
Towards JMS Compliant Group Communication

Arnas Kup̌sys Stefan Pleisch André Schiper Matthias Wiesmann
École Polytechnique F́ed́erale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
Phone: +41-21-693-4240 Fax: +41-21-693-6770

Email: {firstname.lastname }@epfl.ch

Abstract— Group communication provides communica-
tion primitives with various semantics and their use greatly
simplifies the development of highly available services.
However, despite tremendous advances in research and
numerous prototypes, group communication stays confined
to small niches and academic prototypes. In contrast,
message-oriented middleware such as the Java Messaging
Service (JMS) is widely used, and has become a de-
facto standard. We believe that the lack of standard
interfaces is the reason that hinders the deployment of
group communication systems.

Since JMS is well-established, an interesting solution
is to map group communication primitives onto the JMS
API. This requires to adapt the traditional specifications
of group communication in order to take into account the
features of JMS. The resulting group communication API,
together with corresponding specifications, defines group
communication primitives compatible with the JMS syntax
and semantics.

I. I NTRODUCTION

Group communication has been an active area of
research for more than a decade. The notion of process
groups, with the possibility to multicast messages to
the members of a group, was proposed initially in the
context of the V System [1], and later extended by
the Isis system to the context of failures [2]. Group
communication systems provideone-to-manycommuni-
cation primitives with various semantics (e.g., reliable
delivery of messages and/or delivery of messages in total
order) and their use greatly simplifies the development
of highly available services (through replication). Yet,
despite tremendous advances in research and numerous
prototypes [3], [4], [5], [6], [7], [8], [9], [10], group
communication stays confined to small niches and to
academic prototypes. Why is this so? Initial group
communication systems were monolithic and so were
difficult to adapt to specific application needs. However,
this argument does not explain the limited use of the
technology. Indeed, although recent projects have pro-
posed modular systems, which are more flexible and can
be tailored to the application needs [11], [12], [13], this

has not led to significant increase in the use of group
communication.

In contrast, there is a communication technology that
has recently attracted a lot of interest: the so called
message oriented middlewares (MOMs), e.g., MQSeries
[14], Tuxedo [15] or JMS (Java Messaging Service)
[16]. This technology, which provides abstractions for
asynchronous message sending, is increasingly used in
industry and is now considered to be an integral part of
enterprise computing infrastructure. Some MOMs (e.g.,
JMS) have become de-facto standards.

The success of MOMs, but also the success of the
Web, show that standardized interfaces are a key element
for a successful technology.We believe that the lack
of standards is the major reason for the limited use
of group communication.This means that, to become
widely used, group communication needs to adapt to
the general network environment, and adopt standard
interfaces.

What standards do we want for group communication?
There is probably no need to invent new standards. As
discussed in [17], existing standards can very well be
considered for group communication. In this paper we
investigate the use of the widely accepted JMS standard
for group communication. This study addresses two
separate but related issues: (1) the mapping of the group
communication API to the JMS interfaces, and (2) the
discussion of the semantics of this API in relation with
the quality of service that JMS provides. Note that the
paper is only about interfaces and specification issues.
Implementation of group communication primitives is
rather well understood, and is not discussed here.

Related Work.Integrating group communication with
existing middlewares is not a new idea. For example,
group communication has been used for the replication
of CORBA objects. Recent examples are the Object
Group Service (OGS) [18], Eternal System [19], In-
teroperable Replication Logic (IRL) [20], Electra [21].
In [22] group communication is used to implement
high-available replicated Enterprise Java Beans (EJB)
services, and [23] provides causal ordering for JMS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


messages.
In contrast, the goal of the paper is different. The paper

is about using standard interfaces (namely JMS) to sim-
plify and standardize the usage of group communication
(an issue not addressed in the above references).

Roadmap.The rest of the paper is structured as follows.
Section II gives a brief overview of the JMS notions
needed to understand the paper. In Section III, we present
the basic idea for the mapping of group communication
to the JMS interfaces and discuss how the properties and
notions of JMS can be translated to the context of group
communication. The core contribution of the paper is
in Sections IV and V. In Section IV we first introduce
the system model and the definitions, and then give
the specification of group communication with respect
to JMS. Section V presents the JMS compliant API
for group communication. Section VI discusses some
additional issues and Section VII concludes the paper.

II. JAVA MESSAGINGSERVICE

The Java Messaging Service (JMS) [16] is a part of
Sun Microsystem’s Java 2 Enterprise Edition [24]; it is
a set of interfaces and associated semantics that govern
the access to messaging systems. The basic architecture
is shown in Figure 1. JMS assumes a central JMS server,
which generally acts as the hub for all communications,
and has access to stable storage. The server is transparent
to the application, composed of the JMS clients (senders
of messages and receivers of messages), and a set of
application-defined messages.

JMS Server
Topic

Topic

Queue

Application

JMS

Messages

Application

JMS

Messages

Application

JMS

Messages

Application

JMS

Messages

JMS Client

Queue

JMS Client

JMS Client JMS Client

Fig. 1. Basic JMS architecture.

The JMS specification does not define how the server
is implemented. It only defines the interfaces and ser-
vices that the JMS infrastructure must provide.

Two communication paradigms are defined in the
JMS specification:point-to-pointandpublish-subscribe.
In point-to-point messaging, a message is sent by a
JMS client to a specifiedmessage queue, from which
it is extracted by another JMS client (whichconsumes
or receivesthe message). Hence, the message sent to
a message queue is received by only one client. In
contrast, publish-subscribe messaging provides one-to-
many communication and is based on the concept of
topic: a message published by a JMS client to a topic is
received by all JMS clients that have subscribed to that
topic. Note that the publisher does not know the set of
subscribers.

Our proposal is to map the group communication API
to the JMS publish-subscribe paradigm. Thus in the next
paragraph we focus on this paradigm.

A. JMS Publish-subscribe

JMS specifies two types of subscriptions to the topic:
non-durableand durable. Consider a topic to which a
client has subscribed. With a non-durable subscription
the client receives messages published to the topic as
long as its connection to the server is active. The
connection can break (i.e., become inactive) for example
because of a link failure, or because of the crash of
the client. Messages published after the connection is
broken are not guaranteed to be received by the client.1

In contrast, durable subscriptions mask these failures.
Indeed, the client is ensured to receive all messages
that have been published to the topic it has subscribed
to, even if the connection is not permanently active.
Assume, for instance, that the client fails at timet1
(the failure breaks the connection) and recovers at time
t2. The JMS server keeps all the messages published
when the client connection was “inactive” (time interval
[t1, t2]), and delivers them to the client as soon as its
connection is “active” again.

Another JMS feature is themessage delivery mode,
which can bepersistent or non-persistent. Persistent
messages are stored by the JMS server on stable storage,
and provide guarantees to publishers in case of the
crash of the JMS server. If the JMS server receives a
persistent messages, it acknowledges the reception to
the publisher only after having stored the message on
persistent storage. Non-persistent messages, in contrast,

1If the connection is broken, the client can try to subscribe again
to the topic. Let us assume that the connection was broken at time
t1, and that a new subscription is received by the JMS server at time
t2. With non durable subscriptions, the messages published in the
interval [t1, t2] are not received by the client.



are not saved on persistent storage, and can thus be lost
if the JMS server crashes.

To summarize, as shown in Figure 2, subscription
durability specifies a property between (i) the JMS server
and (ii) topic subscribers, while persistence is related to
the communication between (i) the topic publisher and
(ii) the JMS server. Note that durable subscriptions only
make sense with persistent messages [16]. In the rest
of the paper, we refer to persistence/non-persistence and
durability/non-durability as quality of service (QoS).

JMS 
Client

JMS 
Client

Publisher Subscriber

JMS 
Server

{ {Persistent 
Non-Persistent

Durable 
Non-Durable

Fig. 2. Persistence vs. durability.

III. G ROUPCOMMUNICATION AND JMS:
PRELIMINARY CONSIDERATIONS

We now relate group communication and JMS seman-
tics to each other. We start with the mapping of groups
onto JMS topics.

A. Groups as JMS topics

Our basic idea is to representprocess groupsasJMS
topics:

• Members of a groupg correspond to the subscribers
of the corresponding topic.

• Broadcasting a message to the members ofg corre-
sponds to publishing the message to the correspond-
ing topic.

The idea of representing a group as a topic is quite
natural, since JMS uses the notion of a topic to indirectly
address a set of JMS clients. Note that representing the
group as a JMS queue is less natural, and raises the
following semantic issue: while multiple clients can read
from the same queue, onlyone client gets a particular
message (i.e., if clientc reads messagem, then client
c′ cannot readm). Queues are therefore not suited to
express the multicast semantics of group communication.

B. API Mapping

The next question to address is the mapping of
group communication primitives onto JMS methods,
more specifically onto the methods related to the publish-
subscribe paradigm. Clearly, the mapping is not always
possible, as some group communication concepts do not
exist in JMS.

There are two possible approaches here: (1) rely
strictly on the interfaces and standard mechanisms of-
fered by JMS, or (2) add new interfaces to JMS when
needed (e.g., for functionality specific to group commu-
nication). Both approaches have advantages and draw-
backs. Approach (1) has the important advantage not
to modify the existing JMS API, whereas approach (2)
violates JMS compatibility and thus might confuse de-
velopers familiar with JMS. On the other hand, approach
(1) might, for some features, not be very natural from
the perspective of group communication. Approach (2)
does not have this problem.

Consider the following example: in group communi-
cation systems, a group member can issue a request to
get the current group membership. JMS does not provide
an interface for this. So, approach (2) would lead to the
addition of a new JMS method to obtain a list of current
group members. Approach (1) requires to find another
solution.

We have chosen approach (1). By not extending the
JMS API for group communication, we believe that we
increase the acceptance of our proposal. In Section V,
we discuss the work-around that we propose, which are
a consequence of our choice to adopt approach (1).

C. Openvs. closed groups

In the context of group communication, it is some-
times required that the process that broadcasts a message
to a group is part of that group. This is called the
closedgroup model. In theopengroup model, no such
restriction exists.

In JMS a publisher does not have to be a subscriber to
publish to the topic. This corresponds to the open group
model. Since the open group model is more general
than the closed group model, it seems natural to adopt
this model for group communication based on the JMS
interfaces.

D. Mapping of persistentvs. non-persistent messages

The mapping of group communication primitives to
the JMS API is not the only problem that we need to
address. We also have to find a mapping for the JMS QoS
defined by the persistence/non-persistence of messages
and by the durability/non-durability of subscriptions. We
start with the persistence issue, and discuss the durability
issue in the next section.

Consider a JMS publisher that publishes messagem to
topic g. If m is persistent, and the publisher received an
acknowledgment from the JMS server, then the publisher
has the guarantee that messagem will not be lost, even
in case of the crash of the JMS server. In contrast, if
messagem is non-persistent, then it can be lost if the
JMS server crashes. Note that the loss ofm can happen
although the publisher does not crash.



If we transpose the second scenario in terms of
group communication, we have the following. Consider
a processp that broadcasts messagem to group g. If
the message is not persistent it can be lost, even ifp
is correct (i.e., does not crash). The message loss does
not happen if the message is persistent. In other words,
non-persistent messages provide what is usually called
best-effortguarantees, while persistent messages can be
seen as providing thestrong guarantees of a reliable
(logical) channel between the sender and the group. As
group communication traditionally provide more than
best-effort guarantees, we assume persistent messages in
the rest of the paper.

E. Mapping durablevs. non-durable subscription

How does the notion of durablevs. non-durable sub-
scriptions map to guarantees in the context of group
communication? This question is more difficult to ad-
dress than the question of persistence/non-persistence.
The reason is that the issue cannot be discussed without
referring to what happens to the processes that are
members of a group and crash.

In one commonly adopted group communication
model, processes that crash are eventually removed from
the group. Upon recovery, these processes take a new
identity before joining again the group. This model is
sometimes called thecrash-no recoverymodel: processes
that crash seem not to recover, since they recover under
a new identity. This model is for example the one of
the Isis system [3]. Note that, if a message is broadcast
to some groupg, the group communication system has
the obligation to deliver messages to members ofg,
but only to members ofg. So if a processp crashes,
and is eventually removed from the group, the group
communication system stops to have the obligation to
deliver messages top.

If we transpose this in terms of type of subscriptions,
we see that the crash-no recovery model can very nicely
be mapped to non-durable subscriptions, in which the
JMS server stops to have any obligation toward a sub-
scriber with respect to message delivery if the connection
is broken.

If the crash-no recovery model can be mapped to non-
durable subscriptions, what is the group communication
model that corresponds to durable subscriptions? With
durable subscriptions, even if the connection to a sub-
scriber is broken, the JMS server has the obligation to de-
liver messages to that subscriber. This can be interpreted
in the following way in terms of group communication.
Let p be a process member of groupg, and letp crash
at timet1, and later recover at timet2. Despite of being
down during the interval [t1, t2], processp delivers all
the messages broadcast to the groupg. In other words,
althoughp crashes, it is not removed from the group.

This means that the group communication system has
the obligation to deliver top all messages broadcast to
g, after p has became a member ofg. This model is
sometimes called thecrash-recoverymodel.

To summarize, durable subscriptions can be mapped
to a system model in which crashed processes are not
removed from the group. Non-durable subscriptions can
be mapped to a system model in which crashed processes
are eventually removed from the group.

F. Clientsvs. servers

The JMS architecture distinguishes between the JMS
server and JMS clients (see Fig. 1). In the context of
group communication, this distinction is rather unusual:
for example, the specification of group communication
talks only of what JMS callsclients. However, the topic
of the paper forces us to talk also of theJMS server.
Even if this is unusual, it has a positive consequence:

• It decouples explicitly theserver(s)that provide the
group communication service from theclients that
use the service. Note that this decoupling does not
prevent a process, in some implementation, to be at
the same time a client and a server. This special
case is often considered to be the standard case
in group communication algorithms. However, an
implementation is not forced to adopt this solution.
For example, an implementation of group commu-
nication could be based on one single (JMS) server.
Of course, such an implementation is not fault-
tolerant. Another implementation could be based on
multiple (JMS) servers, and so be fault-tolerant. Yet,
in another implementation, the same process could
be both a (JMS) server and a (JMS) client.

The reader should have the decoupling between clients
and servers clear in his mind, in order to avoid mis-
understanding some issues discussed in the paper. For
example, the distinction made above between crash-
recovery and crash-no recovery can apply both to (JMS)
clients, and to (JMS) servers. However, if one model is
chosen for (JMS) clients, this does not impose the same
model on (JMS) servers. Moreover, this paper is only
about specifications, which means that model issues,
discussed in the next section, refer only to (JMS) clients.

IV. SPECIFICATION OFGROUPCOMMUNICATION

The properties ensured by group communication are
always defined very rigorously, e.g. [25]. As discussed in
the previous section, JMS introduces some new features
from the point of view of group communication (for ex-
ample message persistence, durability of subscriptions),
which need to be mapped to the properties of group
communication. This has been discussed informally. We
explain now how these features can formally be inte-
grated into the specification of group communication.



We first recall some definitions, and then use them in
the specification of group communication. The specifica-
tion of group communication is split into two parts: (1)
the specification of thereliability guaranteesprovided
by the the broadcast primitive, and (2) the additional
ordering guaranteesthat can be superimposed on top
of the reliability guarantees provided by the broadcast
primitive. Since these two issues are orthogonal, we
discuss them separately.

A. Definitions

1) Correct and good processes:In this section, we
use the termprocessas synonym forJMS client. The
guarantees provided by group communication primitives
are related to the crash of processes. So, we need some
definitions. A process can beup or down. A process is
up if it is operational, and down if it has crashed. A
crashed process, after recovery, is again up. However,
the specification of group communication is not given
in terms of the status up/down of processes at a given
time. Instead, the specification refers to the status of
processover their whole execution. In this context,
many specifications of group communication consider
that processes do not recover after a crash.2 In this
model, a process that never crashes is said to becorrect
and a process that crashes is said to befaulty.

However, because of durable subscriptions, the dis-
tinction between correct and faulty processes is not
enough. We have to include in our specification the case
of processes that crash and later recover. As in [26], we
say that a process isgood if it is eventually always up,
i.e., if there is a timet such that aftert the process
is always up.3 So, a process that crashes only a finite
number of times, and recovers after each crash, is a good
process. Trivially, a process that never crashes (i.e., is
correct) is also a good process. Processes that are not
good are said to bebad.

2) Membership views:A process group corresponds
to a JMS topic. Processes can join a group by subscribing
to the corresponding JMS topic; they can leave the group
by unsubscribing from the corresponding JMS topic.
So, the membership of a group changes over time. In
group communication, the current group membership is
provided to the current group members. The information
about the current membership of the group is called the
group’sview (of the membership). So, as processes join
or leave some groupg, the membership ofg changes and

2This does not prevent a process from recovering after a crash.
However, the consequence is that a process that crashes must recover
under a new identity.

3It is usual in specification to have properties that are eventually
true forever. Actually, from a pragmatic point of view, it is sufficient
that the property holds “long enough”, where “long enough” depends
on the application.

the successive views ofg are provided to the processes
that are in these views (we say that the views are
delivered to the processes). We do not discuss here the
precise specification, we only assume that, for every
group g, its successive views are totally ordered: the
ith view of groupg is denoted byvi(g), or simply vi.
Moreover, we assume that, every processp delivers the
views (to which it belongs) in the index order (e.g.,
if i < j, processp delivers vi before vj). For every
process, the delivery of each new view is calledview
installation, or view change. Note that this specification
is calledprimary partition membership[27].

3) Broadcast vs. partial broadcast:The specifications
of group communication usually consider that the event
by which a process broadcasts a message isatomic,
either fully executed, or not executed at all. This is be-
cause it usually does not matter whether the process that
executes the broadcast has crashed during the execution
of the broadcast primitive, or after. In both cases, because
of the crash, there is no obligation for the message to be
delivered to the destination processes.

In the context of JMS, the situation is different. This is
related to the acknowledgment mechanism provided by
JMS (see Sect. III-D). With persistent messages,4 when
some publisher processp (or JMS client) has received
an acknowledgment from the JMS server, we have the
guarantee that the message is going to be delivered by
the destination processes,even ifp later crashes. This
leads us to distinguishbroadcastfrom partial broadcast.
Consider some processp that broadcasts (i.e., publishes)
messagem. If p receives the acknowledgment from the
JMS server, we say thatp hasbroadcastmessagem. If p
crashes before having received the acknowledgment, we
say thatp haspartially broadcast messagem. Indeed, if
no acknowledgment is received byp before the crash,
there is no guarantee that the message is received by the
JMS server.

The relation between these two notions and the spec-
ifications will become clear in the next paragraph.

B. Reliability guarantees of the broadcast primitive

We now formally define the guarantees provided by
the broadcast primitive. The properties are expressed in
terms ofbroadcastor partial broadcast, and deliver. 5

Delivery of some messagem is the event by which a
message is provided to a process (JMS client). We first
discuss the case of non-durable subscriptions, and then

4Recall that we have excluded non-persistent messages from our
discussion (Sect. III-D).

5We could definepartial deliver as well, but it does not influence
the specification.



the case of durable subscriptions.6 These specifications
are adapted from those in [28], which extends the
specification in [25] to the case of dynamic groups.

1) Non-durable subscriptions:We have explained in
Section III-E the link between non-durable subscriptions
and the crash/no-recovery model. So, in the case of
non-durable subscriptions, the specification distinguishes
between correct and faulty processes:

• (P1) Uniform Validity: If a process broadcasts mes-
sagem to the groupg, then somecorrect process
in g eventually deliversm, or no process ing is
correct.

• (P2) Uniform Agreement: If a processp delivers
messagem in view v, then all processes that are
correct in v eventuallydeliver m.7

• (P3) Uniform Integrity: For any messagem, every
process ing deliversm at most once, and only if
m was previously partially broadcast tog.

• (P4)Uniform Same View Delivery: If two processes
p andq deliver m, in view vi for p, and in viewvj

for q, theni = j.8

The Uniform Validity property (P1) is similar to the
one in [25]. It is the property that we need in the open
group model (Sect. III-C), i.e., the model in which the
process broadcasting a message to groupg does not need
to be a member ofg. Note that the property is uniform,
which means that the delivery is also ensured if the
sender crashes after the broadcast has been executed (see
discussion in Sect. IV-A.3).

The Uniform Agreement property (P2) requires agree-
ment on message delivery. While P1 requires that some
correct process delivers the message, P2 requires that if
some process (correct or not) delivers messagem, then
all correct processes also deliverm.

The Uniform Integrity property (P3) prevents the
delivery of duplicate messages. It also requires that the
delivery of messagem is justified by a corresponding
partial broadcast ofm. Note that a partial broadcast of
m is enough to justify the delivery ofm. If a process
broadcastsm, and crashes during the broadcast, message
m is allowed to be delivered.

The Uniform Same View Delivery property (P4) re-
quires that all processes deliver messagem in the same
view. This is a standard property in the context of group
communication. The property is sometimes replaced by
a stronger property, calledSending View Delivery[27].

6To simplify the specifications, we assume here that all members
of some groupg have the same QoS for the subscription: either all
have durable subscriptions, or all have non-durable subscriptions.

7The notion ofcorrect in a viewis explained in [28]. It is out of
the scope of this paper to discuss this here.

8We say that processp delivers messagem in view vi, if the current
view of p is vi whenm is delivered.

However, sending view delivery does not make sense in
the open group model.

2) Durable subscriptions:In Section III-E we have
discussed the link between durable subscriptions and the
crash/recovery model. In the case of durable subscrip-
tions, a processp that crashes at timet1 and recovers
at time t2, after recovery is expected to deliver all
messages it has missed in the interval [t1, t2]. This
requirement can only be expressed if the specification
distinguishes between good and bad processes (and not
only between correct and faulty processes, as for non-
durable subscriptions).

So, for durable subscriptions, we simply replacecor-
rect by goodin the properties P1-P4 above (actually only
in P1 and P2, since P3 and P4 do not refer to correct
processes).

A comment is needed here for the reader familiar with
the group communication literature. In most existing
group communication systems, if processp crashes while
in some viewvi, thenp is removed from the group. This
means that a new viewvi+1 is defined, from whichp is
excluded. Ifp later recovers, and requests to join again,
then a new viewvi+2 is defined, which includesp again.
In this case, all messages delivered in viewvi+1, will not
be delivered byp. We assume here a different behavior:
a processp that crashes and later recovers, remains a
member of the group, even while being down. A process
is removed from the group only as a result of an explicit
request to leave the group (i.e., unsubscription from the
corresponding topic). This is the behavior that users
familiar with JMS expect from a durable subscription,
and would be surprised not to have similar guarantees in
the context of group communication.

C. Ordering guarantees of the broadcast primitive

After the specification of the reliability guarantees,
we specify now additional ordering guarantees for the
delivery of messages. Traditionally, the choice is be-
tween no ordering requirement (which is calledreliable
broadcast), and total order (calledatomic broadcast).9

There is however a more general and elegant solution;
the solution consists in using the group communication
primitive calledgeneric broadcast[29]. Generic broad-
cast orders messages according to aconflict relation.
Generic broadcast ensures that two messages that con-
flict are delivered in the same order everywhere. Two
messages that do not conflict, do not need to be ordered.

Reliable broadcast (no order) and atomic broadcast
(total order) are special cases of generic broadcast.
Reliable broadcast corresponds to the case where no
messages conflict. Atomic broadcast corresponds to the

9We do not discuss causal order here.



case where all messages conflict. Moreover, we can
define that all messages tagged “reliable broadcast”
conflict with all messages tagged “atomic broadcast” (see
Table I). This ordering guarantee, which is very useful as
illustrated in [30], [29], is not provided by the traditional
approach.

TABLE I

MESSAGE CONFLICT RELATION BETWEEN RELIABLY AND

ATOMICALLY BROADCAST MESSAGES

Reliable 
Broadcast

Atomic 
Broadcast

Reliable
Broadcast

Atomic
Broadcast

Message m

M
es

sa
ge

 m
′

conflict

conflictno conflict

conflict

The ordering guarantee of generic broadcast can be
adapted from [28] as follows:

• (P5)Uniform Generic Order:If some process deliv-
ers messagem in view v before it delivers message
m′, and the two messagesm, m′ conflict, then every
processp that is in viewv deliversm′ only after it
has deliveredm.

Note that, the specification (P5) is the same for non-
durable and durable subscriptions.

For a processp that broadcasts a message to the group
g, the “generic broadcast” approach has the following
consequence. Instead of choosing a broadcast primitive
(reliable broadcast or atomic broadcast), processp sim-
ply tags its message with one of the tags defined for
group g (there can be more than just two tags). The
corresponding conflict relation is attached to the group,
and defined at group creation time.

V. M APPING GROUPCOMMUNICATION API
TO JMS API

This section describes the JMS compliant API that
we propose as an interface for group communication.
We map group communication primitives onto JMS
methods. As already said in Section III-B, the mapping
is not always possible, since some group communication
concepts do not exist in JMS. In these cases, we have to
find the best work-around.

As mentioned in Section III, there are two possible ap-
proaches: (1) rely strictly on the interfaces and standard
mechanisms offered by JMS, or (2) add new interfaces to
JMS when needed. Since we decided to follow the first
approach, we have to find the solutions for problems
such as providing views in JMS to group members.
Fortunately, JMS provides one extension mechanism:

JMS allows messages to have arbitrary “properties”
attached to them. Using this feature, we can for example
attach membership information to messages (see below).

Using the same technique, we can map all the group
communication primitives to the existing JMS API, and
remain fully compliant with the JMS API.

TABLE II

JOIN AND LEAVE RESTRICTIONS RELATED TOJMS

p can request join q

p can request leave q

Non-durable 
Subsription

Durable 
Subsription

no no
no yes

Nevertheless, there is one problem that cannot be
solved using message properties. The problem is related
to the requests to join and to leave a group. Join is
mapped to the method to subscribe to a topic, and leave
to the method to unsubscribe to a topic. The JMS API
does not allow a clientp to request a subscription for
another clientq. In group communication systems, a
processp can usually issue a request to add another
processq to the group. The same problem arises for the
leave primitive, in the case of non-durable subscriptions.
A JMS clientp cannot close the non-durable subscription
of another clientq (this is possible for durable subscrip-
tions). In group communication systems, a processp
can usually issue a request to remove another process
q from the group. So, we have to restrict our join and
leave group communication primitives to match the JMS
interface. The restrictions are summarized in Table II.

A. JMS Classes

We represent groups as JMS topics and group mem-
bers as the subscribers to these topics. So, in terms of the
JMS API, on the client side a group has an associated
TopicSession instance, and each member of the group
has an instance of the classTopicSubscriber (Fig. 3).
The classTopicPublisher is used to broadcast messages.
Remember that the JMS model implies anopen group
model (see Sect. III-C): senders do not have to be
part of the group to broadcast messages to it. Message
reception can be done either (1) by calling a method of
the classTopicSubscriber (the call can be blocking if no
message is available, or can return immediately), or (2)
by registering a callback. The callback is provided by
the interfaceMessageListener (Fig. 3).

B. JMS Methods

We divide the JMS methods into two basic categories:
administrative methodsand communication methods.
Administrative methods are used to set up groups, and



ReceiverSender

Application

Topic
Publisher

Message
Listener

Topic 
Subscriber

publish() onMessage()

Topic
Session

Topic
SessionMessages

Fig. 3. JMS Classes.

are in general used during the setup phase of the pro-
gram. Communication methods represent the interface,
used for actual communication, i.e., broadcasting and
delivering messages. Administrative methods and com-
munication methods can further be characterized asdown
calls orup calls. Down calls correspond to usual method
calls, and up calls correspond to callbacks. Table III
summarizes the API mapping, which is now discussed
in more details.

1) Communication methods:
a) broadcast(g,m):Thebroadcastprimitive sends a

message to all members of a group. In order to broadcast
a messagem to some groupg, a client simply calls the
method publish(m) on the instance of theTopicPublisher
class that corresponds tog. The client uses the same
interface to send messages, regardless of the type of
ordering properties he expects (order or no order). The
ordering constraints are defined by the message conflict
relation (see Sect. IV-C), and the client just needs to
attach the appropriate tag to each message.

b) deliver(g,m) — down call:In order to deliver a
message broadcast to groupg, a client simply calls the
methodreceive() on the the instance of theTopicSubscriber
class that corresponds tog. The call is blocking if no
message is available. Note that another non blocking
method, calledreceiveNoWait(), is also available.

c) deliver(g,m) — up call:In order to deliver a
message broadcast to groupg, a client can also register
a callback. A callback is provided by the interfaceMes-
sageListener. When a messagem is available for delivery,
the methodonMessage(m) is automatically called.

d) viewChange(g,m):Traditionally group commu-
nication systems have a special call to notify of a view
change. However, JMS has no such interface. On the
other hand, JMS specifies messageheaders and, as
mentioned earlier, allows the attachment ofproperties
to messages. So, a simple solution is to consider that
delivering a new viewv for group g is like delivering
a messagem for group g. A “view” message is dis-
tinguished from a “normal” message by its“JMSType”

header. A “view” message has the header“JMSType” set to
the value“new-view”, and has a property called“JMS view”
with a value equal to the new view.

Like for normal messages, a view change message can
be received either by a down call, or through an up call
(callback).

2) Administrative methods:
a) createGroup(g): Creating a new group corre-

sponds to creating a new JMS topic. Topic creation
is outside of the scope of the JMS specification. Each
implementation will provide its own mechanism for
creating topics (groups).

b) setMessageConflictRelation(g,conflict):As for
the creation of groups, the specification of the message
conflict relation for some groupg must be handled
outside of the JMS API. This is done at group creation
time.

c) joinGroup(g) — non-durable subscription:As
explained before, we have to restrict our group com-
munication primitive for joining a group: a process
can only add himself to the group. For non-durable
subscriptions, the client calls the methodTopicSes-
sion.createSubscriber(g), whereg is the topic.

d) joinGroup(g,processName) — durable subscrip-
tion: Joining a group with durable subscription re-
quires an additional parameter, namely theprocessName.
In JMS, this parameter is used to uniquely iden-
tify a durable subscription, and must be unique per
JMS server. So, to join a group with a durable
subscription, the client calls the methodTopicSes-
sion.createDurableSubscriber(g,processName), where g is
the topic.

e) leaveGroup(g) — non-durable subscription:We
also have to restrict the group communication primitive
for leaving a group: a process can only remove himself
from the group. For non-durable subscriptions, the client
calls the methodclose() on the instance of theTopicSub-
scriber class that corresponds tog.

f) leaveGroup(g,processName) — durable sub-
scription: For the durable subscriptions, JMS allows
a client to unsubscribe another client (see Table III).
To remove a client from the group, the client calls the
methodTopicSession.unsubscribe(processName). Note that
TopicSession is not necessary associated with some topic,
which implies thatprocessName must be unique not only
in the group, but in the whole system.

g) getGroupView(m):Traditionally, group commu-
nication systems have a call to get the current mem-
bership (i.e., view) of the group. JMS does not have
such an interface. As already said in the context
of the viewChange method, messages in JMS can
have various “properties”. Like for “view” messages,



TABLE III

GROUP COMMUNICATION INTERFACE ANDJMS METHODS

Primitive JMS method Direction Note
Communication methods

broadcast(g, m) TopicPublisher.publish(m) down broadcasts a message
deliver(g, m) m = TopicSubscriber.receive() down delivers a message
deliver(g, m) MessageListener.onMessage(m) up delivers a message
viewChange(g ,m) m = TopicSubscriber.receive() with message

headerJMSType=”new-view”
down notification of view change

viewChange(g ,m) MessageListener.onMessage(m) with mes-
sage headerJMSType=”new-view”

up notification of view change

Administrative methods
createGroup(g) outside of the scope of JMS API creation of a new group
setMessageConflictRelation(g , conflict) outside of the scope of JMS API definition of the message con-

flict relation for groupg
joinGroup(g) TopicSession.createSubscriber(g) down add myself to the group (non-

durable subscription)
joinGroup(g , processName) TopicSession.createDurableSubscriber(g,

processName)
down add myself to the group

(durable subscription)
leaveGroup(g) TopicSubscriber.close() down remove myself from the group

(non-durable subscription)
leaveGroup(g , processName) TopicSession.unsubscribe(processName) down remove a process from the

group (durable subscription)
getGroupView(m) m.getStringProperty(”JMS view”) down Returns the view in which mes-

sagem was delivered.

we propose to attach to ordinary messages the prop-
erty “JMS View”, whose value is the view in which
the message was delivered. So, calling the method
m.getStringProperty(“JMS View”) returns the view in which
messagem was delivered. To get the current view,
the client must call this method on the last message
delivered, where the last message is either an “normal”
message, or a “view” message.

VI. RELATED ISSUES

In this section, we discuss some additional issues
related to JMS.

A. Message Priorities

In Section IV, we have defined the ordering property
P5. The JMS specification defines an additional mecha-
nism that may affect message ordering, namely message
priorities. JMS allows the client to associate priorities
to the messages it sends. The JMS specification does
not require strict enforcement of guarantees with respect
to priorities (it says that an implementation should do
its best to respect message priorities). So, priorities can
be completely ignored. However, for some applications,
priorities can be useful.

Note that the priority mechanism is orthogonal to
the order property P5. Message delivery can be ordered
according to priorities, as long as this does not lead to
the violation of property P5.

B. Subscription Notifications

The JMS specification defines another mechanism
called subscription notification. This mechanism allows
a publisher (once it has registered to this notification
service) to be notified when there are no subscribers,
and when there are subscribers again.

The mechanism cannot be used for group communica-
tion, to provide the group membership information (e.g.,
the views). This is because, the mechanism provides
information to publishers, whereas, in group communi-
cation, the view change information must be provided to
the group members (subscribers).

VII. C ONCLUSION

In this paper we have discussed the mapping of the
features provided by group communication onto the
standard JMS interface. We propose a JMS compliant
API for group communication, as well as a specification
for group communication that takes into account the
quality of service defined by JMS (message persistence
and durability of subscriptions).

As the interface looks familiar to JMS developers,
we hope that our proposal will contribute to a wider
use of the group communication abstractions, and that
group communication will become an integral part of
future applications. In order to validate our API and
specifications, we have started to build a prototype.



Acknowledgments.We would like to thank Sam Toueg
for discussions related to the specification of group
communication.

REFERENCES

[1] D. R. Cheriton and W. Zwaenepoel, “Distributed process groups
in the V kernel,” ACM Transactions on Computer Systems
(TOCS), vol. 3, no. 2, pp. 77–107, May 1985.

[2] K. P. Birman and T. Joseph, “Exploiting virtual synchrony
in distributed systems,” inProc. of 11th ACM Symposium on
Operating Systems Principles, 1987, pp. 123–138.

[3] K. P. Birman, “The process group approach to reliable dis-
tributed computing,”Communications of the ACM, vol. 36, no.
12, pp. 37–53, 1993.

[4] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C.
Little, “The design and implementation of Arjuna,” Tech. Rep.
TR94-65, ESPRIT Basic Research Project BROADCAST, 1994.

[5] C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm, “Phœnix:
A toolkit for building fault-tolerant distributed applications in
large scale,” inWorkshop on Parallel and Distributed Platforms
in Industrial Products, San Antonio, Texas, USA, 1995, IEEE,
Workshop held during the7th Symposium on Parallel and
Distributed Processing, (SPDP-7).

[6] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: A
flexible group communication system,”Communications of the
ACM, vol. 39, no. 4, pp. 76–83, 1996.

[7] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia,
and C. A. Lingley-Papadopoulos, “Totem: a fault-tolerant
multicast group communication system,”Communications of
the ACM, vol. 39, no. 4, pp. 54–63, 1996.

[8] D. Dolev and D. Malki, “The Transis approach to high
availability cluster communication,” Communications of the
ACM, vol. 39, no. 4, pp. 64–70, 1996.

[9] A. Baratloo, P. E. Chung, Y. H. Huang, S. Rangarajan, and
S. Yajnik, “Filterfresh: Hot replication of java RMI server
objects,” in Proceedings of the4th Conference on Object
Oriented Technologies and Systems (COOTS), Santa Fe, New
Mexico, USA, 1998, USENIX, pp. 59–63.

[10] K. P. Birman, R. Constable, M. Hayden, C. Kreitz, O. Rodeh,
R. van Renesse, and W. Vogels, “The Horus and Ensemble
projects: Accomplishments and limitations,” inProceedings of
the DARPA Information Survivability Conference & Exposition
(DISCEX ’00), Hilton Head, South Carolina USA, 2000.

[11] Mark Hayden, “The Ensemble system,” Technical Report
TR98-1662, Department of Computer Science, Cornell Univer-
sity, Jan. 8, 1998.

[12] H. Miranda, A. Pinto, and L. Rodrigues, “Appia: A flexible
protocol kernel supporting multiple coordinated channels,” in
Proceedings of the21st International Conference on Dis-
tributed Computing Systems (ICDCS-01), Phoenix, Arizona,
USA, 2001, pp. 707–710, IEEE Computer Society.

[13] M. A. Hiltunen and R. D. Schlichting, “The Cactus approach
to building configurable middleware services,” inProceedings
of the Workshop on Dependable System Middleware and Group
Communication (DSMGC 2000), Nürnberg, Germany, 2000.

[14] IBM Corp., MQSeries Application Programming Guide, New
Orchard Road, Armonk, NY 10504 USA, 11 edition, 2000,
SC33-0807-10.

[15] “BEA Tuxedo: The programming model,” white paper, BEA
Systems, 315 North First Street, San Jose, CA 95131 USA,
Nov. 1996.

[16] M. Hapner, R. Sharma, J. Fialli, and K. Stout, JMS
specification, Sun Microsystems Inc., 4150 Network Cir-
cle, Santa Clara, CA 95054 USA, 1.1 edition, April 2002,
http://java.sun.com/products/jms/docs.html.

[17] M. Wiesmann, X. D́efago, and A. Schiper, “Group communi-
cation based on standard interfaces,” inProceedings of the
IEEE International Symposium on Network Computing and
Applications (NCA-03), Cambridge, MA, USA, 2003, pp. 140–
147.

[18] P. Felber, The CORBA Object Group Service: A Service
Approach to Object Groups in CORBA, Ph.D. thesis,École
Polytechnique F́ed́erale de Lausanne, Switzerland, 1998.

[19] P. Narasimhan,Transparent Fault Tolerance for CORBA, Ph.D.
thesis, University of California, Santa Barbara, USA, September
1999.

[20] R. Baldoni, C.Marchetti, and A.Termini, “Active Software
Replication through a Three-tier Approach,” inProoceedings of
the 21st Symposium on Reliable Distributed Systems (SRDS’02),
Osaka, Japan, October 13-16 2002, pp. 109–118, IEEE.

[21] S. Maffeis, “Adding group communication and fault-tolerance
to corba,” in USENIX Conference on Object-Oriented Tech-
nologies, 1995.

[22] M. Pasin, M. Riveill, and T. S. Weber, “High-available en-
treprise JavaBeans using group communication system support,”
in Proceedings of the European Research Seminar on Advances
in Distributed Systems (ERSADS2001), Bologna, Italy, 2001.

[23] P. Laumay, E. Bruneton, N. de Palma, and S. Krakowiak,
“Preserving causality in a scalable message-oriented middle-
ware,” in Proceedings of the Middleware 2001 : IFIP/ACM
International Conference on Distributed Systems Platforms,
Heidelberg, Germany, November 2001, vol. 2218, pp. 311–329,
Lecture Notes in Computer Science, Springer Verlag.

[24] B. Shannon, Java 2 Enterprise Edition specification, Sun
Microsystems Inc., 4150 Network Circle, Santa Clara, CA
95054 USA, 1.4 edition, April 2003.

[25] V. Hadzilacos and S. Toueg, “A modular approach to fault-
tolerant broadcasts and related problems,” Tech. Rep. TR94-
1425, CS, University of Toronto; CS, Cornell University, May
1994.

[26] M. Aguilera, W. Chen, and S. Toueg, “Failure detection and
consensus in the crash-recovery model,”Distributed Comput-
ing, vol. 13, pp. 99–125, 2000.

[27] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communi-
cation specifications: A comprehensive study,”ACM Computing
Surveys, vol. 4, no. 33, pp. 1–43, December 2001.

[28] A. Schiper, “Dynamic Group Communication,” Tech. Rep.
ID:200327,École Polytechnique F́ed́erale de Lausanne (EPFL),
2003.

[29] F. Pedone and A. Schiper, “Handling message semantics with
generic broadcast protocols,”Distributed Computing, vol. 15,
no. 2, pp. 97–107, 2002.

[30] S. Mena, A. Schiper, and P. Wojciechowski, “A Step Towards
a New Generation of Group Communication Systems,” in
Proceedings of the Int. ACM/IFIP/USENIX Middleware Confer-
ence, Rio de Janeiro, Brazil, June 2003, LNCS 2672, Springer-
Verlag.


