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Abstract— Ad hoc networks are expected to be used
in a number of very different situations. But a common
characteristic is that the nodes have to cooperate with each
other. This problem is particularly crucial, if each node is
its own authority. Reckoning the relevance of this issue,
several groups of researchers have proposed differentin-
centive mechanisms, in order to foster cooperation between
the nodes, notably for packet forwarding. However, the
need for these incentives was not formally justified. In
this paper, we address the problem of cooperation without
incentive mechanisms and propose a simple model based
on game theory. We then prove several theorems about the
equilibrium conditions in a simple scenario. We investigate
by simulation a more realistic scenario, which includes a
real network topology as well as a mobility model. We
show that the level of contribution of the nodes to reach
cooperation is much higher than in the theoretical model,
and we quantify the relationship between mobility and
cooperation. We conclude that spontaneous cooperation is
easier to reach when mobility is higher.

I. I NTRODUCTION

Ad hoc networks have the potential to increase the
flexibility of wireless communication systems. They,
however, also require novel operating principles. In
particular, due to the absence of fixed infrastructure,
most of the functions (routing, mobility management, in
some cases even security) must rely on the cooperation
between the nodes.

The most fundamental of these functions is packet
forwarding. Cooperation is straightforward if all the

nodes are under the control of a single authority, as
is usually the case in military networks or for rescue
operations: in these cases, the interest of the mission by
far exceeds the vested interest of each participant.

However, if each node is its own authority, the sit-
uation changes dramatically: The most reasonable as-
sumption is then to consider that each node will try
to maximize the benefit it gets by using the network,
even if this means adopting a selfish behavior. This
selfishness can mean not participating in the unfolding
of mechanisms of common interest, notably to spare
resources, including battery energy.

Over the last few years, several researchers have
proposed incentive techniques to encourage nodes to
collaborate, be it by circumventing misbehaving nodes
[20], by making use of a reputation system [5], [21],
or by relating the right to benefit from the network
to the contribution to the common interest of a node
provided thus far [7]. These proposals have been based
on heuristics, and are therefore rather difficult to compare
with each other.

Very recently, Srinivasanet al. [27] have proposed a
formal framework, based on game theory, to study coop-
eration without incentives. They have identified the con-
ditions under which cooperation is a Nash-equilibrium1.
In order to do this, their system model is quite simple:
For each connection to be set up, they randomly select

1In a Nash-equilibriumnone of the nodes can increase its utility
by unilaterally changing its strategy.
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several nodes to be part of it; as a result, their approach
does not take the topology of the network into account
(we discuss their work in more detail in Section VI).

Our own approach has essentially the same goal as
this seminal work; however, we believe that the network
topology is important, and we therefore include it in our
model. In a previous work [10], we have already studied
thestaticcase, meaning that we have assumed that nodes
do not move. We have identified the network topologies
under which cooperation can be an equilibrium, and we
have shown that the likelihood for these topologies to
exist is extremely small.

In this paper, we pursue exactly the same ambition,
but we now consider that the nodes can move. As a
consequence, we have to adopt a different model. Due
to the complexity of the problem, we deliberately devote
a substantial part of the paper to a simplified scenario
(all nodes are located - and shuffled - on a ring). In
this way, we are able to formulate and to prove several
theorems. Then, by means of simulations, we study the
more general (and more realistic) case where the nodes
move on a plane; thus, we can easily assess to what
extent the situation differs from the ring scenario.

Our main contribution is to show that cooperative
Nash-equilibria are much more likely to happen with
mobile than with static nodes. In addition, we quantify
how much “generosity” the nodes should grant in order
to make these equilibria feasible.

The work presented in this paper is part of the Ter-
minodes project [13]. The rest of the paper is organized
as follows. In Section II we introduce a game theoretical
model for packet forwarding. In Section III and IV we
present our analytical results for connections with a
single relay and multiple relays, respectively. Section V
contains our simulation results for the ring and for a
more realistic scenario. We give an overview of the
related work in Section VI and conclude the paper in
Section VII.

II. M ODELING PACKET FORWARDING AS A GAME

A. System model

We assume a network ofN nodes. Each node uses
an omnidirectional antenna with the same radio range.
Hence, there is a bidirectional communication link be-
tween two nodes if they reside within the radio range of
each other.

We assume that the packets are sent via multiple
nodes that are expected to relay the packet. We call
a connection the communication path defined by the
source, the relays and the destination. We assume that
each node is the source of one connection. We also

assume that the connections last for the duration of the
game. The study of routing behavior is out of the scope
of this paper, so we assume an ideal routing protocol that
establishes a connection between a given source and a
given destination.

We assume an end-to-end mechanism that enables
a source to detect the loss of a packet (e.g., at the
transport layer), hence, we do not require an additional
acknowledgement from the relays to the source. This
means that the source can observe the fact that a packet is
lost, but it cannot tell where, when and how it happened.

We introduce the following notation to identify our
investigation scenarios:

Scenario-xR

whereScenariostands for the given scenario andx (or
x̄) stands for the constant (or average) number of relays
of each connection.

B. Game theoretical model

In this section we present a game theoretical frame-
work to investigate the conditions of cooperation for
packet forwarding. We model packet forwarding as a
game of infinite duration, where each node as a player
interacts with the rest of the network (the concept is
shown in Figure 1). It is important to mention that in
our approach, the node interacts with the rest of the
network without identifying the players it interacts with.
In this way, we avoid the problem of authentication of
nodes (authentication in ad hoc networks is still an open
research problem).

i
Network

Benefit

Contribution

Fig. 1. The abstract representation of the game: any node (denoted
by i) plays with the rest of the network

If a node runs out of energy, it is removed from
the network. We assume that the nodes are not able to
estimate at the beginning of the game when the game
ends for them, because their energy usage depends on the
particular unfolding of the game. Thus, we assume that
a node perceives the game as being of infinite duration.
An adaptive strategy that takes the current battery level
into account during the game is part of our future work.
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In our model, we assume that the source benefits from
the arrival of a packet at the destination. But the model
can be adapted to the case in which the destination
benefits if a packet successfully arrives at it.

We split up the time in discrete steps. At the end of
each time step (denoted byk), each node evaluates the
results of its interaction with the network in the following
way.

Each node maintains two variables, which are the basis
for its strategy function:

• βi(k) represents2 the number of packets until stepk
that were originated at nodei and were successfully
received at the destinations. This number represents
the benefitfor the node.

• γi(k) represents the number of packets until step
k that node i forwarded for other nodes. This
number represents thecontributionof nodei to the
operation of the network.

We define theinteraction ratio at stepk as the ratio
of these two values (ρi(k) = βi(k)

γi(k) ). If γi(k) = 0, we set
ρi(k) = Ω, whereΩ is an arbitrarily large number with
Ω < ∞.

Each node decides for each packet whether to forward
it or not, using its own strategy. The strategy of nodei
is defined in the following way:

• The initial step of nodei (for the valueρi(0)) is:
Forward or Drop

• For each subsequent packet:

– If ρi(k) ≥ κi, then Forward.
– Otherwise, Drop.

The valueκi is a constant that characterizes the
strategy of nodei.

In Table I, we show that specific values ofκi corre-
spond to strategies identified in the literature of game
theory [2]. In particular, we callTFT the strategy that
imposes the benefit for nodei to be equal to its contri-
bution to the network (taking into account the average
number of relaying nodes (¯̀) on its connections).

Strategy Initial step κi

AllD (always defect) Drop ∞
AllC (always cooperate) Forward 0
TFT (Tit-for-Tat) Forward 1

¯̀

TABLE I

THREE HIGHLIGHTED STRATEGIES

In principle, a node could decide to update its behavior
after each packet processing; however, this would be

2We provide the list of symbols used in this paper in the appendix
in Table V.

too fine grained. Therefore, we assume that a node
reconsiders its decision only at the end of each step.
This means that we evaluate simultaneously all packets
that the node sends and relays in each step.

We define two constants for each node: (i)Bi stands
for the benefit from a single packet for nodei, if
the packet reaches the destination and (ii)Ci is the
forwarding cost at nodei for a single packet. For the
sake of simplicity, we assume thatBi = B, ∀i (i.e., each
node enjoys the same benefit if a packet successfully
goes through) andCi = C,∀i (i.e., each node suffers
the same cost for each packet it forwards).

In this paper, we assume that the overall utility of the
node is linearly dependent of the benefit of the node. The
aim of each node is to maximize its expected average
utility per step over an infinite game:

max{ lim
k→∞

E[Ūi(k)]} (1)

where

Ūi(k) =
B · βi(k)− C · γi(k)

k
(2)

The node can maximize its utility by decreasing
its contribution. However, this might not be beneficial,
because this selfish behavior might negatively affect the
behavior of other nodes that might be relays for the
considered node.

In our model, each source sends a small amount of
information at each step that corresponds to a unit of
information. For better understanding, we refer to this
unit of information as apacket3.

In order to mimic mobility, at the end of each step, we
randomly shuffle the nodes on the ring. We assume that
the time for a topology change is much higher than the
time to send a packet from the source to the destination.
Thus, the network is considered to be static during the
sending of a single packet.

In the following sections we provide analytical and
simulation results for the cooperation of nodes in differ-
ent scenarios.

III. A NALYSIS OF NASH-EQUILIBRIA WITH A SINGLE

RELAY

To illustrate our approach, we begin with the analysis
of a simple and deliberately unrealistic scenario.

3Note that our concept ofpacket is general in the sense that it
does not correspond to any specific protocol packet, but it contains
a given number of protocol packets. The number of protocol packets
is limited by the fact that the time to send apacketmust be much
shorter than the time for topology change.
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A. Investigation scenario

We assume that the nodes are organized in a ring
(an example network with four nodes is shown in Fig-
ure 2). Each node is the source of one connection. We
also assume that each connection has one relay (i.e.,
` = 1), which is the next node in clockwise direction
from the source (according to our notation introduced
in Section II-A, this scenario isRing-1R). In general,
we assume thatB > C (meaning that the node has a
“natural” incentive to send packets).

Fig. 2. A ring network with four nodes and four connections. Each
node is a source of one connection and each connection has one relay.

B. Equilibrium of TFT strategies

In the following we show that nodes playing the TFT
strategy constitute a scenario with stable cooperation.

If any nodei drops a packet, then there will be a node
r whose packet does not arrive. Concerning the balance
of the packets sent and forwarded in the network, this
means that every nodej 6= r will have ρj = 1. Since
node r forwards in this step, its interaction ratio will
drop below the strategy constant (ρr ≤ κr = 1). In the
next step it drops a packet and its interaction ratio will
be again equal to one (ρr = κr = 1). Now, another
node’s interaction ratio decreases below one. Because
every node applies the TFT strategy, this packet dropping
behavior propagates through the network until it gets
back to nodei. We refer to this propagation as the
contaminationof the defection, in the rest of the paper.

Lemma 1: In Ring-1R, if any nodei defects once (and
otherwise always cooperates) and all other nodesj 6=
i permanently play TFT (κj = 1)4, then the defection
affects nodei in expectedlyN − 1 steps (meaning its
benefit is reduced because of its own defection).

We provide the proof of the lemma in the appendix.
Our aim is to identify the number of defections of a

given nodei that are beneficial for it. If this number
is equal to 0, it means that it is better for nodei to
never defect. Let us denote byx(k) the number of packets

4Note that the number of relays is one in the considered case.

dropped by nodei until stepk. We denote byy(k) the
number of packets that were generated at nodei and
were dropped by other nodes until stepk.

We refer to nodes that play a strategy whose output is
independent of the input assinks. Nodes playing AllC
or AllD are examples of sinks. These nodes do not
propagate defections. In our approach, we want to define
a sequence of actions that result in the highest benefit
for node i, thus we assume that its output isa priori
independent of its input. Thus, we consider nodei as a
sink.

Because we assume that every node except nodei
plays TFT, all the defections in the network are conse-
quences of defections done by nodei. The number of
propagating defections in the network (denoted byc(k))
is given by:

c(k) = x(k)− y(k) (3)

Since there are N nodes in the network, we can state
that:

E[c(k)] ≤ N − 1 (4)

This means that the number of propagating defections
is upper bounded by the number of nodes on the ring
excluding nodei.

Lemma 2: In Ring-1R, if node i defects a finite
number of times (and otherwise always cooperates) and
all other nodesj 6= i play TFT (κj = 1), then
limk→∞E[c(k)] = 0.

The proof of the lemma is provided in the appendix.
Now let us formulate a theorem for cooperation for a

single node:
Theorem 1:In Ring-1R, if every nodej 6= i plays

TFT, then the best strategy for nodei is a strategy that
results in full cooperation (meaning a strategy withκi ≤
1).

For the proof the user is referred to the appendix.
Since TFT results in full cooperation in this specific
scenario, we can state the following corollary.

Corollary 1: In Ring-1R, if every node plays TFT, it
is a Nash-equilibrium.

C. Other Nash-equilibria

Now we focus on the following question: If some of
the nodes choose the strategy AllC instead of TFT, does
it undermine the Nash-equilibrium among the nodes?

Theorem 2:In Ring-1R, if s nodes play AllC and the
other nodes play TFT, it is a Nash-equilibrium ifB

s > C.
Because of space limitations we provide only the

sketch of the proof as follows. If any nodei defects
in the network, then this defection is sunk by any of
the AllC players or by the node itself. Because of the
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random shuffling used in the scenario, the proportion of
the defections that affect nodei is:
• 1

s−1 , if node i belongs to the AllC players, and
• 1

s , if node i belongs to the TFT players.
This fraction of the defections causes a reduction in
the benefit of nodei. This expected reduction must be
greater than the cost a node is able to save.

We finally mention the “worst case” situation in the
following theorem:

Theorem 3:In Ring-1R, if every node plays AllD,
then it is a Nash-equilibrium.

The proof is trivial: In this case a node does not receive
any benefit, no matter what strategy it plays. Hence, it
is beneficial for it to defect as well.

IV. COOPERATION WITH MULTIPLE RELAYS

Now we extend our analysis for connections with
several relays, still considering the nodes placed on a
ring. We assume that each node is a source of one
connection. Each connection has exactly` relay nodes
(i.e., we denote the scenario byRing-̀ R). We also
assume thatB > ` · C.

As an example, let us assume that the number of relays
on each connection is two. Thus, each nodei has two
relay nodes that are the two nodes clockwise from node
i (an example is presented in Figure 3).

i

Fig. 3. Ring of nodes with an example connection from nodei
(` = 2 in this case)

As in the previous case, at the end of each step, we
randomly shuffle the nodes on the ring. We assume that
the number of relays (`) is a known parameter for each
node.

Theorem 4:In Ring-̀ R, if every node except nodei
plays TFT, then the best strategy for nodei is a strategy
that results in full cooperation (play TFT as well, or an
even more generous strategy (κi ≤ 1

` )).
The proof is provided in the appendix.
From this theorem we can conclude that:
Corollary 2: In Ring-̀ R, if every node plays TFT, it

results in a Nash-equilibrium.

If some of the nodes play AllC, then they might be
a sink for the contamination. We can now formulate a
theorem for sinks in the multi-hop relaying case.

Theorem 5:In Ring-̀ R, if s nodes play AllC and the
rest of the nodes except nodei play TFT, then the best
strategy for nodei (i does not belong to the set of AllC
players) is to always cooperate ifs < `.

The proof of the theorem is provided in the appendix.
Corollary 3: In Ring-̀ R, if s nodes play AllC in the

network, wheres < ` and the other nodes play TFT,
then it is a Nash-equilibrium.
The corollary expresses that the cooperative equilibrium
is resistant to the phenomenon ofdrift [12], provided
that the number of sinks is below a threshold given by
the number of relays at the connections.

Note that the above mentioned analysis does not
apply for sinks playing AllD. If at least one such node
exists in the network, it might contaminate everyone,
independently of the behavior of nodei. In this case,
the best strategy for nodei is to defect in every step.

V. SIMULATION RESULTS

In this section we present simulation results where we
vary the connection length: Instead of having a constant
number of relays for a connection, we choose the number
of relays between two values. We first investigate the ring
network and then a more realistic network scenario.

Our analysis presented in Sections III and IV relies
on the fact that each connection has the same number
of relays. This enables the TFT strategy to constitute a
Nash-equilibrium. The idea is that each node contributes
as much as it receives from the network. If the number
of relays varies, this balance can be undermined. In order
to tolerate this possible difference of interaction at each
node, we introduce a new strategy.

Inspired by [2], we callGenerous Tit-For-Tat (GTFT)
a strategy that overestimates the required contribution
to the network. Thus, a node playing this strategy is
generous, because it is willing to contribute more to the
network than to benefit from it. If a nodei plays the
GTFT strategy, it uses the following strategy constant:

κi =
1

¯̀+ gi
(5)

where ¯̀ stands for the average number of relays for all
the connections of the network during its whole lifetime
andgi stands for thegenerosityof the node. For the sake
of simplicity, we choosegi = g, ∀i. Note that we get
the usual TFT strategy ifg = 0.

A. Simulations on a ring network

We performed simulations on a ring network with
the parameters provided in Table II. We performed each
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simulation as follows. First, we place nodes with uniform
probability on the ring. Then, we generate a connection
for every node with the given average number of relays.
Then, we let every node send a packet on the connection
for which it is the source. At the end of the step, we
release the connections. We repeated this procedure for
the number of steps.

Parameter Value
Number of nodes 100
Number of relay nodes 1-3
Distribution of the number of relays uniform
Mobility random shuffling
Number of simulations 200

TABLE II

PARAMETER VALUES FOR THE SIMULATION ON THE RING

We performed simulations for the average number of
relays equal to two (we denote the scenario byRing-
2̄R). We observe that the network always converges to
one of the two extreme states: either all nodes cooperate
or all nodes defect. Figure 4 shows the proportion of
simulations that result in full cooperation as a function of
the generosity. We can observe that the generosity must
be reasonably high (compared to the average number of
relays) to have full cooperation in the network. If the
generosity is above a given threshold (in the example
this threshold is equal to 1.6), all simulations result in
full cooperation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generosity

P
ro

po
rt

io
n 

of
 s

im
ul

at
io

ns
 

th
at

 r
es

ul
t i

n 
fu

ll 
co

op
er

at
io

n

Fig. 4. The proportion of simulations on the ring that end with full
cooperation between the nodes (inRing-̄2R)

B. Simulations on a realistic network

We simulated a realistic network with the parameters
provided in Table III. We performed each simulation as
follows. First, we place nodes with uniform probability
in the simulation area. Then, we generate a connection
for every node with the given average number of relays
(we denote the scenario byPlane-̄̀ R). Then, we let every

node send a packet on the connection for which it is the
source. We repeat this procedure for the number of steps.
In order to improve our simulation scenario further, we
introduce a more realistic connection generation model.
Instead of generating a connection for each node at each
step, we generate a new connection only if the old one
breaks because of mobility.

Parameter Value
Number of nodes 100
Number of steps per simulation 500
Duration of one step variable (1-1024 s)
Area type Toroid plane
Area size 1500 m x 1500 m
Number of relay nodes 1-3
Distribution of the number of relays uniform
Number of simulations 200
Radio range 250 m

TABLE III

PARAMETER VALUES FOR THE SIMULATION ON THE REALISTIC

NETWORK

We used the random waypoint model with the pa-
rameters presented in Table IV. Note that we chose
the speed of the nodes as suggested in [31]. In our
first simulation, we set the duration of a step to 1024
seconds. In this case, the expected time a node travels
to a destination (given the average speed and pause time
presented in Table IV) is much shorter than the duration
of one step. Thus, with this setting, we approximate
the random shuffling of nodes (between two steps the
network topology changes completely).

Parameter Value
Mobility model Random waypoint
Speed 1-19 m/s
Distribution of speed uniform
Average pause time 10 s

TABLE IV

PARAMETER VALUES FOR THERANDOM WAYPOINT MOBILITY

MODEL

Figure 5 shows the proportion of simulations that
result in full cooperation as a function of the generosity.
We can see that the realistic connection generation intro-
duces an additional difference among the nodes in terms
of required contribution to the network, thus a much
higher generosity is needed to ensure full cooperation.
The reason for this is that generosity is required to cope
with the worst case situation. In the worst case, a node
is a relay in a number of connections that is higher than
the average number of relays on a connection (¯̀). In
the realistic scenario – compared to the situation on the
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ring – the worst case situation means more connections,
where a node has to relay. Hence, more generosity is
required to ensure full cooperation.
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Fig. 5. The proportion of simulations on a realistic scenario that
end with full cooperation between the nodes (withPlane-̄̀ R); step
duration is 1024 seconds

In the same model, we investigate the effect of mo-
bility on cooperation. We increase the step duration
exponentially (2 to the power ofx seconds, wherex =
0, 1, . . . ), and we observe the required generosity level
that ensures that 95 % of the simulations result in full
cooperation (we call this value thegenerosity threshold).
Figure 6 presents the generosity threshold as a function
of the duration of a step (which represents the effect of
mobility). We see that if the length of one step is small
(meaning that mobility is small), then a higher generosity
threshold is required. The higher the mobility, the lower
the generosity threshold. This result is fully consistent
with our previous work [10]: The absence of mobility is
a major hurdle for “spontaneous” cooperation.

As explained before, generosity is needed for nodes
that are relays in a high number of connections com-
pared to the average number of relays in a connection.
This situation represents the worst case for a node.
If the duration of the step is small, then this worst
case situation is valid for several steps and the node
has to be more generous to cope with the cumulative
effect of the situation. If mobility increases (meaning
that the topology of the network changes more between
the steps), then the duration of a worst case situation
is shorter and less generosity is required to cope with
its cumulative effect. For a detailed investigation of the
effect of mobility on the duration of paths, the reader is
referred to [25].

VI. RELATED WORK

A. Cooperation without incentive mechanisms

An approach that addresses cooperation in the absence
of any incentive mechanism is provided by Srinivasan
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Fig. 6. Generosity threshold ensuring full cooperation as a function
of the duration of one step (i.e., the effect of mobility)

et al. [27]. Their work focuses on the energy-efficient
aspects of cooperation. In their solution, the nodes are
classified in different energy classes. The nodes differen-
tiate among the connections based on the energy classes
of the participants and apply different behaviors accord-
ing to the type of the connection. This framework relies
on an ideal mechanism that distributes class information.

A solution based on [27] would require a secure
mechanism to prevent malicious nodes from cheating
with the class information provided by the relays to the
source. We introduce a game theoretical model that does
not rely on any additional mechanism, thus we believe
our investigations to be more generic. Srinivasanet al.
also make use of time slots, but they generate only
one communication session for the whole network in
each time slot. They randomly choose the participating
nodes for this session. They show that the GTFT strategy
results in a stable cooperation for any positive value of
generosity.

Urpi et al. [29] propose a general framework for
cooperation without any incentive mechanism. Their
solution is based on the idea that each node monitors
the behavior of other nodes in the neighborhood.

In our previous work [10], we addressed the problem
of cooperation instaticad hoc networks. Using a frame-
work based on game theory, we were able to identify the
necessary and sufficient conditions for cooperation. We
showed that cooperation is strongly influenced by the
topology of the network. By simulations we assessed
the likelihood that the conditions for cooperation will be
fulfilled.

B. Incentive mechanism in ad hoc networks

Marti et. al. [20] consider an ad hoc network where
some misbehaving nodes agree to forward packets but
then fail to do so. They propose a mechanism, called
watchdog, in charge of identifying the misbehaving
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nodes, and a mechanism, calledpathrater, that deflects
the traffic around them. However, misbehaving nodes
are not punished, and thus there is no motivation for
the nodes to cooperate. To overcome this problem,
Buchegger and Le Boudec [5] as well as Michiardi
and Molva [21] define protocols that are based on a
reputation system. In both approaches, the nodes observe
the behavior of each other and store this knowledge
locally. Additionally, they distribute this information in
reputation reports. According to their observations, the
nodes are able to behave selectively (e.g., nodes may
deny forwarding packets for misbehaving nodes).

Zhong et al. [33] present a solution, where an off-
line central authority collectsreceipts from the nodes
that relay packets and remunerates them based on these
receipts. Another solution, presented by Buttyan and
Hubaux [6], [7], is based on a virtual currency, called
nuglets: If a node wants to send its own packets, it has
to pay for it, whereas if the node forwards a packet for
the benefit of another node, it is rewarded.

C. Charging and rewarding in multi-hop cellular net-
works

An incentive mechanism is proposed for multi-hop
cellular networks by Jakobssonet al. [14]. They use the
concept of lottery tickets to remunerate the forwarding
nodes in a probabilistic way. They consider an asymmet-
ric scheme where the uplink (from the initiator to the
base station) is multi-hop and the downlink (from the
base station to the initiator) is single-hop. Ben Salem
et al. [4] investigate the symmetric scheme where both
uplink and downlink are multi-hop. They use the concept
of sessions to authenticate the nodes involved in a given
communication and to correctly perform the charging
and rewarding mechanism. Lamparteret al. [18] consider
a charging scheme for ad hoc stub networks that relies
on the presence of an Internet Service Provider.

D. Application of game theory to networking

Game theory has been used to solve problems in
ad hoc, fixed and cellular networks. Qiu and Marbach
[19] define a price-based approach for bandwidth al-
location in wireless ad hoc networks. Jin and Kesidis
[15] propose a generic mechanism for rate control and
study Nash-equilibria in a networking game. Alpcanet
al. [1] apply game theory for uplink power control in
cellular networks. In [32], Xiaoet al. describe a utility-
based power control framework for a cellular system. In
[11], Goodman and Mandayam introduce the concept
of network assisted power control to equalize signal-
to-interference ratio between the users. Koriliset al.

[16] address the problem of allocating link capacities
at routing decisions. In [17], they suggest a congestion-
based pricing scheme. Roughgarden [24] quantifies the
worst-possible loss in network performance arising from
non-cooperative routing behavior. In [30], Yaı̈che et al.
present a game theoretical framework for bandwidth
allocation. They study the centralized problem and show
that the solution can be distributed in a way that leads
to a system-wide optimum.

E. Cooperation studies in other areas of science

The emergence of cooperation has also been studied
in a biological [9], a sociological [22] and an economical
[26] context. Most of these studies use theIterated Pris-
oner’s Dilemma (IPD)game as their underlying model
(see e.g., Axelrod [2], [8], Rapaport and Chammah [23]
or Trivers [28]). The simplicity of the IPD makes it an
attractive model, but it is not appropriate for modeling
packet forwarding because it involves only two players
that, in addition, have symmetric roles. Consequently, in
this paper, we have defined a multi-player, asymmetric
game that better suits our purposes. In [2], Axelrod
identifies Tit-for-Tat (TFT) as a robust strategy that
performs surprisingly well (in terms of maximizing the
player’s payoff) in many situations. In [3], Axelrod gives
an overview of scenarios with imperfect information. He
identifies that theGenerous TFT (GTFT)strategy results
in equilibrium in this case.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have studied the level of cooperation
in packet forwarding, where the nodes have a selfish
(but not malicious) behavior. We have adopted a game
theoretical approach, in which a node considers that it
plays against the rest of the network. In this model, the
node does not need to distinguish between the behavior
of the different other nodes, which has the benefit of
avoiding the intricacies of node authentication or the
burden of complex schemes based on reputation. With
this new model, we have stated and proved several
theorems, expressing the conditions for the existence
of cooperation; we have quantified the tolerance to the
phenomenon of drift, as well as the level of generos-
ity required, in the case the connections have varying
lengths.

We have then considered a more realistic model,
where the nodes are on the plane and move accord-
ing to the random waypoint mobility pattern. We have
shown that the generosity required to reach cooperation
is much higher in this case, and we have quantified
the relationship between mobility and cooperation. We
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have concluded that cooperation is easier to reach when
mobility is higher.

In terms of future work, we intend to relax the
assumption according to which each node is the source
of exactly one connection; we would also like to take the
battery levels of the nodes into consideration. Finally, we
plan to study the impact of mainstream ad hoc routing
protocols (e.g., DSR and AODV) on the conditions under
which spontaneous cooperation may exist.
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APPENDIX

Proof of Lemma 1:
Let us consider the expected number of steps (denoted

by t) after which this dropping affects nodei (meaning
that another node drops its packet).

We assume that in stepK nodei dropped someone’s
packet for the first time and in stepK+t someone drops
the packet of nodei (as all the other nodes play TFT). It
means that in all stepsk < K+t, other nodes forwarded
for nodei, but in stepK + t it is not the case.

Given the scenario, there is one node at each step that
is contaminated with defection. The probabilityp that
the contaminated node is relaying for nodei in any step
k > K is given by:

p =
1

N − 1
(6)

whereN stands for the number of nodes in the network.
Thus, the probability (q) that the contaminated node

in stepK + t will relay for nodei in that step and no
contaminated node relayed for nodei in the previous
steps (K < k ≤ K + t− 1) is given by:

q = (1− p)t · p (7)

This corresponds to a geometric distribution with respect
to t. The expected value of the geometric distribution is
(substituting the givenp value):

E[t] =
1
p

= N − 1 (8)

This means that, on the average, the defection comes
back to nodei in N − 1 steps. ¥

Proof of Lemma 2:
Let us assume that the node defectsD times, where

D < ∞, and cooperates in all the other steps. For the
sake of simplicity, we assume that the node defects in
the firstD steps and consider the expected value ofc(k)
in the subsequent steps. The general case can be proven
in a similar way.

For any stepk > D, we can write the expected number
of propagating defections:

E[c(k)] =
D∑

i=1

(1− p)k−i (9)

= (1− p)k ·
D∑

i=1

(1− p)−i (10)

wherep is the probability that a contaminated node is
relaying for nodei. But in (10) the second factor is a

finite number. The first factor goes to zero ifk → ∞,
because0 < 1− p < 1. Hence:

lim
k→∞

E[c(k)] = 0 (11)

¥
Proof of Theorem 1:
We assume that each node wants to maximize its

expected average utility per step over an infinite game
as expressed in (1).

Let us compute the expected average utility until step
k:

E[Ūi(k)] = E[
B · βi(k)− C · γi(k)

k
]

= E[
B · (k − y(k))− C · (k − x(k))

k
]

= E[
(B − C) · k − (B · y(k)− C · x(k))

k
]

= (B − C)− E[
(B · y(k)− C · x(k))

k
] (12)

Let us assume that nodei cooperates at each step;
theny(k) = x(k) = 0 for any stepk (because the other
nodes play TFT). In this case, the average utility for node
i (until any stepk) is given by:

Ūi(k) = B − C (13)

To be superior to the always cooperating strategy,
an alternative strategy should be such that the second
term in (12) is positive (taking also the minus sign into
account):

−E[
(B · y(k)− C · x(k))

k
] ≥ 0

E[−B · y(k) + C · x(k)] ≥ 0

E[−B · (x(k)− c(k)) + C · x(k)] ≥ 0

E[(C −B) · x(k)] + E[B · c(k)] ≥ 0

B · E[c(k)] ≥ (B − C) · E[x(k)]

E[x(k)] ≤ B · E[c(k)]
B − C

(14)

E[x(k)]
1)

≤ B · (N − 1)
B − C

(15)

1) From (4) we know that the expected number of propagating

defectionsc(k) is upper bounded byN − 1.

Hence, if nodei wants to play a strategy that out-
performs TFT until stepk, the expected number of
beneficial defections is upper bounded by a constant.

According to Lemma 2, if the node defects a constant
number of times, then the expected number of propagat-
ing defections goes to zero with the number of steps.
Using this statement in (14):

lim
k→∞

E[c(k)] = 0 ⇒ lim
k→∞

E[x(k)] = 0 (16)
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Symbol Definition Section
βi(k) Number of packets originating at nodei that have reached the destination until stepk Section II
γi(k) Number of packets relayed by nodei until stepk Section II
ρi(k) Interaction ratio for nodei Section II
κi Strategy constant of nodei Section II
` Number of relays on each connection Section II
` Average number of relays on the connections, if the connection length varies Section V
B Benefit enjoyed by the source for one packet reaching the destination Section II
C Relaying cost of one packet Section II
x(k) Number of packets dropped by a considered nodei until stepk Section III
y(k) Number of packets others drop for a considered nodei until stepk Section III
c(k) Number of propagating defections at stepk in the single-hop case Section III
g Generosity for each node Section V

TABLE V

TABLE OF SYMBOLS USED IN THE PAPER

Thus, if the node wants to maximize its expected
utility for the whole duration of the game, its best
strategy is to cooperate in every time step. ¥

Proof of Theorem 4:
We prove the theorem for̀= 2 which corresponds to

the example of Figure 3; as we will see, the proof can
be extended to any value ofl. Let us denote the number
of contaminated nodes at stepk by n(k).

Let us assume that nodei defects in an arbitrary step
K. It contaminates the nodes whose packets are dropped
(in this case two nodes, because` = 2 and the topology
is a ring). In the next step, these two nodes contaminate
other nodes, and so on. We will show that the number of
contaminated nodes is non-decreasing: If we haven(k)
contaminated nodes in stepk (wherek > K), then the
number of contaminated nodes in stepk+1 is n(k+1) ≥
n(k). An example forn(k) = 2, ` = 2 is presented in
Figure 7. If the contaminated nodes in stepk happen to
become neighbors on the ring (Figure 7a), then they drop
the packets for three nodes. Since nodei is a sink for
contamination, if nodei is among the three nodes, then
n(k + 1) = 2, otherwise,n(k + 1) = 3. If they are not
neighbors (Figure 7b), thenn(k+1) = 3 or n(k+1) = 3
depending on whether nodei is among the contaminated
nodes or not.

One can see that this contamination continues until it
reaches all nodes in the network. During this procedure,
nodei suffers more and more decrease in its benefit as
more and more nodes defect in the network. After the
contamination reaches every node in the network (we call
K

′
the step at which it happens), the benefit of nodei

becomes zero.
Before nodei defects in stepK, none of its packets

are dropped (y(k) = 0). During the contamination (in

the stepsK < k < K
′
), a number of packets, denoted

by a, is dropped for nodei. After stepK
′
, all nodes in

the network, except nodei, defect.
In step k > K

′
, the number of packets that were

originating at nodei and are dropped by other nodes
is:

y(k) = 0 + a + (k −K
′
) = k − (K

′ − a) (17)

We know thatx(k) ≤ ` · k. Furthermore,x(k) is not a
random variable, but it is determined by the sequence of
actions of nodei. Thus,E[x(k)] = x(k).

We can express the expected average utility for
k > K

′
as follows:

E[Ūi(k)] = E[
B · βi(k)− C · γi(k)

k
]

= E[
B · (k − y(k))− C · (` · k − x(k))

k
]

= E[
(B − ` · C) · k − (B · y(k)− C · x(k))

k
]

= (B − ` · C)− E[
(B · y(k)− C · x(k))

k
]

= (B − ` · C)−B · k − (K
′ − a)

k
+ C · x(k)

k

= (B − ` · C) + C · x(k)
k

−B · (1− (K
′ − a)
k

)

= −` · C + C · x(k)
k

+ B · (K
′ − a)
k

≤ B · (K
′ − a)
k

Hence, fork > K
′
, we have:

lim
k→∞

Ūi(k) ≤ 0 (18)

Since the game is going to infinity, the expected average
utility converges to a number that is not greater than zero.

Hence, the best strategy for the node is to cooperate
in all step.
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a)

step (k):

step (k+1):

step (k):

step (k+1):

b)

= non-contaminated node = contaminated node = connection

Note that in step (k+1) 
the position of the nodes is

different 

Fig. 7. Contamination effect on the ring for̀= 2, n(k) = 2: In a) the two contaminated nodes are neighbors on the ring in stepk; in
this case, they contaminate at least two other nodes (note that if nodei is among the nodes whose packets were dropped, then it sink the
contamination). In b) the contaminated nodes are not neighbors; thus, they contaminate four other nodes.

The theorem can be proved for any value of` in a
similar way. ¥

Proof of Theorem 5:
Because of the multi-hop scenario, nodei is a relay in

` connections. If it defects, it contaminates the` nodes
that are sources on these connections. We distinguish
two cases:

1) If s < `−1 or at any step some of thèsinks do not
relay for nodei. In this case, more than one node
will be contaminated in the first step. This implies
that in the subsequent steps, the contamination will
reach the whole network. Let us consider stepK
when all nodes are contaminated except nodei and
the nodes that play the AllC strategy. Because the
number of relays̀ is greater than the number of
AllC players s, there is at least one relay node
on the connection originating from nodei that
drops the packet. Thus, after stepK, no packet of
nodei reaches the destination. Hence, the proof for
Theorem 4 applies for this case. Again, the best
strategy for nodei is to cooperate in every step.

2) If s = `− 1 and thes sinks are within thè nodes
contaminated by defection in each and every step.
Clearly, because of the random shuffling at each
step, the probability of this sequence of events is
extremely small. In this case, only one node will
contaminate in the next step. In the subsequent
steps, the contamination of this one node continues
until it is sunk by nodei itself. Hence the proof in

Theorem 1 applies (we are back to the case where
one defection propagates in the network, because
the other defections are constantly sunk by the
AllC players). Thus, in this case, defection is not
beneficial for the node.

We can thus conclude that the best strategy for node
i is to always cooperate. ¥


