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Abstract

Morphology plays an important role in the computational properties of
neural systems, affecting both their functionality and the way in which
this functionality is developed during life. In computer-based models of
neural networks, artificial evolution is often used as a method to explore
the space of suitable morphologies. In this paper we critically review
the most common methods used to evolve neural morphologies and argue
that a more effective, and possibly biologically plausible, method consists
of genetically encoding rules of synaptic plasticity along with rules of
neural morphogenesis. Some preliminary experiments with autonomous
robots are described in order to show the feasibility and advantages of the
approach.

1 Introduction

Consider a generic network made of nodes and links, such as the internet, an
electricity grid, or the brain. Two such networks with the same number of nodes
and links, but with different architectures, can display quite different behaviors
(Strogatz, 2001).

The role of network architecture, or morphology, becomes even more im-
portant when its components are adaptive, such as in biological and artificial
neural networks where synaptic connections and node thresholds can change
their strength according to the activity of the units they are connected to. In
this case the morphology affects both what functionality is acquired by the net-
work during the process of synaptic change and how the network behaves after
the process of change.

Despite the important role of morphology in artificial neural networks, there
is a lack of guiding principles for choosing suitable architectures. Most computa-
tional models taking into account both synaptic and morphological change can
be divided in two types: construction and destruction algorithms. Construction
algorithms start with a simple neural architecture and gradually add internal
nodes while training additional connection strengths so to maximize the objec-
tive function describing the desired network behavior (Grossberg, 1987; Fahlman
& Lebiere, 1990, e.g.). Destruction algorithms instead start with large redun-
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dant networks and gradually delete connections (and nodes) whose strength
remains or goes very close to zero under the pressure of some penalty term in
the learning rule (Kramer & Sangiovanni-Vincentelli, 1989, e.g.).

These models preserve general morphological properties, such as type of con-
nectivity and node functionality, and often generate optimized but homogeneous
architectures. In other words, they hardly allow the emergence of new structures
and modules within the same network. Modularity and structural variation is
a property of most biological neural circuits and can be quite useful also in
artificial neural networks to prevent cross-talk and other types of interferences
among nodes.

More recently, some researchers have attempted to develop network mor-
phologies using evolutionary algorithms whereby architecture and component
types are encoded in artificial chromosomes and subjected to the process of se-
lective reproduction, crossover, and random mutation. This methodology has
produced morphologies that display both modularity and structural variability.
However, the networks evolved so far often do not show better functionality
than simple hand-designed neural networks (Siddigi & Lucas, 1998).

In this paper we describe a method for evolving adaptive neural morphologies
that show promising scalability and evolvability. The core of the methodology
consists of co-evolving the rules of synaptic plasticity along with the specification
of the network morphology. This strategy does not require genetic specification
of synaptic strengths because the suitable values are developed by the plastic-
ity rules and therefore results in quite compact genetic encoding. Furthermore,
instead of relying on off-the-shelf learning algorithms, which introduce several
constraints, this method discovers new “learning structures” by assigning differ-
ent plasticity rules to various parts of the network. To support our claims, we
describe some preliminary experiments carried out with an autonomous mobile
robot where we genetically encode rules of morphology growth and of synaptic
plasticity.

2 Evolution of Neural Morphologies

As we have mentioned in the previous section, encoding every detail of the ar-
chitecture may generate extremely long genotypes, which are difficult to evolve.
Therefore, typically only a few construction parameters are encoded to gener-
ate more or less complex network architectures from one-dimensional genotypes
through a “development” mechanism. This process is referred to as development
or morphogenesis.

Various development approaches to the construction of neural architectures
have been proposed. Kitano (1990) for example, employed a developmental
encoding based on a set of rewriting rules encoded on the genotype. The geno-
type is divided in blocks of five elements. Each block of five is interpreted as
a rewriting rule that determines how the first symbol is developed in a matrix
containing the other four symbols of the block. There are two types of symbols:
terminals and non-terminals. A terminal symbol develops in a predetermined
2x2 matrix of 0’s and 1’s. A non-terminal symbol develops in a 2x2 matrix of
symbols. The first block of the genotype builds the initial 2x2 matrix of sym-
bols, each of which recursively develops using the rules encoded in the genotype
until a matrix of 0’s and 1’s is built. This matrix represents the architecture



and connection pattern of the network.

In Kitano’s approach the values of the synaptic strengths are tuned through a
supervised learning algorithm known as Back Propagation of Error (Rumelhart,
Hinton, & Williams, 1986) based on the difference between the desired output
and the output of the network for every possible input pattern. This method is
not applicable for artificial brains of autonomous systems that operate without
external supervision.

In an original research work, Gruau (1992, 1994) proposed a genetic encoding
method scheme for neural networks based on a cellular duplication and differen-
tiation process. Gruau employed Genetic Programming to encode and evolve a
set of instructions that rule cellular division and the generation of connections.
The process starts with a single cell that undergoes a number of duplication
and transformation operations ending up in a complete neural network. In or-
der to solve the problem of defining synaptic strength, Gruau defined a library
of possible neurons each with a specific pattern of synaptic connectivity. He also
considered the possibility of generating repeated structures by using hierarchi-
cal tree representations where a node can point to other trees. Gruau defined
this method as Automatic Definition of Neural Subnetworks (ADNS) (Gruau,
1994).He applied this method to evolve neural controllers for a simulated hexa-
pod robot and compared the results obtained with and without ADNS. The
genotype of evolved individuals was significantly more compact in the case of
experiments with ADNS. Moreover, ADNS provided more structured pheno-
typical networks. A similar approach was proposed later by Kodjabachian and
Meyer (1998).

Another strategy used in (Nolfi, Miglino, & Parisi, 1994; Husbands, 1994;
Cliff & Miller, 1996) consists of encoding the properties and the position of the
neurons, and the parameters controlling the synaptic growth process in a two-
dimensional coordinate system. Networks are built up by placing neurons at
specific positions of a 2D “brain surface”, and then starting a synaptic growth
process that sets up the connections of the network. The approach by Nolfi et al.
(1994) includes in addition a maturation process, that is some parameters of the
synaptic growth process are a function of the neuronal activity of the network,
and consequently the interactions between the network and its environment
determine the final structure of the architecture. This model was extended in
(Cangelosi, Parisi, & Nolfi, 1994) by adding a cell division and migration process
to the existing synaptic growth.

Other authors (Jakobi, 1995; Michel, 1997; Eggenberger, 1996, e.g.) have
proposed more biologically-inspired approaches of genetically controlled cellular
division to generate neural network architectures.

Despite the interesting mechanisms involved in most of these methods, their
potential ability to generate neural networks capable of complex behaviors has
not yet shown up. Indeed, all results obtained using these methods and reported
in the literature so far are not more complex than those obtained with simple,
reactive, and hand-designed neural networks (obstacle avoidance and light fol-
lowing). Also, not all methodologies seem to scale up well when it comes to
evolve large neural morphologies (Gruau & Quatramaran, 1997; Cliff & Miller,
1996, e.g.).

We think that these problems are due to the fact that the genetic string
must encode both the architecture and the strengths of the connections in the
network. This has two consequences. On the one hand, the spatial development



and recombination of neurons and modules induced by the rules of growth and
by the genetic operators may not always result in functional networks. On the
other hand, the length of the genetic string grows with the complexity of the
networks that can be expressed, but the number of viable networks that can be
expressed by the genetic encoding for a given functionality does not grow at the
same rate. In other words, both factors contribute to the fact that the search
space becomes larger while the number of good solutions remains small.

3 Evolution of Morphogenetic Plastic Networks

In this paper, we suggest to co-evolve the rules of synaptic adaptation along
with the rules of neural morphogenesis. The rules of synaptic adaptation are
variations of the Hebb rule whereby the strength of a synapse changes according
to the correlated activities of the presynaptic neuron and of the postsynaptic
neuron. The genetic string encodes both the rules by which a neural network
develops in space and time and the rules by which the synaptic connections vary
their strength while the organism interacts with the environment. There are at
least three advantages in doing so.

e plastic synapses could provide a flexible interface between modules com-
bined by the process of morphogenesis and genetic crossover by adapting
at run time their strengths to accomodate the functionality of connected
modules. This would provide a higher number of functional networks for
a given genetic encoding, resulting in smoother fitness landscapes, and
consequently improve evolvability of the system;

e it is not necessary to resort to off-the-shelf learning algorithms to fine tune
the synaptic strengths, such as Back Propagation of Error (Rumelhart
et al., 1986), because their values are adjusted by the evolved choice of
hebbian rules which operate using only local information. This makes
the approach applicable to a larger number of situations, which are not
constrained by a given learning paradigm (supervised, e.g.) or architecture
required by conventional learning algorithms.

e it is no longer necessary to encode synaptic strengths because their value
is determined “at run time” by the evolved plasticity rules. If the genetic
specification for a neuron encodes also the type of hebbian plasticity that
all incoming synapses use, the length of the genetic string grows only
with the number of neurons in the network, not with the number of all
possible synapses. Furthermore, if a neuron-based encoding is combined
with some morphogenetic rule, the length of the genetic string could in
theory be scale invariant.

In this article we focus on the first two aspects of the list above. Part of
the third aspect (neuron-based encoding, without morphogenesis) has already
been described elsewhere (Floreano & Urzelai, 2000) and will be mentioned in
the discussion.

In order to do so, we have used a developmental approach to the construction
of modular neural networks inspired upon the matriz rewriting scheme proposed
by Kitano (1990) and briefly described in the previous section. We intend to
show that:
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Figure 1: Encoding of development instructions for the evolution of neu-
ral morphologies. The genotype (top) encodes for 16 blocks of 4 sym-
bols each. Each block corresponds to a symbol of the alphabet A4 =
{A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P} and determines how the symbol
develops in a 2x2 matrix. The initial symbol of the development process is
encoded in the first position of the genotype. Matrix rewriting begins with a
1x1 matrix containing the initial symbol (1), which then undergoes p parallel
rewriting cycles (only two rewriting cycles, 2 and 3, in this example). A rewrit-
ing cycle consists in developing each symbol of the matrix in a 2x2 submatrix.
After the final rewriting cycle (3), the resulting matrix is interpreted as a neural
network (4). Each symbol of the final matrix determines whether the neuron
n; is connected to the neuron n; in the resulting neural network, as well as the
sign and the properties of the connection (see table 1). Positive synapses are
represented as solid lines and negative synapses as dashed lines.



1. encoding the hebbian rules of synaptic plasticity makes the developing
network more evolvable and generates better solutions than encoding the
synaptic strengths;

2. the method can be used to develop the neural controller of an autonomous
robot, where by definition one cannot use a supervised learning algorithm
to fine-tune the synaptic connections.

Our particular implementation of the matrix rewriting algorithm is based
on an alphabet of 16 symbols:

A={A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, P}

During the process of morphogenesis, such symbols determine how the network
develops in space and time; at the end of the growth process, they specify the
arrangement and properties of the synaptic connnections among the neurons of
the resulting network.

The genotype encodes for 16 blocks of 4 symbols each. Each block corre-
sponds to a symbol of the alphabet A and determines how the symbol develops
in a 2x2 matrix. The initial symbol of the development process is encoded in the
first position of the genotype (figure 1, top). Therefore, each genotype encodes
for 1+ 4 % 16 = 65 symbols.

Matrix rewriting begins with a 1x1 matrix containing the initial symbol
encoded on the genotype (figure 1, 1), which then undergoes p parallel rewriting
cycles (only two rewriting cycles, 2 and 3, in the example of figure 1). Such a
rewriting cycle consists in developing each symbol of the current matrix in a 2x2
submatrix (e.g. [B] — [ALBE] is the first rewriting cycle in figure 1). Hence
for a fixed number of p rewriting cycles, a given development process always
produces a 2Px2P matrix.

After the final rewriting cycle (figure 1, 3), the resulting matrix is interpreted
as a neural network (figure 1, 4). Each symbol of the final matrix determines
whether the neuron n; is connected to the neuron n; in the resulting neural
network, as well as the sign and the properties of the connection. Two types of
properties can be specified depending on the nature of the synaptic connections.
In the case of adaptive synapses, the symbol specifies the learning rule used to
adapt the synapse, which is randomly initialized at the beginning of individual’s
life. Instead, in the case of genetically-determined synapses, the symbol spec-
ifies the strength of the synaptic connection and this value is constant during
individual’s life (table 1).

The adaptation rules specified here by the symbols are plain Hebbian, presy-
naptic, postsynpatic, and covariance rules. Adaptive synapses are randomly
initialized at the beginning of individual’s life and are updated every 100 ms
using these adaptation rules. These rules of Hebbian plasticity capture some of
the most common mechanisms of local synaptic adaptation found in the nervous
systems of mammalians (Willshaw & Dayan, 1990). The following mathematical
constraints were added. Synaptic strength could not grow indefinitely, but was
kept in the range [0, 1] by means of a self-limiting mechanism which depended
on synaptic strength. Because of this self-limiting factor, a synapse could not
change sign, which was genetically specified, but only strength. Each synaptic
weight w;; is randomly initialized at the beginning of the individual’s life and
is updated after every sensory-motor cycle (100 ms),



[ Symbol ]| Connected? | Sign | Rule | Strength |

A yes + Plain Hebb 0.25
B yes + Presynaptic 0.50
C yes + Postsynaptic 0.75
D yes + Covariance 1.00
E yes - Plain Hebb 0.25
F yes - Presynaptic 0.50
G yes - Postsynaptic 0.75
H yes - Covariance 1.00
I no

J no

K no

L no
M no

N no

0O no

P no

Table 1: Symbol encoding in the matrix rewriting scheme. Each symbol specifies
the existence, the sign, and the properties of a connection. In the case of
adaptive synapses, the symbol specifies the learning rule used to adapt the
synapse, whose intial strength is randomly set at the beginning of an individual’s
life. Instead, in the case of genetically-determined synapses, the symbol specifies
the strength of the synaptic connection and this value is constant during an
individual’s life.

t

w”

|
=w;;  +nAw;,

where 0.0 < < 1.0 is the learning rate and Aw;; is one of the four modifi-
cation rules specified in the genotype:!

1. Plain Hebb rule: can only strengthen the synapse proportionally to the
correlated activity of the pre- and post-synaptic neurons.

Aw=(1—-w)zy 1)

2. Postsynaptic rule: behaves as the plain Hebb rule, but in addition it weak-
ens the synapse when the postsynaptic node is active but the presynaptic
is not.

Avw=w(-1+z)y+(1—-w)zy (2)

3. Presynaptic rule: weakening occurs when the presynaptic unit is active
but the postsynaptic is not.

Aw=wz(-1+y)+ (1 —-w)zy (3)

4. Covariance rule: strengthens the synapse whenever the difference between
the activations of the two neurons is less than half their maximum activity,

IThese four rules co-exist within the same network.



Figure 2: A mobile robot Khepera equipped with a vision module gains fitness
by staying on the gray area only when the light is on. The light is normally off,
but it can be switched on if the robot passes over the black area positioned on
the other side of the arena. The robot can detect ambient light and the color of
the wall, but not the color of the floor.

otherwise the synapse is weakened. In other words, this rule makes the
synapse stronger when the two neurons have similar activity and makes it
weaker otherwise.

aw={ (it

where F(z,y) = tanh(4(1 — |z — y|) — 2) is a measure of the difference
between the presynaptic and postsynaptic activity. F(z,y) > 0 if the
difference is bigger or equal to 0.5 (half the maximum node activation)
and F(z,y) < 0 if the difference is smaller than 0.5.

~—

Flx,y) if F(z,y) >0
,Y) otherwise

(4)
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3.1 Robotics Experiments

In this section we describe a set of experiments on evolution of network mor-
phologies with synaptic plasticity for an autonomous robot. A mobile robot
Khepera equipped with a vision module is positioned in the rectangular environ-
ment shown in figure 2. A light bulb is attached on one side of the environment.
This light is normally off, but it can be switched on when the robot passes over
a black-painted area on the opposite side of the environment. A black stripe is
painted on the wall over the light-switch area.

Each chromosome of the population is decoded into a corresponding net-
work morphology whose input and output neurons are connected to the robot
through a serial connection with rotating contacts (to prevent twisting of ca-
bles) and tested for 500 sensory motor cycles, each cycle lasting 100 ms. At the
beginning of an individual’s life, the robot is positioned at a random position
and orientation and the light bulb is off.

The fitness function is given by the number of sensory motor cycles spent by
the robot on the gray area beneath the light bulb when the light is on divided
by the total number of cycles available (500). In order to maximize this fitness
function, the robot should find the light-switch area, go there in order to switch
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Figure 3: The Khepera robot used in the experiments. Infrared sensors (a)
measure object proximity and light intensity. The linear vision module (b)
is composed of 64 photoreceptors covering a visual field of 36° (center). The

output of the controller generates the motor commands (c) for the robot. Right
figure shows the sensory disposition of the Khepera robot.
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the light on, and then move towards the light as soon as possible, and stand
on the gray area. Since this sequence of actions takes time (several sensory
motor cycles), the fitness of a robot will never be 1.0. Also, a robot that cannot
manage to complete the entire sequence will be scored with 0.0 fitness. A light
sensor placed under the robot is used to detect the color of the floor—white,
gray, or black— and passed to a host computer in order to switch on the light
bulb and compute fitness values. The output of this sensor is not given as
input to the neural controller. After 500 sensory motor cycles, the light is
switched off and the robot is repositioned by applying random speeds to the
wheels for 5 seconds. Notice that the fitness function does not explicitly reward
this sequence of actions (which is based on our external perspective), but only
the final outcome of the sequence of behaviors chosen by the robot.

The neural network is composed of a number of McCulloch-Pitts neurons
with sigmoid activation function. The number of neurons in the network and
their connectivity pattern is determined by the matrix rewriting approach de-
fined above. In these experiments we have limited the number of rewriting cycles
to four, which generate networks of sixteen neurons. Ten of these neurons can
receive input from the following sensors of the robot (figure 3):

1. Infrared light: the active infrared sensors positioned around the robot (fig-
ure 3, a) measure the distance from objects. Their values are pooled into
four pairs and the average reading of each pair is passed to a corresponding
neuron.

2. Ambient light: the same sensors are used to measure ambient light too.
These readings are pooled into three groups and the average values are
passed to the corresponding three light neurons.

3. Vision: the vision module (figure 3, b) consists of an array of 64 photore-
ceptors covering a visual field of 36° (figure 3, center). The visual field
is divided up in three sectors and the average value of the photoreceptors
(256 gray levels) within each sector is passed to the corresponding vision
neuron.

The activations of two other neurons are read to set the rotation speeds of
the wheels (figure 3, ¢). The remaining four neurons are not directly connected
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Figure 4: Comparison of different types of encoding for the evolution of
matrix-rewriting instructions in the “light-switching” problem. Left: Adap-
tive synapses with Node Encoding. Right: Genetically-determined synapses
with Synapse Encoding. Thick line=best individual; thin line=population av-
erage. Each data point is an average over 10 replications with different random
initializations. Population size is 100 and 20 best individuals reproduce by mak-
ing 5 copies. Crossover probability is 0.2 and mutation probability is 0.05 (per
bit).

to sensors and motors. Every 100 ms new sensory values are passed to the input
neurons, all neurons in the network are updated, and the rotation speeds of the
robot wheels are set for the next 100 ms.

A set of experiments has been carried out aiming at comparing adaptive
synapses to genetically-determined synapses on the matrix rewriting approach
for the “light-switching” environment described above. Every replication is
composed of a population of 100 individuals, which is evolved for 200 generations
by reproducing 20 best individuals (5 copies each). Each individual is tested
three times, crossover probability is 0.2, and mutation probability is 0.05 (per
bit).

The experimental results (figure 4) indicate that evolution of morphogenetic
networks with genetically-determined synapses is more difficult because fitness
score remains very low for more than 100 generations, and the final performance
is lower than in the case of evolution of morphogenetic networks with plastic
synapses.

Performance difference is more evident if we look at the behaviors generated
by evolved networks. Behaviors generated by networks with adaptive synapses
(figure 5, left column) are very efficient in finding the light-switching area and
in following the light, and they remain on the fitness area once that they reach
it. On the contrary, networks evolved with genetically-determined synapses
(figure 5, right column) display, in general, minimalist behaviors. The indi-
vidual showed at the top row, for example, performs a wall-following behavior
whereby it runs over the light-switching area and stops when it is close to the
light. Although this individual accomplishes the task, it is not very efficient
since its performance is highly determined by the initial position of the robot2.

2Since the robot performs a wall-following behavior, it needs to perform a complete tour
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Figure 5: Comparison of behavior of best individual of the last generation for the
evolution of matrix-rewriting instructions in the “light-switching” problem (two
different replications are shown). Left column: Adaptive synapses with Node
Encoding. Right column: Genetically-determined synapses with Synapse En-
coding. When the light is turned on, the trajectory line becomes thick. The
corresponding fitness value is printed on the top of each box along with the
average fitness of the same individual tested ten times from different positions
and orientations.

Moreover, a change in the shape of the environment, or in the position of the
light-switching area or the fitness area would have fatal consequences for this
individual. Clearly, the strategy evolved by adaptive controllers is more perfor-
mant, since they have developed strong attraction towards the light-switching
area and towards the fitness area once the light is switched on. In addition,
the performance displayed by some genetically-determined individuals is very
dependent on the initial position of the robot. The individual showed at the
bottom row, for example, performs loopy trajectories that are not efficient in
switching the light on if the initial position of the robot is relatively far from
the light-switching area.

4 Discussion

The experiments described in this paper show that co-evolution of synaptic
plasticity rules along with morphogenesis rules provide at least two advantages
with respect to evolution of morphogenesis rules alone (where synaptic strength
is genetically determined): a) better solutions in terms of fitness values and
behavioral abilities, and b) better evolvability.

The better quality of evolved neural networks can be explained by the fact

of the environment before getting to switch the light on if its initial position is close and its
orientation is opposite to the light-switching area.
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that forcing the networks to adapt their synaptic strengths at run time starting
from random values, instead of relying on evolved synaptic strengths, selects
individuals for their ability to develop at run time and very quickly the compe-
tencies required by the environment while interacting with it. This makes the
evolved individuals much more robust to situations that have not been experi-
enced during evolution (Floreano & Urzelai, 2000). Also, it prevents evolution
from genetically encoding behavioral abilities in the properties of the network.
Instead, when synaptic strengths are genetically encoded and evolved without
ontogenetic plasticity, artificial evolution often discovers viable, but sub-optimal
solutions, such as the wall-following behavior displayed above. This seems to
be the case also when the architecture of the network is predefined; in addition,
some experiments have shown that when an extra gene is added for each neuron
in the network to decide whether to take on predefined synaptic strengths or
rules of synaptic plasticity, most neurons express the latter option (Floreano &
Urzelai, 2000).

The better evolvability of plastic morphogenetic networks could be explained
by the fact that synaptic connections have the flexibility to develop at run time
the range of values that are most suitable for the developing architecture. In-
stead, in the case of genetically-encoded synaptic strengths, evolution has the
harder task of finding at the same time both a viable architecture and a set
of synaptic strengths that matches the architecture. Plastic synapses may also
better withstand and possibly exploit the effects of genetic recombination by
adapting their values in order to accomodate sub-modules inherited from other
individuals. At this stage, this is only a speculation, but it could be easily
tested by running experiments with various crossover probabilities and perform-
ing genetic analysis to discover whether neural building blocks are preserved and
propagated through generations among the best individuals.

Figure 6 shows an example of an evolved neural network whose genotype
specifies both morphology and plasticity rules (it corresponds to the individual
displayed on the top left corner of figure 5). For sake of clarity, the network
has been displayed with the same format used in the third frame of figure 1.
This network displays a high degree of replication and modularity. The first
four rows of synapses are repeated at rows 9 to 12. Also, blocks of four columns
are repeated across the whole length of these four rows. Although we have not
performed an analysis of the functionality of these small synaptic modules, it
is interesting to notice that best evolved individuals exploit the possibility to
maintain, repeat, and combine small building blocks of synaptic configuration.

The matrix-rewriting algorithm described in this article has been used only
to support our argument on co-evolution of morphogenesis and synaptic plastic-
ity, not as a starting point to investigate biological morphogenesis. As a matter
of fact, this algorithm has a number of drawbacks. Although it can grow net-
works of infinite size, not all network morphologies can be expressed using this
limited number of rewriting rules. Furthermore, for sake of comparison with
the case where synaptic strengths are genetically encoded, this implementation
requires the specification of the properties of individual synapses, which is not
very efficient for evolving modularity at the neural level (instead than at the
synaptic level). Finally, the process of morphogenesis happens instantaneously
before connecting sensory and motor neurons to the robot. It would be interest-
ing to let the network develop over time and vary the time constants of synaptic
plasticity and neural growth, similar to a process of maturation. Preliminary

12
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Figure 6: Evolved neural network whose genetic encoding specifies the rules
of morphogenesis and of synaptic plasticity (corresponding to the individual
trajectory plotted on the top left corner of figure5). Large circles on the left-
most column represent the neurons in the network; the circles on the top row
are the same neurons at the previous time step. Small coloured circles rep-
resent the presence of a synaptic connection between two neurons (incuding
self-connections). The labels within the top row of neurons indicate their type:
d = receive input from distance sensors; 1 = receive input from light sensors;
p = receive input from photoreceptors; h = hidden neurons, i.e. neurons that
are not directly connected to the sensory-motor system of the robot; m = their
activation levels are used to set the speed of the two wheels.
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computational investigations in this direction (Nolfi et al., 1994), but without
synaptic plasticity, have shown that the maturation process is partially deter-
mined by early interactions with the environment and provides the organism
with some adaptive power.

5 Conclusions

The results reported in this paper indicate that a morphogenetic evolutionary
approach can benefit by co-evolution of rules of synaptic plasticity along with
rules of neural morphogenesis. In particular, the local adaptive properties of the
synapses make the system more evolvable than in the case where such synapses
are fixed. Furthermore, since it is no longer necessary to specify initial synaptic
strengths because these develop at run time while the system interacts with
the environment, it is possible to apply this approach to a large variety of
morphogenetic approaches while maintaining a compact genetic encoding.

In work described elsewhere (Floreano & Urzelai, 2000), we have started to
investigate compact genetic encodings where the smallest encoded unit is the
neuron, instead of the synapse. Five bits encode the type of neuron (excitatory
or inhibitory), the type of plasticity rule that applies to all incoming synapses
for that neuron (four hebbian rules on 2 bits), and the learning rate for all
incoming synapses (four values on two bits), respectively. Preliminary experi-
ments with predefined architectures show that this type of genetic encoding is
more evolvable and more scalable to large networks than one where the smallest
unit is the synapse. This is because in a neuron-based encoding the genetic
length necessary for encoding a fully connected network of N neurons is pro-
portional to N whereas in a synapse-based encoding the length is proportional
to N2. Current work is aimed at developing further the neuron-based encoding
by adding morphogenesis and temporal development.
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