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Résumé

Le cancer du sein est le plus répandu et la principale cause de décés par cancer parmi les femmes dans le
monde. Détecté suffisamment t6t, il peut cependant étre traité de maniére efficace, dans le sens ou il est alors
possible d'éviter des traitements lourds et de réduire la morbidité et la mortalité. C'est dans ce but qu'ont été
instaurés depuis les années 60 des essais cliniques randomisés, puis des programmes de dépistage
systématique du cancer du sein par mammographie.

Le processus de détection du cancer du sein en mammographie est complexe, et sa compréhension offre de
nombreux défis aux radiologues et aux physiciens médicaux. Une maniére d’appréhender cette problématique
est de modéliser pas a pas le processus en réalisant des expériences psychophysiques avec des images
anatomiques ou de synthese. Dans cette approche, le contenu en information des images est contr6lé. Depuis
les premiéres expériences avec des images de synthése constituées de bruit blanc et de simples signaux
géomeétriques, de nombreux progrés techniques et informatiques ont permis de s’approcher peu a peu de la
réalité clinique pour étudier le mécanisme de la perception d’un signal présent sur une image radiologique.

Le présent travail étend la liste des outils utilisés jusqu'ici dans les expériences psychophysiques en
mammographie. Il propose une analyse statistique détaillée des images anatomiques, a partir de laquelle des
algorithmes de classification de la densité mammaire et de synthéese d'images réalistes sont développés. Dans
une seconde phase, diverses expériences psychophysiques utilisant des signaux simples ainsi que des masses
bénignes ou malignes superposées aux fonds anatomiques et synthétiques sont présentées. La performance
d'observateurs humains est analysée en fonction de parametres tels que le type de fonds, de signal, ou
I'incertitude a propos de la taille ou de la forme du signal. Ces résultats sont comparés a ceux de modeles
existants ou adaptés de la littérature, et ces derniers sont évalués dans leur aptitude a prédire la performance
des observateurs humains pour la détection de lésions dans ces conditions.

Pour chacune des étapes de ce projet, I'accent a été mis sur le coté objectif et reproductible de I'évaluation des
images ou de la performance des observateurs. Des conditions a la fois controlées et réalistes assurent la
robustesse des résultats, ainsi que leur adaptabilité clinique. Parmi les principaux résultats, des images
synthétiques de texture mammaire ont été générées et validées. Celles-ci fournissent une base de données
virtuellement inépuisable d’images au réalisme visuel et statistique démontré. Concernant l'analyse de la
performance des observateurs humains, ce travail montre, entre autres, que ceux-ci sont sensibles a une
incertitude quant a la taille du signal, mais pas quant a sa forme, qu'ils utilisent des stratégies similaires avec les
images réelles ou synthétiques, et qu'ils sont principalement sensibles aux fluctuations anatomiques dans la
proximité immédiate du signal. Ces effets, ainsi que le niveau de performance des observateurs humains pour
les diverses taches de détection, ont pu étre reproduits par des modeéles prenant en compte des
caractéristiques du systéme visuel humain.

Les conclusions de ce travail pourront guider de futures études dans le domaine de la détection en
mammographie ou en tomosynthese. Cette technique d’imagerie permet une analyse tomographique de la
glande mammaire, et offre tout comme la mammographie un grand nombre de défis en vue de la
compréhension et de la caractérisation objective de sa performance. Dans ce but, les études via des modeles
d'observateurs validés pour des taches de détection en imagerie médicale offrent une excellente approche en
termes de temps et de colts.

Mots-clés: Mammographie, vision et perception visuelle, imagerie médicale, évaluation de la performance,
modeles d’observateurs



Abstract

Breast cancer is the most common, and the number one cause of death by cancer among women. However,
when it is sufficiently early detected, heavy treatments can be avoided, and morbidity and mortality can be
reduced. This is the reason why randomized clinical trials were started in the 60s, followed in the last decades
by screening mammography national programs.

The process of breast cancer detection in mammography is complex. Its understanding offers numerous
challenges to radiologists and medical physicists. One way to apprehend it is to model this process step-by-step
by performing psychophysical experiments with anatomical or synthetic images. In this approach, the images
information content is controlled. Since the first experiments with synthetic images created with white noise
and simple geometric signals, technical and computational improvements allowed to get ever closer to clinical
realism for studying the mechanism of perception of a signal on a radiological image.

The present work extends the list of tools that have been used until now in psychophysical experiments in
mammography. It proposes a detailed statistical analysis of anatomical images, from which algorithms for
breast density classification and realistic breast texture synthesis are developed. In a second phase,
psychophysical experiments with simple signals and benign or malignant masses combined with anatomical or
synthetic backgrounds are presented. The performance of human observers is analyzed as a function of
parameters such as background type, signal type, or uncertainty about the size or the shape of the signal.
These results are compared to that of existing or adapted models from the literature, and the different models
are evaluated in their ability to predict the performance of human observers for the detection of lesions in such
conditions.

Each step of this project focused on the objective and reproducible aspect of the image evaluation or of the
observer performance. Controlled yet realistic conditions ensure the robustness of the results, as well as their
clinical adaptability. Among the main results, synthetic mammographic texture images have been generated
and validated. They provide a virtually unlimited database of images with demonstrated visual and statistical
realism. Concerning the analysis of the human observers’ performance, this work shows that they are sensitive
to uncertainty about the signal size but not about its shape, that they use similar detection strategies with real
and synthetic images, and that they are mainly sensitive to the anatomical fluctuations in the immediate area
around the signal location. These effects, as well as the performance level of human observers for the
detection tasks under consideration, could be reproduced by models taking into account human visual system
characteristics.

The conclusions of this work will be able to guide future studies in the field of detection tasks in mammography
or tomosynthesis. This 3D breast imaging technique presents, like mammography, numerous challenges in
order to understand and to objectively characterize its clinical potential. Studies with model observers
specifically validated for detection tasks in medical imaging provide an excellent alternative in terms of time
and costs for answering these questions.

Keywords: Mammography, vision and visual perception, medical imaging, performance evaluation, model
observers
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1. Introduction and motivation

Breast cancer: a challenge in diagnostic radiology

In high-income countries, about one woman out of 10 will develop breast cancer in her lifetime
[Curado, 2007]. This makes breast cancer the most common cancer [Ferlay, 2001], and the leading
cause of mortality by cancer among women [Ferlay, 2007]. Its incidence is the highest in the age
group between 50 and 70, where about 10% of the deaths are due to breast cancer.

Most known risk factors of breast cancer cannot be directly influenced by women. They include age,
family history of breast cancer, genetic predispositions, hormonal and reproductive history, or breast
density [Kelsey, 1993; Boyd, 1995; Colditz, 1995; Van Gils, 1999; Fitzgibbons, 2000; Heine, 2001; Ziv,
2003]. This renders primary prevention difficult, and explains why the best prevention method
radiologists currently use against breast cancer is to try to detect it as early as possible. Early
detection indeed usually allows more efficient and less heavy treatments (surgery, chemotherapy,
radiation therapy), thus reducing the financial as well as psychological costs.

For this reason, screening mammography was introduced for women above 50, first as controlled
randomized trials launched between the 60s and the 90s in the USA, Sweden, Scotland, and Canada.
Several meta-analyses of these randomized trials have shown that breast cancer mortality could be
reduced by 15 to 30% in the target group with the introduction of screening mammography [IARC,
2002; Humphrey, 2002; Deck, 2006]. Although contested by some researchers because of
imperfections in the randomization [Gotzsche, 2000; Olsen, 2001], there is now a general agreement
that these figures can be accepted as a basis for justifying organized screening mammography [Boyle,
2003; Green, 2003; de Koning, 2003; Fletcher, 2003].

Since then, 18 European countries have started such screening programs, including Switzerland. The
mortality drop observed in these countries is consistent with the controlled randomized trials.

However, early detection of breast cancer is not a trivial task for the radiologists. Recent studies,
based on the randomized trials and/or the screening programs, have given estimates for
mammography sensitivity (percentage of women actually having breast cancer and diagnosed as
such) and specificity (percentage of women without lesion and diagnosed as such). For women over
50, sensitivity has been found to range from 68% to over 90%, and specificity from 82% to 97% [IARC,
2002]. In a recent and comprehensive analysis of the so-called Million Women Study data with
adjustments for potential confounding factors, overall sensitivity was found to be 87%, and
specificity 97% [Banks, 2004].

Even with the progresses in medical imaging, like the recent screen-film to digital transition that has
been reported to improve diagnostic performance [Pisano, 2005; Skaane, 2005], mammography still
suffers from diagnosis errors. Most of them come from the fact that the lesions of interest to be
detected on mammograms are very low-contrasted signals, which visibility can be reduced by the
inherent nature of x-ray projection imaging. On the mammograms, the superposition of the breast
structures or the high density of the glandular areas sometimes hide the lesions or make them
difficult to assess (false-negative). The opposite can also happen, and superimposed structures on
the mammogram can be mistaken as actual lesions (false-positive).



In order to improve the current performance of screening mammography, it is desirable to be able to
assess image quality not only with purely physical criteria (e.g. image resolution, system modulation
transfer function, radiation dose to the breast), but rather through an optimization approach based
on the tasks to be performed with such images [Barrett, 2004]. This way, the full potential of
screening programs could be reached in the future, because such methodology would guarantee that
radiologists are working with the best images today's technology can offer.

Psychophysical studies

While randomized clinical studies provide ultimate tools for evaluating image quality in a task-based
framework, they are often not practical for researchers specialized medical imaging science. Many
confounding factors have to be taken into account, especially when several observers, imaging units,
imaging protocols, diagnostic centers, and lesion types are involved. Moreover, the usually low
incidence in clinical studies tends to make these confounding factors even more difficult to analyze
and separate.

For these reasons, a growing interest in psychophysical studies has been shown since Tanner and
Birdsall’s paper about human efficiency in the ‘50s [Tanner, 1958]. Formally, psychophysics can be
described as the analysis of perceptual processes by studying the effect on a subject’s experience or
behavior of systematically varying the properties of a stimulus along one or more physical dimensions
[Bruce, 2003]. Psychophysical experiments thus provide a convenient approach, since a total control
over most experimental parameters is kept, while testing the effect of one or several others.

In medical imaging and detection tasks in particular, psychophysics approach is typically
implemented using clinical, synthetic, or hybrid images obtained from a single acquisition method,
with controlled signals, a controlled reference classification (also known as gold standard), and
reproducible viewing conditions. These four key points, together with the concept of varying the
properties of the task along a limited number of physical properties, significantly reduce the inherent
uncertainty of purely clinical studies, and characterize the strength of psychophysics framework.

Depending on the experimenters’ goals, two psychophysical studies conditions have been developed
and used: Receiver Operating Characteristic (ROC) [Barrett, 2004; ICRU, 2008] and M-alternative
forced-choice (M-AFC) [Burgess, 1995; Eckstein, 2000; Barrett, 2004; Gallas, 2007]. In ROC studies, a
single image is presented to the observer, who is asked to use a discrete or continuous scale
representing his confidence level that an abnormality is present in the image. From the observer’s
ratings and the gold standard, the ROC curve can be computed. This curve is used to compute the
observer’s sensitivity and specificity depending on the threshold on the rating scale, as well as the
overall performance. In this work however, we mostly focused on M-AFC approach. For this kind of
task, M images are presented simultaneously to the observer. Out of these M images, one and only
one contains a signal of interest, whereas the M-1 others are background-only images. The observer
has to select among the M images the one that most likely contains the signal. Burgess has shown
that each approach has its own practical advantages and disadvantages, but that the information
about the observer’s performance they provide is essentially equivalent [Burgess, 1995]. We chose
M-AFC with M equal to 2 or 4, because this kind of task is particularly fast and efficient for collecting
data and is not sensitive to intra- or inter-observer variability in the use of a rating scale like ROC.



Another interesting fact concerning M-AFC tasks is that trained non-physician observers have a
performance level very similar to that of radiologists in such simplified conditions [Brettle, 2007].

History of psychophysical studies in medical imaging

During the last decades, psychophysical studies in the medical imaging field have undergone a
significant evolution. Current digital imaging units offer ready-to-use images, and computers often
easily handle on-the-fly 2D signals embedding, a situation which is far from the first experiments with
TV screens or digitized films. The aim of this section is to present an overview of some historical and
recent works in psychophysics applied to medical imaging, with an emphasis on mammography.

The complexity of a hypothetical complete end-to-end model, from imaging device to the final
physician’s decision, makes it out of the scope of past and current studies. A complete diagnostic
decision process typically involves many steps: choice of the imaging modality and conditions,
acquisition of the data, choice of the visualization procedure, search of lesion candidates in the
images, analysis of the suspicious areas, and characterization of those identified as lesions. Over the
years, psychophysicists in medical imaging have inherited tools from various domains like computer
science, ionizing and non-ionizing radiation physics, semi-conductor physics, vision science, and
signal processing, and they have been able to investigate and optimize these decision steps, starting
from simple conditions to get ever closer to actual clinical tasks.

Early psychophysical experiments were performed with simple geometric patterns on uncorrelated
noise. In a series of experiments, Burgess et al. investigated detection and discrimination of sine
waves [Burgess, 1981], projected spheres [Burgess, 1984], and Hadamard (rectangle-based) patterns
[Burgess, 1985], embedded on Gaussian white noise. The analytically traceable statistics of these
experiments allowed to estimate the efficiency of human visual system for such signals. Burgess et al.
also reported a performance drop when the observers were not given information about the exact
pattern they had to look for, prefiguring subsequent studies of Signal Known Exactly (SKE) versus
Signal Known Statistically (SKS) tasks.

But white noise, although providing relatively simple statistical analysis, was found to be a too
simplified vision of actual clinical backgrounds. Researchers switched to correlated noise, which was
meant to better represent the influence of projected anatomical structures in radiographic images.
Myers et al. [Myers, 1985], Bochud et al. [Bochud, 1999a], and Burgess et al. [Burgess, 2001] showed
that performance in detection tasks was dependent on noise correlation level, and used the noise
frequency power spectrum (NPS) as a parameter to match computer-generated backgrounds and
clinical images statistics. In a recent study, Burgess and Judy [Burgess, 2007] used correlated

backgrounds with NPS content given by NPS(f)~ 7, and linked the performance of human
observers in a nodule detection task to the slope £ of a log-log power spectrum plot against
frequency f . For clinical images (= 3), this implied that the correlations cause the observer’s
performance to decrease as the lesion size increases, as opposed to white noise (£ =0). Similar

conclusions have been drawn by Judy et al. [Judy, 1997] with disks and Gaussian signals in white and
correlated noise. Based on NPS match between synthesized and clinical backgrounds, Rolland and
Barrett [Rolland, 1992] developed a method they coined lumpy backgrounds in order to generate
correlated noise with adjustable statistical properties by summing bright blobs, or lumps, assumed to



mimic x-ray attenuation processes in heterogeneous matter. Later, Bochud et al. adapted the
method specifically to mammography and improved visual and statistical realism of the synthetic
images [Bochud, 1999b].

Besides projection radiography, correlated noise has been used to simulate tomographic
reconstructed images in nuclear medicine: Abbey and Barrett, for example, showed that human
observers were able to detect more subtle lesions when exposure time was increased, and that their
performance was degraded as anatomical variability extended into higher spatial frequencies [Abbey,
2001b].

Anatomical noise has indeed been shown to be the main limiting factor in mammography: in a study
with digital mammograms and filtered white noise (NPS(f)~ ), Burgess et al. [Burgess, 2001]

observed the same positive contrast-detail slope effect for both kinds of backgrounds, and thus
showed that the breast structure could not be considered as purely random noise. With an
anthropomorphic breast phantom study, Huda et al. [Huda, 2006] also showed that the detection of
millimeter-sized lesions was mainly limited by anatomical noise. Bochud et al. [Bochud, 2000]
showed that the assumption of stationarity (statistical properties independent of the location in the
image) did not hold for mammograms, as opposed to computer-generated backgrounds that are
generally stationary by construction. While the nonstationarities are usually not critical and
stationarity within the boundaries of the images can often be assumed, Zhang et al. [Zhang, 2006],
showed that human observers seemed to be able to adapt their detection strategy in presence of
very strong local nonstationarities, and perform better than on stationary backgrounds.

In order to increase the realism of the tasks, psychophysicists also tried using actual clinical
backgrounds in their studies. For example, the influence of anatomical structure on spherical nodules
detection was studied in lung radiography [Samei, 1998; Baydush, 2001], IRM and bone imaging
[Brettle, 2007], and mammography. As breast masses are usually roughly spherical, projected
spheres [Bochud, 2000; Abbey, 2002] or Gaussian signals [Abbey, 2001a] have often been used as
signals for studying human detection performance with mammographic backgrounds. This method
provided so-called hybrid images (real backgrounds + synthetic signals) that represented conditions
much closer to actual clinical tasks than the first simplified studies. Recently, advances have been
made in the breast lesion simulation area, allowing psychophysicists to synthesize highly realistic
signals [Ruschin, 2005; Saunders, 2006]. Based on the analysis of the properties of actual lesions,
these signals offer a virtually unlimited range of shapes and sizes, while keeping visually realistic
properties.

While traceability of analytical (sine waves, spheres, Gaussians) signals and computer-generated
backgrounds statistics had allowed psychophysicists to focus on fundamental understanding of
detection tasks, studies with realistic hybrid images were usually more clinically oriented. Compared
to actual clinical data, the hybrid images were convenient for keeping a total control over the
reference classification (signal absent/present), and the lesion location and profile.

Recently, Chawla et al. [Chawla, 2007], Ruschin et al. [Ruschin, 2007b], and Samei et al. [Samei, 2007]
used such images to examine the potential of dose reduction in screening mammography. Through
ROC studies, they all concluded that, compared to current clinical practice, a dose reduction of about
50% would lead to an overall performance reduction (mainly due to a degradation of
microcalcification detection and masses discrimination), but that masses detection would only be



marginally altered. Such findings again emphasize that low-contrast signals detection is limited
mainly by anatomical noise rather than quantum noise, and definitely leave room for improvement
between radiation protection and medical imaging concerns. They also question the way current
mammography protocols, optimized for homogeneous phantoms without anatomical structures, are
developed.

Psychophysical studies have also found applications in the past and much debated topic of screen-
film (SF) to digital systems transition. Lai et al. inserted microcalcifications on anthropomorphic
breast phantom images, comparing SF, flat panels, and charged-coupled devices systems, and
demonstrated the improvement of microcalcifications visibility when magnification was used with
digital systems [Lai, 2005].

Finally, hybrid images and psychophysical studies offered a handy framework for studying digital
image compression: Suryanarayanan et al. [Suryanarayanan, 2005] inserted simulated masses and
microcalcifications into digital mammograms, and compared the detection performance across a
wide range of data compression ratios. Masses detection was found not to be altered, even for
compression ratios up to 30:1, but microcalcifications were significantly less detectable for ratios of
more than 15:1.

To summarize, psychophysics have found a wide range of areas of interest and purposes. With
analytical signals such as sine waves, disks, projected spheres, or realistic masses combined to white
noise, correlated noise, phantom images or actual clinical backgrounds, detection tasks have been
conducted in a various medical imaging modalities: angiography, chest imaging, nuclear medicine,
MRI, or mammography, to cite only but a few. With absolute control over the backgrounds and/or
the signals, researchers have been able to analyze most steps of the diagnostic processes, from
image acquisition to final decision and data archiving.

Intuitive approach to model observers

In many psychophysical studies, experimenting with human observers was not the only goal.
Gathering sufficient data and statistics from radiologists or medical physicists may be costly and time
consuming, and directly generalizing the conclusions to other experimental conditions is complex.
Moreover, human observers are known to be prone to intra- and inter-observer variability, coming
from internal (weariness, tension, motivation, attention) or external (light, noise) perturbations
sources, which add uncertainty to the intrinsic experience level of the observers.

Ultimately, a model of human visual system and information processing could solve all these issues:
once correctly calibrated, one could compute the average human observer performance for a task
given several conditions, and optimize all the imagery chain in order to maximize the performance
level. Unfortunately, coupling our current knowledge of visual perception to that of decision-making
processes is so far too complex. For that reason, researchers have used the same approach with
models as with human observers over the years, starting from simple patterns on white noise to
current experiments with clinical backgrounds and signals.

Over the years, two model observers approaches have made their way in medical imaging: the ideal
and the human-like model observer. The ideal observer extracts all information available in the
image and maximizes the performance, while the latter attempts to reproduce or predict human



decisions. For the present work, we have focused on the second approach and an objective, task-
based definition of image quality [Barrett, 2004], and we have tried to constantly link human and
mathematical models decisions and performance levels.

In this section, we present an intuitive approach to the most commonly used model observers from
the literature, in order to introduce the reader to the more mathematical descriptions that can be
found in the papers in section 3.

Quite surprisingly, most models of human vision used in medical imaging are linear. For such models,

the response /1,. to animageg; is simply given by:
A=wg+e (1)

Wwin Eq.(1) is called the model template, and both wand g, are expressed as 1D vectors before

computing the dot product (superscript " is for transposition operator). is an optional internal noise

term that may be used to model decision variability given the same image g, .

Once computed from Eq.(1), the observer’s response A is used as a decision variable for the task

under study. In an M-AFC task, where the signal is known to be present at one of the M locations,

and absent at the (M-1) others, the model will compute /1i for the i=1, 2, ..., M possible locations, and

select the one that obtains the highest response. In a ROC task, where the observer is requested to

rate his degree of confidence that the signal is effectively present in an image g, on a continuous or

discrete scale, A, can directly be used, after having been mapped to the discrete scale if necessary.

In the absence of internal noise, the differences between the model observers reside only in their
templates w . Intuitively, the templates may be defined as the way the models “perceive” a given
signal in a given background. Mathematical expressions or empirical parameters set the rules
according to which the signals are processed to obtain the templates. Visual examples are given in
Fig. 1, for a signal corresponding to a projected sphere.

The most basic model observer is the region of interest (ROI) observer. Based on the fact that the
signal presence (bright area) implies local high pixel values, the ROl observer simply integrates them
over the area covered by the signal. This ROl observer is the ideal observer for constant amplitude
signals in white noise, but this naive approach is of course suboptimal in presence of more clinically
realistic signals or backgrounds.

Another simple model is the non-prewhitening matched-filter (NPW). This model uses the signal 2D
profile itself as template in Eq.(1). The NPW model thus uses full knowledge of the signal to be
detected, but no information about the backgrounds. For any kind of signal, it corresponds to the
ideal observer in white noise but, again, fails to maintain a good performance level with more
complex backgrounds.

10
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CHO-DDOG CHO-Gabor

Fig. 1. Examples of 2D model observers’ templates in the spatial domain (adapted from Castella et al.
[Castella, 2007b]). The region of interest (ROI) template is a simple binary image corresponding to the area
covered by the signal. The non-prewhitening matched-filter (NPW) observer template corresponds to the
actual signal. The NPW observer with an eye-filter (NPWE) template filters the signal with an experimental
human eye contrast sensitivity function. The channelized Hotelling (CHO) with dense differences of
Gaussians (DDOG) or Gabor channels models human vision as a response to a limited number of frequency
or orientation channels. The human linear template (HLT) is derived a posteriori from human observers’
responses.

The next step in model observer science was to incorporate information about human visual system
and its features into the model observers. Burgess [Burgess, 1994], on the basis of the early results
with sine waves, added an empirical model of human eye contrast sensitivity function (CSF) into the
NPW model. The CSF basically describes human eye’s ability to perceive a signal as a function of its
frequency content, and had been found to peak at middle frequencies (about 4 cycles per degree of
visual angle) and decreasing rapidly towards low and high frequencies. This translates the fact that
human observers are not efficient for detecting very large or very small signals in noise. In the NPW
with an eye-filter (NPWE) model, the signal is thus filtered by the CSF, selectively suppressing or
enhancing its frequency content in order to model human eye perception. This model has been
successfully applied to predict human results for detecting synthetic thrombus embedded on x-ray
coronary angiograms [Eckstein, 1998], spherical nodules [Abbey, 2002] or digitized masses [Burgess,
2001] embedded on mammograms, as well as for studying medical images compression algorithms
[Suryanarayanan, 2005; Zhang, 20044, b].

As discussed before, correlation in the noise patterns have a critical effect on the performance of the
simple NPW model. A way to overcome this problem is to incorporate knowledge about the
backgrounds statistics and to decorrelate the noise prior to matched filtering. This is exactly the aim
of the Hotelling observer, which performs a prewhitening operation using the covariance matrix of
the backgrounds, in order to derive the template corresponding to a given signal. When the statistics
are Gaussian, this observer is the best linear observer [Barrett, 1998, 2004; Eckstein, 1998, 2000;
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Rolland, 1992]. In presence of white noise, it simply reduces to the NPW model, since the only
nonzero elements of the backgrounds covariance matrix are on its diagonal.

However, the Hotelling observer suffers two disadvantages when used to model clinically relevant
tasks. First, obtaining a reasonably stable estimate of the backgrounds covariance matrix is needed
for computing the observer template, which requires a large amount of images. The rule of thumb in
such cases is a number of images equal to about ten times the number of pixels per image, which is
tremendous even for reasonably small 128 by 128 pixel regions of interest. Second, this observer
does not take into account any human visual system features and its limited ability to decorrelate the
noise. In most cases, the Hotelling observer performance is thus much higher than that of human
observers, and comparing model and human results may be challenging.

Fortunately, these two issues can be solved at once in a rather simple and mathematically elegant
way by constraining the Hotelling observer to a limited set of N, basis functions, or channels [Myers,
1987; Gallas, 2003]. The number of elements of the covariance matrix as seen through these
channels is reduced to NZ, greatly reducing the computing time and complexity. In addition, the
channel basis can be chosen in order to reflect human visual system processes. For example, it is
believed that cells in the visual cortex preferentially respond to visual stimuli with a specific spatial
frequency and/or orientation [Movshon, 1978; Marcelja, 1980]. For this reason, channelized
Hotelling observers (CHO) using basis functions like square band-pass radial frequency filters [Myers,
1987; Abbey, 2001b, 2002], differences of Gaussians [Abbey, 2001b,2002] or Mesa filters [Burgess,
1997], or Gabor functions [Eckstein, 1998, 1999; Zhang, 2004a, b, 2005, 2007], have been used with
various kinds of backgrounds. Other basis functions like Laguerre-Gauss channels [Barrett, 1998;
Burgess, 2001; Suryanarayanan, 2005], which are not related to human vision features and were
used in some studies solely to reduce the dimensionality of the images, were not considered in the
present work.

Breast tomosynthesis: the answer to tissue overlap issues?

All studies about detection performance presented in the previous sections were conducted in the
framework of conventional, planar radiography. One general conclusion from these studies is that
structured or anatomical noise has a major degrading effect on human performance [Bochud, 19993;
Burgess, 2001]. In mammography, these tissue superposition effects can mislead the radiologists and
lower both sensitivity and specificity. Therefore, a method that could reduce this noisy component
directly during image acquisition by providing three-dimensional information about the breast
instead of two-dimensional projections would be desirable.

Breast tomosynthesis (BT) is a refinement of the conventional tomography method, and allows to
reconstruct an arbitrary number of in-focus planes retrospectively from a sequence of typically 7 to
11 low-dose projection radiographs acquired during a single motion of a conventional x-ray tube
[Dobbins, 2003; Smith, 2005]. Although still relatively new and much less investigated by the
scientific community than planar mammography, BT potential benefits include 3D tissue localization
at a dose comparable to one conventional mammographic exposure, better-contrasted images and
better depiction of masses borders even with dense breasts, reduction in recall rates, and higher
positive predictive value [Park, 2007]. BT technique is still currently under development, but several
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studies have already shown its potential for improving accuracy compared to mammography
[Suryanarayanan 2000, 2001; Chan, 2005; Gong, 2006; Ruschin, 2007a].

Suryanarayanan et al. [Suryanarayanan, 2000, 2001] investigated the potential gain on detection
performance BT could offer. Their experiments comparing different tuned-aperture tomosynthesis
reconstruction methods to digital mammography for imaging composite phantoms showed that
threshold contrast characteristics were significantly better for all tomosynthesis methods than those
with planar mammography. Significant differences between these two imaging modalities in a disk
detection experiment were observed, in favor of BT, in a study involving board-certified radiologists.
The authors concluded that breast tomosynthesis could improve visualization of valuable diagnostic
information.

Another application of better-contrasted tomosynthesis images in dense breasts was investigated by
Chan et al. [Chan, 2005], whose preliminary results on a computer-aided detection applied to 3D
localization of breast masses led to excellent results.

Recently, Gong et al. studied the detection of a spherical signal embedded into a synthetic breast
model, comparing mammography to BT. Five physicists participated to these experiments. The
authors showed that the 5-millimeter lesion was statistically significantly better detected with BT
than in digital mammography [Gong, 2006].

Ruschin et al. used hybrid images with synthetic breast masses and anatomical backgrounds to show
that, using the same acquisition dose in mammography and BT, lesion projected intensity in BT could
be reduced by about four times compared to mammography, while keeping the same human
observers’ performance level [Ruschin, 2007a].

Most of BT evaluation studies have been conducted with human observers only. The model
observers presented in the previous sections, which have been developed and tested with success in
various medical imaging fields, are indeed only in the early stage of development in tomosynthesis. A
study by Gifford et al. investigated a scanning noiseless channelized Hotelling Observer and
compared different number of projections and angular span combinations [Gifford, 2008]. Reiser et
al. compared filtered-backprojection and iterative maximume-likelihood expectation maximization
reconstruction methods with a prewhitening observer in a simplified detection task with a spherical
signal in a homogeneous phantom [Reiser, 2008]. In another study, Pineda et al. used a channelized
Hotelling and non-prewhitening model observers with and without eye-filters for optimizing a
tomosynthesis system for the detection of lung nodules [Pineda, 2006].

To summarize, BT currently offers challenging perspectives in various research fields. They include
acquisition and display techniques optimization [Dobbins, 2003; Carton, 2006; Heberhard, 2006;
Maidment, 2006], as well as reconstruction and filtering methods [Wu, 2004; Chen, 2006;
Mertelmeier, 2006], and patient dose comparison with other imaging modalities. Finally, detection
strategies, human or model observers’ performances in the particular framework of BT images, and
comparison with other imaging techniques are far from being understood and characterized.

Goals of the study

The aim of this work was to provide a step-by-step and objective approach to a better understanding
and modeling of clinically realistic detection tasks in mammography, starting with an in-depth study
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of the statistical properties of mammographic backgrounds, before conducting various
psychophysical studies with different backgrounds and signals.

The project was developed towards the following goals:

- To study the statistical properties of mammographic textures depending on the breast
density and to develop an objective breast density classification algorithm based on these

properties.

- To optimize the Clustered Lumpy Backgrounds technique in order to generate synthetic
mammographic backgrounds, while maximizing both visual and statistical realism, and to
validate these images.

- To perform detection experiments of a simple spherical signal modeling a tumor with real
and synthetic mammographic backgrounds and to compare the performance of human
observers for this Signal Known Exactly (SKE) task to that of existing or adapted models.

- To conduct detection tasks with realistic benign and malignant signals varying throughout the
experiment (Signal Known Statistically, SKS) and to study the influence of the signal size,
shape, and variability, on human and model observers’ performance.

- To objectively compare detection performance of realistic masses with clinical backgrounds
in mammography and tomosynthesis.
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2. PhD milestones

The thesis core is composed by the articles in section 3, which represent the five main milestones of
the project: understanding, creating, experimenting, enhancing realism, and looking towards the
future (see Fig. 2).
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Fig. 2. Schematic representation of the PhD milestones.

Statistically understanding mammographic texture

This paper [Castella, 2007a] deals with the statistical properties of digital mammograms.
Complementary texture analysis methods were used in order to characterize mammograms regions
of interest (ROI) with mathematical features. Using these features, semi-automated classifiers for
assessing breast density according to the BI-RADS scale [Obenauer, 2005] were developed. The
classifiers used Bayesian rules or Linear Discriminant Analysis in order to determine which of the four
classes of the BI-RADS scale should be attributed to single regions of interest, whole breast, or breast
pair.
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(@) Gold Standard

Bayesian Classifier Density 1 Density 2 Density 3 Density 4

Density 1 14 3 o] 0
Density 2 5 30 6 1
Density 3 0 14 86 3
Density 4 0 0 10 4
(b) Gold Standard

LDA Classifier =~ Density 1 Density 2  Density 3  Density 4

Density 1 16 3 0 0
Density 2 3 31 4 1
Density 3 0 13 95 3
Density 4 0 0 3 4

Fig. 3. Confusion matrix obtained for the Bayesian classifier (a), and the Linear Discriminant Analysis (LDA)
classifier (b) [Castella, 2007a]. The Gold Standard is the reference classification established by radiologists. In
this example, the regions of interest of both breasts are used for determining the breast density. For
comparison, the exact agreement upper limit between two radiologists is estimated to be around 80%
[Karssemeijer, 1998].

With these three analysis levels and the information provided by the statistical features, an excellent
agreement with the reference classification established by three radiologists was obtained, as
illustrated in Fig. 3. The classifiers thus provided an objective and reproducible method for assessing
breast BI-RADS density, which is an indicator for breast cancer risk.

Creating visually and statistically realistic breast texture

This paper [Castella, 2008] describes the improvement of the Clustered Lumpy Backgrounds (CLB)
technique using a genetic algorithm. CLB are images produced by the random superposition of blobs
of various shapes. The free parameters of the image generation technique can be tuned in order to
produce a wide range of textures with different visual and mathematical properties [Rolland, 1992;
Bochud, 1999b].

Using the statistical features described in the previous section, a Mahalanobis distance in the
features space was defined. This distance was used as a cost function to evolve a genetic algorithm,
in order to improve the original CLB parameters and to produce images closer to real, clinical
mammograms ROI. Several optimized variations of the CLB model were then evaluated through
psychophysical studies involving radiologists and radiographers (see examples in Fig. 4). This showed
that the optimized model improved both visual and statistical realism of the synthetic images. This
“second-generation” CLB technique thus allowed to generate any amount of images for
psychophysical studies, while guaranteeing their statistical traceability and their realism. The
proposed approach could readily be adapted to other kinds of images.
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(b) OpEx99

(e) Simpori (f) Simpiso ¥ ¢

Fig. 4. Examples of realizations for the different types of Clustered Lumpy Background (CLB) variations
[Castella, 2008]. The 2-layer variations are created with blobs having two different sizes. (a) Region of
interest selected from a real mammogram; (b) original 1-layer CLB, Opex99 parameters [Bochud, 1999b]; (c)
2-layer CLB, isotropic orientation of the clusters; (d) 2-layer CLB, favored orientation of the clusters; (e) 1-
layer CLB, favored orientation of the clusters; (f) 1-layer CLB, optimized version of (b).

Experimenting with a simple spherical signal

The next step of the project was to use the CLB and real mammographic backgrounds in
psychophysical detection experiments with a simple spherical signal [Castella, 2007b]. The
performance of human observers was analyzed and compared to linear model observers adapted
from the literature. Additionally, the human observers’ linear templates (HLT) were estimated from
their responses (Fig. 5). This provided a way to evaluate not only their general detection
performance, but also their strategies.

-o—-CLB
—&—- Real backgrounds

Normalized profile
o

—O-CLB
== Real backgrounds
Signal

Normalized profile

0.0 0.1 0.2
Radial Frequency [cyc/pixel]

Fig. 5. Human observer linear template obtained for the spherical signal considered in Fig. 1. [Castella,
2007b] (a) Spatial domain 2D template with Clustered Lumpy Backgrounds (CLB). (c) Same with
mammographic backgrounds. Profiles of both templates in (b) the spatial domain and in (d) the Fourier
domain.
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The main results of this study were that the HLT derived for real and synthetic backgrounds were not
significantly different, and that they could reproduce the human observers’ performance within 5%
in terms of percent of correct answers. This study also emphasized the significance of local statistics
of the backgrounds, since the detection performance was found to be significantly higher with the
real backgrounds, which have a smaller local variance when the overall variance is matched with that
of CLB. In other words, human observers processed the real and synthetic backgrounds the same
way, but were too sensitive to local noise to obtain the same performance with both kinds of images.

Enhancing realism with benign and malignant signals

The goal of the fourth step was to get closer to clinical tasks, by introducing realistic signals into the
experimental schemes [Castella, 2009a]. Simulated benign and malignant breast lesions mimicking
real masses, designed by Saunders et al. [Saunders, 2006], were used. For this series of
psychophysical experiments, another clinically relevant characteristic was also introduced: the
detection performance when the signal was the same throughout a given task (Signal Known Exactly,
SKE) was compared to the cases where the observers were not given exact information about the
signal shape and/or size (Signal Know Statistically, SKS). Again, the performance of the human

observers was compared to that of models (Fig. 6).
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Fig. 6. Root mean square error (RMSE) in d' units between the generic human observer and the different
model observers for Signal Known Exactly (SKE) tasks for noiseless (grey) and noise level-optimized (black)
models with benign (a) and malignant (b) simulated masses. Stars indicate performance levels that are
significantly different from humans (F-test, p<.05). Models acronyms are detailed in section 1.

As for the simple spherical signal task, human data could be fitted with some models taking into
account human visual system properties, and with the HLT. Quite surprisingly, human and model
observers obtained very similar performances in SKE and SKS tasks, as long as the lesion size was
kept constant. A performance level drop, however, was observed when the information about the
exact signal size was not given to the observers. These results suggest that evaluating the
performance in detection tasks through human and/or model observers studies could be done
adequately even with a small set of signals covering the size range of clinical interest.
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LooKking further: towards objective evaluation of breast tomosynthesis
potential

The last part of the project consisted in applying the knowledge about model observers acquired in
digital mammography (DM), to the emerging breast tomosynthesis (BT) modality [Castella, 2009b].
Three-dimensional breast reconstruction in BT offers exciting insights for early detection of breast
cancer, with the opportunity of removing the superposition effect that lowers sensitivity and
specificity in DM. As it is still a technique at a prototype stage, much improvement is expected within
the next years, concerning the acquisition parameters like scan angle span and number of
projections, or reconstruction algorithms and image processing.

Although being more and more used in mammography, model observers are still in their early stages
in BT. In this work, the images and results from a human observer study by Ruschin et al. [Ruschin,
2007a] were used to compare DM and BT with the same set of matched hybrid images. These were
generated by adding realistic mass signals to clinical images of patients who underwent both
screening mammography and tomosynthesis exams.
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Fig. 7. 4-Alternative Forced-Choice digital mammography task performance of the model observers as a
function of signal intensity S [Castella, 2009b]. For comparison, human results are indicated with filled
circles, and performance in breast tomosynthesis (BT) task with open circles. NPWE* values correspond to
the NPWE model with internal noise intensity level that minimizes the error over the DM tasks

Again, a good agreement was obtained between human observers and models using human visual
system properties (see Fig. 7). In particular, it was shown that BT potential for detecting low-contrast
lesions could be evaluated through model observers studies. This opens the way to testing future BT
developments with such models, providing an objective and reproducible means for assessing
diagnostic performance in BT, or comparing it to DM.
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3. Papers

The following papers are inserted in this Section. They correspond to the five milestones listed in
Section 2.

Statistically understanding mammographic texture

[Castella, 2007a] C. Castella, K. Kinkel, M. P. Eckstein, P.-E. Sottas, F. R. Verdun, and F. O. Bochud,
“Semiautomatic Mammographic Parenchymal Patterns Classification Using Multiple Statistical
Features,” Academic Radiology 14, 1486-1499 (2007).

Creating visually and statistically realistic breast texture

[Castella, 2008] C. Castella, K. Kinkel, F. Descombes, M. P. Eckstein, P. Sottas, F. R. Verdun, and F. O.
Bochud, “Mammographic texture synthesis: second-generation clustered lumpy backgrounds using a
genetic algorithm,” Opt. Express 16, 7595-7607 (2008).

Experimenting with a simple spherical signal

[Castella, 2007b] C. Castella, C. K. Abbey, M. P. Eckstein, F. R. Verdun, K. Kinkel, and F. O. Bochud,
“Human linear template with mammographic backgrounds estimated with a genetic algorithm,” J.
Opt. Soc. Am. A 24, B1-B12 (2007).

Enhancing realism with benign and malignant signals

[Castella, 2009a] C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. S. Saunders, E.
Samei, and F. O. Bochud, “Mass detection on mammograms: influence of signal shape uncertainty on
human and model observers,” J. Opt. Soc. Am. A 26, 425-436 (2009).

Looking further: towards objective evaluation of breast tomosynthesis
potential

[Castella, 2009b] C. Castella, M. Ruschin, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, A.
Tingberg, and F. O. Bochud, “Masses detection in breast tomosynthesis and digital mammography: a
model observer study,” to appear in Proc. SPIE Medical Imaging (2009).
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Post-publication comments:

The reader should be aware of the following typos and updates about the published papers.

First, the transpose operator in the covariance matrix formula, Eq. 3 in [Castella, 2007a] and Eq. 6 in
[Castella, 2008] was not correctly placed. The correct expression, which was used in the
computations, is:

K=221ﬁ<v—u><v—mf

Second, in the last paragraph of Section 2.G in [Castella, 2007b], ROC obviously does not stand for
radius of curvature. It is the acronym of Receiver Operating Characteristic.

Finally, the match between human results and the NPWE model in the study with the phantom mass
[Castella, 2007b] can be highly improved with the same internal noise addition mechanism as in the
subsequent papers. In the phantom mass study, internal noise was added to the NPWE decision
variable as a uniformly distributed random variable, which is quite a naive approach.

If the internal noise is described by a zero-mean, Gaussian distributed random variable instead, with
a variance chosen in order to match the performance between the NPWE model and the human
observers with CLB, the AUC for the NPWE model becomes 0.74 + 0.02 with CLB (human observers:
0.73 £ 0.02), and 0.81 + 0.02 with real backgrounds (human observers: 0.84 + 0.02). These updated
results confirm the excellent potential of the NPWE model for matching human observers’
performance level.

Note concerning the following papers: [Castella, 2007], [Castella, 2008], and [Castella, 2009a]

These papers were published in J. Opt. Soc. Am. A and Optics Express and are made available as
electronic reprints with the permission of OSA. One print or electric copy may be made for personal
use only. Systemic or multiple reproduction, distribution to multiple locations via electronic or other
means, duplication or any material in these papers for a fee or for commercial purposes, or
modification of the content of the papers are prohibited.

Copyright OSA (http://www.osa.org/pubs/osajournals.org).
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Semiautomatic Mammographic Parenchymal Patterns
Classification Using Multiple Statistical Features’

Cyril Castella, MSc, Karen Kinkel, MD, Miguel P. Eckstein, PhD, Pierre-Edouard Sottas, PhD
Francis R. Verdun, PhD, Frangois O. Bochud, PhD

Rationale and Objectives. Our project was to investigate a complete methodology for the semiautomatic assessment of
digital mammograms according to their density, an indicator known to be correlated to breast cancer risk. The BI-RADS
four-grade density scale is usually employed by radiologists for reporting breast density, but it allows for a certain degree
of subjective input, and an objective qualification of density has therefore often been reported hard to assess. The goal of
this study was to design an objective technique for determining breast BI-RADS density.

Materials and Methods. The proposed semiautomatic method makes use of complementary pattern recognition tech-
niques to describe manually selected regions of interest (ROIs) in the breast with 36 statistical features. Three different
classifiers based on a linear discriminant analysis or Bayesian theories were designed and tested on a database consisting
of 1408 ROIs from 88 patients, using a leave-one-ROI-out technique. Classifications in optimal feature subspaces with
lower dimensionality and reduction to a two-class problem were studied as well.

Results. Comparison with a reference established by the classifications of three radiologists shows excellent performance
of the classifiers, even though extremely dense breasts continue to remain more difficult to classify accurately. For the two
best classifiers, the exact agreement percentages are 76% and above, and weighted k values are 0.78 and 0.83. Further-
more, classification in lower dimensional spaces and two-class problems give excellent results.

Conclusion. The proposed semiautomatic classifiers method provides an objective and reproducible method for character-

izing breast density, especially for the two-class case. It represents a simple and valuable tool that could be used in
screening programs, training, education, or for optimizing image processing in diagnostic tasks.

Key Words. Image analysis; pattern recognition; feature extraction; mammography.
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factors, and breast density (1-7). Breast density as a factor
of risk was first investigated by Wolfe (8), who defined a
four-grade density scale on the basis of the patterns and
textures observed on mammograms. Later, the BI-RADS
(Breast Imaging Reporting Data System) density scale
was developed by the American College of Radiology to
standardize mammography reporting terminology and as-
sessment and recommendation categories (9,10). The BI-
RADS density classification was created to inform refer-
ring physicians about the decline in sensitivity of mam-
mography with increasing breast density. BI-RADS
defines breast density 1 as almost entirely fatty, density 2
as scattered fibroglandular tissue, density 3 as heteroge-
neously dense tissue and density 4 as extremely dense
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tissues. It was not intended to serve as a method of mea-
suring breast density percentage, although as per Wolfe’s
scale (11), correlations with this more objective factor do
exist (12). In clinical American and European conditions,
the breast density of a given patient is typically evaluated
and reported by a radiologist using BI-RADS on the basis
of the simultaneous display of two mammograms per
breast.

However, one of the difficulties for correctly assessing
breast density is that the BI-RADS density scale defini-
tions are rather subjective. A certain interpretational free-
dom prevents perfect interobserver and even intraobserver
reproducibility (13,14). On the other hand, numerous pat-
tern recognition and classification techniques have been
developed and can be directly applied to this task (15).
This is why different statistical approaches have been ex-
plored in the last few years in order to develop an objec-
tive classifier of mammograms according to Wolfe or the
BI-RADS scale. These techniques have made use of vari-
ous pattern recognition parameters to statistically describe
the whole breast or part of it: fractal dimension (16-18),
gray level histogram properties (19,20), moments
(17,18,21), gray level variations matrices (17,20), or max-
imum response filters (22). These descriptions have been
combined with several general classification algorithms:
Bayesian classification (16,17), linear discriminant analy-
sis (LDA) (20), nearest neighbor rules (21), neural net-
works, and textons (22).

The goal of this study was to develop a semiautomatic
method for assessing the BI-RADS density category using
features extracted on mammograms. For this purpose, we
combined a large number of statistical features computed
from manually selected regions of interest (ROIs) with
LDA and Bayesian predictors. Special care was applied in
order to assess the robustness of the three distinct classifi-
ers we developed, and the validation of their individual
performance. In contrast to most previous studies, we
worked on multiple ROIs per mammogram. Homogeneity
in both size and emplacement was retained in order to
facilitate the interpatient comparisons of the statistical
features without bias due to different breast sizes and
shapes.

Each classifier was trained and tested using the leave-
one-out technique to classify a set of 1408 ROIs extracted
from 88 patients, on the basis of all computed features.
Additionally, we averaged the individual ROI results over
multiple ROIs from the same breast and/or patient. Fi-
nally, optimal subsets of features were computed and the
classifiers ran the same processes. The results were then
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compared to a reference classification established upon a
consensus of three radiologists through weighted « statis-
tics.

The developed semiautomatic classifiers may have
valuable applications in screening exam procedures, to
help radiologists objectively determine breast density in a
reproducible way. Patients with higher density breast tis-
sue may thus receive special attention and specific image
display optimization, because pathologies tend to be hid-
den by dense backgrounds. The field of potential useful-
ness of such classifiers extends to training and education
as well.

MATERIALS AND METHODS

Mammogram Database

The image database consisted of a set of 352 digital
mammograms collected at the Clinique des Grangettes,
Geneva, Switzerland, from patients who underwent
screening exams. For each of the 88 patients, one cranio-
caudal (CC) and one mediolateral oblique (MLO) view
mammogram per breast was considered. All mammo-
grams were obtained using automatic exposure control
(27- to 32-kV voltage) on a GE Senograph 2000D full-
field digital detector (23-25). This means that not only
the tube loading, but also the anode/filter combination and
tube potential were selected automatically in a process
involving a preexposure, depending on the thickness and
density of the compressed breast, in order to control the
dose delivered in the central breast region (26). Mammo-
grams were outputted as 12-bit processed images, with
0.1 X 0.1 mm pixel size. All mammograms showing any
sign of abnormal mammographic features such as masses,
architectural distortion, or clusters of microcalcification
were excluded from this study.

Selection of Regions of Interest

The first step consisted of the manual choice of four
ROIs per mammogram. The ROIs were 256 X 256 pixel
square regions chosen in the central breast region, about
half way between the nipple and the chest wall. One ex-
ample case is shown in Figure 1. The location choices
were made under the control of the radiologists involved
in the study and allowed us to obtain four nonoverlapping
ROIs per mammogram, while covering most of the breast
density. This location also ensured that we performed our
analysis using only breast tissue, without bias introduced
by the pectoral muscle or imaging artefacts.
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Figure 1.
interest.

Statistical Description

All ROIs were then characterized by the statistical
quantities defined below. Unlike a global analysis of the
whole breast projection, the square and uniform shape of
all ROIs greatly simplifies the computation and interpa-
tient comparison of these features.

In order to capture as much information as possible,
we extracted 18 different and complementary statistical
quantities from each ROI. Due to the diversity of defi-
nitions found in the literature for a given quantity, all
expressions used in this work are presented explicitly
in the Appendix. They involve quantities derived from
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the gray level histogram like the standard deviation,
skewness, and kurtosis but also balance (15,27). Gray
level co-occurrence matrices (GLCMs) provided quan-
tities like energy, entropy, cmax, contrast, and homoge-
neity (28-30). From the primitive matrix (PM), we
derived the short primitive emphasis (spe), the long
primitive emphasis (Ipe), as well as gray level unifor-
mity (glu) and primitive length uniformity (plu) (28).
The fractal dimension was calculated by a box-count-
ing method (16,17,31). Finally, the neighborhood gray-
tone difference matrix (NGTDM) provided the coarse-
ness, contrast, complexity, and strength (32).
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Features derived from the gray level histogram charac-
terize the distribution of gray levels in a comprehensive
way, in particular, its shape and its symmetry. Balance is
closely related to skewness and describes the asymmetry
of the gray level histogram.

GLCMs are a powerful tool for obtaining information
about the spatial relationships of gray levels in structural
patterns. The ROIs were linearly rescaled from 12 to 4
bits (16 gray levels), reducing the computing time by a
factor of 65,536 and ensuring that the GLCM elements
were essentially non-zero. Following, for each ROI, 20
co-occurrence matrices were computed, using directions
of 0°, 45°, 90°, and 135° and distances of 1, 3, 5, 7, and
9 pixels. These directions correspond to the four natural
directions for a square image, and the corresponding dis-
tances describe structures from the millimeter to the centi-
meter range, which are typical for the breast texture. Fi-
nally, five scalar features (energy, entropy, maximum,
contrast, and homogeneity) were averaged on these 20
matrices.

Primitives matrices or acquisition length parameters
characterize the shape and the size of the textural patterns
in an image. GLCM features are four scalars extracted
from a matrix B, where each element B(a,r) is the num-
ber of primitives of length r and gray level a, a primitive
being a contiguous set of pixels with the same value. In
our case, B was computed from the rescaled ROI as a
16 X 256 matrix.

Fractal dimension was calculated using the method
described in detail by Caldwell (16) and Byng (17). The
pixel value was seen as z-coordinate (x and y being its
position in the ROI), and ruler sizes € of 1 to 10 pixels
were used to plot the log of the exposed surface A(e)
versus log(e). From this plot, the fractal dimension was
computed using Equation 26 given in the Appendix. This
feature indicates the degree of complexity in the textural
patterns, a low fractal dimension denoting a rather simple
and homogeneous structure.

Finally, we used the textural features described by
Amadasun and King (32) to obtain four additional statisti-
cal parameters from the NGTDM. These features provide
a mathematical description of the texture and are sup-
posed to characterize texture properties like coarseness or
complexity in the same way as human observers would
do. ROIs were rescaled to 8 bits for the same reasons as
for the GLCM and PMs.

The statistical characterization was also performed at
another scale on the same ROIs. For this, all ROIs were
averaged on square blocks of 8 X 8 pixels (thus leading
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Table 1
Summary of the Texture Analysis Methods and the
Corresponding Features

Analysis Method Statistical Features

standard deviation
skewness

kurtosis

balance

energy

entropy

cmax

contrast

homogeneity

short primitive emphasis
long primitive emphasis
gray level uniformity
primitive length uniformity
fractal dimension

Gray level histogram

Gray level co-occurrence matrices

Primitives matrices

Fractal analysis

Neighbourhood gray-tone coarseness
difference matrix contrast’
complexity
strength

The 18 parameters in this table were computed for two scales
as described in the text, making a total of 36 features.

to 32 X 32 pixels images). All the 18 above-mentioned
quantities were then computed again on these images, and
this provided a description of the texture at another scale,
one order of magnitude higher than the first one. This
step was inspired by the fact that the structures visible on
mammograms are typically in the submillimeter to centi-
meter range. The total number of statistical features was
thus 36, corresponding by definition to the dimension N
of the classification process. Table 1 summarizes the
whole set of 18 statistical features that were computed for
each of the two scales, making a total of 36 features.

Definition of Gold Standard From
Radiologists’ Ratings

In order to get a reliable gold standard, we asked three
experienced radiologists (each of them having more than
10 years experience in radiology) to separately classify
the 88 left/right pairs of CC-view and the 88 pairs of
MLO-view mammograms, presented in random order on
a laptop screen. The screen resolution was 3.6 pixels per
millimeter, and brightness and contrast were adjusted be-
fore the reading session. The radiologists performed the
classification individually, following the BI-RADS density
scale definitions. Gold standard class was then defined for
each of the 176 pairs of mammograms from the three
radiologists’ classifications (see later).
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Classification Algorithms

The general purpose of pattern recognition is to deter-
mine to which category or class a given sample belongs
(33). In this study, the samples are not directly the ROI:
each ROI is characterized by an N-dimensional vector
containing its computed statistical features (N = 36), and
this observation vector serves as the input to a decision
rule by which one of the given classes is attributed to the
corresponding ROI. For the evaluation of the performance
of the decision rule, the obtained classification is usually
compared to a gold standard (also known as ground
truth), which is assumed to represent the perfect classifi-
cation of the samples.

All supervised classification algorithms require a set of
training samples in order to establish the decision rule
and a testing set to apply it. We used the leave-one-out
method to avoid any bias introduced by testing on train-
ing samples. In this method, the tested ROI is always ex-
cluded from the learning process, while all other remain-
ing ROIs are used to form the training set. Because the
ROIs were strictly nonoverlapping, the 15 other ROIs
selected from the same patient as the tested ROI were not
excluded from the training set. This limitation allowed us
to keep the number of training samples larger than N in
all cases, which was a necessary condition for the compu-
tation of the features vectors covariance matrices.

We used three types of classification algorithms,
namely a Bayesian classifier based on the measure of
Mahalanobis distance, a naive Bayesian classifier, and
LDA. For all methods, the samples were the N-dimen-
sional vectors characterizing the ROIs and the four den-
sity classes were used for both training and classification
phases. Concretely, each ROI (represented by its projec-
tion onto the 36-dimensional features space) was succes-
sively considered as the test ROI. The decision rules for
each classifier were computed from the training set con-
sisting of the remaining 1407 ROIs, and a density class
Cy attributed to the test ROI. The procedure was repeated
until a class had been given to each ROL.

Classic Bayesian classifier based on Mahalanobis
distance

For the Bayesian classifier, 50 ROIs per density class
were chosen randomly from the actual training set and
thus formed four subsets {S;} <=4, €ach one containing
50 samples according to the gold standard (34). Assuming
that the distribution of samples in each class could be
approximated by an N-dimensional normal distribution,
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the probability of observing a given sample v in the class
k is given by:

1

1
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where w, represents the mean vector of class k£ and Kj is
the covariance matrix of vectors in class k:
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The product (v — w)"K;'(v — w) in Equation 1 is
known as the square of Mahalanobis distance and is a
normalized measure of the distance between the sample
vector v and the class center w,. K, and w, were esti-
mated from the sets {Sy} <=4 of 50 samples randomly
chosen in the training set, to reduce computational cost
and avoid unwanted rounding effect.

Under these assumptions, a Bayesian classifier could
be defined. For a given sample v, the output of the classi-
fier was a four-dimensional vector containing the four a
posteriori probabilities p(klv),< <4 for v to belong to class
k as:

_pVp(k) _ d(vV)p.(k)

(klv) =
PV = 3 P,

“4)

The attributed class was derived from the a posteriori
probability vector components p(klv) as:

cr= Dy k- pklv), (5)
with cy being rounded to the nearest integer value to ob-
tain the class attributed to the tested sample vector v.

In Equation 4, the a priori probability set {p,(k)} <x=4
was estimated as:

1
k)y=-, 6
Pa(k) 2 (6)
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which represents the most conservative a priori assump-
tion.

Naive Bayesian classifier

For the second classifier, we implemented naive
Bayesian classification, which has been proven very pow-
erful (35), even when the assumption of feature indepen-
dence given the class, which is a sufficient condition for
this method to be optimal, is violated (36). The proposed
normalization forced the features to be independent and
also greatly simplified the computation of p(klv), since
Equation 1 could be rewritten as:

1
_vikvn,k:| [l (7)

1
YV, = WGXP[ D)

where v has been normalized in the same way as training
samples of class k to obtain the normalized vector v,,;.
The four a posteriori probabilities p(klv) were then com-
puted with Equation 4, and the attributed class with
Equation 5.

We thus modified the Bayesian classifier procedure so
that all feature distributions were within-class normalized.
In order to force a distribution to be normal, its cumula-
tive histogram was compared to the integral of the Gauss-
ian density function: the normalized value pjfof a given
parameter p/¥ is the solution of the equation:

(3)

where piik is the highest value in the original distribution
of feature j in class k.

Linear discriminant analysis

LDA implemented in Matlab Statistics Toolbox (37) is
essentially similar to the first described algorithm, except
that in Equation 3, only one pooled covariance matrix K,
is computed instead of the four K, (homoscedasticity hy-
pothesis), forcing the borders in the features space to be
hyperplanes instead of quadrics. A multivariate normal
density is then fitted to each class:

1
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Following, the decision rule used to attribute a class to
a sample is in this case a simple linear combination of the
features (37). The LDA classifier returns the class Cy cor-
responding to its position in the features space for each
tested tample. This means that the a posteriori vector had
only one non-zero component. As opposed to the classic
Bayesian classifier described here, this variant made use
of all ROIs present in the training set, without having to
define one subset S per class.

Averaging the individual ROIs classifications

These three classifiers were used to individually clas-
sify all 1408 ROIs. However, since the BI-RADS density
scale is based on an overall appreciation of the breast and
since an overall dense breast may contain one or several
ROIs that are essentially fatty, individual ROI classifica-
tion may lead to results that differ from the radiologist’s
evaluations. Therefore, we also introduced two kinds of
averaging to avoid decisions that were too localized. First,
a posteriori probability vectors [p(klv) < <4] were aver-
aged for each mammogram over the four corresponding
ROIs, and Equation 5 was used again to attribute a gen-
eral class to each mammogram, instead of one per ROL
Second, we studied the effect of averaging on the 8 ROIs
(four per mammogram) that had been defined for each
left/right pair of CC or MLO views. This corresponds to
the situation nearest to that of the three involved radiolo-
gists, who established the gold standard based on the dis-
play of a left/right pair of mammograms.

Reduction of the features’ space size and number
of classes

In order to reduce the original dimensionality of the
features vector (N = 36) to a given N’ < N and to deter-
mine for that given N’ which parameters would lead to
the best classification performance, we used standard fea-
tures extraction techniques based on the maximization of
the between-class scatter to the within-class scatter
(Fisher linear discriminant) (38—40). Concretely, the
Fisher linear discriminant gives a measure of the separa-
bility of the four density classes when only N’ features
amongst the original N ones are considered for the classi-
fication. This process was conducted for N’ = 2 and 5,
and the separability measure was computed for every
combination of N’ parameters (brute force testing). Once
the best combination had been identified, all previously
described algorithms were applied to the feature vectors
orthogonally projected on the obtained subspaces, mean-
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ing that the classifiers only used the N’ best features for
defining their classification rules.

We also examined the case of grouping BI-RADS 1
and 2 in the same density class, and BI-RADS 3 and 4 in
another. We compared the performance obtained with this
grouping being done before the training process, or after
the classification (thus, respectively, two-class training —
two-class classification and four-class training — two-class
classification).

Evaluation of the performance

We used « statistics with quadratic weights to evaluate
the performance of the classification algorithms (41-45).
This parameter represents the degree of chance-corrected
agreement between two classifications (classification algo-
rithm versus gold standard or radiologist versus radiolo-
gist) as:

_Po—Pe

K= s
1 —p.

(10)

where p, is the observed agreement proportion and p, the
agreement expected by chance alone. Both are calculated
from the confusion matrix and the quadratic weights ma-
trix, and the values of k stand between —1 and 1 (the
minimum value actually depends on p, but is always be-
tween —1 and 0). Benchmarks by Landis and Koch (46)
(adjusted by Fleiss et al. [41] for taking the weighting
process into account) are commonly used: k values below
0.4 reflect poor agreement, between 0.4 and 0.6 moderate
agreement, while it is substantial between 0.6 and 0.75
and excellent above 0.75. Weighted « is particularly well
adapted to multiclass tasks and when the classes are
rather subjectively defined, which is the case for the BI-
RADS density scale. The weighting process indeed differ-
entiates between serious (more than one BI-RADS class
difference) and slight disagreement (immediate neighbor
class choice), and has been chosen as an evaluation pa-
rameter in numerous previous works on mammogram
classification (16,17,20). Although much more sensitive to
differences in class prevalence, the exact agreement pro-
portion was also computed to be able to compare the per-
formance with results from other studies (16,21,22).

RESULTS

The reference classifications by the three radiologists
involved in this study are summarized in Table 2 and Fig-
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Table 2
Radiologist Classifications Compared to the Gold Standard
Classification Defined in Text

Radiologist # 1 Radiologist # 2 Radiologist # 3

0.81 = 0.07
77%

0.88 = 0.07
89%

0.91 = 0.08
89%

Kappa
Exact agreement

Standard error for weighted k was computed according to the
formula given by Fleiss et al. (41).

ure 2. The exact agreement among the three classifica-
tions was 55%, while for the remaining 45% two of the
radiologists chose a given BI-RADS density class and the
last one chose an immediate neighboring class. When
compared with each other, the three radiologists involved
in our study obtained 67% to 79% exact agreement. The
values of k and exact agreement percentage, for each ra-
diologist versus gold standard, are summarized in Table
2. Figure 2 presents the number of cases per radiologists’
consensus level. The latter is defined as the number of
radiologists having chosen the same BI-RADS category.
Typical time periods to train and test the classifiers
were 90 minutes for naive Bayesian, 5 minutes for the
Mahalanobis-Bayesian, and 1 minute for LDA classifier,
on a Pentium 4 (3-GHz processor, 512 MB RAM). In the
36-dimensional feature space, Naive Bayesian classifica-
tion led to a k value of 0.68 = 0.07 and a percentage
agreement with respect to the gold standard of 60%. This
classifier was outperformed by the two others, since we
obtained k values of 0.78 = 0.07 for Mahalanobis-Bayes-
ian and 0.83 = 0.08 for LDA. As one can expect from
the overlap of standard errors, paired #-tests showed that
none of these differences were significant at the 5% con-
fidence level. The exact agreement proportions between
these classifiers and the gold standard were, respectively,
76% and 83%. The confusion matrices given in Table 3
for the two best classifiers show that all but one mammo-
gram pair were classified in the correct class or in one of
its immediate neighbors. Moreover, this result was also
valid when comparing breast density assessment of indi-
vidual breasts before averaging the left/right pairs. The
effect of the averaging process (individual ROI classifica-
tion, averaging over the four ROIs defined for each mam-
mogram, and averaging over the eight ROIs defined on a
left/right pair of mammograms) is presented in Table 4.
The dimensionality reduction to N’ = 2 and 5 has as
expected an effect on classification performance. As
shown in Figure 3, k decreases when the number of fea-
tures is reduced, although both methods obtain already
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Figure 2. Repartition of the 176 breast pairs among BI-RADS density classes.
The separation line in the gold standard column indicates the proportion of cases
per consensus level: 3/3 (lower part of the column) or 2/3 (upper part).

Table 3

(a) Confusion Matrix Obtained for the Bayesian Classifier
Based on Mahalanobis Distance. Results are Averaged Over
Mammogram Pairs from the Same View. (b) Same for LDA
Classifier

(@) Gold Standard

Bayesian Classifier Density 1 Density 2 Density 3 Density 4
Density 1 14 3 0 0
Density 2 5 30 6 1
Density 3 0 14 86 3
Density 4 0 0 10 4

(b) Gold Standard

LDA Classifier =~ Density 1 Density 2  Density 3  Density 4
Density 1 16 3 0 0
Density 2 3 31 4 1
Density 3 0 13 95 3
Density 4 0 0 3 4

good results with five parameters only. The two optimal
features for differentiating the four classes were homogene-
ity and coarseness, and the corresponding partition of the
bi-dimensional subspace is given in Figure 4. For N' = 5,
the optimal parameters were standard deviation, skewness,
primitive length uniformity, fractal dimension, and coarse-
ness, the latter parameter being computed from the block-
averaged and the first four from the original ROL

The reduction to a two-class problem led to the same
results when the grouping of BI-RADS density classes
was done before or after training. Naive Bayesian classi-
fier obtained k values and percentage agreement of 0.68 *

30

0.08 and 86%. Even if the difference is not significant at
the 5% confidence level, it was once again outperformed
by Mahalanobis Bayesian and LDA classifiers, for which
the exact agreement were, respectively, 88% and 90% and
weighted k were 0.74 £ 0.08 and 0.78 = 0.08. Thus, the
performances of the last two classifiers for that particular
two-class problem are excellent and nearly equivalent.

Finally, we observed no difference between the results
obtained for CC and MLO views: performance of the au-
tomatic classifiers remained unchanged when the training
phase was performed on one type of view and the classi-
fication on the other, or when training and classification
processes were restricted to one view.

Because BI-RADS scale definitions allow for a certain
freedom regarding interpretation, it was essential to care-
fully define the gold standard. The number of radiologists
devoted to that task was between one and four among
other published studies (16,17,20,21). The choice of three
radiologists for this study was adequate, in the sense that
there was no case where the three radiologists chose three
different classes, or where one would have chosen a non-
immediate neighbouring class respectively to the others.
Thus, the odd number of radiologists permitted in all
cases to unequivocally define the gold standard classifica-
tion, as the class selected by at least two radiologists. The
different case repartitions among the four BI-RADS
classes are shown in Figure 2. The first radiologist tended
to use the lowest categories more often than the other
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Table 4
Weighted « Values Obtained with the Different Averaging Processes and Classifiers. Exact Agreement is Given in Parenthesis

Individual ROI Classification Average per Mammogram (4 ROls) Average per View Type (8 ROIs)
Naive Bayesian 0.50 + 0.02 (39%) 0.65 = 0.05 (55%) 0.68 = 0.07 (60%)
Mahalanobis Bayesian 0.58 + 0.03 (53%) 0.73 = 0.05 (69%) 0.78 = 0.07 (76%)
LDA 0.71 = 0.03 (70%) 0.81 = 0.05 (80%) 0.83 = 0.08 (83%)

M@ Naive Bayes. O Mah. Bayes. OLDA

0.9 03 90 t
2 0.8 - £ 80 ]
2 0.8 1 5
g Sdessshensfecadecanns whabebebonnns J- - E 70 :
%71 8™
£ -
206 7~ & 60
. £
0.5 A o 50 A
J = i
0_4 =1 1 < 40 = T 1
2 5 36 2 5 36
Number of statistical features Number of statistical features
a. b.

Figure 3. (a) Weighted « value as a function of the features space dimensional-
ity. Lines at 0.6 and 0.75 represent the limits for substantial and excellent agree-
ment. (b) Corresponding percentage agreement.

two. The second observer classified the same proportion the third observer had roughly equally distributed differ-
of mammograms between BI-RADS 1 and 2 categories, ences (5 of 8 cases with one class higher for CC).
while reporting more than 60% in BI-RADS 3 category. The analysis of each within-class features distributions
The third observer barely used the extreme categories and was in total agreement with the intuitive meaning of the
concentrated most answers in BI-RADS 3 category as statistical parameters and the two-scale analysis on nor-
well. mal and block-averaged ROIs provided very coherent re-
The choice of presenting CC and MLO views sepa- sults: the same trends were observed at millimeter and
rately to the radiologists allowed us to show that intraob- centimeter scales. Texture elements in low density breasts
server reproducibility was excellent, even for different are small, fine, and well contrasted, with a high fractal
x-ray projections. The proportions of cases with one class dimension, while patterns in high density breasts are
difference between CC and MLO classifications were, much coarser, due to the diffusive nature of glandular
respectively, 14%, 15%, and 9% for radiologists 1, 2, tissues.
and 3. No difference greater than one BI-RADS density The naive Bayesian classifier obtained substantial
class was observed. Thus the corresponding confusion agreement, but as some of the 36 features were strongly
matrices (observer i CC classification versus observer i correlated, its performance was degraded as expected
MLO classification) led to very high weighted k values (35). The results of LDA and Bayesian classification
(0.90, 0.87, 0.87), showing that radiologists’ classifica- based on the measure of Mahalanobis distance, in the
tions were nearly independent of the presented view. 36-dimensional feature space, were remarkable, with

However, it was observed that the first observer attributed cross-validated k values of 0.78 and 0.83 respectively,
one class higher to MLO compared to CC for 10 of its 12 and exact recognition proportions of 76% and 83%.
differences, while the second had the opposite trend (one LDA’s slightly better performance is probably due to the
class higher for CC view for 9 of the 13 differences), and fact that the whole 1407 ROIs training set was used for
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Figure 4. Partition of the optimal bidimensional feature subspace. (a) LDA leads
to linear borders. (b) For Bayesian classifier based on Mahalanobis distance, the
borders are conics. For visibility reasons, only 40 to 50 randomly chosen ROls per

density class are shown.

establishing the classification rules, whereas the same
number of samples per density class, 50, was used for the
Bayesian classifier, in order to avoid overtraining in the
most represented classes. The confusion matrices given in
Table 3 show an excellent differentiation of the four
classes. However, half of the BI-RADS 4 cases were mis-
classified in density category 3 or 2. This may indicate
that the sample size was too small for this category or
that the gold standard assessment for this category was
not accurate enough.

Compared to previous studies using a 4-grade scale
(Wolfe scale [Caldwell et al. (16), Tahoces et al. (20)]),
dense breast tissue proportion [Karrsemeijer (21)], BI-
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RADS [Petroudi et al. (22)], an improvement of k and
recognition rate was obtained: Caldwell et al. cite indeed
k values between 0.58 and 0.61, Tahoces et al., between
0.63 and 0.71, Karssemeijer, a global value of 0.73, and
Petroudi et al., a recognition rate of 76%. This improve-
ment can probably be explained by the homogeneity of
the ROIs in size and localization in the breast, the ab-
sence of any background or pectoral muscle removal al-
gorithm, the use of digital mammograms instead of digi-
tized films, the wide range of complementary texture
analysis techniques, and the averaging processes to take
into account most of the dense breast region. Compari-
sons with these studies should proceed carefully; how-
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ever, since little information is mentioned about prepro-
cessing of the mammograms or case distributions. In
addition, the comparison between the other scales
with BI-RADS classification results is not a trivial
point.

The reduction to a 2-grade scale (BI-RADS 1-2 versus
BI-RADS 3-4, 88% recognition rate and higher) led to
an excellent performance as well, comparable to the re-
sults given by Bovis and Singh (18).

When the algorithm had to make its decision based on
two or five statistical parameters only, we found a sub-
stantial (weighted k > 0.7) to excellent agreement with
respect to the gold standard. The naive Bayesian classifier
proved that its performance is excellent for low-dimen-
sional feature spaces, where the independence assumption
can still be considered as valid. The performance of Ma-
halanobis Bayesian and LDA classifiers increased with
the dimension of the optimal features subspace, with
slightly better results for LDA for five features and
above. It is interesting to note how the most optimal pa-
rameters were chosen in order to be complementary. For
instance, with five parameters, two features related to
gray level histogram (standard deviation and skewness),
one from PM (plu), one from NGTDM (coarseness), and
the fractal dimension were selected. This complementary
nature between all texture analysis methods is one of the
key points for obtaining a good classification even in a
low-dimensional features space.

The improvement gained when averaging the results
over four ROIs defined in the same breast and over the
left/right breasts pair is clear for all classifiers. It shows
that this process is the best way to take into account a
significant part of both breasts, and thus avoid making a
too local decision. Local classification, as shown in Table
4 for individual ROIs results, is not efficient for both
Bayesian classifiers, although already substantially good
for LDA.

Finally, according to Karssemeijer (21), the upper limit
of the performance of an automatic classifier in terms of
comparison with human observers remains an open ques-
tion. It would be interesting to compare the gold standard
defined in this study with other independent radiologists’
classifications to have an idea of an empirical value of
maximum « and the exact agreement one could expect,
the latter being evaluated by Karssemeijer (21) to be
80%. The exact agreement between the three radiologists
involved in our study when compared with each other
(67% to 79%) lies effectively in this range.
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CONCLUSION

An excellent assessment of breast density according to
BI-RADS was obtained with the semiautomated method
presented in this study. A complete method was used
combining complementary methods (moments, GLCM,
PM, fractal dimension, and NGTDM) to describe ROIs
manually chosen on digital mammograms, with widely
used classification methods (LDA, Bayesian classification)
and different averaging processes in order to take into
account as much comprehensive information as possible.
The results showed that the agreement between the radiol-
ogists and the automatic classifiers was notably higher
than most previous published values, although extremely
dense breasts (BI-RADS category 4) seemed somehow
more difficult to classify accurately. Using N = 36 pa-
rameters led to high performance for the assessment of
designing an automatic breast density classifier. The use-
fulness of mixing complementary methods was demon-
strated by reducing the dimensionality of the feature
space to five optimal parameters. The classifiers obtained
excellent performances as well when tested in the two-
class problem reduction. In a future phase, the validation
procedure, currently limited to leave-one-ROI-out and
justified by the fact that the ROIs do not overlap, could
be extended to leave-one-patient-out on a larger patient
database. The excellent results obtained with the most
represented classes (BI-RADS categories 2 and 3) and
with crossed-views training and testing suggest that the
bias introduced by the leave-one-ROI-out method, if any,
should not influence the overall performance of the classi-
fiers, because in these cases training and testing on ROIs
that had been taken from the same mammogram were less
likely to happen.

The other key feature of the method resides in its sim-
plicity. Apart from the fast computation of the 36 param-
eters, no additional algorithm is needed to remove the
background, the pectoral muscle, and any potential imag-
ing artefact, because a total control over the location of
the ROIs is kept by manually selecting them. A fully au-
tomated classifier with a built-in location selection algo-
rithm has not been investigated in this paper, but existing
breast segmentation methods (12,47) could certainly be
combined with the proposed classifiers to improve repro-
ducibility and accuracy of the location choices. The au-
tomatization of ROI selection would help build a larger,
more objective database, which is currently the main limi-
tation of this study.
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The proposed method represents a valuable tool for
use in screening programs and could be inserted in a
CAD device, in order to help radiologists in their density
evaluation and diagnosis tasks. Intraobserver or interob-
server variability in density assessment could indeed be
avoided through the help of an automatic or semiauto-
matic classifier, and optimized data processing could be
applied in order to display an optimal image to the radiol-
ogists for their diagnosis. An objective tool for determin-
ing breast density may find other potential applications in
follow-up management for patients, with screening fre-
quencies depending on breast density. Finally, training
and education may benefit from such classifiers, in order
to lower the variability of intraobserver and interobserver
classifications inherent to the BI-RADS density class defi-
nitions.
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APPENDIX: DEFINITION OF THE

STATISTICAL PARAMETERS

Parameters Computed From the Gray Level
Histogram

The first four moments and balance parameter are
computed from the individual pixel values x; as follows:

1
mean=x=—)> x; 11
2 (11)

1

standard dev. = o = \/T(EI (x; — )_c)z) (12

1
skewness = —32 (x;—x)° (13)
No™
. 1 .
kurtosis = — >, (x,—%)* -3 (14)
No'
Xq9— X
balance = ———, (15)
X = X3o

where the summations are performed over the N pixels of
the ROI, and x, is the gray level yielding to pth percentile
of the gray level distribution (15).
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Gray Level Co-occurrence Matrices (GLCM)

The GLCM are computed as follows: first, the ROI is
linearly rescaled to 16 gray levels only. Then for a given
direction d and a given distance r, each element [i,j] of
the co-occurrence matrix (C)y is given by the number of
times that a couple of pixels separated by a distance
r along a direction d have the values i and j, respectively.
Each co-occurrence matrix is then normalized by the sum
of its elements. The directions chosen for the GLCM are
[1,0], [1,1], [0,1], and [—1,1], corresponding to angles of
0°, 45°, 90°, and 135°, respectively. The distances are 1,
3, 5,7, and 9 pixels for each direction, which yields a set
of 20 GLCM. Scalar parameters are then extracted from
each matrix as follows:

energy(C) = X, C}, (16)
i
entropy(C) = —Z C,;log C,; (17)
L]
cmax(C) = max C;; (18)
ij
contrast(C) = 2 li —jI> Cy; (19)
L]
. Ci»]'
homogeneity(C) = >, ——— (20)
1+ 1i—jl

Primitives Matrix (PM)

Each element [a,r] of the primitives matrix B, is the
number of primitives of gray-level a and length r, a prim-
itive being a contiguous set of pixels having the same
value. As for GLCM, each ROI is rescaled to 4 bits be-
fore its primitives matrix is computed. Note that its di-
mensions are (2* — 1, r,,), because 0 < a = 2* — 1 and
1 = r = r,u. Where r,,, is the dimension of the ROI,
corresponding to the maximal primitive length one could
find in such an image. From this primitives matrix, four
parameters are then extracted for each ROI: short primi-
tive emphasis (spe), long primitive emphasis (Ipe), gray
level uniformity (glu), and primitive length uniformity
(plu), defined by:

pe-— S 32

a,r
2
Bm[ a r I

2D
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1
Ipe = —E E B,

22 (22)
glu = B%E (2 Bu,,.)2 (23)
plu = BLE (E B.,), (24)

tor I

where B, is the sum of the elements of the primitives
matrix B: B,,, = Eu ErBa,r. Note that B could be de-
fined for several directions, but we limited our investiga-
tions to one (34), corresponding to a scan of the image
along direction [1,0].

Fractal Dimension

The fractal dimension of a two-dimensional (2D) im-
age can be computed by a box-counting method as an
extension to the one-dimensional (1D) case. Mandelbrot
(48) first described the 1D problem of measuring a coast-
line on a map, with a ruler of a particular length €. The
smaller the ruler, the larger is the measured distance, be-
cause more and more details can be taken into account for
the analysis. Mandelbrot gave the empirical relationship be-
tween the ruler size &, and the measured length L, as:

L(g)=Ae'? (25)

In Equation 25, A is a scaling constant, and D is called
the fractal dimension of the curve.

The generalization to a 2D image can be done as fol-
lows (16,17,31). First, the image to be analyzed is con-
verted to a pseudo-3D surface, with the first two coordi-
nates representing the spatial position of each pixel, the
third one being the gray level. The total area A of the 3-D
surface is then computed. For various values of the ruler
size &, the pixel values are then averaged over blocks of
size € X g, and the area A(e) is computed. For the 2D
case, Equation 25 becomes:

A(e) = Ae* P (26)

According to this equation, D can be estimated from a
plot of log{A(g)} versus log{e}.

36

Neighborhood Gray-Tone Difference
Matrix (NGTDM)

NGTDM is a column matrix first defined by Amada-
sun and King (32) as follows: let x;, be the gray level
value of the pixel located at (k,]) on a two-dimensional
image. The average neighbouring value is given by:

d d

>

xk+m, I+n > (m3 n) ;é (09 0)9 (27)
m=—dn=—d
where d = 3 is the neighbouring size and W = (2d+1)%.
Denoting {X;} the set of all pixels with value i in the
ROI, the ith entry of the NGTDM is given by:

si)y= D, li— A, (28)
XEX;
Scalar parameters extracted from the NGTDM are:
imax -1
coarseness = [s + pis(i)] 29)
i=0

imax Jmax 1 imax
contrast’ = { 2 Ep,-pj(i —j)z} . {—22 s(i)}

NN, — 1)i=0 =0

n*i=o
(30)
imax Jmax |7 — [ pus(i) + pis(j)]
complexity = E ! 12) Py ,pi=0,p;>0
i=0 j=0 n(p; + Pj)
(€20)
imﬂx jmﬂX
> > (it p)ii— )y
strength = —=%=° i— ,pi>0, p;>0, (32)

e+ E s(7)
i=0

where p; = IX,-I/Ejfg IX}l is the probability of occurrence
of gray level i in the ROI, i, the highest gray level and
N, the number of different gray levels effectively present
in the ROI and & a small number (102 in our case) to pre-
vent coarseness and strength becoming infinite. The feature
representing the contrast given by Equation 30 is called here
contrast’, to make a distinction with the contrast derived
from the primitives matrices (see Equation 19).
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Abstract: Synthetic yet redlistic images are valuable for many applications
in visual sciences and medical imaging. Typicaly, investigators develop
algorithms and adjust their parameters to generate images that are visually
similar to real images. In this study, we used a genetic agorithm and an
objective, statistical similarity measure to optimize a particular texture
generation algorithm, the clustered lumpy backgrounds (CLB) technique,
and synthesize images mimicking real mammograms textures. We
combined this approach with psychophysical experiments involving the
judgment of radiologists, who were asked to qualify the visual realism of
the images. Both objective and psychophysical approaches show that the
optimized versions are significantly more redlistic than the previous CLB
model. Anatomical structures are well reproduced, and arbitrary large
databases of mammographic texture with visual and statistical realism can
be generated. Potential applications include detection experiments, where
large amounts of statistically traceable yet redistic images are needed.
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1. Introduction

The problem of human perception and performance in radiology detection tasks has been
studied in numerous frameworks in the past: detection of a tumor on computer tomographic
images of the liver [1,2], stenosis in a blood vessel on fluoroscopic images [3], filling defects
in X-ray coronary angiograms [4], nodules on pulmonary radiographs [5], or
microcalcifications on mammograms [6]. The aim of such studies is to determine the role on
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diagnostic detection of the inherent parameters of the images like resolution or contragt, the
imaging unit acquisition parameters or the anatomy in the detection process. Many of such
studies are psychophysical experiments involving radiologists or trained naive [7] observers.

In particular, there has been a large interest in developing models that can predict human
observer performance for detection tasks as a function of the image characteristics and the
observer properties [8-10]. These models aim at avoiding subjective methods to evaluate
image quality and/or objective yet time-consuming methods such as psychophysical studies
[11,12]. Models for objects superimposed on various types of real backgrounds or computer
generated noises patterns have been developed and applied to the detection of lesions in
radiological images [13-16].

Both psychophysical and model observer approaches require a large number of images to
obtain accurate results. Real images or regions of interest (ROIs) would be ideal, but in most
cases the number of available clinical images is limited. In addition, the question arises about
reproducibility of the results with sets of images obtained with other imaging systems,
digitization methods, or image post-processing. An aternative to using real images is to use
computer generated images. This would allow for generation of unlimited number of samples
with known and well-controlled statistical properties. Such images might have adjustable
properties that would not depend on imaging device characteristics or digitization processes.

Two major methods have been explored for producing synthetic images mimicking
mammograms. First, complete three-dimensional simulation of the breast components and
properties, in conjunction with imaging device simulation, which is expected to produce very
realistic images [17-19]. However, the complexity and computational cost associated with
such modeling and the difficulty of taking into account breast compression can often be a
limitation in the quality of the resulting images. For that reason, 2D approaches have been
investigated, using backgrounds constituted by the summation of elementary bright structures
called blobs [11,20,21]. These lumpy backgrounds, as named originally by Rolland and
Barrett [20], were designed to reproduce general lumpy textures. Bochud et al. [21]
generalized the model to clustered lumpy backgrounds (CLB), matching the Wiener spectra of
real mammograms and synthetic backgrounds and empirically optimizing the parameters to
obtain images which were as visualy redlistic as possible. Lumpy backgrounds and CLB
images have the advantage of having analytically computable statistical properties, and are
stationary within their boundaries. Statistical descriptions of general lumpy and CLB objects
have been further investigated by Kupinsky et al. [12]. However, for this model as for most of
3D or 2D methods, thorough and objective assessment of visua realism and similarity of
statistical properties to real images has not been carried out. The main obstacle has been the
difficulty of defining criteriafor the assessment.

For synthetic images to be used by humans and model observers then necessary criteria
are that the images look visually similar to the real images (visual realism) and that the
statistical properties of the synthetic images match to larger degree those of the real images
(statistical realism). Although these criteria are typically aimed at when creating synthetic
backgrounds, the process is commonly approached through trial and error and comparison of
a few synthetic and real images. The purpose of the current work was to systematically
optimize the visual and statistical realism using a genetic algorithm as search optimization
routine.

Specifically, our aim in this study was to extend and optimize the CLB model and to
objectively assess the realism of the obtained images. For this purpose, we used a database of
1000 square ROIs selected from real mammograms, and defined a metric based on the
Mahalanobis distance to compute the statistical distance between real images and synthetic
CLB images. The CLB parameters were optimized using a genetic algorithm in order to
minimize the Mahalanobis distance. Psychophysical experiments involving radiologists and
radiographers were then designed in order to evaluate the visual realism of the synthetic
images.
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2. Material and methods
2.1 Clustered lumpy background (CLB) model

Lumpy backgrounds are synthetic, digital images generated by superposition of elementary
bright blobs. The number of blobs is randomly sampled according to a Poisson process and
the blob centers are placed at random locations uniformly distributed in the image. Lumpy
backgrounds were originally designed by Rolland and Barrett [20] with circularly symmetric
blobs b(r), so that the image g could be written as:

g)=>" b(r-r,), )

where ry is the center position of the k™ blob, and K the total number of blobs in the
image.

Later, Bochud, et al., [21] generalized this model to clusters of exponential, not
necessarily circular symmetric blobs. Clustered lumpy backgrounds (CLB) are produced by
randomly choosing a number of clusters, K, following a Poisson process, and distributing
them randomly on the image plane. For each cluster, a random number of blobs, N, are
positioned randomly around the cluster center according to a probability density function
(pdf) o(r). Finally, all blobs belonging to the same k™ cluster are rotated by an angle 6, before
being summed to obtain the final image g(r):

g =" > M b(r =1, — 1, Ry @)

All parameters and their digtributions are summarized in Table 1. The genera functional
expression of the blob has been chosen as:
B
R

b(r.R ;) =exp _al_(R—er) , ©)

where oo and B are real parameters, and L is the characteristic length of an ellipse with half
axes equal to L, and L, [21]. One of the mgjor advantages of CLB technique is that some
statistical properties of g(r) like its power spectrum can be analytically computed from the
model parameters.

Table 1. Definitions and distributions of the CLB model parameters.

Variable Definition Distribution

K number of clusters poisson with mean value K
M position of the K" cluster uniform across image

Ny number of blobs within the k™ cluster poisson with mean value N
Ok rotation angle of the blobsin the k™ cluster uniform between 0 and 2
Re rotation matrix of angle 6 N/A

Mkn position of the n™ blob within the k™ cluster Gaussian pdf o(r)

b(r,Re) blob profile rotated at angle © N/A
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Fig. 1. (1.55 MB) Movie showing the construction of a CLB image. This example hastwo CLB
layers with isotropic orientation of the blobs.

The free parameters of the CLB model are thus { o.3,Lx.L,.0x,0y.Ko,Ng} , where o, and o,
are the standard deviations of the Gaussian pdf, ¢(r), in X and y directions respectively. These
8 parameters had been empirically optimized in the original study [21], on the basis of visual
inspections of the images and comparison of Wiener spectrum with that of real mammograms.
These values were used as a starting point for our study.

In order to improve the realism of CLB images, we introduced two variations into the
model. First, we superimposed another CLB onto the image computed from Eq. (2), with
fixed parameters o = 2.0, B = 0.9, L = 50 pixels, Ly = 5 pixels, o = 10 pixels, o, = 10 pixels,
and free parameters Ky'<< Ko and Ng'. The inclusion of a small amount of long and narrow
blobs aims to better reproduce the fibrous structures of real mammograms.

The second variation was included to favor oriented structures similar to those visible on
real mammograms. At the whole breast scale, these structures arise from the projection of the
ducts converging towards the nipple, or from suspensory ligaments. For this purpose, the pdf
of the rotation angle was changed from uniform to Gaussian with a mean equal to 6, and a
standard deviation of w/6. With this change, the large scale oriented structures were
congtructed by the summation of clusters with similar orientation. The mean parameter,6,,
was changed randomly with uniform pdf between 0 and 2r for each realization. If two
superimposed layers were used for the image, both used the same 6,.

An example of asynthetic image generation is shown on Fig. 1.

2.2 Optimization of the CLB parameterswith a genetic algorithm

Genetic algorithms are afamily of computational models inspired by evolution [22]. The free
parameters of a given optimization problem are encoded on a chromosome-like data structure,
and selection and recombination operators are applied in order to alow a population of
potential solutions to evolve towards the optimal solution of the problem. The initid
population is usually chosen randomly in the search space, and the corresponding
chromosomes are evaluated through a fitness function. The best chromosomes are given better
reproduction and survival opportunities. Following, crossover and mutation operators are
applied in order to generate a new population of equal cardinality. These processes of
evaluation, crossover and mutation are repeated until a user-defined (sub-)optimal value of the
fitness function is reached, or when the best chromosome of the population has not been
improved for a given number of generations.

Genetic algorithms have a great potential for non-linear function optimization in multi-
dimensional spaces, since the intrinsic parallel structure of the optimization process is highly
efficient for exploring multiple locations in the search space simultaneously, and avoiding
local extrema. They can be used for binary or real coded problems, and many specific
reproduction/mutation operators and techniques have been designed [23] in order to create
specific agorithms for handling a wide range of optimization problems.

According to Egs. (2) and (3), aclassica CLB implementation requires a set of eight real
parameters { o,B,Lx,L,0x,6y,Ko,No} . For the 2-layer CLB, the addition of {K,,Ng'} increases
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the number of parameters to ten. The statistical properties of CLB images depend in a non-
analytical way on the parameters. Their optimization is furthermore complicated by the
stochagtic nature of the realizations for a same set of parameters. The optimization of the eight
parameters of the previously published CLB model [21] were limited to maximize the
similarity of basic gray level (GL) histogram properties and Wiener spectrum of the synthetic
and real mammographic textures, and to produce images qualitatively similar to real
mammograms ROIs. No other consideration was taken into account in order to evaluate the
mathematical realism of the obtained synthetic images. One key aspect of the present study
was to introduce a metric based on Mahalanobis distance for quantifying similarity between
synthetic and real images.

For this purpose, 36 statistical features based on complementary textural patterns analysis
methods were computed. We used the GL histogram properties, the gray-level co-occurrence
matrices (GLCM) [24-26], the primitives matrices [25], the neighborhood gray tone difference
matrix (NGTDM) [27], and the fractal dimension [28], and computed the features for 1000
square ROIs within digital mammograms [29]. These 256 by 256 pixels square regions were
selected from the central breast areas of digital mammograms. We used a database of 88
patients who underwent screening exams on a GE Senograph 2000D full-field digital detector
[31,32] , with one craniocaudal (CC) and one mediolateral oblique (MLO) view per breast per
patient.

Features derived from the GL histogram were standard deviation, skewness, kurtosis, and
balance [30]. They describe the general properties of the overall gray level distribution,
including the histogram shape and symmetry. GLCM features were energy, entropy,
maximum, contrast, and homogeneity. GLCM give information about the spatial relationships
of GL in dructural patterns. Primitives matrices (also known as run-length matrices)
characterize the size and shape of textural patterns in an image. Short primitive emphasis,
long primitive emphasis, gray level uniformity, and primitive length uniformity provided four
more features. Additionally, four statistica parameters were computed from NGTDM:
coarseness, contrast, complexity, and strength. These features were designed by Amadasun
and King in order to give mathematical descriptions of the subjective aspect of images with
such textural properties [27]. Finally, the fractal dimension was computed. This feature is
related to the complexity of textural patterns, a low fractal dimension denoting a rather
homogeneous image structure. These 18 dtatistical quantities were computed for each of the
1000 mammograms ROIs, providing information about the structural patterns from the mm to
the cm scale. As structures in mammograms typically range from about 1 mm to a few cm,
this statistical analysis was also performed at another scale on the same ROIs in order to
characterize the larger scale textural properties. For this purpose, each ROl was averaged on
square 8 x 8 pixels blocks, and the same 18 parameters were computed again, making a total
of 36 features. An exhaustive description of the mathematical definitions of the statistical
features used in this work have been published in a previous study [29].

Once al 36 features of a given synthetic or real image were measured and grouped into a
single vector v, the Mahalanobis distance d was given by:

d=[(v-p)'K*(v-m)] (4)
where p represents the mean vector over the real images and K is the covariance matrix:

1on
n _Hziﬂvi ©)

K= (v = (v ), ©)

with n = 1000 being the size of the reference database.

The chromosomes in our genetic algorithm implementation were sets of 8- or 10-
dimensional real vectors representing CLB parameters values. The genetic algorithm used the
average Mahalanobis distance d computed over m = 10 successive CLB realizations as the
fitness function for evaluating the chromosomes, and was designed to minimize it. This

1/2
)
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averaging was done in order to avoid erroneous evaluation caused by the random nature of the
CLB algorithm. Preliminary trials with smaller values of m had indeed been unsuccessful,
because the fitness function was too unstable for accurately evaluating the chromosomes.
Since the feature distributions are rather compact around their average values for a given set
of CLB parameters, the choice of m=10 was a good trade-off between computational cost and
fitness function stability. Rank-weighted selection of the parents, and €litist strategy were
employed for the reproduction operators.

Crossover of two chromosomes ¢! and ¢? consisted in averaging half of the genes, keeping
the others unchanged. The genes to be averaged were chosen randomly with equal
probabilities. The crossover between ¢' and ¢® occurred with probability p, leaving both
genes unchanged otherwise. The best chromosome remained unchanged from one generation
to the next, which is the definition of elitist strategy. After the crossover processes, all but the
elite chromosome underwent individual gene mutation with probability py,, monotonically
decreasing during the evolution [33].

For each gene G, evolution was restricted to an interval [Gin, Gmax], Starting from random
values between these bounds. The latter were deduced from the original CLB model as:
{GiinGrat ={ -8Goperser 1-2Gopenso} - These figures come from the assumption that the original

model [21], referred as Opex99 in this text, could be used as a darting point for the
optimization process.

Preliminary optimizations had indeed shown that this restriction of the search space
ensured that the Wiener spectrum of the synthetic images remained close to the one of the
original CLB model, which had been designed in order to match the spectrum of real
mammograms. All parameters of the genetic algorithm and their meaning are given in Table
2. Four variations of the CLB model were successively optimized: 1-layer classical CLB with
isotropic orientation of the clusters (referred further in text as simpiso type), 2-layer CLB with
isotropic orientation of the clusters (doubiso), 2-layer CLB with favored orientation of the
clusters (doubori), and 1-layer CLB with favored orientation of the clusters (simpori).

min?

Table 2. Genetic algorithm parameters used for optimizing CLB variables.

Parameter Meaning Value
L Number of genesin achromosome 8 or 10
S Size of the chromosomes population 51

m Number of realizations of a 10

chromosome for evaluating its
fitness function
Pe Crossover probability 0.8

2.3 Evaluation of the visual realism of the synthetic images

The role of the genetic algorithm was to ensure that the synthetic CLB images would have
statistical properties similar to real images. Although this point was necessary for future
model observer experiments for example, it was certainly not a sufficient condition for using
them in psychophysical detection experiments. Human perception is highly dependent on
properties of the background as well as those of the neural processing and coding of visua
information. Thus, similar statistical properties for a pair of images does not necessarily imply
their visual resemblance to human observers. To evaluate the visua realism of the four
optimized CLB types and compare it to the original CLB, a study was conducted with three
radiologists and two radiographers.

The three main structures types that are likely to be found in real mammograms were
evaluated: glandular areas, fatty areas, and fibers [34]. The observers were first presented a
series of 20 real images representative of each structure type. The selection of these reference
images was based on the choices of one of the radiographers, and then confirmed by the
opinion of aradiologist. The presentation of the reference images also allowed the radiologists
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to get acquainted to the display screen, light conditions, and definitions used for the three
structure types. After this training phase, 50 realizations of each CLB model variation were
presented in random order. The four variations developed with the GA, and the original CLB
[21] were displayed in 10 blocks of 25 images. The order of presentation for each CLB type
was randomized within each block.

For each image, the observers were asked to tell whether or not they observed a given
structure (glandular areas, fatty areas, fibers). For each affirmative answer, they were asked to
grade the realism of the structure, based on a 10-grade scale evaluation. In order to ensure a
consistent inter-observer use of the scale, the observers were clearly informed before the
rating experiments that they should use grades 7 to 10 for images that could be expected to be
observed on real mammograms, and grades 1 to 6 for insufficiently realistic images. In the
latter case, the observers were given the possibility to further evaluate which features |ooked
unrealistic by using one or more checkboxes representing possible defaults: too disorganized,
too rectilinear, too much contrast, too fuzzy, or appearance of 3D-like artifacts. Additionaly,
the radiol ogists were asked to mention if some structure resembled a tumor (mass). This latter
guestion was aimed at determining whether unwanted pathological (tumor-like) patterns arose
from the CLB superimposition algorithm.

The 12-bits CLB images were converted to 256 gray levels before being displayed on a
laptop screen. Their mean gray level value and standard deviation were adjusted to 110 and 35
respectively, in order to obtain images lying in the central dynamic range region of the
display. The observers had the possibility to adjust the display brightness and contrast by
observing a mammaography test pattern at the beginning of the experiment. The laptop display
was a practical choice, since the visualization experiments were to be conducted in several
dark rooms. For the proposed task, al radiologists and radiographers unanimously reported
adequate conditions to confidently assess the realism of the three structure types, since they
were to be compared to real digital mammograms ROIs displayed on the same screen at the
beginning of the test, and since no detection and/or classification tasks had to be conducted
for this study. The 256 by 256 pixels synthetic images display size was 9 by 9 cm. According
to preliminary discussions with the radiologists, the size of the image structures at this scale
corresponded to the typical scale obtained when zooming on a digital mammography display
unit.

3. Results
3.1 CLB parameters optimizations

Although genetic algorithms with elitist strategy usually have the property to be
monotonically converging towards extrema of the fitness function, the example fitness
function history on Fig. 2 shows that it decreased relatively regularly during 20-30
generations, and then had a more chactic behavior. This was observed for al model
variations, and can be explained by the random nature of the m realizations per chromosome
that were computed for evaluating its fithess function. The same CLB parameters lead to
images with similar overall statistical properties, but the 36 features we used in this study
allowed for evaluating their variations much more precisely. The fitness function of a given
chromosome could thus vary from a generation to another, and the best chromosome of
generation T’ could be rejected to a higher rank at T'+1, even by chromosomes that had worse
performance at generation T'. The upper series in Fig. 2 shows that the median fithess
function of the population was less sensitive to this phenomenon. The evolution process was
conducted during 100 generations for each of the variation of the CLB model, and the best
chromosome of the evolution history was selected for computing the fithess function averages
presented on Fig. 3, on the basis of 200 realizations per model.
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Figure 3 shows that the gain obtained by tuning the CLB parameters with the genetic
algorithm is at least a factor of 2 for average Mahalanobis distance, compared to the origina
values (Opex99 [21] series), depending on the model used. ANOV A analysis and Tukey HSD
Test were performed in order to compare the fitness function values for all series. The results
(F =615.7, p < 0.001, HSD[.01] = 2.32) indicate that the difference in Mahalanobis distance
between Opex99 and all others series is statistically significant (p < .01). The difference
between doubiso series and the three other optimized models is also significant (p < .01).
Finally, even after the optimization, a significant difference between real images and each
synthetic series remained (p < .01).

Figure 4 presents typical examples of images created with the different CLB parameters.
The real mammogram ROI was selected from a medium-density breast. The optimized CLB
parameters for generating these 256 by 256 pixels images are detailed in Appendix A. Typical
computation time needed for computing the 200 realizations and their associated M ahalanobis
distance was 40 minutes, which represents 12 seconds/realization.

(b) OPEx99

(e) Simpori (f) Simpiso &
e =

Fig. 4. Examples of realizations for the different types of CLB variations. (@) ROl selected
from a real mammograms; (b) 1-layer CLB, Opex99 [21] parameters (referred in text as
Opex99); (c) 2-layer CLB, isotropic orientation of the clusters (doubiso); (d) 2-layer CLB,
favored orientation of the clusters (doubori); (e) 1-layer CLB, favored orientation of the
clusters (simpori); (f) 1-layer CLB, optimized version of (b) (Simpiso).
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Fig. 5. Comparison of the real images and optimized CLB Wiener spectra. Pixel size is 0.1
mm. Only one series of synthetic images (doubiso) is shown. Other series have very similar
spectra.

The Wiener spectra of real and synthetic mammograms is shown on Fig. 5. The spectra
have a power-law form W(f) =K/ f°, where f is the radial frequency [6,35]. The exponent

values are b=3.02 + 0.02 for the real images, and b=2.92 + 0.01 for the CLB (mean * standard
error).

3.2 BEvaluating the realism of synthetic textures

Figure 6 summarizes the results for visual realism evaluation experiments performed by the
radiologists (KK, ES, NH) and the radiographers (FD, PS). About 2% of the grades were
classified as outliers according to Chauvenet criterion [36]. The corresponding data were
removed before the dtatistical analysis presented in Table 3. The rgected outliers did not
change any of the values of the 10, 25, 50, 75, and 90™ percentiles shown on Fig. 6, where the
box plots summarize all marks given by the five observersto each series of images.
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Fig. 6. Realism marks given by the observers (radiol ogists and radiographers) for the glandular
aress, fatty areas, and fibers. The boxes represent the 25", 50", and 75" percentiles, and the
whiskers the limits for the 10" and 90" percentiles.
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Table 3. Visual realism evaluation by the five observersfor glandular (GL) and fatty (FA) areas, and fibers
(F1). Bold valuesindicate statistically significantly realistic evaluations (one sided Student t-test, =5%, =0.8,
Ho: n=6.5). Italic values correspond to the mean and standard error.

Obs. Opex99 Doubiso Doubori Simpori Simpiso

GL FA FI GL FA FI GL FA FI GL FA FI GL FA FI
KK 680 7.187.85 [7.18 7.96 7.94 (740 796 878 (722 7.76 7.92 [5.00 6.47 4.93
ES 665 6.87 6.87 [7.68 7.70 7.73 |6.68 6.81 6.81 [6.98 7.05 7.11
NH 768 7.68 7.68 [9.00 9.00 9.00 [7.68 7.68 7.68 [6.96 6.96 6.96 (b)
FD 7.47 816 7.00 [7.68 804 6.87 [7.54 793 7.03 |[7.44 7.71 7.08
PS 765 7.77 (a) (840 814 758 [7.237.15 6.18 |[7.55 7.46 7.67 467 4.95 4.09
Mean 73 75 74 8 82 78 (13 75 713 72 74 713 48 57 45

+02 £#02+03 #03+02+04 H02+02 +04 01 +02+02 02 +08 +04

For each synthetic image, the radiologists evaluated the realism of the three structures
types (glandular areas, fatty areas, and fibers), whereas the two radiographers chose not to
give their opinion in some cases, when they judged that a given structure covered a too small
part of the ROI to be evaluated. This mainly happened for the evaluation of fibers, which are
less visible in Opex99 and simpiso series. This latter series (Smpiso) was only evaluated by
the first two observers which took part in the study. T-tests of the first two observers data
(0=5% and =.8) showed that the simpiso series was significantly lower from the apriori
selected threshold for realism (6.5) and thus statistically significantly visually unredlistic. It
may be useful to repeat here that the observers were asked before the experiments to use a 10-
grade scale with a threshold separating sufficiently redlistic (grades 7 to 10) from
insufficiently realistic (grades 1-6) images.

Bold values in Table 3 indicate that nearly all structures were considered significantly
realistic at 5% confidence level (above the a priori selected threshold of grade 6.5) for the first
four CLB models. After the evaluation of the first two observers, it was decided to further
discard the simpiso series, since the grades given by these observers indicated that these
images lack visual realism, compared to the other series.

When compared to each other, Opex99, doubori and simpori series obtain comparable
overall performance for all structures types, while doubiso series outperforms them for all
structures types when the results are averaged over the 5 observer. 1-way ANOVA analysis
and Tukey HSD Test performed among these four series indicated that the average grade for
doubiso imagesis significantly higher than for all other series for the glandulary areas (p < .01
in each case), fatty areas (p < .01), and fibers (p < .05).

Additionally, a two-way ANOVA was conducted in order to estimate separately the
influence of the two model variations: the addition of the second layer with large blobs on one
hand, and the preferred orientation of the blobs on the other. The grades given by the five
observers were pooled together, and separate analyses were carried out for glandular aress,
fatty areas, and fibers. The visual realism was significantly better for the images containing
two layers (doubiso, doubori) than for images created with one layer only (simpiso, simpori),
for all structure types (p < .01 in al cases). Images with an isotropic distribution of blob
orientation (simpiso, doubiso) were judged significantly (p<.01) more redlistic than images
with preferred blob orientations (simpori, doubori) for the glandular areas. However, this
effect was not statistically significant for fatty areas (p = .08) and fibers (p = .27).

4, Discussion

Although the implementation of the genetic algorithm became complex due to the inherent
random nature of CLB model, the optimization produced images which statistical properties
were significantly closer to real mammographic images than the origina CLB. As the
chromosomes' evolution continued for more than 50 generations after the optimal parameters
presented in Table 4 had been found, these values can thus be confidently considered as
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optimal for the developed model variations. It is difficult to intuitively interpret the absolute
Mahalanobis distances in Fig. 3, since several statistical parameters, among the 36 used for
defining that metric, are correlated in a complex way. However, a benchmark can be given by
the distance computed for the 200 real mammograms ROIs, which isequal to 5.7 + 1.8 (mean
+ SD, see Fig. 3). This indicates that from the statistical point of view, the synthetic images
obtained by the models tuned by the genetic algorithm are much closer to real images than the
origina Opex99 series, but also that they cannot be considered indistinguishable from real
images. Allowing enlarged bounds for Gn, and Gy Would lead to optimized chromosomes
with better fitness function, but preliminary tests had shown that when given more freedom,
the blobs dimensions evolved to points as small as Grinix by GminLy, lOWering the average
Mahalanobis distance down to about 10-15 depending on the model, but losing al visual
realism. This emphasized the need for a realism evaluation conducted not only for the
objective, statistical point of view through the Mahalanobis distance metric, but also for the
subjective, visual aspect of the optimized model.

Concerning the model variations and their effect on the visua evaluation by the
radiologists and radiographers, the favored orientation of the structuresin simpori and doubori
series was generally recognized as such by the observers, and their main drawback was that in
some cases this orientation was too obvious and artificial, giving them the feeling of seeing
three-dimensional structures instead of flat projections. This defect was particularly
mentioned in simpori series, while the few large scale structures of doubori seemed to hide or
mask the main layer composed of the smaller blobs. On the other hand, the observers found
that some of the isotropic images were too disorganized to correctly represent real
mammograms. This was the main reason for discarding the display of simpiso series for the
last three observers in the psychophysical study. The presence of the second layer CLB in
doubori did not improve or deteriorate significantly the visual aspect of simpori series, but the
difference was clearly shown by the observers evaluations for the isotropic series. they
reported unorganized images with too much contrast for the 1-layer series, and selected the 2-
layer doubiso images as best overall series. The only limitation mentioned by the radiologists
for that series was that for some images (about 10% of the set), bright points caused by blobs
superimposition might be interpreted as clusters of microcalcifications. However, for visua
experiments of mass detection, they confirmed that this downside would not be critical, since
they are not affected by the presence of mm-scale microcalcifications when looking for cm-
scale structures like masses.

A remaining question is the visual variability of the synthetic textures. As for most of
other models, it is much smaller than that of real images. This has been partly solved by
converting the CLB output float images to 12-bit images using randomly chosen values of
mean gray level and standard deviation following real image corresponding distributions. One
could have imagined using "floating" values for CLB parameters as well, but this possibility
was not applied in our study. Another possibility is to separately use genetic optimization to
fit the CLB parameters to ROIs from mammograms corresponding to individual patients or
groups of patients. Since the real images have intrinsic variability sources like breast
dimension and composition or quantum noise that are difficult to fully reproduce with CLB
model, experienced radiologists would probably be able to distinguish between real and
synthetic backgrounds. In order to focus the observers rating task on the different optimized
CLB models, real mammograms ROIs were used as reference images only in the experiments,
and the observers were not asked to rate other real images. However, we are confident that the
optimized CLB provide excellent candidates for designing and conducting realistic mass
detection tasks and that the results can be generalized to clinically relevant tasks, since recent
findings [16] with these backgrounds suggest that human observers use similar strategies with
both background types.

5. Conclusion

Using a genetic algorithm and variations of the original CLB model, we were able to
synthesize images which resulted in significantly closer visual and statistical properties to real
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images than those arising from the original CLB model. These models and parameters allow
for generating an arbitrary number of such images while improving their realism. The
synthetic images may find direct applications in detection experiments involving human or
model observers since the visual and statistical characteristics have both been deemed by the
current study to be similar to that of real images. In particular, the doubiso series were deemed
to have visual characterigtics very close to rea images, even if their satitical properties are
more distant from real images than for the other model variations simpori and doubori.

Compared to other image synthesis techniques, our technique is limited to the generation
of square ROIs. However, it has the advantage of being able to quickly generate a large
number of images, with traceable statistical properties, and visually representing all major
structures types (glandular areas, fatty areas, fibers) that are visible on real mammograms. An
interesting application of the technique described in this work would be to generate separate
optimizations of the CLB model for different breast density classes. However, the
methodology presented in this study is not limited to mammography and may be easily
generalized to other medical or non-medica images. The only need is a sufficiently large
database of reference textures for defining the Mahalanobis distance used as fithess function
by the genetic algorithm for tuning the CLB parameters. Further work may also focus on other
blob functional forms than the exponential blobs used in this study, and their influence on
visual and statistical properties of the synthetic images.

Appendix A: Optimal CLB parametersfor each model variation
The CLB parameters mentioned used for generating the ROIs of Fig. 4 are givenin Table 4.

Table 4. Optimized CLB parametersfor the various CLB models.

Series o B L, L, O o Ko No Ko Ny

Opex99 21 05 5 2 12 12 600 20 N/A  N/A
Doubiso 2.31 0.57 4.09 1.76 13.27 13.92 643.81 20.21 61.47 5.60
Doubori 249 053 4.14 1.61 11.17 14.29 709.96 20.37 78.00 5.01
Smpori 251 054 453 1.66 10.67 13.33 714.44 23.14 N/A N/A
Simpiso 247 059 419 1.63 11.02 12.27 674.97 16.53 N/A N/A
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We estimated human observer linear templates underlying the detection of a realistic, spherical mass signal
with mammographic backgrounds. Five trained naive observers participated in two-alternative forced-choice
(2-AFC) detection experiments with the signal superimposed on synthetic, clustered lumpy backgrounds
(CLBs) in one condition and on nonstationary real mammographic backgrounds in another. Human observer
linear templates were estimated using a genetic algorithm. A variety of common model observer templates
were computed, and their shapes and associated performances were compared with those of the human ob-
server. The estimated linear templates are not significantly different for stationary CLBs and real mammo-
graphic backgrounds. The estimated performance of the linear template compared with that of the human ob-
servers is within 5% in terms of percent correct (Pc) for the 2-AFC task. Channelized Hotelling models can fit
human performance, but the templates differ considerably from the human linear template. Due to different
local statistics, detection efficiency is significantly higher on nonstationary real backgrounds than on globally
stationary synthetic CLBs. This finding emphasizes that nonstationary backgrounds need to be described by
their local statistics. © 2007 Optical Society of America
OCIS codes: 100.2000, 110.3000, 170.3830, 330.1880, 330.4060, 330.5510.

1. INTRODUCTION

As long as medical diagnosis decisions are based on visual
inspection of medical images, it will be necessary to better
understand human decision-making strategies. If we
want to extract as much information as possible from an
image, it has to be processed and displayed in such a way
that the human observer can most efficiently read it. In
other words, imaging systems need to be adjusted and the
image quality assessed and optimized for human visual
and decision capabilities [1]. There are basically two ways
of conducting a simple detection task: either by hiring hu-
man observers or by using mathematical models that at-
tempt to mimic human performance. This latter method
has the advantage of reducing the time and the cost of the
optimization process but requires knowing how the hu-
man observer actually processes the image and how the
image backgrounds influence the detection task.

Human performance in radiology detection tasks has
been studied within numerous model frameworks in pre-
vious decades. In most of the studies, human observer
characteristics were assessed through psychophysical ex-
periments reproducing the clinical task. Such experi-
ments were conducted in the context of tumor detection
on computer tomographic images of the liver [2,3], steno-
sis in a blood vessel on fluoroscopic images [4], nodules on
pulmonary radiographs [5], or microcalcifications and tu-
mors on mammograms [6,7]. Human performance was
then compared with that of hypothetical linear models de-
rived from the theory of signal detectability [8]. Each of
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the models has an underlying template that is assumed to
mediate human visual detection.

An alternative approach to studying human observer
strategy is to attempt to directly estimate the linear-
template model from the observers’ trial-to-trial decisions
and the images presented. This method, known as classi-
fication images, was originally developed by Ahumada for
audition and generalized by Abbey et al. to a variety of vi-
sual tasks, including two-alternative forced-choice (2-
AFC), correlated Gaussian noise processes and real medi-
cal image backgrounds [9-12]. The method gives an
estimate of the linear template used by a human observer
by analyzing the results of 2-AFC experiments. Aside
from assuming the linearity of the system, it does not
make any a priori assumption on the way the observer
processes the background and is influenced by its statis-
tical characteristics. The direct estimation of the underly-
ing observer template might lead to better prediction of
human performance than the use of a hypothetical model
observer’s template. Thus, the first goal of the present pa-
per is to estimate human observer templates for the de-
tection of simulated masses in real x-ray mammogram
backgrounds. Use of real mammographic images rather
than images with Gaussian noise processes precludes the
use of the standard linear-weighted sum of images to es-
timate the templates [13—-15] and thus demands develop-
ing an iterative method to find the best estimate of the
human template. Here we propose a method using genetic
algorithms (GAs) to find the template that maximizes the

© 2007 Optical Society of America
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likelihood of observing the trial-to-trial human decisions.
In addition, we assess the ability of the estimated tem-
plate for each individual observer in predicting human
performance.

One challenge when studying human detection perfor-
mance and/or evaluating and optimizing image quality is
that it require a few hundreds if not thousands of images.
Because access to a sufficient number of real clinical im-
ages might become difficult, there has been a strong mo-
tivation to use synthetic backgrounds that are realistic
looking. For that reason, and also because it is useful for
controlling image statistics, a large part of theoretical and
experimental studies have been conducted using syn-
thetic backgrounds. The first studies consisted in simple
objects superimposed on white noise [16,17]. Although be-
ing particularly convenient for theoretical considerations,
white noise is actually a too simplified view of noise en-
countered in medical imaging, and this framework was
then extended to more realistic noise models such as cor-
related noise applied to radiology [18] or nuclear medicine
[19]. Researchers have since been focused on images con-
taining anatomical (or pseudoanatomical in the case of
computer-synthesized images) variations. Burgess and
colleagues [20,21] showed that real or realistic back-
grounds (in the sense of visual and statistical realism) are
necessary for evaluating observers’ performance for detec-
tion tasks and that noise-limited experiments with simple
phantoms are too limited for the mass detection task ap-
plied to mammography. Lumpy backgrounds [22] and
clustered lumpy backgrounds [23] (CLBs) were developed
in order to better reproduce anatomical variations. A new
version of CLBs [24] was specifically developed for mam-
mographic textures. Yet aside from the visual similarity
and commonality of global image statistics between the
CLBs and the real mammographic backgrounds, it is still
unknown whether human observer strategies are similar
across both types of backgrounds. One important differ-
ence is that CLBs are statistically stationary, while real
mammographic backgrounds are not. A recent study by
Zhang et al. [25] has shown that human observers can
adapt their detection mechanisms to the local statistical
properties of spatially oriented backgrounds. Thus, the
second goal of this paper is to investigate whether human
visual detection strategies are similar across CLBs and
real mammographic backgrounds by estimating the un-
derlying templates of human observers for both back-
grounds.

2. MATERIALS AND METHODS

A. Human Linear Observer-Template Model

The linear observer-template model, further referred in
this text as human linear template (HLT), has already
been described previously [1,9—11], and it will only briefly
be reviewed here. In this model, human observers are as-
sumed to perform 2-AFC tasks by formulating a linear in-
ternal response \ to each image as

N =wig+e, (1)

where g is the image shown to the observer, w is the ob-
server template (both described as vectors), and € is the
observer’s internal noise. A binary variable o; can be de-
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fined, which represents the outcome of the ith trial:
0, =step(\* = \7) = step(W'Ag; + A¢). (2)

In this equation, the variables related to the signal-
present image are denoted by the * superscript, the
signal-absent by a ~, and Ag; is the difference between g
and g;. The trial outcome o; is equal to 1 if the observer
chose the signal-present image during the ith trial, and 0
otherwise. If Ae is assumed to follow a Gaussian distribu-
tion with zero mean and a variance of 202, then the prob-
ability that 0,=1 is given by

wiAg;
, (3)

plo;=1)=p; =<I>< =
\y’20’

where ® is the Gaussian cumulative density function.
Since this probability is invariant to a common scaling of
w and ¢, they can be scaled so that the magnitude of the
internal noise is fixed to a value of o=1, which yields

wiAg;
p;= q)( ) . (4)

\r’E

The definitions above lead to a conditional Bernouilli
probability distribution for o; given by

Pr(o;|Ag;,w) =pj'(1-p;)' ™, (5)

where it is understood that p; is a function of w and Ag;
as shown in Eq. (4).

Under these assumptions, it is possible to analyze the
likelihood of the human observer response of the ith trial
as a function of the template w and the differences be-
tween the images Ag; for that trial. Since the images are
independent of the observer template, the ith trial likeli-
hood can be written as

Lz(w) = f:joint(oiaAgi;w) = Pr(0i|Agi;w)fmarg(Agi)’ (6)

where fjin(0;,Ag;; W) is the joint distribution of the dif-
ference image and the observer response, while fy,,,5(Ag;)
is the marginal distribution of the difference image alone.
Assuming that the images used in the N, different trials
of the entire experiment and the trial scores are indepen-
dent from trial to trial, the likelihood of the template w
for the entire experiment is given by the product of the
individual likelihoods. The log likelihood is then given by

Np Np
l(w) = 1n<H Li<w>) = >, [o; In(p;(w))

i=1 i=1
+(1-0)In(1 - p;(w)) + In(frarg(Ag))].  (7)

The last term of Eq. (7) is independent of w and is ir-
relevant for finding extremal values of the log likelihood.
Therefore, in order to find the maximum-likelihood (ML)
estimate of w, one has to maximize the function [11]

Nrp

Q(w) =X [0;In(p;(w)) + (1 - 0)In(1 - p(w))].  (8)

i=1

B. Template Estimation
The optimization of Eq. (8) is not trivial, since the number
of unknowns is equal to N2 for N XN pixel images. We
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therefore used the methodology described by Abbey et al.
[11] in order to reduce the number of parameters: We as-
sumed that the observer template could be represented by
a limited set of known linear feature vectors. The hypoth-
esis is that the Fourier decomposition of the observer tem-
plate can be expressed as a weighted sum of a limited set
of frequency band channels. In the spatial domain, the in-
verse Fourier transform of these channels can also be
used as a base, which yields

N¢
w=> Bit;, 9)
Jj=1

where N, is the total number of frequency channels; t; is
the ith base template, equal to the inverse Fourier trans-
form of the frequency band channel i; and B is the weights
vector. The t;’s were computed by performing the fast Fou-
rier transform (FFT) of circularly symmetric images rep-
resenting the frequency channels and then windowed in
the spatial domain with a fourth-order Butterworth filter
to reduce ringing. The channel width was 0.0078 cycles/
pixel (0.22 cycles/deg), and the radial coordinates of the
channels’ centers were equally spaced between 0.01 and
0.25 cycles/pixel (0.28 and 6.98 cycles/deg). We used a to-
tal of N,=50 overlapping channels, which reduced the di-
mensionality of the optimization problem from N? to N,.
Using Eq. (9), Eq. (4) can be rewritten as

N, N,
(Ejzl @tf)Agi > Xy
pi=o| =0 =], 0

A A

where X;; is the dot product between the jth base tem-
plate and the difference image of the ith trial; X;; does not
depend on w and can be used throughout the whole opti-
mization process once computed.

We used a standard GA for the derivation of the ML es-
timate of the observer template w. GAs are a family of
computational models inspired by evolution [26]. They are
well suited for complex optimization problems where the
search space has a high dimension. The free parameters
of a given optimization problem are encoded on a chromo-
somelike data structure, and selection and recombination
operators are applied in order to allow a population of po-
tential solutions to evolve toward the optimal solution of
the problem. The initial population is usually chosen ran-
domly in the search space, and the corresponding chromo-
somes are evaluated through a fitness function. The best
chromosomes are given better reproduction and survival
opportunities. Then, crossover and mutation operators
are applied in order to generate a new population of equal
cardinality. These processes of evaluation, crossover, and
mutation are repeated until a user-defined (sub)optimal
value of the fitness function or number of generations is
reached, or when the best chromosome of the population
has not been improved for a given number of generations.

In this study, the fitness function was Eq. (8), with p;
computed with Eq. (10). The chromosomes were the chan-
nel weight vectors B, and the genes the N, individual
weights. We constrained the chromosomes to have a Eu-
clidian norm of 1, which is not a restrictive constraint
since two weight vectors that differ only by a scaling fac-
tor will represent observer templates that yield the same
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results in a 2-AFC task. The mutation operator was a
two-gene swap with a probability of p,,=0.3 per chromo-
some per generation, while the crossover operator ran-
domly exchanged half of the genes of two chromosomes of
generation G with a probability p,=0.8 to generate two
new chromosomes for generation G+1. We used elitist
strategy, which consists in keeping the chromosome with
the best fitness function value at generation G unaffected
by mutations and crossovers when defining the popula-
tion of generation G+1. This guarantees that the fitness
function is monotonically optimized. We also used rank
selection, which ensures that the best chromosomes are
given better survival opportunities: At generation G, the
chromosomes were ranked according to their fitness func-
tion value, and the probability of being chosen for the
crossover operation was linearly dependent on the rank.
Population size was 21 normalized chromosomes that
were initialized with random real numbers following a
Gaussian distribution at generation 0. We let the GA
evolve during 10,000 generations.

C. ROI, NPW, and NPWE Models

The first group of linear models observers used in this
work include the region of interest (ROI), the nonprewhit-
ening matched filter (NPW), and the NPW with an eye fil-
ter (NPWE). These models incorporate different degrees
of knowledge about the signal but do not make any as-
sumption about the backgrounds. Complete descriptions
can be found in [1,27], and they will be only briefly re-
viewed here.

The ROI model is rather primitive and uses only infor-
mation about the spatial extent of the signal. The profile
of the signal is not taken into account, and the template
consists in a uniform activation area integrating the pixel
values of a ROI. This model is very limited in the pres-
ence of real or realistic backgrounds and signal.

The NPW uses full knowledge of the signal shape: Its
template wypw matches exactly the signal profile s. This
approach has been shown to be optimal when the back-
grounds consist in pure white noise but is suboptimal for
correlated noise.

The NPWE is an extension of the NPW model, in which
the signal is filtered in the Fourier domain by the human
contrast sensitivity function, also known as the eye filter.
The eye filter takes into account the different sensitivities
of the human visual system at different scales. Its func-
tional form in the frequency domain can be modeled by
[28]

E(p) = p" exp(- cp?), (11)

where p is the radial frequency in cycles/deg, n=1.3, and
¢=0.041 (values from Burgess [29]). The NPWE template
is given by

wypw = E'Es, (12)

with the matrix E implementing the effect of the eye filter
and defined by Eq. (11).

As with the HLT, a Gaussian-distributed random vari-
able can be added in any of these models to the observer
response, as in Eq. (1), ¢, to account for the observer in-
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ternal noise. The value of € is usually chosen in order to
degrade the model’s performance to match human ob-
server performance.

D. Channelized Hotelling Observer

The Hotelling observer [18,22,30,31] uses information
about both signal profile and background statistics. It is
the ideal observer for images with a multivariate Gauss-
ian distribution and the same correlation structure in
signal-absent and signal-present images [32]. For a given
signal s, its template wyor is given by

wror=Kj's, (13)

where K, is the covariance matrix of the background,
which describes the variance of each image pixel and the
covariance between pairs of pixels; K, can be derived di-
rectly from the noise power spectrum (NPS) for spatially
stationary backgrounds (like some computer-generated
textures [33]), but in the general case, for N XN images,
K, is an N2 X N2 matrix that has to be estimated from the
variance—covariance computation. Due to the large size of
the resulting covariance matrix, the practical implemen-
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tation of the Hotelling observer is a problem for real back-
grounds. One way to avoid this is to reduce the image to a
smaller set of channel response variables [27,34]. The
channelized Hotelling template is then given by [35]

Weg = T(TthT + Ke)_thS, (14:)

where the column vectors of the matrix T each represent
the spatial profile of a channel and K, is the covariance
matrix of the internal noise. Internal noise is assumed to
be zero mean, independent in each channel, with variance
proportional to the variance of the background noise in
each channel.

In this work, we used two types of radially symmetric
channels: channels with a square bandpass profile in ra-
dial frequency [33] [SQR channels, Fig. 1(a)], and overlap-
ping difference-of-Gaussians (DOG) channels [36,37]. The
two DOG-channel models, namely sparse [S-DOG chan-
nels, Fig. 1(b)] and dense [D-DOG channels, Fig. 1(c)], as
well as the SQR-channel model, are described intensively
in the work by Abbey and Barrett [35].

We estimated K, by assuming stationarity of the back-
grounds and using the Wiener—Khinchin theorem to esti-
mate the covariance matrix from the NPS [38]. This as-
sumption is valid for the CLBs, which are stationary by
construction, but is only an approximation for real images
[13]. The NPS for the CLBs and the real images were
computed separately and averaged over 4000 (CLBs) and
1400 (real) images.

E. Images

Two types of backgrounds were used in the 2-AFC experi-
ments: real and synthetic. The real backgrounds were ex-
tracted from digital mammograms. We used a database
[24] of 88 patients who underwent screening exams on a
GE Senograph 2000D full-field digital detector [39,40]
with one craniocaudal (CC) and one mediolateral oblique
(MLO) processed mammogram per breast to collect
square 256X 256 pixel ROIs. All ROIs were selected
manually in the central breast region in order to avoid
any imaging artifact or pathological abnormality. Fatty
and dense breasts were represented in the database. We
gathered a total of 1400 nonoverlapping 16-bit ROIs hav-
ing a pixel size of 0.1 X 0.1 mm.

The synthetic backgrounds were second-generation
CLBs [23,24]. These backgrounds consist of the superpo-
sition of clusters of elliptical blobs. In order to reproduce
both visual and statistical properties of real mammo-
grams, we used CLB images g(r) that were generated by

K,small Nk, 1
g(r) = 2]@:1 zn;lsma bsmall(r — T small

- rkn,small’ R(?k,small)

K.large Nk,large
+ 2k=1 En:l blarge(r - rk,large

- rkn,largeaRHk,large)> (15)

where by, and by, Were exponential blob functions of
the form

IRerlﬁ)
: (16)

b(r,Ry = exp(— aL(Rt,r)
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Table 1. Definitions and Values of the Variables Used in the CLB Model

Variable Definition Distribution/Value

K Number of clusters Poisson with mean values K ¢,n=643.81
and K jarge=61.47

Ty, Position of the kth cluster Uniform across image

N, Number of blobs within the kth cluster Poisson with mean value Ny ¢,.n1=20.21
and N jap4e=5.60

0, Rotation angle of the blobs in the kth cluster Uniform between 0 and 27

Ry Rotation matrix of angle 6 N/A

T, Position of the nth blob within the kth cluster Gaussian pdf ¢(r), with standard deviations
0,=13.27, 0,=13.92 pixels

b(r,R) Blob profile rotated at angle 6 N/A

a Blob shape factor a=2.31

B Blob shape factor B=0.57

L,L, Characteristic dimensions of the elliptical blobs L,=4.09,L,=1.76

The parameters in Egs. (15) and (16) are given in Table
1. Values for a, B, K, N, and L are from [24]. Since the
distribution of cluster orientation is uniform between 0
and 27, CLB images are isotropic. By construction, they
are also stationary within their boundaries. The two blob
scales (small and large) mimic textures that are found on
real mammograms: fatty areas, glandular areas, and fi-
bers.

F. Signal

For these experiments, we wanted a realistic signal that
would mimic a medium-sized mass. We chose to extract a
4 mm diameter mass from a high-dose image of the Kodak
ITO mammography phantom. The synthetic masses con-
tained in this breast-tissue equivalent phantom are ac-
etate spherical beads having a density of 1.15 g/cm?. The
image of the phantom was acquired on a GE Senograph
2000D (Mo/Rh, 200 mAs), the same as used for the real
mammograms in this study.

The mass and the surrounding background were ex-
tracted from the phantom image, and the mean pixel
value of the background was subtracted. The resulting
signal image was then convolved with the radial attenu-
ation profile shown in Fig. 2. The amplitude A of the sig-

Attenuation
function profile 1

ol

s =]
N

A -
Distancé from
center [pix]

Fig. 2. Dimensions of the original signal (S) and attenuation
function used for the surrounding background. Display screen
pixel size is 0.25 mm.
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nal was defined as the mean value of the central 3 X3
pixel area of the signal. The signal was added onto exist-
ing backgrounds after having been scaled to the desired
amplitude. Figure 3 presents the spatial and Fourier
space profiles of the mass in the same conditions as they
were displayed to the observers (see Subsection 2.G for
magnification and resampling specifications). The idea
behind that particular signal choice was to use a syn-
thetic mass that would be as realistic as possible, yet
nearly circularly symmetric. The advantage of using a
phantom image is that it was possible to incorporate in a
realistic way the transition between the signal and the
surrounding uniform background, therefore avoiding the
too-synthetic aspect of an isolated bright spot.

G. 2-AFC Psychophysical Experiments Setup

Four naive observers and one co-author (named Cy in the
results) took part in a classical signal-known-exactly
(SKE), location-known-exactly (LKE) 2-AFC detection ex-
periment in which the observers were presented two im-
ages simultaneously and were asked to indicate the one
that contained the signal. For each such trial, the image
containing the signal was chosen randomly and the mass
was added digitally to the corresponding background be-
fore display.

The image pairs were displayed on a Siemens SMM
21140 P high-contrast gray-scale monitor (Siemens,
Karlsruhe, Germany), which has a pixel size of 0.25 mm.
All backgrounds were scaled so that their mean pixel
value was equal to 128 and their standard deviation to 30
gray levels (GL). This way, all images were presented in
the middle of the screen dynamic range. In order to repro-
duce typical clinical settings, the backgrounds were mag-
nified (1.5 magnification factor) before being displayed.
The displayed backgrounds were nearest-neighbor resa-
mpled 154 X 154 pixel versions of the original ones. Fidu-
ciary cues were added to both signal-present and signal-
absent images in order to assist the observers focusing on
the possible signal locations and thus minimize location
uncertainty. Examples of displayed images are presented
in Fig. 4.

The target contrast resulted in a percentage of correct
answers (Pc) ranging from 70% to 85%. After preliminary
experiments by one of the authors, the amplitude of the
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Fig. 4. Examples of (a) signal-present real background and (b)

signal-absent CLB. The amplitude of the signal has been in-
creased for printing purposes.

signal was set to A=15 GL. The observers were trained
before the beginning of each viewing session: They were
presented a series of decreasing contrast trials from A
=35 down to A=15, until they had stabilized their Pc be-
tween 70% and 85%. The training was performed with im-
ages taken from the same database as for the detection
experiments, but the pairs that were presented during
training sessions were different from those of the detec-
tion sessions. All observers were given feedback—correct/
incorrect—after each trial, as well as their Pc after each
series of 25 trials. Each observer was presented with a
different series of randomized image pairs. They were not
given any time limit within a trial to reach a decision.
Viewing distance was about 40 cm.

The total number of trials was 1400 for the real back-
grounds and 4000 for the CLBs. Thus, each observer per-
formed a series of about 15-20 one-hour sessions. The
real images and CLB trials were not interleaved for a
given observer in order to keep the analysis and the esti-
mation of the corresponding human linear templates as
independent as possible. Two observers (Ce and Ga) be-
gan with the real image trials, while the other three (Cy,
Ro, and Va) began with the CLBs. The image pairs dis-
played at each trial were randomly chosen and were dif-
ferent for each observer. Two separate image databases
(4000 signal present and 4000 signal absent) were used
for CLB trials, while each image of the real background
database was displayed once as a signal present and once
as a signal absent.

In order to estimate the performance of the templates
obtained at the end of the optimization process by the GA,
we generated a new series of 2-AFC experiments by ran-
domly choosing 1400 real image pairs and 4000 CLB
pairs. We estimated the observer templates’ Pc on the ba-
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(a) Normalized profile of the signal used in the psychophysical experiments. (b) Fourier space representation. Display screen

sis of these new trials by directly computing the dot prod-
uct with each image of the pair and choosing the highest
noiseless response. Note that each individual observer
was presented different trials during the detection experi-
ment but that all templates were tested on the same tri-
als. The estimation of the performance of the other mod-
els (ROI, NPW, NPWE, SQR, S-DOG, and D-DOG) was
done using the same approach, by testing the templates
on the simulated 2-AFC.

Finally, the performances of the templates were esti-
mated by a radius of curvature (ROC) curve based on the
linear response A of 1400 real images and 4000 CLBs. We
used a Java code from the Johns Hopkins University and
translated by J. Eng from the original Fortran program
LABROC4 by Charles Metz and colleagues, which is
available on the Internet [41].

3. RESULTS AND DISCUSSION

A. Robustness of the Experiments

None of the human observers showed significant bias at
the 5% confidence level toward one of the two alternatives
(left versus right image) in any of the experiments. The
results obtained after the training sessions showed no in-
creasing trend in the performances expressed in term of
Pc for each series of 25 trials. The fastest two observers
did not improve their decision time, while the other three
reduced it by about 50% between the first and the last se-
ries.

B. Template Estimation

Figure 5 shows the obtained human observer templates
presented as 2D images as well as radially averaged in
the spatial and Fourier domains. Only the average of the
five different observers is presented, but the individual
templates are very similar.

Visual inspection indicates that almost all templates
present the same transition at the signal edges: A bright
circular zone surrounded by a dark inhibition region. This
suggests that human observers concentrate on both the
center and the edges of the signal location, rather than
just on a homogeneously brighter area. The radial profiles
show that the templates are positive within the signal
area (below about 15 pixels), then become negative in a
surrounding ring of about 5 pixels around the signal loca-
tion, and terminate with oscillations decreasing rapidly in
amplitude. In the frequency domain, the template profiles
oscillate around zero, with nodes very close to those of the
signal profile. The main differences between template and
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Fig. 5. Human observer template obtained when pooling the five observers’ data. (a) CLBs. (b) Real backgrounds. Profiles of both tem-
plates in (c) the spatial domain and in (d) the Fourier domain. Display screen pixel size is 0.25 mm.

signal are in the low frequency domain where the tem-
plate hits a maximum at around 0.03 cycles/pixel
(0.84 cycles/deg) and the following oscillations are much
more pronounced in the template than the signal, show-
ing an inhibition process.

The metric we used for comparing the radial frequency
profiles of the templates estimated for CLB and real im-
ages is the root-mean-square difference, weighted by the
inverse of the variability of each point (wWRMSD [1]). The
variability was computed as the square root of the mean
interobserver variance. Assuming a standard normal dis-
tribution for the wRMSD, the p-value for a ¢-test under
the null hypothesis that the wRMSD is equal to 0 is
greater than 0.05 if wRMSD is smaller than 2. The
wRMSD computed for frequencies between 0 and
0.25 cycles/pixel (6.98 cycles/deg) is equal to 0.81: Such a
low value thus indicates that the profiles are not signifi-

cantly different, which suggests that human observers
apply the same strategy for both types of backgrounds.

C. Observers and Linear Template Performances

Figure 6(a) shows the individual performances of each ob-
server for the two types of backgrounds together with the
performance predicted by the corresponding estimated
linear observer templates. Individual and average ob-
server performance (Pc) were significantly superior by 6%
to 15% for visual detection with the real images than for
CLBs (p<0.0001 for all cases). As for Pc, the area under
the ROC curve [AUC; Fig. 6(b)] for the task with real
backgrounds was significantly larger than for the CLBs
(0.84+0.02 versus 0.73+0.02). Mean decision times, aver-
aged over the five human observers, were 2.2 s for the real
images and 4.8 s for CLBs, confirming that the task on
CLBs is perceived as more complex for the observers.

Human Template 1
a b
( )100 CLB Q 4 b)
Real i L
90
- 80
x w
— o
o =
I (1]
60
= Real backgrounds
50
| | | | | |
Ce Cy Ga Ro Va Pooled 0.0 02 04 06 08 10
Observer FPF

Fig. 6. Results of the 2-AFC experiments performed on the CLBs and real backgrounds. (a) Performance of each human observer and
the corresponding linear templates presented in terms of Pc. (b) ROC curve computed with the templates obtained from the pooled data

(the dim bands around the curves show the 95% confidence intervals).
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It is perhaps not accidental that the smallest perfor-
mance difference is obtained by observer Cy who, as the
only co-author of the five observers, had been seeing and
working with CLBs for months. The more extensive expe-
rience of Cy with the CLBs could have induced a better
knowledge of the structures that were naturally arising
from the superposition of blobs and those that were due to
the signal.

Although interobserver performances can vary signifi-
cantly for a given background, performance for a given
human observer and the predicted performance from his/
her corresponding estimated template are very similar.
Differences between the human and the estimated perfor-
mance range between —4.6% and 3.07% (in units of Pc).

The difference, however, is neither systematic nor ran-
dom. For the real images, three human observers out of
five are outperformed by their linear templates. For the
CLB images, only one observer performs better than his/
her estimated linear template. This could probably be ex-
plained by the fact that the templates are applied without
adding internal noise, while this is not the case for human
observers.

Given that the CLB images are by construction globally
stationary, while the real backgrounds are not, the supe-
rior human performance for the nonstationary back-
grounds agrees with the findings of Zhang et al. [25].

Performance of the estimated template (pooled across
all observers) with CLBs has also been applied on real
backgrounds (AUC=0.84+0.02) and vice versa (AUC
=0.74+0.01). This shows that although the strategy is the
same for both types of images, it is significantly more ef-
ficient on real backgrounds.

D. Comparison with Other Model Observers

Figure 7 shows the templates computed for the other
model observers, displayed as 2D images. Only the tem-
plates computed for the real background detection task
are shown, since CLB-model observer templates are ei-
ther identical by definition (ROI, NPW, NPWE) or were
observed to be nearly undistinguishable (SQR, S-DOG,
D-DOG). As for the HLT, the NPWE template reveals an
activation/inhibition transition at around 15 pixels. This
transition is also visible on the SQR and D-DOG tem-
plates, even though the latter two have another inhibition
circular area very close to the center of the signal loca-
tion. The S-DOG template is the only template to be nega-
tive at the very center of the signal location. Its activation
area is a crown between 3 and 6 pixels (0.11 to 0.22 deg)
around it.

The radial profiles of all templates in the frequency do-
main are shown on Fig. 8. Only those corresponding to
the real image detection task have been displayed, since
the ones corresponding to the task on CLBs are very simi-
lar. This similarity was expected, since NPWE does not
take any property of the background into account and the
three channelized observers depend on the noise power
spectra, which had been matched between the two image
types while generating the optimized CLBs [24]. As for
HLT, all templates peak at around 0.04 cycles/pixel
(1.12 cycles/deg) before oscillating as the frequency in-
creases. The eye filter in the NPWE model enhances the
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Fig. 7. Model observer templates presented as 2D images. (a)
ROI, (b) NPW, (¢) NPWE, (d) SQR, (e) S-DOG, (f) D-DOG.

signal oscillations at higher frequencies and therefore
spans the area of interest up to 0.2cycles/pixel
(5.59 cycles/deg). The values of the wRMSD between the
HLT and the NPW, NPWE, and channelized Hotelling
templates are given in Table 2. If the whole signal fre-
quency range (up to 0.15 cycles/pixel, 4.19 cycles/deg) is
considered, the extremely high values of the wRMSD
show that all model templates are substantially different
from the HLT. However, for frequencies up to
0.1 cycles/pixel (2.79 cycles/deg) only, the template pro-
files depart less strongly from the HLT. The wRMSD val-
ues of all models lie in the same range (3.9-6.4), with the
NPWE being the closest to the HLT. The reduced ability
of the channelized models to be tuned to the specific sig-
nal is probably responsible for the poor agreement with
the HLT.

The performance of the model observers in the 2-AFC
experiment, defined by the AUC, is given in Fig. 9. As ex-
pected, the ROI and the NPW models perform very poorly
on both CLB and they real images, and they are below the
human observers. The addition of the eye filter in the
NPWE, however, increases its performance significantly
above the human observers. Noise was introduced in the
NPWE according to the scheme presented in Subsection
2.C, but with the same noise level, human performance
could be matched only for one background type at a time
(see NPWE* in Fig. 9).
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Fig. 8. Radial frequency profiles of the model observer tem-

plates estimated for the detection task with real backgrounds.
The frequency profiles of the signal and the human linear tem-
plate are shown for comparison. (a) NPWE and SQR models. (b)
S-DOG and D-DOG models. Similar results are obtained with
CLB images.

The three channelized Hotelling models have very close
performances, with the D-DOG model outperforming the
other two by 0.05-0.07 depending on the background
type. The D-DOG model is the only one to outperform the
human observer. However, by adding internal noise to
this model (D-DOG* in Fig. 9; see Subsection 2.D), the
performance obtained by all channelized models are very
close to those of the pooled human observer on both back-
grounds. The fact that the SQR and S-DOG models do not
outperform human results could either mean that the as-
sumption of image stationarity for using the Wiener—
Kintchin theorem when estimating the covariance matrix
was too strong or that there is excessive information loss
that occurs when restricting the Hotelling observer to the

Table 2. Weighted wRMSD between the Frequency
Profiles of the HLT Estimated from the Pooled
Observer Data for Real Images and the Other

Model Observer Templates®

HLTReal HLTReal HLTReal HLTReal HLTReal HLTReal
Fnax vs. vs. vs. vs. vs. vs.

leye/pix] HLT;; NPW NPWE SQR S-DOG D-DOG
0.05 0.91 7.7 5.0 6.0 6.4 8.8
0.10 0.88 5.6 3.9 4.9 6.2 6.4
0.15 0.84 224 5365 317.2 4710 12638

“Each line corresponds to the WRMSD computed for frequencies from 0 up to
Snax only.
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Fig. 9. Performance of the various model observers in the

2-AFC experiment and comparison with human data (dotted
lines). The performance is given by the AUC for all model observ-
ers and for the percentage of correct responses for the pooled hu-
man observers. NPWE* and D-DOG* values correspond to the
NPWE and D-DOG with noise added in the model, respectively,
in order to match human observer performance on CLBs.

limited number of channels. However, given that the SQR
and S-DOG models are also slightly outperformed by hu-
mans with the stationary CLBs, the limited number of
channels might be the likely explanation for the inferior
performance of the channelized models. Increasing the
number of channels and/or testing other channel types
(Gabor, Laguerre—Gauss) and identifying the best set of
channels for this task may lead to an increased overall
performance, but not necessarily to a better matching
with human results.

Similarly to human observers, all models perform bet-
ter on the real backgrounds than on the CLBs, although
using the same or very similar templates for both tasks.
Again, this suggests that detecting a signal from a non-
stationary background is easier than on a CLB, where lo-
cal properties cannot be used. Minor differences were ex-
pected for the channelized Hotelling models using
background-specific information contained in the NPS [al-
though having been matched as closely as possible, the
NPS are not completely identical; see Fig. 10(a)], but they
are more surprising for the ROI, NPW, and NPWE models
because these models do not depend explicitly on back-
ground properties.

E. Dissociation in Human Performance between Real
Mammograms and CLBs

Zhang et al. [25] found a dissociation of performance be-
tween stationary and nonstationary noise for human ob-
servers and for model observers that adjusted their local
strategy (template) to the nonstationary noise. In con-
trast, nonadaptive model observers that used a fixed tem-
plate for all areas of the nonstationary images (i.e., global
prewhitening or NPWE) did not show such performance
dissociation. Thus, Zhang et al. [25] concluded that the
improved human performance with nonstationary images
was due to the ability of human observers to adapt their
strategy to the local statistics of the nonstationary back-
grounds.

The present study also finds a dissociation of human
performance across nonstationary (real mammograms)
and stationary (CLB) backgrounds but, in contrast to the
Zhang et al. study, this difference cannot be attributed to
an adaptive strategy of human observers. First, the tem-
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(a) Noise power spectrum of the real backgrounds and the CLBs. Slope in the linear part is —3.23 for the real images and —-3.17

for the CLBs. (b) Distribution of the local variance across real backgrounds and CLB images. The local variance is defined as the variance

computed for a 40 X 40 pixel area around the center of the image.

plate estimation methods suggest that human observers
apply the same strategy in the two background catego-
ries. Second, the fact that nonadaptive models (NPWE,
NPW, and ROI) also result in better performance with the
real mammogram backgrounds suggests that the disso-
ciation of performance in the present study is related to
image properties.

Figure 10 suggests an explanation for the better perfor-
mance on real backgrounds. As mentioned in Subsection
2.G, the global variance—computed across the whole
background—is the same for each image presented to the
observers, and the noise power spectra have been
matched between the two background types [Fig. 10(a)].
However, the mean local variance, defined as the variance
computed for a 40 X 40 pixel area around the center of the
signal location, changes from one background type to the
other. It is well known [16,17,42] that the local variance
has an effect on the detection performance for both hu-
man and model observers. According to Fig. 10(b), the
mean local variance is lower for real backgrounds ((o2)
=344) than for CLBs ((¢2)=617). This reflects the fact
that, although histogram equalization implemented in
the 2-AFC experiment forces both background types to
have the same global variance, the real images are locally
less noisy, which makes the signal easier to detect for hu-
man and model observers.

Thus, for the Zhang et al. [25] images, which by con-
struction had strong nonstationarities that were more ex-
aggerated than those in real mammograms, human ob-
servers could adapt their strategy. In the present study,
however, the dissociation in performance across station-
ary and nonstationary backgrounds can be attributed to
the lower variance at the possible signal locations and not
necessarily to a different human strategy across back-
ground types.

4. SUMMARY AND CONCLUSIONS

In the framework of objective assessment of image quality
for a realistic mammographic detection task, we devel-
oped a method to estimate human linear templates for
real backgrounds using a GA. We showed that for the
simple task of spherical signal detection on mammo-
graphic backgrounds, the HLT can fit human observer re-
sults accurately. For images and conditions used in this
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study, human observers seem to use the same strategy
whether the background is nonstationary (real images) or
stationary (CLBs). However, this does not imply that the
performances are the same in both types of backgrounds.
Our results show that even though both types of back-
grounds have very similar global statistical features, hu-
man observers (and their derived linear templates) per-
form significantly better on nonstationary backgrounds.

Local properties also influence the performance of other
model observers, since whether they use the same (ROI,
NPW, NPWE) or similar (SQR, S-DOG, D-DOG) tem-
plates for the two backgrounds types, the matching of glo-
bal properties such as global variance or noise power
spectrum does not prevent a significantly better perfor-
mance on real backgrounds than on CLBs.

However, although human results differ from one back-
ground type to another, they can still be accurately repro-
duced by the HLT and by the models incorporating knowl-
edge of the background, such as channelized Hotelling
observers. In our experiments, the HLT does not need the
addition of internal noise in the response in order to
match results on both CLBs and real backgrounds. This is
also the case for the SQR and S-DOG models, whereas the
noiseless D-DOG model outperforms human observers
and needs the addition of internal noise in its channels in
order to match human data. The NPWE model cannot be
fitted to human observer results for both backgrounds
with the same amount of noise.

This study thus confirms that the HLT provides the
possibility to estimate templates that fit human observer
performance from experiments performed on easily avail-
able synthetic backgrounds and to extrapolate them to
real backgrounds, since the templates for both tasks are
nearly identical and lead to the same performance when
tested on the same background type. This method avoids
complications related to the computation of the covari-
ance matrix in the case of Hotelling models and, for the
present conditions, a posteriori addition of noise.

To further test the adaptive or nonadaptive strategy of
human observers in real mammograms, further work
may concentrate on calculating the HLT for different ar-
eas (with different statistics) of the mammogram. Such
work would require classification of background areas
based on statistical properties and sufficient data to accu-
rately estimate local human linear templates.
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We studied the influence of signal variability on human and model observers for detection tasks with realistic
simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic
backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm
were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowl-
edge of the shape or size of the signal. Human observers’ performance did not vary significantly when benign
masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not de-
grade human performance significantly compared with the SKE task, while variability in signal size did.
Implementation of appropriate internal noise components allowed the fit of model observers to human

performance. © 2009 Optical Society of America

OCIS codes: 330.1880, 170.3830, 330.4060, 330.5020, 330.5510.

1. INTRODUCTION

Detection and classification tasks are fundamental to
many medical imaging applications. In radiology, these
tasks involve first determining whether candidate signals
are present in the image, then evaluating each candidate
and rating its likelihood of being an actual lesion. Likely
lesions are then classified based on their characteristics
such as size, shape, and malignancy. While modeling the
full clinical detection and classification process is still out
of the scope of current psychophysical studies, numerous
authors have reported results and models with the aim of
improving the understanding of the processes behind
various detection tasks. In most instances, these experi-
ments were simplifications of real clinical tasks, using
statistically or exactly known backgrounds, signals,
and/or signal locations. The simpler tasks facilitate data
collection and the robustness of the analysis.

When studying mass detection in a typical radiological
task, use of real backgrounds and masses is desirable to
achieve realism, but the collection of hundreds or thou-
sands of similar images can be difficult and time-
consuming. Therefore, mammographic nonstationary
backgrounds are typically replaced by synthesized white
noise [1,2], power-law filtered white noise [3-5], or lumpy
backgrounds [6-9]. Similarly, masses are generally ap-
proximated by disks [2,3,10], phantom elements [9], and
Gaussian or Gabor functions [11-13]. Signal location un-
certainty in the clinical task can be simplified by control-
ling the number and the location of the signals under the

1084-7529/09/020425-12/$15.00
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M-alternative forced-choice (M-AFC) paradigm, or re-
ceiver operating characteristic (ROC) studies [14,15]. For
such controlled signal conditions, Brettle et al. [16] re-
cently showed that trained naive (nonphysician) observ-
ers’ performance was very close to that of radiologists.

To reflect the image properties of clinical tasks, recent
developments have focused on producing synthetic yet re-
alistic backgrounds and signals that mimic medical im-
ages while preserving data collection and computational
efficiency. Lumpy backgrounds, initially developed by
Rolland and Barrett [6], have been extended to clustered
lumpy backgrounds (CLB) [7]. Later, they have been fur-
ther optimized [8] (second-generation CLB) to reproduce
visual and statistical properties of mammograms. On the
signal front, Saunders et al. [17,18] recently developed an
algorithm capable of generating benign or malignant
breast mass signals based on the analysis of real masses’
characteristics.

An important aspect of clinical relevance that is intro-
duced in our study is signal uncertainty. While most stud-
ies have concentrated on signal-known-exactly (SKE)
tasks, where the signal presented to the observers is
known and does not vary throughout the entire experi-
ment, less is known about more realistic conditions in
which each image presents a different realization of the
signal and the exact physical characteristics of the signal
are not known to the observer. To model experiments in-
volving various signals, signal-known-exactly but vari-
able (SKEV) and signal-known-statistically (SKS) para-

© 2009 Optical Society of America
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digms have been introduced [19-23] in M-AFC tasks. In
the SKEV task, a pool of different signals is used through-
out the detection experiment. Although the signal is ran-
domly selected from one trial to the next, a high-contrast
replica of the actual signal is displayed in addition to the
M-AFC images. The observer thus always knows which
signal is present. The SKEV task allows for generaliza-
tion beyond a specific signal, while retaining the simplic-
ity in analysis and modeling of the SKE task. In the SKS
task, the signal is also randomly chosen for each trial out
of a pool of different candidates, but the observer does not
know which signal was selected. This scenario closely re-
flects a real radiological task, but its results are more
complex to analyze and model than SKE or SKEV tasks.

To reproduce or predict human performance in detec-
tion tasks, model observers have been developed and suc-
cessfully adapted to SKE experiments [14,16,24]. Later,
models have been adapted to SKS tasks [19], and Eck-
stein et al. [20,21] and Zhang et al. [22] showed a good cor-
relation with human results for SKS experiments with
x-ray coronary angiograms. However, very little is known
about the ability of SKS-adapted model observers to accu-
rately predict human performance in mammography for
SKS conditions.

The first purpose of this study is to evaluate the influ-
ence of background, signal shape and signal size, on the
detection performance of human observers by conducting
psychophysical tasks with mammographic backgrounds
and second-generation CLB, combined with synthetic be-
nign and malignant breast masses to produce fully real-
istic yet controlled images.

The second purpose is to use the human observers’ data
to evaluate linear model observers in their ability to pre-
dict human observer performance across the various psy-
chophysical conditions, and to evaluate alternative meth-
ods for introducing internal noise in the models to best
predict human observers’ performance in SKS tasks.

2. MATERIAL AND METHODS

A. 2-AFC Setup

Four nonphysician observers participated in this study.
All had experience with 2-AFC experiments, since they
had participated in a previous SKE study with mammo-
graphic backgrounds and CLB [9]. For each of the 13
background and signal combinations described in Fig. 1,
the observers were presented 1,400 image pairs, or trials.
The signal was randomly embedded in one of the two im-
ages for each trial.

The observers had to determine which image was the
most likely to contain the signal. Fiduciary highly visible
cues were provided to precisely locate the two possible
signal locations, one per image. There was no time limit,
and feedback was provided after each trial (correct or in-
correct answer) and as a summary performance measure
after every 25 trials (percent correct, P,). The order of the
13 different tasks was the same for all observers. The ob-
servers performed each task during sessions distributed
over one day or two consecutive days.

The images were displayed in a dark room on a Si-
emens SMM 21140 P high-contrast gray-scale monitor
(Siemens, Karlsruhe, Germany) calibrated to the DICOM
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Fig. 1. Backgrounds, mass type, and signal conditions for the 13
2-AFC detection task experiments. Benign and Malignant char-
acterize simulated masses. SKE stands for an experiment with a
single signal of given shape and size and SKS an experiment
with a signal with variable shape but a given size, except for the
last experiment where both shape and size were variable.

Grayscale Display Function and TG18 standards [25].
Pixel size of the display screen was 0.25 mm. The observ-
ers were free to select the viewing distance, which was
typically about ~40 cm, but they were not allowed to
modify any display settings.

B. Backgrounds
We used two kinds of backgrounds: real regions of interest
(ROIs) extracted from digital mammograms, and syn-
thetic second-generation CLB. For the real images, we
used a database of 88 disease-free patients who under-
went screening exams on a GE Senograph 2000D full-
field digital detector (pixel size: 0.1 by 0.1 mm) [26,27]. A
total of 2,800 square ROIs (256 by 256 pixels) were manu-
ally selected from the processed mammograms and resa-
mpled to 154 by 154 pixels to emulate a magnification fac-
tor of 1.5 on the display screen, reproducing typical
clinical settings [9]. The CLB had been designed to mimic
digital mammogram ROIs and their statistical and visual
properties assessed by radiologists in a previous study [8].
To obtain comparable conditions between the real and
the synthetic images, and because of the prominent im-
portance of local statistics [9], we matched the first two
moments of the gray-level distributions of real and CLB
images over the 40 X 40 pixel central area of the displayed
images. This corresponds to the area covered by the fidu-
ciary cues over which the human observers were hypo-
thetically processing to perform the task. Over this area,
the mean gray level was set to 128 and the standard de-
viation to 20, ensuring that the rescaled images would be
in the middle of the display screen dynamic range. This
change of the first-order statistics implied a shift of the
ROI power spectrum without significantly altering its
slope.

C. Signals
The signals were synthetic breast masses developed by
Saunders et al. [18] and based on the analysis of real
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breast lesions from the Digital Database for Mammogra-
phy Screening (DDSM) [28]. They provided signals that
closely resemble real masses and represent perfect knowl-
edge of ground truth. We chose to use two kinds of simu-
lated breast masses: oval-shaped benign circumscribed
masses, and irregularly shaped malignant masses with
ill-defined borders [29]. In this work, these two kinds of
simulated lesions will be referred to as benign masses and
malignant masses, respectively.

Both mass types were constructed using concentric el-
liptical rings as a basis, and their edges characteristics
were matched to those of corresponding real benign or
malignant breast lesions from the DDSM. Their size was
defined as the major axis of the ellipse corresponding to
the half-maximum of the signal intensity [18]. During the
2-AFC experiments, these masses were embedded in real
time in the different backgrounds, real or synthetic, re-
sulting in controlled signal-present images. Detection
tasks with 6.5 and 9.5 mm masses were conducted with
CLB, while 6.5 mm masses only were used with the real
backgrounds to limit the number of psychophysical ex-
periments.

The masses were added linearly to the backgrounds.
The reason for the linear addition is that the processed
mammograms of the GE mammography unit are obtained
by windowing the logarithm of the exposure data [30].
The signals, multiplicative in the exposure domain due to
exponential attenuation through the lesion, were thus ad-
ditive in the log(exposure) images. The amplitude of the
signal, defined as the maximum intensity of the mass,
was set after preliminary experiments by one of the au-
thors to obtain a P, between 0.70 and 0.85 for each condi-
tion. For benign masses, this resulted in an amplitude of
10 gray levels (GL), whereas a higher amplitude of 15 GL
had to be used for malignant masses, which tend to be
less conspicuous due to smoother borders. At the begin-
ning of each of the 13 different experimental conditions
presented in Fig. 1, the observers were trained with sets
of 25 trials with decreasing signal amplitudes until they
had reached a P, of at least 0.70 for the actual experimen-
tal contrast conditions. Depending on the observers and
series conditions, this training phase lasted from 100 to
~500 trials. The target P, range 0.70-0.85 is low com-
pared with traditional 2-AFC studies [31]. We chose this
range of P, for efficient estimation from samples of one
model observer whose template (Human Linear Tem-
plate; see Subsection 2.D), is derived from the observers’
correct and incorrect answers and the backgrounds. Tem-
plate estimation would have been much less efficient with
a higher value of P..

For SKE experiments, the signal was identical during
the whole experiment, including high-contrast and low-
contrast training phases. The observers were aware that
they were being trained with the same signal that would
be presented during the actual experiment. For the SKS
task, the signal was chosen randomly for each trial from a
pool of 50 similar candidates of the same mass type (be-
nign or malignant) and with the same size: the actual sig-
nal to be detected thus changed from trial to trial, and
was not known by the observer. In a similar manner to
the SKE task, for the SKS conditions, the 50 similar sig-
nals were randomly chosen from the same set during the
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training phase and the following experiment. Finally, a
last experiment was conducted with CLB and benign
masses having sizes of 5.5, 6.5, 7.5, 8.5, and 9.5 mm. Ten
masses per size constituted the pool of SKS signals. The
aim was to compare SKS results when the mass size was
kept constant and only its shape and orientation changed,
and when the sizes covered the range of interest in
screening mammography. Examples of displayed images,
including fiduciary cues, are shown in Fig. 2.

D. Model Observers
Linear model observers were implemented and compared
with human observers’ results. We used the nonprewhit-
ening matched filter (NPW) [14], the NPW with an eye-
filter (NPWE) [24,32], channelized Hotelling observers
(CH) [14,15,33] with square (SQR) channels, sparse
(SDOG) or dense (DDOG) difference-of-Gaussians chan-
nels, and Gabor function channels [9,34], and estimated
Human Linear Template (HLT) models [9,35-40]. These
models have been described extensively in the literature,
and they will only be briefly reviewed here.

The decision variable of a general linear observer of an
image g; is given by the product of a template w and the
image:

)\i=WTgi+E. (1)

In Eq. (1), both w and g are expressed as 1-D vectors. ¢ is
an optional noise term that reflects the observer’s inter-
nal noise. The templates for the NPW and NPWE observ-
ers in SKE tasks were defined as

WNpw = S, (2)

wypwe = E'Es, (3)

where s is the signal, and E(p)=p" exp(-cp?) is an eye fil-
ter that accounts for human eye different sensitivity to
radial frequency p. The parameters used for the eye filter
(n=1.3, ¢=0.0041) are from Burgess [24].

The general Hotelling observer template is derived
from the covariance matrix of the backgrounds K, as

WHot = Kzl[<gs> - <gn>]’ (4)

where (g,) and (g,,) are respectively, the means of the im-
ages containing the signal and the background and con-
taining the background only. If the signal is identical for
all signal-present images, then (g,)—(g,) is equal to s.

Fig. 2. (a) Example of CLB with a digitally embedded benign
simulated mass. (b) Real mammogram ROI with a digitally em-
bedded malignant simulated mass. Signal contrast has been
strongly increased for illustration purposes.
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The covariance matrix inversion in Eq. (4) is often im-
practical to implement, since for N X N pixel images, the
size of this matrix is N2 X N2. Moreover, the large number
of independent images needed for getting a nonsingular
estimate of the covariance matrix is rarely reached in a
typical experimental study. To overcome these computa-
tional issues, the Hotelling observer may be approxi-
mated by reducing the images to a small set of variable
response channels [5,14,15,33,34]. The CH observer tem-
plate is then given by

wen =Ky +K)'s,.. (5)

In Eq. (4), K, is the channelized covariance matrix
which represents the external noise source. It is com-
puted from the background images as K,.=((T’g,
—(TTg N (TTg, —(TTg,)T), where the column vectors of
the matrix T each represent the spatial profile of a chan-
nel. The noiseless covariance matrices K, . were esti-
mated by sampling using the 1,400 signal-absent images
of the 2-AFC experiments. s, is the expectation of the sig-
nal seen through the channels: s,=T7[(g,)-(g,)]. K, is
the covariance matrix of the internal noise expressed in
the channels’ basis (see Subsection 2.F). The four kinds of
channels used for this study are the SQR, SDOG, and
DDOG channels as described by Castella et al. [9] and Ab-
bey and Barrett [34], and channels defined by Gabor func-
tions. The Gabor channels were constructed as

(xr2 +yr2)
20%

In Eq. (6), A is the wavelength in pixels, ¢ is equal to 0
for odd-phase channels and 7/2 for even-phase channels,
0=0.56A for a bandwidth of one octave, x’'=x cos
+y sin 0, and y'=—-x cos A+y cos 6. We used a total of five
orientations, eight wavelengths and two phases (odd and
even), making a total of 80 channels. The wavelengths
were chosen according to the DDOG channels’ peak fre-
quencies, with values ranging from A,;,=18 pixels
(0.64 deg visual angle) to A ,,=192 pixels (6.8 deg visual
angle) in discrete steps spaced by a multiplicative factor
of 1.4.

The HLTs [9,35-40] were estimated using a genetic al-
gorithm (GA). The details of the procedure are described
in a paper by Castella et al. [9]. With this method, the
template itself wypr is derived a posteriori from the indi-
vidual 2-AFC decisions made by the human observers.
The GA finds the linear template that maximizes the like-
lihood function of observing the individual trials’ choices
of human observers [38].

For each experimental condition given in Fig. 1, ten es-
timates of wyr were obtained by running ten times the
GA with different seeds. The results and standard errors
presented in the next sections correspond to the average
performance of the model for the ten estimates.

G(x,y,A\,0,0) = exp{— :|cos(27'rx’/A +¢). (6)

E. Performance Evaluation

Human observers’ performance on a given task was mea-
sured using the proportion of correct answers P.. Indi-
vidual observers’ standard errors for P, were derived by
computing P, for subsets of 50 consecutive trials. Addi-
tionally, all human observers’ results were pooled to de-
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termine the generic observer performance and associated
variance estimates. We used the Gallas et al. [41] multi-
reader multicase variance analysis method for binary
data and generic study designs. This method provides an
unbiased estimate of the generic observer’s performance
and variance (in terms of P,) when different observers
with possibly different skills perform a binary task with
possibly different cases and case numbers among observ-
ers. For our study, a case consisted of a randomly chosen
pair of one signal-present and one signal-absent image.
As the database of possible signal-present and signal-
absent images contained as much as Ny different back-
grounds for each condition, we assumed that the cases
were independent for the statistical analysis.

P. was then converted to an empirically obtained index
of detectability d’ by generating a lookup table for P, ver-
sus d’ from the usual cumulative Gaussian relationship
under the assumption that the variances of the responses
to the signal-present and signal-absent locations be iden-
tical [15,42]. The use of backgrounds that are not contigu-
ous in the patient images justifies the transformation
from P, to d’ with the assumption of statistically indepen-
dent internal responses.

The model observers’ performances were assessed us-
ing Monte Carlo experiments. For each model and experi-
mental condition, the decision-variable distributions were
estimated by directly computing the dot product between
the corresponding templates and 1,400 random signal-
present and signal-absent image pairs, using the same
backgrounds and signals as for the human observers. For
SKE tasks, the area under the ROC curve was computed
from the decision-variable distributions for signal-present
and signal-absent images using JROCFIT [43], and then
transformed into a detectability index [42]. For SKS
tasks, individual trial decisions were computed using the
sum of likelihood rule leading to an estimate of P,, which
was then also transformed into a detectability index. The
use of the same relationship between P. and d’ for the
SKE and SKS tasks is a simplified approach, since one
should also include the signal uncertainty in the conver-
sion for SKS tasks. But here we were using the conver-
sion to d’ only as a transform to a performance measure
that was comparable to the d’ from the SKE.

F. Selecting the Internal Noise Level

Human observers are known to be subject to internal
noise, and there are various ways to implement it in
model observers [14,15,44]. For models using channels
mechanisms (all four CH observers in this study), inter-
nal noise was assumed to be zero mean, independent in
each channel, with variance proportional to the variance
of the external noise in each channel, and with a propor-
tionality factor p,,. The noisy channelized background co-
variance matrix Kj ., could thus be defined as

{(Kb,c,m: (Kpo)is if i # j .

(Kb,c,n)i,j = (1 +pn)(Kb,c)i,/' lfl =j -

Under these assumptions, the decision variable in Eq. (1)
becomes



Castella et al.

Ni=Wipgi+ D, wyey, (8)
k
where the w), are the components of w in the channel’s ba-
sis. Each ¢, is Gaussian distributed with zero mean and
has a variance of pna%.
For the other model observers (NPW, NPWE, and
HLT), noise was added in the decision variable as

{)\iszgi-" €

e~ N(O,p,o%) ®)

where ¢ is Gaussian distributed with zero mean and vari-
ance equal to pno2 The variability ¢2,, was estimated by

ext* ext
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computing the variance of A without internal noise from
1,400 signal-absent images.

On the basis of human observer results in the psycho-
physical tasks, we then defined the optimal value of p,, in
Eqgs. (7) or (9) for a given model observer as the one that
best matched the performance of this model to that of the
human observers. To determine the optimal internal
noise level for each model, we used Monte Carlo trials
with the same backgrounds and signals as for human ob-
servers. Optimal p, for benign and malignant masses
were separately assessed. We iteratively changed p, until
the root-mean-square error (RMSE) between the model
and the generic human observer performance was mini-
mized for the SKE tasks:

1
RMSE = \/g[(di; - dr,n)%LB,G.S mm + (= dr’n)%LB,9.5 mm + (), = dr,n)feal,6.5 mmls

where the subscripts 2 and m, respectively, stand for ge-
neric human and model observer performances.

G. Model Observers and Internal Noise in SKS Tasks
All models were also adapted to the SKS tasks using the
sum-of-likelihood rule described by Zhang et al. [45]. In
this approach, the response of a model observer is ob-
tained by combining the individual responses of the tem-
plates corresponding to the / different possible signals
and assuming Gaussian internal responses:

I - 1 ()\+,i_/vL+,j)2 ()\—J_/-L—J)2
5\ 2m0? i ISR b B

1 o _()\-,j—l/«+,j)2 o _()\+,j_ﬂ—,j)2 '
T\ 2002 )P 207 P 207

(11)

L.EML.

o~
Il

I
—

where the decision variables /, and [_ are the sums of
likelihoods for the signal-present and signal-absent im-
age, respectively; A, ; is given by Eq. (1); and u, ; is the
expected response of the jth template to the images con-
taining the jth signal and w_j; the response to the signal-
absent images; assuming an equal variance 0'12 The ex-
pectations and variances of the responses of each
template were estimated from the \, ; distributions with
the 1,400 signal-present and 1,400 signal-absent images
used in the experiments.

Adding internal noise to this process is not trivial.
Three alternatives were tested in this paper:

(i) Internal noise in the individual template responses.
In this scheme, the optimal internal noise level p, that
had been found for the SKE tasks was used in Eq. (8) and
(9) to alter the distributions of A\, ; in Eq. (11).

(i1) Internal noise added to the maximum of the loga-
rithm of the likelihoods. The template with the maximum
likelihood only was used instead of the sum in Eq. (11).
Internal noise was then added to the logarithms of /, and
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(10)

[
l_ as a Gaussian random variable with zero mean and
pnoﬁXt variance, the latter being estimated as in Eq. (9).
(iii) Internal noise assuming that a single template is
used. This alternative assumes that the model performs
SKS and SKE tasks the same way, using a single tem-
plate. For each task, the model observers’ templates de-
rived for SKE tasks were used for the corresponding SKS
tasks, and internal noise was added as in Eq. (8) and (9)

Using the optimal internal noise levels p, that had
been found for the SKE tasks, Monte Carlo trials were
conducted for the SKS tasks to test each of these internal
noise schemes. An overall measure of agreement between
a given model and the generic human observer
RMSE a1 could then be computed with all seven tasks
with benign masses and all six tasks with malignant
masses (see Fig. 1). For statistical reasons, only one HLT
per SKS detection task given in Fig. 1 was estimated, cor-
responding to the generic observer data.

The statistical significance in the differences between
generic human and model observers’ performance were
assessed with a F-test with (number of tasks-1) degrees of
freedom (df) for the numerator and (number of
observers-1) df for the denominator. This test uses the
mean-square error between the generic human and the
model observer, and compares it to the mean variability
across individual human observers [44]:

( 2 (di,,model - di,,human)z)/dfnumerator

i tasks

F= . (12)
< 2 Vari,human>/ df denominator

i tasks

3. RESULTS

A. Robustness of the Results
Potential sources of bias in the human observer results
were statistically tested for each of the 13 experiments. At
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a 5% confidence level, there was no significant deviation
from an equal proportion of left versus right image choice
for any observer.

Possible learning effects were tested by comparing the
proportion of correct answers of the first and last 200 tri-
als to P, for the whole 1,400 trials for each experiment
and observer. We found no significant deviation from ran-
dom differences in performance across the beginning, the
end, and the experiment as a whole for all observers.
These results suggest that the observers had effectively
stabilized their performance after the training phases,
and were performing consistently during the actual detec-
tion experiments.

Finally, potential correlation between decision time
(time used to give an answer for a given trial) and P, was
also tested. For each condition, the 1,400 trials were di-
vided into 28 subsets of 50 consecutive trials. The mean
decision time and P, were then computed for each subset,
and the correlation coefficient between these quantities
assessed using a 2-sided T-test [46]. The correlation coef-
ficient was not significantly different from O for any ob-
server. This suggests that for a given observer and condi-
tions, no improvement or degradation of the performance
resulting from an increased decision time ¢ could be sta-
tistically demonstrated.

However, it is of interest to note that while P, did not
change significantly during a given experiment, ¢ gener-
ally decreased by 30 to 50% for each observer between the
first trials and the last ones. Absolute mean values for ¢

Table 1. Generic Observer Performance (d’) and
95% Confidence Interval for the 13 Different Tasks
Involving Real or CLB Backgrounds, SKE or SKS
Detection, and Simulated Mass Size of 6.5, 9.5 or

5.5-9.5 mm
Benign Malignant
Conditions Masses Masses
Real,SKE,6.5 1.07 [1.01-1.14] 1.01 [0.96-1.07]
CLB,SKE,6.5 1.11 [1.01-1.21] 0.81 [0.73-0.89]
Real,SKS,6.5 1.14 [1.09-1.19] 1.06 [0.99-1.14]
CLB,SKS,6.5 1.06 [0.97-1.16] 0.81 [0.77-0.87]
CLB,SKE,9.5 0.89 [0.82-0.96] 0.92 [0.82-1.03]
CLB,SKS,9.5 0.98 [0.89-1.07] 1.02 [0.87-1.17]

CLB,SKS,5.5-9.5

0.90 [0.86-0.93]
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ranged from 1 to 4 seconds, depending on the observer
and the conditions.

Concerning the robustness of the HLT estimation, the
performances of the ten estimates of wy per experimen-
tal condition were first assessed separately using Monte
Carlo trials, in a way similar to the other models. The ten
P. were then averaged to determine the overall HLT
model performance. Statistical analysis showed no sig-
nificant difference between the performance averaged
across wyr estimations, and the performance of the tem-
plate obtained by spatially averaging the ten estimates.

B. Human Observer Results

1. Benign Masses

The index of detectability d’ and associated confidence in-
tervals averaged over the four human observers for each
of the 13 experimental conditions described in Fig. 1 are
given in Table 1. As an example of typical individual ex-
perimental results, human observers’ d’' for the 6.5 mm
benign masses are given in Figs. 3(a) for SKE tasks and
3(b) for SKS. For SKE experiments, d’ averaged over the
four observers (generic human observer) was 1.07 for the
real backgrounds, and 1.11 for the CLB (p=0.57). For the
SKS tasks, the difference between real images (d'=1.14)
and CLB (1.06) was not statistically significant either (p
=0.14).

When comparing SKE and SKS tasks for the 6.5 mm
masses, there was no significant difference for either real
backgrounds (p=0.10) or CLB (p=0.53).

In the experiments with fixed signal size, the 6.5 mm
masses were better detected than the 9.5 mm masses.
The difference is especially visible in the SKE experiment
(difference of 0.22 in d’ units, p=0.0003), while smaller in
the SKS task (0.08 in d’ units, p=0.18); see Table 1. This
trend is also visible in the size uncertainty experiment
with signal size ranging from 5.5 to 9.5 mm (Fig. 4). A
2-way ANOVA performed across signal sizes and observ-
ers showed that neither observer (df=3, F=0.49, p=0.69)
nor mass size (df=4, F=1.71, p=0.21) dependency were
significant. Finally, we compared the performance of the
generic observer for SKS with fixed size (shape uncer-
tainty) versus size uncertainty. There is no significant dif-
ference in the performance for the 6.5 mm masses (0.08 in
d' units, p=0.51), but the 9.5 mm are clearly better de-
tected when the observer knows the signal size than in
the size uncertainty task (0.19 in d’ units, p=0.01).

]

0.8

0.6

T T T T T
Obs. #1 Obs. #2 Obs. #3 Obs. #4 Gen. Obs.

0.8

0.6 -

m CLB
© Real backgrounds

T
Obs. #1

T
Obs. #2

Obs. #3

Obs. #4 Gen. Obs.

Fig. 3.

(a)

(b)

(Color online) (a) Human observers’ performance (d’) for the SKE tasks with the 6.5 mm benign simulated masses. The right-

most values for each figure (generic observer, Gen. Obs.) were obtained by pooling all observer data. The error bars represent the 95%
confidence interval. (b) Same for the SKS tasks.
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Fig. 4. (Color online) Generic human observer results for the

size uncertainty task with benign simulated masses (open
circles). For comparison, the performance in the SKS experi-
ments with fixed size signals are shown (black squares). Error
bars represent the 95% confidence interval.

2. Malignant Masses
Human observers’ performance for the 6.5 mm malignant

masses is shown in Figs. 5(a) (SKE) and 5(b) (SKS). For
these masses, generic observer’s d’ was significantly
higher with the real images than with the CLB for both
SKE (0.20 in d’ units, p<10~*) and SKS tasks (0.25 in d’
units, p <10%).

As for benign masses, there was no significant differ-
ence between SKE and SKS tasks for both real back-
grounds (0.05 in d’ units, p=0.31) and CLB (<0.01 in d’
units, p=0.99).

41 -
%

0.6 -

Obs. #3 Gen. Obs.

(a)

Obs. #1 Obs. #2 Obs. #4

Fig. 5.

m CLB
O Real Backgrounds
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The mass size effect was different than for benign
masses. The 9.5 mm malignant masses were better de-
tected than 6.5 mm masses: the difference is visible in
Table 1 for SKS task (0.21 in d’ units, p=0.01) and for
SKE, although not statistically significant (0.11 in d’
units, p=0.10).

C. Model Observers
Figures 6(a) and 6(b) present the RMSE of the different

models after adjustment of the internal noise level. As
mentioned previously, the internal noise parameters were
varied to match human performance on the SKE tasks.
The same values for the internal noise parameters were
then used for the other conditions. Some models (DDOG
with benign masses, and SDOG, DDOG for both mass
types) already had a performance level that was below
that of human observers before any internal noise addi-
tion. For this reason, there is no nonzero optimal value of
the noise level parameters p,, for these models, since any
amount of internal noise would further degrade their per-
formance. Table 2 shows the RMSE a1 values, which
represent the difference in performance between the ge-
neric human observer and the models with optimal value
of p,,. The RMSE ¢;an includes SKE tasks, and SKS tasks
with the three alternative ways of adding internal noise
to the models presented in Subsection 2.G.

Figure 7 shows representative examples of model ob-
server templates (SKE tasks, CLB) and Fig. 8, typical in-

m CLB
© Real backgrounds

0.6 o

Obs. #3 Obs. #4 Gen. Obs.

(b)

Obs. #1 Obs. #2

(Color online) (a) Human observers’ performance (d’') for the SKE tasks with the 6.5 mm malignant simulated masses. The

rightmost values for each figure (generic observer, Gen. Obs.) were obtained by pooling all observers data. The error bars represent the

95% confidence interval. (b) Same for the SKS tasks.
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(Color online) RMSE in d’ units between the generic human observer and the different model observers for SKE tasks for noise-

less (shaded) and noise-level-optimized (black) models with (a) benign and (b) malignant simulated masses. Stars indicate performance
levels that are significantly different from humans (F-test, p <0.05) [44].
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Table 2. RMSE ,y¢an in d’ Units Between the Generic Human Observer and the Different Model Observers
for the Different Noise Addition Schemes Described in Subsection 2.G*

RMSE eran Internal Noise NPW NPWE SQR SDOG DDOG Gabor HLT
Benign Indiv. responses 0.44 0.14 0.23 0.34 0.13 0.43 N/A
Max. likelihood 0.36 0.29 0.31 0.38 0.15 0.33 N/A

Single template 0.29 0.31 0.25 0.34 0.13 0.17 0.11

Malignant Indiv. responses 0.79 0.13 0.21 0.17 0.14 0.29 N/A
Max. likelihood 0.56 0.25 0.22 0.17 0.17 0.30 N/A

Single template 0.54 0.19 0.21 0.17 0.14 0.11 0.07

“The RMSE yery1 is computed for all seven tasks with benign simulated masses and all six tasks with malignant simulated masses. The best internal noise scheme for each
model and mass type is indicated in bold. Italic values indicate performance levels that are significantly different from those of humans (F-test, p <0.05) [44].

Benign masses

-
-4

NPWE

Malignant masses

Fig. 7.

Qe o
Ve &

(Color online) Templates derived for the NPW, NPWE, CH with Gabor channels, and HLT models for the SKE tasks with CLB

Real
é

HLT

HLT

and benign (upper row) and malignant (lower row) simulated masses. HLT estimated for the tasks with real backgrounds are shown in

the last column.

- \
Obs. #1 Obs. #2

~P

Obs. #3 Obs. #4
Fig. 8. (Color online) Examples of individual HLT (SKE task,

6.5 mm benign simulated masses, CLB). The leftmost template is
the one corresponding to the generic observer.

dividual HLTs compared with the one corresponding to
the generic observer (SKE task with 6.5 mm benign
masses and CLB).

4. DISCUSSION

A. Influence of the Background and the Local Statistics

In a previous study [9], we showed that human strategy
was similar between real mammographic and second-
generation CLB for a SKE detection experiment with a
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mass signal extracted from a mammographic phantom.
However, we also observed dissociations in performance
for human and model observers between the two back-
ground types, and argued that matching the first two or-
ders’ statistics over the backgrounds as a whole was not
sufficient to ensure comparable conditions. For this rea-
son, we tried to follow a more local approach in the cur-
rent study, and matched these statistics specifically in the
central part of the images, where the observers suppos-
edly performed the task.

For benign masses, human observers achieved very
close performance for both backgrounds. Individual ob-
server’s differences in P, did not exceed +2.6%, except for
one observer in the SKS task (Obs. No. 3, 5%). For these
signals with sharp edges, comparable to that used in the
previous study [9], matching local statistics resulted in
backgrounds that are comparable in terms of detection
performance. For malignant masses, however, the signifi-
cant performance difference between real images and
CLB could indicate that a different strategy involving
more complex properties than first two orders’ statistics is
used by the human observers: we hypothesize that the
systematic lower human performance with CLB suggests
that their random, stationary nature containing blobs
with smooth edges by construction is more likely to hide
signals with similarly smooth edges than nonstationary
images, in a way similar to the findings of Zhang et al.
[47] with highly nonstationary backgrounds.
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B. Influence of the Signal Shape Uncertainty

Quite surprisingly, when the signal size was constant
over the experiment and the only uncertainty was its
shape, human observers performed as well for the SKS
tasks as for the corresponding SKE tasks. This shows
that, although they had been trained with high-contrast
versions of the same signals as in the actual experiments,
human observers were not able to develop a better strat-
egy for the SKE task than for the SKS. Zhang et al. [22]
had reached somewhat different conclusions when com-
paring SKS to the a priori easier SKEV task: in their
4-AFC experiments with x-ray coronary angiograms, a
high contrast copy of the actual signal used for the given
trial was shown to the observer. Both signal shape and
size varied from one trial to the next, and human observ-
ers performed better in the SKEV than in SKS tasks. This
difference may arise from the fact that in all but the last
experiment in our study, SKS experiments were per-
formed with a constant signal size, whereas Zhang et al.
used projected ellipsoid signals ranging from 1 mm
X1 mm to 7.5 mm X 3 mm, introducing much more un-
certainty about the actual signal size. Furthermore, our
last experiment with signal size ranging from
5.5 to 9.5 mm confirmed that introducing signal size un-
certainty lowered the detection performance of the ob-
servers compared with the SKS experiments with fixed
size, especially for the largest masses (comparison points
in Fig. 4, p=0.51 for 6.5 mm masses, p=0.01 for 9.5 mm).
When mass sizes are mixed, the lower-bending perfor-
mance curve for the largest masses is similar to the re-
sults of Judy et al. [10] with disk signals on correlated
noise, or to more general findings with contrast-detail ex-
periments by Burgess et al. with mammograms or power-
law noise [4,5] for SKE tasks and search within a defined
area. Judy et al. [10] also compared SKE with SKS experi-
ments and showed that size uncertainty degraded human
observer performance mainly for the largest disks with di-
ameters larger than 1 cm, which seems consistent with
our findings in Fig. 4, as far as the two studies can be
compared. Judy et al. indeed used different contrasts for
the different signal sizes to maintain a constant nonpre-
whitening matched filter observer performance, whereas
we used a fixed signal contrast for all mass sizes.

In our study, the effect of signal shape uncertainty was
investigated with CLB and real images, while the size un-
certainty experiment was performed only with the CLB.
However, the other results with benign masses (Subsec-
tion 4.A, last paragraph) suggest that size uncertainty ex-
periments with real backgrounds should lead to the same
conclusions, since the detection performance for SKE and
SKS tasks with benign masses was very similar for both
background types.

C. Model Observers versus Human Observers

The RMSE presented in Table 2, which take into account
SKE and SKS tasks, show that most models can fit hu-
man results with appropriate internal noise level adjust-
ments. The only exception is the NPW model: without in-
ternal noise, it performs better than human observers.
This result may be surprising at first when compared
with previous reports in literature, which typically find
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that the NPW performs worse than human observers in
anatomical backgrounds. The apparent discrepancy is the
consequence of the fact that unlike previous studies
[4,9,12], in the current experiments the local means for all
signal-absent images were matched over an area close to
the size of the largest signals to ensure comparable con-
ditions between the real and the synthetic backgrounds
(see Subsection 2.B). The NPW model is highly degraded
by variations of the mean local luminance, and thus the
preprocessing that matches the means of local back-
ground areas highly improves the NPW model’s perfor-
mance. However, even with the optimal internal noise
level, the difference between the performance of NPW
model and human results is much larger than for the
other models. As in our previous study with phantom
masses on real and synthetic backgrounds [9], this sug-
gests that human observers’ detection strategy is more
complex than that of the basic NPW model.

The addition of the eye filter (NPWE model) has a ma-
jor effect on the ability of the model to predict human re-
sults. As illustrated in Fig. 7, the NPWE model acts
mostly as an edge enhancement filter. The internal noise
level that has to be added to this model to match human
results is greater for benign (p,,=1.4) than for malignant
(,=0.8) masses. This is probably due to the edge en-
hancement being more efficient with benign masses,
which intrinsically possess much sharper edges than ma-
lignant masses. With the optimal values for the internal
noise level, the NPWE model is a very good predictor of
human results for all tasks. The best way to incorporate
internal noise into this model for the SKS tasks is to add
the noise to the individual template responses. This may
be because the JJ templates corresponding to the JJ pos-
sible signals are quite different one from each other since
they are essentially enhancing the signal edges: combin-
ing the o likelihoods brings useful information to the
model even if the signals are similar in size, and adding
noise in the individual responses appeared to be the best
solution to lower the performance of the NPWE observer
to match that of the generic human observer. The other
methods for noise addition in the SKS tasks (maximum of
the logarithm of the likelihood and single SKE template)
lead to a performance that is below that of humans: if the
NPWE is no longer able to combine the individual re-
sponses, it seems to be much less efficient in SKS tasks.

Results for the CH model observers can be divided into
two classes. For the SQR, SDOG, and DDOG channels,
the performance without any internal noise was close to
that of human observers, or slightly below. As human ob-
servers are known to be subject to internal noise [1], these
models cannot fully account for human observers’ decision
processes for the current tasks. The low performance of
these models is likely related to the information reduction
through the preprocessing of the image by a small num-
ber of channels that might not fully capture the important
signal features. For these channelized models (without in-
ternal noise), the use of the sum-of-likelihoods rule, the
maximum likelihood rule, or the SKE template led to very
similar results in SKS tasks (see Table 2).

In contrast to the SQR, SDOG, and DDOG channel
models, the CH observer defined with Gabor function
channels performed much better than human observers.
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Performance of the CH-Gabor model was close to perfect
(P,=100%) for all signal and background combinations
studied in this paper. Adding internal noise lowered the
performance of the CH-Gabor model down to the level of
human observers for SKE tasks [Figs. 6(a) and 6(b)]. The
internal noise level that had to be added to the CH-Gabor
model was higher for malignant (p, =2.2) than for benign
masses (p,=0.5). This result was opposite from what we
found for the NPWE model (p,,=0.8 for malignant masses,
1.4 for benign masses). The dissociation in results might
relate to the fact that, unlike the NPWE, the CH with Ga-
bor function templates do not specifically emphasize the
signal edges, but rather extend over the whole area cov-
ered by the signal (see, for example, Fig. 7). The malig-
nant masses have higher luminance contrast than the be-
nign ones. Thus, templates with spatial integration areas
that extend over the whole signal area might be particu-
larly efficient for malignant mass detection. This is the
case of the CH observer with Gabor functions model,
which is particularly efficient with malignant masses and
requires more internal noise than other models to match
human observers’ performance. As for the NPW model, it
is likely that our results might change if we did not nor-
malize the images to match the local mean luminance of
the backgrounds, since the process of matching the local
means removes some of the low-frequency noise.

In relation to the SKS tasks, if the SKE template only
is used even though the signals are randomly chosen
(third internal noise scheme in section 2.G), the CH ob-
server with Gabor function channels is one of the best
models in matching human performance level (see Table
2). For the other internal noise addition methods (sum of
likelihoods with noise in the individual responses, and
maximum likelihood rule), a problem appears with SKS
tasks. The internal noise is integrated over the J tem-
plates when combining the individual responses, which
leads to a better performance than in SKE tasks. This dif-
ference is especially large for the 9.5 mm masses, and
may be explained by the J templates for this model being
very similar, since they essentially use information con-
tained at the center of the potential location. For this rea-
son, the RMSE ,¢ra1, Which takes into account SKE and
SKS tasks, is much higher than the RMSE computed for
SKE tasks only with these two internal noise schemes.

Finally, we evaluated a model (HLT) that uses a tem-
plate estimated directly from observer choices for the set
of test images. The estimation of the HLT assumes that
human observers use only a single template per task for
both the SKE and SKS conditions. This is likely a simpli-
fication of the strategy used by human observers but
might still capture some important aspects of human per-
formance. Estimation of specific templates for each of the
signals presented in the SKS task is not plausible for our
study because statistical considerations would require
many more signal specific trials to obtain stable estimates
of the individual HLTs. We thus computed only one over-
all template per task, acknowledging that this constituted
a simplified analysis. The hypothesis of a single human
template per task was further supported a posteriori by
the results, which show that the HLT model predicts hu-
man results remarkably well for all experimental condi-
tions. The RMSE ,,¢ran (0.11 for benign masses, 0.07 for
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malignant masses, with the same p,, value equal to 1) is
the lowest of all models.

The spatial profiles of the HLT for the 6.5 mm masses
(see Fig. 7) show that human observers’ strategy was es-
sentially concentrated on the signal edges for the benign
masses with real and synthetic backgrounds and malig-
nant masses with real backgrounds. This is perfectly con-
sistent with our previous study with a phantom mass
with relatively sharp borders embedded in real and syn-
thetic backgrounds [9]. However, the template for malig-
nant masses with CLB suggests that the observers con-
centrated more on the central part of the signal location.
This may explain why their performance in detecting ma-
lignant masses was not as good with the CLB as with the
real backgrounds. This assumption should be taken with
care, since individual detection strategy may vary across
human observers: the individual templates shown in Fig.
8 suggest that for the corresponding task all observers fo-
cused on signal edges as in our previous study [9], but
also that two of them used information contained at the
center of the potential signal location. Further analysis in
the spatial or frequency domains was not carried out in
this study for two reasons: first, the wide range of tasks
and the number of observers would have led to computing
time issues, since every HLT estimation had to be re-
peated ten times. Second, using radial-averaged param-
eters to reduce the analysis to one dimension [9] would
have been problematic with signals that are not circularly
symmetric. Objective comparison of the templates across
models, tasks, and individual observers, should be ex-
plored in further work.

5. CONCLUSIONS

By conducting detection experiments with realistic be-
nign and malignant breast masses superimposed on real
mammographic backgrounds and realistic, second-
generation CLB, we were able to study the influence of
signal variations and uncertainty on human observers’ de-
tection performance. We showed that human observers’
performance did not differ significantly between SKE and
SKS tasks when the signal size was kept constant. How-
ever, human observers were sensitive to signal size uncer-
tainty, and their performance diminished between fixed-
size and size-uncertainty experiments, especially for the
largest masses. Following this idea, assessing human ob-
server detection performance for such nontrivial signals
as benign or malignant masses would already be possible
with a limited set of signals covering the size range of in-
terest: there would be no need to use sets with large num-
bers of signals covering the possible orientations and
shapes in psychophysical studies.

Excellent agreement with human observers was ob-
tained for NPWE, CH observer with Gabor function chan-
nels, and HLT models with adapted internal noise levels.
The NPW observer appears to be too simplistic to cor-
rectly model human results. The performance of the other
CH observers (SQR, SDOG, DDOG channels) seems to be
too low to correctly model human decision processes for
SKE and SKS tasks. Even if the detection performance
level between humans and models has been matched with
success in this study, further work is still needed for ob-
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jectively comparing the different model observer tem-
plates and the HLT to study not only the performance
level, but also the similarity or differences in detection
strategies between human observers and models.

Finally, one has to keep in mind that the SKS approach
(or SKEV, for which results have been shown to be highly
correlated with SKS [19,21,22]) is still far from the actual
clinical situation. Many other factors influence the radi-
ologist’s ability to correctly detect masses on mammo-
grams: much wider search space, signal location uncer-
tainty, and extremely low prevalence of the order of 7 per
1000 cases [48,49], for example. Moreover, real clinical
strategies also include comparison with the contra-lateral
breast and global breast architecture. However, these el-
ements are currently beyond the scope of most psycho-
physical experiments and would lead to overly hard to in-
terpret results. For this reason, the limitations of the
current study (square regions of interest instead of whole
breast, 2-AFC, controlled signal location) are still neces-
sary to investigate human observer detection strategies
and performance.
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ABSTRACT

In this study, we adapt and apply model observers within the framework of realistic detection tasks in breast
tomosynthesis (BT). We use images consisting of realistic masses digitally embedded in real patient anatomical
backgrounds, and we adapt specific model observers that have been previously applied to digital mammography (DM).
We design alternative forced-choice experiments (AFC) studies for DM and BT tasks in the signal known exactly but
variable (SKEV) framework. We compare performance of various linear model observers (non-prewhitening matched
filter with an eye filter, and several channelized Hotelling observers (CHO) against human.

A good agreement in performance between human and model observers can be obtained when an appropriate internal
noise level is adopted. Models achieve the same detection performance across BT and DM with about three times less
projected signal intensity in BT than in DM (humans: 3.8), due to the anatomical noise reduction in BT. We suggest that,
in the future, model observers can potentially be used as an objective tool for automating the optimization of BT
acquisition parameters or reconstruction algorithms, or narrowing a wide span of possible parameter combinations,
without requiring human observers studies.

Keywords: Model observers, observer performance evaluation, image perception, breast tomosynthesis, digital
mammography

1. INTRODUCTION

Several studies have demonstrated that detection tasks in mammography are mainly limited by the superposition of
anatomical structures on the projected images [1,2]. This masking effect, known as anatomical noise, lowers both
sensitivity and specificity of mammography, by hiding abnormalities or creating suspicious structures in the projected
image. On the other hand, emerging breast tomosynthesis (BT) technique has been reported to lead to excellent results in
detection experiments involving human observers [3-6]. The good performance of the observers has been typically
explained by a reduction of the anatomical noise in the three-dimensional breast reconstruction, allowing the human
observers to isolate the lesions easier than with mammograms.

However, many aspects of BT still need to be optimized: acquisition techniques (tube load, mean glandular dose, number
of projections, angular scanning span), reconstruction and filtering algorithms, or image display [7]. Conducting
comparison studies involving radiologists and/or medical physicists is time consuming and hardly practical, since the
number of different combinations of free parameters is considerably large. An alternative to these time-consuming
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sessions of repetitive psychophysical experiments is to use objective model observers that mimic human decisions and
that can be run on computers with large sets of data.

Model observers, which have been developed and tested with success in various applications for mammography,
projection radiography, or computed tomography [8,9], are still in the early stage of development in tomosynthesis. A
recent study by Gifford et al. investigated a scanning noiseless channelized Hotelling Observer and compared different
number of projections and angular span combinations [10]. Reiser et al. compared filtered-backprojection and iterative
maximum-likelihood expectation maximization reconstruction methods with a prewhitening observer in a simplified
detection task with a spherical signal in a homogeneous phantom [11]. In another study, Pineda ef al. used a channelized
Hotelling and non-prewhitening model observers with and without eye filters for optimizing a tomosynthesis system for
the detection of lung nodules [12].

The purpose of this study is to adapt and validate model observers in a realistic BT framework, and compare the relative
performance of the models with digital mammography (DM) and BT. For this, we use images consisting of realistic
masses digitally embedded on real patient anatomical backgrounds, for which human observers performance has already
been characterized [4], and adapt specific model observers that have been used for modeling DM tasks in previous
studies [13,14].

In the original study with these hybrid images, Ruschin et al. [4] conducted 4-alternative forced-choice (4-AFC)
detection experiments, and determined which signal contrast level led to the same performance between DM and BT.
The authors concluded that significantly less (about one fourth) signal contrast was needed for BT, suggesting a good
potential for dose reduction in BT, compared to DM. The present study aims at verifying whether models can predict
human detection performance in the same conditions.

2. MATERIAL AND METHODS

2.1 Hybrid images: patients backgrounds and realistic signals

The digital mammography (DM) and breast tomosynthesis (BT) hybrid image set was the same as in the original study
with human observers [4]. They were constructed by digitally embedding realistic breast masses [15,16] into signal-
absent background images.

Following approval by the local radiation protection committee and informed consent by the patients involved in this
study, thirty patients underwent breast examinations with both DM and BT. This way, the case database was made up of
identical patients for both modalities.

The BT images were acquired with a prototype unit adapted from the DM Mammomat Novation (Siemens, Erlangen,
Germany) [17]. The beam quality in tomosynthesis mode was the same as the one determined by the automatic exposure
control device in DM mode. For tomosynthesis acquisition, 25 projection images per examination were taken over an
angular span of about 50 degrees, resulting in a total tube load twice as high as for a single-view DM acquisition. Out of
the 25 projections, 13 only were used for reconstructing the breast volume, in order to keep the total dose to the breast
contributing to the final images approximately the same between BT and DM. The detector pixel size was 70 um for
DM, and 85 pum for BT.

The simulated tumors were adapted from 2D lesions used in previous studies [15,16]. Twenty different lesions with
mean x and y dimensions of 8.4 mm (range: 7.4-8.8 mm) and 6.6 mm (5.3-7.8 mm) were generated for the study. Each
2D lesion was mapped to an ellipsoid with a length in z dimension of 5 mm to generate the 3D tumor. An example of
simulated lesion is given in Fig. 1. The radial spatial and frequency profiles have been expressed in mm and mm™,
respectively, in order to allow for comparing the profiles despite the different pixel sizes.
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Fig. 1. Left. Example of signal used in the psychophysical tasks. (a) Radial profile in the spatial domain (b) Radial profile in
the frequency domain. Center. 3D views of the pixel value intensity of the same lesion in digital mammography (DM)
(c) and breast tomosynthesis (BT) (d) images. Right. 2D view of the corresponding reference signals in the DM (e), and
BT (f) psychophysical detection tasks.

The complete description of the embedding method for DM and BT can be found in the original study with human
observers [4]. Assuming a constant difference in attenuation coefficient Ap between the lesion and the surrounding
breast tissue, the individual BT projections and the DM projection on the detector plane were altered by modeling the
attenuation of the primary x-ray beam using geometrical descriptions of the imaging units. Each pixel (i, j) value of the
k-th altered projection was thus given by:

Ima,k(iaj):Imo,k(i’j)exp(_tk(iaj)A;u) > (1)

where Im_, and Im_, are respectively the original and altered k-#h projections, and # is the integrated tumor thickness

0,k ak

along the x-ray trajectories for the (i, j) pixel of the k-th projection. The BT altered projections were then used for
reconstructing the breast volume, while the final signal-present images for DM were the images obtained by Eq. (1).

The signal intensity of a simulated lesion, S, was defined for both modalities as the relative increase in total attenuation
resulting from the addition of the lesion to the central (k=0) projection. It was computed as the root mean square of the
projected signal:

i=l j=1 l]]l

JNMZZ ficois J)AK) —Aﬂ\/ 53 (1o ) @

In Eq.(2), M and N are the numbers of elements in the x and y directions, respectively. Ap values were computed from
Eq. (2) in order to yield a desired value of S, and then used in Eq. (1) to alter the detector pixel values.

On the original patient DM and BT data (without tumor addition), 20 non-overlapping signal-absent regions of interest
(ROI) per patient were manually selected within the breast volume and the contra-lateral breast, avoiding any suspicious
location within the breast. The ROI were square 34x34 mm areas, which translates to 400x400 pixels for BT, and
486x486 pixels for DM, due to the difference in detector pixel size. These images served as signal-absent ROI in the
psychophysical studies. For signal-present images and for computational time reasons, a set of 60 embedded signals (30
patients x 2 masses) was created for the BT study, while the embedding of the synthetic masses could be performed in
real-time during the psychophysical study for DM. The signal-present ROI were centered on the simulated lesions in x, y,
and z directions in the reconstructed breast volumes (BT), or on the x-y lesion position (DM).

Before being displayed to the observers, we applied a logarithmic function to the DM ROI, and the look-up table was
inverted, such that denser regions appeared brighter [18]. Finally, BT and DM ROI were windowed so that the mean
value of the images corresponded to the middle of the dynamic range of the 8-bit scale of the display screen.
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2.2 4-Alternative Forced-Choice tasks with human and model observers

Using the signal-present and signal-absent images described in section 2.1, 4-AFC psychophysical experiments were
designed in order to compare BT and DM modalities. The tasks consisted in 60 trials per experimental condition. On
each trial, four ROI that had been randomly chosen from four different patients (in order to minimize possible
correlations across locations) were presented to the human and used for the model observers. Out of these four ROI,
three were signal-absent and one was one of the 60 signal-present cases. The observers were asked to indicate the image
that they estimated as the most likely to contain the signal. In addition to the four ROI, the observers were given at each
trial a high-contrast reference image (see Fig. 1-e and —f) of the actual signal. This approach is known as Signal-Known-
Exactly but variable (SKEV) task. It allows for testing the observers' responses to a variety of signals, while keeping the
analysis as straightforward as a Signal-Known-Exactly (SKE) task.

Nine observers participated to the human observer study: four radiologists and five medical physicists [4]. Due to the
time needed to generate and reconstruct the tomosynthesis images, one contrast was studied (S=0.010), while four
conditions (S=0.036, 0.042, 0.048, 0.054) were tested for DM.

We obtained model observer performance from sample driven Monte-Carlo simulations of 4-AFC, using the exact same
images, signal contrasts, and ROI selection procedure as for human observers. For the BT task, the 60-trial experiment at
S=0.010 was repeated 100 times with the signal-present cases being randomly associated with different signal-absent
ROIL. For the DM task, the real-time addition of the lesions to the backgrounds at the desired intensity allowed to repeat
100 realizations of the 60-trial task for values of S equal to 0.010, 0.025, 0.036, 0.042, 0.048, and 0.054.

Figure of merit for both human and model observers was the detectability, d'. First, the percentage of correct answers P,
for a given observer and contrast was calculated from the corresponding 60-trial experiment outcomes o; as:

160

P =5;o“ 3)

where o; = 1 if the signal-present image had been chosen by the observer at the i-th trial, and 0 otherwise. P. was then
converted to an empirically obtained index of detectability d’, by generating a look-up table for P. versus d’ from the
usual cumulative Gaussian relationship, under the assumption that the variances of the responses to the signal-present
and signal absent locations are identical [9,19]:

Pd'\M)= [ g(x—d)[D)]" " dx )

In Eq.(4), M=4 is the number of alternatives in the AFC task, ¢(x) = exp(—x*/2), and ®(x)= f ¢(y)dy is the

1
N2
cumulative Gaussian distribution function. The transformation from P, to d' under the assumption of statistically
independent responses can be justified by the fact that the four backgrounds presented at each trial had been extracted
from four different patients.

2.3 Model observers

The decision variable of a general linear observer to an image g; is given by the product between a template w and the
image, both being expressed as 1-D vectors, with an optional internal noise term &

A=wg +e &)

For this study, we implemented various linear observers that have been previously used for modeling human observers'
decisions for detection tasks in DM: non-prewhitening matched-filter (NPW) [8], NPW with an eye filter (NPWE) [20],
channelized Hotelling (CHO) observer [9,21] with dense difference-of-Gaussians (DDOG) [14, 22] and Gabor functions
channels [13,14,23]. All these models have been extensively described in the literature, and below we briefly summarize
their analytical expressions.

For a given signal s, the NPW and NPWE templates are defined respectively by:
Wypw = (6)

and
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Wpwe = E'Es (7
In Eq. (7), E(p) = p" exp(—cp?) is an eye filter that accounts for human eye different sensitivity to radial frequency p.
The parameters used for the eye filter (n=1.3, ¢=0.0041) are from Burgess [20].
The CHO templates are derived from the covariance matrix of the backgrounds seen through the channels K as:
Wao = Kis (8)
The covariance matrices for BT and DM were estimated by sampling from the 600 signal-absent ROI g, for each

modality. They were computed as K, = <(T'gn-<T'gn >)(T'g,<T'g, >)‘> , where the column vectors of the matrix T

each represent the spatial profile of a channel. The DDOG channels were circularly symmetric functions defined in the
Fourier domain as the difference of two Gaussians (12 channels in total), while Gabor channels were oriented Gabor
functions in the spatial domain (5 orientations, 35 channels for DM, 40 for BT). The number of channels was chosen in

order to maximize the models' performance, based on the same performance estimation procedure as described in section
2.2.

3. RESULTS

3.1 Model observer templates

Typical examples of 2D model observer templates are given in Fig. 2 for the BT task (upper row), and DM task (lower
row). The templates are those derived for the signal given in Fig. 1. They are 2-D representations of w in Eq. (5).

(@)

Fig. 2. Examples of model observers templates in the spatial domain, computed for the BT task (upper row) and DM task
(lower row). (a, e): NPW, (b, f): NPWE, (c, g): CHO with DDOG channels, (d, h): CHO with Gabor channels

The radially averaged frequency profiles of the model observer templates shown in Fig. 2 are given in Fig. 3 for DM
(left) and BT (right).
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Fig. 3. Examples of radial frequency profiles of model observer templates for the BT (a) and DM (right) tasks. The signal
profiles are drawn (filled blue areas) for comparison. The example mass is the same as in Fig. 1.

3.2 Models performance

Fig. 4 compares the performance of the model observers for the BT and DM tasks to that of human observers. Since
most models appeared to have a performance level that was not better than that of the human observers for the studied
detection tasks, the optional noise term & in Eq.(5) was set to zero for nearly all conditions. There was one exception,
however, for the NPWE model in DM. As its performance was constantly higher than humans, internal noise was added
in this model response as a zero-mean Gaussian distributed random variable, which variance was proportional to the
variance of the template response to the background-only images [8,9]. The variance was computed by sampling the
response over the 600 DM backgrounds. The proportionality constant factor, p,, was chosen in order to minimize the
root mean square error (RMSE) over the four DM tasks between the model with internal noise and the human observers
[14]. The NPWE model with such internal noise is indicated NPWE*, with a corresponding p, of 0 for BT, and 0.6 for
DM.

From the linear fits of the performance data presented in Fig. 4, the signal intensity ratio needed for obtaining the same
performance in DM as in the BT task with a signal intensity of S=0.010 was computed.

—=+— NPWE NPWE* —&— Gabor
—&— DDOG NPW ® Humans

4.0 1

35 | Observer R? correlation Signal intensity

) coefficient ratio

3.0 1 o NPWE 0.997 2.7

2.5 NPWE* 0.996 2.9
o BT
Lg._ 20 wene 04y Gabor 0.991 3.0
= Gabor O DDOG 0.995 2.3
T 1.5 1

DDOG O NPW 0.993 24

09 Humans 0.994 3.8

0.5 - .

0.0

0 0.01 0.02 0.03 0.04 0.05 0.06

Signal intensity, S [-]

Fig. 4. 4-AFC digital mammography (DM) task performance of the model observers as a function of signal intensity S. For
comparison, human results are indicated with filled circles, and performance in breast tomosynthesis (BT) task with
open circles. For each model, the correlation coefficient for linear fits is indicated, as well as the signal intensity ratio
needed in DM for matching the BT performance with a signal intensity of S=0.010 (see example given for NPW).
NPWE* values correspond to the NPWE model with noise intensity that minimizes the error over the DM tasks
performed by the human observers. Standard error bars are about the size of the symbols and have not been represented
in the figures for clarity reasons.

80



For BT, the statistical significance of the differences between the models and the human observers for the S=0.010
detection task was assessed by a two-sided t-test (unequal sample size, unequal variances) on the average performance
difference:

|<d,'1>—<d,'n >|

s N ©)
o, o
nh nm

Where n;=9 is the number of observers who participated to the psychophysical experiments, and n,=100 is the number
of 60-trial 4AFC repetitions performed for testing a given model. The number of degrees of freedom d.f- was given by:

(s,f/n,, +s,i /nm)2

df: 2 2 2 2
(s, /n) I(n,=D)+(s, /n,) /(n,-1)

(10)

Note that using Eq. (9) and (10) assumes that all the variability is statistical, and that there is no bias due to the limited
number of cases. Also, the inter-observer variance o; was found to be about twice as large as o : with n,, about ten times
larger than 7, these two equations are thus dominated by the human variance terms.

For DM, the performance was compared using a two-way analysis of variance (ANOVA) performed for each model
against human observers and using the four studied contrast conditions (S=0.036, 0.042, 0.048, and 0.054).

Additionally, the RMSE for the different models for BT (one task), DM (four tasks), and both modalities pooled together
(five tasks), are given in Fig. 5. The RMSE provides an overall parameter for comparing human and models over several
tasks.
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Fig. 5. Root mean square error (RMSE) between models and human observers for the DM and BT tasks. The last column for
each model represents the pooled error for the BT task and the four DM tasks with different contrasts. NPWE* values
correspond to the NPWE model with the noise intensity chosen to best match human performance.

4. DISCUSSION

4.1 Model observer templates

The model observers frequency profiles shown in Fig. 3 illustrate the fact that the models use very similar information in
the Fourier domain for BT and DM. NPW template (which is by definition the signal to be detected in the
psychophysical task) information is mainly concentrated at low frequencies, where anatomical noise is the highest [2],
and human efficiency is limited [20]. The other models follow the first signal oscillations in the Fourier domain, and
adapt their template to the different signals. Before discussing the features of each model observer template, it should be
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noted that the analysis of the circularly averaged radial profiles is by essence a simplification for such non-symmetrical
signals.

The NPWE template acts as an edge-enhancement filter, as it is particularly visible in Fig. 2. This explains why BT and
DM templates are so similar in the spatial domain, since their edge information (the projected shape of the area covered
by the signal in the central projection) is the same. In the Fourier domain, slight differences are visible between the two
modalities, reflecting the differences in the signal oscillations. Compared to NPW, the low frequencies are greatly
filtered by the eye filter.

The channelized Hotelling model with DDOG channels has a clearly limited adaptability to the different signals, due to
the use of circularly symmetric basis functions. While templates for DM and BT both exhibit stimulation/inhibition
transitions around signal edges, the transition is much more marked for BT, since the reference signal is here a binary
image with infinitely sharp edges. The stimulation area of the templates for DM is more concentrated at the very center
of the signal, thus more prone to decision errors resulting from local high pixel values in the central part of the images. In
the Fourier domain, the oscillations of the radial frequency profile of the templates follow those of the NPWE up to
about 0.5 cyc/pixel. At higher frequencies, the limited number of basis functions introduces artifacts that are non-related
to the signal.

The use of asymmetric Gabor channels in the channelized Hotelling model allows for a better but still limited ability to
adapt to specific signals, as can be seen in Fig. 2. In the Fourier domain, the profile is again similar to that of the NPWE
model for frequencies up to 0.5 cyc/mm, with less emphasis on the low frequencies due to the choice of the Gabor
channels frequencies.

4.2 Models performance and comparison with human observers

The poor performance of the NPW model was expected and is particularly visible on Fig. 4 and Fig. 5. This basic model,
although optimal in white noise, fails to correctly model human decision processes for detection tasks involving more
clinically realistic backgrounds [9, 14,22].

With the addition of the eye filter and appropriate internal noise, the NPWE matches human performance level very well
for BT (no significant difference, p=0.91) and DM (p=0.28) tasks. The RMSE computed over the five psychophysical
conditions is the lowest of all models (Fig. 5), and comparable to the values obtained in a previous study by Castella et
al. with benign and malignant masses embedded into digital mammograms [14]. Without internal noise, the NPWE
significantly outperforms the human observers in the DM task (p<10~). This was not a surprise, since previous studies
with synthetic signals embedded on filtered white noise [22], angiograms [24], or mammograms [13] had shown the
same trend. The reason why NPWE model does not have a better performance than humans for the BT task may be due
to the fact that the reference signal given to the models for the BT task was a binary image, physically equivalent to an
infinitesimally thin slice through the signal, instead of the actual thickness of the reconstructed tomosynthesis image,
Imm [17]. This lack of information concerning the actual signal edges might have been misleading for the models, and
have degraded their performance for the BT task. This should be further investigated in future work.

The two CHO models have different abilities for reproducing human observer results. With DDOG channels, the
systematic underperformance can probably be attributed to the strong restriction caused by the choice of circularly
symmetric channels for such complex signals. The difference is especially large for the BT task (0.67 in " units, p<10™),
while systematic but not significant for DM (p=0.22). With Gabor channels, the model leads to a better match for DM
(p=0.63) and an excellent overall RMSE, although performing nearly significantly below human observers in BT
(p=0.052). This underperformance in BT may be due, like for the NPWE model, to the imprecision of the signal edges
used to the model, or to a suboptimal choice of channels. All Gabor functions having rather smooth variations, the model
is not as efficient as the NPWE for optimally matching the stimulation/inhibition regions around the signal edges in BT.

4.3 Relative performance comparison between BT and DM

One key point of the present study was to assess the ability to correctly reproduce the BT potential that had been
observed in the human observer studies. For all these models, the signal intensity needed in DM for reaching the
performance of models with the BT task at S=0.010 was 2.3 to 3 times higher. For the best two models, in particular
(NPWE with internal noise, and CHO with Gabor channels), the ratio is 2.9 and 3.0, respectively. This result is slightly
lower than what had been observed with the human observers (the signal intensity ratio was found to be about 3.8 [4]).
However, given the uncertainties due to the fact that one condition only had been used for BT in both studies, this
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suggests that the potential of future developments in the BT field like reconstruction techniques, effect of angle span, or
number of projections, may be assessed by model observer studies.

4.4 Limitations of the study

As mentioned in the human observer study by Ruschin et al. [4], the encouraging results obtained by this comparison of
DM and BT for a database of matched clinical patient background images and synthetic 3D breast masses are still
subject to further work in order to enhance clinical realism of the hybrid images, and to test more conditions.

First, signals in our approach have by definition a constant Ay in Eq. (1). This facilitates the inclusion of synthetic
signals on the DM or BT projections but could lead to unrealistic looking lesions, especially in regions containing
heterogeneous areas consisting of fatty and glandular tissues. A more elaborate and clinically realistic approach would be
to consider signal with constant p instead, by adapting Eq. (1). This could be done using a model of the compressed
breast, for example.

Second, this study is based on a restricted set of tomosynthesis reconstructed images only. As signals cannot be
embedded "on-the-fly" for BT, the number of studied conditions is limited. Since the observers are presented the same
signal-present images, this may lead to unwanted correlations, particularly when estimating the variance of the
performance in the detection task. For future studies, it would be useful to generate other signal-present images, and/or
test other signal sizes and contrasts.

Finally, one has to remember that we used ad hoc DM ROI-based processing before displaying the images to the
observers. This approach is similar to that of Burgess [18], but may alter their performance. One alternative could be to
add the signals to the pixel values of the mammograms, then process the mammograms as a whole with the manufacturer
algorithm, before selecting the ROI.

5. CONCLUSIONS

The present study compared the relative performance of model observers in detection tasks in DM and BT with a set of
realistic hybrid images created with the same set of patients and signals. Our results showed that the equivalent detection
performance at reduced signal intensity (or, equivalently, reduced contrast) observed in a previous human observers
study [4] could be reproduced these model observers, with an especially good match with human observer data for the
NPWE model with internal noise, and CHO model with Gabor function channels.

These results confirm the potential advantage of BT compared to DM for improving the detection of subtle lesions at
equivalent breast dose. Given that BT is still a technique under development, our results also show that model observers
could be valuable for testing the effects of the technical parameters involved in the image acquisition on the detection
performance.
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4. Conclusions and perspectives

By providing a systematic and objective approach for breast cancer lesions detection, this work
extended the traditional psychophysical studies toolbox, in order to better understand the processes
that govern such tasks. Various mathematical, signal processing, or vision modeling methods such as
texture analysis, Bayesian classifiers, genetic algorithms, or human HLT estimation, were adapted to
clinically realistic detection tasks in x-ray breast imaging.

Among the original contributions of this work, an objective and reproducible way for assessing breast
density was developed, mammographic backgrounds with highly realistic visual and statistical
properties (second-generation CLB) were synthesized and validated, clinically realistic breast masses
were used in various psychophysical studies, the HLT was estimated in several realistic conditions,
and a task-based relative comparison of mammography and tomosynthesis with a matched cases
database was carried out. Additionally, a systematic comparison between human observers and
adapted model observers was conducted for each studied detection task, in order to assess the
potential of these models to predict human observers’ detection performance in the same
conditions.

The breast BI-RADS density classifiers, combined or not with an algorithm for automatically selecting
the regions of interest, could readily be incorporated into mammographic units in order to reduce
the variability inherent to the definition of the four BI-RADS density classes, or as an educational or
training tool to achieve the same goal. The classifiers could also help optimizing the image display
conditions, for example by performing different image processing according to the density.

The second-generation CLB significantly improved the visual and statistical quality of existing 2D
breast texture synthesis methods. They were used in the subsequent psychophysical studies of this
work. The simplicity of the method and the virtually unlimited number of images that can be
produced, make them perfect candidates for psychophysical studies focused on mammography.
Adaptation of the optimization method to other kinds of medical or nonmedical images that could be
assimilated to superposition of blobs is straightforward, as long as a sufficiently large database of
reference images exists.

The psychophysical studies with a simplified spherical signal and simulated breast lesions provided
valuable information about human observer’s perception of this kind of clinically realistic tasks.
Results showed that the observers processed the real and synthetic images the same way and
confirmed that local anatomical noise (in the immediate area around the signal) could have a major
effect on the performance. They also showed that the observer's performance did not differ in SKE or
SKS tasks as long as the signal size was kept constant, but that the observers were sensitive to signal
size uncertainty. All these findings should be taken into account for optimally designing future
psychophysical experiments in mammography. In particular, they should guide backgrounds
preprocessing and signals choices.

Excellent results with both mammography and tomosynthesis tasks were obtained with three model
observers: the NPWE model, the CHO with Gabor channels, and the HLT. The potential of the first
two to correctly predict human observers’ performance had already been proven in various
psychophysical conditions with geometrical signals in mammography or with correlated
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backgrounds. Our series of studies with clinically realistic conditions completed the previous ones,
with a particular emphasis on optimal ways for adding internal noise in order to best match human
results. The results with the HLT allowed to not only study the performance of the human observers,
but also their detection strategy. They suggest that the observers focused essentially on the signal
edges detection, rather than looking for bright areas, similarly to the way the NPWE observer
processes the signals.

The good match between human’s and model observer’s results obtained for the various clinically
realistic conditions under study confirms that these models provide a reliable tool for objectively
assessing image quality. In both mammography and tomosynthesis, costly and time-consuming
studies involving radiologists for testing new imaging technology developments could thus be
avoided and replaced by objective model observers studies.

There are still several open questions and potential applications of the tools developed in this work.
It would be particularly appealing to perform similar psychophysical studies with separate
background databases corresponding to the different breast density classes. According to Burgess
and Judy’s results obtained with correlated noise [Burgess, 2007], there should be dissociations in
performance among the different density classes. It would thus be interesting to study the ability of
the model observers to predict these dissociations, and to estimate the HLT for each density class in
order to find out whether human observers adapt their detection strategy in such conditions.

Additionally, discrimination studies could be conducted, with the same signals and backgrounds as
the ones used in this work. In such tasks, instead of being requested to detect a low-intensity signal,
the observers would have to discriminate benign from malignant signals. This is a typical aspect of
clinical tasks that has not been investigated here, and it would be of interest to test the models in
such conditions.

Concerning the breast tomosynthesis study, more signal conditions could be generated (e.g. various
sizes, contrasts, or lesion types), in order to improve the significance of our results.

As a final word, it should be reminded that the AFC studies conducted in this work are simplifications
of the actual detection processes performed by the radiologists. The search for signal candidates in
the whole breast, for example, has not been investigated, and many studies with eye trackers have
shown that it is a complex and multistep procedure. Further work could focus on trying to reproduce
it with non-Location Known Exactly psychophysical studies.
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APPENDIX: Screening mammography
from a practical point of view

In Switzerland, systematic screening mammography programs are organized in all French-speaking
cantons. In the other cantons, women may be referred by their general practitioner or gynaecologist
for a mammography examination. In the near future, these inequalities between cantons may
change, with systematic screening programs introduced in all remaining cantons as well.

The systematic screening programs (Switzerland or Worldwide) usually include the following steps.
First, letters of invitations are sent from a screening center to the eligible women, with informations
about the clinical procedures, risks and benefits, and the local radiographic institutes that are
accredited for screening mammography.

Fig. 8. (Left) Mammographic unit used in this study GE Senograph 2000D (GE Healthcare, Waukesha, USA)
and examples of usual views: Cranio-Caudal (Center) and Mediolateral Oblique(Right)

During the examination, two mammograms per breast are acquired, corresponding to different
projections (see Fig. 8). This allows to lower the issues caused by tissue superposition. The first
reading of the mammograms is done at the institute.

In order to improve the screening performance, a second reading is done at the screening centre. If
the two readers disagree, a third reading is performed at the screening center. The results are then
communicated to the patient.

If the results are positive, follow-up examinations are organized under the responsibility of the
patient’s physician. These additional examinations can include a diagnostic mammography, magnetic
resonance imaging, an ultrasound, and/or a biopsy with histopathological analysis. If the results of
the follow-up examinations or the initial screening mammography readings are negative, the patient
will be invited again two years later.
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