Java Mobile Code Dynamic
Verification by Bytecode M odification

DAN LU

Graduate School of Information Systems

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

June 2008

Java Mobile Code Dynamic
Verification by Bytecode M odification

APPROVED BY EXAMINING COMMITTEE:
Prof. Akihiko Ohsuga

Prof. Yoshikatsu Tada

Prof. Toshinori Watanabe

Prof. Masahiro Sowa

Asc.Prof. Tadashi Ohmori

Prof. Emeritus Mamoru M aekawa

ii

Copyright
by
DAN LU
2008

NA ha—FRET 474 75—vailkd
JAVAE /S A)L 22— R OB R EE 715 DOAFIE

B =

EANA VT —RNEIRy NI—ANTEBE), VE— b~ TEITSNE T
NI AhTHDH, 2 LTl Int. BXa) T o NEERFEERD,
JavaSEIIBEE, Zaett, 77 v N7 A — M EOR A A L, BiE
ENA N a— RORBUIIL BN TWD, KifFSEIL, Java® A L a—
R AT LADFRANEF 2T 4 ZRFT D720, AR DY LV & ORGE
TiEEHENLTHZ R HEL TV D,

TIRNAEIEE =T 4 = a0 U T o R
AT, IR e 2 U 7 ¢ IRGE, FRICEREICAERREZ S
Thd, V—Aa— REoHxg s LT D RERDIERT TR LT,
JavaE XA L a— RV AT AZBWTIEAAASf La— RE2FEITTHHRA B
LY —RAa—RzmbZ id7e L, " ha—REWHIBOa— FEETT
Do TTMHH, RFFETIIANA b a— ROFERROHT 21T > 72,

ENRA N a— NIEREOTEZEA L7277 —F 130 b 558, &
NEOT7 7o —FIFENA NI =RV RATAIBIT DX 2T 4 ORI
ZRIEE U, BEEREENE TE 5 L-ULITER LTV, AR, €
NANA—=RVATAIBITAAT V=27 eV T o227 FEAREIZL, T
NRAN A= RV AT ARG LW X2) T AT NVERE L, ATV =
J RN THHIA—HNVFRANDODT =X VT4 L% YT 7 b
THOIHE=-FRAMIFFAILVEEDYTEH, ZL T, ENS/La— KD
FOFRKEZER L, BHROEXF 2V T 4 LV EHET L, TS La—
RMEREZFH —FHRA MIEETHRE, FHMOEX 2 7 40 LV S =3
RA NDOFFA] LU Lo TIHEMIRIRA I AT D 02 T 5,

Fo, FTHNCENRA Vv a— RERIET 25727 7o —FZxt LT, K
WFFEIXFATHICHRE R AT D B T 70 —F Th D, MAERZR DT/ A L2
— R JavaWM~k H LD HIIZ, ENA /L3 — ROERTICHT L TH & DEAN
ANa— REEH L, MAEEL EBT 52— 2B+ 5, 2L T, £%
SNTE'ENRNAN A= REFTTHEE, b EDOENAA VL a— FOKRE & LI
FRAEFERE DT O, FATHORNEHETEZ 57280, AWFZEIL L D EVRGER
FEA R LT,

Z O b B RREESTIE L Dk T & 20 B LB O 1 i & ARBFSE TR
SENTz, RHFTRILE A Lo — RIS 5 B ALE)N a0] 72 45 it 2 A2 i
THMNESHT LT, fnT DMaE2— ROERFEEZIRE L=, 0o
T HIE DRRREDS X I SALT T2 80 . ABFE CIIMGERS B & FERMENmE TE 5
LAYLIZRIE LT,

iv

Java M obile Code Dynamic Verification by
Bytecode M odification

Dan Lu

ABSTRACT

Mobile code program can be transmitted via netwarkn a remote source to a
local system and be executed on that local hostl. Arth programs may raise the
security problems of the host because they cou&tant with the resources of the
local host and malicious or defective programs wathper data or release secure
information of the local host. The Java language haen used widely in the
implementation of mobile code systems because sopdrtability, security and
platform-independency. In our research, we are ihgar building a verification
approach with high precision in order to protea tfost security in mobile code
systems.

Compared with the security mechanisms such as scasmtrol and
authentication, the Secure Information Flow theisra useful mechanism for the
security protection, especially for the confideliyaprotection. In the traditional
information flow analysis, the source code is takerthe analysis object. While in
mobile code systems, the host executing the mabilie can only get the bytecode
of the programs. Therefore, we analyzed the bywsomformation flow in our
research.

Though several approaches have used the informdkion analysis, those
approaches neglected the characteristics of seadethand in mobile code systems
and did not achieve satisfying verification preaisiIn our approach, we make it
clear that what are the subjects and objects inlsnobde systems, and put forward
the appropriate security model. We assign secieitgls to the data of the
local-host and clearance-level to the third-partyste. Then we trace the
information flow during the mobile code and chedkether a data-leaking is raised
when the mobile code tries to send data to a ety host.

Furthermore, different from static approaches teaify the mobile code before
the JVM executes the bytecode, our approach isnardic approach that verifies
the mobile code when the JVM is executing the lydec Before the mobile code
is sent to the JVM, we analyze the information flowthe bytecode and insert
proper instructions implementing the verificatiomn€tion into the original
bytecode. Thus when the JVM executes the modifiggdode, the verification
function is done as while as the original functafrthe mobile code. The dynamic
approach can get the runtime information duringrtiabile code execution (such
as which branch of the implicit information transieg will be executed, whether
an instruction will throw an exception or not, aswon), and it can achieve better
verification precision than static ones.

In addition, we also discuss the information flowridg the exception handling
in our research, which is almost impossible fotisteerification approaches. We
analyze what kind of information flow can be caudedng the exception handling
of Java mobile code, and put forward the correspanderification bytecode for
the information flow caused by exception handliBgice our approach can deal
with the verification of the exception handling hbytecode, the verification
precision and practicality of our approached arngrovwed further.

vi

Contents

I 0 0o [Tt A o OSSR 1
2 M ODIIE COUE SECUNILY ..veeieeie ettt esreenes 4
2.1 MODIECOUE SYSEM ... e e e e e e e e e e e eeeaannee 4
2.1.1 Client-Server ParadigMm................ e eeeeeeeeeeeeiiiiiiinaaaeeeeaeaasaeees! 4
2.1.2 Code-on-Demand Paradigmcceceemeeeeeeeeeeminnnnninnnnneeeeeaesseenes 5
2.1.3 Remote Evaluation Paradigmcoccccceceeeiiiiiiiiiiiinneeeee e eeeeeeeeeeeenens 6
2.1.4 Mobile Agent ParadigM.cccoeeeiieeeeeeeeeiiiiiiiiesss e s e e e e e eeeeeeeeeeeeseenes 1.
2.2 Advantages of Mobile Code SYyStemMcoiviiiiiiiiiieeeei e 9
2.3 Applicationsof Mobile Code Systemooovvviiviiiiiiiiiie e, 10
2.3.1 Distributed Information Retrieval........ccccccooiiiiiiiii e 10
2.3.2 ACLIVE DOCUMENTS.....uuueiiiiiiiiee e e e e eeeeeeiiiiiis s s s e e e e e e e e e e e eeeeeeeeeeeeennnnns 10
2.3.3 Advanced Telecommunication SEIVICES .. .uuerreiiarieeeeeeeeeeeeeeeeennnnns 11
2.3.4 Remote Device Control and Configuration..........ovvvvciiiiiiiieeeeeeenan. 11
2.3.5 Workflow Management and Cooperationccccoeeeeeeeeeiveeeeeevivnnnnns 12
2.3.6 ACHIVE NEEIWOIKSuuiiiiiiicc e eeeeeeer e e 12
2.3.7 ElectroniC COMIMEICTEuuuuuuunnns s s e e e e e e e e e e e aeeeeeeeeaeennnnnnne e eas 13
2.4 Security of Mobile Code SyStemM.........cuuuuiiiiiiiiiii e 13
2.4.1 Security ReqQUIrEMENTScccoi et 14
2.4.2 Evaluation Criteria of Protection MechanisSms...........ccccceeeeeiieieeeee... 15
2.4.3 Conventional Protection TEChNIQUESccceeeeiiiiiiiiiiiieeeee e 16
2.4.4 DISHINCUVENESS ..uvviiiee e e e e ettt e e e e e e e e e e e e e e e eeneee s 18
2.5 Protection Mechanismsfor Mobile Code Systems.............vveeiiiiniiineieeenienenn. 21
P2 Tt R 1= o3 (= 1T o USSR 21
2.5.2 VerifiCatiON.........uuiiii i rme e 23
2.5.3 Transformation.............ooovvviiiiiicceree e 27
T N g o1 = 1[0 o RS 29
3JavaVirtual Machine and BYteCOdecooceiiiieniinieiee e 36
3.1 JAVA L ANQUAGE.ceeeei ettt et e e e e e 36
3.2Java Virtual Machine.........ccooiiiiiieie e 38
3.3 Java Bytecode and INStruCtion Stcuvuviuiiiiiiniieeeeeeeeeeeeeeeevieeeeeeeeneeees 40
G0 T8t =1 =T o7 o To [40
3.3.2 INSIIUCHION ST ...uuiiiiiiiiiiiie e 49

vii

4 Analysis of Information FIow in ByteCode..........cccevveveecenieie e 55

S o U | 1 V1 o L= 55
4.2 SEMAaNtICS RUIES... ..o 62
4.3 Implicit Information FIOW ANaAlYSIS..........uuvuuiiiiiiiiiieeeeeeeeeeeeeevevv e 68
4.3.1 Implicit Information Flow Caused lfyinstructions................ccccevveeeee 68
4.3.2 Implicit Information Flow Caused lsyitchStatement.......................... 71
4.3.3 Nested Implicit Information Transferring BKsC.............ccooevvviiviinnnnnnnn. 74
5 Method of Bytecode M odifiCation..........ccccuevieieiieesiese e 75
B.L OVEIVIBIV ..ttt e e e e e e e e e e e e e e e e et e e ettt bbb e e e e e e e e e e aeaaeaeeas 75
5.1.1 Motivation of Dynamic Verificationcc.cccccvvvviiviviiiiiiiiiiei e, 75
5.1.2 Bytecode Modification TECNNIQUEccoeeeieiiiiiiiiiiiiiiie e 77
5.1.3 Load-time ModifiCationuuieeeeeeeeeeeeeeeee e 79
5.1.4 Modification CONTENLS.........cceuuuuttimmmmmeeeeeeeeeee e e e e e e e e e eeeeeeeeeeeneennas 81
5.2 Class REEFINITION........ccoiiiiiiiiiie e 82
5.2.1 Redefinition for Intra-procedural Informatidransferring 86
5.2.2 Redefinition for Inter-procedural Informatidransferring 90
5.3 INStrUCHIONS INSEITION....ceiiiiiiiiiiieee et e e e e e e 91
5.3.1 Intra-procedural Information TranSferring...ce....ccceeeeeeeeeeeeeeeeeeeeeeeeiiiens 92
5.3.2 Inter- procedural Information Transferring..........cccoeeeeveeeeeiiiiiiieeiennnns 95
5.3.3 Data-leaking ChecCKinguuvvcciiiieeeeeer e 96
6 Information Flow in Exception HandliNgccoceviriiiiinenieeeee e 97
6.1 M OLIVALION ...ttt ettt e e e e e e e e e e e e e eeeeeeeees 97
6.2 Exception Handling in Java Language..........ccoouveeeeeeeeeeeeeeeeeeiiiiiiinnens 98
6.3 Exception Handling in Java Bytecode.............ccoovviiiiiiiiiiiiiiiiiiee e, 104
6.3.1 Compilation ofry Statement in Java Bytecode.................ommmmm-.... 104
6.3.2 Locating théry BIOCKccooo i 109
6.3.3 Locating theatch BIOCKcccooviiiiiiiiiii e, 110
6.3.3 Locating théinally BIOCK ..., 111
6.4 Implicit Information Flow in Exception Handling..............cccccceiiiiinnn. 113
6.5 Explicit Information Flow in Exception Handling............cccceeeieiiiiiiieeennnn, 121
7 Implementation and EValuationcccceceveeiieiecie e 122
7.1 System ArChItECIUNeeee e e e e e 122
7.1.1 SECUNLY POLICIES ...t 123
7. 0.2 MOGIIEE ittt e e 123
7.2 IMPIEMENTALION. ..o s 125
7.2.1 ClaSS ParSEIuuiiiiiiiiiiiiiiiiiiee e e e e et e et e e e e e e e e e e e e 125
7.2.2 Class MOdIfiCatioNccouviiiiuiimmmmmee e 129

viii

7.2.3 Method ModifiCatiIONveeeee e 130

7.3 Examples of Applying BMOS........coooiiiiiiiiiiii e 138
7.3.1 Applying MOBS iN AQENISPACEvvviuceeeeieeeeeeiviiiieiee e e e e e e e e eeeaes 138
7.3.2 EXaMPIE AQENT.. .o s 144
RS TS T A7 111 = 11 o] o P 156
T A DISCUSSION ..uiieeeeeee ettt e e e e e e e e e e e e e ee e e e e e e e e eee e et bebba e e e e e e eaeaaaeeaens 161
7.4.1 IMPIrOVEMENLS ...uviiiiiiiiiiie e eeeeemme et e et e e e e et e eeeaeeeees 161
7.4.2 PreCoONdItiONScoooiiiiiiiiiiiiii et e e e eeeeeb e 162
7.4.3 LIMItAtIONS ...t e e e e e e e e e aeeeeees 164
7. 4.4 APPHICALIONS ...t 167
S 0] o 11 1T o] o 1SS 170
8.1 SUMIMAIY ..ttt ettt e e et e e e et e e e et e e e et e e e enanans 170
B2 FULUIN @ WOIK ...ttt e e e e e e e e 172
REFEI OINCES. ...ttt sttt st et e ae e beeneesreenaeenneas 174
ACKNOWIEAGMENTS......ciiiecece et ee e e nre e 183
y U To g =T To o | =T o | TSSO 184
List of Publications Related to the TheSiS.......coco i 185

1X

1 Introduction

With the significant development of distributed qmuting and the internet
technology, the utilization of mobile code systefagch as applets, mobile-agent
systems) is increasing. And the Java languagedslwused to build mobile code
systems because of its mobile and safe charaatsrist

This new mode of distributed computation promisesag opportunities for
electronic commerce, mobile computing, and inforaraharvesting as well as the
problems of security. As a distributed system deciiiire, a mobile code system
usually involves two processes, that is, a codéymer process (e.g., a web server
process) and a code consumer process (e.g., anoeisdy). Mobile programs are
able to migrate from remote sites to a host whenptoducer process sends the
consumer process a program (e.g., a mobile agemd)jnteract with the resources
and facilities of the host, which causes side ¢$féz be produced on the consumer
side. Such an arrangement gives rise to seriougrisethreats. If there is no
control on this kind of mobile programs that can éecuted in the consumer
process, a malicious mobile program could try tesembe, leak or alter the
information it is not authorized on the host andenthcompromise data
confidentiality, system integrity and resource &lality. The situation in mobile
code systems requires more stable security mechana provide protection of the
host against the potential attack caused by exsgwtich malicious code than in
the stand-alone systems. It has been a generatmtsuss that security is the key to
the success of mobile code computation.

The host security involves three aspects: confidbty, integrity and availability.
Decades of research in operating systems has gawgnificant experience and
insight into the nature of system security. Sometqmtion techniques used in
operating systems, such like Authentication, AcceSentrol and Secure
Information Flow, have been used to prevent hosta d@om leaking to
unauthorized hosts in mobile code systems. Howethex, existing protection
mechanisms for operating systemsruut fully address the security needs of mobile

code systems. In Java mobile code systems, thdabwigy property can be
protected by JVM secure mechanism. Existing apprescfor enforcing
confidentiality and integrity properties tend tonfioe mobile code so as to ensure
that it can do no harm to the host. This goal isiea@d by enforcing stringent
access control policies that prevent mobile codmfexecuting any action that can
potentially compromise the security of the hostteys running the code. For
example, Java applets are denied to read or wniefiles resident on their host
system since malicious applets may be able to wske #n access to alter user data
or leak it to unauthorized parties. Such accessralopolicies are useful to keep
malicious applets in check. However they precludéarge number of useful
applications of mobile code.

An ideal mobile code security framework should fasis restriction as much as
possible on the mobile code on the preconditiom e host is protected from the
attack of malicious or faulty mobile code. Compartml simply informal
endorsement such as Authentication and Access @ptite Secure Information
Flow is a kind of program-analytic mechanisarsd more precise. Information-flow
control is a technique that provides ensuring dmnrftiality and integrity. However,
the studies in this field focus on high-level langas and the source code of the
program is analyzed in compile time. These appresclannot be applied to mobile
code system because the consumer of the mobile fygtem cannot obtain the
source code of the mobile programs that migrate fitee producer.

The approaches for Java mobile code security by amvalmost static ones.
They verify Java mobile code and decide the codedsire or not before the local
JVM executes the code. Thus all static approacloesgdcnot get any runtime
information of the mobile code execution. That i@m# limitation of static
approaches causes that those approaches canneveadatisfying verification
precision in implicit information transferring sicit is impossible for static
approaches to judge which branch of the implicibimation transferring will be
executed in runtime. Furthermore, the static apgrea cannot trace the
information flow in the exception handling becausgceptions are thrown
dynamically during the execution. And this limitatimakes the static approaches
lose the practicality.

This dissertation provides a dynamic verificatiggp@ach to protect the host
security in Java mobile code systems by the byeooddification. We analyze the
information flow of Java bytecode, and put forwarduitable security model for
mobile code systems based on the secure inform#tantheory. In our security
model, we do not restrict the mobile code to reaassgive information from the
host and transfer the information in the mobile ecothstead, we record and
calculate the information flow to master where #emsitive information is in the
mobile code. Only when the mobile code sends inédion out, we check and
restrict the possible information-leak.

Furthermore, we make use of the bytecode modifinatechnique to achieve
dynamic implementation of our security model. Befdhe JVM executes the
mobile code, we modify it in order to add the Jesfion function into the original
bytecode. Then the modified bytecode is submitedhe local JVM, and its
original functionalities and the added verificatimmction are executedt the same
time.

We analyze the structure of Java bytecode and &lass and put forward the
modification mechanism that can insert appropriagtructions into the original
bytecode to trace and check the information flowirduthe bytecode execution.
Especially, our research covers the informationvfio Java bytecode exception
handling, which makes our approach more practiodlahieve better verification
precision.

2 Mobile Code Security

2.1 Mobile Code System

Mobile code is an architectural paradigm for stmdcly distributed software
systems. Different from the other paradigms usedcdostruct the distributed
system such as Client-Server Paradigm, the mostessjye character of mobile
code systems is the notion of code mobility: comizatmg processes in mobile
code systems exchange program code instead ofyspapting data messages.

In one program, there are three elements:

® Data (stored result sets)
® Code (commands)
® State (current execution status of the program)

A distributed computing system can be called asobil@ code system if there
are the codes that can migrate from one host tthandvobile code systems can
revolutionize the design and development of digted systems. In the following,
we will provide a brief overview and comparisonfofir programming paradigms
for distributed computingclient-server code-on-demandemote revaluatiorand
mobile agents

2.1.1 Client-Server Paradigm

In the client-server paradigm, there is a set ofises provided by the server, by
which the client is able to access to some ressijecg., databases, files). Although
the service is used by the client, the code thagilements these services still
belongs to the server. In a word, it is the seitgif that executes the service, and
thus has the processmapability. If the client wants to get informatioom certain
resource hosted by the server, it is able readmediata resource not by itself but

by seeking help from the server to provide an gmpate service instead. The
server owns all, including the resources, the toajet the resource and processor.
Currently, most distributed systems were constdicie this paradigm in which a
wide range of technologies have been involved, siscRemote Procedure Calling,
Object Request Brokers (CORBA) and Java Remote ddethvocation (RMI). In
the client-server systems, the ownership of theamgd in the service and the host
is not changed during the process of informati@mgition, only the data of the
program is transferred, thus these systems arecoagidered as mobile code
systems.

® Data— mobile

® Code— static
® State— static

KC]ient

2. call procedure

S
E
R
3. return result Y e
C
E

System
data Y

resources

A 4

1. execute
4. continue

Figure 2-1. Client-Server Paradigm.

2.1.2 Code-on-Demand Paradigm

In the code on demand paradigm, one client haggdbget the know-how
when the client needs it because the client ihytigl not able to perform its task
properly due to a lack of code (know-how). In tledwork, there is another host can
provide the code needed. Once the code is receinedclient performs the
computation by itself. The client holds the processapability as well as the local
resources. Different from the client-server paradighe client does not need the

detail information of the remote since all the resaey code will be transmitted to
the local system. The client has both the resousoésprocessor, while the server
has the know-how. A good example is the Java apiplehe paradigm, applets are
downloaded from remote sites in the web and exddotally.

® Data— static

® Code— mobile
® State— static

KC]ient

1. send request

2. transfer code

3. execute
code

Figure 2-2. Code-on-Demand Paradigm.

2.1.3 Remote Evaluation Paradigm

In the remote evaluation paradigm, see Figure 2-8lienthas the know-how
(code) necessary to perform the service and a ees@ver owns the resource. To
perform the task the client sends the service khow-to the remote site. When the
server receives the service know-how, it will exectlne code using the resources
available there. After the execution, the servdt witurn the result back to the
client. A typical example is SQL. The client sei®{3L query to the DB server, and
then the server executes the query and returngaléta client.

® Data— static
® Code— mobile
® State— static

/C]ient

J code 3. execute

2. send code

code

r'y

a

A
\ 4

System resources

4. return result

1. execute
5. continue

Figure 2-3. Remote evaluation Paradigm.

2.1.4 Mobile Agent Paradigm.

A key characteristic of the mobile agent paradigee Figure 2-4, is that any
host in the network is allowed a high degree ofiligity to possess any mixture of
know-how, resources, and processors. Its processipgbilities can be combined
with local resources. Know-how expressed in thenfaf mobile agents is not
limited in a single host but can execute freelgrat host in the net work.

® Data— static/mobile
® Code— mobile
® State— static/mobile

\

J code 3. execute

2. transfer code
code
a
7'y
v

System resources

7\
HOoO-<TI=H®

1.initialize

4. transfer codé|

\
)

5. execute

code
y'y
\ 4

System resources

6. return result

HOF<=H=®

Figure 2-4. Mobile Agent Paradigm.

In these four distributed computing paradignde-on-demand remote
revaluationandmobile agentsre considered as mobile code systems because the
code on one host is transferred to another. Babieleode, the execution state of
the program may also be moved to the other hostghwdivides the mobile code
system into the strong mobility and the weak mojpili

Strong mobility enables an executing unit to mogeaawhole by retaining its
execution state (e.g., the instruction pointer)ossr migration. Migration is
transparent, in that the executing unit resumesudia on the new host right after
the instruction that triggered the migration.

Weak mobility enables the transfer of applicatioode towards or from a

different host. At the destination, the code mayrbe into a newly created
executing unit or it may be linked into an alreadgning one.

2.2 Advantages of Mobile Code System

Mobile code represents a new way of building disiied software systems.
Motivation for adopting the mobile code paradigns baen surveyed in great detalil
in [23, 29,58and 65]. Here we list several represere examples.

Real-time interaction with remote resour ces. Most computing resources in the
host, such as databases, file systems or evencahgssplays, are not allowed to be
transported. For a computation that requires reak tinteraction with these
resources, it must be conducted in the exact diiehathe resources reside. Code
mobility provides the possibility to prescribe tlieation of computation, so as to
bring real-time interaction into reality. For exdmpactive contents like Java
applets prescribe interactive presentation thit se rendered on the browser side.

Reduction of communication traffic. Mobile computers usually interact with
servers through unreliable, low-bandwidth, higletety, high-cost networks.
Mobile programs become an attractive alternativeabse network traffic can be
reduced by migrating the client program to the eerside, thus avoiding the
potential cross-network communication bottlenecks.

Customization and extension of server capabilities: In traditional client-server
applications, valuable hardware resources are lysognaged by server software
(e.g., an operating system). The server offeredgined set of services which are
defined based on extremely general access pohcidgends to ignore the specific
needs of individual clients. It is very difficulb textend the capability of the serve
without redefining its interface. Remote evaluatmffers a flexible infrastructure
for extensible server. Recently, various propodase been made to allow
application-specific extension code to be downldadiynamically into server
software, so as to customize the access policieset the specific needs of clients.

Asynchronous distribution computing: In traditional client-server applications,
the state of computation is distributed among ssraad clients. As a consequence,

it is difficult to maintain the consistency of théstributed states and articulate the
correctness of the computation. Mobile code systiecaize computation states in

a single process. They offer a better abstractivet imakes the crafting of

distributed software a more manageable task.

2.3 Applications of Mobile Code System

Any application that can be crafted under the neobdde paradigm can also be
structured as a client-server application [58]. ldear mobile code systems offer
many software engineering advantages that theémtelerver counterpart lacks
such as those mentioned above. Thus mobile codensyscan be applied to the
following application domains.

2.3.1 Distributed Infor mation Retrieval

Distributed information retrieval applications aadt information from the certain
resources scattered in the network. The informanatches some specified criteria.
During the information retrieval process, the imfiation sources visited by the
applicants can be defined statically or determidgdamically. This is a domain
encompassing a big diversity of applications. Franeple, the wide range of
information to be retrieved can be the list oftaé publications of a given author to
the software configuration of hosts in a networke Efficiency could be improved
by code mobility because the code can migrate fremote to close to the
information when performing the search process.

2.3.2 Active Documents

Traditional passive data, such as e-mail or webepats enhanced by active
documents applications with the capability of exemithe programs which have
certain relationship to the content of the documenabling enhanced presentation
and interaction. Mobile code system is the prerfoseealizing these applications
because it allows the embedding of code, statiegcibde into documents, and
executing the dynamic contents during documentidmi A typical instance is
represented by an application that uses graphimdoto compose and submit

10

queries to a remote database. The interactiontiwihuser is modeled by using the
COD paradigm, i.e., the user first raises requdetsthe active document
component to the server and then using the docuasean interface to perform the
computation. This type of application can be easiiplemented by a technology
which can fetch remote code fragments. A typicabiah is a combination of
WWW technology and Java applets.

2.3.3 Advanced Teecommunication Services

Support, management, and accounting of advancedot@munication services,
such as video conference, video on demand or tekding, require a specialized
“middleware” providing mechanisms for the dynamecaonfiguration and the user
customization—advantages brought with code mobiliBor example, in a
tele-conference, the application components magathe setup, signaling, and
presentation services could be dispatched to thes ey a service broker. Examples
of approaches exploiting code mobility can be founfb7and 74]. A special class
of advanced telecommunications services supportsilenasers. In this special
circumstance, the autonomous components can preugdport for disconnected
operations, as discussed in [80].

2.3.4 Remote Device Control and Configuration

Remote device control applications are focusingconfiguring a network of
devices and monitoring their status. Several oipgiications are included in this
domain, i.e., industrial process control and nekwgranagement. Traditionally,
monitoring is performed by randomly or periodicgbigking up the resource states
while configuration is conducted by a predetermisetof services. This approach,
based on the client-server paradigm, can bringnabeu of problems. Mobile code
could be used in this incident to design and imglehhmonitoring components that
shared with the devices being monitored and repwgnts that represent the
evolution of the device state. Additionally, themagement components migration
to remote sites could improve both performancefiaxibility.

11

2.3.5 Workflow M anagement and Cooper ation

In a business or engineering process, workflow meameent applications support
the cooperation of persons and tools involved. Twkflow defines which
activities must be carried out to accomplish a git@sk as well as how, where,
when and at what distance these activities shawldive each party. To represent
activities as autonomous entities is a practicethis approach. During their
evolution, they are circulated among the entitreived in the workflow. Mobile
code could be used to provide support for mobitityactivities that encapsulate
their definition and state. For example, a mobibenponent could encapsulate a
text document that undergoes several revisions. Thmponent maintains
information about the document state, the legalaimans on its contents, and the
next scheduled step in the revision process. Aticgipn of these concepts can be
found in [22].

2.3.6 Active Networks

The concept of active networks is recently be psepdoy several articles, which
acts as a means to introduce flexibility into netgoand provide more powerful
mechanisms to weave or systemize the elementsannétwork according to
applications’ needs. They can be classified instidelimited by two extremes
represented by the programmable switch and the utmpapproaches. The
programmable switclapproach basically is an example of the COD paradand
it aims at providing dynamic extensibility of netkodevices through dynamic
linking of code. On the other hand, thapsuleapproach aims to attach to every
packet flowing in the network, some codes desagitancomputation that must be
performed on packet data, at each node. Clearliyeagcetworks aim at leveraging
the advantages provided by mobile code in termdepfoyment and maintenance,
customization of services, and protocol encapsuiatAs an example, in this
scenario a multi protocol router could be downlashd® demand of the code
needed to handle a packet corresponding to an wikipootocol, or even receive
the protocol together with the packet.

12

2.3.7 Electronic Commerce

Electronic commerce applications make it possibbe perform business
transactions through the internet. A transactiony nmavolve negotiation with
remote entities and may require access to infoondtiat is continuously evolving,
e.g., stock exchange quotations. In this contéeret is the need to customize the
behavior of the parties involved in order to maacparticular negotiation protocol.
Moreover, it is desirable to move application comguts close to the information
relevant to the transaction. This makes mobile cappealing for this kind of
applications. The term “mobile agent” is often tethwith electronic commerce.
Another application of code mobility to electromi@mmerce can be found in [83].

2.4 Security of Mobile Code System

By its very nature, mobile code is fraught withenént security risks. With the
emergence of various forms of malicious active eots, users of mobile code
systems are now aware of the increasingly serieaargy threats associated with
mobile code computation. A malicious or faulty mebcode unit may tamper
valuable data on local disks, covertly transmits#@re information to another party,
or masquerade as another trusted application.

Mobile code units may originate from unfamiliar soes, making it difficult for
users to determine if a given code unit should faatgd certain execution rights.
The host user never writes them, nor does he knlmvabout them, and sometime
he does not know where they came from. Anonymity central reality of mobile
code computing. A naive response will considemadbile code as malicious and
reject them or forbid all mobile code capabilitidhough that policy can give the
host the maximum security, it is the most uselesthod because of the fact that
there are many benefits of mobile code system araeasingly software
infrastructures are built around mobile code tetdgies. The question is not to
avoid downloading or using, but to protect the Hosin the downloaded mobile
code running wild. Thus our objective is to vetifye Java mobile code precisely as
much as possible, that is, to let the mobile codesimg no security problems
(intentionally or involuntarily) pass our verificah as many as possible.

13

2.4.1 Security Requirements

There are two classes of security issues in malatle systemsHost Security
and Code SecurityThe host security is concerned with the protectb the host
from being attacked by malicious or faulty mobileograms, and with the
avoidance of mutual interference among executiats uwhile the code security is
concerned with the assurance of correctness arfalentiality for the computation
that is delegated to a remote host. When an uetiusist carries out a computation
on behalf of a client, the host may maliciouslyrapt or expose the internal state
of the client’s execution units.

This dissertation is mainly devoted to the exploratof issues concerning the
host security. There are three aspects concerrtdiva host security:

® Integrity: System resources should be protected from unaméib
modification, deletion, or other means of tampering

® Confidentiality: Sensitive information should be protected fromklag to
unauthorized parities through some channels.

® Availability: The services of computing system should be pretetrom
monopolizing or denial.

In order to establish and evaluate the security cdmputing system, one should
refine the criteria above, and lay out exactly witet security requirements are in
concrete terms. In general, the following attadkedt the host security in mobile
code systems.
® Denial of service: The downloaded mobile program may monopolize share
the resources like the terminal screen, CPU tirheeading services, etc.
Such attacks destroy the availability of the hgstem.

® Corruption: Some malicious or faulty mobile code may modifyevase
important data. Other may tamper with the intersigte of the system,
rendering the system state incoherent. Such attamkpromise the integrity
of the system.

® [eakage: Some mobile codes may actively release sensitificgration on

an outside party. Other may engage in data prougssitivities from which
malicious third parties can infer information ti&supposed to be classified.
Such attacks are direct violation of the systeroisficdentiality.

14

® Masquerading: Some malicious mobile programs may masquerade as

another one by faking the Ul of the latter, thusliftg the users into
entrusting them with critical resources and datéhe@® may pretend to
originate from a trusted origin. And malicious mebprograms may even
fool the type system by appearing to be of andiyy@, thus gaining access

to the internal state of the system. Masqueradsng very subtle form of
attack that could potentially lead to the comprongsf all the three aspects

of host security.

2.4.2 Evaluation Criteria of Protection M echanisms

Protection mechanisms are technologies built ih® ¢computing environment
for the sake of enforcing security policies. Pratet is based on the notion of
separation Separation can be physical (allocating physicdistinct resources to
competing parties), temporal (scheduling compefimgcesses to execute at a
different time), logical (creating logical barrieto avoid interference), or
cryptographic (encrypting sensitive information).

To design secure protection mechanisms, there arera principles can be
referred [106 and 107].

® Economy of mechanisms: The design of the protection mechanism should
be small and simple. A small and simple mechanigm be carefully
analyzed and validated.

® Fail-safe default: The default condition should be denial of accedse T
designer of a protection mechanism should determihat is accessible
instead of when access is denied.

® Complete mediation: The protection mechanism should be designed so that
all possible access to system resources is covlraa system that will be
used continuously, and in which access rights neayelioked, every access
attempt should be checked.

® Open design: The security of the protected system should npedd on
keeping the design of the protection mechanisnmesecr

® Separation of privilege: Access on an object should depend on more that
one condition. In this way, complete security breadl not occur when one
protection system is defeated.

15

® Least privilegee The mobile code should be granted the bare minimum
amount privilege necessary to complete the job.

® Psychological acceptability: If the users feel that protecting their system
resources is too much work, they will not use hieThuman interface should
be designed for naturalness, ease of use, andisitypso that users will
routinely and automatically apply the protectionchmenisms.

2.4.3 Conventional Protection Techniques

In traditional operating systems, besides opergtiogection techniques such as
CPU protectionMemory Protectiorand Access Controhre other two protection
mechanisms relevant to mobile code systems.

® Memory Protection

The purpose of memory protection is to prevent mhmafunctioning of one
execution unit from interfering other execution tenor even the host. With the
memory protection, the execution units are regtdi@nd not able to interfere either
with the execution states of other units or with state of the global host.

There are three mechanisms in total that provigentiemory protection in the
traditional operating systems:

1. Processes are isolated in separate addresssspd@ematter it is a data
reference or a control transfer, the hardware etiick the every address reference
at run-time to see if the address space of theimgnprocess includes the location
of the address reference. Or a memory exceptioh beilgenerated to halt the
process and return control to the operating system.

2. There are two types of executions provided by @#ich are named as the
kernel mode and the user mode. Instructions thahseboundary of address space
are protected and can only be executed in the kerode. User processes are then

forbidden to redefining the boundary of their addrepaces.

3. The kernel mode of operating system checksdh&a flowing outside of the

16

address space by a special interface which is lysacthieved by providing a set of
predefined system calls accessible by a special&truction. When a system
call is invoked by outside execution, the CPU skgcto kernel mode, and control
is transferred to the operating system corresp@hgirthen the operating system
starts to process the system call on behalf ofifee process.

Furthermore, some operating systems provide compiede to separate
different security-levels by the group of concemtrings instead of a simple
dichotomy of kernel and user modes. Usually it sesgecial hardware and
operating system support. In the concentric ringleq@nly the code running in the
rings with higher trust level are allowed to accdata and code in the rings with
lower trust level, in another word it is a one-wiw. Accordingly the control will
be hand over to the code in the ring of highertttegel via special entry points
called gates.

® Access Control

Access control is achieved by protected informat&sources which identify the
special execution units that can be granted thesscto certain resources. In
traditional operating systems, resources of thé hos modeled as objects, while
user processes are modeled as subjects. With @omisa subject can perform
certain operations on an object. The permissionth kind of performance is
called access right. Security policies are expessean assignment of rights to
subjects. A protection domain is a collection otess rights. A user process
acquires its access rights by being associategbtotaction domain.

A matrix is introduced to describe the access sight a multiprogramming
system. In the matrix, protection domains are esged in rows while objects are
expressed in columns. Access rights are givenpmgection domain (row) for the
accessing of an object (column). It is easy torsethe access right by labeling an
entry in the matrix with access operations. In itradal operating systems, the
access matrixes are usually implemented eithevofways. The access control list
is one of the two ways. It is a list of <subjedght> pairs associated with every
system resource. When an access occurs to a restiecassociated list will be
checked to see if the accessing subject is inishamd access right is appropriately

17

granted. Another is called capability. A capabilsyan unforgettable pointer to a
system resource. The right was granted to a suligeeiccess an object at the
moment of received the pointer. In a sense, capalmbntrols access through
visibility which means it is impossible for a pr@seto access a system resource if it
is not even visible to the process.

In traditional operating systems, access contral lma described in two related
mechanisms which ar@uthenticationand Authorization Authentication is the
process of establishing the identity of a user.hadtation is granting the right
access to authenticated users according to thé oédsauthentication. Under such a
system, it is the user’s identity that largely det@es the right to perform an
operation, or, be more precisely, it depends onoferating system’s knowledge
upon the user in a large extend.

2.4.4 Distinctiveness

Mobile code systems share many similarities witk thaditional operating
systems. In fact the security issues in them dnelalted to the multiprogramming,
specifically resource sharing. But the mobile code different from other
multiprogramming languages used in traditional apeg systems. The protection
mechanisms in these traditional systems can nalireetly transplanted to mobile
code systems to address the similar security n&sseral distinguishing features
of mobile code make the security needs differemimfrthose of traditional
multiprogramming operating systems.

® Layered Protection

Traditional discretionary access control [108] eglion trusted resources which
means a user should be a known party. The acces®kis based on the trust to
the origination of the codes including the usedenitity and the ownership of the
resources. A straight simple implementation of tde&a to mobile code security is
to label every mobile code unit with a digital sagure that indicating its origin. In
this view, the idea of traditional operating systeaturity is extended to mobile
execution, and the access authorization is onlied$o those codes whose origin is
well-known to the host. This approach works wellewhthe mobile program is

18

developed by a famous brand name, or when it i$ em a credible source.
However, the approach is dysfunctional when theifpr code is written by an
author unknown to the host or comes from an uniceaiagin. The key conception
of the Internet computing is that any party carliyeshare information or actively
contact with others who have access to the Intefhés foreseeable that in the
future more and more useful mobile programs arexgao be developed and
distributed by parties unknown to the average usBesurity solely based on
identity cannot afford to handle such complex dedivagn This difficulty was first
articulated by Ousterhout et al [94], and then tbiia full expression in a paper of
Chess [28].

Based on the above understanding, the identitherotigin of the information
should not restrict security engineers to authotiie access. No matter what the
programs are anonymous or not, if they are trudtwothey should be accepted by
a sound security infrastructure. Therefore, itdsegpted as an axiom the origin of
the program should not hamper it from being dowdlc@ a computing
environment. Thus anonymous trust is the first amdntal challenge in mobile
code security.

® [ayered Protection

Another fundamental aspect of mobile code systethatsa mobile code system
creates a complete multiprogramming environmentvabibe existing operating
system. In the environment, mobile code is ablaetne its own computing model,
provide its own set of services, maintain its owsaurces and hence define its own
security model. As a result, it is not usually i&#d to simply treat an execution
unit as same as just another normal process ingaeating system, running in just
another protection domain. Furthermore, our ddsirglatform independence will
conflict with any approach designed particularly ttee security model of an
operating system. On the other hand, as one aidées in the underlying platform,
a mobile code computing environment may expose soinitee operating system
resources to the visiting execution units. The reolbbde security model must
comply with the security constraints imposed bydperating system.

In traditional operating systems, a process defoods the boundary for memory

19

protection and the protection domain for accesgrobnA mobile code system
usually occupies only one process, which in turrsthiosecondary threads
representing execution units. In order to makeogsible to protect the computing
environment process from the execution units ang@ratect the execution units
from interfering each other, we should set up twatgrtion mechanisms. One is a
memory protection to define secondary address spaséle the address space of
the computing environment process. And the othérdsaccess control mechanism
to define secondary protection domains inside theteption domain of the
computing environment process. Thus a parent-chdidtionship is formed
between the security model of the operation systaththe security model of the
mobile code system.

Layered protection is a characteristic feature ingle-address-space operating
systems like OPAL [27] and Mungi [62], also extdasioperating systems like
SPIN [17], VINO [111], and Exokernel [42]. In suéind of operating systems,
untrusted code may be (dynamically) introduced iatoprivileged protection
domain (e.g., the kernel) in order to prevent thesds from exploiting the
resources into that domain. Some recent worksf{3flJs on the Operating System
community and endeavor to address the need foa-atdress-space protection
mechanisms motivated by software plug-ins, deviceveds and data-driven
security threats.

® |Implicit Acquisition

Different from the traditional slow, manual, expisoftware acquisition, the
code mobility defines a new model of software asijioin. In the past, system
administrators know exactly what package are ilestalon the system and
announce any potential impact to users since talfredtives are reviewed and tested.
In a mobile code system, software acquisition imgletely different. A mobile
code unit may arrive without the user’s acknowledgmSimple activities such as
opening an email or browsing a webpage could invibieeinstallation of active
mobile code unit. Acquisition is therefore impljcithich is also a design goal. In
such an environment, only automatable checks dmved such as signature
checking, program analysis, type-checking and soAdinsuch checking should
take only limited time to complete. It is this tineenstraint acquisition process

20

established trust gradually. With the time constrai computing environment has
to establish the trustworthiness of a mobile progmaithout going through the
traditional evaluation cycle. In fact the time tstablish the trust should be only a
small part of the total execution time of the melpkogram. Implicit acquisition is
the third fundamental challenge of the mobile ceeleurity.

2.5 Protection Mechanismsfor Mobile Code Systems

Discretion, verification, transformation, and aréiton are four kinds of
approaches in mobile code systems protection. BRlosent protection mechanisms
of existing mobile code systems can be considesetthe combination of the four
approaches.

2.5.1 Discretion

Discretion refers to the protection mechanisms Wwhitake security decisions
based on identifying the “tokens” of trust. In pewtar, it turns to various
authentication techniques [82] for help to estddlie trust. Every mobile code unit
Is associated with certain digital signature(s).c®nhe host received a foreign
mobile code unit the digital signature of the meldbde will be authenticated, and
a (mechanical) process of authorization will auit®raccess privileges to the
mobile code unit according to the result of autlwatibn. The signature
authentication in such kind of systems is assumedbe highly efficient.
Discretion-based protection addresses the challehgeplicit acquisition pretty
well because the signature authentication inheritatlis simple and the efficient.
As a result, it has been studied as a generalgiiroteinfrastructure [47and 63] and
has been utilized in quite a few existing mobildegystems [54].

The core of discretion approach is the semantichkesignature. Eventually it is
the meaning of a signature that determines whi#l lef access rights is granted.

A digital signature is an unforgettable token ttah denote the security property
of the signed code unit. There are three poted&abtations can be attached to the

signatures of mobile code units.

Identity/Origin Semantics. This method is a direct translation of the traufisl

21

discretionary access control found in many opegasiystems. The signature of a
mobile code unit discloses its origin or authore Tdomputing environment keeps a
record of the connection between known signatunestheir relevant rights. The

performance of the schemes which based on recognihie owners or authors of
programs is not satisfied in establishing the anumys trust in mobile code

systems.

Authoritative Endorsement Semantics: Giving a signature to a mobile code
unit means that the signing party endorses theasniteing “safe”, normally it is in
an informal sense. Certain trusted authorities Wwél responsible for certifying
mobile code units in this approach. Developers suthrair mobile programs to the
trustworthy certification authorities to get thegrsature before the publication.
Usually, what it means to be “safe” is informallgfihed by the signature, if it is
properly defined at all. By this approach, a signaican only provide endorsement
of the mobile code unit, but the endorsement ha®moal semantics, which means
it cannot be reduced to formally defined securitsoperties. Because the
endorsement is based on trust, therefore the $gquavided by it largely depends
on the extent of trustworthy on the signing party.

Program-Analytic Semantics. The signature denotes a formal program-analytic
property such as type safety or invariance of diquéar assertion (program
invariant). Only when the corresponding formal mp can be found in the unit,
signature is attached to the mobile code unit. &teee three conditions that will
result the attachment of the signature:

Code is trusted if it is generated by a trustwortbgnpiler [89 and 101].

Code is trusted if it has been properly rewritten @ trustworthy program
transformer [17 and 111].

Code is trusted if it has been certified by a tmasthy program analyzer.

Compare to informal endorsement, a program-anabgimantics can be more
reliable, because it builds the trust on a formallfined, publicly available
program certifying algorithm instead of merely hyntan judgment. Unfortunately,
currently, there are only small numbers of secysityperties have been processed
by formalization. Memory safety and confidentialsye the rare cases that have

22

been formalized into program-analytic terms. Totlar explore the space of
application of this approach, studies are beingedon to translate more security
properties into program-analytic terms.

2.5.2 Verification

In the verification approach to mobile code segurisecurity policies are
formulated as program analytic properties. Befoamding the computation
environment, in coming mobile code units must péseugh a trusted program
analyzer, usually named as a verifier whose jolioiddeny potentially unsafe
programs from the various incoming units. Therefiv@ execution units that pass
the analysis and reach the computation environnagat guaranteed to satisfy
certain security properties.

® Verification for Memory Protection

The application of the verification approach formmey protection is currently
the most successful model. Following three examgilas detail illustration.

First is Typed Intermediate Language. By the usirggafe intermediate language
memory protection is achieved in Java programs.[3&ya source programs are
compiled into the format of Java Virtual Machine/kd) bytecode [75]. The
bytecode format is specially designed to prote@&ca®on units from interfering
with each other and prevent them to access the g\iMérnal state. Firstly, the
JVM bytecode language is strictly typed. Secondigjnter arithmetic is not
allowed in the bytecode. Therefore, only in a tgaée manner could bytecode
instructions access the memory. As a consequenegjony protection can be
simplified into type-checking. All Java class fileaust be screened by a bytecode
verifier before dynamically connecting to the JVBEecause the JVM bytecode is
unstructured, data-flow analysis has to be intredum to ensure that the type
safety of the class file. In fact, dataflow anadysithin the JVM also can be carried
to check for other safety concerns such as opestack overflow as well as to
check for type safet¥herefore, runtime checks that would otherwise éeded to
avoid operand stack overflow and ensure type safatybe safely avoided.

23

Second is Typed Assembly Language. While Javadealy on an intermediate
language in order to check the type informatiord Becula and Lee have to resort
to a highly expressive logical proof to capturei@minformation for machine code,
Morrisett et al [52,84 and 85] demonstrated thatetghecking actually can be
performed in an assembly language. Especially,ag heen demonstrated by a
typed assembly language (TAL) [84] which carries type in formation of a rich,
functional source language (a call-by-value vari@inBystem F, the polymorphic
A-calculus augmented with products and recursiontesms). There are three
important conclusions of this remarkable work. firsit demonstrates that type
safety can be achieved without using an abstraetnrediate language, thus the
run-time performance will be significantly reducdd. fact, type check of typed
assembly code can be fully performed without ré&fgrto the original source pro-
gram. Secondly, the typing construct imposes almosestrictions on optimization,
which makes it possible to exclude the safety ptgpef the program from the
code compiler. Thirdly, there is an effective typeserving procedure that can
interpreter the source language into TAL. Compavét this work, the approach
of Necula and Lee [87] is more general and thefication is incomplete.

In summary, Java bytecode can be taken as a poitabrmediate representation
which allows attachment of type annotation in orieenforce memory protection
statically. When it is applied solely to memory f@ation, proof-carrying code can
use a very expressive logic to capture typing mfmion for a target language,
Therefore it can provide static typing without gsian interpretive intermediate
language. Last but not the least, static typinglmaperformed in a target language
instead of resorting to an overly expressive forsmal which has been actually
demonstrated in TAL.

® Verification for Confidentiality

Program-analytic approaches to the enforcementwfidentiality have received
a lot of attention, and are relatively well-undecst. Building on Bell and La
Padula’s security model [13 and 69], the work of@by Denning [38, 39 and 40]
has laid the foundation for the studyS#cure Information Flownalysis.

The information flow model can be defined by

24

FM=<N, P, SC,®, —> (2-1)

In the above model N is a set of logical storagedab or information receptacles.
Elements of N may be files, or program variabless B set of process. SC is a set
of security classes corresponding to disjoint @asf information. The
class-combining operatoré®” is an associative and commutative binary operator
A flow “—" relation is defined on pairs of security clasdesr classes A and B,
A—B means if and only if information in class A isrpétted to flow into class B
[15].

The security requirement of the model is that avflnodel FM is secure if and
only if execution of a sequence of operations camaate the relation-". To
comply with this policy, information at a given seity-level is not allowed to flow
to lower levels. A security system is composed e€&S of subjects and a disjoint
set O of objects. Each subject S is associated with a fixed security class C(s),
denoting it clearance. Likewise, each object @ is associated with a fixed
security class C(0), denoting its classificatiovele The security classes are
partially ordered by a relation, which forms a lattice. To avoid subjects with low
clearance accessing sensitive data and subjects high clearance to release
sensitive data to low-clearance subjects, we nbat @ subject may only read
objects with classification level no higher thas d¢tearance, but may only write to
objects with classification level no lower than @earance. Information is always
flowing unidirectionally from low classification soce to high classification

destination.

Information flow could beexplicit or implicit. Given two variableX andY, the
information flow fromY to X is explicit in the following command:

X=Y+2

In that command the variablk gets the information of the data stored in the
variable Y directly. Such information flow is calleéxplicit information flow.
Therefore the classification level of the data iariable X should be the
classification level of the data in variatle

Information flow could also be implicit. Conditionatatements may convert
information into control flow just like the followg commands:

25

if Y>Zthen

X:=0;
else

X:=1,
end if

In that conditional statement, the value of theadatthe variableX depends on
the values of the data in the variabl@ndZ. Thus the variabl&X gets information
from the data in the variab¥andZ indirectly and such information flow is called
implicit information flow Likewise, looping constructs can also cause iaipli
information flow.

X :=0;

while Y < 10 do

Y:=Y+1,
X=X+2;
end while;

In the conditional statements above, the variXbiets information from the data
in more than one variable. In such cases, theifitzg®n level of the data in the
and thus the classification level of the data inalde X should be the one of the
data in the variablX should be thé.east Upper BoundefLUB) of classification
levels of the data in variables from which the able X gets information.
Assuming the classification levels of the datahe variableY andZ areL, andL,,
the classification levdly of the data in the variabk should bd_x = L,V L, where
V' denotes the calculation of LUB.

To deal with explicit information flow, each exps&m is associated with a se-
cure flow type, which represents the classificaterel of the data item. The lattice
structure of the classification levels induces @ra sub typing relationship among
the secure flow types: if typerepresents a classification level at least as hgh
that of typet’ thent > v’ . An expression involving operands with distinatigéy
types receives the least upper bound of the opstréypks as its type. For example,
if e and ehave security types andt’ respectively, and < 7, then e + etan be
assigned security type.Each variable also has a typear, indicating that it holds
contents with type no higher thanExplicit leaking is then prevented by requiring
that assignment of the form X := a is well-typedyah X has typet var and a has

26

type no higher than. To formally express this, we allow expressionetygo be
coerced to any typeif t <t’, and then require that X := a is well-typed idaonly

if X has typer var and a has type With this arrangement, the above example code
that explicitly leaks information will not be wetlped.

To handle implicit information flow, every commarglassociated with a type
com. Intuitively, a command has typeom if every variable that is being assigned
in the command has typévar wheret < tv'. That is,t is a lower bound for the
security-levels of the variables being assignethéncommand. The idea is that if a
conditional or iterative construct involves a cdiui expression of type then
commands in the body should not assign to variabiéis security-levels lower
thant. To make this work, we need two more sub typidgsuuFor the variables,
var< 7’ var if and only ift <1’ . For the commands, the opposite must hotlthm<
7 com if and only ift’ < 1. Again, expressions can be freely coerced to tger

types.

The verification can be done statically or dynartycaStatic verification
approaches analyze a program prior to the execudimh judge whether the
program is secure or not, while the dynamic ongdement the verification of the
program during the run-time. The static approacbasnot achieve satisfying
verification precision in implicit information traferring because of the inherent
limitation of static verification approaches thatis impossible for them to judge
which branch of the implicit information transfergi will be executed in runtime.
Furthermore the static approaches cannot traceirtfemation flow in the
exception handling because exceptions are thrownamdically during the
execution, which makes the static approaches les@nacticality. While since the
dynamic approaches implement the verification dytime run-time, they can get
better verification precision and trace the infotiora flow in exception handling.
The disadvantage of dynamic approaches is thatdbstymore run-time overhead
than the static ones.

2.5.3 Transformation

Sometimes a mobile code representation may notddetavored for execution
although it is good for transportation (e.g., path independent, compact for

27

transport efficiency). In many mobile code systepwje units are transported in
the byte-code form of virtual machine. The bytecdlden is transformed into a

native code for efficient execution just after irieed to a host. Now such a

just-in-time (JIT) compilation [120] becomes an onant feature of mobile code

systems like Java [55] and Omniware [84]. The Liimke code generation also

adds portability to the mobile code systems [84t, Ydynamic code generation can
also be considered as a protection mechanism. Blabide units are expressed in a
high level representation (e.g., a type-safe in¢gliate language as in Java) in
which unsafe behavior cannot be expressed. Whileirag at the host, the code

units are converted to a format which can be exetah the host machine directly.

Because the code generation is completed by a&trestmpiler located on the host,
and the unsafe behaviors cannot be expressed isotlmee code, the generated
code can be considered as safe.

Transformation can also be used to tailor an utédusode into a more secure
form in a similar way. In contrast to the dynamazie generation, unsafe behaviors
can be expressed in the migrated code. The codeasusiatically analyzed while
arriving at the host, and extra protection codmjected at program points where
the security cannot be guaranteed.

® Transformation for Memory Protection

It was at early 1970’s, the method of code rewgitas been applied to memory
protection within a single address space [115].eRtyg, the Omniware mobile
code system [79] starts to use transformation fglément memory protection for
untrusted mobile code units. Omniware mobile codésuare transported as
bytecode on the Omniware Virtual Machine (OmniVM)28]. OmniVM is
designed to resemble an RISC architecture, thpeoitides efficient performance,
simple implementation, and retarget ability. Omni\dides its address space into
segments, in order to ensure that execution uamsanly access those segments
which they have been authorization to assess. Smdtlvased Fault Isolation (SFI)
is introduced in [83]. The basic idea of SFI igewrite untrusted mobile code units
thus to turn it into versions cancel the accesartauthorized segments. Each
memory address is divided into two parts, namelygegment identifier and an
offset within the segment. There are two possieleriting rules can be formulated

28

as below:

Segment Matching: For every memory reference, guard code is insdry&édre
the reference has been initiated by the instrustidmitiatively the inserted code
checks whether the referred segment matches thentwegment. A memory fault
will be raised if it failed in the check.

Sandboxing: For every memory reference, the segment identiffethe target
address is dynamically overwritten by the identibéthe current segment.

The systematic application of either rule to ewagmory reference in a program
guarantees that no interference occurs betweenirisegments.

Experience indicates that observable run-time a@ethis caused by this
approach because additional code is introducedhéyransformation. Despite this
overhead, native code which is executed in this @ayrun at a speed comparable
to the speed of original code execution [83], tHongt as sane efficient as a the
proof-carrying code version [88].

In extensible operating systems VINO [111] and Eeonel [129], users are
allowed to dynamically download untrusted extensiode into the kernel address
space to modify the behavior of the operating systeUntrusted extension code
units are subject to SFI transformation before doeating to protect the
integration of the kernel address space.

2.5.4 Arbitration

Another way to completely protect a host is to the “direct” contact between
the host and untrusted execution units. Once arustetl execution unit requests
the execution of an operation, the arbitrator, asusted party is called in to carry
out the operation of the execution unit. Unsaferaijpens can be fully blocked by
the arbitrator which can restrict the kind of opienas visible to the execution unit,
and can examine the client’s run-time state. That absuch flexibility is usually a
considerable run-time overhead.

Arbitration can be used to enforce both memoryeamtixdn and access control.
An interpreter is often used to enforce the menmptection. An interposition is

29

frequently used to enforce the access control. Eddhem will be examined in
turn.

® Memory Protection by Interpreter

Using an interpreter to conduct computation in e sand portable way has
become very popular. Mobile code languages likeaJ@b], Safe Tcl [94],
Scheme48 [100], and Telescript [62], JavaScriptinalude the interpretation of
some source or intermediate languages. The mechadfisnterpreter approach to
achieve memory protection can be explained in tagsy

Restricting expressiveness: A safe intermediate representation can be defined
for mobile code units. With the limitation of thenguage, some unsafe operations
cannot be expressed, while some can be statidadigked. Take the JVM bytecode
representation [75] as an example, in which prigkk native instructions cannot be
expressed; no pointer arithmetic; the languagédristly typed; interactions with
host resources are performed through a public e programming interface
(API). Therefore, memory interference can be awbide

Dynamic checking: The interpreter can screen out all potentially giaaus
moves by run-time checking because only throughatbération of the interpreter
could the execution unit interact with the host CHdr an example, the JVM
checks against null pointer dereferencing, outaidd array access, and illegal
type-cast [75].

® Access Control by Interposition

Interposition means to insert trusted arbitratiodecin the form of a reference
monitor [95] between a protected service and theyguoint of the service. In a
traditional operating system settings and procegseally access system resources
via an on-bypass system which is called interfafogy attempts to access the
protected resources are therefore subjected tontbaitoring of the trusted
arbitration code before they can reach the targatices. Access control policies
can be programmed into the arbitration code by wim@ppropriate access to the
service can be screened out with flexibility. Thare several implementations of

30

interposition in mobile code systems: applicatiorappers, reference monitors,
reference monitor in lining, and name resolutiontoal.

Application wrappers. Application wrappers are software containers wiao
designed for controlling the interactions betweenrusted programs and their
execution environments. It was designed to retrfiitration code into a legacy
software system in a non-intrusive manner.

Janus [111] is an application wrapper especialtamized for protecting a host
against insecure mobile code computing environmdiits reflection of the design
of Janus is that an untrusted process is not alfk@rnm the host if its restriction of
access to the underlying operating system has pleeed appropriately. By using
the process tracing facilities and the proc virfilalsystem in Solaris, Janus creates
a user-level sandbox that put all system calls nigdan untrusted process under
the monitoring. Since legacy computing environmewtsich have unreliable
protection mechanisms (e.g., an old version of ghesv or a buggy, therefore
Java-enabled web browser) can be executed inseldahus sandbox, the Janus
monitor can effectively block out unsafe systemeascinitiated by the execution
units running inside the legacy computing environtnéJsers may even supply
their own policy module to specify which systemisahould be allowed, which
ones should be denied. A function must be calledigtermine what to do in
deferent conditions.

Janus can provide effective protection to the frash any unreliable computing
environment without requiring modification to theerkel and the computing
environment. It is a good example to provide a fizatsolution to a very practical
problem. However, even disregarding its platformpeatedent nature, Janus can
hardly address the layered protection problem.tli¢zirdanus does not allow the
computing environment to define a different pratattdomain for each execution
unit. Secondly, the kind of security policy expeddy Janus is limited because it
ignores the semantics of the computing environntemt.an instance, when a JVM
is running inside a Janus sandbox, the policy mexdaf Janus is not able to figure
out the internal state of the JVM, and have to miéeedecision of their access
control without understanding the state of JVMalmord, layered protection can
only be adequately addressed when interposing isuili-in feature of the

31

computing environment instead of being a retrafipatch of the operating system.

Reference Monitors. The security manager and stack inspection arewbe
mechanisms composed the Java reference monitoacédisses to operating system
services are isolated in the standard Java API.néier a service routine is
invoked, the API transfers control to a correspongdnonitor method of the global
security manager object. The monitor method wipiect the Java run-time stack
thus to conclude if the call is safe or not. If thenitor method does not allow the
access, either an exception will then be createdowtrol is returned to the service
routine to execute the original request. The secathority may oversee these
monitor methods of the security manager class deroto customize the security
policy of the JVM.

The Java security model allows one to define iatdcsecurity policies. For
example, stack inspection allows the security manage the micro control to
decide what access level will be granted to theuestpr. There are several
drawbacks of this approach listed as follows. Birshe security manager needs to
implement complex stack inspection logic to diffdrate among accesses initiated
by different execution units. From a software eeging point of view, both the
construction and maintenance of this logic areidiff and fallible. Secondly, a
procedure based definition of security policy ist masy to be understood. A
popular solution is to introduce traditional accesstrol lists in the arbitration code
(asin Java [46] and Agent Tcl [56]). SubsequenMgtscape has attempted to
extend the Java stack inspection mechanism by girayistack annotation which
simplifies the logic for access right checking [L.ZBhis extended version of stack
inspection is later on proven by Wallach, Appel dmlten [121 and 122] to be
equivalent to formal deduction in ABLP logit]]

Reference Monitor in Lining. Code rewriting can be applied at load time to
introduce monitoring code into an untrusted progréfare, the arbitration code
does not reside at the entry points of privilegexvises, but instead is injected into
the program itself to detect and avoid misuse ofilpged services. Specifically,
this strategy has been used for implementing thia Stack inspection [43and 122].
SFI has also been applied to enforce security ipsli@xpressed as security
automata [44]. Besides a number of other efforsimrolved in applying load time

32

code rewriting to enforce high level access comaicies [46, 102, 103 and125].

Name Resolution Control. In this approach, arbitration occurs while dynamic
linking happens. The name resolution provides atike simple way to offer the
potential of centralizing all security logic intassangle mechanism.

Safe-Tcl [94] is a security-aware extension of plsgular Tcl scripting language
[100]. Protection is achieved by three mechanismsafe interpreters, aliases, and
hidden commands. Similar to other shell scriptingnguages, Tcl is a
command-based language which means the accessrting system facilities are
provided through a set of commands. Safe-Tcl defanpadded cell security model,
in which each individual execution unit is executey its own interpreter. All
system services are available in a trusted, masterpreter. When an untrusted
script is executed, it is sandboxed in a sepavateysted, safe interpreter. Who acts
just as a separate name space. Privileged comntandse embedded in the safe
interpreter in order to prevent untrusted scriptrfrunauthorized access to system
resources. Additionally, to achieve the finer-gesincontrol, a command may be
aliased. Such as the name of a privileged commaritde safe interpreter maybe
“overshadowed” by a trusted arbitration routinetle master interpreter. If the
access is granted the arbitration routine decidesumtime. If the access is
permitted, it delegates the original call to therhadowed command in the master
interpreter.

The padded cell model refers to a form of interpasicalled name resolution
control. In this approach the mechanism of nameluésn is to control the
selective access to the privileged services. Ireress name resolution control
includes two component mechanisms. Firstly, grgntihcapabilities is realized by
name visibility control. The notion of a safe ingeater, which is essentially a
namespace, coincides with that of a protection denfaprivileged service can be
accessed only if it can be named in the safe irgezp It is easy for one to define a
different access policy for each script becauséd eacipt is assigned to separate
name space and the name can be encrypted as e@h@y, message interception
selectively binds names of privileged services tapper code that protects the
entry points of those services. Here, accessilgityot controlled by visibility, but
instead by dynamic checking of the possessiorgbtsi

33

Scheme [94 and 100] is another early mobile codeesy that set up its primary
protection mechanism based on the approach of m@soéution control. In Scheme,
a procedure is considered to be a function closwt@ch contains a lambda
expression and a binding environment. When a proeed triggered, the only
visible objects inside the lambda expression ageatiiual arguments and the values
of the names in the lexical environment. SchemdiBva programs to construct
arbitrary binding environments, thus to executerusted code inside these
carefully-crafted special environment. During theurse of constructing such
environments, the names of privileged proceduresbeaencrypted or be renamed
to be invisible to arbitration routines.

Wallach et al [97] describe a way to implement naesolution control in the
context of Java. In Java, a hame space coinciddsantlass loader. A class name
in one class loader represents a different claas #nother class with the same
name in a different class loader. The class loa@eroriginally conceived for name
space partitioning so that there will be no nameflmd among separate execution
units. Taking advantage of this design, one mawtera subclass of the standard
class loader class, in which all requests for naeselution are monitored. As a
result, if a privileged name is to be hidden, tlesg loader can throw an exception
when the name is resolved. Aliasing can be simdlate resolving the names of
privileged classes to arbitration classes.

The extensible operating system SPIN [17] also nsodeotection domains by
name spaces. All extension code in SPIN is wrifterthe type-safe language
Modula 3. Capabilities are directly modeled as p®m Therefore, if a name is
well-typed in a code unit, then the resource oviserit refers to will be accessible.
Typing thus provides a means of expressing comditivisibility of a symbol.
Fine-grained protection is achieved by allowingrage manipulate name spaces.
Name spaces can be created dynamically, and catteare executed within the
confine of that name space, thus restricting ifsabdities. An interesting feature is
that name spaces can be extended by the Combinatiopewhich creates a union
of two name spaces. In general, a system that nze® resolution control for
protection needs ways to construct and extend rsp@aees.

Besides the advantage of implementing name spaceaddeling protection

34

domains, there are still some potential problentkiwithis approach. One of them
is that there is no way of revoking capability. Th&ernel [101] is a Java security

kernel that provides a capability revocation medranwithin a name-space
domain framework.

35

3 Java Virtual Machine and Bytecode

3.1 Java L anguage

Platform independence, security, and network-miybdie three facets of Java's
architecture that work together to make Java fit tlee emerging distributed
computing environment of mobile code systems. Amtregse three aspects the
network-mobility of the code and objects is moregpartant compared with the
other two. The same code can be sent to all thgpuoters and devices interlinked
together in the network. Objects can be exchangashg the various components
of a distributed system which can be executed &rrdnt kinds of hardware. The
built-in security framework of Java also helps toaka the software
network-mobility more practical. By reducing theks, the trust in a new paradigm
of network-mobile software is build up with the pelf the security framework.

A single Java program can run on various compwrdsdevices without being
changed to adapt itself to the running environm@uampared with the programs
compiled specially for some certain hardware oroparating system, it is much
easier and cheaper to develop, administrate andtamaithe platform independence
Java programs.

Networks provide a venue for malicious programmassleak or tamper
information, destroy computing resources, or singiysomething annoying. Virus
producers, for example, may place malicious pidogares on the network which
can be downloaded by unsuspecting users. Javasaegdrthe security challenge by
providing an environment in which programs downkx@cross a network can be
run with security in customizable degrees.

Robustness of simple program is one of the secaspects. Just like devious
code written by malicious programmers, buggy coddtem by well-meaning
programmers also can bring troubles such as patntestroying information,
monopolizing compute cycles, or causing systemgrash. Java's architecture

36

guarantees a certain level of program robustnespréyenting certain types of
pernicious bugs, such as memory corruption, froer eecurring in Java programs.
That guarantees that mobile code will not inadvelyecrash.

By enabling the transmission of binary code in $ma&ces across networks,
Java takes advantage of distribution computing. @ed with other programs that
are not network-mobile, the special feature of Jar@gram makes it easier and
cheaper to be delivered.

The emerging of mobile code provides another oppdst that both code and
state can transmits across the network with theilmobjects. Java achieved object
mobility in its APIs for object serialization andvR (Remote Method Invocation).
Based on Java's underlying architecture, the olg@galization and RMI together
provide an infrastructure that allows the objeotbé shared by various components
of distributed systems. The network-mobility of ettis makes new models possible
for distributed systems programming, therefore Hemefits of object-oriented
programming are effectively brought to the network.

Compile-time environment Run-time environment

User program’s source file i Java APT’s class files
Ajava B.java Cjava | Object.class String.class
Java i
i virtual machine

A.class B.class C.class |:> A.class B.class C.class

User program’s class files

User program’s class files

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1
| Java |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1
1 1
1 1
1 1
1 1
1 1
1 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
! .
! compiler
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

__

Figure 3-1. The Java programming environment.

37

Figure 3-1 shows the relationship among variousspair Java programs. Java
program source files written in the Java prograngianguage are compiled into
Java class files in the form of bytecode. Then ¢hokass files are loaded and
executed in Java virtual machine (the local JVMaoremote JVM). During the
execution, the Java bytecode accesses system cesofsuch as 1/0) by calling
methods in the classes implementing the Java Agtic Programming Interface
(Java API).

A “platform” is formed by the Java virtual machiaed Java API together, on
which all the Java programs are compiled. More ttame called as thdava
runtime systemthe combination of the Java virtual machine dmel Java APIs is
also called as théava Platform(or, starting with version 1.2, tlkava 2 Platform
It is because the Java platform can be implememesoftware that makes it
possible for Java programs to run on many diffekerds of computers.

3.2 Java Virtual Machine

The core of Java's network-orientation is the Jasaal machine. All the three
features, platform independence, security, and aor&kmobility, of Java's
network-oriented architecture are supported by JVM.

The JVM is a stack machine manipulating an operstadk and a set of local
registers for each method and a heap containingcbbjstancedts specification
defines certain essential features that every yatizal machine must have, while
leaves many options to the designers of each ingiéation. For example, all Java
virtual machines must be able to execute Java bgteprograms, while developers
can choose any technique to make it happen. Futtieefeature of flexibility of the
Java virtual machine's specification enables hgamplemented on a wide variety
of computers and devices.

A major job of Java virtual machine is to load sldfles and execute the
bytecodes contained in those files. As shown inufgg3-2, the Java virtual
machine contains a class loader, which loads diéss from both the user’s
program and the Java API, and a execute engineshwéctually executes the
bytecode loaded by the class loader. Only thosses dikes from the Java API that

38

are actually needed by a running program are loattedhe virtual machine. The
bytecodes are executed in an execution engine.

/ dJava Virtual Machine \

Java APT’s
class files

User program’s
class files

Class Loader

A 4

A 4

Execute Engine

E bytecodes

\ 7
’

v
~ -’

Native method invocations

v
Host operating system

Figure 3-2. A basic block diagram of the Java akrtmachine.

As a part of the virtual machine, the execution ieagvaries in different
implementations. On a Java virtual machine impldetm software, the simplest
kind of execution engine just interprets the byteconce at a time. Just-in-time
compiler is another kind of execution engine whishfaster but requires more
memory In this scheme, the bytecode of a method are dethpp native machine
code at the first call of the method. The nativechirge code for the method is then
cached, and at the next time when the same methad/oked again it will be
re-used. An adaptive optimizer is the third type exfecution engine. By this
approach, the virtual machine starts by interpgebgtecode, monitors the activity
of the running program and identifies the most igavsed areas of the codes.
Along with the running program, the virtual machinempiles to native and
optimizes just these heavily used areas. The ressaf the codes, which are not
heavily used, remain as bytecode and still neebtietanterpreted by the virtual
machine when be in use. This adaptive optimizadigproach enables a Java virtual
machine to put typically 80 to 90% of its time aeeuting highly optimized native
codes, while requiring it to compile and optimizelyothe 10 to 20% of the code

39

that really matters to performance. Finally, inaaal virtual machine built on the
top of a chip that executes Java bytecode nativletyexecution engine is actually
embedded in the chip.

All Java methods can be divided into two kinds:@method and native method.
A Java method is written in the Java language, dechpo bytecode, and stored in
class files. A native method is written in othendaages, such as C, C++, or
assembly, and compiled to the native machine cd@departicular processor. Java
methods are platform independent, while native ougth are stored in a
dynamically linked library whose exact form is ptatn specific. During the
execution of bytecode on a Java virtual machineighanplemented in software on
the top of the host operating system, an interadbetween the Java program and
the host happens when Java program invokes theenaiithods. At that time the
dynamic library that contains the native methodl wi¢ loaded on the virtual
machine and the native method then invoked. As ghiown in Figure 3-2, native
methods are the connection between a Java programaa underlying host
operating system.

3.3 Java Bytecode and I nstruction Set

3.3.1 Bytecode

For analyzing bytecode program, we should undedstdne format of the
program in the form of bytecode. Java programs isbié$ a set of classes. Each
class is stored in one class file, which hasGlessFile structure as shown in
Figure 3-3.

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;

40

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];
u2 attributes_count;

attribute_info attributes|attributes_count];

Figure 3-3. The format of class file.

magic:
The magic item supplies the magic number identifying thessléile format; it
has the value OXCAFEBABE.

minor_version, major_version:

The values of theminor_version and major_version items are the
minor and major version numbers of this class filegether, a major and a minor
version number determine the version of the cldssférmat. If a class file has
major version number M and minor version numbew denote the version of its
class file format as M.m. Thus, class file formatrsions may be ordered
lexicographically, for example, 1.5< 2.0 < 2.1.

A Java virtual machine implementation can suppatgaas file format of version
v if and only if v lies in some contiguous range.Mgv <Mj.m. Only Sun can

specify what range of versions a Java virtual maehmplementation conforming
to a certain release level of the Java platform support.

constant_pool_count:

The value of theconstant_pool_count item is equal to the number of
entries in theconstant_pool table plus one. Aconstant_pool index is
considered valid if it is greater than zero and lémnconstant_pool_count :
with the exception for constants of type long andlide.

constant_pool[]:

41

The constant_pool is a table of structures representing variousngtri
constants, class and interface names, field naame$,other constants that are
referred to within theClassFile structure and its substructures. The format of
eachconstant_pool table entry is indicated by its first "tag" byte.

Theconstant_pool table is indexed from 1 to constant_pool_count-1.

access flags:

The value of thaccess_flags item is a mask of flags used to denote access
permissions to and properties of this class orfiate.

An interface is distinguished by its ACC_INTERFAGRg being set. If its
ACC_INTERFACE flag is not set, this class file daefs a class, not an interface.

If the ACC_INTERFACE flag of this class file is sés ACC_ABSTRACT flag
must also be set and its ACC_PUBLIC flag may be Seth a class file may not
have any of the other flags.

If the ACC_INTERFACE flag of this class file is nsét, it may have any of the
other flags. However, such a class file cannot haeth its ACC_FINAL and
ACC_ABSTRACT flags set.

The setting of the ACC_SUPER flag indicates which two alternative
semantics for itanvokespecial instruction the Java virtual machine is to
express; the ACC_SUPER flag exists for backwardpadrhility for code compiled
by Sun's older compilers for the Java programmiaggliage. All new
implementations of the Java virtual machine shomiglement the semantics for
invokespecial documented in this specification. All new comgsleo the
instruction set of the Java virtual machine shadtithe ACC_SUPER flag. Sun's
older compilers generatétlassFile flags with ACC_SUPER unset. Sun's older
Java virtual machine implementations ignore the fiiat is set.

All bits of the access_flags item not assigned are reserved for future use.
They should be set to zero in generated class diesshould be ignored by Java
virtual machine implementations.

this class:
The value of thethis_class item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index must be a

CONSTANT _Class_info structure representing the class or interfacenddfby
this class file.

42

super_class:

For a class, the value of teaper_class item either must be zero or must be
a valid index into theonstant_pool table. If the value of theuper_class
item is nonzero, theconstant_ pool entry at that index must be a
CONSTANT Class_info structure representing the direct super classhef t
class defined by this class file. Neither the dir@eper class nor any of its super
classes may be a final class.

If the value of the super_class item is zero, ticlass file must represent the
class Object, the only class or interface withodiract super class.

For an interface, the value of the super_class itamt always be a valid index
into theconstant_pool table. Theconstant_pool entry at that index must
be aCONSTANT_Class_info structure representing the class Object.

interfaces count:
The value of thenterfaces_count item gives the number of direct super
interfaces of this class or interface type.

interfaceq[]:

Each value in the interfaces array must be a vafidex into the
constant_pool table. The constant_pool entry at each value of
interfaces[i], where 0 < i < interfaces count, must be a

CONSTANT_Class_info structure representing an interface that is actir
super interface of this class or interface typehim left-to-right order given in the
source for the type.

fields count :
The value of thdields_count item gives the number dfeld_info
structures in the fields table. Theld_info structures represent all fields, both

class variables and instance variables, declargdi®yglass or interface type.

fieldd[] :

Each value in the fields table must befi@ld info structure giving a
complete description of a field in this class aerface. The fields table includes
only those fields that are declared by this classnterface. It does not include
items representing fields that are inherited fraupes classes or super interfaces.

43

methods_count:
The value of thenethods_count item gives the number ohethod_info
structures in the methods table.

methodq[]:

Each value in the methods table must baethod_info structure giving a
complete description of a method in this classnberface. If the method is not
native or abstract, the Java virtual machine isimas implementing the method
are also supplied.

The method_info structures represent all methods declared bydhaiss or
interface type, including instance methods, clas&ti€) methods, instance
initialization methods, and any class or interfaggalization method. The methods
table does not include items representing methbds dre inherited from super
classes or super interfaces.

attributes count:
The value of thattributes_count item gives the number of attributes in
the attributes table of this class.

attributeq]:

Each value of the attributes table must be arbateistructure.

The only attributes defined by the Java Virtual Kiae specification as
appearing in the attributes table o€CkassFile structure are th8ourceFile
attribute and the Deprecated attribute.

A Java virtual machine implementation is requiredsiiently ignore any or all
attributes in the attributes table of GlassFile structure that it does not
recognize. Attributes not defined in this specitiica are not allowed to affect the
semantics of the class file, but only to providdiadnal descriptive information.

In Figure 3-4 and Figure 3-5, we give one exampgldghe result of a Java
program complied into bytecode and the definitibthe class file.

44

Source code: Bytecode:

class Act { CA FE BA BE 00 03 00 2D 00 11 07 00 07
public static void doMathForever() { 07 00 10 0A 00 02 00 04 OC 00 06 00 05 01
inti=0; 00 03 28 29 56 01 00 06 3C 69 6E 69 74 3E
for (;;) { 01 00 03 41 63 74 01 00 08 41 63 74 2E 6A
i +=1, 61 76 61 01 00 04 43 6F 64 65 01 00 OD 43
| *= 2, :> 6F 6E 73 74 61 6E 74 56 61 6C 75 65 01 00
} 0A 45 78 63 65 70 74 69 6F 6E 73 01 00 OF
} 4C 69 6E 65 4E 75 6D 62 65 72 54 61 62 6C
} 65 01 00 OE 4C 6F 63 61 6C 56 61 72 69 61
62 6C 65 73 01 00 OA 53 6F 75 72 63 65 46
69 6C 65 01 00 OD 64 6F 4D 61 74 68 46 6F
72 6576 65 72 01 00 10 6A 61 76 61 2F 6C
61 6E 67 2F 4F 62 6A 65 63 74 00 20 00 01
00 02 00 00 00 00 00 02 00 09 00 OF 00 05
00 01 00 09 00 00 00 30 00 02 00 01 00 00
00 OC 03 3B 84 00 01 1A 05 68 3B A7 FF
F9 00 00 00 01 00 OC 00 00 00 12 00 04 00
00 00 05 00 02 00 07 00 05 00 08 00 09 00
06 00 00 00 06 00 05 00 01 00 09 00 00 00
1D 00 01 00 01 00 00 00 05 2A B7 00 03 B1
00 00 00 01 00 OC 00 00 00 06 00 01 00 00

00 02 00 01 00 OE 00 00 00 02 00 08

Figure 3-4. Java source code and bytecode.

45

hex bytes name

CAFEBABE magic

0003 minor_version

002D major_version

0011 constant_pool_count

07 tag

0007 name_index

07 tag

0010 name_index

OA tag

0002 class_index

0004 name_and_type_index

0oC tag

0006 name_index

0005 descriptor_index

01 tag

0003 length

282956 "OV" bytes[length]

01 tag

0006 length

3C696E69743E "<init>" bytes[length]

01 tag

0003 length

416374 "Act” bytes[length]
01 tag

000B length
736E697065742E6A617661 "Act.java" bytes[length]
01 tag

0004 length

436F6465 "Code" bytes[length]
01 tag

000D length
436F6E7374616E7456616C7565 "ConstantValue" Hetegih]

01 tag

46

000A length
457863657074696F6E73 "Exceptions” bytes[length]

01 tag

000F length
4C696E654E756D6265725461626C65 "LineNumberTableytes[length]
01 tag

000E length

4C6F63616C5661726961626C6573 "LocalVariables” dhhegth]
01 tag

000A length

536F7572636546696C65 "SourceFile" bytes[length]

01 tag

000D length

646F4D617468466F7265766572 "doMathForever" bytegilg
01 tag

0010 length
6A6176612F6C616E672F4F626A656374 "javal/lang/Objduytes[length]
0020 access_flags

0001 this_class

0002 super_class

0000 interfaces_count

0000 fields_count

0002 methods_count

0009 access_flags

O00F name_index

0005 descriptor_index

0001 attributes_count

0009 attribute_name_index

00000030 length

0002 max_stack

0001 max_locals

0000000C code_length
033B8400011A05683BA7FFF9 code[code_length]

0000 exception_table_length

0001 attributes_count

47

ooocC attribute_name_index

00000012 attribute_length

0004 line_number_table_length
0000 start_pc iconst_0, istore_0
0005 line_number inti=0;
0002 start_pc inc01
0007 line_number i+=1

0005 start_pc iload_0, iconst_2, imul, istore 0
0008 line_number | *=2

0009 start_pc goto 2

0006 line_number while (true) {
0000 access_flags

0006 name_index

0005 descriptor_index

0001 attributes_count

0009 attribute_name_index
0000001D attribute_length

0001 max_stack

0001 max_locals

00000005 code_length

2AB70003B1 code[code_length]

0000 exception_table_length

0001 attributes_count

0oocC attribute_name_index
00000006 attribute_length

0001 line_number_table_length
0000 start_pc aload_0, invokespecial #3, return
0002 line_number class Act {
0001 attributes_count

000E attribute_name_index
00000002 attribute_length

0008 sourcefile_index

Figure 3-5. The definition of the class Act.

48

3.3.2 Instruction Set

A method's bytecode stream is a sequence of itistngcfor the Java virtual
machine. Each instruction consists of a one-loyteodefollowed by zero or more
operands The opcode indicates the operation to be perfdrrdperands supply
extra information needed by the Java virtual maehim perform the operation
specified by the opcode. The opcode itself indeatkether or not it is followed by
operands, and the form the operands (if any) tdkany Java virtual machine
instructions take no operands, and therefore cobaosly of an opcode. Depending
upon the opcode, the virtual machine may refer data gtored in other areas in
addition to (or instead of) operands that trail tycode. When it executes an
instruction, the virtual machine may use entrieth current constant pool, entries

in the current frame's local variables, or valugng on the top of the current
frame's operand stack.

The JVM is a stack-oriented interpreter that crea@docal stack frame of fixed
size for every method invocation. The size of theal stack has to be computed by
the compiler. Values may also be stored intermebljiah a frame area containing
local variableswhich can be used like a set of registers. Thesal hariables are
numbered from 0 to 65535, i.e. you have a maxim@i®5636 of local variables.
The stack frames of caller and callee method aeglapping, i.e. the caller pushes

arguments onto the operand stack and the callelathaeceives them in local
variables.

The byte code instruction set currently consist2@ instructions, 44 opcodes
are marked as reserved and may be used for fukie:mstons or intermediate

optimizations within the Virtual Machine. The insttion set can be roughly
grouped as follows:

® Stack operations: Constants can be pushed ontstalok either by loading
them from the constant pool with tHdc instruction or with special
“short-cut” instructions where the operand is emmbihto the instructions,
e.g.iconst 0 or bipush (push byte value).

® Arithmetic operations: The instruction set of thava Virtual Machine

49

distinguishes its operand types using differentrutsions to operate on
values of specific type. Arithmetic operations stay with i , for example,
denote an integer operation and the instruatold adds two integers and
pushes the result back on the stack. The Java typekan , byte ,
short , andchar are handled as integers by the JVM.

Control flow: There are branch instructions ligeto andificmpeq
which compares two integers for equality. Thereaiso ajsr (jump
sub-routine) andet pair of instructions that is used to implement the
finally clause oftry-catch blocks. Exceptions may be thrown with
theathrow instruction. Branch targets are coded as offsets the current
byte code position, i.e. with an integer number.

Load and store operations for local variables lilkad and istore
There are also array operations lisstore ~ which stores an integer value
into an array.

Field access: The value of an instance field may réieved with
getfield and written with putfield . For static fields, there are
getstatic andputstatic counterparts.

Method invocation: Methods may either be called static references with
invokestatic or be bound virtually with theinvokevirtual
instruction. Super class methods and private methar@ invoked with
invokespecial

Object allocation: Class instances are allocateith wWie new instruction,
arrays of basic type likint[] with newarray , arrays of references like
String([][] with anewarray or multianewarray

Conversion and type checking: For stack operandsasit type there exist
casting operations lik2i which converts a float value into an integer. The
validity of a type cast may be checked witheckcast and the
instanceof operator can be directly mapped to the equally mame
instruction.

50

Most instructions have a fixed length, but there also some variable-length
instructions: In particular, tHeokupswitch andtableswitch instructions,
which are used to implemeawitch() statements. Since the numbercake
clauses may vary, these instructions contain apkrinumber of statements.

aload x
ostore x
adpush

aconst d

pop
dup
oop

ifcond |

goto |
getfield C.f

putfield C.f

invoke C.mt

areturn

new C

Push the value with type of the register x onto the
operand stack

Pop a value with a typeoff the stack and store it to local
register x.

Push a constant onto the operand stack

Push constant d with typeonto the operand stack.

Pop top operand stack element

Duplicate top operand stack element

Pop two operands with type off the operand stack,
perform the operation op {add, mult, compare .. }, and

push the result onto the stack.
Pop a value off the operand stack, anduata it against
the condition cond { eq, ge, null, ... }; branch to j if the

value satisfies cond.

Jump to j.

Pop a reference to an object of cl@ssff the operand
stack; fetch the object’s field f and put it onte toperand
stack.

Pop a value k and a reference to gealof class C from
the operand stack; set field f of the object to k.

Pop value k and a reference r to arablgf class C from
the operand stack; invoke method C.mt of the refsrd
object with actual parameter k
Pop thex value off the operand stack and return it from
the method.

Create an instance of class C and push @nefe
to this instance on the stack

Figure 3-6. JVM Instructions set.

51

Figure 3-6 summarizes the instruction set of the Jartual machine. A specific
instruction, with type information, is built by reging theo in the instruction
template in the opcode column by the letter intyipe column. For instancépad
represents loading an integer valal®ad represents loading an object.

The abstract execution engine runs one instruaiantime during the execution
of Java bytecode. This process takes place for ¢adad (execution engine
instance) of the application running in the Javdual machine. An execution
engine fetches an opcode and, if that opcode hasogs, fetches the operands. It
executes the action requested by the opcode anopésands, and then fetches
another opcode. Execution of bytecodes continu¢is aithread completes either
by returning from its starting method or by nototatg a thrown exception.

From time to time, the execution engine may enca@uimin instruction that
requests a native method invocation. On such cmessthe execution engine will
dutifully attempt to invoke that native method. Wihthe native method returns (if
it completes normally, not by throwing an excep}ioiihe execution engine will
continue executing the next instruction in the bgtie stream.

One way to think of native methods, therefore, Sspagogrammer-customized
extensions to the Java virtual machine's instracsiet. If an instruction requests an
invocation of a native method, the execution engm@kes the native method.
Running the native method is how the Java virtuatinme executes the instruction.
When the native method returns, the virtual machineves on to the next
instruction. If the native method completes abmufitly throwing an exception), the
virtual machine follows the same steps to handéeetkception as it does when any
instruction throws an exception.

A part of the job of executing an instruction igetenining the next instruction to
execute. An execution engine determines the nesbdgpto fetch in one of three
ways. For many instructions, the next opcode taekecuted directly follows the
current opcode and its operands, if any, in theednde stream. For some
instructions, such agoto orreturn , the execution engine determines the next
opcode as part of its execution of the currentuasion. If an instruction throws an
exception, the execution engine determines the opsgbde to fetch by searching

52

for an appropriate catch clause.

Several instructions can throw exceptions. Theuesbrathrow , for example,
throws an exception explicitly. This instructiontiee compiled from of the throw
statement in Java programming source code. Otlsrmuotions throw exceptions
only when certain conditions are encountered. Ba@ample, if the Java virtual
machine discovers that the program is attemptingetdorm an integer divide by
zero, it will throw anArithmeticException . This can occur while executing
any of four instructionsidiv , Idiv , irem , andlrem --which perform divisions
or calculate remainders amt orlong .

Each type of opcode in the Java virtual machimsgtuction set has a mnemonic.
In the typical assembly language style, streamsJa&fa bytecodes can be
represented by their mnemonics followed by (optipoperand values.

Note that jump addresses are given as offsets fnenbeginning of the method.
In Figure 3-5, the instructiogoto causes the virtual machine to jump to the
instruction at offset two (the instructianc). The actual operand in the stream is
minus seven. To execute this instruction, the alrtmachine adds the operand to
the current contents of the pc register. The resulthe address of thiénc
instruction at offset two. To make the mnemonicsiezato read, the operands for
jump instructions are shown as if the addition Alsady taken place. Instead of
saying 'goto -7," the mnemonics saygéto 2."

The central focus of the Java virtual machine'sircsion set is the operand stack.
Values are generally pushed onto the operand $titke they are used. Although
the Java virtual machine has no registers for rggoairbitrary values, each method
has a set of local variables. The instruction igeits the local variables, in effect, as
a set of registers that are referred to by indedéscertheless, other than the
instructioniinc , which increments a local variable directly, vastored in the
local variables must be moved to the operand diatdre being used.

For example, to divide one local variable by angthige virtual machine must

push both onto the stack, perform the division, #rah store the result back into
the local variables. To move the value of an aebyment or object field into a

53

local variable, the virtual machine must first puble value onto the stack, then
store it into the local variable. To set an arréggment or object field to a value
stored in a local variable, the virtual machine tmfiolow the reverse procedure.
First, it must push the value of the local variabiteo the stack, then pop it off the
stack and into the array element or object fieldrenheap.

54

4 Analysis of Information Flow in Bytecode

In this chapter, we will present the security moafeprotecting the host security
in mobile code systems which is based on the saotoenation flow theory. Then
we will analyze the information flow in Java bytéeocand propose the mechanisms
of tracing implicit information in Java bytecode.

4.1 Security Model

Different from traditional programs, the mobile eogrograms may move from
host to host via network. In mobile code systerhs, security approach should
protect the host from malicious or defective molabele programs. Since the low
level security aspects like memory protection hagnbenforced well by the
security characteristics of Java virtual machihe, work left is to protect the data
integrity andconfidentiality In our research, we focus on tenfidentiality

Figure 4-1 shows the architecture of Java mobitecgystems. When bytecode
programs migrate from one remote host to the legatem via the network, they
are loaded to the local Java virtual machine. TW& Jerifier checks whether the
program is well typed to provide low level security such mobile code systems,
the possible data-leaking process is shown in Eigu? [77]. To detect such data
leaking caused by mobile programs, some traditipnadection-mechanisms used
in operating systems could be utilized, suctAathentication Access Controand
Secure Information Flowheory. Authentication is usually implemented jafier
the mobile program arrives at the host (Step ligaré 4-2). With some algorithm,
the host can infer the mobile program’s identitgnfr the certain information
carried by the mobile program. Depending on the ilagirogram’s identity, the
host judges whether the mobile program is secureobr The Access Control is
implemented when the mobile program tries to readessensitive data from a host
file (Step 2 in Figure 4-2). According to the ma&bprogram’s identity, the host
grants certain read rights to the mobile prograhe mobile program cannot get the
data it is not authorized to access.

55

bytecode
10

Run time environment

Operating system

|

WS

Local resources ! %

Figure 4-1. Framework of Java mobile code system.

The approaches based on authentication and acsesslaonfine the program
from accessing the local system and network ressunt order to ensure host’s
confidentiality. In other words, such approaches/pnt data flowing from the local
system or network resources to the program. Wiaileadly many mobile programs
need the local information to perform their tadksthose approaches, however, the
programs cannot fulfill their tasks because ofdbeess control mechanism, which
makes it meaningless to download the mobile progrand in fact it is not always
true that the mobile program that gets the semsitwormation of the local host
will leak the information to some unauthorized et It is because the access
control mechanism cannot trace and control theofolg propagation of the
information that it denies the access to the seesmformation from unauthorized
mobile programs. If a program gets sensitive datastime channel, the access
control mechanism has no idea which party the médion is transferred to, let
alone controls the information transferring.

56

Host File

Mobile Program \

Internet ;%% |::> Host

/v

Step 1: A mobile program arrives at a host

L | 4

Step 2: The mobile program reads data from a lhilest f

Containerc; Containerc,

Internet

Step 4: The mobile programtries to leak data ttoird party

Figure 4-2. The process of data-leaking in molol@ecsystems.

57

Obviously, a program-analytic semantics may be maable than such
informal endorsement like authentication and accessitrol. The Secure
Information Flowtheory in Denning [38, 39, and 40] is a kind obgmam-analytic
mechanism and has been adopted in many approach&sobile code systems
security [11, 14, 15 and 16]. In order to makesitnauch as possible that mobile
code programs can complete their functions withioyairing the host security, we
build the security model base on the secure infatondlow theory.

As mentioned in Chapter 2, in the secure infornmafiow theory a security
system is composed of a setof subjects and a disjoint sé of objects. Each
subjectse S is associated with a fixed security cla3), denoting it clearance.
Likewise, each objea € O is associated with a fixed security cl&{®), denoting
its classification level. The security classes pagtially ordered by a relatios,
which forms a lattice. To avoid subjects with lol®arance accessing sensitive data
and subjects with high clearance to release seasifita to low-clearance subjects,
we need that a subject may only read objects Vaissdication level no higher than
its clearance, but may only write to objects withssification level no lower than
its clearance. Information is always flowing unéatitionally from low classification
source to high classification destination.

In mobile code systems, the objects are same teetho traditional operation
systems, which are the system resources on theneoseed to protect (we refer to
that host as the local-host). But the subjects abite code systems are different
from the ones in traditional operation systemstréalitional operating system the
subjects are the processes running on the local-lwbdle the subjects in mobile
code systems are all the other hosts trying toirgetmation from the local-host
(we refer to them as observer-hosts). That difisgemakes that the approaches
used in traditional operating systems cannot beptaedioin mobile code systems
without any ameliorating. The data-leaking in melibde systems thus means that
an observer-host gets some information on the lbost it is not authorized.
Therefore security classes denoting classificattmels should be assigned to the
local-host’s files, and security classes denothgdlearance should be assigned to
observer-hosts. As for the mobile code, it is jtle intermediate transferring
information between objects and subjects. It ismeatessary to assign any security
class to the mobile code or its information casier

58

Before the mobile program leaves the local-hossends information out, the
information being transferred in the mobile codendd leaked yet. It is when the
mobile code tries to send information to observasté that the data-leaking may be
caused. Whether a data-leaking arises is not dédgiehat the mobile code gets
some sensitive information but that it transfers itiformation to an unauthorized
observer-host. It is not necessary to set anyicéstr or do any checking when
information is being transferred in mobile code.aMve need to do is only tracing
and recording the information flow in the mobiledeo By this way when the
mobile code tries to send information to an obsehest, we could understand the
information’s classification level and check whettiee observer-host has the right
to get the information.

The approaches in [11, 15, and 16] based on thaes@tformation flow theory
neglect the difference of security demand betweebile code systemsnd
traditional operating systems. They treat the neobdde as the subject in the way
that the processes are treated in traditional dpgraystems. In [11 and 15] the
approaches assign security-levels (denoting tharahee) to information carriers
(objects, method’s parameters and return value) gtdhe mobile code and the
host rejects any mobile program causing an illicibrmation flow which means
that information at a given security-level flowsltaver levels. In [16] the authors
adopt a security policy that grants access to fgidata based on the program’s
need and check if data with high security-level eaer propagate to observers with
low security-level, that is, the approach makegukdgment at Step 3 in Figure 4-2.
These approaches are more precise than the ortesntifjause authentication and
access control. But they make two mistakes that #ssign security-levels to the
mobile code and consequently they detect datarigakhen the information is still
being transferring in the mobile code. The two akst result in unnecessary
restrictions in verification procedure and redudee tverification precision.
Considering two data containgtswith a higher security-level arldwith a lower
security-level, such statement

H:=L;

L:=H
will not do any harm to the host confidentialityorever the statement will be
considered to cause an illicit information flow thye approaches in [11, 15, and 16].
The mobile programs that pass the verificationhose approaches are only a part

59

of all the mobile programs that will not do anyaio the local host security.

Based on the analysis above, we give the definidmasic conceptions and the
security model as follows.

Security-level. In our approach, we refer to the security classiotieg
classification assecurity-level The security-level indicates the host system
resources’ sensitivity. The higher the securityeleis, the more sensitive the
resource file is. All the information gotten from r@source has the same

security-levelas the resources. The system resources that sheulprotected
include:

® file system

® network

® output devices (entire display, various windowsaker ...)
® input devices (keyboard, microphone, ...)

Clearance-level. In our approach, we refer to the security classotieg
clearance as clearance-level. The clearance-lexitates the trust level of an
observer-host to receive the information on theallbost. The higher the
clearance-level is, the more trustful the obsehast is. At present, the
clearance-level is assigned to an observer-hosirdiog to its network address in
our approach.

Distribution Map of Security-level. During the execution of the mobile
program, the mobile program reads data from filethe local-host and transfers
the data among its data containers. We maintaistakdition map to represent the
security-levels of the local-host information iretimobile program’s containers.
When the execution starts, all elements in theidigion map have no value since
there is no local-host information held by any eamer of the mobile code program.
Each time the data in a container of the mobileecpdogram changes, the
corresponding element in the distribution map upsids value to the security-level
of the new data.

Data-leaking. In our approach the data-leaking is defined astiieamobile code
sends the sensitive information of the local-hosan unauthorized observer-host,

60

that is, the security-level of the information igter than the clearance-level of the
observer-host.

Data-leaking Channel. We define the way by which the mobile code may eaus
data-leaking directly or indirectly as a data-legkchannel. The action of detecting
data-leaking should be done at every data leakiranmel in the mobile code. In
mobile code systems, data-leaking channels haee ttypes: 1) the mobile code
requests a network link and 2) the mobile code mawenext destination We
should compare the security-level of the informatito be sent with the
clearance-level of the observer-host to receivertfeemation.

Definition 1 Let DLC be a data-leaking channel in one mobile code.| Lt
the information to be sent at tid.C andD be the information destination (the
observer-host or the file on the local-host) at eC. Denoting byL, the
security-level ofl and byLp the clearance-level or security-level @f aDLC is
secure if and only if the following property holds:

L < Lp.

Definition 2 Let MC is a mobile codeMC is secure if and only if eadDLC in

theMC is secure.

In summary, we assign security-levels to systerowees of the local-host and
clearance-levels to observer-hosts at first. Thamg the local-host information is
being transferred in the mobile code (Step 3 iruFegl-2), we set no restriction to
the information flow in the mobile code and justarl the information flow it in
the distribution map of security-level. When the bit® code tries to send
information out (to an observer-host at Step 4igufe 4-2 or write to local-host
files), we say that the execution encounters dedlithg channel and we check if a
data-leaking is caused according to the recordedtam the distribution map of
security-level.

Our security model can be implemented by static@hes (as we have done in
[78 and 77]) or dynamic approaches. In both kinflsgproaches, to maintain a
distribution map of security-level for recordingetinformation flow is the core of
the implementation. In the following section, wé&aduce the semantics rules used

61

to update the distribution map of security-levet@ding to the information flow.
4.2 Semantics Rules

In our security model, the key to verify the molstede precisely is maintaining
a correct distribution map of security-level durthg execution of the mobile code,
that is, tracing and recording the information flowthe mobile code correctly. In
this section we will give the semantics rules thaicate the relationship between
Java bytecode instructions and the change of #taldition map of security-level.

The JVM is a stack machine manipulating an operstadk and a set of local
registers for each method and a heap containingcobjstanceg75]. So the data
container in bytecode could be the element of auksdack, the local register or
the field of an object instance on the heap. WeotkebyS the aggregation of all
security-levels of the data in operand stack. Sirlyil we denote byR the
aggregation for registers and Bythe aggregation for objects’ fields. In this way
the distribution map of security-levels could bpresented by a tupl&(R, F).

We denoteS by the alphabetS’ followed by a sequence of numbers separated
by the marker . The first number after S’ represents the security-level of the
data in the top element on the stack, and theolastrepresents the security-level of
the data in the bottom element on the stack. Garemdex, we denote b¥R(j) the
security-level of the data in the local registethmthe indeX (j should be less than
the maximal number of registers). Given an objettrenceoref and a constant
pool indexcpi, we denote by-(oref.cp) the security-level of the data held in the
object’s field resolved from the object referemref plus the constant pool index
cpi (the item at indexpi should beCONSTANT _Fieldref indicating the field).
For a container of operand stack or a local registehe data in the container is
typelong or double i orj is the index of the first one of the two successiords
used to store the data.

Furthermore we denote IR(j —) the operation oR that updates the element’s

value at index in R to | while keeps all other elements Runchanged. Similarly
we defineF(oref.cpi« I) for F, too.

62

The change on the distribution map of securityleveesults from the
information flow among data containers of the melsibde, which could be divided
into explicit flow and implicit flow as mentioned iChapter 2. Even the same
instructions will cause different change on thdrdistion map of security-level in
explicit information flow and implicit informatiorilow. Therefore we define the
semantics rules for the explicit information flowdathe implicit information flow
respectively.

® Semantics Rulesfor Explicit Information Flow

The explicit information flow is quite simple andsy to trace. In one explicit
information flow, the information in the used d&dransferred to the defined data.
Thus the security-level of the defined data shdaddassigned the security-level of
the used data or, if the used data are more thantbbe LUB of the security-levels
of all the used data.

We list a subset of JVM bytecode instructions aagigxplicit information flow
in Figure 4-3. Such instructions can cause explidibrmation flow among the
registers, operand stack and class fields.

For example, consider the instructidoad 4 which pushes the data in the
local registerR, at the index 4 to the top eleme®fof the operand stack. By
executing the instruction, the dataSxngets the information of the data 1. We
say that an explicit information flow is causedvibetn the operand stack element
S and the local registd®,, and the security-level of the data $ has the same
value with security-level of the data iR;. Consequently the element in the
distribution map of security-level representing gexurity-level of the data if
should be updated to the new value.

pop Pop the top operand stack element.

oop Pop two operands with type off the operand stack,
perform the operatiop € { add cmpg cmpl div, mul,

rem, suld, and push the result onto the stack.

aconst_c Push constartd with typea onto the operand stack.

63

aload X

astor e x

getfield

putfield

X1, X2

X1, X2

Push the
stack

value with type at the indexx onto the operand

Pop a value with type off the operand stack and store it

into local

variable at index

Pop a reference to an object off the operand statdt) the
value of the object’s field resolved from the reface plus
the constant pool item ak;&<8)| x, and put it onto the
operand stack.

Pop a value and a reference to an object from pleeand
stack; store the value into the object’s field tesd from
the reference plus the constant pool itenmxat<8)| .

Figure 4-3. A subset of JVM instructions causing éxplicit information flow.

pop

aop

aconst_c

aload x

astore X

getfield

putfield

X1, X2

X1, X2

(S(n)-S(n-1)
(S(n)-S(n-1)
(S(n)-S(n-1)
(S(n)-§n-1)

.. Y1)S0yS R F) —
~-S2)S1)SRF)

.. Y1)S0yS R F) —
~..S92) (S1)VI0))S R F)

(aef{d, f, 1,1}, ope{add, div, mul, rem, sgp

(S(n)-Y(n-1)-..
(S(n)-n-1)..
(S(n)-Yn-1)-..
(S(n)-n-1)-..
(S(n)-Yn-1)-..
(S(n)-n-1)-..
(S(n)-Y(n-1)-..
(S(n)-Yn-1)-..

S1)SO0)ySRF)—
S0y 0SR F) ¢e{d, f,i,1})
S1)SO0)SRF)—
.S0) RX)-S R F) ¢<{a d.f,i,1})
S1)SO0)SRF)—
(1) S Rx« S0)),F) @<{a d f,i,1})

.1)SO0)SR F) —
.S0)-F(oref.cp)-S R, F)

(oref is the reference to an object held by the top efgnon

stack;cpi =
(S(n)-S(n-1)
(S(n)-S(n-1)

(X1<<8)| %2)
-...51)50)S R F) —
~...§3)92) S R, F(oref.cpi<—S0)))

(oref is the reference to an object held by the secamd t
element on staclcpi = (x,<<8)| x2)
Figure 4-4. Semantics rules for instructions inlexpnformation flow.

64

Denoting by \/ the least upper bound (LUB) operation and considethe
security-level of a constant is O (the lowest siéglevel), we define the semantics
rules for Java bytecode instructions in an expidarmation flow in Figure 4-4.

® Semantics Rulesfor Implicit Information Flow

The implicit information flow is much more compléxan the explicit ones. We
denote the data used as the condition of the impiidormation flow by
conditional data In one implicit information flow, beside the imfoation in the
used data the defined data will also get the in&diom in the conditional data of
the implicit information flow. Therefore the sedyrlevel of the defined data
should be assigned as the LUB of the security-tewadl the used data and the
conditional data of the implicit information flow.

We list a subset of the Java bytecode instructittvad may cause implicit
information flow in Figure 4-5. In Java bytecodee family ofif-instructions (e.g.
if_acmp<cond> , if<cond> andifnull) and the instructions of th&witch
statementtébleswith andlookupswitch) will generate conditional control
transfer and thus cause implicit information flgWhe exception handling in Java
bytecode may cause implicit information flow, to&/e will discuss it later in
Chapter 6.) The implicit information flow usuallya® two or more execution
branches, some of which may be blank, that is,etherno instructions on the
branch except instructions at tifierk and join points. All the data that may be
changed in the scope of the any branch will getinf@rmation of the conditional
data of the implicit information flow additionally.

if_acmp <cond>| Pop 2 values of typeef off the operand stack and
compare them. Branch to offsgtif the result of the
comparison satisfies the conditienond> < {eq, ne}.

if_icmp <cond>|j Pop 2 values of typent off the operand stack and
compare them. Branch to offsgtif the result of the
comparison satisfies the conditiswond> < {eq, ne,
It ,le,gt,ge}

if<cond> | Pop a value off the top of the operand stack, and
compare it against zero. Branch to offgdtthe result

65

of the comparison satisfies the conditienond> «
{eq,ne, It ,le ,gt,ge}.

ifnonull | Pop a value of typeef off the top of the operand
stack. If the value is not null, branch to offget

ifnull j Pop a value of typeef off the top of the operand
stack. If the value is null, branch to offget

lookupswitch Pop a valu&eyof typeint from the operand stack and

comparekey against thanatchvalues. If it is equal to
one of them, a target address is calculated byngdtie
corresponding offset to the address of this
lookupswitch . If the keydoes not match any of the
matchvalues, the target address is calculated by adding
default to the address of thidookupswitch
Execution continues at the target address.

Figure 4-5. A subset of JVM instructions causing itihplicit information flow.

For example, consider the following section of Jaygecode.
O:iload_1
l:iload 2
2:if_icmple 9
5:iload_4
7:istore 3
8:goto 12

11:iload 5

13:istore_3

14:

The section of Java bytecode compares the valdatafin local register at index 1
and 2, and then stores the greater one into tla tegister at index 3. The instruction
if_icmple 9 at address 2 causes a conditional control trarefeording to the
result of comparing the data in local registerratex 1 and 2, and thus it causes
implicit information flow whose conditional dataeathe data in local register at index
1 and 2. In the branches of that implicit inforroatflow, the data in the local register
at index 3 may be changed and it gets informatioth® used data (the data in local
register at index 4 or 5 depending on which braschxecuted) and information of

66

the conditional data (the data in local registeriratex 1 and 2). Therefore the
security-level of the data in the local registeriratex 3 should be assigned to the
LUB of the security-levels of the data in the looagdjister at index 1, 2, 4 and 5. Here
we define theenvironmentsecurity-levelof one implicit information flow as the
security-level of the conditional data or, if them® more than one conditional data,
the LUB of the security-levels of all conditionadtd of the implicit information flow.
Thus the security-level of the data changed inioyicit information flow should be
assigned to the LUB of the conditional securityeleof the implicit information flow
and the security-level(s) of its used data.

Denoting byLen, the conditional security-level of implicit inforrian flow, we
could rewrite the rules in Figure 4-4 to define sefits rules for Java bytecode
instructions in the implicit information flow as®@hn in Figure 4-6.

pop (8n)-gn-1)...91)Y0)S R F) —
(S(n)-S(n-1)...52)- Y1)-S R F)
aop (Sn)-n-1)...91)YO0)S R F) —

(S(n)-Sn-1)...52) (Y1)VIHO)VLen)S R F)
(aef{d, f, 1,1}, ope{add, div, mul, rem, sgp

aconst_c (S(n)-Yn-1)...41)SO)S R F) —»

(S(n)-Sn-1)-...50) LenvS R F) G<{d, f,i,1})
oload X (S(n)-Yn-1)...51)S0)S R F) —

(S(n)-Sn-1)...50)(RX) V Len)'S R F) (@<{a, d,f,i,1})
astore X (Sn)-Yn-1)...51)S0)S R F) —

(8n)Sn-1)...51)'S Rx «—(S0) V Len)), F) (a<{a, d,f, i, 1})
getfield X1, X2 (S(n)-§n-1)...91)S0)S R F) —
(S(n)-Yn-1)-...50)(F(oref.cpi) V Leny)'S R, F)
(oref is the reference to an object held by the top etgnon
stack;cpi = (x1<<8)|X%2)
putfield X, X2 (S(n)-§n-1)...51)S0)SR F) —
(S(n)-Y(n-1)-...93) Y2)-S R, F(oref.cpi< (S0) V Len))
(oref is the reference to an object held by the secamd t
element on staclcpi = (x,<<8)| x2)

Figure 4-6. Semantics rules for instructions inlimpinformation flow.

67

4.3 Implicit Information Flow Analysis

As we have analyzed above, the same Java byteostieiations will cause
different change on the distribution map of segtigiels in explicit information
flow and implicit information flow. Thus we need thvide the Java mobile code
into explicit information transferring block and phiicit information transferring
block in order to update the distribution map afis@y-levels correctly and verify
the mobile code precisely. Though the explicit infation flow is quite simple, the
scope of an explicit information transferring bloclknnot be located directly
because only the instruction that is not in any lioitpinformation transferring
block may cause explicit information flow. In otheprds, locating the scopes of
implicit information transferring blocks in Java bile code is the precondition of
locating the scopes of explicit ones. As soon asgetethe location of implicit
blocks, the problem of locating explicit blocks bewes quite simple. The scope of
an explicit information transferring block is thestruction causing the explicit
information flow, which is not in any implicit infaation transferring block(In
some meanings, we can consider the explicit inftonaflow as one kind of
special implicit information flow whose conditionakcurity-level is the lowest
one.) Thus we will analyze the implicit informatilow in Java bytecode and give
the algorithms to locate the scopes of the implidibrmation transferring blocks.
As mentioned above, the implicit information flowutd be cause by the family of
if-instructions (e.g.if_acmp<cond> , if<cond> and ifnull) and the
instructions of theswitch statementtébleswith andlookupswitch) in Java
bytecode. In the following we discuss those twasagspectively.

4.3.1 Implicit Information Flow Caused by if-instructions

Theif-instructions in Java bytecode could be compilethftoop constructddr,
while anddo-whilg or if-elseconstructs in Java programming language. if-eése
constructs in Java programming language is comjpliedbytecode straightly. Java
if-else constructs could be complied into the bytecodenfds shown in Figure 4-7
and Figure 4-8. The formats may have one or two-blank branches, which
depends on whether the construct haselse clause or not. While the case of
compiling a loop construct is a little complex. Ava language conditional loop
could be complied into two bytecode formats: ifhimstruction is at the bottom of

68

the loop or at the top of the loop as shown in FEg&9. In both formats of the
bytecode, the conditional loop has only one nomblaranch composed by the
instructions of the loop construct.

K
1 ¥
) . 0O:iload 1
public void test) - 2
i) l:iload 2
(int a, int b) o
2:1f icmple 8 3
{ " " S:iload 1 >
>
Ty siee s [I
intc=a, 7:goto 12 6
else]
) 10:iload 2
intc=b; . 7
11:istore 3

j 12:return
10
11
12

Figure 4-7. The bytecode and CFGfeélseconstruct withelseclause.

K J
- 1 ¥
public void test 0:iload_1
(int a, int b) l:iload 2
{ |:> 2:if icmple 6 |::> 2 X\
if (a>b) S:iload 1 X
intc =a; 6:istore 3 5
} 8: return
6§
8 ?/

Figure 4-8. The bytecode and CFGfeélseconstruct withouelseclause.

69

for (inti=1:i<10; i++) 0 0
f
L83

a. A Java loop construct

2 N

/ﬁ/j O:\: < 9

3 3

0: iconst_1 0O:iconst_1
1: istore 1 l:istore 1 8
2: goto 6 2:iload 1
5:iinc 1. 1 3:bipush 10 9 8
8: iload 1 S:if icmpge 9
9: bipush 10 8:iinc 1. 1 11 1
11:if icmpge -6 11:goto -9

. . 14 14
14: return 14:return

b. JVM bytecode ¢. CFG

Figure 4-9. The bytecode and CFG of the conditibwab construct.

Since Java programming language hasgoto clause, the loop is the only
construct that could be compiled into the bytecfmimat including one instruction
(either anif-instruction or an instructiogoto) that transfers the control flow
backward to some instruction before it. If #&else construct has two non-blank
branches, an instructiogoto will be used to separate the two branches in the
corresponding bytecode. Furthermore if there igetrn clause at the first
non-blank branch’s end of the Java program, thieuasongoto will be replaced
by an instructionareturn or return in the bytecode, which is just like an
instructiongoto jumping to the method’s end. Based on these fagsgive the
algorithm to locate the non-blank branch’s scopéhmif-instruction construct in
Figure 4-10.

70

Given anif-instruction,i: if<op><cond> |, thei_maxis the address of the last
instruction in the method, theis the number of the branches and e the
scope of the brandh.

If j <0 then
n=1andS = [i+j,i) //theif-instruction forms a loop
else
If the instruction just before+ j isi’: goto ' then
If <0 then
n=1andS = (i,i") //theif-instruction forms a loop
else
n=2andS =(,i'), S =[i+],i'+")
end if
else

If the instruction just before- j isi’: areturn orreturn then
n=2ands =(,i'), S =[i+],i_max
else
n=1andS = (,i+]j)
end if
end if
end

Figure 4-10. The algorithm to locate the branch@pe ofif-instructions.

4.3.2 Implicit Information Flow Caused by switch Statement

Java programming language’s shwitchstructure is another kind of instructions
that may cause conditional control transfer. These acompiled using
tableswitch andlookupswitch instructions. Eacltaseblock of a normal
Java languagswitchstatement should be ended withraakclause and thdefault
block (if there is one) should be the last blockttud switch statement. However,
this ideal format is optional and a disordered Jawéch statement as shown in
Figure 4-11 could also be compiled correctly. So eeelld not use the target
addresses to locate the scopes of branchesvimtehstatement directly.

71

0: iload 1

public void test (int a, int b) 1: tableswitch{ /0 to 3
{ 0:31;
switch (a) 1: 36;
{ 2:38;
case 0: 3:43;
b=0; default: 36 }
break; 32:iconst 0
default: 33: istore 2
b=35; |::> 34: goto 12
case 2: 37:iconst 5
b=2; 38: istore 2
break; 39: iconst 2
case 3: 40: istore 2
b=3; 41 :goto 5
¥ 44 :iconst_3
} 45 :istore 2
46 :return
a. A Java language switch statement b. The JVM bytecode

c. The original CFG d. The simplified CFG

Figure 4-11. The bytecode and CFG of the Java kgegwitchstatement.

72

Given an instructiotableswitch or lookupswitch at the address form
the target offsets into an arrajm] in ascending order. Themaxis the address
of the last instruction in the method, thés the number of the branches and the
S is the scope of the branbh
n = 0,ret_exist= false,begin address= T[0] + i andend address= 0
For each pair of element$a] andT[a+1] in arrayT (O<=a <m- 1), in forward
order loop
If the instruction just befor&[a+1] +i isi’: areturn or return then
n=n+1,S, = [begin addressi’),
ret_exist= true,begin address= T[a+1] +i, end address=i_max
else
If the instruction just beforg[a+1] +i isi’: gotoj then
If ret_existis true then
n=n+1,S, = [begin addressi’)O[i" +], end addres}
else
n=n+1,S, =[begin addressi’), end address=
begin address= T[a+1] +i
end if
end if
end if
end loop
If T[m] + i< end addresghen
n=n+1,S, =[T[mM] +1i, end addres$
end if
If n=0 then
n=1,S =[T[0] +i, T[m- 1] +i)
end if

Figure 4-12. The algorithm to locate the branchipe inswitchstatement.

When the control flow gets to thiefaultblock in Figure 4-11, the block ahse
2 will also be executed since there islmeakclause at the end of tliefaultblock.
Thus the branch frordefaultblock (:-»37—38—39—40—41— 46) includes the
block of case2. The branch from the block case2 (1—-39—-40—-41—46) could
be omitted because it is a part of another brahcthhis way the CFG could be

73

simplified as shown in Figure 4-11. Theeakclause in theswitchstatement can be
replaced by areturn clause. Based on the simplified CFG we could deaw
conclusion that théreak clause (compiled into the instructiggoto j) and the
return clause (compiled into the instructiomreturn or return) are the
boundary between two branchessimitch statement. Thus we give the algorithm to
locate the non-blank branch’s scope inghétchstatement in Figure 4-12.

4.3.3 Nested Implicit Information Transferring Blocks

In Java programming language ftlfielseconstruct andwitch statements could
be nested, that is, ofifeelseconstruct is in the branch of anotlifeelseconstructor
switch statements, and vice versa. Therefore the imphédrmation transferring
blocks in Java bytecode could also be nested. $ivacecope of each branch in one
implicit information transferring block can be callated by our algorithms shown
in Figure 4-10 and Figure 4-12, the nested impti@hsferring blocks can also be
resolved. The algorithm calculating inner implitiansferring is given in Figure
4-13. With those algorithms, we can divide a sectd Java mobile code into
explicit transferring blocks and implicit transfieiy blocks and then apply the
proper semantics rules for the instruction in tholseks.

Given an branch, with the scopé&s,e|of the outer implicit transferring block,
b; is one branch of the inner implicit transferririgdk in by.
Use the proper algorithm in Figure 4-11 or Figurg24to calculate the coarse
scope oby, S'[i, |]
If s >i then
i=s
endif
If e <jthen
j=e
endif
The real scope df is], j].

Figure 4-13. The algorithm to locate the branch@pg of inner implicit blocks.

74

5 Method of Bytecode M odification

5.1 Overview

5.1.1 Motivation of Dynamic Verification

The verification of mobile code can be done stdficar dynamically. By now
the works on mobile code verification for the hastcurity are almost static
verification approaches [11, 14, 15, 16, 18, 19,aid 78]. The static approach
verifies the mobile code from remote hosts befbeelocal JVM executes the code
as shown in Figure 5-1. The advantage of the sagiiroaches is that they will not
cause additional runtime overhead and will not stiwn the execution. But the
static approaches have an inherent limitation thaiould not get any runtime
information of the mobile code execution. This liation affects the verification
precision badly and may make the static approackode its practicality. For
example, it is impossible for a static approactget to know which branch of a
conditional structure will be executed, where aoegtion will happen, whether the
invoking of a method returns normally or exceptibnaand so on. Therefore the
static approach has to verify all the branches obrditional structure in order to
find all potential violation of the security policwwhich means that a mobile
program may be rejected by the local host for astruction that will not be
executed actually in runtime. As for the excepti@amdling in the mobile code, the
static approach has no idea to deal with the in&dion flow in exception handling
precisely. What the static approach could do iy ¢mlfind out all the instructions
that may raise exceptions potentially and verify thle instructions possibly
executed in runtime. Therefore the same misjudgroectrring in the verification
of conditional structure may arise here, too. Obsig, such misjudgment impairs
the verification precision and diverges from owearch objective.

To get better verification precision, we implememir security model by
dynamic approach, which means that the verificaisodone during the execution

75

of the mobile code. Compared with the static otles,dynamic approaches have
the merit that they can get enough execution inébion to trace the information
flow correctly and to further verify the mobile @anore precisely. For example
when the execution encounters a conditional instmcthe dynamic approach can
get to know which branch will be executed. Thus #pproach just verifies
instructions to be executed, and eliminates thesipiisy of verifying the mobile
code as malicious for some instructions that wit be executed. Similarly, the
dynamic approach can master the chanfeontrol flow caused by exception
throwing and trace the information flow in exceptibandling. And all those are
too difficult for static approaches to achieve. fTimerit of dynamic approaches that
makes they can get better verification precisi@ntbtatic ones, which is consistent
with our objective. While the cost of better vegétion precision is the additional
runtime overhead caused by the verification worknedoin execution, the
development of hardware techniques provides maderare fast calculating speed.
We may also need to reduce the additional overheadintime caused by the
dynamic verification.

Verification is done he

\ Verified \
Mobile Code Mobile Code
Verification
a0 be :> Tool :> ac be :> JVM
a2 ib 00 a2 ib
a a
Figure 5-1. Static verification approaches.
Verification and executio
Mobile Code are done here
Ready for
Mobile Code Verification
ac ba |::> Preparation Too |::> ac ba 2 |::> JVM
a2 3 a2 3b 04
a q -

Figure 5-2. Dynamic verification approaches.

76

Execution is done he

5.1.2 Bytecode M odification Technique

Java bytecode modification presents the opportutdtyhange the execution
semantics of java programs. A wide range of possdgplications have been
discussed, ranging from the addition of performaocenters, to the support of
orthogonal persistence, agent migration, and neasrgg semantics. Here we list
some related projects.

Access Control. By intercepting or wrapping calls to potentiallgrdyerous Java
methods, systems by Pandey and Hashiiip [96], §son and Schneider [45], and
Chander et al. [26] can apply desired securityqguesdi to arbitrary codelets without
requiring these policies to be built directly iritee Java system code, as done with
Java’s built-in security system.

Resource Management and Accounting. J-kernel [59] and J-SEALZ2 [20] both
focus primarily on isolation of codelets. Bytecanedification is used to prevent
codelets from interferring in operations of eacheot JRes [35] focuses more on
resource accounting; bytecode modification is uded instrument memory
allocation and object finalization sites.

Optimization. Cream [32] and BLOAT (Bytecode-Level Optimizati@nd
Analysis Tool) [91] are examples of systems, whemploy Java bytecode
modification for the purpose of optimization. Creases side-effect analysis, and
performs a number of standard optimizations, incdgdlead code elimination and
loop-invariant code motion. BLOAT uses Static Snglssignment form (SSA) [34]
to implement these and several other optimizations.

Profiling. BIT (Bytecode Instrumenting Tool) [71] is a syst&rhich allows the
user to build Java instrumenting tools. The insentation itself is done via
bytecode modification. Other generic bytecode fiansation frameworks, such as
JOIE [33] and Soot [116], also have hooks to imagnt Java code for profiling.

Other Semantics. Sakamoto et al. [105] describe a system for threapation
implemented using bytecode modification. Marquealef81] describe a persistent
system implemented in Java entirely using bytedoalesformations at class load
time. Notably, Marquez et al. also describe a fraor& for automatically applying

77

bytecode transformations, although the status isf flamework is unclear. Kava
[126] is reflective extension to Java. That iglibws for run-time modification and
dynamic execution of Java classes and methods.

All of those systems could also be implemented witistomized JVMs (and
many such customized JVMs have been built.) Of seuiully custom JVMs can
outperform JVMs with semantics “bolted on” via lydede modification because
changes can be made to layers of the system thatodrexposed to the bytecode,
such as how methods are dispatched, or how memdaidiout.

But the price of building custom JVMs is the lo$she portability that is one of
the most important advantages of Java. While thengést argument in favor of
bytecode modification is its portability: changeada exclusively at the bytecode
level can be moved with little effort from on Jawiagtual machine to another, so
long as the modified bytecode still complies to théM specification [75]. To
preserve Java's promise “Write Once, Run Anywhereé, adopt the bytecode
modification technique rather than the custom Julsmplement our dynamic
verification. An additional benefit is that codedad by bytecode modification can
still be optimized by the underlying JVM.

And Java has two properties that assist the byteomotification. Transportable
Java code arrives from the networkctassfiles: these class files retain a great deal
of symbolic information, allowing the receiver t@tdrmine the structure of the
class and to modify it on-the-fly. Methods are esgnted as JVM bytecode: since
JVM bytecode are stack instructions, it is reldtiveasy to splice new code into
existing methods. To modify the Java bytecode, aedrreflection functionality to
get the structure of a class file, such as the sjiminformation, fields, methods,
interfaces and attributes. The runtime reflectionctionality is added into the 1.1
release of the Java Developer's Kit (JDK). Howetlex Java reflection API is
available only after the class has been loadedti@aVM, which is too late for us
to do any modification. And the reflection was designed to extend functionality,
and so it does not make available the implemematioclass methods. Method
implementations are accessible through jtheap disassembler included in the
standard Java Developer’s Kit, bjatvap runs from the shell and prints to its
standard output; it is not integrated into the Jafkection API, nor does it produce

78

a data structure that can be manipulated by thgramno. Thus we need more
powerful reflection toolkit for our bytecode modifition. The reflection
functionality of Java bytecode had been studieid 24], and some toolkits such as
JOIE and BCEL [21] are available for our modificeti

5.1.3 Load-time M odification

There are a number of stages in the program lifecgaring which a program
author or user can specify the functionality of lass or set of classes. Some
examples of tools used at different stages ardleléten Table 5-1. Originally the
base functionality is declared by the class auiiéine source code, and that source
code is translated into an executable image byrgder.

Stage Example Use Example T ool
Pre-processor macros or conditional compilation cpp

Compiler translation from source to classfile javac
Post-processor Instrumentation ATOM, BIT
Component

Integration Setting text, color Bean Builder
Load-time User-supplied modification, templates SSlavader, KOIE
Just-In-Time

compilation Compilation to native code JIT

Table 5-1. Stages in the program development Yifdec

Authors or users can employ post-processors sudhsasmentation tools to
insert new method calls into an existing executailage. A popular example of
that is the tool ATOM [114], which works on exeduta images for Alpha
processor; similar functionality is available f@ava with BIT [70]. Most often, this
instrumentation is used for performance analysia®ran interface to platform
simulation. An important guarantee typically madeimstrumentation tools is that
the semantics of the original program are not chdngdiowever Shasta [109]
processes executable images to run on distribdtaed memory systems. Object
Design Incorporateds’s Object Store PSE [92] alsesia post-processor, to insert

79

persistence methods into existing code. Rationtiiv&ce Corporation’s tool Purify
[99] changes code to detect memory leaks.

Multiple third-party components (classes or moremicollections of interacting
classes) are integrated during application comjposiin Java, these components
are known as Beans and are often handled in visuidders. This composition
allows consumers of code — either end-users orrgnagiers using components in
their own application — to modify certain propestief the component. However,
users can only modify those properties foreseethéyriginal author. They cannot
independently add features except through the hmgext-oriented techniques of
inheritance.

After application composition, the classes are w&uwaly loaded into the
environment. During execution, the bytecode cantrhaslated into native local
platform instructions by Just-In-Time compiler QUDITs only re-implement the
bytecode in a different language. They do not agld functionality (although JITs
may transform the code for optimization, for exaenphrolling loops or recording
instructions.)

The JVM loads Java classes from disks or elsewtiemugh class loaders,
invoked as part of Java's dynamic linking mechani3iine process of loading a
class through a class loader is shown in Figure BA3en an already loaded class
(the classvehicle) uses an undefined class (the cldss), either by accessing a
static member or creating an instance of the cldes JVM traps the undefined
reference and send a request for the class loadead the class. The class loader
fetches the class file (Car.class) from the filestam. Then the input class is loaded
into the JVM and the execution continues.

In the program development life cycle, we chooselibad-timeto apply the
bytecode modification. The architecture of JVM,which classes are loaded on
demand by a user-extensible class loader, offemyglementary alternative to the
previous steps: load-time modification meaning that class loader is responsible
not only for locating the class, but for modifyitige bytecode in ways specified by
the user. Therefore in the process of loading dikess after the class loader fetches
the class file it implements the modification oktbytecode and then sends the

80

modified class file to the JVM.

(1)Executing class Vehicle

public class Vehicle { ClassLoader { (4) Fetches
Car a; p ?ar.cﬁsa—
: Y rom file | ———
} (3) Calls } stom

class load x
(2) Undefine Car.class
reference to Car :

(5) Class loader
loads Car.class :

JVM into JVM
(6) Class is loade (4a) Bytecode Modifier
rewrites Car.class
v
public class Car { ByteCode Modifier {
} }

Figure 5-3. The process of loading class filesugtothe class loader.

Load-time modification is precisely late enoughtttf@e modification cannot
burden other users, and yet early enough that Y & unaware that any
modification has taken place, and the modified liasstill verified by the JVM
before it is accepted. A modification registerettva class loader can be applied to
all classes that are eventually loaded into the JVM

5.1.4 Modification Contents

As mentioned in Chapter 4, to use our approacletibyva mobile code program,
we should maintain a distributed map of securitsel@uring the execution in order
the trace and record the information flow. And tlareach data-leaking channel,
we compare the security-levels and clearance-teveheck whether a data-leaking
arises according to the security-level distributioap.

In order to achieve the dynamic verification of melzode programs, we chose
the technique of bytecode modification to implement approach. At first to

81

construct a distribution map of security-level, weed to allocate additional
containers to store the security-level of the da&éd by the mobile code’s
information carriers, which are callegcurity-level containersThen to maintain
the distribution map of security-level during theseution of the bytecode, we need
to insert additional instructions to calculate thenge of the security-levels caused
by information transferring, both the transferrsmgong carriers in one method and
the transferring between methods in order to updhéee distribution map of
security-levels. At last to check whether any datking rises, we need to insert
instructions of comparing the security-levels ankkaance-levels to each
data-leaking channel. All those work can be aclddwe modifying the parameters,
methodsand classes’ declaration in the mobdede program. In general, the
bytecode modification in our approach can be diidd@o two main partsglass
redefinition andinstruction insertion The former includes adding additional data
containers, modifying the parameters and reture typmethods, while the latter
includes inserting proper instructions to calculaecurity-levels and check
data-leaking.

5.2 Class Redefinition

We have discussed the structure of the classritletlae information flow in Java
bytecode in Chapter 3 and Chapter 4. The informatransferring in the Java
bytecode may be among the information carriersria method, or between the
caller and callee methods. Thus we discusscihss redefinition necessary for the
two kinds of information transferring respectively.

To explain the modification more clearly, we give example class here. The
Java program in Figure 5-4 defines a class nam@&irele. The Java bytecode and
the class file structure of the classcle are shown in Figure 5-5 and Figure 5-6.

In the class file of the clasSircle, the sectionHeader includes the magic
number and the version information. The sect@onstant Pool represents
various string constants, class and interface nafied$ names, and other constants,
such as the initialization method’s name, the figdiuss type and the constant
3.14 defined in the clasSircle. The section ofAccess Right gives the value
used to denote access permissions to and propeftibe clasCircle. The section

82

Fields gives a complete description of the fielwmter_x center_yandradius
which are defined directly in the clagdrcle. The sectionMethods gives a
complete description of all methods declared bycthesCircle, including instance
methodsarea and the instance initialization metho@srcle. At last the section
Class Attributes defines some attributes of the cla€srcle such as
SourceFile attribute and th®eprecated attribute.

The following discussion of class redefinition willke the clas€ircle as an
example.

public class Circle{

private float center_x;
private float center_y;
private float radius;
final float pi = 3.14;

Circle(float x, float y, float r){

center_X = Xx;
center y=vy;
radius =r;

}

float area(){
return pi*radius*radius;
}

boolean isInCircle(float x, float y){
boolean result = false;
float dis = (x — center_x)* (X — center_x)
+ (y — center_y)* (y — center_y);
if (dis <= radius*radius){
result = true;
}

return result;

Figure 5-4. The Java program of the cl@sgsle.

83

Compiled from "Circle.java"
public class Circle extends java.lang.Object{
final float pi;

Circle(float, float, float);
Code:
0: aload O
1. invokespecial #1; //Method java/lang/Objecnit>":()V
4: aload 0
5. Idc #2; llfloat 3.14f
7. putfield #3; //Field pi:F
10: aload O
11: fload 1
12: putfield #4; //Field center_x:F
15: aload O
16: fload 2
17: putfield #5; //Field center_y:F
20: aload O
21: fload_3
22: putfield #6; //Field radius:F
25: return

float area();

Code:
. Idc #2; Illfloat 3.14f
aload 0
getfield #6; //Field radius:F
fmul
aload 0
. getfield #6; //Field radius:F
1. fmul
2. freturn

RN O

boolean isInCircle(float, float);
Code:
. iconst 0O
istore_3
fload 1
aload 0
getfield #4; //Field center_x:F
fsub
fload 1
aload 0
0: getfield #4; //Field center_x:F

HOONRWNEOQ

84

13:
14
15:
16:
17:
20:
21.
22:
23.
26:
27.
28:
29:
31:
33:
34
37.
38:
41:
42:
43:
46:
47.
48:
49:

fsub

fmul

fload_2

aload 0

getfield #5; //Field center_y:F
fsub

fload 2

aload 0

getfield #5; //Field center_y:F
fsub

fmul

fadd

fstore 4

fload 4

aload 0

getfield #6; //Field radius:F
aload 0

getfield #6; //Field radius:F
fmul

fcmpg

ifgt 48

iconst_1

istore_3

iload_3

ireturn

Figure 5-5. The Java bytecode of the classle.

85

ConstantM ethodRef
Header 1 1 it

(%
"java.lang.Object"

Constant Pool =

ConstantFieldRef
ACC_PRIVATE
"radius"

=

Access Right

ConstantFloat
Implementeed Interface

"3.14"
Fields
Methods ™ 0: ldc [3.14f
2: aload 0
3: getfield
6:

fmul .

Class attributes

Figure 5-6. The class file structure of the classle.

5.2.1 Redefinition for Intra-procedural Information Transferring

The Java Virtual Machine is a stack machine maatng an operand stack and
a set of local registers for each method and a heafaining object instances. The
elementary information carrier in JVM bytecode cbbk the element of operand
stack, the local register or the field of an objestance. Thus all the information
transferring in one method can be considered agmtbhanation transferring among
the three kinds of elementary information carriéfberefore we need to add
security-level containers for the information inose elementary carriers
respectively.

86

® L ocal Register

For the local registefwhich is used to store the local variables of riiethod),
we allocate an additional register as the secieitgl container of the information
in the original register. Adding new local registas trickier than adding new
entries to the Constant Pool. In particularly thi@Jspecification requires that the
arguments to the method appear in order at theldoal registers before the local
variables appear. Considering that we will add meguments to a method (which
will be discussed later) and the local registergliges in instructions should be
recalculated, we store the security-level of tHermation in a local variable to the
register just after the one storing the local y@daBy this way it is convenient to
calculate the index of one local register’s segdgtel container (the index of the
local register plus oner two according to the length of the local varaii the
register). In the attributes table of tmethod_info structure, th&€ode attribute
defines the maximum size of the local registertheitemmax_locals . And we
also should reset the value of the itemx_locals to make the JVM allocate
additional local registersised as security-level containers for the methoel st\ow
the allocating new registers as seceurity-levetaiaers for the methosinCircle
in Figure 5-7as an example

0 Ref — 0 Ref
1 P, |——1 P,
2 P, — 2 P,
3 L, |—3 L,
4 L, 4| sy
I

6| SL

Figure 5-7. The security-level containers for imfation in local registerRkefis a
reference to the method's instaneeandP,: the parameters of the methad;and
L,: the local variables in the metho8L; and SL,: the security-levels of the
information inV; andV, respectively.

87

® Operand Stack

For the element on the operand stack, we allogatedditional stack element as
the security-level container of the informationtl original element. We store the
security-level of the information in one stack e@mto the element just before the
original onein the direction counted from the top of the stablat is, we keep an
internal order of variables and their security-lsven the stack. By this way, we
make the JVM push the security-level of one vaddbl the stack after it push the
variable, and pop the security-level from the stéefore it pop the variable.
Similar to the local registers, we also need toetrethe value of the item
max_stack defining the maximum size of the staskce the elements pushed to
the stack during the execution of the modified bgte increase. We give an
example of allocating new stack elements as sgelgnel containers in Figure 5-8

SL3 TOp

m | m
w

Es

, L,
E

2
sL,
E

1 Bottom

Figure 5-8. The security-level containers for imfation in the elements on the
operand stack€;, E; andEs: the elements on the operand steglg;, SL, andSls:
the security-levels of the information i, E; andEs respectively.

® ClassFidds

Adding security-level containers for the fieldsaofe class is much different from
adding containers for local variables. We shoulcidiethe new field’s type, name,

access flag and the position we insert it.

To decide the types of the new fields (used asdoerity-level containers for the

88

original fields), we divide the original fields mtthree kinds according to their
types: the fields of primary types, the fields tdss types and the fields of array
types. For the field of primary type, it can onlgldh one data in it. Thus, we add a
new field of type byte (because all security-levels are integers) as the
security-level container of the original field. Ftre field of class type, it can
concern with a lot of information since the datddhe it is a reference. Thus we
add a new field of the same class type as thenalidgield, and the security-levels
of the original field’'s members are stored in thdded field’s corresponding
members (not the members have the same name$dset added as security-level
containers when the class of the field’ type is ified). So that the new field
(security-level container) can hold the same nunalbelata as the original one. For
the field of array types, the field also holds oeterence like the field of class type.
Thus we also add a new field of the same array agthe original one, which is
used as the security-level container for the oabjiield.

The name of the new field used as the securitytlegptainers is the original
field’s name suffixed with “SL”. And the new field has the same access flagas th
original one. Since there are no ordering condsain theConstant Pool and
Fields structures, any new fields and entries could beecaggd rather than
inserted in the middle in order to preserve thécesl of existing entries.

Beside the original fields of one class, the clastance itself (the reference) also
holds information and can be used in the infornmafiilow. That fact makes it
necessary for us to do two things: first is thatveed to add a new field of type
byte as the security-level container of the class egfee itself; second, which has
been mentioned above, is that we use the added ensnmbthe added field rather
than the added members in original field to ste®usty-level because the original
field may be null and we cannot use the member ofilareference to store the
security-level of the reference itself.

We give an example of adding new fields as secieitgl containers in Figure
5-9.

89

4 5 "\ origianl Field 5 N

CongtantFieldRef /\ CongtantFieldRef
ACC_PRIVATE ACC_PRIVATE

"radius" "radius"
IIFII IIFII

ConstantFieldRef

ACC_PRIVATE
"radius_SL"
IIFII

K / Added Field Q /

Figure 5-9. The security-level containers for imfation in the class fields.

5.2.2 Redefinition for Inter-procedural Information Transferring

The information can be transferred not only amdmg information carriers in
one method, but also between methods by argumedtsesurn values. Thus it is
necessary to add new arguments and return valuesnsfer the security-levels of
the information being transferred between methodseasame time.

Adding security-level container for parametershe tombine of locating new
local registers and adding new fields. Given onehog: having one or more
arguments, we add one new argument as the setawél/-container for each
original argument. The type of the new argumentieisded in the same way as we
decide the type of the new fields. As for the nesemeter’s order in the sequence
of all parameters, we insert the new argumentaftstr the original argument. By
this way keep the alternate order of the local stegs and their security-level
containers since the arguments will be loaded <ical registers. Because the
arguments’ names are not saved in the class fiee,need not name the new
arguments. For example, considering the method @oie(float x, float y, float r)
with the descriptorKFF)V in the clasCircle shown in Figure 5-4we add one
argument of typeoyte after each original argument. Thus the descripfothe

90

modified methodCircle is (FBFBFB)V.

For the return value of one method, we cannot dadi it as we do for
parameters since one method may have multiple maessmbut it can only return
one value. The only thing that we can do is to geathe type of the return value.
Given one method with a return value of primitiypé or class type, we alter the
return type to an array of the original return typich has two elements: the first
one is the return value and the second one isdberisy-level container for the
return value. (For the security-level containethd return value of primary types,
we convert the security-level to the typgte .) If the return type is an array
T[n4][ng]...[ny], we alter the return type to the array typelf#][ni][n]...[nm]. The
first element of the first dimension is the oridimaturn value, and the second
element is the security-level container for thgioal one.

By this way, we keep consistent with the rules @ding local registers, fields
and parameters. For example, considering a mdtbadared) with the descriptor
(OF, we alter the return type to the array of tylsat . Thus the descriptor of the
modified methodareais ()[F.

5.3 Instructions I nsertion

To achieve dynamic verification, we need to insproper instructions to
calculate the security-levels of the informatiorthe mobile code’s data carrier and
check whether every data-leaking channel in theilaode is secure. To reduce
the additional overhead in runtime caused by thedmyle modification we make
the JVM execute the inserted instructions and tiggnal instructions in one frame,
that is, the inserted instructions and the originatructions share one set of local
registers and one operand stack. (The adding ofisgdevel containers mentioned
above also follows this principle.) Therefore wewslkd make sure that the inserted
instructions would not do any harm to the origihalctions of the class. Another
important thing is that the offset of conditionasiruction should be recalculated so
that they can branch to the correct instructiomifar to the discussion of class
redefinition, we discuss the instructions inserfionthe information transferring in
one method and the information transferring betwiencaller and callee methods
respectively. And we also discuss the insertionth& instruction for checking

91

data-leaking.
5.3.1 Intra-procedural Information Transferring

The information transferring can be divided intglott transferring and implicit
transferring. By the algorithms given in Chaptewé, can partition the bytecode of
one method into explicit blocks and implicit blocke explicit blocks, the
information flow is explicit flow and the informatn is transferred from the used
variable(s) to the defined variable. Thus we shao&ert proper instruction(s) to
assign the security-level of the used variableher tUB of the security-levels of
the used variables to the security-level contairi¢ne defined variable.

In implicit blocks, the information flow is implitiflow and the information is
transferred from the conditional variables of tmeplicit flow to the defined
variables additionally. Since the implicit blocksnc be nested, one implicit
information flow may consist of several implicitdgks and in the case the
conditional data of the implicit information flownglude all the conditional
variables of the implicit blocks. We define tkenditional security-levelof one
implicit transferring block as the security-level the conditional variable or, if
there are more than one conditional variable, to® lof the security-levels of all
conditional variable of the implicit transferringpbk. And we can get the formula
5-1, in whichLgny is the environment security-level of one impliciftormation flow,
Lconi IS the conditional security-level of th block of implicit transferring blocks
composing the implicit information flow, andh is the number of the implicit
transferring blocks.

Lenv=Leon1V Lcon2V. -« V6Lconm = eevveereeeeeeviennn, 5-1

Thus at the beginning of one implicit transferribigck, we should first insert
proper instructions to calculate the conditionaisiy-levels of the current implicit
block, and then calculate the environment secleigl and store it (in order to
make it easier to calculate the environment secleitel of the inner implicit
information flow). Then we should insert propertrastions to assign the LUB of
the environment security-level and the all sectatsels if used variables to the
security-level container of the defined variable.

The execution of a method’s bytecode is a procediipeishing data to the stack

92

and popping data from the stack. According to theration on the stack, the JVM
bytecode instructions could be divided into threelk: loading instructions (those
pushing data to the stack, suchilaad, faload bipusl), storing instructions (those
popping data from the stack, suchsisre putfield pop) and operating instructions
(those popping and operating two element on thekdi@p and pushing back the
result to the stack, such dadd Irem, ior). In particularly we considdaload as a
loading instruction but not an operating instructimecause the semanticsfatoad

is loading data to the stack and such classifinatould reduce the number of
inserted instructions fdaload The similar cases apaitfield getfield iastore etc.

In explicit blocks considering the operand stack WM is LIFO
(last-in-first-out), we insert instruction(s) loadi the security-level from proper
container to the stack for each loading instructdter it, and insert instruction(s)
storing the security-level from the stack to promemntainer for each storing
instruction before it. The operating instructioraiittle complicated. One operating
instruction will first pop elements from the staakd then push back the result to
the stack. Therefore we insert the instructionsppup the security-levels of the
operands and calculating the LUB of them before dperating instruction, and
insert instructions loading the result of LUB caétion to the stack after the
operating instruction. In the way, when the JVM @axes one original bytecode
instruction, the operands used by the instructiontiee stack are laid as if no
instruction is inserted, which assure that theriteskinstructions has no side affect
on the original functionality of the bytecode.

We give an example of inserting instructions inurfey5-10. We list the Java
source code and the original bytecode compiled fitcemh the left. The bytecode at
the right is the modified code. In modified byteedtle instructions at address 1, 3,
32 and 35 are inserted for loading instructions,itistructions at address 27 and 26
are inserted for storing instructions, and therutdions at address 4 to 22, 25, 37 to
54 and 57 are inserted for operating instructioneriginal bytecode respectively.
And in the modified bytecode, the indices of locatiables have been recalculated
and the new indices of original local variable &8, 5 and 7.

In implicit blocks besides the instructions insdrte explicit blocks, we should
insert additional instructions to calculate andestihe environment security-level.

93

For an implicit block the conditional security-lévef is the LUB of all
security-levels of its conditional variables. Andet current environment
security-level SLeeny Of one implicit block is the LUB of the ol&L. and the
conditional security-level of the implicit block hlis we allocate an array of type
byte to store the environment security-levels of eaamyel for nested implicit
blocks. At the beginning of an implicit block insted implicit blocks, we store the
old SL. to the array and calculate the new one. Theneag¢tid of that implicit block
we load back the olé&L; from the array. By this way in each block of nédste
implicit blocks we could use the correct currenwvisnment security-level to
calculate the defined variable’s security-level.

In JVM the operand stack is just a kind of intermagsl information carrier and
all data pushed to the stack could not be traredetw other carriers until they are
popped from the stack. Considering this charadieriwe calculate the LUB of the
environment security-level and the defined varigbsecurity-level only when the
variable is popped from the stack, that is, werine instructions to calculate the
LUB only for storing instructions rather than foll ghe loading instructions,
operating instructions and storing instructions.tBig way the additional overhead
cause by bytecode modification could be reduced.

94

public void cal(int a, int b){ 0:iload_1 32:iload_2
intc=a+Db; 1:iload 2 33:iload 5
intd=a*c; 2:iload_3 35: iload 6
return; 3:iload_4 37: istore 9
} 4: istore 9 39: istore 10
a. Java source code 6: istore 10 41: iload 9
8: iload 9 43: If icmple 9
10: If _icmple 9 46: pop
13: pop 49: istore 9
14: istore 9 51: goto 6
i 16: goto 6 54: istore 9
2 ::gzg—; 19: istore 9 56: pop
2-iadd 21: pop 57: iload 10
3 istore 3 |:> 22: iload 10 59: iadd
4 iload 1 24: iadd 60: iload 9
5: iload 3 25: iload 9 62: istore 8
6 imul 27: istore 6 64: istore 7
7- istore 4 29: istore 5 66: return
9 return 31:iload 1
b. Javebytecod: c. modifiec bytecod:

Figure 5-10. An example of instructions insertion.
5.3.2 Inter- procedural Information Transferring

If the type of a method’s return value is notd , we alter the type of the return
value to an array of original type. Therefore weudt insert instructions into the
callee method to encapsulate the return value @nsecurity-level to an array of
proper type. The encapsulation procedure is 1¢atiog a new array of the proper
type with two elements, 2) storing the securityeleo the second element and the
return value to the first element, and 3) returrtimg reference of the array to the
caller method. Furthermore, we should insert icstons into the caller method to
push the elements of the returned array to th&stTaxcpreserve the consistency of
the arrangement of security-levels and informabarthe operand stack, we push
the original return value (the first element) astfiand then the security-level (the
second element) to the stack. We also insert ictsbns to convert the
security-level to typdyte if it is not for the return value of primary types

95

5.3.3 Data-leaking Checking

As mentioned above, at each data-leaking channekheeild compare the
security-level of the information to be sent witlmet clearance-level or
security-level of the destination in order to chedkether the data-leaking channel
Is secure. We insert the checking instructionsratfte instructions loading the
information to be sent to the operand stack, btdrbehe instructions sending the
information. The checking procedure of is 1) adtfireading the clearance-level or
security-level of the destination from the certinal host file and pushing it to
the stack, 2) then comparing the two security-le\al the security-level and the
clearance-level on the stack, 3) if the securitaelef the information to be sent is
higher, the data-leaking channel is not secure angbker-defined exception is
thrown out to inform the host user the mobile caslenot secure. Or else the
execution of the mobile code continues.

96

6 Information Flow in Exception Handling

The Java programming language supports exceptiodihg mechanisms to
ease the difficulty of developing robust softwagstems. In Java bytecode, an
exception will cause a non-local transfer of condirad affect the information flow.
In this chapter we will analyze the informationnséerring in the exception
handling of Java bytecode and give the mechanisnt®al with the information
flow in Java bytecode exception handling.

6.1 Motivation

When a program violates the semantic constraintthefJava programming
language, the Java virtual machine signals th ¢orthe program as axception
Besides the implicit occurrence, the exception @ao be explicitly caused by the
statementhrow in Java programming language. The Java programiaimguage
specifies that an exception will cause a non-lt@adsfer of control from the point
where the exception occurred to a point that casgeeified by the programmer.
An exception is said to be thrown from the poinenéit occurred and is said to be
caught at the point to which control is transferredObviously, the occurrence of
an exception and the corresponding exception hagadkill change the control
flow and thus affect the information flow. A faikito account for the effects of
exception occurrence and exception handling cocistrin performing analyses
system can result in incorrect analysis informatiaich in turn can result in
unreliable security verification systems.

The additional expense that is required to perfarmalyses accounting for the
effects of exception handling constructs may not jbstified unless these
constructs occur frequently in practice. In [118]nha and Harrold examined a
number of non-trivial, real-life Java programs frandiverse group of applications
in order to determine the frequency with which jg#agrams use exception
handling statements. The result of the study isvehion Table 6-1, which includes
the description of each program group, the numb@ragrams examined and the

97

usage of exception handling statements.

Program Group Numbers of| Programs that Contalin
Name Description Programs | try Stmts| throw Stmts
jacorb | ORB implementation in java. 1062 271 229
javacup | LALR-parser generator for Java. 34 5 17
jdk Sun’s JDK 1.1.5. 1256 342 372
jlex Lexical-analyzer generator for Jaya. 1 1 1
swing | Sun’s Swing AP1 1.0.2. 692 87 106
tdb Debugger for Java. 8 3 5
toba Java bytecode-to-C translator. 43 13 27
Total 3096 722 757

Table 6-1. Presence of exception handling stategrierltava programs.

As the tables illustrates, 23.3% and 24.5% of tkereéned programs contained
try andthrow statements respectively. Within a program grogpoiing the values
for jlex , these percentages varied from 12.6% to 37.5%ryostatements and,
15.3% to 62.8% fothrow statements. Several programs contained bgttand
throw statements, and over all program groups, there W87 such programs.
Therefore, there were 982 programs, which comp8%&% of all examined
programs, which contained eithetrg statement or ghrow statement. The study
supports that the use of exception handling statesnim real-life programs is
significant enough that it should be consideredmduvarious analyses.

The discussion above proves that the informati@w flin Java bytecode
exception handling cannot be ignored in our analyk® the Java bytecode
verification. The ignorance of exception handling) sause unreliable verification
result and make the verification approach unprakttic

6.2 Exception Handling in Java Language

In java, exceptions can be synchronous or asynolnSynchronous
exceptions occur at particular program points arel @gaused by expression
evaluation, statement execution, or explithrow statements. Synchronous

98

exceptions can be checked or unchecked:cfackedexceptions, the compiler
must find a handler or a signature declaration tfe method that raised the
exception; for unchecked exceptions the compil@sdwot attempt to find such an
associated handler or a signature declaration. fBgnous exceptions are further
classified as pre-defined or user-definpae-definedexceptions are defined by the
Java languagejser-definedexceptions are defined by users of the language. F
example, the methodrite () defined injava.io.DataOutputStream can
raise a pre-defined checked exceptioBxception . While the methogop ()
defined in java.util.Stack can raise a pre-defined unchecked exception
EmptyStackException . Users can define a checked exception by extending
java.lang.Exception or java.lang.Throwable . Similarly, users can
define an unchecked exception by extendilya.lang.Error or
java.lang.RuntimeException

Asynchronousexceptions occur at arbitrary, non-deterministi@ings in a
program’s execution, and are unchecked. Asynchmrexceptions occur when
either the Java Virtual Machine raised an instasfdaternalError (because
of faults in the virtual-machine software, the hegstem software, or the
hardware), or a thread invokes the metlstdp () that raised an instance of
ThreadDeath in another thread. Figure 6-1 shows the typeswh &xceptions.

Java Exceptions

T

/Synchronous\ 5. Asynchronous
Checked Unchecked
1. Pre-defined 2. User-defined 3. Pre-defined\él. dsefined

Figure 6-1. Exception types in Java.

99

In Java programs, all synchronous, pre-defined miaes (type 1 and 3 in
Figure 6-1) are raised as a result of expressiatuations, statement executions or
throw statements. While synchronous, user-defined ekmepitype 2 and 4 in
Figure 6-1) are raised by tlilerow statements only. In Java all thrown exceptions
are instances of classes derived from the géasslang.Throwable

In Java language, &y statement is the exception-handling constructtryA
statement consists oftey block and, optionally, aatch block and dinally
block. The legal constructs fortey statement ar&y-catch try-catchfinally and
try-finally. When an exception is raised in a statement wighiry block or in
some method called within tay block, control transfers to theatch block
associated with the lasty block in which control entered, but has not yatesk
This catch block is the nearest dynamically-encloscaich block, and can be
in the samdry statement, in an enclosity statement, or in a calling method. If a
matching catch handler is found, the handler code is executed @aodnal
execution resumes at the first statement followting try statement where the
exception was handled. If no matchicgtch handler is found in the nearest
dynamically-enclosingatch block, the search continues in ttetch block of
the enclosingry statement and subsequently in some calling metBetbre the
control exits ary statement, thénally block of thetry statement is executed,
if it exists, regardless of whether control exite try statement with an unhandled
exception. Thus the exception handling in Java edlisentra-proceduralcontrol
transferring (if the exception is handled in thetmoe where it is raised) or
inter-proceduralcontrol transferring (if the exception is not hkaatin the method
where it is raised and thrown to the caller meth®d¢ summarize the exception
handling process in Figure 6-2. The figure showdrya statement and its
components blocks; the conditions triggering thetied flow between the blocks
are numbered and listed under to the figure. Infoflewing, we list all possible
types of path within &y statement.

Path 1is taken if thery block raises no exception and faally block is
specified in thidry statement.

Path 2is taken if thary block raises exception and no matchoagch block
can be found in thigy statement. Ndinally block is specified in this
try statement.

100

Path 3-10is taken if thery block raises no exceptions. Tieally block is
specified in thidry statement and raises no exception.

Path 3-11is taken if thery block raises no exceptions. Tieally block is
specified in thidry statement and raises exception.

Path 4-11is taken is if thary block raises exception and no matchaadgch
block can be found in thisy statement. Thénally block is specified
in this try statement. If thdinally block raises no exception, the
exception raised in they block is propagated to the outey statement.
If the finally block raises exception, the exception raised i@ th
finally block is propagated to the outey statement.

Path 5-6-10is taken if thary block raises exception and the matchaagch
block is found in thidry statement. Theatch block raises no exception
and the exception is handled. Tineally block is specified in thisry
statement and raises no exception.

Path 5-6-11is taken if thary block raises exception and the matchaagch
block is found in thidgry statement. Theatch block raises no exception
and the exception is handled. Tineally block is specified in thisry
statement and raises exception.

Path 5-7-11is taken if thary block raises exception and the matchaagch
block is found in thidry statement. Theatch block raises exception
and the exception is not handled. Timally block is specified in this
try statement. If thdinally block raises no exception, the exception
raised in thetry block is propagated to the outeey statement. If the
finally block raises exception, the exception raised éfitrally
block is propagated to the outey statement.

Path 5-8is taken if thetry block raises exception and the matchaagch
block is found in thidgry statement. Theatch block raises no exception
and the exception is handled. Noally block is specified in thigry
statement.

Path 5-9is taken if thetry block raises exception and the matchaagch
block is found in thidry statement. Theatch block raises exception
and the exception is not handled. fitwally block is specified in this
try statement.

Path 12-6-10is taken if an unhandled exception is propagated fnested
blocks and the matchingatch block is found in thigry statement. The

101

catch block raises no exception and the exception isdlegn The
finally block is specified in thigy statement and raises no exception.

Path 12-6-11is taken if an unhandled exception is propagatedfnested
blocks and the matchingatch block is found in thigry statement. The
catch block raises no exception and the exception isdlegn The
finally block is specified in thigy statement and raises exception.

Path 12-7-11is taken if an unhandled exception is propagated fnested
blocks and the matchingatch block is found in thigry statement. The
catch block raises exception and the exception is notdleal. The
finally block is specified in thigy statement. If thénally block
raises no exception, the exception raised irtrghe block is propagated to
the outertry statement. If thdinally block raises exception, the
exception raised in thénally block is propagated to the outey
statement.

Path 12-8is taken if an unhandled exception is propagatech fnested blocks
and the matchingatch block is found in thidgry statement. Theatch
block raises no exception and the exception is llednd\o finally
block is specified in thigy statement.

Path 12-9is taken if an unhandled exception is propagatech fnested blocks
and the matchingatch block is found in thidgry statement. Theatch
block raises exception and the exception is nodlegh Nofinally
block is specified in thigy statement.

Path 13-11is taken if an unhandled exception is propagatewch inested blocks
and no matchingcatch block is found in thistry statement. The
finally block is specified in thigry statement. If thénally block
raises no exception, the exception raised irtrghe block is propagated to
the outertry statement. If thdinally block raises exception, the
exception raised in thénally block is propagated to the outey
statement.

Path 14is taken if an unhandled exception is propagateah inested blocks and
no matchingcatch block is found in thidry statement. Ndinally
block is specified in thigy statement.

Within catch blocks, all handlers are examined in the ordewimch they
appear to find one handler that is a super-typa ohised exception. And no

102

priority is given to an exact match handler ovee oequiring the application of an
inheritance relationship. A raised exceptibmatches g@atch handleH if E and
H are of the same type bfis a super-class &.

e unhandled exception _‘I
: from nested block |
| rt_rxs_ta_tgrne_nt__________________gzi_____;s_;z__l |
I |
| L
(. 5 R P
| : try block catch block | :
|
| L
P 8l |9 Pl
[| :
[
o L
I P
| | | |
I P
| | | |
I P
| | | |
I P
| | | |
I P
I l | :
[|
: A 2 i‘ B2 2 2 :
| normal try exceptional try |
: statement end statement end :
normal exit excpetional exit

1. no exceptions raisedtity block; nofinally block

2. exception raised tny block; no matchingatch block; nofinally block

3. no exceptions raisedtity block;finally block specified

4. exception raised iny block; no matchingatch block;finally block specified

5. exception raised iny block; matchingcatch block specified

6. exception handleéinally block specified

7.catch block raises exeptiofinally block specified

8. exception handled; rfimally block

9.catch block raises exeption; ritally block

10. no exceptions raisedfinally block

11finally block propagates previous exception or raisedremaxception

12. unhandled exception from nested block; matctitigh block specified

13.unhandled exception from nested block; no magatatch block;finally block specified
14. unhandled exception from nested block; no niegatatch block; nofinally block

Figure 6-2. Control flow in Java exception handlgaypstructs.

103

6.3 Exception Handling in Java Bytecode

In Java bytecode, exceptions can be thrown explidy the instruction
athrow or implicitly by some specific instructions suchthese shown in Figure
6-3. The exception handling In Java bytecode hasstme procedure as that in
Java programming language, and thus has all theilpespaths shown above.
However, the presentation tf statements in Java bytecode is not so clear &s tha
in Java programming language. In the latter, tlopes®f each blockify block,
catch block andfinally block) in a try statement can be located easilyhey
enclosing symbols “{* and “}". While the locatiomniJava bytecode is not so
straight. In next section, we will discuss the preation oftry statements in Java
bytecode and give the algorithm to locate the scopesach block in ary
statement.

Instructior [Stack Exceptions Thrown
ArraylndexOutOfBoundsException,

aaload arrayref, index=>v NullPointerException
ArraylndexOutOfBoundsException,

bastore arrayref, index, \=> NullPointerException
ArraylndexOutOfBoundsException,

iaload arrayref, index=>v NullPointerException

idiv valuel,valueZ>result |ArithmeticException

instanceof |objectref=>restult Resolution Exceptions

invokestatic | &rglJarg2..]] Resolution Exceptions

Ldc ... =>tem Resolution Exceptions

newarray count=>arrayref NegetiveArraySizeException

Resolution Exceptions,
putfield objectref,value> NullPointerException

Figure 6-3. Some Java bytecode instructions thatlg@aw exceptions.

6.3.1 Compilation of try Statement in Java Bytecode

Different from the straight and clear presentatiormat of try statements in

104

Java programming language, the presentation formdava bytecode is a little
complex.

® Compilation of t ry and cat ch Blocks

The compilation of Java'sy -catch construct is straightforward. Figure 6-4
give a simple example of Java program witly -catch construct being
compiled into Java bytecode. Ttig block is compiled just as it would be if the
try were not present. If no exception is thrown during execution of th&y
block, it behaves as though thye were not there. Following they block is the
Java bytecode implementing the singégch block. The contents of theatch
block are also compiled like a normal method. Hosvethe presence ofaatch
clause caused the compiler to generate an ingirubgtween the bytecode toy
andcatch blocks, which can change the control flow to avitid unconditional
execution of thecatch block such asreturn , jsr , goto and so on.
Furthermore the compiler will generatesexteption tableentry for eaclcatch
block to indicate the scope tfy block that thecatch block deals with by the
index pairs from, to], the beginning index of theatch block by the column
targetand the exception type that tb@&ch block can handle by the colunype
In the example shown in Figure 6-4, if some vahat ts an instance dfestExds
thrown during the execution of the instructionsaesn indices 0 and 4 (inclusive),
the control is transferred to the instruction a@er 5, which is the beginning of the
catch block.

Multiple catch blocks of a giventry statement are compiled by simply
appending the Java bytecode for eeatth block one after the other, and adding
entries to the exception table. If during the exiecu of the try block, an
exception is thrown that matches the handler tyfjpene or more of theatch
blocks, the first suclcatch block is selected. Control is transferred to the
bytecode for theatch block. Here no priority is given to tleatch block with
the exact matching exception type over one witles@gtass exception type. If no
suchcatch block can be found, the JVM re-throws the exceptiahout invoke
the bytecode in angatch block. And nestedry statements are compiled very
like atry statement with multipleatch blocks. The nesting afatch blocks is
represented only in the exception table. When acemtion is thrown, the

105

innermostcatch block containing the site of the exception andifga matching
handler type is selected to handle the exceptiois. $0 even that the exception
occurs within the bounds of the outatch block and even the outeatch
block might otherwise have been able to handlghiwmvn exception.

void catchOne() {

try {
tryltOut();
}

catch (TestExc e) {
handlExc (e);
}
}

Method void catchOne()

Oalod O //[Beginning oy block

1 invokevirtaul #6 //Method tryltOut()V

4 return /[End &y block

5 astore_1 //Beginning adtch block

6 aload 0

7 aload_1

8 invokevirtual #5 //Method handleExc(LTestExc;)V
11 return

Exception table:
From To Target Type
0 4 5 Class TestExc

Figure 6-4. An example afy -catch construct’'s compilation.
® Compilation of fi nal | y Block

In Java bytecode, thenally block can be compiled as an embedded routine
or as bytecode appended totitye block andcatch blocks (if there is any). The
Java program in Figure 6-5 hadra statement withry , catch andfinally
blocks. We give the bytecode compiled from the paogin the two compilation
ways in Figure 6-6 and Figure 6-7.

* The bytecode in Figure 6-6 is generated by JDKlla#d that in Figure 6-7 by JDK 1.4.2.

106

void testOfcatch(int[] a, int b){
try{
int ¢ = a.length;
int d = a[b];
raiseException();
}
catch (NullPointerException e){
handleException(e);
}
finally{
wrapltup();
}
}

Figure 6-5. An example of Java program with finally block.

void
testOfcatch(int[],int); 17: aload_0
Code: 18: aload_3
0: aload 1 19: invokevirtual #8
1: arraylength 22: jsr 36
2: istore_3 25: goto 44
3:aload 1 28: astore 5
4: iload_2 30: jsr 36
5: iaload 33: aload 5
6: istore 4 35: athrow
8: aload 0 36: astore 6
9: invokevirtual #5 38: aload 0
10: jsr 36 39: invokevirtual #6
13: goto 44 42:ret 6
16: astore_3 44: return

Exception table:

from to target type
0 10 16 Class javal/lang/NullPointerEptamn
0 13 28 any

16 25 28 any

28 33 28 any

Figure 6-6. Thdinally block is compiled as a subroutine.

107

void testOfcatch(int[],int);

Code: 19: astore_3
0: aload_1 20: aload_0
1: arraylength 21: aload_3
2: istore_3 22: invokevirtual #8
3:aload 1 25: aload 0
4: iload_2 26: invokevirtual #6
5: iaload 29: goto 41
6: istore 4 32: astore 5
8: aload_0 34: aload 0
9: invokevirtual #5 35: invokevirtual #6
12: aload 0O 38: aload 5
13: invokevirtual #6 40: athrow
16: goto 41 41: return

Exception table:

from to target type
0 12 19 Class java/lang/NullPointes&ption
0 12 32 any

19 25 32 any

32 34 32 any

Figure 6-7. Thdinally block is compiled as code appendettyo and
catch blocks.

In the compilation format of subroutine as showrFigure 6-6, an instruction
jsr is added at the end oy block andcatch blocks (if there is any) in order
to transfer the control to the code implementing timally block if the
execution of thery orcatch block ends normally (edges 3 and 6 in Figure 6-2).
In more detail, the subroutine call works as fokowrhe instructionsr (at
indices 10 and 22 in Figure 6-6) pushes the addse#lse following instruction
onto the operand stack before jumping. The firstruction @store 6 at index
36 in Figure 6-6) in the code implementing fimally block stores the address
on the operand stack into local registers. Theovalg code (instructions from
index 38 to 42 in Figure 6-6) is run. Assuming thecution of thdinally
block completes normally, the instructioet (at index 42 in Figure 6-6) at the
bottom of the subroutine retrieves the addres®dttw local registers and resumes
execution at that address.

108

Furthermore in order to deal with the exceptionat ef thetry andcatch
blocks (edges 4 and 7 in Figure 6-2), the commkamerates one exception table
entry for eachtry or catch block with the handler typany, which can handle
any type of exceptions thrown with the scopdrgf or catch block. (Usually
such a entry is also generated for timally block itself.) When thery or
catch block throws an exception and the matchoagch block is not found,
the exception table entries for theally block is searched for an appropriate
exception handler. Then the control is transfetoethe instruction (at index 28 in
Figure 6-6) indicated by the coluntarget After storing the reference value of the
thrown exception to local registers (the instrucstore 5 at index 28 in Figure
6-6), the following instructionjsr does a subroutine call to the code
implementing thefinally block. Assuming that code returns normally, the
reference value of the thrown exception is pushatk lto the operand stack (the
instructionaload 5 at index 35 in Figure 6-6) and re-thrown by tbkowing
instructionathrow (at index 35 in Figure 6-6).

In the other compilation format, the code implenrenthefinally block is
appended to thiey block andcatch blocks (if there is any) as shown in Figure
6-7. If the execution exits thiey or catch block normally (edges 3 and 6 in
Figure 6-2), the execution continues to work on tbdowing code, which
implements thdinally block and is appended to ttrg or catch block by
the compiler. In Figure 6-7, the code appendethiédry block is the instructions
between [72, 110] and the code appended todteh block is those between [37,
3]. For the exceptional exit of to they orcatch block, the compiler generates
one exception table entry for eaithh or catch block with the handler typany
just like the compilation in the subroutine formaéhe instructions from the index
indicated by the columtarget do similar work as those in the subroutine format
except that the subroutine call is replaced by etieg the code implementing the
finally block directly.

6.3.2 Locating thet ry Block

Since the scope of they block is indicated by the columrigom andto in
exception table entries, it is easier to locatesitmpe of theéry block compared
with locating the scope of theatch orfinally block. What we should pay

109

attention to is that the compiler generates exoagtble entries fatatch blocks
if the try statement contains fnally block and such entries should be
excluded.

If the catch block is specified in dry statement, the compiler generates a
exception table entry with a particular handleretypr eaclcatch block. Thus if
there are one or more entries whose handler typetiany, thecatch block is
specified and the scope of ttmg block is indicated by the index pafrgm, to) in
those entries. Each different pair correspondsty block in atry statement.
For example, the scope tlrg block of in Figure 6-6 is [0, 10) and that in Figu
6-7 is [0, 12).

If no catch block is specified in &y statement, all the entries in the exception
table are generated for thigally block by the compiler and the handler types
of all entries should bany. These entries are generated to deal with theptince
thrown either in théry block or thefinally block. Since the entries generated
for the latter case should have equal values inneosfrom andtarget, the scope
of thetry block is indicated by the index paifrdm, to) in the entry whose
columnfrom’s value is not equal to coluntargets value.

6.3.3 Locating thecat ch Block

If the catch block is specified in dry statement, the compiler generates an
exception table entry for eadatch block, in which the beginning index of the
catch block is indicated by the coluntarget. What we need to do is to locate
the ending index of theatch block.

If no finally block is specified in th&y statement, the control is transferred
to the immediate post-dominator instruction of tityestatement after the execution
exits thetry block normally. Thus the immediate post-dominatmtruction of
thetry block, which is indicated by the coluntm in the exception table, should
be the instructiomoto if there are instructions left to be executedhe method
or the instructiometurn (areturn) if the end of thery statement is the bottom
of the method. In the former case the end indexhef lastcatch block is
indicated by the branch index of the instructgmio , and in the latter case the

110

end index is the index of the last instruction e tmethod. The end of other
catch blocks (if there are more than oocatch block in thetry statement) can
be located by the beginning index of the neatch block since thecatch
blocks are compiled into successive bytecode. kamgle the in bytecode shown
in Figure 6-9, the scope of the fisitch block is [6, 14) indicated by values in
the columntarget and the scope of the lastitch block is [14, 19) indicated by
the value in the columtarget and the branch index of the instructigato at
index 3 which is the immediate post-dominator @fttly block.

If the finally block is specified in th&ry statement, the compiler generates
for finally block one exception table entry to deal with tkeeption thrown in
thetry block that thecatch block cannot deal with, one entry to deal with the
exception thrown in eactatch block and one entry to deal with the exception
thrown in thefinally block itself. Thus the scopes of thatch blocks are
indicated by the columnfom andto in those entries to deal with exception
thrown incatch blocks, just like the scope of they block is indicated by the
entry generated for theatch block. The entry generated to deal with exception
in thetry block can be found by compare the value of colufrmms andto with
the scope of théry block, and the one generated to deal with exceptiothe
finally block has equal values in the colunfiresn andtarget Excluding those
entries, the left ones are generated to deal \wghekception in theatch block
and can be used to locate the scope ott#teh block by the index pairfjom,
to). For example in the bytecode shown in Figure @@, third exception table
entry is generated for ttimally block to deal with the exception in thatch
block, and the scope of tleatch block is [19, 25) indicated by the columinem
andto.

6.3.3 Locatingthefi nal | y Block

Locating the scopes of tbatch andinally blocks is complicated because
of thefinally block’s compilation. The compiler generates anegxion table
entry for eachcatch block and one or more entries with typay for the
finally block. The exception table entry with handler tgog is generated and
can be only generated for tfieally block in thetry statement by the complier.
Thus if there are any entries with handler tyre in the exception table, the

111

finally block is specified in thigy statement.

In the case of thdinally block being compiled into subroutine, the last
instruction in thery block (whose index is indicated by the value @& golumn
to in the exception table entry) should be the irtdtom jsr i. The instruction
jsr i transfers the control to the subroutine compileanf thefinally block,
whose starting index is. Assuming the index of the instructioet in the
subroutine is’, the scope of thdinally block is (, i’). As for locating the
scope of thecatch block, if there is any, the index of the firstingtion in the
catch block is indicated by the coluntargetin the exception table entry whose
handler type is noany. At the end of thecatch block there should be one
instructionjsr transferring the control to the subroutine of timally block.
Since the scope of tHmally block has been located asi(), the end of the
catch block is the firsfsr i post-dominating the first instruction of thatch
block. Assuming the value of the colunirarget in the exception table entry
indicating thecatch block isk and the index of the instructiger i transferring
the control tdinally block isk’, the scope of theatch block is k, K.

For example, in Figure 6-5 tHimally block is specified because there are 3
entries with the handler typany in the exception table. The first entry in the
exception table has a handler typgayMa/lang.NullPointerException
and indicates the scope of ttig block as [0, 10] by the columrisom andto.
Since the last instruction in they block isjsr 36 at index 10, the subroutine
complied from thdinally block starts from the instruction at index 36. Ahd
index of the instructiomet is 42, thus the scope of tfieally block is (36,
42). As the scope of theatch block, the starting index had been indicated as 16
by the columntargetin the first entry of the exception table. Sinkhe tnstruction
transferring control to thénally block isjsr 36, the first such instruction
post-dominating the instruction at index 16 (thgibeing of thecatch block) is
the instruction at index 22. Thus the scope ofcditeh block is [16, 22].

In the other case, thHmally block is compiled into the code appended to the
try andcatch blocks respectively. That is, the same code cadpitom the
finally block will appear after eactry and catch blocks, and the last
instruction in thetry block could not be the instructiger . To divide thetry

112

block from the followingcatch or finally blocks, the complier generates the
instructionreturn (or areturn) or goto between them. Assuming the index
of that dividing instruction i’ and the index of the last instruction in ttrg
block isj, the scope of thiznally block appended to thiey blockis [, j].

As for locating the scope of tleatch block, the index of the first instruction
in thecatch block is indicated by th&éargets value in the exception table entry.
From the first instruction we search the instruttidock matching the instructions
in [j, j’] and the last one of found instruction blocks tie finally block
appended to theatch block. If there are any entries whose handlergyge not
any in the exception table, theatch block is specified. The locating of the
catch block’s the scope is based on the scope offitiadly block. In the
other case, assume the value of Tlaegetis k and the scope of thinally
block appended to theatch block is |, I']. The scope of theatch block is k,

[]. For example, in Figure 6-6 the scope of ttye block is [0, 10], the scope of
the finally block is (36, 42) and the scope of ttech block is [16, 22]. In
Figure 6-7 the scope of thiey block is [0, 12], the scope is of tHimally
block is [12, 16], [25, 26] and [34, 35] respechiyeand the scope of theatch
block is [19, 25).

6.4 Implicit Information Flow in Exception Handling

In Java bytecode, exceptions can be thrown explioit the instructiorathrow
or implicitly by some specific instructions suchtasse shown in Figure 6-3. For
the exceptions raised implicitly by one Java bytkecanstruction, whether the
exception occurs depends on the values of theblagsaperated in the instruction.
In other words, the occurrence of one exceptionasathe information of the data
affecting the exception’s generation. Thereforeisit reasonable to assign a
security-level to each exception. We define thaisgelevel of one exception as
the LUB of security-levels of the data determinwlgether the exception is raised.
For example, consider the exception of tyhalPointerException raised
by the instructionaload . Since whether the exception is raised or not cdpe
on the value of the variablarrayref, the security-level of the exception is the
security-level of data in the variatderayref.

113

Considering that exception handling will not onuse intra-procedural control
transfer but also inter-procedural control transfex add one new fiel8L of type
byte to every exception class including both pre-defiexception classes and
user-defined exception classes, and use it to diwee security-level of the
exception instance. By this way when an except®rhrown from the callee
method to the caller method, we can trace the mmébion flow correctly and
understand the security-level of the exception wihieis handled in the caller
method.

As mentioned above, in Java bytecode exceptionseatmrown implicitly by
some specific instructions, which are called assREdtential Exception-throwing
Instruction3. When the execution of Java bytecode encounté&glawhere the
control flow is transferred depends on that whetherPEI raises an exception and
what exception the PEI will raise. In other wortitsge PEI acts as a conditional
branch node and it may have some of the brancltmgnsim Figure 6-2. It means
that one PEI can cause implicit information tranafig just like theif-instructions
and initiates an implicit transferring block. Obwgly the conditional
security-level of such one implicit transferringotk is the security-level of the
exception that may be raised by the PEI (or the LdfBhe security-levels of all
exceptions that may be raised by the PEI). Tordisish it from the conditional
security-level ofif-instructions, we call that conditional securitydé as the
exceptional security-levelf the PEI.

In Java Virtual Machine specification, which ingtions can raise exceptions
and what type of exceptions they can raise have leéned clearly. We can
calculate the exceptional security-level of one st before the PEI is executed.
As for the scope of the implicit transferring blorktiated by one PEI, it varies
with the location where the exception(s) raisedsfmyg by the PEI can be handled,
that is, in the same method where the PEI raiseeption(s) or in the caller
method. According to the Java Virtual Machine sfpeaiion, 40 instructions could
throw exceptions implicitly in the total 204 insttions in Java bytecode. And in
those 40 PEIls, 7 instructions can only throw orpe tgf exception (we call such
one PEI as single-exception PEI) and the otherstlwaw two or more types of
exception (we call such one PEIl as multiple-exceptPEI). Thus for the
exceptions that can be raised by multiple-excepi&its, there are three kinds of

114

exception handling: 1) all of they may be handiedhe same method where they
are raised (only intra-procedural transferring rbaycaused); 2) none of they may
be handled in the same method where they are rdmag inter-procedural
transferring may be caused); or 3) some of they bealgandled and the others can
not be handled in the same method where they #&edrdboth intra-procedural
and inter-procedural information transferring maydaused). Since what type of
exceptions that one PEI can raise has been ddind¥M specification and what
type of exceptions one method can handle had befamed by the exception table,
we can judge that one PEI may cause intra-proceduiamation transferring,
inter-procedural transferring or both of them. W&cdss these cases respectively.

® Intra-procedural Information Transferring May be Caused

In this case, all the exception(s) raised by onedai be handled by the proper
catch Dblocks in the same method. The branches of thédinpansferring block
caused by the PEI are 1 and 5-7 (mally block) or 3 and 5-6fipally
block specified) in Figure 6-2. The scope of thenmal branch (1 or 3 in Figure
6-2) is from the immediate post-dominator of thd 8he end of théry block.
(This branch will be blank if the PEI is the lasstruction in thery block.) And
the scope of the exceptional branch(es) (5-7 oriB-Bigure 6-2) is the whole
catch block(s) handling the exception(s). Thus when g¢kecution encounters
one PEI that can only raise intra-procedural iniplitformation transferring, we
should backup the current environment security}l8lg, and seSL. to the LUB
of original SL; and the exceptional security-level of the PEI. mia¢ the end of
each branch we should set Big back to the original one.

® Inter-procedural Information Transferring May be Caused

In this case, no propeatch block can be found in the same method for the
exception(s) raised by the PEI and JVM throws tReeption(s) to the caller
method. The branches of the implicit transferrihgck caused by the PEI is 1 and
2 (nofinally block) or 3 and 4-9fifally block specified) in Figure 6-2.
The scope of the normal branch (1 or 3 in Figurd) 6s from the immediate
post-dominator of the PEI to the end of the metéxclusive thdinally block
if it is specified. And the scope of the exceptiobanch(es) (2 or 4-9 in Figure

115

6-2) is the wholecatch block(s) that can handle the exception(s). (Szatich
block may be in the caller method or in the furtbeter caller method, or does not
exist in which case the exceptional branch is hlasknce the control may be
transferred to the caller method in this case, ikl insert proper instructions to
transfer the exceptional security-level of the P&bing the exception(s) to the
caller method. As mentioned above, we add one m&d $L to every exception
class to transfer the security-level between methodthe case of one method’s
exceptional exiting. Thus we should set the fi8ld of the current exception
instance to the current environment security-ldwefiore the execution exit the
method. If there is onénally block specified in théry statement where the
exception is raised, we can insert the instructisatting the fieldSL in the
finally block. Or else we should add dineally block that does nothing but
the setting of the fiel&L. When the execution encounters one PEI that mag ra
inter-procedural implicit information transferringye should set th&Ll to the
LUB of the SL; and the exceptional security-level of the PER fiilhally block

is specified, we should backup the current envireminsecurity-leveSL; before
we change it, then restore the bacl&lp at the start of thé&nally block in
order to exclude it from the normal branch, anthatend of thdinally block
we setSL to the one calculated just before the PEI. Adtierexceptional branch,
we should backup current environment security-l&igl(which is theSL; of the
method being executed, not the method where thepéwa is raise since at that
point the execution has exited that method), aed #et théSL; to the LUB of the
original SL; and the security-level stored in the fi&ddl of the exception. At the
end of the exceptional branch we should restor&théo the original one.

® Both kindsof Information Transferring May be Caused

In this case, some of the exceptions that may medaby the PEI can be
handled in the same method and the others canndihleebranches of the implicit
transferring block caused by the PEI are 1, 2 affd(Bo finally block) or 3,
4-9 and 5-6 finally block specified) in Figure 6-2. The scope of tloenmal
branch (1 or 3 in Figure 6-2) is from the immediptest-dominator of the PEI to
the end of the method exclusive firally block if it is specified. The scope of
the intra-procedural exceptional branch(es) (5-B-6rin Figure 6-2) is from the
start of thecatch block that can handle the exception in the samibhodeto the

116

end of the method exclusive theally block if it is specified. The scope of the
inter-procedural exceptional branch is the whzdech block that can handle the
exception, which may be in the caller method athim further outer caller method,
or does not exist in which case the inter-procddexaeptional branch is blank.
What we should do in the normal branch and intec@dural exceptional branch
is same to what we do in case of inter-procedunglicit information transferring.
As for the intra-procedural exceptional branch, sleuld only exclude the
finally block from the intra-procedural exceptional bramdth the same way
used in the normal branch if theally block is specified.

® Procedure of Dealing with Implicit Information Flow Caused by PEIls

Based on the analysis above, we can find that Eis in Java bytecode act as
the if-instructions in the information transferring. Heve define the procedure of
dealing with the implicit block caused by PEIs agide an example in the
following.

Given a methodn, the procedure could be defined as following.

a Locate the scopes of all they blocks, finally blocks andcatch
blocksin m.

b Search for all the PEIs im and calculate the exceptional security-level of
each PEI just before it.

c If all the PEIs in ondry block are intra-procedural PEIs, at the end of the
try block and the correspondingatch blocks (if they are specified
restore the&SL that is backupped before the first PEI intitye block.

d |If any PEIs in onetry block is inter-procedural PEIs, at start of the
correspondindinally block backup theSL; and restore th&L; that is
backupped before the first PEI in tkng block. Then at the end of the
finally block, restore theSL. that is backupped at the start of the
finally block.

e At the start of eacltatch block, check the value of the fielslL in the
exception instance caught. If it is not 0, set$hgto the LUB of theSL and
SLe.

f If there are any inter-procedural PEls and fthally block is specified,
set the fieldSL of the exception instance caught in fivally block to

117

the SL.

g If there are any inter-procedural PEIs and fheally block is not
specified, add ongnally block tom and set the fiel&L of the exception
instance caught in thénhally block to theSL..

Here we give an example. Consider the sectionwd peogram whose bytecode
and CFG are shown in Figure 6-8. Using the proaediove we could deal with
implicit transferring caused by PEls in that Jayéebode. We give the modified
bytecode in Figure 6-9. Referring to the exceptetle, we can find the scope of
thetry block is [0, 12], the scopes of thaally blocks are [12, 16], [25, 26]
and [34, 35] respectively, and the scope ofdateh block is [19, 25] in Figure
6-8. The PEls ararraylength at index 1 andaload at the index 5 in Figure
6-8. (Here to simplify the example we assume thatihstruction invokevirtual
itself will not raise any exception.). We inserstiructions at the address 2, 3 and
14-20 in Figure 6-9 to calculate the exceptionalisty-level of the two PEIs. By
checking the handler type of theatch block, we can find that the
arraylength is intra-procedural PEI and th@load is inter-procedural PEI.
Thus we insert instructions at the address 71-8Bigure 6-9 to thdinally
blocks to set the correct current environment sgelavel. At the start of the
catch block we insert instructions at the address 44rbbigure 6-9 to check
whether the fieldSL of exception instance caught is 0 and set theentrr
environment security-level to the correct value.

118

void testOfcatch(int[] a, int b){
try{
int ¢ = a.length;
int d = a[b];
raiseException();

catch (NullPointerException e){
handleException(e);
}

finally{
wrapltUp();

o o a A W N B+ O

void testOfcatch(int[],int);
Code:

;aload_1

: arraylength
:istore_3
;aload_1
iload_2

> iaload

:istore 4
:aload_0

: invokevirtual #5
12: aload_0

13: invokevirtual #6
16: goto 41

19: astore_3

20: aload_0

21: aload_3

22: invokevirtual #8
25:aload 0

26: invokevirtual #6
29:goto 41

32: astore5
34:aload 0

35: invokevirtual #6 38
38: aload 5

40: athrow 0
41: return 4

©CoooUlh,WNEFO

Exception table:
from to target type
0 12 19 Class java/lang/NullPointeré&ption
0 12 32 any
19 25 32 any
32 34 32 any

Figure 6-8. An example of implicit information tisferring caused by PEISs.

119

void testOfcatch(int[],

byte[], int, byte);
Code:

49:
50:
53

raload 1
siload_3

: dup

. istore 13

. istore 7

. arraylength
. istore 6
;aload 1
:aload 2

. iload 4

. ilload 5
:iload_3

: jsr 80

. istore 13

: swap

. iload 4

- iaload

: istore 9

- iaload

. istore 8
-aload 0O

. invokevirtual #5
-aload 0O

. invokevirtual #6
: goto 54

. astore 6

: aload 6

. getfield #9;

/[Field SL; B
dup

ifne 36
iload 1:

Exception table:

from

30
45

to
25
25
49
52

target
30
45
45
45

0
0

Figure 6-9. The modified bytecode of that showFRigure 6-8.

55:
57:
58.
59:
62.
63:
66:
69:
71.
73.

76:
79:
81.
83:

86:
87.
90:
92.
93:

95:
97:

98:
101:
103:
104
106:
109:
110:

type

istore 12
aload 0
aload 0
invokevirtual #8
aload 0
invokevirtual #6
goto 27

astore 10

aload 10
getfield #9;
/[Field SL; B
ifne 10

aload 10

iload 12
putsield #9;

/I Field SL; B
aload 0
invokevirtual #6
aload 10
athrow

return

istore 14
dup2
if_icmple 86
istore 15
pop

istore 15
goto 68

pop

ret 14

Class jave/lang/NullPointerException

any
any
any

120

6.5 Explicit Information Flow in Exception Handling

In Java bytecode the exception can be thrown byink&uction athrow
explicitly. The instructiorathrow transfers the control from it to the point where
the exception thrown by it can be handled, and tausse explicit information
transferring. Similar to the implicit informatiomansferring caused by PEls, the
explicit information transferring caused byhrow can also be divided into the
intra-procedural and inter-procedural transferridgpending on where the
exception thrown. But different from PEIls, the mstion athrow causing
explicit information transferring acts as an undtodal control-trsferring
instructiongoto in the information flow. The effect of the insttiomathrow on
the information flow is that the environment setyutevel of the block where the
instructionathrow throws an exception is transferred to the bloclenghthe
exception is handled. Therefore it is quite simpbe deal with the explicit
information transferring caused by the instructahrow . What we should do is
to set the fieldSL of the exception instance that will be thrown bg athrow to
the current environment security-lev&ll.. As for the block where the exception is
handled, we compare the current environment sgelesrel with the security-level
in the field SL of the exception instance and updates to the mumevironment
security-level to the value of the higher one, Whig just like we do for implicit
information flow at the handler block.

121

7/ Implementation and Evaluation

7.1 System Architecture

A prototype verification system implementing thepegach described in this
thesis has been developed, and it is named as BkBY®code MOdification
System). This system is written in Java languagassto be adopted by various
mobile systems. The input of BMOS is a class filememory. Modified by the
modifier, the bytecode containing verification casl@elivered to the local runtime
platform. During the execution of the bytecode,jr@ormation-leak exception will
be thrown if there is any violation of host secaurfolicies. In this way, the
verification system interrupts the process causnigrmation-leak to protect the
local host security. Of course, the user can chtmsgnore the exception in order
to make the bytecode finish its job.

Local host

. Verification system

ac fe ba

- Runtime
0a2b ... Modifier ‘ platform

Untrusted Modified bytecode
bytecode \ containing)
. verification code .

Figure 7-1. BMOS architecture.

The BMOS is built using the techniques describedhia thesis. As shown in
Figure 7-1, the system consists of two main pahs: security policies and the

122

modifier. The security policies define the securigguirement of the local host.
These policies are described by the security-leveds resources and the
clearance-levels of third-party hosts, and stored configuration file. The core of
the system is the modifier, which redefines thescland inserts the verification
code for the dynamic verification during the exémuit

7.1.1 Security policies

In BMOS, the security policies are described by seeurity-levels and the
clearance-levels.

A security-level defines a host file’s sensitivitjhe higher the security-level is,
the more sensitive the file is. All the informatistored in a file get the file's
security-level, and all the files in one directoggt the security-level of the
directory.

Security-level definition:

SL.level=res 1, res 2, ...

e.g. SL.3=/home/temp, /home/usr/

A clearance-level defines the trust level of aneobsr-host to receive the
information on the local-host. The higher the cmae-level is, the more trustful
the observer-host is. The clearance-level is asdiga an observer-host according
to its network address.

Clearance-level definition:

CL.level=resl, res2,...

e.g. CL.2=www.abc.com, ftp.xy.com, 201.118.23.234

7.1.2 Modifier

The modifier is the core part of this system. Itfpens the modification of
bytecode used for the dynamic verification durihg execution. The modification
can be divided roughly into three steps. The ftep is to parse the class file from
bytecode to the instance Gfassinfo class defined beforehand. The second step
is class-level modifications and method-level migdtions, including adding fields,
rewriting the method-descriptors, adding local &bkes, changing the stack size
and inserting verification instructions, etc. Tieaf step is to generate the bytecode

123

of the modified class. In Figure 7-2, we give thegess steps of the modifier.

Class Parser

Class Modification
Adding Fields

Invoking
Method Modification
for Each Method
Rewriting
Descriptor
Adding Local
Variables

Changing
Stack Size
Inserting
Instruction

Class File Generator

Figure 7-2. Processing steps of Modifier.

ClassModifier.java

public ClassModifier(File classFile)
throws FileNotFoundException, IOException{

classInfo = new ClassiInfo(classFile);
cp = classinfo.getConstantPool();//Constant Pool

indexOfByteIlnCP = cp.getUtf8(String. val uet¥
(TypeDiscriptorParser. BYTE)).getIindex();
}
public void modifyClass(){
/ladding fields as Security-Level Container for the original fields
addFields();
//modify each method of the ClassFile
modifyMethods();

Figure 7-3. The Program of Class-level Modification

124

MethodModifier.java
public void modifyMethod() {

/IRewritethe descriptor:add parametersas Securi ty-LevelContainer
/I for original, and modify the return type
addParameters();

/[add local variables as Security-Level Container for original
addLocalVariable();

/I add stack as Security-Level Container for origin al
addStack();

/I add verification code
initialnstruction();
addVerificationCode();

Figure 7-4. The Program of Method-level Modificatio

We illustrate part of the source code of the mediiin Figure 7-3 and 7-4. In the

constructor of clas€lassModifier , the class file to be modified is parsed to an
instance of classClassinfo . The method modifyClass of class
ClassModifier performs the class-level modification. And in theethod

modifyMethods , one instance of classlethodModifier is generated for
each method in the class file, and the methmdlifyMethod shown in Figure
7-4 is invoked to perform the method-level moditica.

7.2 Implementation

7.2.1 Class Par ser

In order to analyze and modify the class file, thess file is transformed to the
format to meet our needs. This process is impleetebly a Class Parser, which
reads information from the class file and then @ots/it to instances of classes
defined beforehand. Some tools, such like Bytedexgineering Library (BCEL)
and Java Object Instrument Environment (JOIE), h#éexn developed to
implement such class parsing. But to implement approach, we need not only
parse the class file to instances, but also maiiiéyinstances and regenerate the
class file. Thus we adapted the JOIE to meet oed ¢ class file modification.

125

RuntimeException Header Classinfo x | ConstantPool

? |
ParsingException

Method Field Attribute
? | |]
OutOfRangeException %7
Member
MethodSignature Code
i

MethodDescriptor LocalVariableEntry Instruction ExceptionTableEntry

Figure 7-5. UML diagram of the classes representiags file.

ConstantPool SearchConstant
Constant
ConstantDouble Constantinteger ConstantUtfd NullConstant
| [|
| | | |
ConstantFloat ConstantLong Reference ConstantValue
| | | |
ConstantClass ConstantNameAndType MemberRef ConstantString

l|3

ConstantFieldref

ConstantMethodref

7S

ConstantinterfaceMethodref

Figure 7-6. UML diagram of the classes represerttiegconstant pool.

126

JOIE is a framework for safe Java bytecode transdtion. It provides both
low-level and high-level functionality to extend adapt compiled Java classes. The
low-level interface allows manipulating the byteeedtself whereas the high-level
interface provides methods for inserting new iratees, fields, methods or whole
code splices. In order to modify the class file eneasily, we ameliorate some
classes of JOIE. Figure 7-5 shows the UML diagramhe classes used to
represent the class file, and Figure 7-6 showdJifie diagram of the classes used
to represent the information in the constant pool.

The input of the class parser should be one clissnfthe format of bytecode
file or InputStream . The constructor of clagSlassinfo will invoke proper
methods to read information of the class file frogtecode ornnputStream
generate instances of necessary classes (sucloastantPool , Field |,
Method , Code, Instruction and so on) and construct the instance of class
Classinfo containing all information of the class file. Fetample, the class file
“c:\workspace\bin\bms\Tester.class” can be parsetthé following code:

File file =new File(“c:¥workspace¥bin¥bms¥Tester.c lass™);
Classlinfo ci = new Classinfo(file);

As we getClassinfo instance of one class file, we can get all infdrorawe
need about the class file. For example, the metlamdk fields of the class file
“Tester.class” can be obtained by the followingeod

Method[] methods = ci.getMethods();
Field[] fields = ci.getFields();

For an instance of claddethod , the information necessary for modification,
such as descriptor, code, local variables anduastms can be obtained easily as
following code:

Code code = method.getCode();

LocalVariableTable Iv= code.getLocalVariableTable() ;

Codelterator iter = code.getSplice().getCodelterato rQ);

As for the Java bytecode instructions, a base d¢testruction represents a

127

single JVM instruction. Some subclasses, suchoasl, Branch , are defined to
represent the instructions performing the similperation. Such subclasses hide
subtle distinctions among different forms of thensanstruction. For example, the
JVM specification defines fifty separate bytecodenfs that can load or store a
value, depending on the size and type of the vahe its location in the frame.
Unified Load and Store instruction classes can generate the correct bgeec
form for the operands. Other subclasses of Instnuecepresent the few instructions
with multiple or a variable number of operands, luding table switches,
multidimensional object array creation, and integfanethod invocation.

Instruction operands and arguments are represestemtjical references to other
objects rather than as numeric offsets into tables example, aBranch
instruction instance contains a reference to thmgetdnstruction instance,
rather than a byte offset. Also references to nastare represented by instances of
the classMethodref , instead of as raw integers as in the byte stietanface. To
achieve this, a clastabel is generated to represent the offset of branch
instruction, such agoto , if icmpne . And the size of instruction Label is
defined as 0 in order to cause no side effect minal bytecode.

Instruction2 [: Instruction

AN

Constantinst InstructionMANA Label Ret Return Load

| [| | | |

I I I I | I I |
Brahch Dup Getfield Invoke LDC NG Putfield Stora

Switch
I |
Lookup Table

Figure 7-7. UML diagram of the classes represerttiegoytecode instructions.

Instruction classes contain logic to preserve egfeal integrity across changes

128

to the class file. For example, a Branch instructotomatically updates its offset
field if new instructions appear between the braaeti its target. Figure 7-7 shows
the hierarchy of the classes representing the bgleemstructions.

7.2.2 Class M odification

The jobs performed at class-level modification @@ding new fields as
security-level container for the original fieldsdathe class itself, and invoking
method-level modification for each method in thessl

For the original field of primary types, we add dredd of typebyte . For the
original field of an array for primary types, wedadne field ofbyte array with the
same dimension as the original one. And for thiel foé classes or array for classes,
we add one field of the same type as the original 8eside these, we also add one
field of typebyte as the security-level container for the classlfitSéhe added
field’s name is the original field’s name suffixadth “_SL”. The added field has
the same access flag as the original one. Since #re no ordering constraints on
the ConstantPool andFields structures of Java class file, any new fields and
entries could be appended rather than insertdukeimiddle in order to preserve the
indices of existing entries.

In order to judge the type of the field and thud aéw field of proper type, we
generated a clasBypeParser to parse the method’s descriptor to an array of
variables’ descriptors, and judge the type that varéable’s descriptor represents.
Figure 7-8 shows part of the program of addingigel

Field[] fields = classInfo.getFields();//All origin al fields

if (fields != null && fields.length > 0){
for (int i=0; i < fields.length; i++){
Field field = fieldsi];
String descriptor = field.getDescriptor();

int typeOfFiled = TypeParser. j udgeType(descriptor);

/IAdd new field

Field newField = null;

String fieldName = field.getName();

String newFieldName = fieldName+ TypeParser. SL_SUFFI X;

129

indexOfName = cp.getUtf8(newFieldName).getindex();
int indexOfDescriptor;

if (typeOfFiled == TypeParser. VRONG_TYPE){
throw new lllegalArgumentException();

}else if (typeOfFiled == TypeParser. PRI MARY_TYPE){//primary
indexOfDescriptor = indexOfByteInCP;
newField = new Field(newFieldName, Type. BYTE);

lelse if (typeOfFiled%10 == TypeParser. PRI MARY_TYPE){//array

ArrayType arrayType =
new ArrayType(Type. BYTE, typeOfFiled/10);
indexOfDescriptor =
cp.getUtf8(arrayType.getDescriptor()).getindex();
newField = new Field(newFieldName, arrayType);
}else {//class or array of class
newField = new Field(newFieldName, field.getType()) ;
indexOfDescriptor = cp.getUtf8(descriptor).getindex 0;

}

newField.setDesc_index(indexOfDescriptor);
newField.setName_index(indexOfName);
newField.setClassInfo(classinfo);
classiInfo.addField(newField);

Figure 7-8. Part of the program of adding fields.

After the fields adding, the method-level modificat should be invoked for
each method in the class file, which is performgdhe methodnodifyMethods

shown in Figure 7-9.

private void modifyMethods(){
/fall the methods of the Class file
Method[] methods = classinfo.getMethods();

if (methods != null && methods.length > 0){
for(int i = 0; i < methods.length; i++){
MethodModifier mm = new MethodModifier(methodsJi], cp);
mm.modifyMethod();

Figure 7-9. The program of invoking method-leveldification.

7.2.3 Method M odification

Method-level modification is the main part of théale modification. The tasks
performed here are adding security-level contaif@rgparameters, modifying the

130

return type, adding security-level containers taral variables, increasing the stack
size, locating the implicit blocks’ scopes, and thest important one, inserting the
verification instructions.

[Modifying method’s descriptor
Adding security-level containers for parameters msedo modify the
descriptor of the method, that is, to insert thecdgtor of the new parameter
into the method’s original descriptor. In order keep the alternate order of
variables and their security-level containers, n&ert the descriptor of the new
parameter just after the descriptor of the origimaé¢. The rules used to decide
types of new parameters are the same as the oee@svien we add new fields.

if (numOfParams > 0) {
for (inti = 0; i < numOfParams; i++) {
String paramType = paraRetTypes [i];
newDescriptor.append(paramType);
int type = TypeParser. j udgeType(paramType);

if (type == TypeParser. VRONG_TYPE){
throw new lllegalArgumentException();

lelse if (type == TypeParser. PRI MARY_TYPE){
newDescriptor.append(TypeParser. BYTE);

lelse if (type % 10 == TypeParser. PRI MARY_TYPE){//array
newDescriptor.append(paramType.substring(0, type / 10)

+ TypeParser. BYTE);

}else {//class or array of class
newDescriptor.append(paramType);

}

}

/l modify the return type if it is not Void;

String returnType = paraRetTypes[numOfParams];

int type = TypeParser. j udgeType(returnType);

if (TypeParser. VO D_TYPE == type) {
newDescriptor.append(returnType);

}else {
newDescriptor.append('[7;
newDescriptor.append(returnType);

}

/I Set new Descriptor to Constant Pool

int constantindex = method.getDesc_index();

cp.getUtf8(constantindex).setString(newDescriptor.t oString());

Figure 7-10. Part of the program of modifying thethod’s descriptor.

The return type of one method is also defined enrttethod’s descriptor. In

131

order to return the security-level of the resuke, assemble an array by the result
and its security-level and return the array asetkecution result of the method.
At Figure 7-10 shows part of the program modifyihg method’s descriptor.

[Adding local variables

Adding security-level containers for local variable almost same as adding
security-level containers for parameter on the8wt they are quite different in
implementation and the former is much more difficthan the later. All
parameters of one method are defined in one itetherconstant pool, while the
local variables are defined in thecalVariableTable attribute separately.
To add a local variable, we need to define itslabé scope in instructions, its
name index and descriptor in constant pool, anchdsx in all local variables.
Similar to parameters, in order to keep the altermader of variables and their
security-levels, we insert new local variables itfie original ones rather than
append them. Thus we also need to recalculatenttexiof all local variables
and the operands of the instructions using locables. Figure 7-11 shows part
of the program adding local variables and recatmgahe index.

if (IvType == TypeParser. PRI MARY_TYPE) {//primary type
descriptorindex = indexOfBytelnCP;
lelse if(lvType%10 == TypeParser. PRI MARY_TYPE){//array
String descriptor = Ive.getDescriptor()
.substring(0,IvType/10)+TypeParser. BYTE;
descriptorindex = cp.getUtf8(descriptor).getindex()
} else {//class or array of class

descriptorindex = cp.getUtf8(lve.getDescriptor()).g etindex();
}
LocalVariableEntry newLve =new LocalVariableEntry(Ive.getStart(),
Ive.getLength(), namelndex, descriptorindex, IvPosi ton + 1);

newlLve.setStart_inst(lve.getStart_inst());
newlLve.setEnd_inst(lve.getEnd_inst());
newLve.setCpool(cp);
IvEntries.add(lvPositon + 1, newLve);

/l Modify the frame index of the original Iv
Ive.setFrame_index(lvPositon);

// Deal with the LocalVarible
code.addLocalAt(lvPositon + 1, IvPositon + 1);

Figure 7-11. Part of the program of adding localalaes.

° Increasing stack size

132

For the operands on the stack, we also need to tkeepariables and their
security-levels in alternate order. This ordereaptkby using correct instructions
to push and pop operands to and from stack. We needo anything to the
stack except double the size of the stack, sincpugé the security-level of each
operand to the stack.

[Locating implicit blocks’ scopes

In order to calculate the correct security-levdlgariables, we need to know
which instructions are in the implicit blocks anchat are the environment
security-levels of those implicit blocks. As we badiscussed in Chapter 4, the
if-instructions andswitch instructions can cause implicit blocks. And weoals
give the algorithm to locate the scope of implitdacks, including nest ones.

To implement the algorithms, we use one variabipBlkScps of type
Stack to manage the scopes of implicit blocks. We als® two arrays of type
int to represent the implicit block and all the instrons’ implicit-block
layer-number as shown in Figure 7-12. We loopradtructions of the method to
find theif-instructions andwitch . Before we locate the scopes of the implicit
blocks caused by one if-instruction Switch , we need to decide the current
implicit block, that is, the instruction is in aoyter implicit blocks. We peek the
scope on the top fronmpBIkScps . If the address of current instruction is in
the scope, the scope of the current implicit bleckhe one just peeked. Or the
loop has exited the scope, and we pop the imgiloitk since it will not be used
any more.

int[] impBIkScope = { startAddr, endAddr, LayerNo } ;

The first element represents the start addresssebend element represents the end
address, and the third element represents the hayeber.

int[] instrLayerNo = new int [maxAddr]

maxAddr is the max address of instructions in the method.

Figure 7-12. The arrays representing the implilkitk and instructions’ layers.

When the loop encounters oifeinstruction orswitch , we located the
scopes of implicit blocks according to the algarithin Chapter 4. Then we push

133

the scopes to the variablapBIkScps ascending (at first push the scope of the
block appearing later in the instruction sequertben the scope of the one
appearing earlier). At last we set the implicitdolayer-number of the
instructions in one implicit block to its layer nber. Figure 7-13 shows part of
the program of deciding current implicit block dondating the scopes of implicit
blocks.

while (iter.hasNext()) {
Instruction instr = iter.nextInstruction();
int addr = instr.getAddr();

/I find the current implicit scope
while (limpBlkScps.isEmpty()) {
nextimpBIkScp = (int[]) impBIlkScps.peek();
if (addr <= nextimpBIkScp[1] && addr >= nextimpBIkS cp[0]) {
curlmpBIkScp = nextimpBIkScp;
break;
} else {// exit nextimpBIlk
curlmpBIkScp = null;
impBIkScps.pop();

}

if (curimpBlkScp != null) {
outerBlkStart = curimpBIkScp[0];
outerBIKEnd = curlmpBIkScp[1];
curLayerNo = curlmpBIkScp[2];
Jelse{
outerBlkStart = 0;
outerBIKEnd = maxAddr;
curLayerNo = 0;

}

/I if-instruction

if (Instruction. i sl flnstruction(instr)){
int addr = instr.getAddr();// |
int op = instr.getOp();// j

if (op < 0) {// loop
int[] tempScope = { addr + op, addr - 1 };
pushimpScp(tempScope);
}else {
Instruction instrBfreTar =
splice.getPrevious(instr.getTarget());
int addr2 = instrBfreTar.getAddr();// i'

if (instrBfreTar.getOpcode() == Opcode. Goro
|| instrBfreTar.getOpcode() == Opcode. GOTO W {
int op2 = instrBfreTar.getOpcode();// |’
if (op2 < 0) {// loop
int[[tempScope={addr+1,addr2-1,curLayerNo+ 1};
pushlmpScp(tempScope);
} else {// two branches, common if-instruction

134

int[[tempScope2={addr+op,addr2+op2-1,curLayerNo+1};
pushimpScp(tempScope?2);

int[[tempScopel={addr+1,addr2-1, curLayerNo+1 |
pushimpScp(tempScopel);

}

} else if (instrBfreTar.getOpcode() == Opcode. ARETURN
|| instrBfreTar.getOpcode() == Opcode. RETURN) {
int[[tempScope2={addr+op,maxAddr-1,curLayerN o+1};
pushimpScp(tempScope?2);
int[[tempScopel={addr+1,addr2-1,curLayerN o+1};
pushimpScp(tempScopel);

}else {
int[[tempScope={addr+1,addr+op-1,curLayerN o+1};
pushimpScp(tempScope);

} }
}else if (instr.getCategory() == ByteCode. CAT_SW TCH) {

Figure 7-13. Part of the program locating implidibcks.

Tracing information flow

Inserting instructions to trace the informationafles the most important part
of the method-level modification. What we should likere is to insert proper
instructions to implement that loading securitydeto stack, calculating LUB of
security-level and store the security-level backldoal variables or fields.
During the operation be the inserted instructioe, should keep two rules: 1.
When the JVM executes one original bytecode instrncthe operands used by
the instruction on the stack should be laid asoiinstruction is inserted, which
assure that the inserted instructions has no s$idet @n the original function of
the bytecode; 2. When the JVM executed the originatruction and the
instructions inserted for it, the operands on ttaeks should keep the alternate
order of variables and their security-levels, whedsure that we may insert
instructions for single original instruction andedenot to consider the context.

To keep the two rules, we load the security-levigrahe variable, and store
the security-level before the variable. As for thstruction operating two or
more operands, we add several local variables a®dthem as temporary
containers for security-level or variables when aveange the operands on the

135

stack, and insert a little complicate instructian keep the two rules above.
Figure 7-14 shows part of the program inserts ucsions for loading
security-levels and calculating security-levels.

private void insertCodeForCompare(Instruction instr)i
splice.insertBefore(instr, getCodeForESL());
splice.insertAfter(instr, loadTempSL);

}

private void insertCodeForLoad(Load instr){
Instruction load = null;
int IvNo = instr.getOperandindex();

if (instr.getOpcode() == Opcode. ALQADY{

load = new Load(Opcode. ALQAD, IvNo + 1, code);
telse{

load = new Load(Opcode. | LOAD, IvNo + 1, code);

splice.insertAfter(instr, load);
iter.forward(1);

}

private Splice getCodeForESL(}{
Splice splice = new Splice();

/[Store the second operand to temp-Operand local va riable
int operandType = ((Integer)operandTypes.peek()).in tValue();
int index = indexOfTempOperand[operandType] ;

short formOp = (short)(Opcode. | STORE + operandType);

Instruction instrStoreOp = new Store(formOp, index, code);
splice.append(instrStoreOp);

/[Load the second operand from temp-Operand local variable

Instruction instrLoadOp =
new Load((short)(formOp - 33), index, code);

/linsert instructions
splice.append(storeTempSL);
splice.append(instrStoreOp);
splice.append(loadTempSL);
splice.append(spliceOfLUB);
splice.append(instrLoadOp);
return splice;

Figure 7-14. Part of the program inserting insinrg.

Furthermore, we add a local variable of type itt[Jstore the environment
security-level of each implicit block layer. So thae can know correct
environment security-level every original instrocti according to the
implicit-block layer-number of the instruction. Thue also need to insert
instructions to manage the environment securitglle\array. Figure 7-15 shows

136

an example of calculating the environment secuet! and storing it.

/**
* insert verification code for switch-instruction
*
* @param instr
*/

public void insertInstrForSwitch(Switch instr) {
splice.insertBefore(instr, storeTempSL);

/I calculate the LUB of ESL and outer layer ESL

int layerNo = instrLayerNo[instr.getAddr()];

if (layerNo > 0) {
Splice spliceESL = new Splice();
Instruction instrPushindex = new Constantinst(laye
Instruction instrLoadESL = new Load(Opcode.
spliceESL.append(loadTempSL);
spliceESL.append(loadESLsRef);
spliceESL.append(instrPushindex);
spliceESL.append(instrLoadESL);
spliceESL.append(spliceOfLUB);

splice.insertBefore(instr, spliceESL);

}

/I store the ESL to ESLs
Instruction instrPushindex = new Constantinst(layer
Instruction instrStoreESL = new Store(Opcode.

Splice spliceESLs = new Splice();

spliceESLs.append(loadESLsREef);
spliceESLs.append(instrPushindex);
spliceESLs.append(loadTempSL);
spliceESLs.append(instrStoreESL);

splice.insertBefore(instr, spliceESLS);

/I set ESL to curESL
Instruction instrStoreCureESL =

new Store(Opcode. | STORE, indexOfCESL, code);
splice.insertBefore(instr, loadTempSL);
splice.insertBefore(instr, instrStoreCurgESL);

rNo - 1);
BALOAD, code);

No);
BASTORE, code);

Figure 7-15. Part of the program dealing with eowiment security-level.

137

7.3 Examples of Applying BMOS

To prove the validity of our new security model ahghamic approach, we give
examples of applying our verification system BMOS &an agent system
AgentSpace to verify the security of agents.

7.3.1 Applying MOBS in AgentSpace

o AgentSpace system

We use an agent system called AgentSpace (htggéreh.nii.ac.jp/~ichiro
/agent/agentspace.html) to demonstrate how to applyerification method to one

agent system.
‘A .Agen'i @ -’- ’
e ° . .

Agent Runtime

035 + Hardware 035 + Hardware
Serialized Agent Migration Network
{code + state) —

Compressed

Figure 7-16. Architecture of AgentSpace system.

The runtime system of AgentSpace is shown in Figuié. In AgentSpace, a
mobile agent is a Java object containing code &atd,sand it can be transmitted to
a remote host and then be executed.

In AgentSpace system, the AgentServer works aspléwform of the mobile
agent system. And AgentReceiver, AgentMonitor argetSender, are used to
perform the agent operations. The AgentReceivézrsto the socket in order to
receive any agent from other hosts. If the AgentiRer gets any agent, the
AgentLoader will transform the serialized data t® @bject representing the agent
and register the agent to the AgentManager. ThenfMgnager manages all the
agents running on the host, and will initializeneetd for each agent and invoke the

138

methodarrive() to make the agent begin its work. AgentMonitor chas over
and executes the operation done on the agentsebpdst user. And before the
AgentSender sends the agent to its next destinatienmethodlispatchf) of the
agent is invoked to do the wrapping operation. Téeeiving process and the
sending process of one agent on a host in the Sgeae system are shown in
Figure 7-17 and Figure 7-18.

AgentReceiver starts

\4
AgentReceiver listens
to the socket

Does
AgentReceiver
receive any
agent?

AgentLoader reads
serialized data and
creates agent instance

v
AgentLoader registers
agent to
AgentManager

v
AgentManager
initializes a thread to
run agent

v
AgentManager
invokes arrive() of the
agent

Figure 7-17. Agent receiving process in AgentSpace.

139

Dispatch() of method
is invoked

\ 4

AgentManager kills
the thread of the
agent

A 4

AgentSender
unregisters the agent
from AgentManager

A 4

AgentSender
serializes the code
and state of the agent

A 4

AgentSender sends
the serialized data to
a next destination

Figure 7-18. Agent sending process in AgentSpace.
AgentSpace system with embedded modifier
In the AgentSpace system, the security issues@reamsidered. Therefore, we

embed our verification system into AgentSpace aeoto protect the host security
from agents. The modified architecture of Agent®&pacshown in Figure 7-19.

Modified Agent

©

Agent Context

Agent Runtime

Modifier

Java VM

OS + Hardware

Figure 7-19. Architecture of AgentSpace system witidifier.

140

As discussed in Chapter 5, the task of the modifi¢o insert verification code
into classes of mobile programs, which are aganthe AgentSpace system. The
inserted code includes the code calculating seelaviels and the code detecting
data-leaking. And since the data-leaking channelgehwo types (data-leaking
through network connection built by the mobile coitleelf and data-leaking
through the movement of the mobile code), the abetecting data-leaking can be
divided into two parts detecting the two types afedleaking further.

The code calculating security-levels and the coetealing data-leaking through
network connection built by the mobile code shdwddinserted into all the classes
of the mobile program and such insertion is indeleain of the mobile code system.
Thus such codes should be inserted by the modifiethe agent’s classes in
AgentSpace system.

The insertion of the code detecting the data-leakhrough the movement of
the mobile code is dependent on the architectutbeomobile code system. In the
AgentSpace system, the state of one agent canbalsmansferred with the agent
between hosts. When the agent moves to the netihaligsn, the information held
in its fields will be taken out of the local hogthus, according to our security
model, the information in the fields should be dteztbefore the agent moves to
the next destination. Since the methdidpatch() will be invoked by the
AgnetManager before the AgentSpace system sendsheuagent, the modifier
should insert such checking codes into the methsphtch()

The timing of invoking the modifier should be larough that the code of the
agent is read from the serialized data, and aldy eaough that the object of the
agent has not been created. In AgentSpace, theothatjentClassDatal.oad
of the clasAgentClassLoader is used to unzip and read the code of the agent
from serialized data. Thus we add the code of imgkur modifier to the method
agentClassDataload as shown in the box of Figure 7-20. In this waxerg
agent loaded into the local host will be modifieadanserted with verification
codes; and the agent will be verified during ite@xion.

141

publ i ¢ Hashtable agentClassDatal.oad(byt e[] data) {
try{
ByteArraylnputStream bytelnStream =
new ByteArraylnputStream(data);
ZiplnputStream zipInStream =
new ZiplnputStream(bytelnStream);
ZipEntry zipEnt;

whi | e ((zipEnt = zipInStream.getNextEntry()) != nul 1) {
String entryName = zipEnt.getName();
i f (entryName.startsWith("META-INF")) {
conti nue;
b
i nt count;

ByteArrayOutputStream byteOutStream =
new ByteArrayOutputStream();
byt e[] classBytes = new byt e[1024];
whi | e ((count = zipInStream.read(classBytes)) !=-1) {
byteOutStream.write(classBytes, 0, count);

}
byt e[] bytes = byteOutStream.toByteArray();

//Code added to embed BMOS to AgentSpace
ClasslInfo ci = new ClassiInfo(bytes, true);
ClassModifier cm = new ClassModifier(ci);
cn.modifyClass();

byjes = ci.writeToBytes();

cache .put(entryName, bytes);

zipInStream.close();
bytelnStream.close();
} cat ch (IOException e) {
System. err .printin(e);
}

return cache;

Figure 7-20. Code added into AgentLoader to invibleemodifier.

The execution and verification process of the agemigentSpace system with
embedded modifier is shown in Figure 7-21.

When one agent arrives at a host, the AgentLoasietsrthe serialized data and
then invokes the modifier to modify the classeshaf agent. Verification code is
inserted into the agent, especially the code cingcttie information in all the fields
into the methodlispatch() . And then the AgentLoader creates one instance of
the modified agent. After the AgentManager iniiek a thread and makes the
instance of the agent run, the mettawdve() is invoked by the AgentManager
and the agent begins its work. During the executbrihe modified agent, the

142

security-levels are calculated. And if the ageietstto send out any data through the
network connection, the data to be sent will beckbd to detect data-leaking. If
any data-leaking is detected, an exception wilthvewn out and the execution is
interrupted to prevent the data-leaking from hapugen

AgentLoader reads
serialized data

|Modifier 1s invokedl

AgentLoaﬁer creates
instance of modified
agent

l

AgentLoader
registers agent to
AgentManager

v
AgentManager
initializes a thread to
run modified agent

v
AgentManager
invokes arrive() of
modified agent

Modified agent
performs its works
and detects
data-leaking

A 4
Dispatch(of method
1s invoked

Detect
data-leaking

A 4
AgentManager kills
the thread of the
modified agent

Figure 7-21. Agent receiving process in AgentSpeitie modifier.

143

When the work of the agent finished, the agent mitive to its next destination.
Before the agent is sent out, the methtspatch() will be invoked by the
AgnetManager. The code inserted into the metdisgpatch() will check the
information stored in all the fields of the agelitthe information is sent to one
unauthorized host, an exception will be thrown and the execution is interrupted
to prevent the data-leaking from happening. If atadeaking is detected, the agent
will be sent to its next destination.

7.3.2 Example Agent

Here we give an example agent of AgentSpace systesinow how the modifier
works. The agenEvaluation is a quite simple tool to calculate the estimated
salary based on the education, working years aadcage of the user. And if the
user agrees, the agent will take or send the rbsck to its original host, or it will
discard the result.

We implemented two versions of the agdftaluation . The difference
between the two versions is the way of sendingegtanated salary. One version
uses the field to take the estimated salary batkdariginal host; while the other
version will send the estimated salary back todhginal host directly by socket
built by the agent itself. We discuss the verifi@atprocess of the two versions in
the AgentSpace system with embedded modifier réispc

[AgentEvaluation of the version |
In this version, the agemvaluation will use the fieldsalary to take the

estimated salary back to the original host. TheaJource code is shown in Figure
7-22.

144

public cl ass Evaluation ext ends Agent{
private int salary =0;

public voi d arrive(){
evaluation(28, 2, 3, 1);
}

publ i c voi d evaluation(i nt age, int workingYears,
i nt education, i nt sendFlag){
i nt result=0;
i nt baseSal =0;
i nt ageToWork = 0;
swi t ch (education) {
case 0: // High schoole
baseSal = 200;
ageToWork = 18;
br eak;
case 1: // Bachelor
baseSal = 300;
ageToWork = 22;
br eak;
case 2: /| Master
baseSal = 400;
ageToWork = 24;
br eak;
case 3: // Doctor
baseSal = 500;
ageToWork = 27;
br eak;
case 4. // post doctorate
baseSal = 550;
ageToWork = 30;
}

result = baseSal+(workingYears*2-(age-ageToWork))*2

i f (sendFlag ==1) { /I the user agrees to send
salary = result;

}
publ i c voi d dispatch(){}

Figure 7-22. Java source ode of the sample deadtiation

of the version |I.

When the ageriEvaluation of the version shown in Figure 7-22 arrives at a
host, the AgentListener passes the serializedtdatiae AgentLoader to create the
instance of the agent. After the AgentManager ahites a thread and make the

instance of the agemlivaluation run, the methoarrive()

is invoked by the

AgentManager and the agent begins its works. Irhateévaluation() , the

145

salary is calculated based on the age, workingsyaad education; and the result is
stored in the temporary variabtesult . Thus variableresult will get the
information of the variableage, workingYears andeducation . And then
the value ofesult is transferred to the fielsalary if the variablesendFlag

Is “1”; in this case the fieldalary gets the information of the variablage,
workingYears andeducation indirectly. After the execution of the method
evaluation() , the AgentManager will invoke the methaddspatch() and
then the AgentSender will send the agéwaluation to its next destination with
the field salary . Obviously, the information held in the fiekhlary will be
taken out of the local host and may be leaked teesonauthorized hosts.

Our approach can be used to trace the informafimn &ind detect possible
data-leaking in the agenEvaluation of version I. When the agent
Evaluation shown in Figure 7-22 arrives at a host where thadifier is
embedded into the AgentSpace system as shown ume=i§20, the AgentReceiver
of the local AgentSpace system detects it and pabgeagent to the AgentLoader.
After the AgentLoader reads bytecode of the agdmd, modifier is invoked to
modify the agent and insert the verification codet the agent. Then the
AgentLoader will generate the agent instance basedhe modified bytecode
instead of the original bytecode.

In Figure 7-23, we give the original bytecode & thethocevaluation() in
the agenEvaluation of version | and the modified bytecode generatgair
modifier described above. In the modified bytecetiewn in Figure 7-23(b), the
bold codes are the original codes of the metkwauation() (the indices of
local registers have been changed) and otherfiareotes inserted to calculate the
security-levels. Especially, the codes in shadosvthe codes used to calculate the
LUB of two security-levels. And in Figure 7-24, \gese the code inserted into the
methoddispatch() to detect data-leaking through the movement oatient.

146

Oiconst 0
listore 5
3iconst 0
4 istore 6

6 iconst_0

7 istore 7
9iload_3

10 tableswitch
0: 44 (34)

1: 56 (46)

2: 68 (58)

3: 80 (70)

4: 92 (82)
default: 101(91)
44 sipush 200
47 istore 6
49 bipush 18
51 istore 7
53 goto 48
56 sipush 300
59 istore 6
61 bipush 22
63 istore 7
65 goto 36
68 sipush 400
71 istore 6
73 bipush 24
75 istore 7
77 goto 24
80 sipush 500

83 istore 6

85 bipush 27
87 istore 7

89 goto 12

92 sipush 550
95 istore 6

97 bipush 30
99 istore 7
101 iload 6
103 iload_2
104 iconst_2
105 imul

106 iload_1
107 iload 7
109 isub

110 isub

111 bipush 20
113 imul

114 iadd

115 istore 5
117 iload 4
119iconst_1
120 if_icmpne 9
123 aload 0
124 iload 5
126 putfield 12
129 aload 0

130 invokevirtual 32

133 return

a. original bytecode.

147

0 sipush 255
3 newarray 8
5 astore 16

7 iconst_O
8iconst 0
9 istore 11

11 istore 10
13 iconst 0O
14 iconst 0O

15 istore 13

17 istore 12
19 iconst O
20 iconst_0

21 istore 15

23 istore 14
25 iload 6
27 iload 7

29 aload 16
3liconst_1
32 bastore
33 tabl eswi tch
0: 67(34)

1: 127(94)
2:187(154)
3:247(214)

4: 307(274)
default: 364(331)
67 sipush 200
70 iconst_0

71 aload 16

73 iconst_1

74 baload
75 istore 18
77 istore 19
79 iload 19
81 iload 18
83 if_icmplt 7
86 iload 19
88 istore 18
90 iload 18
92 istore 13
94 jstore 12
96 bi push 18
98 iconst 0
99 aload 16
101l iconst 1
102 baload

103 istore 18
105 istore 19
107 iload 19
109 iload 18
111 if_icmplt 7
114 iload 19
116 istore 18
118 iload 18
120 istore 15

122 istore 14
124 goto 240
127 sipush 300
130 iconst_0

131 aload 16

133 iconst_1

134 baload

135 istore 18

137 istore 19

139 iload 19

141 iload 18

143 if_icmplt 7
146 iload 19

148 istore 18

150 iload 18

152 istore 13
154 istore 12
156 bi push 22
158 iconst_0

159 aload 16

161 iconst_1

162 baload

163 istore 18

165 istore 19

167 iload 19

169 iload 18

171 if_icmplt 7
174 iload 19

176 istore 18

178 iload 18

180 istore 15
182 istore 14
184 goto 180
187 sipush 400
190 iconst_0

191 aload 16

193 iconst_1

194 baload

195 istore 18

197 istore 19

199 iload 19

201 iload 18

203 if_icmplt 7
206 iload 19

208 istore 18

210 iload 18

212 istore 13
214 istore 12
216 bi push 24
218 iconst 0

219 aload 16

221 iconst_1

222 baload

223 istore 18
225 istore 19
227 iload 19

148

229 iload 18

231 if_icmplt 7
234 iload 19

236 istore 18
238 iload 18

240 istore 15
242 istore 14
244 goto 120
247 si push 500
250 iconst_0

251 aload 16
253 iconst_1

254 baload

255 istore 18
257 istore 19
259 iload 19

261 iload 18

263 if_icmplt 7
266 iload 19

268 istore 18
270 iload 18

272 istore 13
274 istore 12
276 bi push 27
278 iconst_0

279 aload 16
281 iconst 1

282 baload

283 istore 18
285 istore 19
287 iload 19

289 iload 18

291 if_icmplt 7
294 iload 19

296 istore 18
298 iload 18

300 istore 15
302 istore 14
304 goto 60
307 sipush 550
310iconst 0

311 aload 16
313iconst_1

314 baload

315 istore 18
317 istore 19
319 iload 19

321 iload 18

323 if_icmplt 7
326 iload 19

328 istore 18
330 iload 18

332 istore 13
334 istore 12
336 bi push 30
338 iconst 0

339 aload 16
341 iconst_1
342 baload
343 istore 18
345 istore 19
347 iload 19
349 iload 18
351 if_icmplt 7
354 iload 19
356 istore 18
358 iload 18
360 istore 15
362 istore 14
364 iload 12
366 iload 13
368 iload 4
370 iload 5
372 iconst_2
373 iconst_ 0
374 istore 18
376 istore 20
378 iload 18
380 istore 18
382 istore 19
384 iload 19
386 iload 18
388 if_icmplt 7
391 iload 19
393 istore 18
395 iload 20
397 i nul

398 iload 18
400 iload_2
401 iload_3
403 il oad 14
405 iload 15
407 istore 18
4009 istore 20
411 iload 18
413 istore 18
415 istore 19

417 iload 19
419 iload 18
421 if_icmplt 7
424 iload 19
426 istore 18
428 iload 20
430 isub
431 iload 18
433 istore 18
435 istore 20
437 iload 18
439 istore 18
441 istore 19
443 iload 19
445 iload 18
447 if_icmplt 7
450 iload 19
452 istore 18
454 iload 20
456 i sub
457 iload 18
458 bi push 20
461 iconst_0
462 istore 18
464 istore 20
466 iload 18
468 istore 18
470 istore 19
472 iload 19
474 iload 18
476 if_icmplt 7
479 iload 19
481 istore 18
483 iload 20
485 i mul
486 iload 18
488 istore 18
490 istore 20
492 iload 18
494 istore 18
496 istore 19

b. modified bytecode.
Figure 7-23. Java bytecode of the metbudluation

498 iload 19
500 iload 18
502 if_icmplt 7
505 iload 19
507 istore 18
509 iload 20
511 i add

512 iload 18
514 istore 11
516 istore 10
518 il oad 8
520 iload 9

522 iconst_1
523 iconst_0
524 istore 18
526 istore 20
528 iload 18
530 istore 18
532 istore 19
534 iload 19
536 iload 18
538 if_icmplt 7
541 iload 19
543 istore 18
545 aload 16
547 iconst_1
548 iload 18
550 bastore
551 iload 20
553 if_icnpne 20
556 al oad 0
557 aload_1
558 iload 10
560 iload 11
562 istore 18
564 swap

565 iload 18
567 putfield 22
570 putfield 12
573 return

() of version |

In the execution of the modified methaValuation() shown in Figure
7-23(b), the codes at address from 33 to 362 we#lign the initial values to the

variable baseSal

and ageToWork based on the value of the variable

education , and calculate the security-levels of them. Theesoat address from
364 to 514 will calculate the estimated salary stwde it in the variableesult

149

the security-level of the estimated salary is daled as well by these codes. If the
sendFlag is “1”, the codes at address from 556 to 570 wdt the estimated
salary to the fielcsalary and update the security-level of the field. Andthe
modified code, the codes at address from 29 ton82frmam 524 to 550 are used to
calculate the environment security-level of the lioip blocks caused by the
instructiongtableswitchandif_icmpne

0 aload_0

1 getfield 22

4 getstatic 29

7 if_icmple 11

10 new 50

13 dup

14 invokespecial 52
17 athrow

18 return

Figure 7-24. The bytecode of the modified mettmgpatch()

In such a way, the security-levels of all the Valea can be calculated.
Furthermore, different from static approaches, approach will update the
security-level of the fielgalary only when the filed does get the information in
the variablesge, workingYears andeducation . Thus the information flow
in the methodevaluation() can be traced precisely and the preparation of
detecting data-leaking can be done well.

As mentioned above, the information held in th&dfeof one agent will be taken
out of the local host when the agent moves to destination. In the case of the
agentEvaluation |, the information held in the fielsalary will be taken to the
next destination host. The codes inserted intontkéhoddispatch() as shown
in Figure 7-24 compare the security-level of thimimation in the fieldsalary
(stored in the added field indicated by the ind@xir2 the constant pool) with the
clearance-level of the next destination host (stonestatic field indicated by the
index 29 in the constant pool). And the codes willow an exception if the
security-level is greater, which means that a tkdiing happens.

150

o AgentEvaluation of the version Il

In this version, the agerivaluation will send the estimated salary back to
the original host through a socket directly. Thealsource code is shown in Figure
7-25.

public cl ass Evaluation ext ends Agent{
private final String hostName = "192.168.21.3" ;
private final int hostPort =8080;

public voi d arrive(){
evaluation(28, 2, 3, 1);
}

publ i c voi d evaluation(i nt age, int workingYears,
i nt education, i nt sendFlag){
i nt result =0;
i nt baseSal = 0;
i nt ageToWork = 0;
swi t ch (education) {
case 0: // High schoole
baseSal = 200;
ageToWork = 18;
br eak;
case 1: // Bachelor
baseSal = 300;
ageToWork = 22;
br eak;
case 2: /| Master
baseSal = 400;
ageToWork = 24;
br eak;
case 3: // Doctor
baseSal = 500;
ageToWork = 27;
br eak;
case 4: // post doctorate
baseSal = 550;
ageToWork = 30;
}

result = baseSal+(workingYears*2-(age-ageToWork))*2 0;

i f (sendFlag ==1) { /I the user agrees to send
Socket socket = new Socket(hostName, hostPort);
OutputStream out = socket.getOutputStream();
out.write(salary);

}
publ i c voi d dispatch(){}

Figure 7-25. Java source ode of the sample dfeadtiation of the version II.

151

When the ageriEvaluation of the version shown in Figure 7-25 arrives at a
host, the process of the agent is the same asthelwwn in Figure 7-22 until the
value of the variableendFlag is checked. Different from version I, the agent of
version Il will send the variableesult out through a socket if the variable
sendFlag is “1”. Obviously, the information held in the vableresult will be
taken out of the local host and may be leaked toesonauthorized hosts. And in
version I, there are no fields used to take dateobthe local host.

Our approach can be used to trace the informalimn &ind detect possible
data-leaking in the agerivaluation of version Il, too. When the agent
Evaluation shown in Figure 7-25 arrives at a host where tradifier is
embedded into the AgentSpace system as shown umg=i§20, the AgentReceiver
of the local AgentSpace system detects it and pabgeagent to the AgentLoader.
After the AgentLoader reads bytecode of the agdm, modifier is invoked to
modify the agent and verification code is inseriatb the agent. Then the
AgentLoader will generate the agent instance basedhe modified bytecode
instead of the original bytecode.

In Figure 7-26, we give the original bytecode & thethocevaluation() in
the agenEvaluation of version Il and the modified bytecode generdigaur
modifier described above. In the modified bytecetiewn in Figure 7-26(b), the
bold codes are the original codes of the metkwauation() (the indices of
local registers have been changed) and otherfiareotes inserted to calculate the
security-levels. Especially, the codes in shadosvthe codes used to calculate the
LUB of two security-levels; and the codes in thadsl box are used to detect
data-leaking. Since no field is used to take dataobthe local host, no verification
code is inserted into the methddpatch()

152

Oiconst 0
listore 5
3iconst 0
4 istore 6

6 iconst_0

7 istore 7
9iload_3

10 tableswitch
0: 44 (34)

1: 56 (46)

2: 68 (58)

3: 80 (70)

4: 92 (82)
default: 101(91)
44 sipush 200
47 istore 6
49 bipush 18
51 istore 7
53 goto 48
56 sipush 300
59 istore 6
61 bipush 22
63 istore 7
65 goto 36
68 sipush 400
71 istore 6
73 bipush 24
75 istore 7
77 goto 24
80 sipush 500
83 istore 6
85 bipush 27
87 istore 7

89 goto 12

92 sipush 550
95 istore 6

97 bipush 30

99 istore 7

101 iload 6

103 iload_2

104 iconst_2
105 imul

106 iload_1

107 iload 7

109 isub

110 isub

111 bipush 20
113 imul

114 iadd

115 istore 5

117 iload 4
119iconst_1

120 if_icmpne 31
123 new 44

126 dup

127 I1dc 8

129 sipush 8080
132 invokespecial 46
135 astore 8

137 aload 8

139 invokevirtual 49
142 astore 9

144 aload 9

146 iload 5

148 invokevirtual 53
151 return

a. original bytecode.

153

0 sipush 255

3 newarray 8

5 astore 16

7 iconst_O

8 iconst 0

9 istore 11

11 istore 10
13 iconst O
14 iconst 0

15 istore 13

17 istore 12
19 iconst O
20iconst 0

21 istore 15

23 istore 14
25 iload 6
27 iload 7

29 aload 16
3liconst 1

32 bastore

33 tableswitch
0: 67(34)

1: 127(94)
2:187(154)
3:247(214)

4: 307(274)
default: 364(331)
67 sipush 200
70iconst_ 0

71 aload 16

73 iconst_1

74 baload

75 istore 18

77 istore 19

79 iload 19

81 iload 18

83 if_icmplt 7
86 iload 19

88 istore 18

90 iload 18

92 istore 13

94 istore 12
96 bi push 18
98 iconst 0

99 aload 16
101 iconst 1
102 baload

103 istore 18
105 istore 19
107 iload 19
109 iload 18
111 if icmplt 7
114 iload 19
116 istore 18
118 iload 18
120 istore 15

122 istore 14
124 goto 240
127 si push 300
130 iconst_0

131 aload 16
133iconst 1

134 baload

135 istore 18

137 istore 19
139 iload 19

141 iload 18

143 if_icmplt 7
146 iload 19

148 istore 18
150 iload 18

152 istore 13
154 istore 12
156 bi push 22
158 iconst_0

159 aload 16

161 iconst 1

162 baload

163 istore 18
165 istore 19

167 iload 19

169 iload 18

171 if_icmplt 7
174 iload 19

176 istore 18

178 iload 18

180 istore 15
182 istore 14
184 goto 180
187 si push 400
190 iconst 0

191 aload 16

193 iconst_1

194 baload

195 istore 18

197 istore 19

199 iload 19

201 iload 18

203 if_icmplt 7
206 iload 19

208 istore 18
210 iload 18

212 istore 13
214 istore 12
216 bi push 24
218 iconst 0

219 aload 16

221 iconst_1

222 baload

223 istore 18
225 istore 19

227 iload 19

154

229 iload 18

231 if_icmplt 7
234 iload 19

236 istore 18
238 iload 18

240 istore 15
242 istore 14
244 goto 120
247 si push 500
250 iconst 0

251 aload 16
253 iconst_1

254 baload

255 istore 18
257 istore 19
259 iload 19

261 iload 18

263 if_icmplt 7
266 iload 19

268 istore 18
270 iload 18

272 istore 13
274 istore 12
276 bi push 27
278 iconst_ 0

279 aload 16
281 iconst_1

282 baload

283 istore 18
285 istore 19
287 iload 19

289 iload 18

291 if_icmplt 7
294 iload 19

296 istore 18

298 iload 18

300 istore 15
302 istore 14
304 goto 60
307 sipush 550
310 iconst 0

311 aload 16
313iconst_1

314 baload

315 istore 18
317 istore 19
319 iload 19

321 iload 18

323 if_icmplt 7
326 iload 19

328 istore 18
330 iload 18

332 istore 13
334 istore 12
336 bi push 30
338iconst 0

339 aload 16
341 iconst_1
342 baload
343 istore 18
345 istore 19
347 iload 19
349 iload 18
351 if_icmplt 7
354 iload 19
356 istore 18
358 iload 18
360 istore 15
362 istore 14
364 iload 12
366 iload 13
368 iload 4
370 iload 5
372 iconst_2
373 iconst_ 0
374 istore 18
376 istore 20
378 iload 18
380 istore 18
382 istore 19
384 iload 19
386 iload 18
388 if_icmplt 7
391 iload 19
393 istore 18
395 iload 20
397 i nul

398 iload 18
400 iload_2
401 iload_3
403 il oad 14
405 iload 15
407 istore 18
4009 istore 20
411 iload 18
413 istore 18
415 istore 19
417 iload 19
419 iload 18
421 if_icmplt 7

424 iload 19
426 istore 18
428 iload 20
430 isub
431 iload 18
433 istore 18
435 istore 20
437 iload 18
439 istore 18
441 istore 19
443 iload 19
445 iload 18
447 if_icmplt 7
450 iload 19
452 istore 18
454 jload 20
456 i sub
457 iload 18
458 bi push 20
461 iconst_0
462 istore 18
464 istore 20
466 iload 18
468 istore 18
470 istore 19
472 iload 19
474 iload 18
476 if_icmplt 7
479 iload 19
481 istore 18
483 iload 20
485 i nmul
486 iload 18
488 istore 18
490 istore 20
492 iload 18
494 istore 18
496 istore 19
498 iload 19
500 iload 18
502 if_icmplt 7
505 iload 19
507 istore 18
509 iload 20

511 i add

512 iload 18

514 istore 11

516 istore 10
518 il oad 8

520 iload 9

522 iconst 1
523 iconst_0

524 istore 18

526 istore 20

528 iload 18

530 istore 18

532 istore 19

534 iload 19

536 iload 18

538 if_icmplt 7

541 iload 19

543 istore 18

545 aload 16

547 iconst_1

548 iload 18

550 bastore

551 iload 20

553 if_icnpne 47
556 new 44

559 dup

560 | dc 8

562 si push 8080
565 i nvokespeci al 46
568 astore 21
570 al oad 21
572 invokevirtual 49
575 astore 23
577 al oad 23
579 iload 10

581 ilaod 11

583 getstatic 33

586 if_icmple 11

589 new 50

592 dup

593 invokespecial 52
596 athrow

597 invokevirtual 53
600 return

b. modified bytecode.
Figure 7-26. Java bytecode of the metkudluation () of version Il

In the execution of the modified methaValuation() shown in Figure
7-26(b), the information flow is the same as the am the version | until the
instruction at address 553, which checks the vafuihe variablesendFlag . If
the variablesendFlag is “1”, the agent will send the value of the vate

155

result out of the local host through the socket builithy instruction at address
565. Thus the inserted codes at address from 582@a@ompare the security-level
of the information in the variablesult (stored in the local register 11) with the
clearance-level of the destination host (storaganesl in static field indicated by the
index 33 in the constant pool). And the codes willow an exception if the
security-level is greater, which means that a tidiing happens.

7.3.3 Evaluation

o Efficiency evaluation

For dynamic verification approach, the preparatiore (the modification time in
our method) and the execution time increment apontant evaluation factors. We
take the ageriEvaluation shown above as the evaluation example and give the
result in Figure 7-27.

Test Environment:

OS: Windows Vista

JVM: JDK 1.4.2.16

CPU: Intel Core2 6320(1.86GHz)

Memory: 2.5G

Original Modified Increase to
Number of Instruction 53 293 553%
Execution Time(ms) 92.2X10" | 441.5X10 A78%
Modification Time (ms) 12

a. Evaluation result of version |

Original Modified Increase to
Number of Instruction 60 294 490%
Execution Time(ms) 25.9 26.0 100.4%
Modification Time (ms) 13

b. Evaluation result of version Il

Figure 7-27. Performance evaluation result of genéEvaluation

156

public cl ass AgentRuntime extends Thread {

public voidrun(){
theAgent = thelnfo .getAgent();
i f (theAgent == null){
return;

i f (thelnfo .getAgentStatus().equals(AgentStatus.

thelnfo .setAgentStatus(AgentStatus.
theAgent .create();
thelnfo .setAgentStatus(AgentStatus.
} else if (thelnfo .getAgentStatus().
equals(AgentStatus. ONTRANSM T)) {
thelnfo __.setAgentStatus(AgentStatus.

PREI NI T)) {
ONCREATE);

NORMAL);

ONARRI VE);

for|inti=0;i<10000000; i ++){
theAgent .arrive();
theAgent .dispatch();

I

thelnfo .setAgentStatus(AgentStatus.
} else if (thelnfo .getAgentStatus().
equals(AgentStatus. PERSI STENT)) {
thelnfo .setAgentStatus(AgentStatus.
theAgent .resume();
thelnfo .setAgentStatus(AgentStatus.
} else if (thelnfo .getAgentStatus().
equals(AgentStatus. CHI LD)) {
thelnfo .setAgentStatus(AgentStatus.

NORMAL);

ONRESUME);

NORMAL);

ONCLONE);

theAgent .child(thelnfo .getParentldentifier());

thelnfo .setAgentStatus(AgentStatus.
} else if (thelnfo .getAgentStatus().

equals(AgentStatus. ERROR)) {

thelnfo .setAgentStatus(AgentStatus.

NORMAL);

ONEXCEPT);

if ((theAgent .except(thelnfo .getAgentError()))) {

thelnfo .setAgentStatus(AgentStatus.
thelnfo .setAgentError(nul 1);

return;

thelnfo .setAgentError(nul 1);

DEATH);

thelnfo .setAgentStatus(AgentStatus.
} else{
System.

NORMAL);

out .printin("unknown status: " +
thelnfo .getAgentStatus());

Figure 7-28. The code used to execute the agardrsion | 10 million times.
Since the execution time of the agent (no matterotiiginal one or the modified

one) of the version | is too short to be measund, add a loop in the
AgnetManager to execute the original agent and fisadagent 10 million times;

157

and then calculate the average time as the exectitiee of the original one and
modified one. And we also add code to invoke théhoredispatch() in order
to make the result time involve the execution tioighe methoddispatch()

The codes added into the AgentManager are the iondgg black box in Figure
7-28.

As for the execution time of the agent of versibehown in Figure 7-27(b), we
execute the original agent and modified agent dtegi respectively, and use the
average value as the result.

From the result shown in Figure 7-27, we can findt tthe execution times of
version | and version Il are quite different thouglh numbers of the instructions of
them are almost same. The reason is that theneeisnstruction to build a socket
connection in version Il. Such an operation willt fimish until the other party
responds it through the next work; and costs quite time than common
instructions that can be finished by the local JVM.

From the result of version |, we can get to knowat tthe modification time is
short. For a class composed of 4000 instructiom®e (Average number of
instructions in one Java core class is about 1t6@)modification will be finished
less than one second. While the number of instostiand the execution time
increase to about 5 times. This will slow down éixecution speed. But considering
the time itself, the execution time of the modifiglent is still too short to be felt
though it has increased to 5 times of original dfrem the result, we can estimate
that: even for one agent composed of 600,000 icisbns, the execution of the
modified agent will finish in 0.5 second. Therefanesome degree the additional
overhead caused by the code inserted is acceptable.

The result of version Il also proved the executiome increment caused by
verification code is so small that it is can evendmitted. The number of modified
instructions increased to about 5 times of theiaigone. But the execution time of
original code and modified code is almost the sahie. reason is that connecting
the socket (the instruction at address 132 in Eiguu26(a)) occupied most (almost
100%) of the execution time; even the executioretohother codes is increased to
about 5 times by the verification codes, this mdréxecution time is still so small

158

and can be omitted compared with the time of commgcsocket. Thus the
execution times of original code and modified cade almost the same.

As for the codes detecting data-leaking in versiand I, we can estimate that
the execution time of these codes only takes umall art of the total execution
time because 1. the codes do not include any ktgins costing much time; 2. the
number of these codes only take a small part af tnstructions (3% in version |
and 2.3% in version Il).

[Security verification evaluation

In Figure 7-29, we compare our approach with tyystesn approaches and static
approaches of non-type-system on the aspect thethehthe agent can be verified
correctly, that is, verified as malicious when dig@king happens and as secure
when data-leaking does not happen.

1 2 3 4

Value ofsendFlag is “1” O O X X

CL>SL X O X O

Data-leaking happens @) X X X
Agent is Malicious or Secure M S S S

by Type-system M M M M

AGentis |5 Siate approach ¢

verified as | " yon.type-system M S M S

by Our approach M S S S

Figure 7-29. The comparison of our approach wigetgystem and static approaches.
(CL denotes the destination host’s clearance-l&letienotes the LUB of the
security-levels of the age, workingYears and edanaiM denotes the agent is

verified as malicious; S denotes the agent is ieefis secure.)

Compared with the type-system verification appreaclour approach is more

precise. For example, the varialldaseSal in the methocevaluation() will
get the information of the variablesducation . If the security-level of the

159

variable baseSal is set lower (in fact the security-level of suamporary
variable is usually set to the lowest one in typstam) than the variables
education , the type-system approaches will reject the ageme they consider
that the instruction at address 44 in Figure 7-Ra¢al Figure 7-26(a) causes one
data-leaking. Obviously such a judgment is wrongh case 2, 3 and 4 in Figure
7-29. (In the case 1, though the type-system appesacan get a correct judgment,
they do not find the instruction that really causkda-leaking.) In our approach,
only the variable to be sent out of the local hadt be checked whether a
data-leaking is caused. Thus the varidi@eeSal is not the checking target in our
approach in the all cases. In this way, the probtdnimprecise verification is
overcome in our approach.

And as analyzed above, in thealuation() shown in Figure 7-22, the field
salary will get information of variablesage, workingYears and
education only when thesendFlag is “1”. But in static approaches, the field
salary is considered to get the information no mattersbedFlag is “1” or
not. If the clearance-level of the destination hiesset lower than any one of the
variablesage, workingYears and education , the static approaches will
consider that the agent causes one data-leakinge sin will leak data to
unauthorized host, no matter tleendFlag is “1” or not. Obviously such
judgment is wrong when theendFlag is not “1” (the case 3 in Figure 7-29).
While in our approach such misjudgment is avoidadesour approach is dynamic
and updates the security-level of the informatiorthe fieldsalary only when
the sendFlag is “1”. Thus our approach will not make the migjatent of
considering one agent as malicious for the uneeelcutode; while such
misjudgment is not avoidable in static approachesthis way, the verification
precision is improved further. As for the versiorshown in Figure 7-25, the static
approaches will also make similar misjudgment wbile approach can avoid such
mistake.

Based the analysis above, we can find that oufie&tion approach resolved the
inherent problems of type-system verification apgtes and the static verification
approaches and improved the verification precisigvhile the cost of the
improvement is the additional execution overheaased by the code inserted to
calculate security-levels and detect data-leakiigch can usually be omitted.

160

7.4 Discussion

7.4.1 Improvements

[Less restriction on mobile code program

In our approach, we only check and restrict thepuubperation of the
bytecode. The mobile programs can obtain any inftion (input) from the host
to perform their tasks. The restriction on mobibele program is less than that of
traditional access control approaches. A lot of ieobode program can be
implemented.

[Better verification granularity

In static approaches, all instructions of the bytkc are verified and the
bytecode will be rejected if there is any maliciosisction of instructions.
Different from static approaches, our dynamic apphoachieved the runtime
verification of bytecode, and only verifies the ts@mts of instructions that are
executed. In our approach, the bytecode will natepected by reason of its code
that will not be executed in runtime. Thus the figsition precision is improved.

[Recursive method invoking

For static verification approaches, the analysis maver stop if a recursive
method is invoked. To solve this problem, someist@pproaches assume that
the return variable of one recursive method depemdsll of the arguments,
which reduces the verification precision. In oumpgach, the verification of
recursive methods is resolved without any additiosi®ort. Just like other
common methods, verification code is inserted irgoursive methods. The
verification for recursive invoking starts when trecursive method begins to
invoke itself, and the verification finishes whatursive invoking stops. Thus in
our approach, the verification precision will no¢ lbeduced because of the
existence of recursive invoking.

161

[Dynamic variables determination.

For static approaches, it is impossible to disckbgeinformation flow caused
by the variables that are not determined until pinegram is executed. For
example, the name of a file used to read inforrmafiom is obtained from the
console when the program is executed, so it is #sipte to determine the
information flow between the file and other objects

The similar case is the elements of the array. tldil the program is
executed, it is impossible to know which elementha array will be used. All
the elements of the array have to share the saouityeclass, which causes the
security class of the element is too high and imspiie verification precision.

Our approach eliminates such limitation because dynamic verification
approach. The value of all variables can be detethiwhen the verification is
performed. Thus our approach achieved better gatifin precision than static
approaches.

7.4.2 Preconditions

In order to implement my approach, some preconustimust be satisfied as
follows.

o Knowledge of API Definition

The first precondition is the knowledge of API atibn used in the mobile
code. The definition here means the relation batvtee input and output. And
from it, the security-level relation between theuhand output can be derived.
The APIs used in Java mobile code include the comdava APl and the
original API.

As for the Java API, the definition has been defiméearly in the Java
platform specifications. Therefore, the securityelerelation between the input
and the output could be derived. So in my approteh Java API is considered
as a black box. The class files of Java APIs wit be modified, and the

162

security-level relation is used to calculate thépatisecurity-level. A library of
the security-level relation should be built for theva API.

Here is an example. For the methmah () in the class math, the definition is
“‘Returns the smaller of twant values.” Therefore, | can derive the
security-level relation is that the security-lewélthe output should be the LUB
of security-levels of the two input.

As for the original API, if the Java class fileseaavailable, it will be
modified as same as other class files. If definitis available, it will be
considered as black box and the security-levetiogldibrary should be updated
to support the API. If nothing is available, the bile code could not be
supported.

[Platform-independency of mobile code

The second precondition is the Platform-indepengerfcmobile code. In
Java program, all methods can be divided into daetods and native methods.
In the execution, the mobile code class files aedessary Java API class files
are loaded by the class loader. Then the execatigme will execute these class
files and invoke necessary native methods. Usutilymobile code invokes the
proper Java APIs and then Java APIs invoke thevenattiethods. This kind of
mobile code is called platform-independent codaec&my approach supports all
JVM instructions and considers the Java APl as ackbl box, the
platform-independent mobile code is supported byapgroach. While, some
mobile code invokes the native methods directlyotdlgh the Java Native
Interface. And such mobile code is called platfatependent code. Since the
native methods are written in other language ratthem Java, this kind of mobile
code is not support by our approach.

[Knowledge of Migration Method
The third precondition is Knowledge of Migration ted. Since

information could be taken out when the mobile codr/es to next destination,
data-leaking is checked before the mobile code atimn. So where and when

163

the mobile code migrates is necessary to my approac
[Configuration files of security-level and clearatieeel

The fourth precondition is the configuration filed security-level and
clearance-level. To judge a data-transferring iga-tiaking or not, the
security-level of the data and the clearance-lefethe destination host are
necessary. The configure file of security-levellddoe set by the local host user.
The user can assign proper security-level to héalloesources to protect them.
In my approach, the security-level is defined ie tbrmat as shown in Figure
7-30. And some examples defining the security-lkeveff the personal
information are also shown in the figure. While tlkenfigure file of
clearance-level could also be set by the local bsst if the data is transmitted in
a limited scope of hosts. Or, the clearance-levelukl be decided by the
negotiation between hosts. The format and exampfeslearance-level are
shown in Figure 7-31.

res.level =res 1, res 2,...

e.g. res.255 = /personal/income, /personal/address
res.150 = /personal/birthday, /personal/telNo
res.100 = /personal/loanStatus
res.50 = /personal/maritalStatus

Figure 7-30. Security-level configuration file foam

type.level =res 1, res 2,...
e.g. url.150 svww.abc.con8080
ip.100 = 202.118.34:15016

Figure 7-31. Clearance-level configuration filerfat.

7.4.3 Limitations

o Input/Output operation disclosing

Output operation disclosing is difficult becausecantains a sequence of
operation. The following is an example program tateva line to a file. This

164

program consists of 5 method invocations, in whitad information flows from
the stringstrinfo to the filestrFile . In the source code level, it is not easy
to analyze the information flow. In the bytecodegram, it is obviously that the
information flow analysis comes to more difficuigure 7-32 shows the
bytecode of this file writing operation. In order get the security-level of the
local file, the input operations should also beedwined. Similar to output
operation, the input operation disclosing is diffictoo. The operation pattern
and information flow behavior need to be studienhier.

FileOutputStream fos =

new FileOutputStream(strFile, true);
PrintWriter prt =

new PrintWriter(new OutputStreamWriter(fos), true);
prt.printin(strinfo);
Prt.close();
new <java.io.FileOutputStream>
dup
aload 1
iconst_1
invokespecial java.io.FileOutputStream.<init>
astore 4
new <java.io.PrintWriter>
dup
new <java.io.OutputStreamWriter>
dup
aload 4
invokespecial java.io.OutputStreamWriter.<init>
iconst_1
invokespecial java.io.PrintWriter.<init>
astore 5
aload 5
aload 2
invokevirtual java.io.PrintWriter.printin
aload 5
invokevirtual java.io.PrintWriter.close

Figure 7-32 The Java program and bytecode of writiperation

No semantic analysis

In the approach described in this thesis, the ggdewrel of output data is

165

calculated from all the security-levels of the dttat the output data depends on.
That is, our approach requires that the sensitata dhould not affect the output
data to be sent to the third-party hosts. In maases, the third-party host cannot
retrieve the sensitive data from the output dataedeived, even the sensitive
information affect the output data. Though the bgtee causing such output data
should be considered as secure code, our approdatetermine the bytecode as
malicious code and reject it.

In the following example, the s1, s2, s3 represkatsalary of three persons.
Suppose these data is sensitive for the host. é@age salary can be achieved by
the computation of the statement. Although the rimfation flows from the
sensitive data to the output data average satas/impossible to obtain someone’s
salary from the average salary. Obviously evenaWerage salary is sent to one
third-party host that has no privilege to know gmrson’s salary, the security
policy will not be violated. While the action of re#ing average salary to the
third-party host will be detected as one data-legkn our approach.

average: =(s1+s2+s3)/3

) Additional Overhead

Though the additional overhead caused by the edentrification code can be
omitted in most cases, it is still a problem fomsoapplications of mobile code
where the execution time is a critical factor sashsome real-time systems, or the
hardware is not so powerful such as mobile phones.

Thus the modification method should be revised ¢arelase the number of
instructions inserted into the mobile code. Fornepke, in the Figure 7-23(b) the
instructions at address 378 and 380 can be deldtedut causing any impair on
the verification. Such redundant instructions aserted because our modification
method analyzes the original instructions and insede for them one by one. The
modification method should be revised to avoid sclundant insertion.

And the modification method should also be revigereduce the execution time
of verification code. For example, in a simple logpthout branches, the

166

verification code will executed the same timeshesdriginal code. While in such a
loop, it is enough to calculate the security-lewglly once since the relation
between variables cannot change. In the case bwatntmber of the loop’s
execution times is quite large, the execution toae be reduced in a large scale.

Finally the current modification method of our apgeh inserts verification code
into mobile program; so that the original functicarsl the verification function are
executed on the same stack. This situation calnsgdrtany instructions have to be
inserted to arrange the operands on the stackatdhe original function and the
verification function will not affect each othernd these inserted instructions slow
down the execution further. If the original funeti@and verification function are
executed on different stack, the number of inseristiuctions can be reduced.

7.4.4 Applications

Our dynamic verification approach can be implemént® protect the
confidential information on the local host in mamgbile code systems, such as the
agent-based e-commerce systems.

Electronic commerce (e-commerce) is increasinguasng a pivotal role in
many organizations. It offers opportunities to gigantly improve the way that
businesses interact with both their customers apgl®rs. Recently agent-based
e-commerce has been researched widely [132, 1333|d

In general, according to the nature of the tramsast the following types of
e-commerce are distinguished: business-to-busi(@2B), business-to-consumer
(B2C), consumer-to-business (C2B) and consumeptsuwmer (C2C). In all of the
types, the agent can be used as the medium bettieernwo sides of the
e-commerce. An example of the agent-based e-conensystem is shown in the
Figure 7-33.

167

rder for m

=)
consumer < Negotiation > BUS| ness

Figure 7-33. An example of agent-based e-commesters.

Like other agent systems, the security problemsagent-based e-commerce
systems can also be divided into two categoriesptioblem of protecting the host
from agent and the problem of protecting the af@m the host. Our approach can
deal with the security problem of the former one.ddscussed above, our approach
can verify the agent correctly and precisely; arakenit possible that the user can
use more agent-based e-commerce services seciligdy.actions of the agent
arrives at a local host will be traced precisely ¢alculating the security-levels of
variables in the agent). The agent may access amfydential information on the
host to perform its work and provide services te thser, that is, makes a
negotiation between the two sides of the trade. Wthe agent takes confidential
information out of the local host, no matter how,the way of building network
directly or by the way of the agent’'s movement tbeo host, our approach can
check whether the destination host has the riglgetahe confidential information.
In this way, the user can use the e-commerce sesacurely without worrying
about the leak of his confidential information.

For example, an agent-based personal loan appiicayistem is shown in Figure
7-34. The consumer uses an agent to apply forrafloan some company. When
the agent arrives at the intermediary server, lingts the loan application to the
server. Then the server judges whether to permitadan application under the help
of the credit management server. At last the ageas back to the consumer with

168

the application result. In this process, our apgnoean be applied to protect the
confidential information of the loan company fromiry leaked to some malicious
consumers. Our approach will not block any agernhat’access some confidential
information when the agent is executed on the hostead, our approach traces the
information flow in the agent and records what ination the agent gets from the
host. Before the agent leaves the intermediaryesesv sends information out, our
approach will check whether the confidential infation is sent out. In this way,
the loan company can receive more loan applicatithout any loss of
confidentiality.

////://f T~ ?
Apply forloan ~
e
Sage N
Negotiation| M fnterm ediary <

Consumer N0 N

Server

- g

~ T

T T d
AN AN Tyl'e/ ba c/kz’lf‘esult
T ///

\\ \\-_
H“"‘--.__‘_‘_‘_‘_H_‘_‘_‘_-“""\--._ _,___...--"_{____._-“"

JY

Loan Company
Figure 7-34. An example of applying BMOS in e-comoeesystem.

169

8 Conclusion

8.1 Summary

An innovative dynamic approach of information ségurs described in this
thesis. This approach is able to provide proteatiodata confidentiality of the host
by verifying the Java mobile code downloaded dymath in the runtime. It
analyses and traces information flow inside theaJdaytecode and checks if there
are any data-leaking caused in the Java mobile ttadenay potentially destroy the
data confidentiality of the host. Our dynamic vesation approach improves the
verification precision and practicability. With oapproach, the user can use more
mobile code without worrying about the leak of imfrmation.

Traditional host protecting approaches, such as-gystem approaches, tend to
confine untrusted mobile code from doing harm ®Hhbst by restricting the action
that the code can do on the host. These securligig are helpful in keeping
untrusted code in checked but unfortunately thesetibe side effect of precluding
a large number of useful applications of mobileecod

The existing verification approaches for mobile €@de almost static ones which
verify the mobile code before the execution. Beeaostheir inherent limitation,
static approaches will verify some mobile prograaesmnalicious for the code that
will not be executed in the runtime, and rejecthssecure mobile programs. Such
mistake made by static approaches will also prechn@ny useful application of
mobile code.

To overcome the two verification precision probleab®ve, we put forward one
dynamic verification approach based on the thedrgexure information flow.
Compared with the traditional type-system approschltee advantage of our
approach is that our approach protects the hosfidesniality while put less
restriction on mobile code. We analyze the secuetyuirement in mobile code
systems well and put forward a security model bletato the mobile code

170

environment. In our security model the informatftow in the mobile code is just
traced and recoded. We do not set any restrictidhd information transferring in
the mobile code. Only when the mobile code triesdnd information out to some
third party, we check whether the action causesai@-lkaking based on the
information we collected. To implement our securityodel, we define the
semantics rules used to trace and record informatimd give the algorithms to
locate implicit and explicit blocks in Java byteeodConsidering that the
data-leaking can only be caused by the output tiparahe verification precision
is improved by our approach.

Compared with those static verification approacbesapproach is dynamic and
implements the verification during the executiontlod mobile code. By this way,
our approach only verifies the code that is acjuetlecuted during the runtime; and
avoids the misjudgment of considering the mobildecas malicious for some code
what will not be executed. Thus compared with stapproaches, the verification
precision is improved further. The dynamic verifioa of our approach is
implemented by the technique of bytecode modificatiThat is, the verification
code is inserted into the mobile code; and thefigation function is executed as
well as the original function in the runtime.

Furthermore the information flow in the exceptioantling and the recursion
calling can also be traced and verified by our apphn, which is too difficult to
achieve for static approaches. The exception hagdias been studied in many
works by now. However those works are almost exoepanalysis in terms of
high-level languages. In this thesis, we analyzeedkception handling in the Java
bytecode and give the algorithms to locate theKkdan thetry statement in Java
bytecode. We analyze the information flow in theaeption handling and give the
methods to deal with both intra-procedural and riptecedural information
transferring caused by the exception handling. Hbdity to deal with the
exception handling and the recursion calling makesapproach more practicable.

In this thesis, we introduce the prototype veriiima system implementing our
verification approach, which is called BMOS. And example of applying BMOS
in one agent system is discussed, too. By studyeg verification of several
example agents by our approach, the performanceiesify and security

171

verification precision of our approach are proved.

In this thesis, we focus our research on the Jadailencode. In fact, the security
model and the modification method can also be adpb other mobile code in the
bytecode format. As for as defining the code ireefor each kind of instruction,
our dynamic approach can be used to verify the lobode build in other
language.

We believe that our research, especially the rebeafr dynamic verification, is
an instructive attempt for bytecode verification.

8.2 Future Work

This thesis describes a novel dynamic approach etifyvthe mobile code
security, which achieves better verification premisthan static approaches. While
there are still a plenty of work to be done for éleping a practical system and
enforcing more security properties by our approach.

o Input/output operation disclosing. In order toifyethe bytecode program,
the security-level of the objects should be regtewhen input operations
occur and the security verification rule should destified when output
operations occur. However these input/output opmratare not a simple
instruction. The input/output operations consisaaequence of operations.
There are various patterns perform these operatidres disclosing of these
behaviors will be the next research topic.

o Meliorate the modification method to trace all theormation in the array.
By now most of the information held by one array ¢@ dealt with in our
approach. But the information held by the arragmerfce itself and the array’s
length can not be traced. Although we can add apseicurity-containers for
the one-dimension array to solve the problem, ¢cobge hardly difficult to add
such security-level containers in the case of nulittiension array because the
numbers of elements in each dimension are arltrdifferent and it is not
easy to calculate, load and store the securityidewé the arrays in one
multi-dimension array. To build an appropriate ¢oamg to transfer the

172

security-levels with the information in the arras/the key to deal with this
problem.

Reduce the execution time increment. As mentiorenl/e the additional
execution overhead caused by the inserted veititatode should be reduced
in order to improve the practicability of our appch. The modification
method should be revised to reduce the number s#rtied instructions, the
number of execution times of inserted instructiamsl separate the operand
stacks of the original function and the verificationction.

In this thesis, only the conditional transfer iostron is concerned when
detecting implicit information flow. In a real sdtion, there are many other
kinds of covert channels that may also lead to icitghformation flows, such
as termination channels, timing channels, probsthilichannels, resource
exhaustion channels and power channels. All thdsgnrels should be
considered in the future study for host security.

Multiple mobile code owner policies. In our secyrihodel, the security
policy is set for all mobile code from other hostsa more precise model, the
security policies should be defined according te ¢migin of the individual
mobile code, in another word, different mobile cqaegrams are applied to
different security policies even they immigratenfrthe same host.

173

References

[1] Abadi, Michael Burrows, Butler Lampson, and GordanPlotkin, “A Calculus
for Access Control in Distributed Systems.” ACM fisactions on Programming
Languages and Systems, 15(4), pp.706—734, Septeradar

[2] AdI-Tabatabai, Gefé Langdale, Steven Lucco, and Robert Wahbéi¢iEent and
Language-Independent Mobile Programs”, ProceedaigdCM SIGPLAN’96
Conference on Programming Language Design and mesi&a-tion (PLDI'96),
pp.127-136, May 1996.

[3] Aho, R. Sethi, and J. D. Uliman, “Compilers Prideg Techniques, and Tools”,
Addison-Wesley, 1986.

[4] Amtoft and Anindya Banerjee, “Information Flow Agals in Logical Form”,
11th Static Analysis Symposium, Verona, lItaly, 8ger-Verlag, pp.100-115,
August 2004.

[5] Andrews and Richard P. Reitman, “An Axiomatic Apgeh to Information Flow
in Programs”, ACM Trans. Program. Lang. Syst., 20p)56—76, 1980.

[6] Avvenuti, C. Bernardeschi, and N. D. FrancescoydJytecode Verification for
Secure Information Flow”, SIGPLAN Not., 38(12), pp-27, 2003.

[7] Avvenuti, Cinzia Bernardeschi and Nicoletta De [Eesto, “Java Bytecode
Verification for Secure Information Flow”, SIGPLANot., 38(12), pp.20-27,
2003.

[8] Aycock, “A Brief History of Just-In-Time”, ACM Comytting Surveys, 35(2), pp.
97-113, June 2003.

[9] Banatre, C. Bryce and D. Le M’etayer, “Compile-Tietection of Information
Flow”, Sequential Programs, 1994.

[10]Banerjee and D. Naumann, “Secure Information Flog Bointer Confinement
in a Java-Like Language”, 2002.

[11]Barbuti, C. Bernardeschi, and N. D. Francesco, tRimg Security of Java
Bytecode by Abstract Interpretation”, The 17th AC3¥mposium on Applied
Computing: Special Track on Computer Security Pedoggs. Madrid, March
2002.

[12]Bell and L. J. LaPadula Leonard J. La Padula, “8ec@omputer Systems: A
Mathematical Model”, volume II, 1975.

[13]Bell and Leonard J. LaPadula, “Secure Computer e8yst Mathematical
Foundations”, Technical Report 2547 (Volume I), RH, March 1973.

[14]Bernardeschi and N. D. Francesco, “Combining Alsstiaterpretation and
Model Checking for Analyzing Security Properties J#dva Bytecode”, Third
International Workshop on \Verification, Model Cheuk and Abstract
Interpretation Proceedings, pp.1-15. LNCS 2294jdé&rdanuary 2002.

[15]Bernardeschi, N. D. Francesco, and G. Lettieri, Abstract Semantics Tool for

174

Secure Information Flow of Stack-Based AssemblygRrms”, Microprocessors
and Microsystems, 26(8), pp.391-398, 2002.

[16]Bernardeschi, Nicoletta De Francesco, Giuseppeiekiett‘Using Standard
Verifier to Check Secure Information Flow in Javgté&ode”, COMPSAC
pp.850-855, 2002.

[17]Bershad, Stefan Savage, Przemyslaw Pardyak, EmmSger, David Becker,
Marc Fiuczynski, Craig Chambers, and Susan Eggexsensibility, Safety and
Performance in the SPIN Operating System”, Proogsdiof the 15th ACM
Symposium on Operating System Principles, pp.26Z;@8per Mountain,
Colorado, December 1995.

[18]Bian, Ken Nakayama, Yoshitake Kobayashi, and Mamilaekawa, “Java
Mobile Code Security by Bytecode Analysis”, ECThmsactions on Computer
and Information Technology.

[19]Bian, Ken Nakayama, Yoshitake Kobayashi, and Mamdaekawa,‘Mobile

Code Security by Java Bytecode Dependence AnalyBioceedings of the

International Symposium on Communications and métion Technologies
2004 (ISCIT 2004), Sapporo, Japan, pp.923-926i2ct26- 29 2004.

[20]Binder, W. “Design and implementation of the J-SERAMobile agent kernel”,
2001 Symposium on Applications and the Internem, Biggo, CA, USA 2001.

[21]Bytecode Engineering Library (BCEL), http://bcektgata.jp/

[22]Cali, P. Gloor, and S. Nog, “DataFlow: A Workflow Negement System on the
Web Using Transportable Agents”, Technical RepoR98-283, Dept. of
Computer Science, Dartmouth College, Hanover, NLBO6.

[23]Carzaniga, G. Pietro Picco, and G. Vigna, “Designihstributed applications
with mobile code paradigms”, Proceedings of thehlt@ernational Conference
on Software Engineering(ICSE’97), 1997.

[24]Chambers, Igor Pechtchanski, Vivek Sarkar, Mauridio Serrano, Harini
Srinivasan, “Dependence Analysis for Java”, LCPEC3p-52, 1999

[25]Chander, J. C. Mitchell, and I. Shin, “Mobile Cofecurity by Java Bytecode
Instrumentation”, DARPA Information Survivabilityddference and Exposition
(DISCEX 11'01), Volume II-Volume 2.

[26]Chander,A., Mitchell, J.C., Shin, |, “Mobile codecsirity by Java bytecode
instrumentation”, 2001 DARPA Information Survivatyl Conference &
Exposition (DISCEX I1), Anaheim, CA, USA, 2001.

[27]Chase, Henry M. Levy, Michael J. Feeley, and Edward.azowska, “Sharing
and Protection in A Single-Address-Space Operatifgstem”, ACM
Trans-actions on Computer Systems, 12(4): 271-486Vember 1994.

[28]Chess, “Security Issues in Mobile Code Systems”biMoAgents and Security,
volume 1419, Lecture Notes in Computer Scienceing§er-Verlag, 1998.

[29]Chess, B. Grosof, C. Harrison, D. Levine, and QisRdltinerant agents for
mobile computing”, IEEE Personal Communicationd, 2ono. 5, pp.34-49, Oct.
1995.

[30]Chiueh, Ganesh Venkitachalam, and Prashant PradHamegrating
Segmentation and Paging Protection for Safficient and Transparent Software
Extensions”, Proceedings of the 17th ACM SymposmmOperating Systems

175

Principles, pp.140-153, Charleston, South Carolreeember 1999.

[31]Cifuentes, “Reverse Compilation Techniques”, PhDesty, Queensland
University of Technology, 1994.

[32]Clausen, L.R, “A Java bytecode optimizer using -wflect analysis”,
Concurrency: Practice and Experience 9, pp.10315;11807.

[33]Cohen, G., Chase, J., Kaminsky, D., “Automatic paog transformation with
JOIE”, Proceedings of the 1998 Usenix Annual TecainSymposium, New
Orleans, Louisiana, pp.167-178, 1998.

[34]Cytron, R., Ferrante, J., Rosen, B.K., Wegman, MAddeck, F.K., “Efficiently
computing static single assignment form and thetrobrdependence graph”,
ACM Transactions on Programming Languages and BwstE3, pp.451-490,
1991.

[35]Czajkowski, G., von Eicken, T.: JRes, “A resourceaunting interface for Java”,
Proceedings of the ACM Conference on Object-OrggRgramming, Systems,
Languages, and Applications, Vancouver, BritishuGdbia pp.21-35, 1998.

[36]Darvas, Reiner H'ahnle and David Sands, “A TheoRnoving Approach to
Analysis of Secure Information Flow”.

[37]Denning and P. J. Denning, “Certification of Progsafor Secure Information
Flow”, Communications of the ACM, 20(7), pp.504-51977.

[38] Denning and Peter J. Denning, “Certification of Pangs for Secure Information
Flow”, Communications of the ACM, 20(7), pp.504-518ly 1977.

[39]Denning, “A Lattice Model of Secure Information #§ Comm. ACM, 19(5),
pp.236-243, 1976.

[40]Denning, “Cryptography and Data Security”, Addistesley, 1982.

[41]Deutsch and C. A. Grant, “A Flexible MeasurememlTor Software Systems”,
Information Processing, 71, pp.320-326, 1972.

[42]Engler, M. Frans Kaashoek, and James O’'Toole JpKErnel: An Operating
System Architecture for Application-Level ResouManagement”, Proceedings
of the 15th ACM Symposium on Operating System Hpies, Copper Mountain,
Colorado, December 1995.

[43]Erlingsson and Fred B. Schneider, “IRM Enforcenmaniava Stack Inspection”,
Proceedings of the 2000 IEEE Symposium on SecantyPrivacy, pp.246—255,
Berkeley, California, May 2000.

[44]Erlingsson and Fred B. Schneider, “SASI Enforcen@n®ecurity Policies: A
Retrospective”, Proceedings of the 1999 New Sectharadigms Workshop, pp.
87-95, Caledon Hills, Ontario, Canada, Septemb29.19

[45]Erlingsson.U, Schneider,F.B. “IRM enforcement ofvalastack inspection”,
Proceedings of the 2000 IEEE Symposium on Secanty Privacy, Berkeley,
California, pp.246—-255, 2000.

[46]Evans and Andrew Twyman, “Flexible Policy-DirecteGode Safety”,
Proceedings of the 1999 IEEE Symposium on Secarity Privacy, pp.32— 47,
Oakland, California, May 1999.

[47]Farmer, Joshua D. Guttman and Vipin Swarup, “Sgcdior Mo-bile Agents:
Authentication and State Appraisal’, Proceedings tloé Fourth European
Symposium on Research in Computer Security (ESORE}Svol-ume 1146,
Lecture Notes in Computer Science, pp.118-130,n§eriVerlag, Rome, Italy,

176

September 1996.

[48]Faulkner and Ron Gomes, “The Process File Systedn Pancess Model in
UNIX System V”, Proceedings of the USENIX Winter919 Conference, pp.
243-252, Dallas, Texas, January 1991.

[49]Florio, R. Gorrieri, and G. Marchetti, “Coping witbenial of Service due to
Malicious Java Applets”, Computer Communication8(17), pp.1645-1654,
November 2000.

[50]Focardi and S. Rossi, “Information Flow SecurityDgnamic Contexts”, 2002.

[51]Franz, “Code-Generation On-the-Fly: A Key to PoaBoftware”, Doc-toral
Dissertation No. 10497, ETH Zurich, 1994.

[52]Glew and Greg Morrisett, “Type-Safe Linking and Mt Assembly
Language”, Proceedings of the 26th ACM SIGPLAN-S{GIASymposium on
Principles of Programming Languages (POPL'99), $-261, San Antonio,
Texas, January 1999.

[53]Goldszmidt and Y. Yemini, “Distrisbuted Managemdayt Delegation”, Proc.
15th Int’l Conf. Distributed Computing, June 1995.

[54]Gong, Gary Ellison and Mary Dageforde, “Inside Ja@latform Security:
Architecture”, API Design, and Implementation, Asloh-Wesley, 2nd edition,
2003.

[55]Gosling, Bill Joy, Guy Steele, and Gilad Bracha,h&T Java Language
Specification”, Addison-Wesley, 2nd Edition, 2000.

[56]Gray, “Agent Tcl: A Flexible and Secure Mobile Ag&ystem”, Pro-ceedings of
the 4th Annual USENIX Tcl/Tk Workshop, pp.9-23, Merey, California, July
1996.

[57]Gray, D. Kotz, S. Nog, D. Rus and G. Cybenko, “Mebhgents for Mobile
Computing”, Proc. Second Aizu Int'l| Symp. Paralldgorithms/Architectures
Synthesis, Fukushima, Japan, Mar 1997.

[58]Harrison, D.M.Chess, A.Kershenbaum, “Mobile Agertse they a good idea?”,
IBM Research Report, T.J.Watson Research Center1805.

[59]Hawblitzel, C., Chang, C.C., Czajkowski, G., Hu,, Dvon Eicken, T,
“Implementing multiple protection domains in JavllSENIX Annual Technical
Conference, New Orleans, Louisiana, USENIX, 1998.

[60]Hawblitzel, Chi-Chao Chang, Grzegorz CzajkowskiyDélu and Thorsten von
Eicken, “Implementing Multiple Protection Domains Java”, Proceedings of
the 1998 USENIX Annual Technical Conference, Neweans, Louisiana, June
1998.

[61]Heintze and J. G. Riecke, “The SLam Calculus: Rnogning with Secrecy and
Integrity”, Proc. ACM Symp. on Principles of Prograing Languages, pp.
365-377, Jan. 1998.

[62]Heiser, Kevin Elphinstone, Jerry Vochteloo, StepRessell and Jochen Liedtke,
“The Mungi Single-Address-Space Operating Syste8tftware Practice and
Experience, 28(9), pp.901-928, July 1998.

[63]Jaeger, Atul Prakash, Jochen Liedtke and Nayeeam)siFlexible Control of
Downloaded Executable Content”, ACM Transactions laformation and
System Security, 2(2), pp.177-228, May 1999.

[64]Joshi and K. Rustan M. Leino, “A Semantic ApprodachSecure Information

177

Flow”, Science of Computer Programming, 37(1-3)1fpp—138, 2000.

[65]Knabe. “Language Support for Mobile Agents”, Phiedis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, 1BA13-3891, USA,
December 1995.

[66]Kobayashi, Keita Shirane, “Type-based Informatiolowr Analysis for a
Low-level Languages”, Computer Software, Vol.20,Npp.2-21, 2003.

[67]Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katuhooue, "An Efficient
Information Flow Analysis of Recursive Programs &h®n a Lattice Model of
Security Classes", Proceedings of Third Internali@onference on Information
and Communications Security (ICICS 2001), Xian, r@hiLecture Notes in
Computer Science 2229, pp. 292-303, Nov. 2001.

[68]Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katurmue, “An Information
Flow Analysis of Recursive Programs Based on LattModel of Security
Classes”, IEICE Transactions (D-1), J85-D-1(10),961-973, Oct. 2002.

[69]LaPadula and D. Elliot Bell, “Secure Computer Syste A Mathematical
Model”, Technical Report 2547 (Volume 1), MITRE,ay 1973.

[70]Lee and Benjamin G. Zorn. “BIT: A Tool for Instrumténg Java Bytecodes”, The
USENIX Symposium on Internet Technologies and Systep.73-82, 1997.
[71]Lee, H.B., Zorn, B.G., “BIT: A tool for instrumenmij java bytecodes”, USENIX
Symposium on Internet Technologies and Systems, tédey California,

USA ,1997.

[72]Leroy, “Java Bytecode Verification: Algorithms afdrmalizations”, J. Autom.
Reasoning 30(3-4), pp.235-269, 2003.

[73]Liang and Gilad Bracha, “Dynamic Class Loadingha 0ava Virtual Machine”,
Proceedings of the 1998 ACM SIGPLAN Conference obje€i-Oriented
Programming, Systems, Languages and Applicatiof®PE&LA98), pp.36—44,
Vancouver, British Columbia, October 1998.

[74]Limongiello, R. Melen, M. Roccuzzo, A. Scalisi, Mecordi, and J. Wojtowicz,
“ORCHESTRA: An Experimental Agent-Based Service tanArchitecture for
Broadband Multimedia Networks”, GLOBAL Internet‘98pv. 1996.

[75]Lindholm and Frank Yellin, “The Java Virtual Machkiispecification”, Ad-dison
Wesley, 2nd edition, 1999.

[76]Lu, K. Nakayama, Y. Kobayashi, and M. Maekawa, &®8obile Code Dynamic
Verification by Bytecode Modification for Host Cadéntiality”, International
Journal of Network Security.

[77]Lu, K. Nakayama, Y. Kobayashi, and M. Maekawa, ffieation for Host
Confidentiality by Abstract Interpretation in Mobil Code Systems”, IEE
Mobility Conference 2005, Guangzhou, China, No\W20

[78]Lu, K. Nakayama, Y. Kobayashi, M. Maekawdbstract Interpretation for

Mobile Code Security IEEE Proceedings of International Symposium on
Communications and Information Technologies 2005SC(TI’ 2005),
pp.1068-1071, Beijing, China, Oct. 2005.

[79]Lucco, Oliver Sharp and Robert Wahbe, “OmniwardJiiversal Sub-strate for
Web Programming”, Proceedings of the 4th IntermatioWorld Wide Web
Conference, Boston, Massachusetts, December 1995.

178

[80]Magedanz, K. Rothermel and S. Krause, “Intellig&gents: An Emerging
Technology for Next Generation TelecommunicationdRFOCOM’96, San
Francisco, Mar 1996.

[81]Marquez, A., Zigman, J.N., Blackburn, S.M, “A fagbrtable orthogonally
persistent Java”, Software: Practice and Experiedpecial Issue: Persistent
Object Systems 30, pp.449-479, 2000.

[82]Menezes, Paul C. van Oorschot and Scott A. Vanstbiendbook of Applied
Cryptography”, CRC Press, 1996.

[83]Merz and W. Lamersdorf, “Agents, Services, and tEbedc Markets: How Do
They Integrate?”, Proc. Int'| Conf. Distributed Btams, IFIP/IEEE, 1996.

[84]Morrisett, David Walker, Karl Crary and Neal Glettvrom System F to Typed
Assembly Language”, Proceedings of the 25th ACM RIGN-SIGACT
Symposium on Principles of Programming LanguageSP(P98), pp.85-97,
SanDiego, CA., January 1998.

[85]Morrisett, Karl Crary, Neal Glew and David WalkeéiStack-Based Typed
Assembly Language”, Workshop on Typesin Compilgtipp.95-118, Kyoto,
Japan, March 1998.

[86]Myers and B. Liskov, “A Decentralized Model for émfnation Flow Control”,
Proc. ACM Symp. on Operating System Principles1p®-142, Oct. 1997.

[87]Necula and Peter Lee, “Safe kernel Extensions witlitun-Time Check-ing”.
Proceedings of the Second Symposium on Operatingte®y Design and
Implementation (OSDI'96), pp.229-243, Seattle, Vifagion, October 1996.

[88]Necula and Peter Lee, “Safe, Untrusted Agents USirgpf-Carrying Code”,
Mobile Agent Security, volume 1419, Lecture Notes Computer Science
Springer-Verlag, 1998.

[89]Necula and Peter Lee, “The Design and Implememtatdb A Cer-tifying
Compiler”, Proceedings of the ACM SIGPLAN 1998 GCengince on
Programming Language Design and Implementation (PBR pp.333-344,
Montreal, Quebec, November 1998.

[90]Necula, “Proof-Carring Code”, ACM Symposium on Riples of Programming
Languagues(POPL), 1997.

[91]Nystrom, N.J, “Bytecode level analysis and optima@a of Java classes”,
Master’s thesis, Purdue University, 1998.

[92]Object Design Inc. Object-Store PSE Resource Centdi998.
http://www.odi.com/ content/products/PSEHome.html.

[93]Ousterhout, “Tcl and the Tk Toolkit”, Addison-Weg|d 994.

[94]Ousterhout, Jacob Y. Levy, and Brent B. Welch, “Bade-Tcl Secu-rity Model”,
Mobile Agents and Security, volume 1419, Lecturgdsm Computer Science,
Springer-Verlag, 1998.

[95]Palsberg and P. @rbaek, “Trust in th&Calculus”, Proc. Symposiumon Static
Analysis, pp. 983 in LNCS, pp. 314-329, Springerid@ Sept. 1995.

[96]Pandey, R., Hashii, B., “Providing fine-grained e&x control for Java
programs”, 13th Conference on Object-Oriented Ruogning (ECOOP’99),
No0.1628, Lecture Notes in Computer Science, LisBamfugal, Springer-Verlag,
1999.

[97]Paoli, Andre L. Dos Santos and Richard A. Kemmehafreb Browsers and

179

Security”, Mobile Agents and Security, volume 14[8c¢ture Notes in Computer
Science, Springer-Verlag, January 1998.

[98]Podgurski and Lori A. Clarke, “A Formal Model ofdgram Dependences and
Its Implications for Software Testing, DebuggingydaMaintenance”. IEEE
Transactions on Software Engineering, 16(9), pp-989, September 1990.

[99]Rational Software Corporation. Purify,1998.
http://www.pure.com/products/purify.

[100] Rees, “A Security Kernel Based on the Lambda-Cak&ulA. 1. Memo 1564,
MIT, 1996.

[101] Rouaix, “A Web Navigator with Applets in Caml”, Reedings of the 5th
International World Wide Web Conference, pp.1365413Paris, France, May
1996.

[102] Rudys and Dan S. Wallach, “Termination in LanguBgsed Systems”, ACM
Transactions on Information and System Securi®), §(p.138-168, May 2002.

[103] Rudys and Dan S. Wallach, “Transactional Rollbaok Eanguage-Based
Systems”, Proceedings of the International Confegesn Dependable Systems
and Networks (DSN’02), pp.439-448, Washington, PJGne 2002.

[104] Sabelfeld and A. C. Myers, “Language-Based InforomElow Security”,
IEEE Journal on Selected Areas in Communicatiod$])2 pp.5--19, January
2003.

[105] Sakamoto, T., Sekiguchi, T., Yonezawa, A., “Bytezomlansformation for
portable thread migration in Java”, Proceedingsth&f Joint Symposium on
Agent Systems and Applications /Mobile Agents (ABIA). pp.16—-28, 2000.

[106] Saltzer and J.H, “Protection and the Control ofotnfation Sharing in
MULTICS”, Communications of ACM, 17(7), pp.388-4Q/ly, 1974.

[107] Saltzer and M. Schroeder, “The Protection of Infation in Computer
Systems”, Proceedings of the IEEE, 63(9) pp.1278081Sep. 1975.

[108] Samarati and Sabrinade Capitanidi Vimercati, “Ascé&3ontrol: Policies,
Models, and Mechanisms”, Foundations of Securityalysis and Design:
Tutorial Lectures, volume 2171, Lecture Notes in nm@ater Science,
Springer-Verlag, January 2001.

[109] Scales and Kourosh Gharachorloo, “Towards Trangpasnd Efficient
Software Distributed Shared Memory”, The Sixtee®@GM Symposium on
Operating Systems Principles, 1997.

[110] Sekar, V. N. Venkatakrishnan, Samik Basu, Sandebptkar, Daniel C.
DuVarney, “Model-Carrying Code: A Practical Apprbafor Safe Execution of
Untrusted Applications”, SOSP, pp.15-28, 2003.

[111] Seltzer, Yasuhiro Endo, Christopher Small and Kaitlsmith, “Deal-ing with
disaster: surviving misbehaved kernel extensior®&pceedings of the 2nd
USENIX Symposium on Operating Systems Design argldmentation, Seattle,
Washington, October 1996.

[112] Sinha and Mary Jean Harrold, “Analysis and testofg programs with
exception-handling constructs”. |IEEE Trans. on Bafe Engineering,
26(9):849-871, 2000.

[113] Smith and D. Volpano, “Secure Information Flow in Multithreaded
Imperative Language”, Proc. ACM Symp. on Principles Programming

180

Languages, pp. 355-364, Jan. 1998.

[114] Srivastava and Alan Eustace. “ATOM: A System foriling Customized
Program Analysis Tools”, Proceedings of the SIGPLAM Conference on
Programming Language Design and Implementatiord,9&p205, June 1994.

[115] Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wathand G.J. Minden, “A
Survey of Active Network Research”, IEEE Comm.,.\88, no.1, pp.80-86, Jan
1997.

[116] Vall’ee-Rai, R., Hendren, L., Sundaresan, V., LBmGagnon, E., Co, P., “Soot
— a Java bytecode optimization framework”, Procegsliof CASCON 1999,
Mississauga, Ontario, Canada, pp.125-135, 1999.

[117] Venkatakrishnan and R. Sekar, “Empowering Mobilel€&Jsing Expressive
Security Policies”, 10th New Security Paradigms kgbop (NSPW), 2002.

[118] Venners, “Inside the Java Virtual Machine”, 1998.

[119] Volpano, G. Smith, and C. Irvine, “A Sound Type ®ys for Secure Flow
Analysis”, J. Computer Security, Vol. 4, No. 3, pp/—187, 1996.

[120] Wahbe, Steven Lucco, Thomas E. Anderson and Sugardham, “Efficient
Software-Based Fault Isolation”, Proceedings of 1hth ACM Symposium on
Operating Systems Principles, pp.203-216, Ashevildorth Carolina,
De-cember 1993.

[121] Wallach and Edward W. Felten, “Understanding JatvackSin Spection”,
Proceedings of 1998 IEEE Symposium on SecurityRmhcy, Oakland.

[122] Wallach, Andrew W. Appel and Edward W. Felten, “&SI: A Security
Mechanism for Language-Based Systems”, ACM Traimaston Software
Engineering and Methodology, 9(4), pp.341-378, Bet@000.

[123] Wallach, Dirk Balfanz, Drew Dean and Edward W. éeJt‘Extensible Security
Architectures for Java”, Proceedings of the 16tHVASymposium on Operating
Systems Principles, pp.116-128, Saint Malo, FraBctber 1997.

[124] Welch and R. Stroud, “Using Reflection as a Meckanifor Enforcing
Security Policies in Mobile Code”, Proceedings dfe t Sixth European
Symposium on Research in Computer Security, 2000.

[125] Welch and Robert J. Stroud, “Using Reflection dadexchanism for Enforcing
Security Policies on Compiled Code”, Journal of Qaomer Security, 10(4),
pp.399- 432, 2002.

[126] Welch, I., Stroud, R., “Kava—a reflective Java lohea bytecode rewriting”,
Lecture Notes in Computer Science 1826. Springeiaye2000.

[127] White, “Mobile Agents”, In Jffrey Bradshaw, Editor, Software Agents, chapter
19, pp.437-472. AAAI Press/MIT Press, 1996.

[128] Yemini and S. da Silva, “Towards Programmable Neks® IFIP/IEEE Int'l
Workshop Distributed Systems: Operations and Mamage, LAquila, Italy,
Oct. 1996.

[129] Yemini, “The OSI Network Management Model”, IEEE @m., pp.20-29,
May 1993.

[130] Zhao, “Analyzing Control Flow in Java Bytecode”,0Br 16th Conference of
Japan Society for Software Science and Technolgyy313-316, Japan,
September 1999.

[131] Zhao, “Dependence Analysis of Java Byte-code”, P@&tth IEEE Annual

181

International Computer Software and Applications nfécence
(COMP-SAC’2000), pp.486-491, IEEE Computer Socletgss, Taipei, Taiwan,
October 2000.

[132] B. Banerjee, A. Biswas, and M. Mundhe, S. Depnatij S. Sen, “Using
Bayesian Networks to Model Agent Relationships”, pied Artificial
Intelligence vol. 14, no. 9, pp. 867-879, 2000.

[133] A. Byde, C. Preist, and N.R. Jennings, “Decisiomdedures for Multiple
Auctions”, Proc. First Int'l Joint Conf. Autonomousyents and Multi-Agent
Systems, pp. 613-620, July 2002.

[134] M. Dastani, N. Jacobs, C.M. Jonker, and J. Trétdodeling User Preferences
and Mediating Agents in Electronic Commerce”, Agémediated Electronic
Commerce, F. Dignum and C. Sierra, eds., pp. 1&3-2801.

182

Acknowledgments

This dissertation is my doctoral study from OctoB8603 to March 2007 at the
Graduate School of Information System of the Ursitgr of
Electro-communications, Tokyo, Japan. | am grateduh large number of people
who have helped me finish this work.

My sincerest thanks go to my supervisory commigee my examiners for their
insight advice and great support. And my most agathanks go to Professor
Maekawa, my senior supervisor, for being my advisorthis thesis. He led me
into this research area and whose insight andrvisas directly guided my research
over the past four years. Without the benefit frbis generous financial support,
care and encouragement, this dissertation would haver been written out, and it
would be impossible for me to finish my PhD career.

Special thanks to the members in Maekawa lab andu@h lab, for their
technical expertise, talent dedication to the ceaftl honest feedback.

This dissertation is dedicated to my family. | wamexpress my gratitude to my
parents, who have been supporting me such a loregdince | was a little boy. And
| also want to thank my wife for helping me throoghthe course of my study,
especially in the last one year. | cannot finisis thssertation without the love and
support from my family.

183

Author Biography

Dan Lu was born in Heilongjiang China, on Octob6th]l 198. He graduated
from Harbin Engineering University in 2001 and leeaived the M.S. degree in
computer control and application from Harbin Engimeg University in 2003. He
has been with the Graduate School of Informatiorst&ys, University of
Electro-communications, Tokyo, Japan, working taysathe PhD degree. His
research interests include Java Virtual Machinea bytecode, and Mobile code.

184

List of Publication Related to the Thesis

1. Dan Ly K. Nakayama, Y. Kobayashi, M. Maekawabstract |nterpretation
for Mobile Code Security”, IEEE Proceedings of International Symposium on

Communications and Information Technologies 2005SC(TT 2005),
pp.1068-1071, Beijing, China, Oct. 2005.

2. Dan Lu K. Nakayama, Y. Kobayashi, and M. Maekawsderification for Host
Confidentiality by Abstract Interpretation in Mobile Code Systems’, IEE
Mobility Conference 2005, Guangzhou, China, NowW20

3. Dan Ly K. Nakayama, Y. Kobayashi, and M. Maekawanalysis of
Information Flow in Exception Handling of Java Bytecode’, Applied Science
and Technology, Vol.34, No.2, 2007, pp. 28-30

4. Dan Lu K. Nakayama, Y. Kobayashi, and M. Maekawadava Maobile Code

Dynamic Verification by Bytecode Modification for Host Confidentiality”,
International Journal of Network Security, Vol.NG. 3, 2008, pp. 416-427

185

