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ABSTRACT 
 
This paper proposes and tests a method for bridging GPS 
outages during short and long periods with a vision-based 
inertial navigation. This method is similar to the 
Simultaneous Localisation And Mapping (SLAM), which 
is the problem of mapping the environment and at the 
same time using this map to determine the location of the 
mapping device. After 20 years of investigation, SLAM is 
still an open problem in the robotics community that 
searches a global, stable and efficient solution. This study 
falls in these trials, with a difference that it originates from 
the geomatics engineering perception of navigation and 
mapping. This paper solves the SLAM problem by 
integrating Photogrammetry and Inertial Measurement 
Unit (IMU) in a Kalman Filter. Briefly, from existing 
known features (ground control points, GCP) 
photogrammetric resection provides the position and 
orientation of the cameras that are integrated, after 
applying appropriate systems transformations, with the 
IMU data to produce a filtered position, which by its turn 
is used in the intersection to map more surrounding 
features, that are used as GCPs in the next epoch. Our 
methodology is presented, differences with other solution 
are pointed out, and numerical tests are discussed. 
 
Keywords. Navigation. Photogrammetry; Least-Squares 
Adjustment; Kalman Filter; SLAM. 

INTRODUCTION 
 
In terrestrial based mobile mapping systems, GPS outages 
are frequent and depending on the IMU quality, these 
outages can cause loss inaccuracy that is impossible to 
overcome if other positioning sensors are not available. 
The method proposed here can be considered as either a 
continuous positioning update or a bridge to GPS gaps. 
This method is similar to the Robotics Simultaneous 
Localisation And Mapping (SLAM).  In what follows, the 
analysis will be carried out considering that GPS is not 
available, during a period lasting several seconds to 
several minutes. 
 
Robotics Simultaneous Localisation And Mapping 
(SLAM) is the problem of mapping the environment 
surrounding the robot and at the same time using this map 
to determine the location of the robot (Csorba, 1997; 
Newman 1999). Navigation and mapping systems are the 
core elements of SLAM, without which an exploring robot 
cannot do its job. The applications of self-navigating – 
exploring – robots are abundant, but one of the most 
important is: going to and exploring places where no man 
is safe to do. A map of the surrounding environment of the 
robot and a navigation system are essential for the robot to 
perform manoeuvres and in turn to complete its mission. 
These robots do not reach the perfection by only having a 
good navigation and mapping system. The navigation and 
mapping system is only a part of an integrated system that 
combines control with artificial intelligence, dynamics, 
sensing, vision, learning, estimation methods, etc. It is 
even hard to tell which of these is more important since 
they all work as a group, benefiting from each others’ 
supremacy. 
 
Traditionally, terrestrial robotics SLAM is approached 
using LASER scanners to locate the robot relative to the 
structured environment and to map this environment at the 
same time. LASER scanners have shown to be a very 
good tool where the accuracy of localisation is within the 
centimetre level. However, outdoors robotics SLAM is not 
feasible with LASER alone due to the absence of 
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stereotypic features and environment’s roughness. 
Therefore, different tools have to be used. 
 
Recently, the use of visual methods, integrated with 
inertial sensors, has gained an interest. These visual 
methods rely on exploitation of one or more cameras (or 
video). Yet, no clear indication about the mapping 
methods or integration algorithms is explicitly illustrated; 
one can consult the Journal of Robotics Systems (2004). 
Jung (2003) has used vision motion estimation to perform 
SLAM. His method relies on linking the pixel’s motion 
rate on the images with the displacement of the robot. 
However, this filter has to run at very high rates and in 
case of vision loss, no other means to re-locate the robot is 
available. 
 
These particular solutions use a single Kalman Filter with 
a state vector containing the map and the robot 
coordinates. This introduces high non-linearities, large 
state vector as well as other complications to the filter, 
which needs to run at high rates (20 Hz) with simplified 
navigation models. A classical tool for mapping is 
Photogrammetry, where sequence of stereo-images are 
captured and self-oriented. As for the navigation systems, 
the coupling of Inertial Navigation System (INS) and 
Global Navigation Satellite Systems (e.g., the GPS) is 
indispensable. In addition, photogrammetry can also be 
used for localisation – positioning. 
 
In this paper, a mobile mapping system to solve SLAM is 
introduced – independent of the GPS/INS integration – by 
employing two CCD cameras and one IMU. Two filters 
are used in parallel: the Least-Squares Adjustment (LSA) 
for mapping and the Kalman Filter (KF) for navigation. 
Conceptually, the outputs of the LSA photogrammetric 
resection (position and orientation) are used as the KF 
external measurements. The filtered position and 
orientation are then employed in the LSA 
Photogrammetric intersection to map the surrounding that 
is used (as control features) for the resection in the next 
epoch. In this manner, the KF takes the form of a 
navigation filter only, with a state vector containing the 
corrections to the navigation parameters. This way, the 
mapping and localisation can be updated at low rates (1 to 
0.5 Hz) and more complete modelling of sensor errors is 
applied. 
 
While photogrammetry alone can solve SLAM, the 
presence of an IMU is significant for automated feature 
detection and orientation. Moreover, the IMU is 
indispensable in cases where images cannot be used for 
reasons of visibility and when certain manoeuvres do not 
guarantee knowledge of the environment; e.g. when the 
robot or vehicle captures images of an unknown 
environment. To use photogrammetry to solve SLAM, full 
automation is required, which is still not fully achieved. 

Many attempts are directed towards the automation of 
photogrammetry; this goal has been still falling short due 
to the need of high level of artificial intelligence. 
 
In the next section, the methodology to solve the SLAM 
problem by photogrammetry and IMU is introduced. The 
third section discusses briefly the photogrammetric 
mathematical model, the angular transformations and 
lever arm corrections that link the cameras’ outputs with 
those of the IMU. Kalman Filter is shortly presented in 
section four. A numerical investigation is described and 
analysed in section five. Finally, conclusions are drawn in 
the last section. 
 
A METHODOLOGY FOR COMBINING 
PHOTOGRAMMETRY AND IMU OUTPUTS 
 
The methodology followed in this research is different 
from the traditional SLAM solution pursued by the 
Robotics community. In the following, there will be two 
separate filters; the first is the Least-squares Adjustment 
(LSA) filter that will do the mapping and localisation by 
photogrammetry; the second is the Kalman Filter that 
performs the localisation by optimally integrating the 
localisation provided by the LSA with the IMU outputs. 
 
The employed Kalman Filter (KF) is very similar to that 
used in the INS/GPS navigation. But instead of using the 
GPS positioning and velocity updates, the LSA outputs 
from photogrammetric resection, the Exterior Orientation 
parameters (EOP), position and orientation, will be used 
as updates. In this way, the KF is a navigation-only filter 
that: i) operates at the frequency of the update (e.g., 1 or 
0.5 Hz), and ii) its state vector size is kept relatively small 
(e.g., 15 states) with homogeneous states that guarantee 
rapid convergence. 
 
This procedure requires certain points to consider: 

• Recursive LSA: the LSA solution of the epoch 1k −  
is used as observations for epoch , k

• Correlations between measurements and unknowns 
are carried from one epoch to the other. 

 
Before starting, we need to initialise the system by 
defining its position and orientation with respect to a well-
defined mathematical reference frame that has a physical 
meaning. This is important when the SLAM is solved on a 
global scale. This is called Georeferencing. The 
Georeferencing can be done in two ways: 

1. Initialisation with GPS/INS, which demands open 
skies for the GPS signal, or 

2. Initialisation with resection, which demands the 
existence of sufficient Ground Control Points (GCP) 
at the beginning of the survey. 

3. Standing on a known point, and stable IMU 
alignment. 

 



In the first case, open sky for the GPS is vital. The 
GPS/INS gives us the position and attitude of the IMU, 
which – after applying the lever arm and angles 
transformation – yield the EOP of the two cameras. As for 
the second case, at least three GCPs are required for the 
determination of the position and attitude of the two 
cameras by resection. Having the initialisation properly 
done, the vehicle moves and starts to map and localise 
itself as portrayed in chart of Figure 1 that shows the 
algorithm concept. 
 
 
 
 
 

Initialisation 

No Yes 

Known initial 
position 

Measure features’ photo-coordinates (x, y) 
of known X, Y, Z. Compute position and 
attitude of the two images by resection 

IMU output

More mapping? 

Apply lever arm and 
boresight corrections 

STOP

Output position and 
attitude 

Update @ 1 or 0.5 Hz 
Prediction @ 400 Hz 

Capture photos 

Measure features’ photo-
coordinates (x, y) and compute 

their X, Y, Z by intersection  

Move “s” seconds 
and capture photos 

Kalman Filter 

Perform intersection to 
map more features 

Apply lever arm and 
boresight corrections 

 

Figure 1: Flowchart of the Photogrammetric and IMU 
integration 
 
 
 
 

The data flow can be depicted as follows: 
 
Initialisation: 

1. Position and attitude of the two cameras considered 
as known 

2. Intersection is employed to map features 
 
 
After mapping enough features: 

1. Vehicle moves. 
2.  Resection computes the cameras’ EOP by LSA 

using the features mapped from the previous 
cameras’ location. (IMU predicted EOP can be used 
for feature extraction as well.) 

3. Lever-arm and angles transformation (boresight) are 
applied to the EOPs to determine the IMU’s position 
and attitude. 

4. IMU outputs and IMU position and orientation 
derived from resection are integrated in a KF to 
compute filtered position and attitude of the current 
system location. 

5. Lever-arm and angles transformation (and boresight) 
are applied to the filtered position and attitude to 
determine the EOP of the cameras. 

6. Intersection is used to map more objects by LSA 
from the current location. 

7. Vehicle moves and algorithm repeats. 
 
 
Stages 3 and 5 are of great importance in the process of 
navigation and mapping, for the following facts (Figure 
2):  

• The cameras and the IMU are separate in space 
• The outputs of photogrammetry and IMU belong to 

different reference systems; photogrammetry 
functions either in the camera space or object space 
and the IMU’s outputs are in the body frame. 
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Figure 2: Mounting of the cameras and IMU 
 
 
PHOTOGRAMMETRIC MATHEMATICAL 
MODEL, ANGLE TRANSFORMATION AND 
LEVER ARM 
 
Mathematical properties governing the relationship 
between the image and the objects are shown in Figure 3. 
The perspective centre, the object and its image are 

 



collinear, yielding a functional model called the co-
linearity equation: 
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where  are the photo-coordinates in the image frame, 

 are the 3-D Coordinates in the object frame, c  is 
the focal length of the camera,  are the 3-D 
Coordinates of the camera’s perspective centre in the 
object frame,  are the photo-coordinates of the 
projection of the perspective centre to the image plane, 
(theoretically, this projection point has to coincide with 
the principle point, which is the centre of the image frame, 
but in reality, it does not) and  are the elements of 
the rotation matrix between the image and object frames, 
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Figure 3: General Image Geometry 
 
Equations 1 describe the fundamental mathematical model 
for photogrammetric mapping, where it reveals the 
relationship between the image and the object coordinate 
systems. With this model, one can solve the basic 
problems of photogrammetric mapping, namely: resection 
and intersection: 

• Resection: In resection, the position and attitude 
(EOP) of an image are determined by having a set of 
at least three points with known coordinates in the 
object frame as well as in the image frame; these are 
the GCPs.  

• Intersection: In intersection, two images, with 
known EOPs, are used to determine the coordinates 
in the object frame of features found on the two 

images simultaneously, employing the principle of 
stereovision. 

 
In principle, photogrammetry alone can be used to solve 
SLAM by employing recursively resection and 
intersection. This was analysed by a previous publication, 
Bayoud et al (2004); however, there are important 
shortcoming of such approach as mentioned in the 
Introduction. 
 
Angles transformation and lever arm 
 
The angle transformation applied in Stage 3 (going from 
resection to KF), is used to transform the orientation 
output of the resection from the mapping/camera frame to 
the earth/body frame to be consistent with the inertial 
output and KF states 
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Where  is the rotation matrix between IMU and 
camera frames and depends on the definition of the axes 

(Figure 3),  is the boresight that contributes for the 

mounting imperfections,  is the rotation matrix 
between IMU body frame and Earth-Centred-Earth-Fixed 
(ECEF) frame, and  is the rotation matrix between 
ECEF and mapping frames. 
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The angle transformation applied in Stage 5 (going from 
KF to intersection) is used to transform the output of the 
inertial and KF to the camera’s reference frame to perform 
the mapping. This is well documented in the relevant 
literature because it is the classical way of image direct-
Georeferencing by GPS/INS (Skaloud and Schaer, 2003). 
The transformation is: 
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The lever arm is divided as well into two parts depending 
on whether the process goes from resection to KF or from 
KF to intersection. In the first case, resection gives the 
coordinates of the cameras in the mapping frame. To 
these, the leverarm is added to obtain the coordinates of 
the IMU in the mapping frame, and then to transformed to 
the ECEF frame. Having the coordinates of the IMU, 
computed from resection, in the ECEF frame, they update 
the KF to determine the filtered position of the IMU. This 
process can be shown in four steps: 
 
 
 

 



Step one: 
 

c
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where  is the leverarm in the camera frame,  is the 

leverarm in the mapping frame, 

c
jl m
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m

jcR  is the rotation matrix 
between the camera and mapping frame for camera j (Left 
or Right). 
 
Step two: 
 

m
jl+= m

cam/j
m

IMU/j xX     (4) 
 
Where  is camera j coordinates in the mapping 

frame (from resection),  is IMU coordinates in 
the mapping frame. 

m
cam/jx

m
IMU/jX

 
Step three: 
 

m
IMU/j

e
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Where  are the coordinates of the IMU in the 
ECEF frame computed from camera  j. 

e
IMU/jX

 
Step four: 
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Where  are the Kalman filtered (KF-ed) 

coordinates of the IMU in the ECEF frame,  are the 
coordinates of the IMU in the ECEF frame computed from 
the mechanisation equations, 

e
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is the Kalman filter output with  as prediction, and 
 and  as updates. 
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The second process is the classical procedure in 
Georeferencing and is the reverse of the first: The KF 
gives the filtered position of the IMU in the ECEF frame. 
To these the leverarm is added to determine the camera in 
the ECEF frame. The result will be transformed to the 
mapping from to perform the intersection. This process 
can also be explained in four steps: 
 
Step one: 
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Where  is the leverarm in the body frame. b
jl

 
Step two: 
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Where  is the leverarm in the ECEF frame. e
jl

 
Step three: 
 

e
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IMU
e

CAM/j XX     (9) 
 
Where  is the IMU position in the ECEF frame 

determined by KF,  is camera j position in the 
ECEF frame. 
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Step four: 
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Where  is the Kalman filtered position of camera 
j in the mapping frame. 

m
CAM/jX

 
m

CAM/LX  and  are used in intersection to map 
more features. 

m
CAM/RX

 
 
Leverarm and Boresight calibration 

The concept of the boresight  determination is well 
documented in the relevant literature (Bäumker et al., 
2001; Skaloud and Schaer, 2003). In this work, an indirect 
procedure was followed to determine the two boresight 
matrices and two leverarm vectors of the left (L) and right 
(R) cameras. In the frame of the work carried out at the 
Geodetic Engineering Laboratory, a mapping system with 
a high-definition digital camera (will be named as “H”) is 
well calibrated with respect to the IMU with known 
boresight and leverarm; to this system, the two CCDs 
were added (Figure 4). The boresight and leverarm of the 
two CCDs were first calibrated with respect to the high-
definition digital camera by determining the EOP of the 
three cameras in three different locations. Then, once 
average boresight and leverarm were computed, the link 
between the two CCDs and the IMU were directly made 
through the already known boresight and leverarm 
between the digital camera and the IMU. The estimated 
accuracy of the EOP, boresight and lever arm between the 
cameras are shown in Tables 1 and 2. 

*b
bR

 

 



Table 1:  Estimated Angle and boresight accuracy 
(arcmin) (L=Left CCD, R=Right CCD, H=High 

Definition Camera) 

  Pitch Azimuth Roll 
L 1.7 1.4 1.3 
R 1.8 1.5 1.1 EOP 
H 0.5 0.4 0.3 

     

L to H 3.50 6.26 2.84 Boresight R to H 0.91 2.80 3.27 
 

Table 2: Estimated cameras position and leverarm 
accuracy (cm) 

  X Y Z 
L 0.3 0.2 0.3 
R 0.3 0.2 0.3 EOP 
H 0.1 0.1 0.1 

     

L to H   1.0 1.6 1.0 leverarm R to H  0.6 1.0 0.3 
 
 

 
Figure 4: The system 

 
DATA INTEGRATION VIA KALMAN FILTER 
 
The navigation Kalman Filter can link either the IMU 
measurements (orientation rates and accelerations) or the 
integrated values (coordinates, velocity, orientation) with 
external measurements. In open spaces, GPS 
measurements usually play the role of external 
measurements. In areas with limited GPS signal, other 
sensors – like odometer, compass, barometer, etc. – are 
used. Here, we take for the KF external measurements the 
output of the photogrammetric resection; these are the 
Coordinates Update (CUPT) and Attitude Update 
(AUPT). In addition, Zero-Velocity Updates (ZUPT) can 
also be used as measurements. This kind of updates allows 
adopting loosely coupled integration, which is easier to 
implement. 
 
Since there are two cameras, two datasets of external 
measurements are available; one is the EOP of the left 
camera and the other is the EOP of the right camera. 
There are two possibilities for this integration. The first 

possibility is to take the average of the two EOPs. The 
second considers the two EOP as two independent 
correlated updates. The difference between the two 
possibilities is reflected in the size and shape of the 
measurements’ vector, co-variance matrix, and design 
matrix. In this paper, we are applying the first possibility, 
while future publications will consider the second. For 
details concerning the mechanisation equations of inertial 
measurements and error modelling in Kalman Filter, the 
reader can consult Schwarz and Wei (2000), Titterton and 
Weston (1997). 
 
NUMERICAL TESTS 
 
Two tests were performed indoors in a controlled 
environment to initially evaluate the methodology and 
validate the software; the results were encouraging to 
carry out extensive outdoor testing. Two CCD cameras 
(SONY XC-55 with a 6 mm lens) and an LN-200 IMU 
were used as instruments. Along, there were a 
synchronisation pulse, a Matrox Meteor-II/Multi-Channel 
frame grabber and a screen, IMU data acquisition box 
developed at the EPFL-TOPO (Skaloud and Viret, 2004), 
a laptop, and the power supply. The image grabbing was 
carried out at every second and was properly synchronised 
with the IMU via a synchronisation pulse. After a couple 
of minutes of static inertial initialisation, the vehicle 
moved and started taking images. Out of a set of few tens 
of images, a set of 14 images in a 7 stereo-pairs with 2 to 
3 to seconds apart, were chosen to minimise the 
photogrammetric processing effort. This means that the 
Kalman Filter update will occur every two to three 
seconds. Figure 5 portrays a sample of the images. 
Beforehand, there was a set of GCPs for the initialisation; 
after that, the SLAM took over to map more features and 
locate the cameras. 
 
Two initialisation methods were tested: 

− Initialisation by resection 
− Initialisation by gyro-compassing 

 
Although photogrammetric resection should provide very 
accurate roll and pitch, it was found in this test that these 
values were not consistent with the roll and pitch derived 
by gyro-compassing. (It was found later on that there is a 
problem in the boresight estimation.) 
 
The inaccurate initialisation from photogrammetric 
resection caused the IMU-only solution to diverge rapidly 
if no updates are provided, which is clearly seen in the 
innovation information for the second epoch (Figure 6). 
The update at position 2 was made by GCPs as well due to 
the discontinuity in visibility between images 1 and 2. 
After that update, the Kalman Filter succeeded to correct 
the initial misalignments and position uncertainties and 

 



the navigation solution started to converge within the 
limits of the accuracy of the resection. 
 
 

 

 

 
Figure 5: Image examples of the first set 
 
 
When gyro compassing is performed to compute the 
initial attitude, the convergence was faster and the 
navigation solution was better as can be seen in Figure 7. 
The predicted position at the second epoch is very close to 
the update and the rest of the points are more consistent 
with their updates than those of Figure 6. It is logical to 
see that at epochs 6 and 7 the innovation becomes worse; 
this is because the resection at this time completely 
depends on the newly mapped features. 

It is worthwhile to note the stability in the z-channel – 
with almost the same results regardless of the initialisation 
method used – where after the third epoch the innovation 
does not exceed few centimetres (Figure 8). It is rarely 
seen that the innovation of z-channel is better than that of 
the horizontal channels. However, in this particular case 
the initial misalignment is the dominant source of errors 
causing the X and Y components to drift; this analysis 
comes from the deduction that the Z-component of the 
IMU (its weak component) is very consistent with the Z-
component of resection (the strong photo component). 
 
This test highlights the importance of good cameras’ set-
up. When working outdoors, the operator cannot control 
the features’ quality, where many of them are of unclear 
visibility and/or far away from the cameras. The images 
can be seen in Figure 5; although they show to be 
unambiguous, once fine targets are sought, problems start 
to appear. Looking for example at the third image of 
Figure 10, by zooming in (see Figure 6), one can see the 
difficulty in finding a fine target to use. This reduces the 
photo-coordinates quality and thus the whole system is 
affected. First, the initialisation becomes of insufficient 
accuracy, and the positioning and orientation 
determination develop into inaccurate input to perform 
reliable update for the Kalman Filter. 
 
According to the photogrammetric theory and simulations 
done before, the depth (X and Y components) is 
geometrically weak because of the small stereo base of 1 
meter. Twenty-one points were used as checkpoints 
throughout the survey, whose validation and accuracies 
are shown in Figure 9 with the largest error belonging to 
those points that are the more than 15 meters from the 
stereo-base. Here also one can see the accurate mapping 
of the Z-component. 
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Figure 6: Vehicle planimetric trajectory showing the 
differences between the prediction and update when 
initialised with photogrammetry (innovation) 
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Figure 7: Vehicle planimetric trajectory showing the 
differences between the prediction and update when 
initialised with gyro-compassing (innovation) 
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Figure 8: Vehicle vertical trajectory showing the differences 
between the prediction and update (innovation) 
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Figure 9: Validation and accuracies of the 21 checkpoints 
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Figure 10: An example of the poor quality of the images once 
zoomed to find targets to map 
 
 
CONCLUSIONS AND FUTURE WORK 
 
In this paper a vision-aided inertial navigation system is 
presented. An integration procedure between an IMU and 
photogrammetry/cameras was developed and tested. The 
outputs of a pair of cameras are used first to localise the 
vehicle; this position is then used as an external 
measurements in a Kalman Filter whose prediction are the 
outputs of an IMU. The Kalman filtered position is used, 
then, with the outputs of the two cameras to perform the 
feature mapping in a least-squares adjustment filter. The 
procedure is called SLAM; a term borrowed from the 
robotics community and is investigated here using a 
Geomatics Engineering approach. 
 
Conceptually, the data integration between both sensors is 
done in a loosely-coupled Kalman Filter. The algorithmic 
part of the filter is far from being simple and routine 
implementation needs an understanding of system control, 
data handling, and priority managing. Post-processing was 
done in the preliminary step by software that was written 
for the purpose of his work. 
 
The conceptual advantages of using IMU/photo compared 
to only photos SLAM are considerable: 

− Image sequences with limited or no overlaps do not 
halt the mapping 

− IMU predicted EOP allows faster and more reliable 
automated feature extractions 

− Increased robustness and accuracy 
 
The numerical test and results were promising and show 
the practical feasibility of our procedure. What is left to be 
done is a detailed study of the stochastic modelling and 
error propagation needed to produce optimal results. The 
effect of the boresight uncertainty is clearly seen and 
should be re-estimated. Moreover, an outdoor survey with 
GPS will be carried out to further test the methodology. 
 
An important remark from this work is the need of 
synergy between different specialisation for the 

 



advancement of science and technology. In this work two 
distinct sciences were combined, from which an apparent 
benefit for both become clear. 
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