in Section 5.6. In the following figures we use
the better of the two performance numbers as a reference point.

5.3 Detailed Overhead Analysis
Table 4 shows the percentage of the original (serial) execution of
each application that can be recognized as parallel by the compiler.
The opportunity for explicit-only architectures is to execute this
fraction of the application in parallel. Amdahl’s law dictates that a
substantial fraction of serial execution can offset the gains from
parallelism and severely limit overall performance. For example,
in su2cor, parallelizing 81% of the application limits speedups to
at most 2.5 (i.e., 1/(0.8/4+0.2)=2.5). This is a key source of perfor-
mance degradation in explicit-only CMPs, which Multiplex can
overcome through executing the serial sections as implicit threads.

Figure 6 shows the execution overheads of the implicit-only and
the Multiplex CMPs. The figure plots overhead (i.e., the number of
processor cycles not contributing to computation) as a fraction of
overall execution time of the implicit-only CMP. The figure shows
both overheads due to threading mechanisms and overheads intrin-

sic to the base superscalar cores. Threading-related overheads
include speculative state overflow (processor stalls because it can-
not replace a speculative cache line), load imbalance (uneven
workload of the processor cores), dispatch/commit (additional
code executed for thread management), and dependence/squash
(wait time or roll-backs due to dependences). Superscalar-related
overheads include pipeline hazards and memory stalls. They are
nearly identical in the two architectures. In the following discus-
sion we will concentrate on threading-related overheads.

We will first consider overheads in the implicit-only CMP and then
discuss the changes when going to Multiplex. The figure shows
that a key source of overhead is data dependences and squashes.
Our measurements indicate that squash overhead is small in all
cases, except in fpppp. The thread predictor exhibits high predic-
tion accuracies for all the applications because loop branches (at
the thread boundaries) are typically predictable. The memory
dependence hardware (i.e., the squash buffer[20]) can also syn-
chronize most dependences because most implicit threads are fine
grain with small instruction footprints. The squashes in fpppp are
due to low hit rates in the squash buffer because of fpppp’s large
threads [20].

Load imbalance is another key overhead factor. Fpppp, apsi,
turb3d, applu, and wave5 have control flow irregularities in the
inner loops (i.e., loop iterations including input-dependent condi-
tionals [33]). Because the implicit-only CMP uses fine-grain
threads, it primarily targets inner loops and therefore can suffer
from load imbalance in these applications. Similarly, thread com-
pletion overhead of flushing the load/store queues is considerable
in some applications due to the small thread size. Load imbalance
can further result from stalls due to speculative state overflow.

Table 4: Fraction of execution time of each application that is provably-parallel by the compiler and converted to explicit threads.

Benchmark fp
pp

p

ap
si

tr
ub

3d

ap
pl

u

w
av

e5

su
2c

or

to
m

ca
tv

hy
dr

o2
d

sw
im

flo
52

ar
c2

d

tr
fd

m
gr

id

Fraction Threaded (%) 0 72 34 97 70 81 82 77 99 93 95 100 95

E
xe

cu
tio

n
O

ve
rh

ea
d

(%
)

i
Multiplexm
Implicit-Only

FIGURE 6: Overheads of the Implicit-only and the Multiplex architecture. For class 1 applications Multiplex substantially reduces
the speculative state overflow. For class 2 benchmarks, Multiplex virtually eliminates the threading-related overheads in most of the
applications. Overheads not related to threading, indicated by memory and functional unit stalls, remain nearly constant.

i m

0
10
20
30
40
50
60
70
80
90

100

Memory/Func Unit
Dependence/Squash
Dispatch/Commit
Load Imbalance
Overflow

Class 1 Class 2

hy
dr

o2
d

tr
fd

flo
52

m
gr

id

sw
im

su
2c

or

to
m

ca
tv

ar
c2

d

w
av

e5

ap
pl

u

ap
si

tu
rb

3d

fp
pp

p

Finally, data speculation overhead due to speculative state over-
flow is substantial in the implicit-only CMP for most applications,
but dominates in wave5, tomcatv, and swim. Our current compiler
techniques attempt to select thread sizes to minimize the specula-
tive state overflow [33]. However, in Section 5.6 we show that
using larger threads to increase parallelism and eliminate depen-
dences would prohibitively increase the speculation overhead for
most applications. This overhead is one of the key limitations of
implicit-only architectures and a motivation for Multiplex.

Figure 6 also indicates that Multiplex reduces much of the over-
heads in the implicit-only CMP. Multiplex exploits advanced par-
allelization techniques to eliminate data dependences and generate
coarse-grain explicit threads (from iterations of outer loops), sig-
nificantly improving performance over the implicit-only CMP. For
class 1 applications, the impact of these transformations on depen-
dence/squash overheads is minor. However, in turb3d and applu
speculative state overflow has disappeared. The reduction of over-
heads in class 2 applications is very significant. Overflow is nearly
eliminated. Load imbalance has disappeared in all cases but
wave5, and dependence-related overheads are significantly
reduced in six out of the nine applications.

5.4 Selecting Implicit vs. Explicit Threads
Combining explicit and implicit threading schemes is non-trivial.
A compiler algorithm that selects explicit threads whenever it
detects parallelism would lead to inferior performance, due to the
overhead for generating and dispatching explicit threads. Two of
the class 1 applications, apsi and applu suffer from a small thread
size. Table 5 shows that in these applications the eager explicit
thread selection scheme would degrade performance by 41%. We
have also developed a conservative algorithm that generates
implicit threads for innermost loops, even if they are found to be
fully parallel. The conservative algorithm improves performance

of apsi, applu and turb3d to the level shown in Figure 5. However
it would decrease performance in tomcatv because its innermost
loops are large and thus would incur speculative state overflow. For
the measurements in Figure 5 we have chosen the suitable algo-
rithm by compiler options on an application by application basis.
The need for developing accurate compiler performance prediction
schemes that trade-off these overheads is an important finding of
our work.

5.5 Impact of Cache Size
Figure 7 shows the performance impact of increasing the cache
size. We have measured two cache configurations, 8K direct-
mapped and 16K direct-mapped, for all the CMPs. The results
show a significant increase in performance when selecting a large
cache size for wave5, tomcatv, and swim. This increase also indi-
cates that the performance would decrease substantially when
increasing the data set of the applications. This decrease is due to
the speculative state overflow, which grows with both a decrease in
cache size and increase in data set size. As described in
Section 5.1, the data sets chosen for our applications are small in
favor of reduced simulation time. The chosen ratio of data set to
cache size in our measurements is conservative. Hence we expect
the limitation of speculative state overflow to be even more severe
in more realistic system configurations.

Figure 7 further shows that the implicit-only architecture is more
sensitive to the cache configuration. The performance of Multiplex
is nearly invariant of the cache size. This is a direct consequence of
the fact that Multiplex incurs significantly less speculative state
overflow than the implicit-only CMP.

5.6 Thread Size in Implicit-only CMPs
The implicit-only CMP exploits parallelism at the innermost loop
level. This can be inefficient because of limited parallelism at this

FIGURE 7: Impact of cache size. While the Multiplex performance is nearly unaffected by the change in cache size, the change impacts
the implicit-only CMP’s performance significantly in wave5, tomcatv, and swim. The caches are all direct-mapped.

S
pe

ed
up

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Implicit 8K Multiplex 8K Implicit 16K Multiplex 16K

Class 1

hy
dr

o2
d

tr
fd

flo
52

m
gr

id

sw
im

su
2c

or

to
m

ca
tv

ar
c2

d

w
av

e5

ap
pl

u

ap
si

tu
rb

3d

fp
pp

p

Class 2

Table 5: Speedup of eager vs. conservative explicit thread selection in Multiplex.

Benchmark apsi applu turb3d tomcatv

Eager explicit threading 1.33 1.30 1.62 3.37

Conservative explicit threading 1.73 1.97 1.94 2.34

level. We have argued that Multiplex can reduce this inefficiency
because it exploits compiler-detected parallelism in outer loops,
which encompass the inner, possibly serial program sections.
Figure 8 demonstrates that it would not be a simple solution for the
implicit-only CMP to exploit the same outer-loop parallelism. In
this experiment, we force the compiler to generate implicit threads
(for the implicit-only CMP) consisting of (1) the iterations of out-
ermost loops and (2) the iterations of outer parallel loops. Exploit-
ing outermost loops increases the window size to find
opportunities for parallelism. Exploiting outer parallel loops
reduces the number of dependences and allows us to directly com-
pare with Multiplex, which exploits the same loop parallelism.

Figure 8 shows that the selection of large threads in an implicit-
only architecture would lead to a drastic performance degradation
in most applications. Figure 9 shows the detailed overheads. The
primary reason for the degradation is that the threads become so
large that speculative state overflow dominates. For example, in
su2cor, the overflow increases from 0 to 70% of the total number
of cycles in the original, implicit-only execution. In mgrid, this
overhead increases to 200%. The figure further shows that select-
ing threads from iterations of outermost loops can introduce signif-
icant overhead due to dependences. This overhead can be reduced
when generating threads from outer parallel loops, as shown by
the third bars in the figure. In order to generate dependence-free
threads from parallel loop iterations, several state-of-the-art com-
piler techniques have been added to the code generator. The effect
of selecting threads from outer parallel loops is two-fold. As
expected, dependence-related overheads are significantly reduced.
By contrast, speculative state overflow and load imbalance
increases. We found that the increase in load imbalance is an indi-
rect effect of the overflow, so is the increase of memory stalls in
trfd. As Figure 6 shows, these overflow-related overheads drasti-
cally decrease when executing the same codes on Multiplex.
Hence we can conclude that speculative state overflow is the most
significant intrinsic, threading-related overhead of an implicit-only
architecture and Multiplex can eliminate or significantly reduce
this limitation.

6 RELATED WORK
There are several projects exploring architectural proposals for
implicit threading such as Wisconsin Multiscalar [27,12] and
Trace Processor [26], Stanford Hydra [15], CMU Stampede [28],
Minnesota Superthreaded processor [31], Illinois Speculative
NUMA [8], Speculative Multithreaded architecture [19], and SUN
Microsystems MAJC [30]. While Multiplex proposes techniques
to unify implicit and explicit threading within a single application,
these projects have focused on employing implicit and explicit
threading separately on a per application basis but not combined
within one application.

Many of the projects have a compiler component to develop com-
piler techniques for implicit threading. Some of the projects use
the SUIF compiler [14] for program analysis but rely on manual
identification of program sections for speculative parallelization by
the compiler [29,16]. Because misspeculation recovery is in soft-
ware, the compiler also generates recovery code. While many of
the projects evaluate performance on parts of applications selected
for implicit threading [15,28,8], Multiplex evaluates entire applica-
tions by using an automated compiler infrastructure consisting of
the Polaris compiler [4] integrated with the Multiscalar compiler
[33]. Because speculative state buildup and misspeculation recov-
ery is fully implemented in hardware, the Multiplex compiler does
not generate any misspeculation recovery code.

In [22], the authors describe several compiler techniques to help
thread-level speculation and argue that exploiting loop-level paral-
lelism is insufficient. In [31], the authors describe compiler tech-
niques for superthreaded architectures. No implementation of
these techniques exist yet.

There are proposals to provide hardware support to make depen-
dence tracking efficient in DSM systems. Extensions to compiler
techniques for runtime data dependence testing and software mis-
speculation recovery are proposed in [35,34]. While these exten-
sions focus on the specific compiler technique of runtime data-
dependence testing, the Multiplex compiler performs general unifi-
cation of implicit and explicit threads.

FIGURE 8: Impact of thread size in the Implicit-only CMP. The left bars indicate our base implicit-only CMP performance (from
Figure 5). The right bars show the performance when selecting threads from outer parallel loops, as done for explicit threads in Multiplex.
Note, that the presence of such outer loops depends on the compiler’s ability to identify them. For example, in fpppp “inner” and “outer”
loops are the same. The results show that compiler-only solutions for improving the performance of implicit-only CMPs face hard limits.

S
pe

ed
up

0.0
0.5
1.0
1.5
2.0

2.5
3.0
3.5
4.0

4.5

Multiscalar task Outer-most loop Outer parallel loop

Class 1 Class 2

hy
dr

o2
d

tr
fd

flo
52

m
gr

id

sw
im

su
2c

or

to
m

ca
tv

ar
c2

d

w
av

e5

ap
pl

u

ap
si

tu
rb

3d

fp
pp

p

7 CONCLUSIONS
Recent proposals for CMPs advocate speculative, or implicit,
threading in which the hardware employs prediction to peel off
instruction sequences (i.e., implicit threads) from the sequential
execution stream and speculatively executes them in parallel on
multiple cores. These proposals extend a conventional shared-
memory multiprocessor, which employs explicit threading, with
the ability to handle implicit threads. The proposals extend hard-
ware cache-coherence protocols to handle speculation.

While the proposals focus on only implicitly-threaded code sec-
tions, this paper identified, for the first time, the issues in combin-
ing explicit and implicit threading to allow a single program to
switch back and forth between implicit and explicit threads. We
proposed the Multiplex architecture to unify implicit and explicit
threading. We made the observation that the coherence protocol
states required for explicit threading can be mapped to a subset of
the protocol states required for implicit threading. We extended the
implicit protocol by one extra state transition so that the entire
explicit protocol can be emulated as a subset of the extended
implicit protocol. This extension allows unifying the architecture
for the two threading models without additional hardware.

Using a fully-integrated compiler infrastructure for automatic gen-
eration of Multiplex code, this paper presented a detailed perfor-
mance analysis for entire benchmarks, instead of just implicitly-
threaded sections, as done in previous papers. For the ten
SPECfp95 and three Perfect benchmarks, we showed that neither
an implicit-only nor explicit-only architecture performs consis-
tently better than the other across the benchmarks. A CMP with
four dual-issue CPUs achieves a speedup of 1.48 and 2.17 over one
dual-issue CPU, using implicit-only and explicit-only threading,
respectively. We showed that Multiplex matches or outperforms
the better of the two architectures for every benchmark, and a four-
CPU Multiplex achieves a speedup of 2.63.

Our detailed analysis indicated that the dominant overheads in an
implicitly-threaded CMP are speculation state overflow due to lim-
ited L1 cache capacity, and load imbalance and data dependences
in fine-grain threads. We also presented evidence that a naive

thread selection (by the compiler) of explicit threads whenever
possible would lead to inferior performance due to high explicit
thread dispatch overhead in fine-grain threads.

8 ACKNOWLEDGMENTS
This work was supported in part by NSF grants #9974976-EIA and
#9986020-EIA.

9 REFERENCES
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger.

Clock rate versus IPC: The end of the road for conventional
microarchitectures. In Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, pages 248–
259, June 2000.

[2] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Au-
tomatic program parallelization. Proceedings of the IEEE,
81(2):211–243, Feb. 1993.

[3] M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo,
Y. Pang, R. Roloff, A. Sameh, E. Clementi, S. Chin,
D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung,
J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson,
G. Swanson, R. Goodrum, and J. Martin. The Perfect Club
Benchmarks: Effective performance evaluation of supercom-
puters. International Journal of Supercomputer Applications,
3(3):5–40, 1989.

[4] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger,
L. Rauchwerger, and P. Tu. Parallel programming with Po-
laris. IEEE Computer, pages 78–82, Dec. 1996.

[5] W. Blume and R. Eigenmann. Non-linear and symbolic data
dependence testing. IEEE Transactions on Parallel and Dis-
tributed Systems, 9(12):1180–1194, Dec. 1998.

[6] S. Breach, T. Vijaykumar, and G. Sohi. The anatomy of the
register file in a multiscalar processor. In Proceedings of the
27th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 27), pages 181–190, Nov. 1994.

[7] B. Case. Spec95 retires spec92. Microprocessor Report, Au-
gust 21 1995.

Load Imbalance

FIGURE 9: Overhead of different thread size in the implicit-only CMP. The figure depicts the overhead breakdown for the
measurements from Figure 8. 100% represents the number of cycles in implicit-only execution.

E
xe

cu
tio

n
O

ve
rh

ea
d

(%
)

i

Outer-mosto

Implicit

Dispatch/Complete

Overflow

Memory/Func Unit
Dependence/Squash

Outer Parallelp

i o p

0

40

80

120

160

200

240

Class 1 Class 2

hy
dr

o2
d

tr
fd

flo
52

m
gr

id

sw
im

su
2c

or

to
m

ca
tv

ar
c2

d

w
av

e5

ap
pl

u

ap
si

tu
rb

3d

fp
pp

p

[8] M. Cintra, J. F. Martinez, and J. Torrellas. Architectural sup-
port for scalable speculative parallelization in shared-memory
multiprocessors. In Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture, pages 13–24,
June 2000.

[9] F. Dahlgren. Boosting the performance of hybrid snooping
cache protocols. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 60–69,
1995.

[10] M. Franklin and G. S. Sohi. The expandable split window par-
adigm for exploiting fine-grain parallelism. In Proceedings of
the 19th International Symposium on Computer Architecture,
pages 58–67, May 1992.

[11] G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence
testing. In Proceedings of the ACM SIGPLAN ’91 Conference
on Programming Language Design and Implementation, pag-
es 15–29, June 1991.

[12] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. Sohi. Specu-
lative versioning cache. In Proceedings of the Fourth IEEE
Symposium on High-Performance Computer Architecture,
pages 195–205, February 1998.

[13] J. Gu, Z. Li, and G. Lee. Experience with efficient array data
flow analysis for array privatization. In Sixth ACM SIGPLAN
Symposium on Principles & Practice of Parallel Program-
ming (PPOPP), pages 157 – 167, June 1997.

[14] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
multiprocessor performance with the SUIF compiler. IEEE
Computer, 29(12):84–89, Dec. 1996.

[15] L. Hammond, M. Willey, and K. Olukotun. A single-chip
multiprocessor. IEEE Computer, 30(9), September 1997.

[16] L. Hammond, M. Willey, and K. Olukotun. Data speculation
support for a chip multiprocessor. In Proceedings of the
Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIII), October 1998.

[17] J. Hennessy. The future of systems research. IEEE Computer,
32(8):27–33, Aug. 1999.

[18] M. Horowitz, R. Ho, and K. Mai. The future of wires. In Pro-
ceedings of the Semiconductor Research Corporation Work-
shop on Interconnects for Systems on a Chip, May 1999.

[19] P. Marcuello, A. Gonzalez, and J. Tubella. Speculative multi-
threaded processors. In Proceedings of the 1998 International
Conference on Supercomputing, 1998.

[20] A. Moshovos, S. E. Breach, and T. N. Vijaykumar. Dynamic
speculation and synchronization of data dependences. In Pro-
ceedings of the 24th Annual International Symposium on
Computer Architecture, June 1997.

[21] B. A. Nayfeh and K. Olukotun. Exploring the design space for
a shared-cache multiprocessor. In Proceedings of the 21st An-
nual International Symposium on Computer Architecture,
pages 166–175, April 1994.

[22] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of spec-
ulative thread-level parallelism. In Proceedings of the Seventh
International Conference on Parallel Architectures and Com-
pilation Techniques, Oct. 1999.

[23] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-ef-
fective superscalar processors. In Proceedings of the 24th An-
nual International Symposium on Computer Architecture,
pages 206–218, June 1997.

[24] B. Pottenger and R. Eigenmann. Idiom recognition in the Po-
laris parallelizing compiler. In Proceedings of the 1995 Inter-
national Conference on Supercomputing, pages 444–448, July
1995.

[25] W. Pugh. Going beyond integer programming with the omega
test. IEEE Transactions on Parallel and Distributed Systems,
6(2):204–211, Feb. 1995.

[26] J. E. Smith and S. Vajapeyam. Trace processors: Moving to
fourth-generation microarchitectures. IEEE Computer,
30(9):68–74, Sept. 1997.

[27] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 414–425, June
1995.

[28] J. G. Steffan, C. B. Colohan, A. Zhaia, and T. C. Mowry. A
scalable approach to thread-level speculation. In Proceedings
of the 27th Annual International Symposium on Computer Ar-
chitecture, pages 1–12, June 2000.

[29] J. G. Steffan and T. C. Mowry. The potential for using thread-
level data speculation to facilitate automatic parallelization. In
Proceedings of the Fourth IEEE Symposium on High-Perfor-
mance Computer Architecture, pages 2–13, February 1998.

[30] M. Tremblay. An architecture for the new millennium. In Pro-
ceedings of the 1999 Hot Chips Symposium, August 1999.

[31] J.-Y. Tsai, J. Huang, C. Amlo, D. Lilja, and P.-C. Yew. The
superthreaded processor architecture. IEEE Transactions on
Computers, 98(9), Sept. 1999.

[32] P. Tu and D. Padua. Automatic array privatization. In Pro-
ceedings of the Sixth Languages and Compilers for Parallel
Computing, pages 500–521. Springer-Verlag, 1994.

[33] T. N. Vijaykumar and G. S. Sohi. Task selection for a multi-
scalar processor. In Proceedings of the 31st Annual IEEE/
ACM International Symposium on Microarchitecture (MI-
CRO 31), December 1998.

[34] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for
speculative run-time parallelization in distributed shared-
memory multiprocessors. In Proceedings of the Fourth IEEE
Symposium on High-Performance Computer Architecture,
Jan. 1998.

[35] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for
speculative parallelization of partially-parallel loops in dsm
multiprocessors. In Proceedings of the Fifth IEEE Symposium
on High-Performance Computer Architecture, Jan. 1999.

