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Capillarity Correction to Periodic
Solutions of the Shallow Flow
Approximation

D. A. Barry, S. J. Barry and J.-Y. Parlange

Abstract

The shallow flow expansion is used to derive equations describing the flow of fluid in
an unconfined aquifer. The expansion, which is carried out to second order, is
combined with an approximation accounting for the influence of the capillary fringe
to give a model that describes the motion of the phreatic surface as it is affected by
the capillarity of the porous medium. The results are derived for the case of an
aquifer in contact with a reservoir, with the fluid in the reservoir undergoing a steady
periodic motion. A linearised solution of the second-order theory is shown to agree
well with an “exact” numerical solution. It is demonstrated using the linearised
solution that the porous medium capillarity affects the time-averaged mean square
height of the phreatic surface of the aquifer in the second-order term, but leaves the
first-order term unchanged.

Introduction

Coastal aquifers will respond to the ocean as a result of wave or tidal action, or to
variability of recharge. The beach profile also depends on the aquifer configuration.
For example, the relative height the water table below the beach affects the amount
of erosion of the beach face (e.g., Sato, 1991; Heaton, 1992). In the absence of
boundary effects, the evaporative loss of water from the aquifer depends on the depth
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of the water table, which in tum depends on the recharge rate. These effects tend to
damp out water table fluctuations. However, near a fluctuating boundary condition
such as that imposed by tidal variations, water table movement is dominated by the
fluctuations. Previously developed models consider these fluctuations, but do not
take into account the effect of the capillary fringe. This effect will be explored
below.

Studies of shallow coastal aquifers commonly simplify the governing flow model by
invoking the Dupuit assumption of vertical equipotentials in the fluid. The resulting
model does not include capillary effects. Therefore, results of such models will be
appropriate so long as the capillary fringe length scale 1s significantly less than any
other length scale entering the problem (Parlange et al., 1984). It would appear that
this assumption is reasonable in that theoretical predictions and experimental results
compare quite well. However, to determine precisely the cause of this result, in this
paper we relax the length scale assumption on the capillary fringe. We examine the
behaviour of the water level in coastal aquifers (i.e., subject to a periodic boundary
condition) utlising a model that includes the effect of the capillary fringe. Note that
our purpose is not to model the complex phenomena observed at the zone of
interaction (e.g., wave action or sediment transport) between the coastal aquifer and
the ocean, rather, it is to quantify directly the effect of the capillary fringe in a
physically realistic way. In particular, we focus on the effect of the capillary fringe
as it alters the phreatic surface of the aquifer.

The paper is structured as follows: The governing equations modelling the behaviour
of the phreatic surface are derived, up to second order, using the shallow flow
expansion. Then, an approximation for the time-averaged mean square of true
phreatic surface height is presented using the results from the expansion. The
second-order theory is then solved, approximately, using a linearisation of the
governing equations. An explicit expression for the mean square height is then
derived and compared with the analogous case based on the assumption of no
capillary fringe.

Derivation of the Governing Equations

We consider isothermal flow of an incompressible fluid in a structurally rigid porous
medium. The simplified problem definition is given schematically in Figure 1. The
flow domain is assumed to be uniform in the direction normal to the page, i.e., a two-
dimensional vertical slice model is analysed. In Figure 1, the ocean is supposed to
impose a periodic variation on the boundary of the aquifer, which is located at x = 0
(symbol definitions are collected in the notation list). This simplified model isolates
the effect of the periodic boundary condition on the free surface of the aquifer, and
so mimics the behaviour of a coastal aquifer. The height of the free surface, defined
as the position where the fluid pressure is atmospheric, is given by h(x,t). In the
region z > h, there exists a capillary zone where the fluid pressure 1s less than



498 Capillarity Correction

and Surface

Periodic .
Boundary ! Capillary Zone 2 = h(x.t)
Condition \ |

| Saturated Zone

I X = D‘ X — oo

z=10
Impermeable \

&x xxxxxxxxxxxxxxxxxxﬁ

Figure 1. An unconfined aquifer subject to a periodic boundary condition.

atmospheric. The aquifer will be assumed be infinitely long. The fluid potential, ¢
(= z + p/pg), in the saturated zone then satisfies Laplace’s equation since we
assume the fluid to be incompressible and the porous medium inelastic (e.g., Bear
and Verruijt, 1987), i.e.,

pi 2
§x£+§££={}, x>0 h>z>0. (1)
A zero-flux condition,
dd _
‘é‘g—{}, z=0, (2)

applies at the impermeable base of the aquifer, while at the phreatic surface we
have (e.g., de Marsily, 1986):

¢=h, z=h, (3)

(which simply states that y = 0 on the phreatic surface), together with the kinematic
boundary condition

n%:l{ +q-(K+q}§2, z=h. (4)

) ()

Note that in (1) and (4) we have assumed the hydraulic conductivity, K, in the
aquifer to be homogeneous and isotropic. Also, at this point, q is left unspecified
although its meaning is clear. It is a source term representing supply of fluid to the
free surface from the unsaturated zone. The source could be recharge or,
alternatively, supply of capillary fluid.
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In this section we derive an approximation for the free surface height, h, using the
shallow flow expansion. The shallow flow expansion was developed by Friedrichs
(1948) to derive the shallow water theory. It was subsequently applied by Dagan
(1967) to the case of a phreatic aquifer. Following Dagan (1967) (c.f., Bear, 1972)

then, (1) to (4) can be expanded using

X =x/E,

oK
“E

q = Keqy,

¢=¢U+E¢1+E2¢2+
and

h=hg+ ehy + e%hy + -

(5)

(6)

(7)

(8)

(9)

where € is a perturbation parameter. The precise meaning of the small parameter, ¢,
in (5)-(9), is unimportant in the expansions because terms of various orders are

matched. Nonetheless, the meaning of € will be discerned below.

The substitution of (5), (6), (8) and (9) into (1) and (2) yields:
b = co(X,T),

2 az¢,
z 0
¢ =i XT) - % —
! 2 5x2
and
32 32‘31 . 24 az%
2 9x2 A x*

¢2 = CE{X,T} -

(10)

(11)

(12)

where cg, ¢; and c; are functions to be determined. To find these functions we first

expand (3) and find, on z = hy,
¢y =hy,

¢'|=h]:

(13)

(14)
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and

a%h,
¢2=h1+h{}hlﬁ* (15)

Equations (13)-(15) can now be used to find the unknown functions in (10)-(12).
This operation gives ¢, ¢1, and ¢, in terms of hg, hy, hp and z. Finally, these
expressions are used in the expansion of (4), with the following results:

chy g [ odhy

and

oh, =az[hoh1]+l 92 h332hﬂ

. 17
oT  ax* 3a3x?| "ax?

Equation (16) is the familiar Boussinesq (1903) equation with the source term, q;. It
1S interesting to note that q; does not enter into the expression (17) defining h;, and
so the latter is identical to the result obtained by Stagnitti er al. (1983) and Parlange
et al. (1984), who ignored capillary effects. In the following, both (16) and (17) are
needed to determine an expression for the time-averaged mean-square water table
height.

Behaviour of the Time-Averaged Free-Surface Height

As 1t stands, the model equations are incomplete as boundary conditions have not
been imposed. The boundary is assumed to extend vertically upwards from the point
X = 0 in Figure 1, on which the periodic condition

#(0,z,t) =h(0,t) = y [1 + a cos(wt)], (18)

is applied. On physical grounds we see that oo < 1. We require also that the solution
remain bounded as X — oo, Or

R-Boo, xw (19)

Drawing on results derived by Knight (1981), Parlange et al. (1984) showed that for
the periodic boundary condition (18), the time average of hZ, denoted by <h?>, is
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dhq )2
<h% = -:h%,::- + ;- E{h% (f) >+ 0{22). (20)
2
where <h%;> :72(1 + %) (21)

Equation (21) is valid for (16) so long as q; has the same period as (18). It shows
that the mean square free surface height within the aquifer is always greater than y2,
although the time-averaged mean height of the forcing at the boundary is y. This
result, which can be derived easily directly from the Boussinesq equation and (18),
has the following simple interpretation (Knight, 1981): The effective transmissivity
of the aquifer depends on the height of the phreatic surface, so higher water levels on
the boundary will result in more water entering the aquifer. The averaged height of
water in the aquifer must therefore be greater than that on the boundary so that, on
average, the flux at the boundary is zero. Alternatively, it shows that the free
surface within the aquifer must be asymmetric. Field data confirm this asymmetry
(e.g., Lanyon er al., 1982).

The major contribution of (20) is that <h?> is determined exactly to O(g) by
knowledge of hy alone, i.e., the solution satisfying (17) for h; is not needed.
However, although not presented here, (17) was used to obtain (20). For that reason,
its derivation (and the consequence that it is independent of q;) was sketched above.
It is common to use (16), or variations of it, to model the behaviour of coastal
aquifers (e.g., Nielsen, 1990). Equation (20) shows that estimates of <h?> based
solely on (21) will have an error of O(g). In the following this error will be
quantified. Before doing so, it is necessary to derive an explicit expression for q;
that will model the effect of the capillary fringe.

The Capillary Correction

In a recent paper, Parlange and Brutsaert (1987) (cf. Parlange er al., 1990; Fink,
1990) considered the linearised version of (16) and derived an estimate of q; based
on that linearisation. If (16) is taken as the point of departure, it is possible to use
the approach of Parlange and Brutsaert (1987) to derive (in dimensional form)

ohg g [ odhgl 5% [ dhg
— — =K—(h\— —|hp— 22
“E&l Kax(hﬂax)"'ﬁaax hﬂax. (22)
where B is approximated by
0
B—_-I 6-6, dy. (23)
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Thus, B represents, for example, the average depth of water held in the capillary
zone above the phreatic surface, or the average suction required to remove the
capillary water from the unsaturated zone.

Equation (22) is a nonlinear model that incorporates the effect of capillarity on h.
Observe that because the final term on the right-hand side of (22) is periodic if hg is
periodic, the time average given in (21) remains unchanged by capillarity, as might
be expected. Clearly, however, capillarity will influence the first-order term on the
right-hand side of (20).

In order to estimate <h?> in (20), we must solve (22) subject to the following
conditions resulting from (18) and (19):

ho(0,t) =y [1 + o cos(wt)] (24)
and
do_, 25
? =Uu, X —» oo, { )

Equations (24) and (25) are the boundary conditions which the solution to (22) must
satisfy. Clearly, an initial condition is needed to complete the specification of the
problem, and any initial condition could be invoked. As time progresses, however,
“memory” of the initial condition will be lost and, eventually, a quasi-steady state
will be attained. Regardless of the initial condition, the behaviour of the system will
be influenced wholly by the boundary condition (24). Therefore, in what follows we
look for the periodic solution only, i.e., the solution that applies after a long time
when all transient effects due to the initial condition have decayed.

Estimation of hg

The solution of (22)-(25) is required to determine <h?> in (20). In general, such a
solution will be obtained numerically. However, the numerical solution will not give
€. This parameter can be determined from an analytical solution satisfying (22)-
(25). In this section an approximate analytical solution is calculated.

Motivated by the boundary condition (24), we seek an approximate solution in the
form,

ho(x,0)=Y[1+0hg (x,0 + &hg o(x,0) + ...], (26)

1.e., & is treated as a perturbation parameter. Clearly, (26) will be accurate for o <<
1. Upon substituting (26) into (22)-(25) we find that the O(o) terms give the
following problem defining hg ;:
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oho;  3'hg; _ 3’hg,

n, g Ky sz + BT—BE’E, (27
h,1(0,t) = cos(ct) (28)
and
dhg
—C = 0, X —3 oo, (29)

Equations (27)-(29) have the obvious solution:

h ; = exp(-xAP) cos(at - xAQ), (30)
where
A e 31
=\/ Ky’ (31
P 1 + m*
= [ : (32)
[Ql \/1/1+ﬂ}ﬂ J1+e™
and
+ B
W =X (33)

Stagnitti et al. (1983) point out that the problem defined by (27)-(29) was solved by
Steggewentz (1933) for the case of no capillary term, i.e., B = 0. Setting B = 0 in
(30) yields

ho,1|g _ o = €XP(-xA) cos(@t - xA), (34)

Equation (34) agrees with the corresponding result reported by Lewandowski and
Zeidler (1978), Parlange et al. (1984) and Nielsen (1990).

We proceed now to the calculation of hg ;. The O(?) expressions resulting from the
use of (26) in (22)-(25) are

ah 2’h a’h 3’h2
D =Ky— +By—2+7 (K +B ﬂ] 1 (35)
ox dtax 2 ot ox*
ho, (00 =0 (36)

and
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dhg ,

3 =0, X — oo, (37)

The solution for hg ; satisfying (35)-(37) can be shown to be:

hg, =3 [I - exp(-2xAP)] +[iJ-r 60 _2] [exp( J_lel}cns(B ) - exp(-2xAP) cﬂs{ﬁ}]

*

[exp( ~/2xAP;) sin(B ;) - exp(-2xAP) 5111{[3}] (38)
2[1 + 9w ]
where
P
1 + 2{0 (39)
1 +40 ° 1 +40"
B =20t - 2xAQ (40)
and
ﬂ1=2m[-ﬁ1ml. {41)
Setting B = 0 in (39) yields
hg2 Boo" % - cxp(fxl} + % expl-y/ 2 xA)cos(2mt-y2 xA) - exp(-2xA)cos(2wt-2xA) |,
(24)

in agreement, again, with the results reported by Parlange er al. (1984) and Nielsen
(1990). Note that, by comparison with (34) and (42), (30) and (38) indeed represent
a correction to the standard Boussinesq solution, i.e., the same basic form is obtained
except that the various parameters become functions of o*.

With hp ; and hg ; now evaluated in (30) and (38), respectively, (26) can be used to
evaluate hg analytically. This expression will be used shortly to determine & in (20).
Before doing so, however, the validity of (26) as an approximation for hy needs to be
evaluated. For this purpose a numerical solution for (22)-(25) was developed. The
details of this numerical solution are presented in the Appendix.

The “exact” numerical solution and the analytical approximation, (26), are
compared in Figure 2. Because the approximation is exact for o = 0, we ook the
extreme value of o = 1 in order to check (26). Note that checking a = -1 18
unnecessary since it changes only the phase of the boundary condition (24).
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Because the initial condition is unimportant, hy(x,0), calculated using (26), was
used as the initial condition for the numerical solution. The results in Figure 2 show
that the analytical approximation is satisfactory, even for this extreme case.

These results suggest further that (26) is suitable for estimating <h?> in (20). Using
the expansion for hy in (26) gives

<h®s -r:h[p uzneymexp(lx’hl’}

“{2 "{2 3K{I+m 2]

For B =0 (0* =0, P = 1), (43) reduces to the analogous expression reported by
Parlange ef al. (1984). In addition, (43) indicates that the perturbation parameter, ¢,
is given by (using dimensional quantities)

(43)

o’n oY WK

(44)
[ +Bm)

E—

Equation (44) contains an interesting result, not reported previously. It predicts that
the coefficient of the exponential in the second-order term of (43) will be maximised
for a particular value of @ (= K/B). Thus, the second-order term is a maximum for
this value of  at x = 0.

hn/}'

D i
0 5 10

X

Figure 2. Comparison of “exact” numerical solution (Appendix) - lines - satisfying (22)-(25)
and the analytical approximation (26) - dashes - for @ = 1 and @ = 1. Labels on the curves
give values of t*.
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Discussion and Conclusions

The main result of this study is contained in (43), which gives the time-averaged
mean square height of the free surface in the aquifer. Only a few reports of
appropriate laboratory experiments are available in the literature, and these are
usually analysed using the Boussinesq equation, i.e., (22) with B = 0. For this reason
the experiments were carried out using porous media composed of coarse materials
so that the capillary effect on the free surface would be minimised. For example,
Smiles and Stokes (1976) used a Hele-Shaw model while Parlange et al. (1984) used
0.5 cm diameter gravel. It is, therefore, not surprising that Parlange et al. (1984),
who neglected capillary effects in their analysis, found that the experimental results
were predicted quite well. Clearly, neither of these data sets can usefully be anal-
ysed using (43). Thus, at present we cannot provide experimental evidence to
confirm our results. This is unfortunate because, paradoxically, the theory predicts
that the correction term in (43) reduces in magnitude as B increases, and so the first
term, {h%}, dominates. It is clear physically why this is so: Due to capillarity,
water can be stored in the unsaturated zone and it becomes easier for the
groundwater to follow the fluctuations imposed at x = 0.

It is possible to show, approximately, the effect of the capillarity correction by
inserting typical parameter values in (43). To simplify matters we set x = 0. Then,
the only place where non zero values of the capillarity parameter, B, enter is in the
denominator of the final term, through w*. If ®* << 1, then capillarity has
negligible influence. Typical parameter values for a sandy beach with ocean tidal
forcing are (e.g., Bear and Verruijt, 1987) K=10m d!,w=2d!'and B =05 m,
yielding ®* = 0.1. On the other hand, parameters relevant for a lake undergoing
seasonal variations in its water level that is connected with a relatively low
permeability aquifer might be ® =2 yr!, K =0.01 md!, B =2 m, giving o* = 1.1.
This range of values suggests, not surprisingly, that the capillarity effect is important
only in relatively low conductivity, small grained media.

Equation (43) also shows that the decay length of the fluctuations in the porous
medium due to the fluctuating water body is of order If = 2(AP)-!. For a coastal
aquifer, we take as the depth of the aquifer, vy, the magnitude of the tidal fluctuation,
since the fresh water aquifer is underlain by the salt wedge which, for the purpose of
an order of magnitude calculation, may be taken as being stationary. To compute A
we take the values used above with n, = 0.35 and y = 1.7 m. Thus, tidal fluctuations
on a sandy beach are approximately lf = 13.3 m, with B = 0.5 m or 13.9 m with no
capillary effect, B = 0. If, on the other hand, y is taken as the entire depth of the
aquifer, say 15 m, then lf = 39.6 m, with B = 0.5 m or 41.4 m with B = 0. The actual
range probably lies between these limits. Some data on beach water table
fluctuations at a Wollongong (New South Wales, Australia) beach is available from
the study of Lanyon ef al. (1982, Table 4). A 1.7 m tidal range decays to 0.15 of this
value over a distance of 23 m. Similar calculations can be performed for the lake
example discussed above. The same parameter values are used along with n, = 0.45
and y = 15 m yielding lf = 20.4 m or 22.1 m with B = 0. These representative cases
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show that the decay length of the fluctuations at the boundary are little affected by
capillarity.

Finally, these results suggest that, because the effect of capillarity is relatively
small, the Boussinesq solution (neglecting capillarity) will be good in situations
where the parameters are curve fitted with ad hoc parameters.
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Appendix

A numerical solution satisfying (22), (24), (25) and an arbitrary initial condition is
developed here. If we define the dimensionless free surface height, h*, as

h" = hsy (A1)

then, in dimensionless form, the problem to be solved is

o’ _a’n”  ’n"

* * *_ {AZ)
aH xZ ox?
subject to
h™(0) =1+ 0 cos [m‘l* : (A3)
ah' 0. x oo (Ad)
dx
and
h'(x,0)=h(x). (AS)

In the numerical solution, (A4) is applied at a finite distance, with that distance
chosen so that the effect of the finite domain size is negligible. Equations (A2)-(A5)
are now transformed using the substitution u = h*2, The resulting equations are then
solved using the approach of Crank and Nicolson (1947), i.e., we take centred finite
difference approximations to both the spatial and temporal derivatives about the
point [jAx*, (n + 1/2)At*], where x* = jAx* j=0, .., Nand t* =nAt*, n=0, .., M.
The method yields the following system of equations to be solved

AO™ ™! 2 A" +b, (A6)
where
n n._n n n T {A‘}'}
u =|:11],ll2,,.. *“H—l'“H] .
Dl -8 0 0
-8 D2 -5 0
0 . . - :
A" = | S ", (A8)
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T
b= [{1 + 0 COS (jmtmt}}zs + {1 + O COS ((j+1]mtmt)}2r, 0, , {}] (A9)
(|1 (A4
sl
and
Bi=25+Ji_P,i=l,...,N (A11)

Equation (A6) defines a nonlinear system of equations to be solved on successive
time lines, j, j + 1, etc., with the j = O time line determined from the initial
condition (A5). Fixed-point iteration was used to solve (A6) at each time line, i.e.,
the coefficient matrix AJ*! was linearised by setting the unknown terms on the
diagonal to the values computed at the previous time step. The resulting linear
system was then solved using the efficient Thomas (1949) algorithm. The updated
estimates contained in u were substituted into Ai*! and the procedure repeated until
convergence (defined as when each element in successive estimates of u differed by
less than 10-12). The calculations then proceeded to the next time step.

A consistency analysis shows this scheme has an error term of O(Ax*2,At*2). The
scheme is similar to those used by Barry et al. (1983, 1987), where further details of
its properties can be found.

Notations

A coefficient matrix in the finite-difference solution (Appendix)
b forcing term in finite-difference solution (Appendix)

B coefficient in capillary correction term, L

Cj i=0, 1, 2, arbitrary functions, L

D;  i=l, .., N, defined by (A11)

g  magnitude of gravitational acceleration, LT-2

h height of the free surface, L

h*  dimensionless free surface height, (A1)

arbitrary function of x*, (AS)

h; i=1, 2, .., functions appearing in the expansion of h, L

hy; i=1,2, .. functions appearing in the expansion of hy

spatial counter used in the finite-difference solution (Appendix)

hydraulic conductivity, LT-!

fluctuation length scale, L

maximum number of temporal steps in the finite-difference grid (Appendix)

gl_?xl—n
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temporal counter used in the finite-difference solution (Appendix)
effective porosity

maximum number of spatial steps in the finite-difference grid (Appendix)
fluid pressure offset such that p = 0 is atmospheric pressure, ML-1T-2
function of ®*, (32)

function of ®*, (39)

flux of fluid supplied to the saturated zone, LT-!

flux of fluid supplied to the saturated zone (dimensionless form)
function of ®*, (32)

function of @*, (39)

factor used in finite-difference solution (Appendix)

factor used in finite-difference solution (Appendix)

time, T

tK/B, dimensionless time variable

scaled time, L

function of h* (Appendix)

vector used in finite-difference solution (Appendix)

distance from the location of the forcing boundary condition, L

2n
xy / Eﬂ , dimensionless position variable

scaled position, L

distance above the impermeable base of the aquifer, L
the semi-tidal amplitude (maximum possible relative fluid fluctuation at x = ()
mean water depth at x = 0, L

spatial grid size used in the finite-difference solution
temporal grid size used in the finite-difference solution
perturbation parameter

volumetric moisture content

residual volumetric moisture content

fluid density, ML-3

z + y, piezometric head, L

1= 1, 2, .., functions appearing in the expansion of ¢, L
pressure head, p/pg, L

frequency, T°!

dimensionless frequency, (33)

transpose of -

time average of -



