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Abstract

Group communication providesone-to-manycommunication primitives that simplify the development
of highly available services. Despite advances in research and numerous prototypes, group communi-
cation stays confined to small niches. To facilitate the acceptance of group communication by a larger
community, a new specification and API, calledJMSGroups, based on the popular Java Message Service
(JMS) has previously been presented.

As a follow-up, this paper focuses on the architectural issues of the JMSGroups implementation. We
consider an implementation based on a JMS server, i.e., a JMS server that is modified internally to pro-
vide a group communication service. Usually JMS server is implemented as a single entity providing its
service to numerous clients. However, single server architecture is exposed to failures and is not suit-
able for group communication. To address this problem, we discuss the issues related to the JMS server
replication (first without providing group communication). Different replicated architecture options are
presented and compared. Finally, we show how to construct a fault-tolerant JMSGroups system, by
extending the replicated JMS server with a group communication service.

1 Introduction

Group communication (denoted simply by GC hereafter) providesone-to-manycommunication prim-
itives with various semantics (e.g., reliable delivery of messages and/or delivery of messages in total
order). These high-level communication abstractions among groups of processes greatly simplify the
development of highly available services (through replication). Yet, despite tremendous advances in re-
search and numerous prototypes, e.g., [3, 7, 8, 5, 4], GC stays confined to small niches and to academic
prototypes. We believe that the lack of a well-defined and easily understandable standard is the reason
that hinders the deployment of group communication systems.

In [1] we proposed a standard specification and interface for GC. Instead of specifying yet another GC
API, we took advantage of the widespread acceptance of the Java Message Service (JMS) and presented
a GC API that was extended from the JMS API. The resulting specification and interface is called
JMSGroups and is easily understandable both by the GC community and by developers familiar with
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JMS. As such, it facilitates the acceptance of group communication by a larger community and provides
a powerful environment for building fault-tolerant applications.

As a follow-up, this paper focuses on the architectural issues of the JMSGroups implementation. Two
main architecture types have been considered for JMSGroups: 1) a centralized server architecture and
2) a non-centralized architecture. The centralized server architecture is similar to the one used by JMS.
In such architecture the GC service is provided by a separate middleware entity (the server). The group
members are the clients communicating with each other through the server. The second architecture
type is the classical GC model, without a central entity. Each group member has a GC layer which
is responsible for group communication. The non-centralized architecture has been well studied in the
group communication context [3, 9, 7, 13, 8, 5, 4] and will not be further developed in this paper. Rather,
our discussion will focus on the centralized server architecture.

The JMSGroups centralized server architecture can be implemented by modifying the existing JMS
server, i.e., by extending it to provide a GC service in addition to the JMS. The specification of such a
modification was presented in [1]. However, since the server is a communication hub for all its clients it
becomes a single point of failure in the system. The crash of the server blocks the entire system. Since
GC is used to provide fault-tolerance to the application, a single point of failure in its architecture is not
acceptable. Therefore, the JMS server used for the implementation of JMSGroups must be fault tolerant,
i.e., replicated.

For the sake of clarity, the presentation of the JMSGroups architectural issues is divided into two parts.
The first part focuses on the architecture of a replicated JMS server, in order to remove a single point
of failure in the system (but without providing a group communication service yet). Different replicated
architecture option are presented and compared. Then, by using the replicated JMS server architecture
as a base, the second part presents the modifications that are needed to implement the JMSGroups server
(and thus provide a group communication service in the JMS-based system).

The paper is structured as follows: Section2 gives a very brief introduction on JMS and Section3
presents the GC system models we will consider. The contribution of the paper lies mainly in Sections4
and5. Section4 presents the architecture types for the fault tolerant JMS server, whereas Section5
analyzes how the replicated JMS server should be modified to provide a group communication service.
Related work is then presented in Section6 and finally Section7 concludes the paper.

2 Java Message Service

2.1 The architecture

The Java Message Service (JMS) [6] is a part of Sun Microsystem’s Java 2 Enterprise Edition [11]; it
is a set of interfaces and associated semantics that govern the access to messaging systems. The basic
architecture is shown in Figure1. As a central part of the architecture is the JMS server, which generally
acts as a hub for all communications, and has access to stable storage. The clients communicate by
exchanging messages which are relayed by the server.

The basic communication schema between the JMS client and server is shown in Figure2. The JMS
client usually consists of two layers: theapplication layerand theJMS client-side layer. The application
layer is implemented by the user. It uses the JMS client-side layer to communicate with the JMS server
and receive the messaging service. The client-side layer is provided by the JMS implementation and
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Figure 1. Basic JMS architecture.

manages the client’s interaction with the JMS server.
The client side communication entities are strictly defined in the JMS specification. This is however

not the case for the communication entities on the server side. The JMS specification does not define
how the server should be implemented, but rather defines the interfaces and services that the JMS infras-
tructure must provide. The JMS server providers thus have a large freedom in implementing the server.
To generalize, we however assume that the server side communication entity can be represented as a
singleclient contextentity or simply acontext(see Figure2). For every client connected to the server,
an individual context is created. It contains all the necessary information about the client’s communica-
tion with the server, such as the queues of messages received from and to be sent to the client, as well
as other connection related information. The major part of the JMS server state consists of the clients’
contexts, and the major part of the processing the server does is spent managing these contexts.

JMS Server

Application layer

JMS Client

JMS client-side layer

Session
m

ack Client context
Client context

Client contextClient context

Figure 2. JMS client-server communication.

Figure 2 shows the very basic client-server communication. In JMS only the clients are message
producers and consumers, i.e., a JMS server does not produce or consume messages1. Furthermore,
sending messages in JMS is blocking: whenever the client application sends a message, the application
is blocked until the message is received by the server and an acknowledgement is sent back (dashed line
in Figure2).

1Here we mean the application level messages.
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2.2 JMS communication paradigms

Two communication paradigms are defined in the JMS specification:point-to-point and publish-
subscribe. In point-to-point messaging, a message is sent by a JMS client to a specifiedmessage queue,
from which it is extracted (received) by another JMS client. Hence, the message sent to a message
queue is received by only one client. In contrast, publish-subscribe messaging provides one-to-many
communication and is based on the concept oftopics: a message published by a JMS client to a topic
is received by all JMS clients that have subscribed to that topic. Note that the publisher does not know
the set of subscribers. Since this paper focuses on group communication (one-to-many communication)
using JMS, we will consider only the JMS publish-subscribe paradigm.

Furthermore, JMS specifies two types of subscriptions to a topic:non-durableanddurable. Consider
a topic to which a client has subscribed. With a non-durable subscription the client receives messages
published to the topic as long as its connection to the server is active. The connection can break (i.e.,
become inactive), for example because of a link failure, or because of the crash of the client. Messages
published after the connection is broken are not guaranteed to be received by the client.2 In contrast,
durable subscriptions mask these failures. Indeed, the client is ensured to receive all messages that have
been published to the topic it has subscribed to, even if its connection is not permanently active. During
the periods when a client with durable subscription is not connected, JMS server keeps the messages for
it and dispatches them as soon as the client subscribes again. In this paper, we only considerdurable
subscriptions to a topic (which are required in order to be able to provide the GC message delivery
guarantees).

2.3 JMS message delivery requirements

The JMS specification [6] also defines the order of message delivery on the clients. Essentially, JMS
guarantees FIFO ordering on messages that are sent between two client sessions: messages that are sent
by a session must be received in the order in which they were sent.3 However, JMS does not define the
order of message receipt across several clients (the message delivery order can bem1, m2 on one client
session andm2, m1 on another one if the senders ofm1 andm2 aren’t the same).

Finally, the JMS specification does not allow duplicate delivery of the acknowledged messages, with
one exception: if a failure occurs between sending a message to a consumer and receiving the acknowl-
edgment from it, the message can be redelivered (as it is not clear if the consumer delivered the message
or not). Only the last message delivered by a consumer is subject to this ambiguity. This ambiguity will
be illustrated later in the paper.

3 Group communication system models

The previous section shortly presented JMS. In order to present the architecture of a replicated JMS
server (to which the group communication service will later be added), we need to define the system

2If the connection is broken, the client can try to re-subscribe to the topic. Let us assume that the connection breaks at
time t1, and that a new subscription is received by the JMS server at timet2. With non-durable subscriptions, the messages
published in the interval [t1, t2] may not be received by the client.

3JMS also provides options such as message types and priorities that can alter the delivery order, but we only consider
messages of the same type and priority here.
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models that we consider. The following system models, originally defined in the context of group
communication, also apply to the replicated JMS server architecture.

Group communication provides one-to-many communication primitives to a set of processes orga-
nized in a group. Groups can be classified into two categories:staticanddynamicgroups. In the case
of a static group, all processes are started at system initialization. Furthermore, the group membership
remains unchanged during the lifetime of the system. Processes that crash cannot be replaced by new
processes.

In a dynamic group, processes can join and leave the group. The group membership can thus evolve
during the lifetime of the system. Moreover, processes can start at any time (i.e. even after the system
initialization) and can invoke ajoin operation to join an ongoing computation. In the dynamic group
model, processes that have crashed can be replaced by new processes.

The classification into static or dynamic group category captures one dimension of the group com-
munication system model. The second dimension relates to access to stable storage. In a system where
processes do not have access to stable storage, a process crash results in the loss of the process’ state
(which is stored in volatile storage). In such a case, processes are saidnot to recoverafter a crash. We
call this model thecrash-stopfailure model: a process that crashes never recovers (at least not with the
same identity).

If the processes have access to stable storage, they can periodically save their state. This in turn
allows a process to recover after a crash, by using the most recently saved state. This model is called the
crash-recoveryfailure model: a process that crashes eventually recovers.

These two dimensions (the membership and failure models) lead to four different system models.
Two of these system models will be considered later in this paper: (1) the static membership system
with process recovery and (2) the dynamic membership system without process recovery. Both models
can be used for replication: model (1) is used when the set of replicas does not change over time (in
which case it is essential for a replica to be able to recover in case of a crash) and model (2) is used when
replicas do not recover after a crash (in which case it is essential to be able to add new replicas to replace
the crashed ones).

4 Fault tolerant JMS server architecture

As stated in the introduction our goal is to build a JMS compliant group communication service. The
service must be as close as possible semantically and in terms of the interface to the JMS. It is possible
to build such a service by internally modifying an existing JMS server and adding GC as an additional
service. However, to implement JMS compliant group communication, a fault-tolerant JMS server is
needed.

Fault tolerance is achieved through replication and in this section we present the architecture for a
replicated JMS server. Note that here we talk about “pure” JMS, i.e., without a group communication
service. The architecture we present below can be applied to any JMS server to render it fault tolerant.
Understanding the replicated JMS server architecture will allow us to introduce the changes needed to
provide a group communication service; we discuss these changes in Section5.

A typical example of a replicated JMS server architecture is shown in Figure3. The JMS server
consists of three replicas{S1, S2, S3}. Six clients{C1, C2, C3, C4, C5, C6} are connected to the
different server replicas. The server contains a replicated topicT , i.e., each server replica hosts a replica
of T . The clients can connect to the topic as publishers or subscribers, or both. In our example client

5



JMS Server
S2

JMS Server
S1

C1

JMS Server
S3

C6

T T

T

publisher

subscriber

C2

subscriber

m

mm

mm

C3

subscriber

C4

subscriber

C5

subscriber

m

m

m

Figure 3. Replicated JMS server.

C5 is a publisher, and the rest are subscribers toT . WhenC5 publishes a messagem to the topic, the
message is first received by the server replicaS3. S3 then sends (broadcasts) the message to the server
replicas, so that every replica receives it. When all server replicas have receivedm it can be dispatched
to the subscribers ofT .

The JMS server replication should not influence the properties of the client communication channel
(the channel between the server replica and the clients connected to it). We assume that this channel
satisfies reliable FIFO message delivery requirements. We also assume that server replicas process the
messages in sequential order, i.e., do not reorder them. These assumptions will remain valid throughout
the paper.

As already mentioned, when the JMS client connects to the server, a client context for that connection
is created on the server (see Figure2). Depending on how the client context is managed on the replicated
server we distinguish two JMS server replication types: (1) server replication withnon-replicated context
and (2) server replication withreplicated context. In case (1), which is illustrated in Figure4(a), a single
client context is created on the server replica when the client connects to it, i.e., this context is not
replicated on the other server replicas. Thus the server replicas do not hold any state related to the
contexts managed by the other replicas. On the contrary, in case (2), illustrated in Figure4(b), each
client’s context is replicated on all server replicas and their state is kept consistent. These two JMS
server replication types are presented in detail in the following paragraphs.

4.1 Non-replicated context

In JMS server replication with non-replicated context, each client chooses one server replica to con-
nect to and receives the requested messaging service from it. The client context is created only on the
server replica to which the client connects, and it is not shared between the other server replicas. Thus
each server replica hosts only a subset of the client contexts in the system (see Figure4(a)).

The problem of such an architecture is that, in the case of a server replica crash, the clients of the
crashed replica cannot connect to the other server replicas as those do not have the sufficient information
to restore the clients’ context. Therefore, the clients of the crashed server replica are isolated from the
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Figure 4. Different JMS server replication types.

whole system. The solution to this problem is the recovery of the crashed server replica. After the
recovery, the clients can reconnect to the same server replica and continue to receive the service. Stable
storage must be used on the server replica to prevent the context loss in case of a crash. Server replica
recovery and stable storage are not specific requirements for the replicated JMS server as they are defined
in the JMS specification.

In the crash-recovery failure model, the crashed server replicas are not removed from the group (they
recover with the same identity). Therefore, the static group membership model can be used for the JMS
server replication with non-replicated context.

As stated above, in server replication with non-replicated context a server replica is responsible only
for the subset of the clients connected to it. In the case of a server replica crash this subset is isolated
from the rest of the system. However, the clients connected to the non-crashed server replicas still have
access to the service, i.e., only part of the system is not functioning. The other part is still operational and
can produce and consume messages (which is not the case in a single server architecture). Therefore, the
overall server state changes even when there is a crashed replica. This poses a problem to the durable
subscribers.

Durable subscription requires to deliver even those messages which were produced when the sub-
scriber was not connected to the server. Consequently, in server replication with non-replicated context,
the durable subscribers connected to the server replica which crashed and recovered, must also receive
the messages produced during the down time of the replica. To solve this problem, the non-crashed
replicas have to store part of the system state on behalf of the crashed replicas until they recover. This
state consists of the messages addressed to the crashed replica, which were produced between the crash
and the recovery.

The other problem is the message delivery order between the clients of a replicated JMS server. As
mentioned in Section2.3, JMS requires FIFO message delivery. We will show that to ensure FIFO order
between the clients, a reliable FIFO broadcast primitive is sufficient for communication between the
server replicas (the server communication channel).
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Lemma 1. For server replication with non-replicated context, reliable FIFO message delivery is suf-
ficient between the server replicas to provide the reliable FIFO message delivery order between the
clients.

Proof. To deliver the messages between the clients both communication channels in the system are used:
the client channel and the server channel (the communication channel between the server replicas).
For each client, a separate client communication channel connects the client to a server replica and
as defined earlier, this channel satisfies reliable FIFO message delivery property. Also, we assume
that server replicas do not lose messages and process them in sequential order, i.e., do not reorder
them. Thus, the communication primitive between the server replicas must preserve the FIFO message
order it receives from the client communication channel. For that, a FIFO communication primitive is
enough. In addition, this primitive must be reliable in order not to lose any messages between the server
replicas.

4.2 Replicated context

In the server replication with replicated context architecture, each client connects to one of the server
replicas and receives the messaging service it requests from that replica. Here, in contrast to the previ-
ous solution, each client context is replicated on all server replicas and its replica state is kept consistent
during the system execution (see Figure4(b)). As the JMS client connects and interacts with a single
server replica, its context on that replica is calledactive(shown with color filling and shadow in Fig-
ure4(b)). The same client’s contexts on the other server replicas are not active (shown with dashed line
in Figure4(b)), but their state is kept up to date with the active one. This is similar to primary-backup
replication.

In the case of a server replica failure, all the clients connected to that replica are automatically recon-
nected to another non-failed server replica and continue getting the messaging service. When the client
reconnects to another server replica, its context on that replica becomes active. The reconnection is done
automatically without any user intervention.

Due to the replicated context and the client reconnection mechanism, the clients connected to a given
server replica do not lose the service when this replica crashes. In other words, unlike in the non-
replicated context solution, a server replica crash does not render part of the system non-operational.
Therefore, the recovery of a crashed server replica is not as crucial as before. Moreover, if there are
enough non-crashed server replicas, the service continues to be provided to the whole system, even if
the crashed replicas do not recover. This allows a different failure model to be used for the server.
Instead of the crash-recovery model required by the non-replicated context, the crash-stop model can be
used for the server replicas. In the crash-stop model the crashed replicas do not recover and are removed
from the group.4

To keep the desired number of server replicas, new replicas can be created and added to the group
dynamically. A state transfer mechanism must be provided to synchronize the state of the added replicas
with the rest of the system. The removal and addition of members during the runtime corresponds to the
dynamic group membership model for the JMS server replicas.

With the replicated context and the assumption that the majority of the server replicas do not crash,
there is no need for stable storage on the server replicas, as the client contexts (including messages)

4In fact, a server replica can recover, but must join the group as a new member, i.e., with a new identity.
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are replicated on the server and are not lost. Without such an assumption, stable storage and the crash-
recovery failure model must be used for the server replicas.

For the replicated context, the client context states on the different server replicas must be consistent
to satisfy the JMS message delivery requirements. The message delivery properties must be satisfied
even when a server replica failure occurs and the affected clients reconnect to another server replica. We
show that reliable FIFO for the server communication channel is still enough to satisfy the JMS message
delivery requirements.

Lemma 2. For server replication with replicated context, reliable FIFO message delivery is sufficient
between the server replicas to provide the reliable FIFO message delivery order between the clients.

Proof. The proof is similar to the one of Lemma1. The difference with the replicated context is that
the state of the context is present on each server replica. That state consists of the message queues
which contain the messages from/to the client. To comply with the JMS specification, the order of the
messages in the queues for different context replicas can be different, but must satisfy FIFO. As the
client communication channel satisfies the reliable FIFO message order and the server replicas do not
reorder messages and process them sequentially, the reliable FIFO message communication primitive is
sufficient between the server replicas to keep the FIFO message order on the client context replicas.

Client reconnection example. For a better understanding of the client reconnection mechanism, let
us additionally illustrate it by an example and show how the FIFO order is preserved on the JMS clients
during the reconnection. Let’s take an example of a replicated JMS server with replicated context shown
in Figure5. The JMS server consists of three replicasS1, S2 andS3 connected with reliable FIFO
communication channel. ClientC2 is connected to the replicaS2. Assume thatC2’s context on each
replica contains two messages produced by different producers (the producers are also the clients, but are
not shown in Figure5): on replicaS1, the message order is{m1, m2}, on replicaS2 it is {m2, m1} and
on replicaS3, the order is{m1, m2}. The order onS2 is different, because the messages are produced
by different producers and FIFO channels guarantee the same message order only for messages produced
by the same producer. Assume that the first message in the queue onS2 (messagem2) is delivered toC2
and that after thatS2 crashes. After the crash,C2 reconnects toS1. Here, depending onC2’s context
state there are two possible scenarios: a) messagem2 was acknowledged byC2 and garbage collected
on the server replicas before the crash ofS2, and b) messagem2 was acknowledged byC2, but not
garbage collected on server replicas.

In case (a), messagem2 will have been garbage collected beforeC2 reconnects toS1. ForC2 there
is therefore no risk thatm2 will be redelivered. After the reconnectionS1 will sendm1 to C2 and the
message delivery order onC2 will thus be{m2, m1}. If there were other message consumers form1
andm2 onS1, they would deliver the messages in the order they were delivered onS1, i.e.,{m1, m2}.
Thus, after the reconnection, the order of message delivery can differ on the clients connected to the
same server replica, but this does not violate the JMS specification as the FIFO order is preserved.
Since the client context on each server replica receives the messages in FIFO order and processes them
sequentially, the FIFO order for the messages will be preserved even in the case of a reconnection.

Case (b) is more complicated because of a possible message duplicate, since messagem2 is delivered
to C2, but not garbage collected by the server replicas before the client reconnection. Thus after the
reconnection,S1 will send messagem1 to C2, as it is the first in its queue. Whenm1 is acknowledged
and garbage collectedS1 will sendm2 to C2, which would be a duplicate of the one received byC1

9



C2

T T

T

{m1,m2}

{m1,m2}

{m2,m1}

JMS Server S2

C2 context

{m2}
reconnect

JMS Server S1

JMS Server S3

C2 context

C2 context

Figure 5. Client reconnection scenario.

from S2 before the crash ofS2. However, this still satisfies the JMS specification for duplicate of the
last delivered message in the case of a JMS server crash (see Section2.3). C2 must be ready to handle
the duplicate of the last delivered message (in our casem2) after the reconnection. Except for this, the
message delivery order issue is the same as in case (a), i.e., the reconnection to another server replica
won’t violate FIFO order on the client.

4.3 Comparison of the JMS server replication types

Table1 presents the comparison between the non-replicated context and replicated context solutions.
The replicated context solution uses the simpler crash-stop failure model, has an option not to use the
stable storage and most importantly does not isolate the clients in the case of a server replica crash,
which greatly improves system liveness. But on the other hand, every server replica keeps the client
context of the whole system, which can cause a resource problem in the systems with a large number of
clients.

For such a system, a server with a non-replicated context can use load balancing by distributing
the clients between the server replicas. Moreover, the static group membership model used by the
non-replicated context solution is simpler and easier to implement than the dynamic one used by the
replicated context solution. However, the non-replicated context solution requires server replica recov-
ery which in general is more difficult to implement, but is required in the JMS specification and is
implemented in most of the non-replicated JMS servers. Also the reconnection protocol to the same
recovered server replica is simpler than the one required by the replicated context solution.

While the replicated context solution seems to be a more attractive choice for the replicated JMS
server, it is hard to draw a strict line between the two solutions. The choice depends on the needs and
properties of the particular application that uses the replicated JMS server.

5 JMSGroups based on JMS server

Our JMSGroups specification [1] can be implemented using an existing JMS server: the JMS server
must be changed internally to provide group communication as a service to its clients. Let us remind, that
such a modified JMS server is called a JMSGroups server. A JMSGroups server contains special topics
calledgroup topics. The clients form a group by subscribing to the corresponding group topic. Compared
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Table 1. Replicated JMS server: comparison between replicated and non-replicated context.
Non-replicated context Replicated context

Failure model Crash-recovery Crash-stop
Group membership model Static membership Dynamic membership
Communication primitive Reliable FIFO Reliable FIFO
Client behavior for failures Wait until the replica recoversReconnect to an available replica
Stable storage needed YES NO, if a majority of replicas does

not crash

to JMS, JMSGroups provides additional group communication services to the clients subscribed to the
group topics (group members): group membership information, member suspicions, etc. It can also
optionally provide JMS service to the clients which do not need GC.

As discussed before, for the JMSGroups implementation based on a JMS server, a replicated JMS
server must be used, such as the ones presented in the previous section. As such, JMSGroups adds some
additional requirements to the replicated JMS server architecture. We will present these requirements in
the following paragraphs. First, we define the two replication levels that exist in JMSGroups.

Two level replication. The replicated JMSGroups server providing GC as a service used for replica-
tion by its clients forms a system with two replication levels: (1) aserver replication leveland (2) an
application replication level(see Figure6). The server replication level is responsible for the server
replication and the application level for the application replication respectively. Each layer uses a sep-
arate group communication to provide the replication. The server level uses GC provided to the server
replicas by a group communication toolkit. The application level on the other hand uses the GC pro-
vided by the JMSGroups server. The server level contains a single group (the one of the server replicas),
whereas the application level supports many groups, as well as standalone clients (see Figure6).

Both layers define separate sets of communication primitives to provide message delivery guarantees.
Message delivery at the application level depends on the primitives at the server level, but not vice versa.
To distinguish for which layer the primitive belongs we add the corresponding prefix to the name of the
primitive, e.g.,S-ABcastis a server level ABcast andA-ABcastis an application level ABcast.

Server replication types. In Section4 we presented two different types of replicated JMS server
architectures: replication with non-replicated context and replication with replicated context. They differ
in the way the client context is kept on the server and in the behavior of the clients when the server
replica fails. The same two solutions apply to the JMSGroups architecture, more precisely to the server
replication level. If the non-replicated context is used at the server replication level, a failure of a server
replica will not be transparent at the application replication level. Indeed, the clients connected to the
failed replica lose the connection and are isolated from the rest of the system until the server replica
recovers. Depending on the application requirements, the time until the server replica recovers can be
too long for the group members to wait for the reconnection. In such a case, the replicated context is
an alternative. With replicated context, the clients do not wait for the failed replica recovery, but instead
reconnect to another available one. The time taken by the clients to reconnect to another server replica
is much shorter than the server replica recovery delay, and therefore the clients are not isolated from
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the rest of the system. Unfortunately, replicated context has a higher communication cost between the
server replicas and uses more resources on the server.

The choice between the non-replicated context and replicated context must be done considering the
nature and the requirements of the application using JMSGroups: a server with non-replicated context
will perform better than the one with replicated context as long as no failures occur. If a failure occurs, a
system using a non-replicated context will however isolate a number of clients until their server replica
recovers.

Message delivery order. In JMSGroups, as in JMS, all communication between the group members
goes through the JMSGroups server. This implies that the application level primitives A-ABcast and
A-ADeliver are composite primitives, i.e., they are composed of the primitives from both levels (see
Figure7). Indeed, A-ABcast consists of reliable FIFO between the JMSGroups client and the server,
plus S-ABcast between the server replicas. Similarly, A-ADeliver consists of a S-ADeliver between the
JMSGroups server replicas, plus a reliable FIFO delivery between the server and the JMSGroups client.

In Section4 we showed that reliable FIFO message delivery is enough for the server communication
channel in order to comply with the JMS specification. Group members in JMSGroups require stronger
message delivery guarantees than JMS clients, and consequently reliable FIFO is not enough for the
server communication channel. A common GC requirement is the total message delivery order for the
group members. To provide total order in JMSGroups application replication level, stronger message
delivery properties (e.g., ABcast) must be used for the server replication level.
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A-ABcast( m) {
Member: FIFO send m to the Server;
Member: wait for the Ack( m) from the Server;

Server: receive( m) from a member;
Server: S-ABcast( m) between the Server replicas;
Server: S-ADeliver( m);
Server: send Ack( m) to the Member;

}

A-ADeliver( m) {
Server: S-ADeliver( m);
Server: FIFO send m to the Member;
Server: wait for the Ack( m) from the Member;

Member: receive m from the Server;
Member: send Ack( m) to the Server;

}

Figure 7. JMSGroups member’s composite total order communication primitives.

Lemma 3. For the JMSGroups server replication level, a total message order primitive (S-ABcast) is
needed to provide the total order message delivery to the group members at the application replication
level.

Proof. The S-ABcast primitive used by the JMSGroups server replicas guarantees the total order of
message delivery between the server replicas. As there is a FIFO communication link between the
server replica and each client, and the server replicas do not reorder or lose the messages, the delivery
order of messages on the server replicas will be preserved on the clients as well. So to guarantee the total
message delivery order for the group members, total order of message delivery is necessary between the
server replicas.

6 Related work

The open source JMS implementation called JORAM [10] as an option provides high availability for
the JMS server by replication. JGroups [2], a Java group communication toolkit, is used for the com-
munication between the server replicas. A replicated JORAM server uses primary backup replication,
i.e., only one server replica is communicating with all the clients, and its state change is synchronously
propagated to the backup replicas. In the case of a failure of the primary replica, a new primary is elected
among the backup replicas and the clients reconnect to it. The client reconnection mechanism preserves
JMS message delivery properties for the clients. This architecture is similar to the JMS server replication
with replicated context described in Section4.2. However, in our proposed architecture primary-backup
replication is used only for the client context and not for the server replicas. The advantage is that the
clients can connect to any of the server replicas, not only to the primary as in the case of JORAM.

Another replication mode provided by JORAM is calledcollocated client mode. In this mode JMS
clients are collocated and replicated together with the server replicas. However, only stateless clients
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can be used in this mode and only one client replica (the one located on the primary server replica) is
receiving and processing the messages. For the other client replicas the communication with the server
is blocked. This can be compared with the non-replicated context described in Section4.1. However, in
our architecture the clients do not have to be collocated together with the server and can contain a state.
Although JORAM’s collocated client mode deals with client replicas, it is too constrained and cannot be
compared with the GC service provided by JMSGroups

SonicMQ is a commercial JMS implementation from Sonic Software Corporation and also provides
a replicated JMS service [12]. JMS topics in SonicMQ are replicated together with the server, which
allows to apply a load balancing mechanism for the connecting clients. The replicated server uses non-
replicated client contexts. Additionally, for durable subscriptions, the client contexts are replicated on
the server and a similar client reconnection technique to the one of the replicated context described in
Section4.2 can be used. However, unlike in the distributed context, the state of these client contexts
on the server replicas are not kept consistent with the replica communicating with the client. The risk
therefore exists to lose messages after the reconnection to a different server replica. If the option not
to lose the messages is chosen, the client is required to reconnect to the same replica and a part of the
system is blocked until the failed server replica recovers.

7 Conclusions

JMSGroups provides a JMS compliant group communication, its specification and API were defined
in [1]. As a follow-up, this paper focused on the architectural issues related to the JMSGroups imple-
mentation.

We have chosen to implement JMSGroups by internally modifying the existing JMS server and adding
group communication service to it. It is clear that such a service itself must be tolerant to failures. There-
fore, JMSGroups must be based on the replicated JMS server. We proposed two different approaches
for replicating the JMS server: non-replicated context and replicated context. In the first approach, each
server replica contains only the contexts of the clients connected to it. In such a system load balancing
between the server replicas can be used. But in the case of a crash, clients connected to the crashed
server replica are isolated from the system until the replica recovers. Furthermore, since recovery is
needed, the server replicas need access to stable storage in order to periodically save their state. In
the second approach each server replica stores the contexts of all clients connected to the system. This
allows the clients to reconnect to the other server replica, when the one they are connected to crashes.
Moreover, server replicas do not need stable storage anymore (as long as the majority of replicas do not
crash), since each replica has a copy of all client contexts. The drawbacks of this approach are: a bigger
resource requirements by the server replicas and a higher network communication cost, since the server
replicas need to exchange more information to keep the client contexts’ states consistent.

The second part of this paper addressed the issue of providing a group communication service on
top of the replicated JMS server. To provide a group communication service, we proposed the JMS-
Groups server architecture defining two levels of replication: the server level and the application level.
For the server replication level the same replication approaches as for the JMS server are used, but
with the stronger communication primitives. At the same time, the service provided to the application
level enables the clients to delegate the complicated and expensive communication primitives (e.g., to-
tal message order) to the server, and still profit from the group communication to create fault tolerant
applications.
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We have implemented the replicated JMS server system and the JMSGroups system, using both the
non-replicated and replicated context approach, and currently are evaluating their performance.

Acknowledgements.We would like to thank Andŕe Schiper for his useful feedback during the prepa-
ration of this paper.

References

[1] A. Kupšys, S. Pleisch, A. Schiper, M. Wiesmann. Towards JMS Compliant Group Communication a se-
mantic mapping. InProceedings of the Third IEEE International Symposium on Network Computing and
Applications (NCA 2004), pages 131 – 140, Aug 2004.

[2] B. Ban. Design and Implementation of a Reliable Group Communication Toolkit for Java. Cornell Univer-
sity, September 1998.

[3] K. P. Birman. The process group approach to reliable distributed computing.Communications of the ACM,
36(12):37–53, 1993.

[4] K. P. Birman, R. Constable, M. Hayden, C. Kreitz, O. Rodeh, R. van Renesse, and W. Vogels. The Ho-
rus and Ensemble projects: Accomplishments and limitations. InProceedings of the DARPA Information
Survivability Conference & Exposition (DISCEX ’00), Hilton Head, South Carolina USA, 2000.

[5] D. Dolev and D. Malki. The Transis approach to high availability cluster communication.Communications
of the ACM, 39(4):64–70, 1996.

[6] M. Hapner, R. Sharma, J. Fialli, and K. Stout.JMS specification. Sun Microsystems Inc., USA, 1.1 edition,
April 2002. http://java.sun.com/products/jms/docs.html.

[7] C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phœnix: A toolkit for building fault-tolerant distributed
applications in large scale. InWorkshop on Parallel and Distributed Platforms in Industrial Products, San
Antonio, Texas, USA, 1995. IEEE. Workshop held during the7th Symp. on Parallel and Distributed Pro-
cessing, (SPDP-7).

[8] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos. Totem: a
fault-tolerant multicast group communication system.Communications of the ACM, 39(4):54–63, 1996.

[9] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C. Little. The design and implementation of
Arjuna. Technical Report TR94-65, ESPRIT Basic Research Project BROADCAST, 1994.

[10] ScalAgent.JORAM. http://joram.objectweb.org.
[11] B. Shannon.Java 2 Enterprise Edition specification. Sun Microsystems Inc., USA, 1.4 edition, April 2003.
[12] Sonic Software Corporation. Clustering and Dynamic Routing in SonicMQ. White paper, USA, Jan. 2004.
[13] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication system.Communi-

cations of the ACM, 39(4):76–83, 1996.

15


	Introduction
	Java Message Service
	The architecture
	JMS communication paradigms
	JMS message delivery requirements

	Group communication system models
	Fault tolerant JMS server architecture
	Non-replicated context
	Replicated context
	Comparison of the JMS server replication types

	JMSGroups based on JMS server
	Related work
	Conclusions

