
Automatic Serialization of Dynamic Structures in Ada
Technical Report IC/2003/63

Rodrigo Garcı́a Garcı́a1, Alfred Strohmeier1, and Lukas Keller1

Software Engineering Laboratory,
Swiss Federal Institute of Technology Lausanne (EPFL),

CH-1015 Lausanne, Switzerland�
rodrigo.garcia, alfred.strohmeier, lukas.keller � @epfl.ch

Abstract. Serialization is the process that transforms the state of a software ob-
ject into a sequence of bytes. Serialization is useful, for example, to store the
value of an object in persistent memory or to send it through a network channel.
Ada provides object serialization by means of the Streams package. However,
default Ada serialization does not address the problem of serializing dynamic
structures automatically. The streaming of an access variable in Ada flattens the
value of the access variable itself and not the value of the object referenced by it.
It is the responsibility of the programmer to write custom serialization routines
for the lists, trees, stacks or any other dynamic structure requiring serialization. In
this paper, we present an algorithm for the automatic generation of serialization
subprograms for dynamic structures in Ada. We will use ASIS for analyzing the
structure of the types to be serialized.

1 Introduction

Serialization, also known flattening or marshalling, is the process that takes the data
contained in a software object and outputs it as a sequence of contiguous elements,
usually bytes. A sequence of bytes is a convenient format for storing the state of an
object in a file or for sending it through a serial communications channel, among other
possible uses. The data in its serialized form can later be used to reconstruct an object
with the same state than that which was stored or transmitted.

1.1 Serialization in Ada

Ada has an elegant and adaptable object-oriented solution to the serialization prob-
lem: the package Streams [1]. The abstract type Root Stream Type is declared in this
package, along with the abstract procedures Read and Write. These procedures must
be implemented for every concrete (non abstract) descendant of Root Stream Type.
The code in these procedures is adapted to read from and write to a particular kind of
media, represented by the concrete descendant of Root Stream Type.

Ada also defines stream-oriented attributes for all non limited types: Read, Write,
Input and Output. These attributes convert values to their sequential representation
(a stream of elements) and reconstruct values from a stream. An access to the stream
is passed as a parameter to the stream-oriented attribute subprogram. In this way, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Rodrigo Garcı́a Garcı́a et al.

subprogram will be able to use the Write and Read procedures specific to that concrete
stream. The stream-oriented attributes are defined for class-wide types as well. In this
latter case, the call to an attribute subprogram will dispatch to the corresponding at-
tribute subprogram of the appropriate specific type (the way to determine this specific
type depends on the attribute used).

The stream-oriented attributes can be specified for any type by using attribute def-
inition clauses and thus override the default serialization subprograms. This allows the
programmer to control the way objects of a certain type are serialized.

In addition to package Streams, Ada provides one concrete implementation of it
for reading from and writing to files: the package Streams.Stream IO. Thanks to this
package, the programmer can get access to a stream representing the file and then write
values to the file or read values from the file using the stream-oriented attributes, as with
any other kind of stream.

1.2 Default Serialization of Access Types in Ada

We have just seen that Ada proposes a clean and extensible mechanism for streaming.
However, the default serialization of access types in Ada is rather simplistic and not very
useful. Access types are considered non limited elementary types in Ada. Therefore, the
serialization of their value is implementation defined (RM 13.13.2 (36)). The fact that
their serialization is implementation dependent is not relevant for us at this point. The
important issue about serialization of access types is that it is the value of the access
variable which is serialized and not the value of the object pointed to by the access
variable.

In order to serialize a user defined dynamic structure, the programmer will have to
specify the stream-oriented attributes for it. Default attribute implementation would be
useless, since references to other objects would not be followed. It is the programmer
who must control the serialization process of the whole structure, putting in the stream
all the necessary information for being able to reconstruct the structure later.

In our opinion, this puts a lot of burden on the programmer. Many modern languages
already provide the mechanisms to make the programmer’s life easier by automatically
serializing all objects referenced by the object to be streamed (see [2] and [3]). With
a bit of run-time support, we think that this overhead can be removed from the work
of the Ada programmer as well. In Sect. 2, we present an algorithm based on the ideas
found in [2] that performs the automatic serialization of dynamic structures.

2 The Algorithm

One of the issues that have to be considered when serializing dynamic structures is that
they can have circularities. If we just ignore the circularities, the serialization process
falls into infinite loops. In order to avoid loops, we keep a list of the identifiers of all
the referenced objects1 already serialized. We identify each referenced object using the
value of the access variable that references it. This value should be unique for each

1 By referenced object, we mean one that is pointed to by an access variable.



Technical Report IC/2003/63 3

referenced object, because of the properties of the equality operator for access types.
Thus, if two access variables are equal, they point to the same object; if not, they point
to different objects. Obviously, this condition holds only if the access variables are of
the same access type, otherwise they are not comparable.

For the sake of simplicity, but without loss of generality, we will assume that we
have only one access type defined while presenting our serialization algorithm. We
will see later how to generalize the result. The algorithm for serializing an object is as
follows (see Fig. 1 for an example):

1. Serialize the elements that compose the object using default Ada serialization, ex-
cept for the elements which are access variables.

2. When an access variable is reached, first check whether its value is already in the
list of identifiers.
(a) If the value is null or it is already in the list, serialize just the value of the

access variable.
(b) If the value is not in the list, serialize it and then also serialize the object to

which the access variable is pointing. Put the access value in the list of identi-
fiers.

3. Repeat from the beginning until there are no more objects to serialize.

B A

1 2

A

A A

A

A

A

A

A

1 2

1

1

B

B 2

B

B

Serialization list

Stream

Serialization list

Stream

Serialization list

Stream

Serialization list

Stream

A

A

A

1

1 2

AB

A

2

B

B

1 2

A

Fig. 1. Example of serialization.

Once all the objects have been serialized into a stream, we have to think about how
to retrieve them. Much like the list of identifiers used for serialization, the deserializa-
tion process needs to keep another list with the objects that have been already deseri-
alized. When a referenced object is deserialized, a new image of it has to be created
in memory. This new copy of the object will be stored at a memory address that may
differ from the one that it had when it was serialized. Therefore, the value of an access



4 Rodrigo Garcı́a Garcı́a et al.

variable pointing to this new image of the object may also differ from the original one.
For this reason, each element of the deserialization list is a pair of access values. One
is the value of the access variable that referenced the object when it was serialized (old
value) and the other one is the value of the access variable that holds the new copy of
the object (new value). The algorithm for deserialization works as follows (see Fig. 2
for an example):

1. Deserialize the elements that compose the object using default Ada deserialization,
except for the elements which are access variables.

2. When an access variable is reached, deserialize its value and check if it corresponds
to one of the old values stored in the list.
(a) if the access value is null, assign null to the new access variable.
(b) If the access value is not in the list, save it in the list as an old value. Create

a copy of the new object with an allocator and deserialize in it the elements
of the object. Save this newly created access value in the list as the new value
corresponding to the old one.

(c) If the access value is already in the list, the object has already been deserialized.
Assign the corresponding new value to the new access variable.

3. Repeat from the beginning until there are no more objects to deserialize.

A

A

A 1 B A

2

2

A A

A

A/A’

A

A/A’

1 2

1

1

A/A’ B/B’

B 2

B/B’

B

B

Stream

Stream

Stream

Stream

1

1

2

1 2

A’

A’

A’

Deserialization list

Deserialization list

Deserialization list

Deserialization list

B’

A’B’

Fig. 2. Example of deserialization.

3 The Implementation

3.1 The Serialization Lists

As we have seen, the algorithm above is only applicable if the dynamic structure to
serialize uses just one kind of access type. In the general case, the access variables used



Technical Report IC/2003/63 5

by a dynamic structure can be of different access types. We studied different options
to overcome this problem. The first three approaches are based on storing the value of
the access variables in a common representation format, whereas the fourth approach is
based on the use of generics:

1. Convert all access variables to System.Address using unchecked conversions and
implement the lists with System.Address as the type of their elements.

2. Convert all access variables to System.Address using the package System.Add-
ress To Access Conversions instead of using unchecked conversions. Then pro-
ceed as in the first case.

3. Create a kind of stream that keeps the value of an object in memory. Transform all
access variables to their stream representation using this special kind of stream. If
two access variables are equal, they will have the same stream representation. We
can then build our lists with these memory streams as elements.

4. Use a different list for each different access type. Lists are generic and they are
instantiated with each particular access type, that becomes the type of the elements
in the instantiated list.

The first three approaches are necessary if we want to use only one list for all access
types. In Ada, there is no global access type that can reference any object2. This is
consistent with the strong typing philosophy of Ada. We need thus a common internal
representation for the values of different access types. This conversion to a common
representation comes with a price. The first three approaches make some assumptions
that are not necessarily true for all implementations of Ada.

The first approach reduces every access type to a System.Address by means of
unchecked conversions. We are assuming here that all access types can be represented
by a System.Address, but this is not true in general, since the representation of an
access type in Ada is implementation defined. For instance, we tested this implementa-
tion in GNAT and it worked for most access types. However, access types that reference
occurrences of objects of unconstrained types have a different representation in mem-
ory: they occupy double the size of a System.Address. GNAT uses the first address to
reference the object and the second to point to the bounds of the object. In this case,
a solution based on unchecked conversions will still work for serialization, since the
address of the object is enough to determine it and it is saved in the serialization list.
However, for deserializing them, we are losing the information about bounds in the
list of the new addresses. This example is enough to realize that this approach is not a
general solution.

We could use, alternatively, the package System.Address To Access Conversi-
ons. This option suffers from the same problem as the previous one: it relies on the
compatibility of addresses and access types. The standard recognizes this problem say-
ing that an implementation may place restrictions on instantiations of this package (see
RM 13.7.2 (6)). Moreover, this approach introduces other inconveniences. Since the
type Object Pointer of the package is a general access type, only explicit conversion
to general access types is allowed. When working with the serialization lists, several
conversions between the type Object Pointer and the access types defined by the

2 In C, for instance, a pointer of the type void* can point to any object.



6 Rodrigo Garcı́a Garcı́a et al.

user, which can be pool-specific, are required. We would force then the user to always
work with general access types which is a big disadvantage.

The third approach is independent of the size in memory of an access variable.
The value of an access variable is transformed into a special kind of stream which
is stored in memory. Streams built up in this way can be compared and used for our
algorithm. The problem with this approach (which also affects the first two approaches)
is that it assumes that the stream representation of two different access values will also
be different. This is not necessarily true, since an implementation could use the same
underlying representation for two access variables of different access types. This is
allowed by the standard, since variables of different access types cannot be compared.
In any case, we have not detected such behaviour when using the GNAT compiler.

The fourth approach seems to be the cleanest solution. It uses different serialization
lists for each different access type. The idea is that serialization lists are implemented
as generic lists. We will have one reading-writing pair for each access type used by the
dynamic structure to serialize. This approach does not rely on any type conversion or
internal representation of access types like the other three. Besides, having different lists
for different access types accelerates the search of elements on them. In order to check
if an access value of a certain type is in a list, we will look only in the list instantiated
by that particular access type. In the previous approaches, all values were stored in the
same list. The disadvantages of this solution are the large number of files generated and
the added complexity in the creation and deletion of the lists (see Sect. 3.8).

3.2 Selecting the Tool

For implementing the serialization algorithm presented above, we need to know the
structure of the data type to serialize: which are its components and which of them are
access variables. For being able to know the internal representation of a data type, we
need a tool that can recognize it. We explored three different options:

– Build a Ada parser on our own.
– Use an Ada compiler.
– Use the Ada Semantic Interface Specification (ASIS).

Clearly, building a custom Ada parser would be a rather inconvenient solution. It
would demand a great amount of work just for reinventing the wheel. Since Ada parsers
are already found in compilers and ASIS allows the analysis of a compilation environ-
ment, this option was soon abandoned for impractical.

3.3 GNAT, a Free Ada Compiler

The next option that we studied was to modify GNAT in order to perform serialization
in the way described by our algorithm. GNAT is, up to our knowledge, the only free
implementation of a complete Ada compiler. Its distribution license (a slightly modified
GPL) allows the use, study, modification and redistribution of its source code. These
properties make it a specially valuable tool for academic projects such as this one. In the
case of modifying the GNAT compiler, we still have to decide between two possibilities:



Technical Report IC/2003/63 7

1. Modify the part of the expander dealing with stream attributes so they would use
the new access type serialization.

2. Add new stream attributes that would serialize access types in this special way and
keep the original ones unmodified.

The modification of the compiler requires an understanding of its internals which
was outside the scope of this project. Besides, a solution based on the modification
of one compiler would be incompatible with any other Ada compiler. Modifying the
compiler was, therefore, not further studied although it could be the subject of future
projects. We finally used ASIS to validate our serialization solution. Nevertheless, the
inclusion of the solution into the Ada standard and, consequently, its integration into
Ada compilers is regarded as our final goal. Code generation is an important part of the
project and this is a natural task of a compiler expander. A compiler implementation of
the solution would also provide a tighter integration into the compilation chain than the
implementation with ASIS as we will see below.

We have to notice as well that the modification of the compiler would also imply
a modification in the run-time library, which would be in charge of the creation and
management of the serialization lists.

3.4 ASIS

ASIS is a procedural interface for communicating with an Ada compilation environ-
ment. ASIS provides a set of syntactic and semantic queries that allow an Ada tool to
extract information about the structure of an Ada program from its environment.

In GNAT, ASIS works with the abstract syntax tree of the compiled program in the
form of a file with extension *.adt. We note that, in order to use ASIS, the program
must be compiled first. We have to figure out how to compile the program without the
serialization routines, then generate the routines and, finally, produce the executable
program with serialization included. Note that, if we modify the compiler instead of
using ASIS, this steps are avoided. Thanks to Ada’s abilities for separate compilation,
these steps can be carried out. The process is described graphically in Fig. 3.

ASIS

Serialization Tool

1

3

2

Ada
Compilation
Environment

4

Ada
Executable
Program5

Ada Program
Source Code

Serialization
Routines

Generate

Compile

Compile

Query

Link

Fig. 3. Compilation chain.



8 Rodrigo Garcı́a Garcı́a et al.

3.5 Child Packages vs Subunits

Once it was decided that we were going to use ASIS as the primary tool for analyzing
the program code, we had to think about how we were going to provide the generated
serialization subprograms.

The subprograms have to know the internals and the structure of the data type in or-
der to serialize it. For this implementation, we limited ourselves to data types declared
in package specifications. The reasons for this choice have to do with the visibility rules
of Ada. Usually, dynamic structures are declared as private types, so the complete type
definition is located in the private part of the package. A private part of a package spec-
ifications is only visible from the body of the package or from its child units. Therefore,
the serialization subprograms should be placed in these regions, where the internals of
the data type are visible.

In order to apply the separate compilation concepts required by our ASIS-based im-
plementation (see Sect. 3.4), we cannot insert directly the serialization subprograms in
the body of the package that defines the data structure. Besides, we wanted to generate
the serialization subprograms in separate files from those of the user. We wanted our
solution to be as litle intrusive as possible. The first solution that we thought of was
to use child units for implementing the serialization routines. The second approach is
based on the use of subunits3. Subunits can be written in separate files and be compiled
separately, but they have the same effect as inserting code in the body of a package.
Both approaches have their advantages and their drawbacks.

3.6 Using Child Packages

The first strategy that we followed was to generate the serialization subprograms in
child packages. As we said before, this option was interesting because even the private
declarations of a package are visible from its children. Within this approach, one child
package is generated for the type of interest. Then, one additional child package is
generated for each composit type or access type found in the definition of the type
of interest. These child packages implement the operations Read, Write, Input and
Output of their corresponding type.

However, the serialization subprograms generated in this way cannot be primitive
operations of the types to serialize. The subprograms are declared outside the package
specification where the type of interest is declared. At this point, the type is already
frozen and no primitive operations can be added. The serialization subprograms gener-
ated in child packages cannot thus be used to override the default serialization attributes.
The user has to call the subprograms in the child package as any other ordinary opera-
tion.

The use of child packages has other implications as well. Since the serialization
subprograms are not primitive operations of their types, all the object-oriented features
(namely polymorphism) are lost. There is no equivalent to class-wide streaming at-
tributes with this approach.

Data types declared in generic packages are also affected by this approach. The tool
is unable to analyze the structure of formal types, since their actual definition is not

3 Idea first proposed by Jörg Kienzle (joerg.kienzle@mcgill.ca).



Technical Report IC/2003/63 9

available until the generic is instantiated. The only thing we can do in this case is to
apply the default serialization attributes to the formal type. This happens even in the
case when the actual type which instantiates the generic has custom serialization sub-
programs generated. We cannot call the procedures of an actual type from the generic,
since only the formal type is known at this point.

These are the steps that a user should follow to create an Ada executable by using
this approach:

1. Write the package where the data structure is defined.
2. Write, manually or automatically, a child package specification with the subpro-

gram specifications for the serialization operations for the data structure. ASIS is
not needed for this part.

3. Write the rest of the program source code. When serialization of the data structure
is required, use the subprograms specified in the child package.

4. Compile everything to produce an environment for ASIS.
5. Use our ASIS tool to analyze the data structure generate the body of the child

package. As explained, additional packages will be created if the data structure
contains access types or composite types.

6. Compile the code generated and link it to the rest of the compilation environment
to produce the executable program.

The use of child packages has several disadvantages derived from the fact that they
cannot use the standard streaming mechanism (the serialization attributes) because sub-
programs declared in a child package are not primitive operations of their controlling
type. In addition, we have to provide serialization subprograms not only for access
types, but for every composite type (record or array). A composite type could hold el-
ements whose type is an access type. Since we are not using the default serialization
mechanism, a call to a serialization attribute of the composite type would imply the de-
fault serialization of the access types it contains and that is not what we want. Therefore,
we have to generate the serialization subprograms for composite types too and serialize
them element by element.

3.7 Using Subunits

A solution based on subunits eliminates the problems related to child units. We decided
thus to abandon the strategy of generating child packages in favor of the production of
subunits. By using subunits, we can write the serialization subprograms of a data type
in separate files, but with the same effect as if we wrote them in the body of the pack-
age where the data type is declared. Thus, serialization subprograms can be primitive
operations of the data type if their specification is placed in the same package specifi-
cation. For the same reason, serialization attributes can be overridden by the generated
serialization subprograms.

The only inconvenience of using subunits is that this solution requires more inter-
vention from the programmer. Indeed, it is the programmer who will have to insert the
headers of the serialization subprograms in the package specification and use attribute
definition clauses to override the default serialization attributes. Although this can be



10 Rodrigo Garcı́a Garcı́a et al.

done automatically, it implies the modification of the source code of program so we
preferred to leave the responsability to the user (better not to mix hand made code with
automatic generated code). In any case, that is a small nuisance compared to the advan-
tages over the child package approach.

With subunits, only the serialization subprograms for access types have to be gen-
erated. Composite types can still use default serialization. For instance, if a record con-
tains a component whose type is an access type, the default serialization mechanism of
the record will call the correct serialization subprogram for the access component; that
is, the one generated by our tool. This was not the case in the child package approach.

The problem that we had with generics in the previous solution also disappears.
Usual serialization attributes can now be applied to formal types. If the actual type used
for instantiating the generic has its serialization attributes overridden, the appropriate
serialization subprograms will be called. We also keep the object-oriented properties of
class-wide serialization attributes.

The steps that the user has to take in this case are the following:

1. Write the package where the data structure is defined.
2. Add to the package the specifications of the serialization subprograms for the access

types used in the data structure and override the default serialization attributes by
using attribute definition clauses.

3. Write the rest of the program. When serialization is needed, use serialization at-
tributes as usual.

4. Compile everything to create an environment for ASIS.
5. Use our ASIS tool to generate the code for the subunits. One subunit will be created

for each access type.
6. Compile the code generated and link it to the object files from the rest of the pro-

gram to produce the executable.

3.8 Serialization Lists Management

As we have seen, the serialization lists keep track of the objects that have already been
serialized for avoiding infinite loops during the serialization process. Every time serial-
ization or deserialization of a dynamic structure has been completed, we have to decide
what to do with the lists.

In Java, these lists are associated with a stream object. Objects are serialized by
calling the methods of this stream object. Whilst the stream object is not closed, the
content of the lists is mantained. As a consequence, if one object is serialized several
times without closing the stream, its state will only be stored in the stream the first time.
All the modifications made to the state of the object after the first serialization will not
be reflected in the stream. To solve this problem, the stream object has to be closed and
then reopened, so the lists will be empty and the whole state of the object to serialize
will be saved [2].

For our implementation, we decided to give the user the possibility to decide be-
tween automatic or manual management of the serialization lists4.

4 The solutions implemented up to now are not thread safe, since it relies on a global package
which assumes that only one serialization is taking place at any given time.



Technical Report IC/2003/63 11

1. Automatic: The lists are erased each time serialization of a dynamic structure is
completed. Since we only modify the attributes of access types, the variable that
represents the dynamic structure should be an access variable. Otherwise, our algo-
rithm does not work properly.

2. Manual: The program will call the procedure Start Writing of the Serializa-
tion Control package each time it needs to serialize one or several objects. Once
the serialization is finished, the program will call procedure End Writing in the
same package. Procedures Start Reading and End Reading are also provided in
the package for their use during deserialization. If the objects share references,
manual serialization has some advantages over automatic serialization.

3.9 General Access Types

Along this document, we assumed that all access types used in our dynamic structures
were pool-specific access types. General access types can be serialized using our mech-
anism as well but, in the case of a general access pointing to an aliased object, the state
after deserialization is not exactly the same as before serialization. The reconstruction
of such an object performed by deserialization requires its new creation in a storage
pool, even if it did not belong previously to a pool.

It is also possible to have duplicates of an object, since it can be aliased and contain
an access to itself. If we serialize the object following our algorithm, we will write its
elements one by one until we reach an access to itself. The value of this access type will
not be in the serialization list, so the algorithm will erroneously assume that the object
was not yet serialized and it will serialize it again. During deserialization, two copies of
the object will be created in memory.

This problem can also affect pool-specific objects. Let us suppose that, in the exam-
ple shown in Fig. 1, we start serializing the object instead of the access to the object.
The result would be a duplicate of the first object in the stream.

4 Conclusion

During this project we worked a lot with Ada streams. As a consequence of this work,
we missed one declaration of a general access to stream type in the package Ada.Stre-
ams as explained below.

Streaming attributes have an access to the class wide type Ada.Streams.Root St-
ream Type’Class as their controlling parameter. However, there is no access to this
type defined in the package Ada.Streams. It seems that the standard delegates this re-
sponsability to concrete implementations of the streams package. For instance, Ada.St-
reams.Stream IO (the only standardised concrete implementation of streams) does de-
clare the type Stream Access. In our opinion, this declaration should be placed in the
parent package Ada.Streams, since it is an access to the whole class of streams and
it does not make sense that each concrete implementation of streams should define its
own. We could not find an explanation to this design decision in the annotated version
of the Ada reference manual [4].



12 Rodrigo Garcı́a Garcı́a et al.

4.1 Future Work

We have presented the implementation of a mechanism for the automatic serialization
of dynamic structures in Ada based on the use of ASIS. The ultimate goal of this project
would be, however, to produce a modification to the Ada standard in order to include
this serialization mechanism in the language. We would propose to add two new seri-
alization attributes named Dynamic Input and Dynamic Output for serializing objects
as described by this document. If this idea is well received inside the Ada community, a
formal AI will be stated and proposed. It is also foreseen to provide a reference imple-
mentation of the new attributes by modifying GNAT. The GNAT implementation would
also address some improvements of list management.

We will have to study as well the implications of this new serialization method for
the Distributed System Annex (DSA). The DSA uses Ada streams for serializing the pa-
rameters of remote procedure calls. It would be interesting to use our new serialization
mechanism for exchanging complete dynamic structures among active partitions.

This project also opens the door to the exploration of new ways of object serializa-
tion in Ada. Although Ada allows to create different kinds of streams for different kinds
of media, the representation of variables in the stream is always the same, although it
can be changed for user defined types by overriding stream attributes. It would be inter-
esting to have the possibility of using standardised attributes for generating streams in a
common representation format such as XML, even for predefined data types. XML seri-
alization would be a great supporting mechanism for introducing Ada into the emerging
world of Web services.

References

1. S. T. Taft, R. A. Duff, R. L. Brukardt, and E. Ploedereder, Eds., Consolidated Ada Reference
Manual: Language and Standard Libraries. International Standard ISO/IEC 8652:1995(E)
with Technical Corrigendum 1, ser. Lecture Notes in Computer Science. Springer-Verlag,
2001, vol. 2219, ISBN 3-540-43038-5.

2. (2001) Java object serialization specification. Sun Microsystems. Santa Clara, CA. [Online].
Available: ftp://ftp.java.sun.com/docs/j2se1.4/serial-spec.pdf

3. (2001) Serializing objects. Microsoft Corporation. Redmond, WA. [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconbinaryserialization.asp

4. Annotated Ada 95 Reference Manual, ISO/IEC Std. 8652:1995(E), 1995.
5. J. Kienzle, A. Romanovsky, and A. Strohmeier, “A framework based on design patterns

for providing persistence in object-oriented programming languages,” EPFL, Tech. Rep.
DI/2000/335, 2000.

6. J. Kienzle and A. Romanovsky, “On persistent and reliable streaming in ada,” in International
Conference on Reliable Software Technologies - Ada-Europe’2000, Potsdam, Germany, June
26-30, 2000, H. B. Keller and E. Plöderer, Eds., no. 1845, 2000, pp. 82–95.

7. S. Crawley and M. Oudshoorn, “Orthogonal persistence and ada,” in TRI-Ada, 1994, pp. 298–
308.


