
Stimulating Cooperation in Self-Organizing Mobile Ad Hoc
Networks�

Levente Buttyán and Jean-Pierre Hubaux
Laboratory for Computer Communications and Applications

Swiss Federal Institute of Technology – Lausanne
EPFL-IC-LCA, CH-1015 Lausanne, Switzerland

March 19, 2002

Abstract

In military and rescue applications of mobile ad hoc networks, all the nodes belong to the
same authority; therefore, they are motivated to cooperate in order to support the basic functions
of the network. In this paper, we consider the case when each node is its own authority and tries
to maximize the benefits it gets from the network. More precisely, we assume that the nodes are
not willing to forward packets for the benefit of other nodes. This problem may arise in civilian
applications of mobile ad hoc networks. In order to stimulate the nodes for packet forwarding,
we propose a simple mechanism based on a counter in each node. We study the behavior of the
proposed mechanism analytically and by means of simulations, and detail the way in which it
could be protected against misuse.

Keywords: mobile ad hoc networking, self-organization, cooperation

1 Introduction

A mobile ad hoc network is a wireless multi-hop network formed by a set of mobile nodes in a self-
organizing way without relying on any established infrastructure. Due to the absence of infrastructure,
all networking functions must be performed by the nodes themselves. For instance, packets sent
between two distant nodes are expected to be forwarded by intermediate nodes [8, 16]. This operating
principle of mobile ad hoc networks renders cooperation among nodes an essential requirement. By
cooperation, we mean that the nodes perform networking functions for the benefit of other nodes. As
pointed out in [13], lack of cooperation may have fatal effects on network performance.

So far, applications of mobile ad hoc networks have been envisioned mainly for crisis situations
(e.g., in the battlefield or in rescue operations). In these applications, all the nodes of the network
belong to a single authority (e.g., a single military unit or rescue team) and have a common goal. For
this reason, the nodes are naturally motivated to cooperate.

However, with the progress of technology, it will soon be possible to deploy mobile ad hoc net-
works for civilian applications as well. Examples include networks of cars and provision of commu-
nication facilities in remote areas. In these networks, the nodes typically do not belong to a single
authority and they do not pursue a common goal. In addition, these networks could be larger, have a

� c
 2002 by Kluwer Academic Publishers. To appear in ACM/Kluwer Mobile Networks and Applications (MONET).

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147888993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

longer lifetime, and they could be completely self-organizing, meaning that the network would be run
solely by the operation of the end-users. In such networks, there is no good reason to assume that the
nodes cooperate. Indeed, the contrary is true: In order to save resources (e.g., battery power, memory,
CPU cycles) the nodes tend to be “selfish”.

As a motivating example, let us consider packet forwarding: Even in a small ad hoc network,
most of the energy of a given node is likely to be devoted to forwarding packets for the benefit of
other nodes. For instance, if the average number of hops from source to destination is around 5, then
approximately 80% of the energy devoted to sending packets will be consumed by packet forwarding.
Hence, turning the forwarding function off would very noticeably extend the battery lifetime of a
node, and increase its overall availability for its user.

In this paper, we address the problem of stimulating cooperation in self-organizing, mobile ad
hoc networks for civilian applications. We assume that each node belongs to a different authority, its
user, which has full control over the node. In particular, the user can tamper with the software and the
hardware of the node, and modify its behavior in order to better adapt it to her own goals (e.g., to save
battery power). We understand that regular users usually do not have the required level of knowledge
and skills to modify their nodes. Nevertheless, our assumption is still reasonable, because criminal
organizations can have enough interest and resources to reverse engineer a node and sell tampered
nodes with modified behavior on a large scale. The experience of cellular networks shows that as
soon as the nodes are under the control of the end-users, there is a strong temptation to alter their
behavior in one way or another.

One approach to solve this problem would be to make the nodes tamper resistant, so that their
behavior cannot be modified. However, this approach does not seem to be very realistic, since ensuring
that the whole node is tamper resistant may be very difficult, if not impossible. Therefore, we propose
another approach, which requires only a tamper resistant hardware module, called security module,
in each node. One can think of the security module as a smart card (similar to the SIM card in GSM
phones) or as a tamper resistant security co-processor [12]. Under the assumption that the user can
possibly modify the behavior of the node, but never that of the security module, our design ensures
that tampering with the node is not advantageous for the user, and therefore, it should happen only
rarely.

We focus on the stimulation of packet forwarding, which is a fundamental networking function
that the nodes should perform in a mobile ad hoc network. In a nutshell, we propose a protocol that
requires the node to pass each packet (generated as well as received for forwarding) to its security
module. The security module maintains a counter, called nuglet counter, which is decreased when
the node wants to send a packet as originator, and increased when the node forwards a packet. The
value of the nuglet counter must remain positive, which means that if the node wants to send its own
packets, then it must forward packets for the benefit of other nodes. The nuglet counter is protected
from illegitimate manipulation by the tamper resistance of the security module.

Besides stimulating packet forwarding, our mechanism encourages the users to keep their nodes
turned on and to refrain from sending a large amount of packets to distant destinations. The latter
property is particularly desirable, because, as mentioned in [9], the available bandwidth per node de-
clines as the number of nodes increases (assuming that the traffic does not exhibit locality properties).

The present proposal has been developed in the framework of the Terminodes Project1 [4, 10].
However, it is generic; in particular, it could work in conjunction with many routing algorithms.

The outline of the paper is the following: In Section 2, we describe the proposed mechanism
to stimulate packet forwarding, and study its behavior through the analysis of a simple model. In

1http://www.terminodes.org/

2

Section 3, we detail the ways in which the proposed mechanism could be protected against misuse.
In Section 4, we describe our simulation settings, and the simulation results that we obtained. In
Section 5, we discuss some limitations of our approach. Finally, in Section 6, we report on related
work, and in Section 7, we conclude the paper.

2 Stimulation mechanism

2.1 Description

As mentioned before, we assume that every node has a tamper resistant security module, which main-
tains a nuglet counter. Our stimulation mechanism is based on the following two rules, which are
enforced by the security module:

1. When the node wants to send one of its own packets, the number n of intermediate nodes that
are needed to reach the destination is estimated. If the nuglet counter of the node is greater
than or equal to n, then the node can send its packet, and the nuglet counter is decreased by n.
Otherwise, the node cannot send its packet, and the nuglet counter is not modified.

2. When the node forwards a packet for the benefit of other nodes, the nuglet counter is increased
by one.

2.2 Model of a single node

Let us consider now the following model, the analysis of which will give an insight into the operation
of the above mechanism. A node has two incoming and two outgoing flows of packets (Figure 1).
The incoming flow IN o represents the packets that are generated by the node itself. We call these
packets own packets. The other incoming flow INf represents the packets that are received for for-
warding. We call these packets forwarding packets. The packets that the node receives as destination
are not represented in the model. Each incoming packet (own as well as forwarding) is either sent or
dropped. The outgoing flow OUT represents the packets that are sent by the node. This flow con-
sists of two components OUTo and OUT f , where OUT o represents the own packets that are sent
and OUTf stands for the forwarded packets. The other outgoing flow DRP represents the packets
that are dropped. Similarly to OUT , this flow consists of two components too: DRPo and DRPf ,
representing dropped own and forwarding packets, respectively.

B, C, N
oIN

INf

=OUT oOUT OUTf+

=DRP + fDRPoDRP

Figure 1: Model of a single node

The current state of the node is described by two variables b and c, where b is the remaining
battery of the node and c stands for the value of its nuglet counter. More precisely, we interpret b as
the number of packets that the node can send using its remaining energy. The initial values of b and c
are denoted by B and C , respectively. To keep the model simple, we assume that when the node sends

3

an own packet, c is decreased by an integer constant N > 1, which represents the estimated number
of intermediate nodes that are needed to reach the destination. Since c must remain positive, the node
can send its own packet only if c � N holds. When the node sends a packet that was received for
forwarding, c is increased by one. In addition, each time the node sends a packet (own as well as
forwarding), b is decreased by one. When b reaches 0 (i.e., when the battery is drained out), the node
stops its operation. We assume that the initial number C of nuglets is not enough to drain the battery
out by sending only own packets (i.e., C=N < B).

2.3 Analysis of static aspects

Let us denote the number of own and forwarding packets sent during the whole lifetime of the node by
outo and outf , respectively. Selfishness of the node could be represented by the goal of maximizing
outo subject to the following conditions:

outo; outf � 0 (1)

Nouto � outf � C (2)

outo + outf = B (3)

Condition (1) is trivial. Condition (2) describes the requirement that the number Nouto of nuglets
spent by the node cannot exceed the number outf of nuglets earned plus the initial value C of the
nuglet counter. Finally, Condition (3) represents the fact that the initial energy of the node must be
shared between sending own packets and sending forwarding packets.

outoBB + C
N + 1

outf

B

NB - C
N + 1

- C

outo= B -outf

outo - C= Noutf

Figure 2: Maximizing outo

Figure 2 illustrates the conditions graphically. It is easy to see that the maximum of outo is B+C
N+1

.

It can also be seen that in order to reach this maximum outf must be NB�C
N+1

. Thus, the node must
forward this number of packets for the benefit of other nodes if it wants to maximize its own benefit. If
there was no nuglet counter and an enforcing mechanism that does not allow the node to send an own
packet when it does not have enough nuglets, then Condition (2) would be missing, and the maximum
of outo would be B. This means that the node would maximize its own benefit by dropping all packets
received for forwarding.

In principle, the node can always reach outo =
B+C
N+1

: When it runs out of nuglets, it can simply
buffer its own packets until it forwards enough packets and earns enough nuglets to send them. How-
ever, this works only if the buffer is large enough and no delay constraint is imposed on the packets.

4

In real-time applications, sending a packet that has spent too much time in the buffer may be useless,
which means that the node must drop some of its own packets. It can still reach outo =

B+C
N+1

, but it
is now important how many own packets it must drop meanwhile.

In order to study this situation, we extend our model in the following way: We assume that the
node generates own packets with a constant average rate ro, and receives packets for forwarding with
a constant average rate rf . We denote the time when the battery is drained out by tend . Note that tend
is not a constant, since the time when the battery is drained out depends on the behavior of the node.
Furthermore, we assume that there is no buffering of own packets, which means that an own packet
that cannot be sent immediately (due to the low value of the nuglet counter) must be dropped.

Selfishness of the node could now be represented by the goal of maximizing outo and, at the same
time, maximizing zo = outo

rotend
(which is equivalent to minimizing the number of own packets dropped)

subject to the following conditions:

outo; outf � 0 (4)

outo � rotend (5)

outf � rf tend (6)

Nouto � outf � C (7)

outo + outf = B (8)

Using outf = B � outo from Condition (8), we can reduce the number of unknowns and obtain
the following set of conditions:

outo � 0 (9)

outo � B (10)

tend �
outo

ro
(11)

tend � �
outo

rf
+

B

rf
(12)

outo �
B +C

N + 1
(13)

Conditions (9-13) determine the feasible region, on which we have to maximize outo and zo. This
is illustrated in Figure 3. As we have already seen, the maximum of outo is B+C

N+1
. Note that B+C

N+1
is

always less than B, because we assumed that C=N < B. Different values of zo are represented by
lines with different slopes all going through the (0,0) point. In order to find the maximum of zo, we
have to find the line with the smallest slope that still intersects the feasible region.

Depending on the ratio rf=ro of the rates, we can distinguish the following two cases (Figure 3,
parts (a) and (b)):

� Case (a): If rf
ro
� NB�C

B+C
(i.e., B+C

N+1
� ro

ro+rf
B) then the maximum of zo is 1. Because of

Condition (11), this is the best that can be achieved. This means that in this case, the node does
not have to drop any of its own packets.

� Case (b): If rf
ro

< NB�C
B+C

(i.e., B+C
N+1

< ro
ro+rf

B), then the maximum of zo is rf
ro

B+C
NB�C

< 1.
This means that in this case, the node must drop some of its own packets.

Intuitively, the difference between the two cases above can be explained as follows: In case (a),
packets for forwarding arrive with high enough a rate to cover the expenses of sending own pack-
ets. On the other hand, in case (b), the arrival rate of forwarding packets is too low, and the node

5

outoB
ro rf+

ro B
B + C
N + 1

feasible region

(a)

z =
 1

o
outo
ro

endt =

outo
rf

+
B
rf

_
endt =

endt

outoB
ro rf+

ro B
B + C
N + 1

fe
as

ib
le

 r
eg

io
n

(b)

z =
 1

o

z
< 1

o
outo

rf
+

B
rf

_
endt =

outo
ro

endt =

endt

Figure 3: Maximizing outo and zo = outo

rotend

cannot earn enough nuglets to send all of its own packets even if it forwards all packets received for
forwarding.

2.4 Analysis of dynamic aspects

The above analysis shows what the node can achieve in terms of maximizing its own benefit. How-
ever, it does not shed light on how the node should actually behave in order to reach this theoretical
optimum. It seems reasonable that the node should always send its own packets whenever this is
possible (i.e., whenever it has enough nuglets to do so). But how should the node decide whether to
forward or to drop a packet received for forwarding?

In order to get an insight into this question, let us consider the following four forwarding rules,
where f denotes the number of forwarding packets sent so far:

Rule 1: if f < NB�C
N+1

then forward
else drop

Rule 2: if f < NB�C
N+1

then
if c � C then forward
else forward with probability C=c or drop with probability 1� C=c

else drop

Rule 3: if f < NB�C
N+1

then
if c � C then forward
else drop

else drop

Rule 4: if f < NB�C
N+1

then
if c � C then forward with probability 1� c=C or drop with probability c=C
else drop

else drop

In all four rules, packets are dropped after the threshold f = NB�C
N+1

has been reached. The reason
is that in this case, it is not necessary to forward more packets, because the node has enough nuglets

6

to drain its battery out by sending only its own packets. The four rules differ in what happens before
this threshold is reached. In Rule 1, packets are always forwarded. In the other rules, the forwarding
decision depends on the current value c of the nuglet counter. In Rule 2, packets are forwarded for sure
if c � C , and with decreasing probability as c increases if c > C . In Rule 3, packets are forwarded
for sure if c � C , and they are always dropped if c > C . In Rule 4, packets are forwarded with
decreasing probability as c increases if c � C , and they are always dropped if c > C . Clearly, the
most cooperative rule is Rule 1. Rules 2, 3, and 4 are less cooperative, in this order.

We studied the performance of the rules by means of simulation. We implemented the above
described model of a single node in plain C++ language. In our simulations, we set the values of the
parameters as follows: B = 100000, C = 100, N = 5. Both the own packets and the packets for
forwarding were generated according to a Poisson process. The average generation rate of the own
packets were 0.2 packets per second, and we varied the average generation rate of forwarding packets
between 0.6 and 1.6 packets per second with a step size of 0.2 (i.e., we varied rf=ro between 3 and 8
with a step size of 1, in order to obtain some results for the rf

ro
< NB�C

B+C
� 5 case as well as for the

rf
ro
� NB�C

B+C
case). The simulations lasted until the node drained its battery out (i.e., 100000 packets

were sent). We ran the simulation 8 times for every configuration and took the average of the results
obtained. Each rule reached outo = 16683 =

j
B+C
N+1

k
in every run of the simulation. The values

obtained for zo are depicted in Figure 4.

Figure 4: Comparison of the forwarding rules in the single node model

It can be seen that Rule 4 achieves the worst performance as it is the furthest from the theoretical
optimum. The first three rules perform almost equally well when rf=ro < 5 and rf=ro > 5. However,
a remarkable difference appears among the rules when rf=ro = 5 = N . Interestingly enough, the
results show that the most cooperative the rule is, the best the performance it achieves. This means
that if the node wants to maximize outo and zo at the same time, then the best forwarding rule is
Rule 1 (i.e., to always forward).

Figure 5 is meant to provide an intuitive explanation for this phenomenon. Parts (a) and (b) of the
figure illustrate the operation of Rules 1 and 3, respectively, when rf

ro
� NB�C

B+C
. The figure should be

7

interpreted in the following way: Let us assume that time is divided into small time slots. Each small
grey rectangle in the figure represents the set of possible points that the node can potentially reach in
a given time slot assuming that it is in the bottom-left corner of the rectangle at the beginning of that
time slot. Therefore, the ratio of the sides of the rectangles is rf=ro. The arrows show which points
are actually reached by the node when Rules 1 and 3 are used. The dark vertical bars represent the
amount of dropped forwarding packets in the time slots.

outoB

outf

B

- C

outo= B -outf

outo - C= Noutf

(a)

outoB

outf

B

- C

outo= B -outf

outo - C= Noutf

(b)

Figure 5: Operation of Rule 1 (a) and Rule 3 (b) when rf
ro
� NB�C

B+C

It can be seen that by using Rule 1, the node tends to get further from the edge of the feasible
region that is represented by the outf = Nouto �C line. This means that the node has usually more
nuglets in reserve when Rule 1 is used. This property turns out to be advantageous when the ratio
rf=ro is close to N . The reason is that, due to the random manner in which the packets arrive, there
is always a small fluctuation in the ratio between the number of forwarding packets and the number
of own packets. On average, this ratio is equal to rf=ro, but sometimes it can be less. If this happens
and rf=ro is close to N , then the node does not receive enough forwarding packets to cover the cost
of sending its own packets. In this case, it must use the nuglets that it has in reserve. By increasing the
nuglet reserve, Rule 1 decreases the probability of temporarily running out of nuglets and dropping
own packets.

3 Protection

Clearly, the stimulating mechanism described in the previous section must be secured and protected
against various attacks. For instance, one has to prevent the user of the node from manipulating
(typically increasing) her nuglet counter in an illegitimate way. In addition, one has to ensure that the
nuglet counter is increased only if a forwarding packet has indeed been forwarded. We address these
and similar issues in this section.

3.1 Tamper resistant security module

In order to prevent the user from illegitimately increasing its own nuglet counter, we require that the
nuglet counter is maintained by a trusted and tamper resistant hardware module in each node. We call

8

this module security module. One can imagine a security module as a smart card (similar to the SIM
card in GSM phones) or as a tamper resistant security co-processor [12]. For more information on
tamper resistant modules, we refer to [17, 2].

We assume that the security modules are manufactured by a limited number of trusted manufac-
turers. Furthermore, since the security module is tamper resistant, its behavior cannot be modified.
Therefore, security modules are trusted for always functioning correctly.

Our design approach is to put the critical functions in the security module, and the rest of the
functions in the node itself. Of course, the functions that are not placed in the security module can be
tampered with, and thus, the behavior of the node can still be modified. However, our design ensures
that no advantages can be gained by tampering with the unprotected functions, and therefore, the user
of the node will not be interested in this activity.

3.2 Public-key infrastructure

We assume that each security module has a private key and a corresponding public key [14]. The
private key is stored in the security module and kept secret. The public key is certified by the man-
ufacturer of the security module and the certificate is stored in the security module. In addition, we
assume that the manufacturers cross-certify the public keys of each other, and each security module
stores the public-key certificates of all manufacturers issued by the manufacturer of the security mod-
ule. Finally, we assume that each security module stores an authentic copy of the public key of its
manufacturer, which is loaded in the module securely at manufacturing time. Note that storing all
these certificates is feasible, because we limit the number of manufacturers.

In this system, each security module can easily obtain the authentic public key of any other security
module in the network. Let us suppose, for instance, that A wants to obtain the public key of B. B can
simply send its public-key certificate to A, who can verify it with the public key of the manufacturer of
B. A possesses an authentic copy of this public key, since it stores the authentic public-key certificates
of all manufacturers issued by its own manufacturer.

Our system is a rather pragmatic solution for the reliable distribution of public keys, and we had to
limit the number of manufacturers in order for it to work. The design of a general purpose public-key
infrastructure for large, self-organizing ad hoc networks is a challenging problem that is beyond the
scope of this paper. An approach towards the solution of this problem is described in [11].

3.3 Security associations

When two nodes become neighbors, their security modules establish a security association. If this
fails, the security modules do not consider each other neighbors. A security association between two
neighboring security modules A and B is represented, at A’s side (and at B’s side, respectively), by

� the unique identifier of B (resp. A);

� the unique identifier of the node that hosts B (resp. A),

� a symmetric session key kAB ;

� two sequence numbers cA!B and cA B (resp. cB!A and cB A), which are called sending and
receiving sequence numbers, respectively; and

� a counter pcB@A (resp. pcA@B), which is called pending nuglet counter.

9

The session key kAB is used to compute a message authentication code, which protects the in-
tegrity and ensures the authenticity of the packets sent between the nodes of A and B, but kAB can
also be used to provide other security functions (e.g., link-by-link encryption of the content of the
packets). The sequence numbers are used to detect replayed packets. The pending nuglet counter
pcB@A is used to accumulate nuglets at A that are due to B. Similarly, pcA@B counts the nuglets
at B that are due to A. The way in which the session key, the sequence numbers, and the pending
nuglet counters are used will be explained in more detail in the next subsection, where we present the
envisioned packet forwarding protocol.

The security associations between the security modules are established using some public-key
cryptographic protocol, which is executed through the nodes that host the security modules. The
security modules obtain each other’s public key according to the model of the above described public-
key infrastructure.

3.4 Packet forwarding protocol

The packet forwarding protocol described in this subsection assumes that the security module runs the
routing algorithm used in the network.

If a node P has an own packet to send, it must first pass the packet to its security module A. A
estimates the number n of intermediate nodes needed to reach the destination. Precise estimation of
this number is not so critical. If the value of the nuglet counter maintained by A is less than n, then A
rejects the packet. Otherwise the nuglet counter is decreased by n, and the protocol continues.

Using the routing algorithm, A determines the next intermediate security module B toward the
destination, and retrieves the security association that corresponds to B from its internal database.
Then, it takes the session key kAB and the sending sequence number cA!B , and generates a security
header for the packet, which contains A, B, cA!B , and the output h(kAB ; A; B; cA!B; packet) of
a publicly known keyed cryptographic hash function h. After this computation, cA!B is increased by
one.

Finally, A outputs the security header and the identifier of the next intermediate node Q (obtained
from the data that represents the security association between A and B), and P can send the packet
together with the security header to Q.

Now, let us assume that node Q received a packet with a security header for forwarding from
node P . If Q wants to forward the packet in order to earn a nuglet, then Q must pass the packet with
the attached security header to its security module B. B takes the identifier of the security module
A that generated the security header from the header itself, and retrieves the corresponding security
association from its internal database. Then, it verifies if the sending sequence number in the security
header is greater than its receiving sequence number cB A. If this is the case, then the packet is not
a replay. Then, it verifies the received value of the keyed cryptographic hash function h. If the value
is correct, then it accepts the packet, and updates cB A to the value of the sequence number received
in the security header.

If the node that hosts A (known to B from the data that represents the security association between
B and A) is not the originator of the packet (i.e., if it is an intermediate node), then B increases the
pending nuglet counter pcA@B by one. Finally, B determines the next intermediate security module
towards the destination, and generates a new security header for the packet, much in the same way
as described earlier, using the security association that corresponds to the next intermediate security
module.

10

3.5 Nuglet synchronization protocol

As it can be seen from the description of the packet forwarding protocol, when an intermediate node
forwards a packet, its nuglet counter is not increased immediately. Instead, the security module of the
next node increases the pending nuglet counter that it maintains for the first node. For clearing, the
security modules regularly run a nuglet synchronization protocol, in which they transfer the pending
nuglets, and reset the pending nuglet counters to 0. This mechanism ensures that the node is rewarded
for the packet forwarding only if it really forwarded the packet.

It may happen that the nodes move out of each other’s power range by the next time their security
modules want to run the nuglet synchronization protocol. If this happens, the pending nuglet counters
are reset to 0, and the pending nuglets are lost. Therefore, the mechanism does not guarantee that the
node receives its nuglet for every forwarded packet. We will study the consequences of this in the
next section.

3.6 Robustness

The protection mechanism described above is robust and resists against various attacks. The nuglet
counter is protected from illegitimate manipulations by the tamper resistance of the security module.
A security header is attached to each packet, which contains a message authentication code that pro-
tects the integrity of the packet and the data in the security header. This is important, because the
security modules manipulate the nuglet counters based on the data received in the security header.
Replay of packets is prevented by the use of an ever increasing sequence number. Moreover, the node
is rewarded for packet forwarding only if it really forwarded a packet.

We should mention, however, that there is a subtle attack that our scheme may not always prevent
in its current form. It is possible to construct a fake node that has two or more security modules. Such
a node could bounce a packet back and forth between its security modules, and earn nuglets without
actually transmitting anything. The full understanding of this attack and the design of the proper coun-
termeasure are on our research agenda. However, we can already make the following observations:
First, this attack would not always work, since routing is performed by the security modules, which
means that the next intermediate security module is determined by the security module and not the
node. In other words, the security module may output a security header for the packet that will not
be accepted by the other security module of the node. To avoid this, the node may falsify routing
information that is exchanged between the security modules, but this can be prevented by using ap-
propriate cryptographic techniques. Second, such a fake node would be more expensive than a normal
one, since it has two or more legitimate security modules. Whether the benefit obtained by using such
a fake node is worth the increased cost is an open question.

3.7 Overhead

We must admit that our protection mechanism adds some computational overhead to the system,
which is mainly related to the use of cryptographic operations. This issue has two aspects: crypto-
graphic operations need energy and time to be performed. Regarding energy consumption, we note
that the energy required to perform computation is negligible when compared to the energy required to
perform transmission [18]. Therefore, we estimate that the execution of our cryptographic operations
have a negligible energy cost when compared to the transmission cost.

Regarding time, we note that the only time critical operations are the generation and the ver-
ification of the security header for every packet and for every hop. However, these require only
cryptographic hash function computations, which can be done very efficiently. Moreover, the security

11

header is processed by the security module; to some extent, this can be accomplished in parallel with
the processing performed by the main processor of the node.

Another issue is the communication overhead, which is due to the establishment of the security
associations, the size of the security header, and the periodic execution of the nuglet synchronization
protocol. In order to reduce this overhead, the establishment of the security associations could be
integrated with the neighbor discovery protocol that the nodes usually have to run anyhow in mobile
ad hoc networks, and the credit synchronization interval should be appropriately chosen. Finally,
assuming that the identifiers of the security modules are 8 bytes long, the sequence numbers are 2
bytes long, and the output of the cryptographic hash function used is 16 bytes long (e.g., if MD5 [14]
is used), we get that the security header is 34 bytes long. This seems to be an acceptable overhead.

4 Simulations

In Section 2, we studied the proposed stimulation mechanism through the analysis of a simplified
model, and showed that it indeed stimulates packet forwarding in that model. In order to study the
proposed stimulation mechanism in a more general setting, which is closer to the reality of mobile
ad hoc networks, we conducted simulations of a full network written in plain C++ language. In this
section, we describe our simulator, and the results that we obtained.

4.1 Simulation description

The simulated networks are composed of 100 nodes that are placed randomly (uniformly) on a
500 m� 500 m rectangle. Each node has the same power range of 120 m. The nodes move according
to the random waypoint mobility model [5]. In this model, the node randomly chooses a destination
point in space and moves towards this point with a randomly chosen constant speed. When it reaches
the chosen destination, it stops and waits there for a randomly chosen time. Then, it chooses a new
destination and speed, and starts to move again. These steps are repeated until the end of the simula-
tion. In our simulations, the nodes choose their speed between 1 m/s and 3 m/s uniformly. The pause
time is generated according to the exponential distribution. The average pause time is 60 s.

We do not use any particular MAC layer algorithm. Instead, we model the MAC layer by randomly
choosing the packet transmission time between neighbors for each packet and for each hop. The
average packet transmission time between neighbors is 10 ms. Packet transmission errors occur with
0.1 probability. If an error occurs, the packet is re-transmitted after a 1 s timeout. When the node is
busy with packet transmission, it can still receive packets, which are placed in a buffer, and served
when the previous packet transmission is finished.

For routing, we use a geodesic packet forwarding algorithm developed within the context of the
Terminodes Project, and described in [3]. However, we considerably simplified the original algorithm
in order to ease the implementation of its simulator. This does not affect our results, since we are
not interested in the performance of the packet forwarding algorithm itself. The simplified geodesic
packet forwarding algorithm works in the following way: We assume that each node knows its own
geographic position and the geographic positions of its neighbors. Furthermore, the source of a packet
knows the current geographic position of the destination. The way in which this information is ob-
tained is not simulated. Before sending the packet, the source puts the coordinates of the destination
in the header of the packet. Then, it determines which of its neighbors is the closest to the destina-
tion, and sends the packet to this neighbor. When a node receives a packet for forwarding, it first
verifies if the destination is its neighbor. If this is the case, it forwards the packet to the destination.

12

Parameter Value
Space 500 m � 500 m
Number of nodes 100
Power range 120 m
Mobility model random waypoint
Speed 1 m/s – 3 m/s
Average pause time 60 s
Packet generation rate 0.2 (0.5, 0.8) pkt/s
Choice of destination random
Routing geodesic packet forwarding
Initial number of nuglets (C) 100
nuglet synchronization interval 5 (10, 15, 20) s
Simulation time 7200 s

Table 1: Value of the main simulation parameters

Otherwise, it determines which of its neighbors is the closest to the destination, and sends the packet
to this neighbor. This is possible, because the packet header contains the believed coordinates of the
destination. If the forwarding node does not have any neighbor that is closer to the destination than
the node itself, then the packet is dropped2. In our simulations, because of the rather high density and
the rather low speed mobility of the nodes, packet drops of this kind almost never happened .

Energy consumption of the nodes is not simulated. For this reason, the size of the packets is not
important for us. Therefore, we assume that each packet has the same size, and we focus only on the
number of packets that are generated, sent, forwarded, and delivered.

Each node generates packets according to a Poisson process. The destination of each packet is
chosen randomly (uniformly). In our reference simulation, the average packet generation rate was
0.2 pkt/s, but we also ran simulations with average packet generation rates of 0.5 and 0.8 pkt/s.

The initial value C of the nuglet counter of each node is 100. When a node i sends an own packet
to a node d that is not the neighbor of i, the nuglet counter of i is decreased by n. Unlike in the simple
model of Section 2, n is not a constant, but computed according to the following formula:

n =

�
distance(i; d)

power range

�
� 1

This gives a lower bound on the number of intermediate nodes needed to reach the destination. When
a node forwards a packet, its pending nuglet counter at the next node is increased by one. In our
reference simulation, the nuglets of each node are synchronized every 5 s, but we also ran simulations
with nuglet synchronization intervals of 10, 15, and 20 s.

We always ran 8 simulations for a given simulation setting, and considered the average of the
obtained values for each observed variable. In each run, 2 hours of network operation were simulated.

The values of the main simulation parameters are listed in Table 1 for an overview.

2This simplification is true only in our simulation setting. The complete geodesic packet forwarding algorithm described
in [3] can cope with such a situation.

13

4.2 Simulation results

4.2.1 Comparison of forwarding rules

In the first set of simulations, our goal was to determine which of Rule 1, Rule 2, or Rule 3 is the
most beneficial for the nodes in terms of maximizing zo. We did not use Rule 4, because it performed
much worse than the other three rules in the single node model of Section 2. Since battery usage is
not taken into consideration in our simulations, we had to modify the rules as follows:

Rule 1’: always forward

Rule 2’: if c � C then forward
else forward with probability C=c or drop with probability 1� C=c

Rule 3’: if c � C then forward
else drop

Our approach to determine which of these rules is the best was the following: We set 90% of the
nodes to use a given rule (we call this the majority rule), and the remaining 10% of the nodes to use
first Rule 1’, then Rule 2’, and finally Rule 3’. We observed the average value of zo that the 10% of
the nodes could achieve in each case. We repeated the above experiment for packet generation rates
of 0.2, 0.5, and 0.8 pkt/s. The results are depicted in Figures 6, 7, and 8.

Figure 6: Comparison of the forwarding rules when the packet generation rate is 0.2 pkt/s

Remarkably, Rule 1’ performed the best in every case. This means that the 10% deviating nodes
achieve the highest zo (i.e., drop the smallest portion of their own packets) when they use Rule 1’, no
matter whether the 90% of the nodes use Rule 1’, Rule 2’, or Rule 3’. Furthermore, this is true for
every packet generation rate that we have simulated. Therefore, our conclusion is that the proposed
stimulation mechanism indeed stimulates packet forwarding, and not only in the simple model of
Section 2, but in a much more general setting too.

14

Figure 7: Comparison of the forwarding rules when the packet generation rate is 0.5 pkt/s

4.2.2 The effect of less cooperative nodes on the throughput of the network

In the second set of simulations, our goal was to study the effect of less cooperative nodes on the
throughput of the network when the proposed stimulation mechanism is used. In this experiment, our
approach was the following: We first set all the nodes to cooperate (i.e., to use Rule 1’), and then
progressively increased the fraction of less cooperative nodes (i.e., the fraction of nodes that use the
least cooperative Rule 3’). We ran simulations with networks of 100, 200, 300, and 400 nodes but
with the same node density. We observed the cumulative throughput of the network, which is defined
as the ratio between the total number of packets delivered and the total number of packets sent. The
results are shown in Figure 9. It can be seen that, although the throughput of the network decreases as
the fraction of less cooperative nodes increases, this decrease is not substantial: Even if all the nodes
use Rule 3’, the throughput is still around 0.9.

The value of this experiment is that it shows that the network can tolerate less cooperative nodes
quite well. A node may tend to be less cooperative, when it is about to run out of battery. In this
case, it may not be beneficial to use Rule 1’, and in this way, increase the nuglet reserve, because
those nuglets cannot be used if the battery becomes empty. Therefore, the node may decide to use a
less cooperative forwarding rule, or even to drop all forwarding packets. However, we note that the
battery can usually be reloaded, and the accumulated nuglets can be used again. For this reason, it is
not clear at all whether using a less cooperative rule when running out of battery is a good strategy or
not. Nevertheless, the results of the above experiment show that the network would be able to cope
with this situation.

4.2.3 Variation of the average nuglet level in the network

In a third set of simulations, our goal was to study how the average nuglet level in the network is
affected by the number of less cooperative nodes and by the size of the nuglet synchronization interval.
To this end, we observed how the average nuglet level in the network varies in time as we increase the
fraction of less cooperative nodes and as we increase the size of the nuglet synchronization interval.

15

Figure 8: Comparison of the forwarding rules when the packet generation rate is 0.8 pkt/s

The results are shown in Figures 10 and 11.
When most of the nodes are cooperative, the average nuglet level in the network shows an increas-

ing tendency. This is because the formula that we use to determine the number of intermediate nodes
needed to reach a given destination under-estimates the actual number. This means that if a packet is
delivered, then the joint nuglet income of the intermediate nodes is usually higher than the expenses
of the source of the packet. Furthermore, when more nodes use Rule 1’, packets are delivered with a
higher probability, and thus, the average nuglet level increases more rapidly.

When less cooperative nodes are in majority, the average nuglet level in the network decreases.
However, this decrease slows down, and after some time, it stops, and the average nuglet level becomes
constant. The intuitive explanation is the following: When the nodes use Rule 3’, their forwarding
decisions depend on the current value of their nuglet counters. At the beginning, the average nuglet
level is high, and packets are often dropped before they reach their destinations. This results in a
decrease of the average nuglet level in the network. At the same time, the probability of dropping a
packet due to the usage of Rule 3’ also decreases, since the nodes have less nuglets in general, and
they are more willing to forward. Therefore, more and more packets are delivered, and the decrease
of the average nuglet level slows down. After some time, the decreasing effect of using Rule 3’ (i.e.,
dropping packets) and the increasing effect of under-estimating the actual number of intermediate
nodes needed to reach a given destination equalize each other, and the system attains an equilibrium.
The fact that this equilibrium is below the initial value C = 100 of the nuglet counters explains why
the throughput of the network is around 0.9 even if all the nodes use Rule 3’ (see Figure 9). The reason
is that in the equilibrium, most of the nodes have less than C nuglets (note that none of the nodes has
more than C nuglets because of Rule 3’), and therefore, most of the nodes are willing to forward.

The effect of the nuglet synchronization interval on the average nuglet level in the network is not
surprising: The larger the nuglet synchronization interval is, the slower the increase of the average
nuglet level in the network is. Moreover, when the nuglet synchronization interval is 20 s, the aver-
age nuglet level continuously decreases in time. The reason is that when the nuglet synchronization
interval is large, the probability that the neighbors of a node move away by the time of the next run of

16

Figure 9: Effect of less cooperative nodes on the throughput of the network

the nuglet synchronization protocol is high, and thus, the number of nuglets lost in the system is also
high.

If mobility exhibits some locality properties, then this problem can be alleviated by slightly mod-
ifying the nuglet synchronization protocol, and letting the security module keep the accumulated
pending nuglets for a given neighboring node in memory (until this memory is not needed for other
purposes) even if that node has moved away and is not a neighbor anymore. In this case, because of the
locality of mobility, nodes that were neighbors in the past may become neighbors again with a higher
probability, which means that there are good chances that the pending nuglets can be transferred some
time in the near future.

In any case, the size of the nuglet synchronization interval must be carefully chosen. If it is
too small, then the nuglet synchronization protocol is run too often, which leads to a considerable
overhead. However, if it is too large, then the average nuglet level in the network may become too
low. Therefore, one has to find an appropriate trade-off.

An approach to limit the variation of the average nuglet level in the network would be to reset the
nuglet counter to a reference value regularly. For instance, it could be reset each time the battery is
reloaded. However, the security module, which maintains the nuglet counter, may not have reliable
information about the battery reload events. On the other hand, since it maintains the nuglet counter,
it can pretty well estimate the number of packets sent by the node by observing the nuglet incomes
and expenses. Thus, it can reset the nuglet counter after a given number of packets has been sent.
This would eliminate the problem of ever increasing or ever decreasing average nuglet level in the
network. However, it is not yet clear to us, what the consequences of this resetting mechanism are on
the performance of the different forwarding rules. In particular, it seems that in this case, the node’s
goal is not only maximizing zo, but at the same time, it may want to minimize its nuglet loss due to
the resetting mechanism. It is an open question which forwarding rule would be the best with respect
to this new goal.

17

Figure 10: The effect of less cooperative nodes on the average nuglet level in the network

5 Discussion

In this section, we briefly discuss some limitations of our proposal.
The first one is that we assume that every packet has the same size, and therefore, our mechanism

uses packets as a unit. However, our approach can easily be extended to the general case. We conjec-
ture that all of our conclusions remain true even if packets have different sizes and bits are used as a
unit.

The second limitation is that our mechanism is restricted to unicast traffic, and it seems to be
difficult to extend it to multicast. The main problem is that in case of a multicast packet, it is very
difficult to estimate the number of intermediate nodes that are needed to reach every destination,
especially if the originator does not know who are the members of the multicast group, which is often
the case. A scheme where the intended destinations are charged instead of (or besides) the originator
would probably be better suited for the multicast case.

Moreover, our mechanism is used only for payload carrying packets, but the nodes must constantly
deal with control traffic and acknowledgements too. To some extent, it makes sense to consider only
payload carrying packets, because these are much larger than control and acknowledgement packets,
which means that the bulk of the energy of the node is used to transmit these packets. Another reason
is that it is not clear who should be charged for the control and acknowledgement packets, since they
may be beneficial not only for their originators.

Finally, we should mention that our mechanism does not take into consideration that the trans-
mission power used by the node to forward a packet to different neighbors may be different. The
reason is that we wanted to keep our mechanism simple. It may be possible to extend our approach
so that it considers transmission power, but the extension must be done in such a way that it does not
introduce new security problems. A particular difficulty stems from the fact that the security module
has probably no way to obtain reliable information about the amount of power used by the node to
transmit a packet.

18

Figure 11: The effect of the nuglet synchronization interval on the average nuglet level in the network

6 Related work

To the best of our knowledge, there are only three papers addressing the problem of non-cooperating
nodes in mobile ad hoc networks: [13, 6], and our previous paper [7].

The authors of [13] consider the case in which some malicious nodes agree to forward packets
but fail to do so. In order to cope with this problem, they propose two mechanisms: a watchdog,
in charge of identifying the misbehaving nodes, and a pathrater, in charge of defining the best route
avoiding these nodes. The paper shows that these two mechanisms make it possible to maintain the
total throughput of the network at an acceptable level, even in the presence of a high amount of
misbehaving nodes. However, the problem is that the selfishness of the nodes does not seem to be
castigated; on the contrary, by the combination of the watchdog and the pathrater, the misbehaving
nodes will not be bothered by the transit traffic while still enjoying the possibility to send and to
receive packets.

A similar approach that overcomes this problem is described in [6]. In that paper, the authors
propose a protocol, called CONFIDANT, which aims at not only detecting and avoiding, but also
isolating misbehaving nodes. The CONFIDANT protocol relies on the following components in each
node: a neighborhood monitor, which identifies deviations from the normal routing behavior, a trust
manager, which sends and receives alarm messages to and from other trust managers, a reputation
system, which rates other nodes according to their observed or reported behavior, and a path manager,
that maintains path rankings and performs specific actions when processing routing messages that
involve misbehaving nodes (e.g., it may ignore route requests that originate from misbehaving nodes).

In [7], we addressed the same problem as in this paper, and proposed a similar stimulation mech-
anism. In that paper, however, nuglets are interpreted as virtual money that is used to pay for packet
forwarding. We proposed two payment models: the Packet Purse Model and the Packet Trade Model.
In the Packet Purse Model, the source of the packet pays by loading some nuglets in the packet before
sending it. Intermediate nodes acquire some nuglets from the packet when they forward it. If the
packet runs out of nuglets, then it is dropped. In the Packet Trade Model, the packet does not carry

19

nuglets, but it is traded for nuglets by intermediate nodes: Each intermediate node “buys” it from the
previous one for some nuglets, and “sells” it to the next one (or to the destination) for more nuglets.
In this way, each forwarding node earns some nuglets, and the total cost of forwarding the packet is
covered by the destination.

A serious disadvantage of the Packet Trade Model is that it allows overloading of the network,
since the sources do not have to pay. For this reason, mainly the Packet Purse Model has been studied.
However, the Packet Purse Model has a problem too: It seems to be difficult to estimate the number
of nuglets that the source should put in the packet initially. If the source under-estimates this number,
then the packet will be discarded with a high probability, and the source loses its investment. The
source may over-estimate the number, but this leads to a rapid decrease of the total number of nuglets
in the system due to the dropping of packets (for networking reasons) with many nuglets inside.

The mechanism proposed in this paper overcomes this estimation problem, because the packets
do not need to carry nuglets. At the same time, the property of refraining users from overloading
the network is retained. Otherwise, the two mechanisms have a very similar flavor, just like their
protection schemes.

7 Conclusion and future work

In this paper, we addressed the problem of stimulating cooperation in self-organizing, mobile ad hoc
networks for civilian applications, where the nodes are assumed to be “selfish”, meaning that they try
to maximize the benefits that they get from the network, while minimizing their contribution to it. We
focused on a particular instance of this problem, namely, stimulating packet forwarding. Our approach
is based on a counter, called nuglet counter, in each node, which is decreased when the node sends
an own packet, increased when the node forwards a packet, and required to remain always positive.
Besides stimulating packet forwarding, the proposed mechanism encourages the users to keep their
nodes turned on and to refrain from sending a large amount of packets to distant destinations.

In order to protect the proposed mechanism against misuse, we presented a scheme based on a
trusted and tamper resistant hardware module, called security module, in each node, which generates
cryptographically protected security headers for packets and maintains the nuglet counters of the
nodes.

It is important to understand that the proposed stimulation mechanism and the proposed protection
scheme are not intended to make misbehavior of the nodes impossible. For instance, nodes can still
deny packet forwarding, or they may bypass the security module, and send a packet without a valid
security header. What our design tries to ensure is that misbehavior is not beneficial for the nodes,
and therefore, it should happen only rarely. For instance, if the node denies packet forwarding, then
it runs out of nuglets, and it cannot send its own packets. Or, if the node sends a packet without
a valid security header, then intermediate nodes will be reluctant to forward it. This is because an
intermediate node can earn nuglets with packet forwarding only if it passes the forwarding packet to
its security module. However, in the absence of a valid security header, the security module will reject
the packet.

We studied the behavior of the proposed mechanism analytically and by means of simulations,
and showed that it indeed stimulates the nodes for packet forwarding assuming that

� each node of the network generates packets continuously;

� generated packets cannot be buffered, which means that if they cannot be sent, then they must
be dropped; and

20

� selfishness of the nodes is represented by the goal of dropping as few own packets as possible.

In our future work, we intend to study the behavior of the proposed mechanism, when these assump-
tions are weakened.

The work presented in this paper is focused on packet forwarding, as this is probably the most
fundamental function of an ad hoc network. However, we are well aware of the fact that many other
functions are required, including at the networking layer; an important example thereof is route dis-
covery and route repair in on-demand protocols. In our future work, we intend to explore the way to
generalize the proposed mechanism to these functions as well.

We also intend to address application-level aspects. In peer-to-peer computing, there is a growing
concern that some users might parasitically take advantage of resources provided by others [1]. Some
researchers have made early attempts to introduce a virtual currency to encourage cooperation3. A
further, more general ambition of our research is to explore how mechanisms like the one proposed
in this paper could be used for application-level issues. An example thereof could be the mutual
provision of information services in an ad hoc network.

Finally, inspired by the work on pricing problems in non-cooperative networks [15, 19], one may
be tempted to address the problem of selfishness in mobile ad hoc networks with a game theoretic
approach. However, constructing a tractable model that can be studied analytically in order to find
equilibria seems to be very difficult if not impossible in our case. We believe that, while modeling the
problem as a game may be possible, the main tool to study this game will still be simulation.

Acknowledgement

We are grateful to the anonymous reviewers for their helpful comments, and Bharath Ananthasubra-
maniam for implementing parts of the simulator and performing parts of the simulations.

References

[1] E. Adar and B. Huberman. Free Riding on Gnutella. First Monday, 5(10), October 2000.

[2] R. Anderson and M. Kuhn. Tamper Resistance – a Cautionary Note. In Proceedings of the
Second Usenix Workshop on Electronic Commerce, Oakland, California, November 1996.

[3] L. Blažević, S. Giordano, and J.-Y. Le Boudec. Self-Organizing Wide-Area Routing. In Pro-
ceedings of SCI 2000/ISAS 2000, Orlando, July 2000.

[4] L. Blažević, L. Buttyán, S. Čapkun, S. Giordano, J.-P. Hubaux, and J.-Y. Le Boudec. Self-
Organization in Mobile Ad Hoc Networks: The Approach of Terminodes. IEEE Communica-
tions Magazine, June 2001.

[5] J. Broch, D. Maltz, D. Johnson, Y. C. Hu, and J. Jetcheva. A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing Protocols. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking (Mobicom), Dallas, 1998.

[6] S. Buchegger and J.-Y. Le Boudec. Performance Analysis of the CONFIDANT Protocol (Co-
operation Of Nodes – Fairness in Distributed Ad-hoc NeTworks). In Proceedings of the ACM

3http://www.mojonation.net/

21

Symposium on Mobile Ad Hoc Networking and Computing (MobiHOC), Lausanne, Switzerland,
June 2002.

[7] L. Buttyán and J.-P. Hubaux. Enforcing Service Availability in Mobile Ad-Hoc WANs. In
Proceedings of the IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (Mobi-
HOC), Boston, August 2000.

[8] S. Corson, J. Freebersyser, and A. Sastry (eds.). Mobile Networks and Applications (MONET).
Special Issue on Mobile Ad Hoc Networking, October 1999.

[9] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE Transactions on Informa-
tion Theory, March 2000.

[10] J.-P. Hubaux, Th. Gross, J.-Y. Le Boudec, and M. Vetterli. Towards Self-Organized Mobile Ad
Hoc Networks: The Terminodes Project. IEEE Communications Magazine, January 2001.

[11] J.-P. Hubaux, L. Buttyán, and S. Čapkun. The Quest for Security in Mobile Ad Hoc Networks.
In Proceedings of the 2nd IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing
(MobiHOC), Long Beach, CA, October 2001.

[12] IBM. IBM 4758 PCI Cryptographic Coprocessor. Secure Way Cryptographic Products, June
1997.

[13] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating Routing Misbehavior in Mobile Ad Hoc
Networks. In Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking (Mobicom), Boston, August 2000.

[14] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1997.

[15] L. Libman and A. Orda. The Designer’s Perspective to Atomic Noncooperative Netweorks.
IEEE/ACM Transactions on Networking, 7(6):875–884, December 1999.

[16] C. Perkins (ed). Ad Hoc Networking. Addison-Wesley, 2001.

[17] A. Pfitzmann, B. Pfitzmann, and M. Waidner. Trusting Mobile User Devices and Security Mod-
ules. IEEE Computer, February 1997.

[18] G. J. Pottie and W. J. Kaiser. Wireless Integrated Sensor Networks. Communications of the
ACM, May 2000.

[19] H. Yaı̈che, R. Mazumdar, and C. Rosenberg. A Game Theoretic Framework for Bandwidth Allo-
cation and Pricing in Broadband Networks. IEEE/ACM Transactions on Networking, 8(5):667–
678, October 2000.

22

