
 

 

Java Mobile Code Dynamic 
Verification by Bytecode Modification 

 

 

DAN LU 

 

 

 

 

 

 

 

 

 

 

 

Graduate School of Information Systems 
 

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS    

 

June 2008 



 ii 

Java Mobile Code Dynamic 
Verification by Bytecode Modification 

    

 

 

 

 

 

 

APPROVED BY EXAMINING COMMITTEE: 

Prof. Akihiko Ohsuga 

Prof. Yoshikatsu Tada 

Prof. Toshinori Watanabe 

Prof. Masahiro Sowa  

Asc.Prof. Tadashi Ohmori 

Prof. Emeritus Mamoru Maekawa 



 iii 

 

 

 

 

 

 

 

 

Copyright  
by 

DAN LU 
2008 

 

 



 iv 

バイトコードモディフィケーションによる 

JAVAモバイルコードの動的な検証方法の研究 
 

概 要 
 

モバイルコードはネットワーク内で移動、リモートマシンで実行されるプ

ログラムである。こうしたプログラムは、セキュリティが重要な課題となる。

Java言語は移動性、安全性、プラットフォーム独立などの特徴を有し、現在

モバイルコードの実現に広く用いられている。本研究は、Javaモバイルコー

ドシステムのホストセキュリティを保守するため、検証精度がより高い検証

方法を確立することを目指している。 

アクセル制御とオーセンティケーションなどのセキュリティ保護方式と

比べて、情報流分析技術はセキュリティ保護、特に秘密保護に有用な考え方

である。ソースコードを分析対象としている従来の情報流分析に対して、

Javaモバイルコードシステムにおいてはモバイルコードを実行するホスト

はソースコードを知ることはなし、バイトコードという形のコードを実行す

る。ですから、本研究ではバイトコードの情報流分析を行った。 

モバイルコードに情報流分析を適用したアプローチはいくつかあるが、こ

れらのアプローチはモバイルコードシステムにおけるセキュリティの特徴

を見落とし、検証精度が満足できるレベルに達成していない。本研究は、モ

バイルコードシステムにおけるオブジェクトとサブジェクトを明確にし、モ

バイルコードシステムに相応しいセキュリティモデルを提案した。オブジェ

クトであるローカルホストのデータにセキュリティレベルを、サブジェクト

である第三者ホストに許可レベルを割り当てる。そして、モバイルコードの

中の情報流を監視し、情報のセキュリティレベルを計算する。モバイルコー

ドが情報を第三者ホストに送信する時、情報のセキュリティレベルと第三者

ホストの許可レベルによって情報漏洩が発生するかを判断する。 

また、実行前にモバイルコードを検証する静的なアプローチに対して、本

研究は実行中に検証を行う動的なアプローチである。検証対象のモバイルコ

ードがJavaVMへ送られる前に、モバイルコードの情報流に対してもとのモバ

イルコードを変更し、検証機能を実現するコードを追加する。そして、変更

されたモバイルコードを実行するとき、もとのモバイルコードの機能と共に

検証機能も行う。実行中の状況を把握できるため、本研究はより高い検証精

度を達成した。 

その上、動的な検証方法しか対応できない異常処理の情報流も本研究で検

討された。本研究はモバイルコードにおける異常処理が如何な情報流を生成

するかを分析して、対応する検証コードの生成方法を提案した。異常処理の

情報流の検証が対応されたため、本研究では検証精度と実用性が満足できる

レベルに到達した。 
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Java Mobile Code Dynamic Verification by 
Bytecode Modification 

Dan Lu 

ABSTRACT 

Mobile code program can be transmitted via network from a remote source to a 

local system and be executed on that local host. And such programs may raise the 

security problems of the host because they could interact with the resources of the 

local host and malicious or defective programs will tamper data or release secure 

information of the local host. The Java language has been used widely in the 

implementation of mobile code systems because of its portability, security and 

platform-independency. In our research, we are heading for building a verification 

approach with high precision in order to protect the host security in mobile code 

systems.  

 

Compared with the security mechanisms such as access control and 

authentication, the Secure Information Flow theory is a useful mechanism for the 

security protection, especially for the confidentiality protection. In the traditional 

information flow analysis, the source code is taken as the analysis object. While in 

mobile code systems, the host executing the mobile code can only get the bytecode 

of the programs. Therefore, we analyzed the bytecode’s information flow in our 

research. 

 

Though several approaches have used the information flow analysis, those 

approaches neglected the characteristics of security demand in mobile code systems 

and did not achieve satisfying verification precision. In our approach, we make it 

clear that what are the subjects and objects in mobile code systems, and put forward 

the appropriate security model. We assign security-levels to the data of the 

local-host and clearance-level to the third-party hosts. Then we trace the 

information flow during the mobile code and check whether a data-leaking is raised 

when the mobile code tries to send data to a third-party host. 
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Furthermore, different from static approaches that verify the mobile code before 

the JVM executes the bytecode, our approach is a dynamic approach that verifies 

the mobile code when the JVM is executing the bytecode. Before the mobile code 

is sent to the JVM, we analyze the information flow in the bytecode and insert 

proper instructions implementing the verification function into the original 

bytecode. Thus when the JVM executes the modified bytecode, the verification 

function is done as while as the original function of the mobile code. The dynamic 

approach can get the runtime information during the mobile code execution (such 

as which branch of the implicit information transferring will be executed, whether 

an instruction will throw an exception or not, and so on), and it can achieve better 

verification precision than static ones. 

 

In addition, we also discuss the information flow during the exception handling 

in our research, which is almost impossible for static verification approaches. We 

analyze what kind of information flow can be caused during the exception handling 

of Java mobile code, and put forward the corresponding verification bytecode for 

the information flow caused by exception handling. Since our approach can deal 

with the verification of the exception handling in bytecode, the verification 

precision and practicality of our approached are improved further. 
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1 Introduction 

With the significant development of distributed computing and the internet 

technology, the utilization of mobile code systems (such as applets, mobile-agent 

systems) is increasing. And the Java language is widely used to build mobile code 

systems because of its mobile and safe characteristics.  

 

This new mode of distributed computation promises great opportunities for 

electronic commerce, mobile computing, and information harvesting as well as the 

problems of security. As a distributed system architecture, a mobile code system 

usually involves two processes, that is, a code producer process (e.g., a web server 

process) and a code consumer process (e.g., a web browser). Mobile programs are 

able to migrate from remote sites to a host when the producer process sends the 

consumer process a program (e.g., a mobile agent), and interact with the resources 

and facilities of the host, which causes side effects to be produced on the consumer 

side. Such an arrangement gives rise to serious security threats. If there is no 

control on this kind of mobile programs that can be executed in the consumer 

process, a malicious mobile program could try to observe, leak or alter the 

information it is not authorized on the host and then compromise data 

confidentiality, system integrity and resource availability. The situation in mobile 

code systems requires more stable security mechanisms to provide protection of the 

host against the potential attack caused by executing such malicious code than in 

the stand-alone systems. It has been a general consensus that security is the key to 

the success of mobile code computation. 

 

The host security involves three aspects: confidentiality, integrity and availability. 

Decades of research in operating systems has provided significant experience and 

insight into the nature of system security. Some protection techniques used in 

operating systems, such like Authentication, Access Control and Secure 

Information Flow, have been used to prevent host data from leaking to 

unauthorized hosts in mobile code systems. However, the existing protection 

mechanisms for operating systems do not fully address the security needs of mobile 
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code systems. In Java mobile code systems, the availability property can be 

protected by JVM secure mechanism. Existing approaches for enforcing 

confidentiality and integrity properties tend to confine mobile code so as to ensure 

that it can do no harm to the host. This goal is achieved by enforcing stringent 

access control policies that prevent mobile code from executing any action that can 

potentially compromise the security of the host system running the code. For 

example, Java applets are denied to read or write any files resident on their host 

system since malicious applets may be able to use such an access to alter user data 

or leak it to unauthorized parties. Such access control policies are useful to keep 

malicious applets in check. However they preclude a large number of useful 

applications of mobile code. 

 

An ideal mobile code security framework should put less restriction as much as 

possible on the mobile code on the precondition that the host is protected from the 

attack of malicious or faulty mobile code. Compared to simply informal 

endorsement such as Authentication and Access Control, the Secure Information 

Flow is a kind of program-analytic mechanisms and more precise. Information-flow 

control is a technique that provides ensuring confidentiality and integrity. However, 

the studies in this field focus on high-level languages and the source code of the 

program is analyzed in compile time. These approaches cannot be applied to mobile 

code system because the consumer of the mobile code system cannot obtain the 

source code of the mobile programs that migrate from the producer.  

 

The approaches for Java mobile code security by now are almost static ones. 

They verify Java mobile code and decide the code is secure or not before the local 

JVM executes the code. Thus all static approaches could not get any runtime 

information of the mobile code execution. That inherent limitation of static 

approaches causes that those approaches cannot achieve satisfying verification 

precision in implicit information transferring since it is impossible for static 

approaches to judge which branch of the implicit information transferring will be 

executed in runtime. Furthermore, the static approaches cannot trace the 

information flow in the exception handling because exceptions are thrown 

dynamically during the execution. And this limitation makes the static approaches 

lose the practicality. 
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This dissertation provides a dynamic verification approach to protect the host 

security in Java mobile code systems by the bytecode modification. We analyze the 

information flow of Java bytecode, and put forward a suitable security model for 

mobile code systems based on the secure information flow theory. In our security 

model, we do not restrict the mobile code to read sensitive information from the 

host and transfer the information in the mobile code. Instead, we record and 

calculate the information flow to master where the sensitive information is in the 

mobile code. Only when the mobile code sends information out, we check and 

restrict the possible information-leak.  

 

Furthermore, we make use of the bytecode modification technique to achieve 

dynamic implementation of our security model. Before the JVM executes the 

mobile code, we modify it in order to add the verification function into the original 

bytecode. Then the modified bytecode is submitted to the local JVM, and its 

original functionalities and the added verification function are executed at the same 

time.  

 

We analyze the structure of Java bytecode and class files, and put forward the 

modification mechanism that can insert appropriate instructions into the original 

bytecode to trace and check the information flow during the bytecode execution. 

Especially, our research covers the information flow in Java bytecode exception 

handling, which makes our approach more practical and achieve better verification 

precision. 
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2 Mobile Code Security 

2.1 Mobile Code System 
 

Mobile code is an architectural paradigm for structuring distributed software 

systems. Different from the other paradigms used to construct the distributed 

system such as Client-Server Paradigm, the most impressive character of mobile 

code systems is the notion of code mobility: communicating processes in mobile 

code systems exchange program code instead of simply passing data messages.  

 

In one program, there are three elements:  

 

� Data (stored result sets) 

� Code (commands) 

� State (current execution status of the program) 

 

A distributed computing system can be called as a mobile code system if there 

are the codes that can migrate from one host to another. Mobile code systems can 

revolutionize the design and development of distributed systems. In the following, 

we will provide a brief overview and comparison of four programming paradigms 

for distributed computing: client-server, code-on-demand, remote revaluation and 

mobile agents.  

 

2.1.1 Client-Server Paradigm 

In the client-server paradigm, there is a set of services provided by the server, by 

which the client is able to access to some resources (e.g., databases, files). Although 

the service is used by the client, the code that implements these services still 

belongs to the server. In a word, it is the server itself that executes the service, and 

thus has the processor capability. If the client wants to get information from certain 

resource hosted by the server, it is able reached the data resource not by itself but 
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by seeking help from the server to provide an appropriate service instead. The 

server owns all, including the resources, the tool to get the resource and processor. 

Currently, most distributed systems were constructed on this paradigm in which a 

wide range of technologies have been involved, such as Remote Procedure Calling, 

Object Request Brokers (CORBA) and Java Remote Method Invocation (RMI). In 

the client-server systems, the ownership of the code used in the service and the host 

is not changed during the process of information transition, only the data of the 

program is transferred, thus these systems are not considered as mobile code 

systems. 

 

� Data → mobile 

� Code→ static 

� State→ static 

 

 
Figure 2-1. Client-Server Paradigm. 

 

2.1.2 Code-on-Demand Paradigm 

  In the code on demand paradigm, one client has to first get the know-how 

when the client needs it because the client initially is not able to perform its task 

properly due to a lack of code (know-how). In the network, there is another host can 

provide the code needed. Once the code is received, the client performs the 

computation by itself. The client holds the processor capability as well as the local 

resources. Different from the client-server paradigm, the client does not need the 
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detail information of the remote since all the necessary code will be transmitted to 

the local system. The client has both the resources and processor, while the server 

has the know-how. A good example is the Java applet. In the paradigm, applets are 

downloaded from remote sites in the web and executed locally. 

 

� Data → static 

� Code→ mobile 

� State→ static 

 

 
Figure 2-2. Code-on-Demand Paradigm. 

 

2.1.3 Remote Evaluation Paradigm 

In the remote evaluation paradigm, see Figure 2-3, a client has the know-how 

(code) necessary to perform the service and a remote server owns the resource. To 

perform the task the client sends the service know-how to the remote site. When the 

server receives the service know-how, it will execute the code using the resources 

available there. After the execution, the server will return the result back to the 

client. A typical example is SQL. The client sends SQL query to the DB server, and 

then the server executes the query and returns data to the client. 

 

� Data → static 

� Code→ mobile 

� State→ static 
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Figure 2-3. Remote evaluation Paradigm. 

 

2.1.4 Mobile Agent Paradigm.  

A key characteristic of the mobile agent paradigm, see Figure 2-4, is that any 
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know-how, resources, and processors. Its processing capabilities can be combined 

with local resources. Know-how expressed in the form of mobile agents is not 
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Figure 2-4. Mobile Agent Paradigm. 
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different host. At the destination, the code may be run into a newly created 

executing unit or it may be linked into an already running one. 

 

2.2 Advantages of Mobile Code System 
 

Mobile code represents a new way of building distributed software systems. 

Motivation for adopting the mobile code paradigm has been surveyed in great detail 

in [23, 29,58and 65]. Here we list several representative examples. 

 

Real-time interaction with remote resources: Most computing resources in the 

host, such as databases, file systems or even physical displays, are not allowed to be 

transported. For a computation that requires real time interaction with these 

resources, it must be conducted in the exact site which the resources reside. Code 

mobility provides the possibility to prescribe the location of computation, so as to 

bring real-time interaction into reality. For example, active contents like Java 

applets prescribe interactive presentation that is to be rendered on the browser side.  

 

Reduction of communication traffic: Mobile computers usually interact with 

servers through unreliable, low-bandwidth, high-latency, high-cost networks. 

Mobile programs become an attractive alternative because network traffic can be 

reduced by migrating the client program to the server side, thus avoiding the 

potential cross-network communication bottlenecks.  

 

Customization and extension of server capabilities: In traditional client-server 

applications, valuable hardware resources are usually managed by server software 

(e.g., an operating system). The server offers a predefined set of services which are 

defined based on extremely general access policies and tends to ignore the specific 

needs of individual clients. It is very difficult to extend the capability of the serve 

without redefining its interface. Remote evaluation offers a flexible infrastructure 

for extensible server. Recently, various proposals have been made to allow 

application-specific extension code to be downloaded dynamically into server 

software, so as to customize the access policies to meet the specific needs of clients.  

 

Asynchronous distribution computing: In traditional client-server applications, 

the state of computation is distributed among servers and clients. As a consequence, 
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it is difficult to maintain the consistency of the distributed states and articulate the 

correctness of the computation. Mobile code systems localize computation states in 

a single process. They offer a better abstraction that makes the crafting of 

distributed software a more manageable task. 

 

2.3 Applications of Mobile Code System 
 

Any application that can be crafted under the mobile code paradigm can also be 

structured as a client-server application [58]. However mobile code systems offer 

many software engineering advantages that their client-server counterpart lacks 

such as those mentioned above. Thus mobile code systems can be applied to the 

following application domains.  

 

2.3.1 Distributed Information Retrieval 

Distributed information retrieval applications collect information from the certain 

resources scattered in the network. The information matches some specified criteria. 

During the information retrieval process, the information sources visited by the 

applicants can be defined statically or determined dynamically. This is a domain 

encompassing a big diversity of applications. For example, the wide range of 

information to be retrieved can be the list of all the publications of a given author to 

the software configuration of hosts in a network. The efficiency could be improved 

by code mobility because the code can migrate from remote to close to the 

information when performing the search process.  

 

2.3.2 Active Documents 

Traditional passive data, such as e-mail or web pages, is enhanced by active 

documents applications with the capability of executing the programs which have 

certain relationship to the content of the document, enabling enhanced presentation 

and interaction. Mobile code system is the premise for realizing these applications 

because it allows the embedding of code, stating the code into documents, and 

executing the dynamic contents during document fruition. A typical instance is 

represented by an application that uses graphic forms to compose and submit 
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queries to a remote database. The interaction with the user is modeled by using the 

COD paradigm, i.e., the user first raises requests for the active document 

component to the server and then using the document as an interface to perform the 

computation. This type of application can be easily implemented by a technology 

which can fetch remote code fragments. A typical choice is a combination of 

WWW technology and Java applets. 

 

2.3.3 Advanced Telecommunication Services 

Support, management, and accounting of advanced telecommunication services, 

such as video conference, video on demand or tele-meeting, require a specialized 

“middleware” providing mechanisms for the dynamic reconfiguration and the user 

customization—advantages brought with code mobility. For example, in a 

tele-conference, the application components managing the setup, signaling, and 

presentation services could be dispatched to the users by a service broker. Examples 

of approaches exploiting code mobility can be found in [57and 74]. A special class 

of advanced telecommunications services supports mobile users. In this special 

circumstance, the autonomous components can provide support for disconnected 

operations, as discussed in [80]. 

 

2.3.4 Remote Device Control and Configuration 

Remote device control applications are focusing on configuring a network of 

devices and monitoring their status. Several other applications are included in this 

domain, i.e., industrial process control and network management. Traditionally, 

monitoring is performed by randomly or periodically picking up the resource states 

while configuration is conducted by a predetermined set of services. This approach, 

based on the client-server paradigm, can bring a number of problems. Mobile code 

could be used in this incident to design and implement monitoring components that 

shared with the devices being monitored and report events that represent the 

evolution of the device state. Additionally, the management components migration 

to remote sites could improve both performance and flexibility. 
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2.3.5 Workflow Management and Cooperation 

In a business or engineering process, workflow management applications support 

the cooperation of persons and tools involved. The workflow defines which 

activities must be carried out to accomplish a given task as well as how, where, 

when and at what distance these activities should involve each party. To represent 

activities as autonomous entities is a practice to this approach. During their 

evolution, they are circulated among the entities involved in the workflow. Mobile 

code could be used to provide support for mobility of activities that encapsulate 

their definition and state. For example, a mobile component could encapsulate a 

text document that undergoes several revisions. The component maintains 

information about the document state, the legal operations on its contents, and the 

next scheduled step in the revision process. An application of these concepts can be 

found in [22]. 

 

2.3.6 Active Networks 

The concept of active networks is recently be proposed by several articles, which 

acts as a means to introduce flexibility into networks and provide more powerful 

mechanisms to weave or systemize the elements in the network according to 

applications’ needs. They can be classified in tiers delimited by two extremes 

represented by the programmable switch and the capsule approaches. The 

programmable switch approach basically is an example of the COD paradigm, and 

it aims at providing dynamic extensibility of network devices through dynamic 

linking of code. On the other hand, the capsule approach aims to attach to every 

packet flowing in the network, some codes describing a computation that must be 

performed on packet data, at each node. Clearly, active networks aim at leveraging 

the advantages provided by mobile code in terms of deployment and maintenance, 

customization of services, and protocol encapsulation. As an example, in this 

scenario a multi protocol router could be downloaded on demand of the code 

needed to handle a packet corresponding to an unknown protocol, or even receive 

the protocol together with the packet.  
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2.3.7 Electronic Commerce 

Electronic commerce applications make it possible to perform business 

transactions through the internet. A transaction may involve negotiation with 

remote entities and may require access to information that is continuously evolving, 

e.g., stock exchange quotations. In this context, there is the need to customize the 

behavior of the parties involved in order to match a particular negotiation protocol. 

Moreover, it is desirable to move application components close to the information 

relevant to the transaction. This makes mobile code appealing for this kind of 

applications. The term “mobile agent” is often related with electronic commerce. 

Another application of code mobility to electronic commerce can be found in [83]. 

 

2.4 Security of Mobile Code System 
 

By its very nature, mobile code is fraught with inherent security risks. With the 

emergence of various forms of malicious active contents, users of mobile code 

systems are now aware of the increasingly serious security threats associated with 

mobile code computation. A malicious or faulty mobile code unit may tamper 

valuable data on local disks, covertly transmit sensitive information to another party, 

or masquerade as another trusted application. 

 

Mobile code units may originate from unfamiliar sources, making it difficult for 

users to determine if a given code unit should be granted certain execution rights. 

The host user never writes them, nor does he know a lot about them, and sometime 

he does not know where they came from. Anonymity is a central reality of mobile 

code computing. A naive response will consider all mobile code as malicious and 

reject them or forbid all mobile code capabilities. Though that policy can give the 

host the maximum security, it is the most useless method because of the fact that 

there are many benefits of mobile code system and increasingly software 

infrastructures are built around mobile code technologies. The question is not to 

avoid downloading or using, but to protect the host from the downloaded mobile 

code running wild. Thus our objective is to verify the Java mobile code precisely as 

much as possible, that is, to let the mobile code causing no security problems 

(intentionally or involuntarily) pass our verification as many as possible. 
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2.4.1 Security Requirements 

There are two classes of security issues in mobile code systems: Host Security 

and Code Security. The host security is concerned with the protection of the host 

from being attacked by malicious or faulty mobile programs, and with the 

avoidance of mutual interference among execution units. While the code security is 

concerned with the assurance of correctness and confidentiality for the computation 

that is delegated to a remote host. When an untrusted host carries out a computation 

on behalf of a client, the host may maliciously corrupt or expose the internal state 

of the client’s execution units. 

 

This dissertation is mainly devoted to the exploration of issues concerning the 

host security. There are three aspects concerned with the host security:  

� Integrity: System resources should be protected from unauthorized 

modification, deletion, or other means of tampering.  

� Confidentiality: Sensitive information should be protected from leaking to 

unauthorized parities through some channels.  

� Availability: The services of computing system should be protected from 

monopolizing or denial.  

 

In order to establish and evaluate the security of a computing system, one should 

refine the criteria above, and lay out exactly what the security requirements are in 

concrete terms. In general, the following attacks threat the host security in mobile 

code systems. 

� Denial of service: The downloaded mobile program may monopolize shared 

the resources like the terminal screen, CPU time, threading services, etc. 

Such attacks destroy the availability of the host system.   

� Corruption: Some malicious or faulty mobile code may modify or erase 

important data. Other may tamper with the internal state of the system, 

rendering the system state incoherent. Such attacks compromise the integrity 

of the system. 

� Leakage: Some mobile codes may actively release sensitive information on 

an outside party. Other may engage in data processing activities from which 

malicious third parties can infer information that is supposed to be classified. 

Such attacks are direct violation of the system’s confidentiality.  
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� Masquerading: Some malicious mobile programs may masquerade as 

another one by faking the UI of the latter, thus fooling the users into 

entrusting them with critical resources and data. Others may pretend to 

originate from a trusted origin. And malicious mobile programs may even 

fool the type system by appearing to be of another type, thus gaining access 

to the internal state of the system. Masquerading is a very subtle form of 

attack that could potentially lead to the compromising of all the three aspects 

of host security. 

 

2.4.2 Evaluation Criteria of Protection Mechanisms  

Protection mechanisms are technologies built into the computing environment 

for the sake of enforcing security policies. Protection is based on the notion of 

separation. Separation can be physical (allocating physically distinct resources to 

competing parties), temporal (scheduling competing processes to execute at a 

different time), logical (creating logical barrier to avoid interference), or 

cryptographic (encrypting sensitive information).  

 

To design secure protection mechanisms, there are several principles can be 

referred [106 and 107]. 

� Economy of mechanisms: The design of the protection mechanism should 

be small and simple. A small and simple mechanism can be carefully 

analyzed and validated. 

� Fail-safe default: The default condition should be denial of access. The 

designer of a protection mechanism should determine what is accessible 

instead of when access is denied.  

� Complete mediation: The protection mechanism should be designed so that 

all possible access to system resources is covered. In a system that will be 

used continuously, and in which access rights may be revoked, every access 

attempt should be checked. 

� Open design: The security of the protected system should not depend on 

keeping the design of the protection mechanism secret. 

� Separation of privilege: Access on an object should depend on more that 

one condition. In this way, complete security breach will not occur when one 

protection system is defeated. 
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� Least privilege: The mobile code should be granted the bare minimum 

amount privilege necessary to complete the job. 

� Psychological acceptability: If the users feel that protecting their system 

resources is too much work, they will not use it. The human interface should 

be designed for naturalness, ease of use, and simplicity, so that users will 

routinely and automatically apply the protection mechanisms. 

 

2.4.3 Conventional Protection Techniques  

In traditional operating systems, besides operating protection techniques such as 

CPU protection, Memory Protection and Access Control are other two protection 

mechanisms relevant to mobile code systems.  

 

� Memory Protection  

 

The purpose of memory protection is to prevent the malfunctioning of one 

execution unit from interfering other execution units or even the host. With the 

memory protection, the execution units are restricted and not able to interfere either 

with the execution states of other units or with the state of the global host. 

 

There are three mechanisms in total that provide the memory protection in the 

traditional operating systems:  

 

1. Processes are isolated in separate address spaces. No matter it is a data 

reference or a control transfer, the hardware will check the every address reference 

at run-time to see if the address space of the running process includes the location 

of the address reference. Or a memory exception will be generated to halt the 

process and return control to the operating system. 

 

2. There are two types of executions provided by CPU which are named as the 

kernel mode and the user mode. Instructions that set the boundary of address space 

are protected and can only be executed in the kernel mode. User processes are then 

forbidden to redefining the boundary of their address spaces.  

 

3. The kernel mode of operating system checks the control flowing outside of the 
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address space by a special interface which is usually achieved by providing a set of 

predefined system calls accessible by a special TRAP instruction. When a system 

call is invoked by outside execution, the CPU switches to kernel mode, and control 

is transferred to the operating system correspondingly, then the operating system 

starts to process the system call on behalf of the user process. 

 

Furthermore, some operating systems provide complex mode to separate 

different security-levels by the group of concentric rings instead of a simple 

dichotomy of kernel and user modes. Usually it needs special hardware and 

operating system support. In the concentric ring mode, only the code running in the 

rings with higher trust level are allowed to access data and code in the rings with 

lower trust level, in another word it is a one-way flow. Accordingly the control will 

be hand over to the code in the ring of higher trust level via special entry points 

called gates. 

 

� Access Control  

 

Access control is achieved by protected information resources which identify the 

special execution units that can be granted the access to certain resources. In 

traditional operating systems, resources of the host are modeled as objects, while 

user processes are modeled as subjects. With permission, a subject can perform 

certain operations on an object. The permission of this kind of performance is 

called access right. Security policies are expressed as an assignment of rights to 

subjects. A protection domain is a collection of access rights. A user process 

acquires its access rights by being associated to a protection domain.  

 

A matrix is introduced to describe the access rights in a multiprogramming 

system. In the matrix, protection domains are expressed in rows while objects are 

expressed in columns. Access rights are given to a protection domain (row) for the 

accessing of an object (column). It is easy to define the access right by labeling an 

entry in the matrix with access operations. In traditional operating systems, the 

access matrixes are usually implemented either of two ways. The access control list 

is one of the two ways. It is a list of <subject, right> pairs associated with every 

system resource. When an access occurs to a resource, the associated list will be 

checked to see if the accessing subject is in the list and access right is appropriately 



 18

granted. Another is called capability. A capability is an unforgettable pointer to a 

system resource. The right was granted to a subject to access an object at the 

moment of received the pointer. In a sense, capability controls access through 

visibility which means it is impossible for a process to access a system resource if it 

is not even visible to the process. 

 

In traditional operating systems, access control can be described in two related 

mechanisms which are Authentication and Authorization. Authentication is the 

process of establishing the identity of a user. Authorization is granting the right 

access to authenticated users according to the result of authentication. Under such a 

system, it is the user’s identity that largely determines the right to perform an 

operation, or, be more precisely, it depends on the operating system’s knowledge 

upon the user in a large extend. 

 

2.4.4 Distinctiveness 

Mobile code systems share many similarities with the traditional operating 

systems. In fact the security issues in them are all related to the multiprogramming, 

specifically resource sharing. But the mobile code is different from other 

multiprogramming languages used in traditional operating systems. The protection 

mechanisms in these traditional systems can not be directly transplanted to mobile 

code systems to address the similar security needs. Several distinguishing features 

of mobile code make the security needs different from those of traditional 

multiprogramming operating systems. 

 

� Layered Protection  

 

Traditional discretionary access control [108] relies on trusted resources which 

means a user should be a known party. The access control is based on the trust to 

the origination of the codes including the user’s identity and the ownership of the 

resources. A straight simple implementation of this idea to mobile code security is 

to label every mobile code unit with a digital signature that indicating its origin. In 

this view, the idea of traditional operating system security is extended to mobile 

execution, and the access authorization is only issued to those codes whose origin is 

well-known to the host. This approach works well when the mobile program is 
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developed by a famous brand name, or when it is sent from a credible source. 

However, the approach is dysfunctional when the foreign code is written by an 

author unknown to the host or comes from an uncertain origin. The key conception 

of the Internet computing is that any party can freely share information or actively 

contact with others who have access to the Internet. It is foreseeable that in the 

future more and more useful mobile programs are going to be developed and 

distributed by parties unknown to the average users. Security solely based on 

identity cannot afford to handle such complex demanding. This difficulty was first 

articulated by Ousterhout et al [94], and then found its full expression in a paper of 

Chess [28]. 

 

Based on the above understanding, the identity or the origin of the information 

should not restrict security engineers to authorize the access. No matter what the 

programs are anonymous or not, if they are trustworthy, they should be accepted by 

a sound security infrastructure. Therefore, it is accepted as an axiom the origin of 

the program should not hamper it from being download to a computing 

environment. Thus anonymous trust is the first fundamental challenge in mobile 

code security. 

 

� Layered Protection  

 

Another fundamental aspect of mobile code system is that a mobile code system 

creates a complete multiprogramming environment above the existing operating 

system. In the environment, mobile code is able to define its own computing model, 

provide its own set of services, maintain its own resources and hence define its own 

security model. As a result, it is not usually realistic to simply treat an execution 

unit as same as just another normal process in the operating system, running in just 

another protection domain. Furthermore, our desire for platform independence will 

conflict with any approach designed particularly to the security model of an 

operating system. On the other hand, as one of the users in the underlying platform, 

a mobile code computing environment may expose some of the operating system 

resources to the visiting execution units. The mobile code security model must 

comply with the security constraints imposed by the operating system.  

 

In traditional operating systems, a process defines both the boundary for memory 
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protection and the protection domain for access control. A mobile code system 

usually occupies only one process, which in turn hosts secondary threads 

representing execution units. In order to make it possible to protect the computing 

environment process from the execution units and to protect the execution units 

from interfering each other, we should set up two protection mechanisms. One is a 

memory protection to define secondary address spaces inside the address space of 

the computing environment process. And the other is the access control mechanism 

to define secondary protection domains inside the protection domain of the 

computing environment process. Thus a parent-child relationship is formed 

between the security model of the operation system and the security model of the 

mobile code system. 

 

Layered protection is a characteristic feature in single-address-space operating 

systems like OPAL [27] and Mungi [62], also extensible operating systems like 

SPIN [17], VINO [111], and Exokernel [42]. In such kind of operating systems, 

untrusted code may be (dynamically) introduced into a privileged protection 

domain (e.g., the kernel) in order to prevent these units from exploiting the 

resources into that domain. Some recent works [30] focus on the Operating System 

community and endeavor to address the need for intra-address-space protection 

mechanisms motivated by software plug-ins, device drivers and data-driven 

security threats.  

 

� Implicit Acquisition  

 

Different from the traditional slow, manual, explicit software acquisition, the 

code mobility defines a new model of software acquisition. In the past, system 

administrators know exactly what package are installed on the system and 

announce any potential impact to users since all alternatives are reviewed and tested. 

In a mobile code system, software acquisition is completely different. A mobile 

code unit may arrive without the user’s acknowledgment. Simple activities such as 

opening an email or browsing a webpage could invoke the installation of active 

mobile code unit. Acquisition is therefore implicit, which is also a design goal. In 

such an environment, only automatable checks are allowed such as signature 

checking, program analysis, type-checking and so on. All such checking should 

take only limited time to complete. It is this time constraint acquisition process 
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established trust gradually. With the time constraint a computing environment has 

to establish the trustworthiness of a mobile program without going through the 

traditional evaluation cycle. In fact the time to establish the trust should be only a 

small part of the total execution time of the mobile program. Implicit acquisition is 

the third fundamental challenge of the mobile code security. 

  

2.5 Protection Mechanisms for Mobile Code Systems  
 

Discretion, verification, transformation, and arbitration are four kinds of 

approaches in mobile code systems protection. Most current protection mechanisms 

of existing mobile code systems can be considered as the combination of the four 

approaches. 

 

2.5.1 Discretion  

Discretion refers to the protection mechanisms which make security decisions 

based on identifying the “tokens” of trust. In particular, it turns to various 

authentication techniques [82] for help to establish the trust. Every mobile code unit 

is associated with certain digital signature(s). Once the host received a foreign 

mobile code unit the digital signature of the mobile code will be authenticated, and 

a (mechanical) process of authorization will authorize access privileges to the 

mobile code unit according to the result of authentication. The signature 

authentication in such kind of systems is assumed to be highly efficient. 

Discretion-based protection addresses the challenge of implicit acquisition pretty 

well because the signature authentication inherited in it is simple and the efficient. 

As a result, it has been studied as a general protection infrastructure [47and 63] and 

has been utilized in quite a few existing mobile code systems [54]. 

The core of discretion approach is the semantics of the signature. Eventually it is 

the meaning of a signature that determines which level of access rights is granted.  

 

A digital signature is an unforgettable token that can denote the security property 

of the signed code unit. There are three potential denotations can be attached to the 

signatures of mobile code units.  

 

Identity/Origin Semantics: This method is a direct translation of the traditional 
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discretionary access control found in many operating systems. The signature of a 

mobile code unit discloses its origin or author. The computing environment keeps a 

record of the connection between known signatures and their relevant rights. The 

performance of the schemes which based on recognizing the owners or authors of 

programs is not satisfied in establishing the anonymous trust in mobile code 

systems.  

 

Authoritative Endorsement Semantics: Giving a signature to a mobile code 

unit means that the signing party endorses the unit as being “safe”, normally it is in 

an informal sense. Certain trusted authorities will be responsible for certifying 

mobile code units in this approach. Developers submit their mobile programs to the 

trustworthy certification authorities to get the signature before the publication. 

Usually, what it means to be “safe” is informally defined by the signature, if it is 

properly defined at all. By this approach, a signature can only provide endorsement 

of the mobile code unit, but the endorsement has no formal semantics, which means 

it cannot be reduced to formally defined security properties. Because the 

endorsement is based on trust, therefore the security provided by it largely depends 

on the extent of trustworthy on the signing party.  

 

Program-Analytic Semantics: The signature denotes a formal program-analytic 

property such as type safety or invariance of a particular assertion (program 

invariant). Only when the corresponding formal property can be found in the unit, 

signature is attached to the mobile code unit. There are three conditions that will 

result the attachment of the signature: 

 

Code is trusted if it is generated by a trustworthy compiler [89 and 101].  

Code is trusted if it has been properly rewritten by a trustworthy program 

transformer [17 and 111].  

Code is trusted if it has been certified by a trustworthy program analyzer.  

 

Compare to informal endorsement, a program-analytic semantics can be more 

reliable, because it builds the trust on a formally defined, publicly available 

program certifying algorithm instead of merely by human judgment. Unfortunately, 

currently, there are only small numbers of security properties have been processed 

by formalization. Memory safety and confidentiality are the rare cases that have 
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been formalized into program-analytic terms. To further explore the space of 

application of this approach, studies are being carried on to translate more security 

properties into program-analytic terms. 

 

2.5.2 Verification  

In the verification approach to mobile code security, security policies are 

formulated as program analytic properties. Before landing the computation 

environment, in coming mobile code units must pass through a trusted program 

analyzer, usually named as a verifier whose job is to deny potentially unsafe 

programs from the various incoming units. Therefore the execution units that pass 

the analysis and reach the computation environment are guaranteed to satisfy 

certain security properties.  

 

� Verification for Memory Protection  

 

The application of the verification approach for memory protection is currently 

the most successful model. Following three examples give detail illustration.  

 

First is Typed Intermediate Language. By the using a safe intermediate language 

memory protection is achieved in Java programs [55]. Java source programs are 

compiled into the format of Java Virtual Machine (JVM) bytecode [75]. The 

bytecode format is specially designed to protect execution units from interfering 

with each other and prevent them to access the JVM’s internal state. Firstly, the 

JVM bytecode language is strictly typed. Secondly, pointer arithmetic is not 

allowed in the bytecode. Therefore, only in a type-safe manner could bytecode 

instructions access the memory. As a consequence, memory protection can be 

simplified into type-checking. All Java class files must be screened by a bytecode 

verifier before dynamically connecting to the JVM. Because the JVM bytecode is 

unstructured, data-flow analysis has to be introduced in to ensure that the type 

safety of the class file. In fact, dataflow analysis within the JVM also can be carried 

to check for other safety concerns such as operand stack overflow as well as to 

check for type safety. Therefore, runtime checks that would otherwise be needed to 

avoid operand stack overflow and ensure type safety can be safely avoided.  
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Second is Typed Assembly Language. While Java has to rely on an intermediate 

language in order to check the type information, and Necula and Lee have to resort 

to a highly expressive logical proof to capture similar information for machine code, 

Morrisett et al [52,84 and 85] demonstrated that type checking actually can be 

performed in an assembly language. Especially, it has been demonstrated by a 

typed assembly language (TAL) [84] which carries the type in formation of a rich, 

functional source language (a call-by-value variant of System F, the polymorphic 

λ-calculus augmented with products and recursion on terms). There are three 

important conclusions of this remarkable work. Firstly, it demonstrates that type 

safety can be achieved without using an abstract intermediate language, thus the 

run-time performance will be significantly reduced. In fact, type check of typed 

assembly code can be fully performed without referring to the original source pro-

gram. Secondly, the typing construct imposes almost no restrictions on optimization, 

which makes it possible to exclude the safety property of the program from the 

code compiler. Thirdly, there is an effective type-preserving procedure that can 

interpreter the source language into TAL. Compared with this work, the approach 

of Necula and Lee [87] is more general and the verification is incomplete. 

 

In summary, Java bytecode can be taken as a portable intermediate representation 

which allows attachment of type annotation in order to enforce memory protection 

statically. When it is applied solely to memory protection, proof-carrying code can 

use a very expressive logic to capture typing information for a target language, 

Therefore it can provide static typing without using an interpretive intermediate 

language. Last but not the least, static typing can be performed in a target language 

instead of resorting to an overly expressive formalism, which has been actually 

demonstrated in TAL.  

 

� Verification for Confidentiality  

 

Program-analytic approaches to the enforcement of confidentiality have received 

a lot of attention, and are relatively well-understood. Building on Bell and La 

Padula’s security model [13 and 69], the work of Dorothy Denning [38, 39 and 40] 

has laid the foundation for the study of Secure Information Flow analysis. 

The information flow model can be defined by 
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 FM = <N, P, SC, ⊕, →>                               (2-1) 

 

In the above model N is a set of logical storage objects or information receptacles. 

Elements of N may be files, or program variables. P is a set of process. SC is a set 

of security classes corresponding to disjoint classes of information. The 

class-combining operator “⊕” is an associative and commutative binary operator. 

A flow “ →” relation is defined on pairs of security classes. For classes A and B, 

A→B means if and only if information in class A is permitted to flow into class B 

[15]. 

 

The security requirement of the model is that a flow model FM is secure if and 

only if execution of a sequence of operations cannot violate the relation “→”. To 

comply with this policy, information at a given security-level is not allowed to flow 

to lower levels. A security system is composed of a set S of subjects and a disjoint 

set O of objects. Each subject s∈S is associated with a fixed security class C(s), 

denoting it clearance. Likewise, each object o∈O is associated with a fixed 

security class C(o), denoting its classification level. The security classes are 

partially ordered by a relation ≤, which forms a lattice. To avoid subjects with low 

clearance accessing sensitive data and subjects with high clearance to release 

sensitive data to low-clearance subjects, we need that a subject may only read 

objects with classification level no higher than its clearance, but may only write to 

objects with classification level no lower than its clearance. Information is always 

flowing unidirectionally from low classification source to high classification 

destination. 

 

Information flow could be explicit or implicit. Given two variables X and Y, the 

information flow from Y to X is explicit in the following command:  

X := Y + 2; 

In that command the variable X gets the information of the data stored in the 

variable Y directly. Such information flow is called explicit information flow. 

Therefore the classification level of the data in variable X should be the 

classification level of the data in variable Y. 

 

Information flow could also be implicit. Conditional statements may convert 

information into control flow just like the following commands:  
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if Y > Z then 

  X := 0; 

else  

  X := 1; 

end if 

In that conditional statement, the value of the data in the variable X depends on 

the values of the data in the variable Y and Z. Thus the variable X gets information 

from the data in the variable Y and Z indirectly and such information flow is called 

implicit information flow. Likewise, looping constructs can also cause implicit 

information flow. 

X :=0; 

while Y < 10 do  

  Y := Y + 1; 

  X := X + 2; 

end while; 

 

In the conditional statements above, the variable X gets information from the data 

in more than one variable. In such cases, the classification level of the data in the 

and thus the classification level of the data in variable X should be the one of the 

data in the variable X should be the Least Upper Bounder (LUB) of classification 

levels of the data in variables from which the variable X gets information. 

Assuming the classification levels of the data in the variable Y and Z are Ly and Lz, 

the classification level Lx of the data in the variable X should be Lx = Ly∨ Lz, where 

∨ denotes the calculation of LUB. 

 

To deal with explicit information flow, each expression is associated with a se-

cure flow type, which represents the classification level of the data item. The lattice 

structure of the classification levels induces a natural sub typing relationship among 

the secure flow types: if type τ represents a classification level at least as high as 

that of type τ’
 

then τ ≥ τ’
 

. An expression involving operands with distinct security 

types receives the least upper bound of the operands’ types as its type. For example, 

if e and e’
 

have security types τ and τ’
 

respectively, and τ ≤ τ’, then e + e’
 

can be 

assigned security type τ’
 

.Each variable also has a type τ var, indicating that it holds 

contents with type no higher than τ. Explicit leaking is then prevented by requiring 

that assignment of the form X := a is well-typed only if X has type τ var and a has 
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type no higher than τ. To formally express this, we allow expression type τ to be 

coerced to any type τ’
 

if τ ≤ τ’, and then require that X := a is well-typed if and only 

if X has type τ var and a has type τ. With this arrangement, the above example code 

that explicitly leaks information will not be well-typed.  

 

To handle implicit information flow, every command is associated with a type τ 

com. Intuitively, a command has type τ com if every variable that is being assigned 

in the command has type τ’
 

var where τ ≤ τ’
 

. That is, τ is a lower bound for the 

security-levels of the variables being assigned in the command. The idea is that if a 

conditional or iterative construct involves a condition expression of type τ then 

commands in the body should not assign to variables with security-levels lower 

than τ. To make this work, we need two more sub typing rules. For the variables, τ 

var ≤ τ’
 

var if and only if τ ≤ τ’
 

. For the commands, the opposite must hold: τ com ≤ 

τ’
 

com if and only if τ’
 

≤ τ. Again, expressions can be freely coerced to their super 

types. 

 

The verification can be done statically or dynamically. Static verification 

approaches analyze a program prior to the execution and judge whether the 

program is secure or not, while the dynamic ones implement the verification of the 

program during the run-time. The static approaches cannot achieve satisfying 

verification precision in implicit information transferring because of the inherent 

limitation of static verification approaches that it is impossible for them to judge 

which branch of the implicit information transferring will be executed in runtime. 

Furthermore the static approaches cannot trace the information flow in the 

exception handling because exceptions are thrown dynamically during the 

execution, which makes the static approaches lose the practicality. While since the 

dynamic approaches implement the verification during the run-time, they can get 

better verification precision and trace the information flow in exception handling. 

The disadvantage of dynamic approaches is that they cost more run-time overhead 

than the static ones. 

 

2.5.3 Transformation  

Sometimes a mobile code representation may not be well tailored for execution 

although it is good for transportation (e.g., platform independent, compact for 
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transport efficiency). In many mobile code systems, code units are transported in 

the byte-code form of virtual machine. The bytecode then is transformed into a 

native code for efficient execution just after it arrived to a host. Now such a 

just-in-time (JIT) compilation [120] becomes an important feature of mobile code 

systems like Java [55] and Omniware [84]. The Link-time code generation also 

adds portability to the mobile code systems [85]. Yet, dynamic code generation can 

also be considered as a protection mechanism. Mobile code units are expressed in a 

high level representation (e.g., a type-safe intermediate language as in Java) in 

which unsafe behavior cannot be expressed. While arriving at the host, the code 

units are converted to a format which can be executed on the host machine directly. 

Because the code generation is completed by a trusted compiler located on the host, 

and the unsafe behaviors cannot be expressed in the source code, the generated 

code can be considered as safe.  

 

Transformation can also be used to tailor an untrusted code into a more secure 

form in a similar way. In contrast to the dynamic code generation, unsafe behaviors 

can be expressed in the migrated code. The code unit is statically analyzed while 

arriving at the host, and extra protection code is injected at program points where 

the security cannot be guaranteed.  

 

� Transformation for Memory Protection 

 

It was at early 1970’s, the method of code rewriting has been applied to memory 

protection within a single address space [115]. Recently, the Omniware mobile 

code system [79] starts to use transformation to implement memory protection for 

untrusted mobile code units. Omniware mobile code units are transported as 

bytecode on the Omniware Virtual Machine (OmniVM) [128]. OmniVM is 

designed to resemble an RISC architecture, thus it provides efficient performance, 

simple implementation, and retarget ability. OmniVM divides its address space into 

segments, in order to ensure that execution units can only access those segments 

which they have been authorization to assess. Software-based Fault Isolation (SFI) 

is introduced in [83]. The basic idea of SFI is to rewrite untrusted mobile code units 

thus to turn it into versions cancel the access to unauthorized segments. Each 

memory address is divided into two parts, namely, a segment identifier and an 

offset within the segment. There are two possible rewriting rules can be formulated 



 29 

as below:  

 

Segment Matching: For every memory reference, guard code is inserted before 

the reference has been initiated by the instructions. Initiatively the inserted code 

checks whether the referred segment matches the current segment. A memory fault 

will be raised if it failed in the check.  

 

Sandboxing: For every memory reference, the segment identifier of the target 

address is dynamically overwritten by the identifier of the current segment.  

 

The systematic application of either rule to every memory reference in a program 

guarantees that no interference occurs between disjoint segments.  

Experience indicates that observable run-time overhead is caused by this 

approach because additional code is introduced by the transformation. Despite this 

overhead, native code which is executed in this way can run at a speed comparable 

to the speed of original code execution [83], though not as sane efficient as a the 

proof-carrying code version [88].  

In extensible operating systems VINO [111] and Exo kernel [129], users are 

allowed to dynamically download untrusted extension code into the kernel address 

space to modify the behavior of the operating systems. Untrusted extension code 

units are subject to SFI transformation before downloading to protect the 

integration of the kernel address space. 

 

2.5.4 Arbitration  

Another way to completely protect a host is to cut the “direct” contact between 

the host and untrusted execution units. Once an untrusted execution unit requests 

the execution of an operation, the arbitrator, as a trusted party is called in to carry 

out the operation of the execution unit. Unsafe operations can be fully blocked by 

the arbitrator which can restrict the kind of operations visible to the execution unit, 

and can examine the client’s run-time state. The cost of such flexibility is usually a 

considerable run-time overhead.  

 

Arbitration can be used to enforce both memory protection and access control. 

An interpreter is often used to enforce the memory protection. An interposition is 
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frequently used to enforce the access control. Each of them will be examined in 

turn.  

 

� Memory Protection by Interpreter  

 

Using an interpreter to conduct computation in a safe and portable way has 

become very popular. Mobile code languages like Java [55], Safe Tcl [94], 

Scheme48 [100], and Telescript [62], JavaScript, all include the interpretation of 

some source or intermediate languages. The mechanism of interpreter approach to 

achieve memory protection can be explained in two ways:  

 

Restricting expressiveness: A safe intermediate representation can be defined 

for mobile code units. With the limitation of the language, some unsafe operations 

cannot be expressed, while some can be statically checked. Take the JVM bytecode 

representation [75] as an example, in which privileged native instructions cannot be 

expressed; no pointer arithmetic; the language is strictly typed; interactions with 

host resources are performed through a public application programming interface 

(API). Therefore, memory interference can be avoided. 

 

Dynamic checking: The interpreter can screen out all potentially dangerous 

moves by run-time checking because only through the arbitration of the interpreter 

could the execution unit interact with the host CPU. For an example, the JVM 

checks against null pointer dereferencing, out-of-bound array access, and illegal 

type-cast [75].  

 

� Access Control by Interposition  

 

Interposition means to insert trusted arbitration code in the form of a reference 

monitor [95] between a protected service and the entry point of the service. In a 

traditional operating system settings and processes usually access system resources 

via an on-bypass system which is called interface. Any attempts to access the 

protected resources are therefore subjected to the monitoring of the trusted 

arbitration code before they can reach the target services. Access control policies 

can be programmed into the arbitration code by which inappropriate access to the 

service can be screened out with flexibility. There are several implementations of 
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interposition in mobile code systems: application wrappers, reference monitors, 

reference monitor in lining, and name resolution control.  

 

Application wrappers. Application wrappers are software containers which are 

designed for controlling the interactions between untrusted programs and their 

execution environments. It was designed to retrofit arbitration code into a legacy 

software system in a non-intrusive manner.  

 

Janus [111] is an application wrapper especially customized for protecting a host 

against insecure mobile code computing environments. The reflection of the design 

of Janus is that an untrusted process is not able to harm the host if its restriction of 

access to the underlying operating system has been placed appropriately. By using 

the process tracing facilities and the proc virtual file system in Solaris, Janus creates 

a user-level sandbox that put all system calls made by an untrusted process under 

the monitoring. Since legacy computing environments which have unreliable 

protection mechanisms (e.g., an old version of ghost view or a buggy, therefore 

Java-enabled web browser) can be executed inside the Janus sandbox, the Janus 

monitor can effectively block out unsafe system access initiated by the execution 

units running inside the legacy computing environment. Users may even supply 

their own policy module to specify which system calls should be allowed, which 

ones should be denied. A function must be called to determine what to do in 

deferent conditions.  

 

Janus can provide effective protection to the host from any unreliable computing 

environment without requiring modification to the kernel and the computing 

environment. It is a good example to provide a practical solution to a very practical 

problem. However, even disregarding its platform-dependent nature, Janus can 

hardly address the layered protection problem. Firstly, Janus does not allow the 

computing environment to define a different protection domain for each execution 

unit. Secondly, the kind of security policy expressed by Janus is limited because it 

ignores the semantics of the computing environment. For an instance, when a JVM 

is running inside a Janus sandbox, the policy modules of Janus is not able to figure 

out the internal state of the JVM, and have to make the decision of their access 

control without understanding the state of JVM. In a word, layered protection can 

only be adequately addressed when interposing is a built-in feature of the 
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computing environment instead of being a retrofitted patch of the operating system.  

 

Reference Monitors. The security manager and stack inspection are the two 

mechanisms composed the Java reference monitor. All accesses to operating system 

services are isolated in the standard Java API. Whenever a service routine is 

invoked, the API transfers control to a corresponding monitor method of the global 

security manager object. The monitor method will inspect the Java run-time stack 

thus to conclude if the call is safe or not. If the monitor method does not allow the 

access, either an exception will then be created, or control is returned to the service 

routine to execute the original request. The security authority may oversee these 

monitor methods of the security manager class in order to customize the security 

policy of the JVM.  

 

The Java security model allows one to define intricate security policies. For 

example, stack inspection allows the security manager use the micro control to 

decide what access level will be granted to the requestor. There are several 

drawbacks of this approach listed as follows. Firstly, the security manager needs to 

implement complex stack inspection logic to differentiate among accesses initiated 

by different execution units. From a software engineering point of view, both the 

construction and maintenance of this logic are difficult and fallible. Secondly, a 

procedure based definition of security policy is not easy to be understood. A 

popular solution is to introduce traditional access control lists in the arbitration code 

(asin Java [46] and Agent Tcl [56]). Subsequently, Netscape has attempted to 

extend the Java stack inspection mechanism by providing stack annotation which 

simplifies the logic for access right checking [123]. This extended version of stack 

inspection is later on proven by Wallach, Appel and Felten [121 and 122] to be 

equivalent to formal deduction in ABLP logic [1].  

 

Reference Monitor in Lining. Code rewriting can be applied at load time to 

introduce monitoring code into an untrusted program. Here, the arbitration code 

does not reside at the entry points of privileged services, but instead is injected into 

the program itself to detect and avoid misuse of privileged services. Specifically, 

this strategy has been used for implementing the Java stack inspection [43and 122]. 

SFI has also been applied to enforce security policies expressed as security 

automata [44]. Besides a number of other efforts are involved in applying load time 
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code rewriting to enforce high level access control policies [46, 102, 103 and125].  

 

Name Resolution Control. In this approach, arbitration occurs while dynamic 

linking happens. The name resolution provides a relative simple way to offer the 

potential of centralizing all security logic into a single mechanism. 

Safe-Tcl [94] is a security-aware extension of the popular Tcl scripting language 

[100]. Protection is achieved by three mechanisms — safe interpreters, aliases, and 

hidden commands. Similar to other shell scripting languages, Tcl is a 

command-based language which means the access to operating system facilities are 

provided through a set of commands. Safe-Tcl defines a padded cell security model, 

in which each individual execution unit is executed by its own interpreter. All 

system services are available in a trusted, master interpreter. When an untrusted 

script is executed, it is sandboxed in a separate, untrusted, safe interpreter. Who acts 

just as a separate name space. Privileged commands can be embedded in the safe 

interpreter in order to prevent untrusted script from unauthorized access to system 

resources. Additionally, to achieve the finer-grained control, a command may be 

aliased. Such as the name of a privileged command in the safe interpreter maybe 

“overshadowed” by a trusted arbitration routine in the master interpreter. If the 

access is granted the arbitration routine decides at run-time. If the access is 

permitted, it delegates the original call to the overshadowed command in the master 

interpreter.  

 

The padded cell model refers to a form of interposition called name resolution 

control. In this approach the mechanism of name resolution is to control the 

selective access to the privileged services. In essence, name resolution control 

includes two component mechanisms. Firstly, granting of capabilities is realized by 

name visibility control. The notion of a safe interpreter, which is essentially a 

namespace, coincides with that of a protection domain. A privileged service can be 

accessed only if it can be named in the safe interpreter. It is easy for one to define a 

different access policy for each script because each script is assigned to separate 

name space and the name can be encrypted as well. Secondly, message interception 

selectively binds names of privileged services to wrapper code that protects the 

entry points of those services. Here, accessibility is not controlled by visibility, but 

instead by dynamic checking of the possession of rights.  
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Scheme [94 and 100] is another early mobile code system that set up its primary 

protection mechanism based on the approach of name resolution control. In Scheme, 

a procedure is considered to be a function closure, which contains a lambda 

expression and a binding environment. When a procedure is triggered, the only 

visible objects inside the lambda expression are the actual arguments and the values 

of the names in the lexical environment. Scheme48 allows programs to construct 

arbitrary binding environments, thus to execute untrusted code inside these 

carefully-crafted special environment. During the course of constructing such 

environments, the names of privileged procedures can be encrypted or be renamed 

to be invisible to arbitration routines.  

 

Wallach et al [97] describe a way to implement name resolution control in the 

context of Java. In Java, a name space coincides with a class loader. A class name 

in one class loader represents a different class than another class with the same 

name in a different class loader. The class loader was originally conceived for name 

space partitioning so that there will be no name conflict among separate execution 

units. Taking advantage of this design, one may create a subclass of the standard 

class loader class, in which all requests for name resolution are monitored. As a 

result, if a privileged name is to be hidden, the class loader can throw an exception 

when the name is resolved. Aliasing can be simulated by resolving the names of 

privileged classes to arbitration classes.  

 

The extensible operating system SPIN [17] also models protection domains by 

name spaces. All extension code in SPIN is written in the type-safe language 

Modula 3. Capabilities are directly modeled as pointers. Therefore, if a name is 

well-typed in a code unit, then the resource or service it refers to will be accessible. 

Typing thus provides a means of expressing conditional visibility of a symbol. 

Fine-grained protection is achieved by allowing users to manipulate name spaces. 

Name spaces can be created dynamically, and code units are executed within the 

confine of that name space, thus restricting its capabilities. An interesting feature is 

that name spaces can be extended by the Combine operation, which creates a union 

of two name spaces. In general, a system that uses name resolution control for 

protection needs ways to construct and extend name spaces.  

 

Besides the advantage of implementing name space in modeling protection 
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domains, there are still some potential problems within this approach. One of them 

is that there is no way of revoking capability. The J-Kernel [101] is a Java security 

kernel that provides a capability revocation mechanism within a name-space 

domain framework.  
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3 Java Virtual Machine and Bytecode 

3.1 Java Language  
 

Platform independence, security, and network-mobility are three facets of Java's 

architecture that work together to make Java fit for the emerging distributed 

computing environment of mobile code systems. Among these three aspects the 

network-mobility of the code and objects is more important compared with the 

other two. The same code can be sent to all the computers and devices interlinked 

together in the network. Objects can be exchanged among the various components 

of a distributed system which can be executed on different kinds of hardware. The 

built-in security framework of Java also helps to make the software 

network-mobility more practical. By reducing the risks, the trust in a new paradigm 

of network-mobile software is build up with the help of the security framework. 

 

A single Java program can run on various computers and devices without being 

changed to adapt itself to the running environment. Compared with the programs 

compiled specially for some certain hardware or an operating system, it is much 

easier and cheaper to develop, administrate and maintain the platform independence 

Java programs. 

 

Networks provide a venue for malicious programmers to leak or tamper 

information, destroy computing resources, or simply do something annoying. Virus 

producers, for example, may place malicious piece of wares on the network which 

can be downloaded by unsuspecting users. Java addresses the security challenge by 

providing an environment in which programs downloaded across a network can be 

run with security in customizable degrees. 

 

Robustness of simple program is one of the security aspects. Just like devious 

code written by malicious programmers, buggy code written by well-meaning 

programmers also can bring troubles such as potentially destroying information, 

monopolizing compute cycles, or causing systems to crash. Java's architecture 
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guarantees a certain level of program robustness by preventing certain types of 

pernicious bugs, such as memory corruption, from ever occurring in Java programs. 

That guarantees that mobile code will not inadvertently crash.  

 

By enabling the transmission of binary code in small pieces across networks, 

Java takes advantage of distribution computing. Compared with other programs that 

are not network-mobile, the special feature of Java program makes it easier and 

cheaper to be delivered.  

 

The emerging of mobile code provides another opportunity that both code and 

state can transmits across the network with the mobile objects. Java achieved object 

mobility in its APIs for object serialization and RMI (Remote Method Invocation). 

Based on Java's underlying architecture, the object serialization and RMI together 

provide an infrastructure that allows the objects to be shared by various components 

of distributed systems. The network-mobility of objects makes new models possible 

for distributed systems programming, therefore the benefits of object-oriented 

programming are effectively brought to the network.  

 

Figure 3-1. The Java programming environment. 
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Figure 3-1 shows the relationship among various parts of Java programs. Java 

program source files written in the Java programming language are compiled into 

Java class files in the form of bytecode. Then those class files are loaded and 

executed in Java virtual machine (the local JVM or a remote JVM). During the 

execution, the Java bytecode accesses system resources (such as I/O) by calling 

methods in the classes implementing the Java Application Programming Interface 

(Java API). 

 

A “platform” is formed by the Java virtual machine and Java API together, on 

which all the Java programs are compiled. More than to be called as the Java 

runtime system, the combination of the Java virtual machine and the Java APIs is 

also called as the Java Platform (or, starting with version 1.2, the Java 2 Platform). 

It is because the Java platform can be implemented in software that makes it 

possible for Java programs to run on many different kinds of computers.  

 

3.2 Java Virtual Machine  
 

The core of Java's network-orientation is the Java virtual machine. All the three 

features, platform independence, security, and network-mobility, of Java's 

network-oriented architecture are supported by JVM. 

 

The JVM is a stack machine manipulating an operand stack and a set of local 

registers for each method and a heap containing object instances. Its specification 

defines certain essential features that every Java virtual machine must have, while 

leaves many options to the designers of each implementation. For example, all Java 

virtual machines must be able to execute Java bytecode programs, while developers 

can choose any technique to make it happen. Further, the feature of flexibility of the 

Java virtual machine's specification enables it to be implemented on a wide variety 

of computers and devices.  

 

A major job of Java virtual machine is to load class files and execute the 

bytecodes contained in those files. As shown in Figure 3-2, the Java virtual 

machine contains a class loader, which loads class files from both the user’s 

program and the Java API, and a execute engine, which actually executes the 

bytecode loaded by the class loader. Only those class files from the Java API that 



 39 

are actually needed by a running program are loaded into the virtual machine. The 

bytecodes are executed in an execution engine.  

 

 
Figure 3-2. A basic block diagram of the Java virtual machine. 
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that really matters to performance. Finally, in a Java virtual machine built on the 

top of a chip that executes Java bytecode natively, the execution engine is actually 

embedded in the chip.  

 

All Java methods can be divided into two kinds: Java method and native method. 

A Java method is written in the Java language, compiled to bytecode, and stored in 

class files. A native method is written in other languages, such as C, C++, or 

assembly, and compiled to the native machine code of a particular processor. Java 

methods are platform independent, while native methods are stored in a 

dynamically linked library whose exact form is platform specific. During the 

execution of bytecode on a Java virtual machine that is implemented in software on 

the top of the host operating system, an interaction between the Java program and 

the host happens when Java program invokes the native methods. At that time the 

dynamic library that contains the native method will be loaded on the virtual 

machine and the native method then invoked. As it is shown in Figure 3-2, native 

methods are the connection between a Java program and an underlying host 

operating system.  

 

3.3 Java Bytecode and Instruction Set 
 

3.3.1 Bytecode  

For analyzing bytecode program, we should understand the format of the 

program in the form of bytecode. Java programs consist of a set of classes. Each 

class is stored in one class file, which has the ClassFile  structure as shown in 

Figure 3-3. 

 

    ClassFile { 

     u4 magic; 

     u2 minor_version; 

     u2 major_version; 

     u2 constant_pool_count; 

     cp_info constant_pool[constant_pool_count-1]; 

     u2 access_flags; 

     u2 this_class; 
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     u2 super_class; 

     u2 interfaces_count; 

     u2 interfaces[interfaces_count]; 

     u2 fields_count; 

     field_info fields[fields_count]; 

     u2 methods_count; 

     method_info methods[methods_count]; 

     u2 attributes_count; 

     attribute_info attributes[attributes_count]; 

    } 

Figure 3-3. The format of class file. 

 

magic:  

The magic  item supplies the magic number identifying the class file format; it 

has the value 0xCAFEBABE.  

 

minor_version, major_version:  

The values of the minor_version  and major_version  items are the 

minor and major version numbers of this class file. Together, a major and a minor 

version number determine the version of the class file format. If a class file has 

major version number M and minor version number m, we denote the version of its 

class file format as M.m. Thus, class file format versions may be ordered 

lexicographically, for example, 1.5 < 2.0 < 2.1.  

A Java virtual machine implementation can support a class file format of version 

v if and only if v lies in some contiguous range Mi.0 ≤v ≤Mj.m. Only Sun can 

specify what range of versions a Java virtual machine implementation conforming 

to a certain release level of the Java platform may support. 

 

constant_pool_count: 

The value of the constant_pool_count  item is equal to the number of 

entries in the constant_pool  table plus one. A constant_pool  index is 

considered valid if it is greater than zero and less than constant_pool_count , 

with the exception for constants of type long and double.  

 

constant_pool[]: 
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The constant_pool  is a table of structures representing various string 

constants, class and interface names, field names, and other constants that are 

referred to within the ClassFile  structure and its substructures. The format of 

each constant_pool  table entry is indicated by its first "tag" byte.  

The constant_pool  table is indexed from 1 to constant_pool_count-1.  

 

access_flags: 

The value of the access_flags  item is a mask of flags used to denote access 

permissions to and properties of this class or interface. 

An interface is distinguished by its ACC_INTERFACE flag being set. If its 

ACC_INTERFACE flag is not set, this class file defines a class, not an interface.  

If the ACC_INTERFACE flag of this class file is set, its ACC_ABSTRACT flag 

must also be set and its ACC_PUBLIC flag may be set. Such a class file may not 

have any of the other flags.  

If the ACC_INTERFACE flag of this class file is not set, it may have any of the 

other flags. However, such a class file cannot have both its ACC_FINAL and 

ACC_ABSTRACT flags set.  

The setting of the ACC_SUPER flag indicates which of two alternative 

semantics for its invokespecial  instruction the Java virtual machine is to 

express; the ACC_SUPER flag exists for backward compatibility for code compiled 

by Sun's older compilers for the Java programming language. All new 

implementations of the Java virtual machine should implement the semantics for 

invokespecial  documented in this specification. All new compilers to the 

instruction set of the Java virtual machine should set the ACC_SUPER flag. Sun's 

older compilers generated ClassFile  flags with ACC_SUPER unset. Sun's older 

Java virtual machine implementations ignore the flag if it is set.  

All bits of the access_flags  item not assigned are reserved for future use. 

They should be set to zero in generated class files and should be ignored by Java 

virtual machine implementations.  

 

this_class: 

The value of the this_class  item must be a valid index into the 

constant_pool  table. The constant_pool  entry at that index must be a 

CONSTANT_Class_info  structure representing the class or interface defined by 

this class file.  
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super_class : 

For a class, the value of the super_class  item either must be zero or must be 

a valid index into the constant_pool  table. If the value of the super_class  

item is nonzero, the constant_pool  entry at that index must be a 

CONSTANT_Class_info  structure representing the direct super class of the 

class defined by this class file. Neither the direct super class nor any of its super 

classes may be a final class.  

If the value of the super_class item is zero, then this class file must represent the 

class Object, the only class or interface without a direct super class.  

For an interface, the value of the super_class item must always be a valid index 

into the constant_pool  table. The constant_pool  entry at that index must 

be a CONSTANT_Class_info  structure representing the class Object. 

  

interfaces_count: 

The value of the interfaces_count  item gives the number of direct super 

interfaces of this class or interface type.  

 

interfaces[]: 

Each value in the interfaces array must be a valid index into the 

constant_pool  table. The constant_pool  entry at each value of 

interfaces[i], where 0 ≤ i < interfaces_count, must be a 

CONSTANT_Class_info   structure representing an interface that is a direct 

super interface of this class or interface type, in the left-to-right order given in the 

source for the type.  

 

fields_count : 

The value of the fields_count  item gives the number of field_info  

structures in the fields table. The field_info structures represent all fields, both 

class variables and instance variables, declared by this class or interface type.  

 

fields[] : 

Each value in the fields table must be a field_info  structure giving a 

complete description of a field in this class or interface. The fields table includes 

only those fields that are declared by this class or interface. It does not include 

items representing fields that are inherited from super classes or super interfaces.  
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methods_count: 

The value of the methods_count  item gives the number of method_info  

structures in the methods table.  

 

methods[]: 

Each value in the methods table must be a method_info  structure giving a 

complete description of a method in this class or interface. If the method is not 

native or abstract, the Java virtual machine instructions implementing the method 

are also supplied.  

The method_info  structures represent all methods declared by this class or 

interface type, including instance methods, class (static) methods, instance 

initialization methods, and any class or interface initialization method. The methods 

table does not include items representing methods that are inherited from super 

classes or super interfaces.  

 

attributes_count:  

The value of the attributes_count  item gives the number of attributes in 

the attributes table of this class.  

 

attributes[]: 

Each value of the attributes table must be an attribute structure.  

The only attributes defined by the Java Virtual Machine specification as 

appearing in the attributes table of a ClassFile  structure are the SourceFile  

attribute and the Deprecated attribute.  

A Java virtual machine implementation is required to silently ignore any or all 

attributes in the attributes table of a ClassFile  structure that it does not 

recognize. Attributes not defined in this specification are not allowed to affect the 

semantics of the class file, but only to provide additional descriptive information.  

 

In Figure 3-4 and Figure 3-5, we give one example of the result of a Java 

program complied into bytecode and the definition of the class file. 
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Figure 3-4. Java source code and bytecode. 

 

 

 

 

 

 

 

 

 

Source code: 

class Act { 

public static void doMathForever() { 

      int i = 0; 

      for (;;) { 

            i += 1; 

            i *= 2; 

        } 

    } 

} 
 

Bytecode: 

CA FE BA BE 00 03 00 2D 00 11 07 00 07 

07 00 10 0A 00 02 00 04 0C 00 06 00 05 01 

00 03 28 29 56 01 00 06 3C 69 6E 69 74 3E 

01 00 03 41 63 74 01 00 08 41 63 74 2E 6A 

61 76 61 01 00 04 43 6F 64 65 01 00 0D 43 

6F 6E 73 74 61 6E 74 56 61 6C 75 65 01 00 

0A 45 78 63 65 70 74 69 6F 6E 73 01 00 0F 

4C 69 6E 65 4E 75 6D 62 65 72 54 61 62 6C 

65 01 00 0E 4C 6F 63 61 6C 56 61 72 69 61 

62 6C 65 73 01 00 0A 53 6F 75 72 63 65 46 

69 6C 65 01 00 0D 64 6F 4D 61 74 68 46 6F 

72 65 76 65 72 01 00 10 6A 61 76 61 2F 6C 

61 6E 67 2F 4F 62 6A 65 63 74 00 20 00 01 

00 02 00 00 00 00 00 02 00 09 00 0F 00 05 

00 01 00 09 00 00 00 30 00 02 00 01 00 00 

00 0C 03 3B 84 00 01 1A 05 68 3B A7 FF 

F9 00 00 00 01 00 0C 00 00 00 12 00 04 00 

00 00 05 00 02 00 07 00 05 00 08 00 09 00 

06 00 00 00 06 00 05 00 01 00 09 00 00 00 

1D 00 01 00 01 00 00 00 05 2A B7 00 03 B1 

00 00 00 01 00 0C 00 00 00 06 00 01 00 00 

00 02 00 01 00 0E 00 00 00 02 00 08 



 46

hex bytes   name 

---------   ---- 

CAFEBABE    magic 

0003     minor_version 

002D     major_version 

0011                constant_pool_count 

07     tag 

0007     name_index 

07     tag 

0010   name_index 

0A     tag 

0002     class_index 

0004     name_and_type_index 

0C     tag 

0006     name_index 

0005     descriptor_index 

01       tag 

0003   length 

282956   "()V" bytes[length] 

01       tag 

0006   length 

3C696E69743E  "<init>" bytes[length] 

01    tag 

0003   length 

416374   "Act"  bytes[length] 

01       tag 

000B   length 

736E697065742E6A617661 "Act.java" bytes[length] 

01    tag 

0004   length 

436F6465   "Code"  bytes[length] 

01     tag 

000D     length 

436F6E7374616E7456616C7565  "ConstantValue"  bytes[length] 

01       tag 
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000A   length 

457863657074696F6E73 "Exceptions" bytes[length] 

01       tag 

000F   length 

4C696E654E756D6265725461626C65    "LineNumberTable"   bytes[length] 

01    tag 

000E   length 

4C6F63616C5661726961626C6573 "LocalVariables"  bytes[length] 

01    tag 

000A   length 

536F7572636546696C65 "SourceFile" bytes[length]  

01     tag 

000D   length 

646F4D617468466F7265766572 "doMathForever" bytes[length] 

01    tag 

0010   length 

6A6176612F6C616E672F4F626A656374  "java/lang/Object" bytes[length]  

0020   access_flags 

0001   this_class 

0002   super_class 

0000   interfaces_count 

0000   fields_count 

0002   methods_count 

0009   access_flags 

000F   name_index 

0005   descriptor_index 

0001   attributes_count 

0009   attribute_name_index 

00000030   length 

0002   max_stack 

0001   max_locals 

0000000C   code_length 

033B8400011A05683BA7FFF9 code[code_length] 

0000   exception_table_length 

0001   attributes_count 
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000C   attribute_name_index 

00000012   attribute_length 

0004   line_number_table_length 

0000   start_pc  iconst_0, istore_0 

0005   line_number int i = 0; 

0002   start_pc  iinc 0 1 

0007   line_number i += 1 

0005   start_pc  iload_0, iconst_2, imul, istore_0 

0008   line_number i *= 2 

0009   start_pc  goto 2 

0006   line_number while (true) { 

0000   access_flags 

0006   name_index 

0005   descriptor_index 

0001   attributes_count 

0009   attribute_name_index 

0000001D   attribute_length 

0001   max_stack 

0001   max_locals 

00000005   code_length 

2AB70003B1  code[code_length] 

0000   exception_table_length 

0001   attributes_count 

000C   attribute_name_index 

00000006   attribute_length 

0001     line_number_table_length 

0000   start_pc  aload_0, invokespecial #3, return 

0002   line_number class Act { 

0001   attributes_count 

000E   attribute_name_index 

00000002   attribute_length 

0008   sourcefile_index 

 

Figure 3-5. The definition of the class Act. 
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3.3.2 Instruction Set  

A method's bytecode stream is a sequence of instructions for the Java virtual 

machine. Each instruction consists of a one-byte opcode followed by zero or more 

operands. The opcode indicates the operation to be performed. Operands supply 

extra information needed by the Java virtual machine to perform the operation 

specified by the opcode. The opcode itself indicates whether or not it is followed by 

operands, and the form the operands (if any) take. Many Java virtual machine 

instructions take no operands, and therefore consist only of an opcode. Depending 

upon the opcode, the virtual machine may refer to data stored in other areas in 

addition to (or instead of) operands that trail the opcode. When it executes an 

instruction, the virtual machine may use entries in the current constant pool, entries 

in the current frame's local variables, or values sitting on the top of the current 

frame's operand stack.  

 

The JVM is a stack-oriented interpreter that creates a local stack frame of fixed 

size for every method invocation. The size of the local stack has to be computed by 

the compiler. Values may also be stored intermediately in a frame area containing 

local variables which can be used like a set of registers. These local variables are 

numbered from 0 to 65535, i.e. you have a maximum of 65536 of local variables. 

The stack frames of caller and callee method are overlapping, i.e. the caller pushes 

arguments onto the operand stack and the called method receives them in local 

variables. 

 

The byte code instruction set currently consists of 204 instructions, 44 opcodes 

are marked as reserved and may be used for future extensions or intermediate 

optimizations within the Virtual Machine. The instruction set can be roughly 

grouped as follows: 

 

� Stack operations: Constants can be pushed onto the stack either by loading 

them from the constant pool with the ldc instruction or with special 

“short-cut” instructions where the operand is encoded into the instructions, 

e.g. iconst 0 or bipush (push byte value). 

 

� Arithmetic operations: The instruction set of the Java Virtual Machine 
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distinguishes its operand types using different instructions to operate on 

values of specific type. Arithmetic operations starting with i , for example, 

denote an integer operation and the instruction iadd adds two integers and 

pushes the result back on the stack. The Java types boolean , byte , 

short , and char are handled as integers by the JVM. 

 

� Control flow: There are branch instructions like goto and if icmpeq , 

which compares two integers for equality. There is also a jsr (jump 

sub-routine) and ret pair of instructions that is used to implement the 

finally clause of try-catch blocks. Exceptions may be thrown with 

the athrow instruction. Branch targets are coded as offsets from the current 

byte code position, i.e. with an integer number. 

 

� Load and store operations for local variables like iload and istore . 

There are also array operations like iastore which stores an integer value 

into an array.  

 

� Field access: The value of an instance field may be retrieved with 

getfield and written with putfield . For static fields, there are 

getstatic and putstatic counterparts. 

 

� Method invocation: Methods may either be called via static references with 

invokestatic or be bound virtually with the invokevirtual 

instruction. Super class methods and private methods are invoked with 

invokespecial . 

 

� Object allocation: Class instances are allocated with the new instruction, 

arrays of basic type like int[] with newarray , arrays of references like 

String[][] with anewarray or multianewarray . 

 

� Conversion and type checking: For stack operands of basic type there exist 

casting operations like f2i which converts a float value into an integer. The 

validity of a type cast may be checked with checkcast and the 

instanceof operator can be directly mapped to the equally named 

instruction. 
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Most instructions have a fixed length, but there are also some variable-length 

instructions: In particular, the lookupswitch and tableswitch instructions, 

which are used to implement switch() statements. Since the number of case 

clauses may vary, these instructions contain a variable number of statements. 

 

αload x Push the value with type α of the register x onto the 

operand stack 

αstore x Pop a value with a type α off the stack and store it to local 

register x. 

αipush Push a constant onto the operand stack 

αconst d Push constant d with type α onto the operand stack. 

pop Pop top operand stack element 

dup   Duplicate top operand stack element 

αop Pop two operands with type α off the operand stack, 

perform the operation op ∊ {add, mult, compare .. }, and 

push the result onto the stack. 

ifcond j Pop a value off the operand stack, and evaluate it against 

the condition cond ∊ { eq, ge, null, ... }; branch to j if the 

value satisfies cond. 

goto j Jump to j. 

getfield C.f Pop a reference to an object of class C off the operand 

stack; fetch the object’s field f and put it onto the operand 

stack. 

putfield C.f Pop a value k and a reference to an object of class C from 

the operand stack; set field f of the object to k. 

invoke C.mt Pop value k and a reference r to an object of class C from 

the operand stack; invoke method C.mt of the referenced 

object with actual parameter k 

αreturn Pop the α value off the operand stack and return it from 

the method. 

new C Create an instance of class C and push a reference 

to this instance on the stack 

 

Figure 3-6. JVM Instructions set. 
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Figure 3-6 summarizes the instruction set of the Java virtual machine. A specific 

instruction, with type information, is built by replacing the α in the instruction 

template in the opcode column by the letter in the type column. For instance, iload 

represents loading an integer value, aload represents loading an object.   

 

The abstract execution engine runs one instruction at a time during the execution 

of Java bytecode. This process takes place for each thread (execution engine 

instance) of the application running in the Java virtual machine. An execution 

engine fetches an opcode and, if that opcode has operands, fetches the operands. It 

executes the action requested by the opcode and its operands, and then fetches 

another opcode. Execution of bytecodes continues until a thread completes either 

by returning from its starting method or by not catching a thrown exception.  

 

From time to time, the execution engine may encounter an instruction that 

requests a native method invocation. On such occasions, the execution engine will 

dutifully attempt to invoke that native method. When the native method returns (if 

it completes normally, not by throwing an exception), the execution engine will 

continue executing the next instruction in the bytecode stream.  

 

One way to think of native methods, therefore, is as programmer-customized 

extensions to the Java virtual machine's instruction set. If an instruction requests an 

invocation of a native method, the execution engine invokes the native method. 

Running the native method is how the Java virtual machine executes the instruction. 

When the native method returns, the virtual machine moves on to the next 

instruction. If the native method completes abruptly (by throwing an exception), the 

virtual machine follows the same steps to handle the exception as it does when any 

instruction throws an exception.  

 

A part of the job of executing an instruction is determining the next instruction to 

execute. An execution engine determines the next opcode to fetch in one of three 

ways. For many instructions, the next opcode to be executed directly follows the 

current opcode and its operands, if any, in the bytecode stream. For some 

instructions, such as goto  or return , the execution engine determines the next 

opcode as part of its execution of the current instruction. If an instruction throws an 

exception, the execution engine determines the next opcode to fetch by searching 
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for an appropriate catch clause.  

 

Several instructions can throw exceptions. The instruction athrow , for example, 

throws an exception explicitly. This instruction is the compiled from of the throw 

statement in Java programming source code. Other instructions throw exceptions 

only when certain conditions are encountered. For example, if the Java virtual 

machine discovers that the program is attempting to perform an integer divide by 

zero, it will throw an ArithmeticException . This can occur while executing 

any of four instructions--idiv , ldiv , irem , and lrem --which perform divisions 

or calculate remainders on int  or long .  

 

Each type of opcode in the Java virtual machine's instruction set has a mnemonic. 

In the typical assembly language style, streams of Java bytecodes can be 

represented by their mnemonics followed by (optional) operand values.  

 

Note that jump addresses are given as offsets from the beginning of the method. 

In Figure 3-5, the instruction goto  causes the virtual machine to jump to the 

instruction at offset two (the instruction iinc ). The actual operand in the stream is 

minus seven. To execute this instruction, the virtual machine adds the operand to 

the current contents of the pc register. The result is the address of the iinc  

instruction at offset two. To make the mnemonics easier to read, the operands for 

jump instructions are shown as if the addition has already taken place. Instead of 

saying "goto  -7," the mnemonics say, "goto  2."  

 

The central focus of the Java virtual machine's instruction set is the operand stack. 

Values are generally pushed onto the operand stack before they are used. Although 

the Java virtual machine has no registers for storing arbitrary values, each method 

has a set of local variables. The instruction set treats the local variables, in effect, as 

a set of registers that are referred to by indexes. Nevertheless, other than the 

instruction iinc , which increments a local variable directly, values stored in the 

local variables must be moved to the operand stack before being used.  

 

For example, to divide one local variable by another, the virtual machine must 

push both onto the stack, perform the division, and then store the result back into 

the local variables. To move the value of an array element or object field into a 
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local variable, the virtual machine must first push the value onto the stack, then 

store it into the local variable. To set an array element or object field to a value 

stored in a local variable, the virtual machine must follow the reverse procedure. 

First, it must push the value of the local variable onto the stack, then pop it off the 

stack and into the array element or object field on the heap.  
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4 Analysis of Information Flow in Bytecode 

In this chapter, we will present the security model of protecting the host security 

in mobile code systems which is based on the secure information flow theory. Then 

we will analyze the information flow in Java bytecode and propose the mechanisms 

of tracing implicit information in Java bytecode. 

  

4.1 Security Model 
 

Different from traditional programs, the mobile code programs may move from 

host to host via network. In mobile code systems, the security approach should 

protect the host from malicious or defective mobile code programs. Since the low 

level security aspects like memory protection has been enforced well by the 

security characteristics of Java virtual machine, the work left is to protect the data 

integrity and confidentiality. In our research, we focus on the confidentiality. 

 

Figure 4-1 shows the architecture of Java mobile code systems. When bytecode 

programs migrate from one remote host to the local system via the network, they 

are loaded to the local Java virtual machine. The JVM verifier checks whether the 

program is well typed to provide low level security. In such mobile code systems, 

the possible data-leaking process is shown in Figure 4-2 [77]. To detect such data 

leaking caused by mobile programs, some traditional protection-mechanisms used 

in operating systems could be utilized, such as Authentication, Access Control and 

Secure Information Flow theory. Authentication is usually implemented just after 

the mobile program arrives at the host (Step 1 in Figure 4-2). With some algorithm, 

the host can infer the mobile program’s identity from the certain information 

carried by the mobile program. Depending on the mobile program’s identity, the 

host judges whether the mobile program is secure or not. The Access Control is 

implemented when the mobile program tries to read some sensitive data from a host 

file (Step 2 in Figure 4-2). According to the mobile program’s identity, the host 

grants certain read rights to the mobile program. The mobile program cannot get the 

data it is not authorized to access. 
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Figure 4-1. Framework of Java mobile code system. 

 

The approaches based on authentication and access control confine the program 

from accessing the local system and network resources in order to ensure host’s 

confidentiality. In other words, such approaches prevent data flowing from the local 

system or network resources to the program. While actually many mobile programs 

need the local information to perform their tasks. In those approaches, however, the 

programs cannot fulfill their tasks because of the access control mechanism, which 

makes it meaningless to download the mobile programs. And in fact it is not always 

true that the mobile program that gets the sensitive information of the local host 

will leak the information to some unauthorized parties. It is because the access 

control mechanism cannot trace and control the following propagation of the 

information that it denies the access to the sensitive information from unauthorized 

mobile programs. If a program gets sensitive data by some channel, the access 

control mechanism has no idea which party the information is transferred to, let 

alone controls the information transferring. 
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Figure 4-2. The process of data-leaking in mobile code systems. 
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Obviously, a program-analytic semantics may be more reliable than such 

informal endorsement like authentication and access control. The Secure 

Information Flow theory in Denning [38, 39, and 40] is a kind of program-analytic 

mechanism and has been adopted in many approaches for mobile code systems 

security [11, 14, 15 and 16]. In order to make it as much as possible that mobile 

code programs can complete their functions without impairing the host security, we 

build the security model base on the secure information flow theory.  

 

As mentioned in Chapter 2, in the secure information flow theory a security 

system is composed of a set S of subjects and a disjoint set O of objects. Each 

subject s∈S is associated with a fixed security class C(s), denoting it clearance. 

Likewise, each object o∈O is associated with a fixed security class C(o), denoting 

its classification level. The security classes are partially ordered by a relation ≤, 

which forms a lattice. To avoid subjects with low clearance accessing sensitive data 

and subjects with high clearance to release sensitive data to low-clearance subjects, 

we need that a subject may only read objects with classification level no higher than 

its clearance, but may only write to objects with classification level no lower than 

its clearance. Information is always flowing unidirectionally from low classification 

source to high classification destination. 

 

In mobile code systems, the objects are same to those in traditional operation 

systems, which are the system resources on the host we need to protect (we refer to 

that host as the local-host). But the subjects in mobile code systems are different 

from the ones in traditional operation systems. In traditional operating system the 

subjects are the processes running on the local-host, while the subjects in mobile 

code systems are all the other hosts trying to get information from the local-host 

(we refer to them as observer-hosts). That difference makes that the approaches 

used in traditional operating systems cannot be adopted in mobile code systems 

without any ameliorating. The data-leaking in mobile code systems thus means that 

an observer-host gets some information on the local host it is not authorized. 

Therefore security classes denoting classification levels should be assigned to the 

local-host’s files, and security classes denoting the clearance should be assigned to 

observer-hosts. As for the mobile code, it is just the intermediate transferring 

information between objects and subjects. It is not necessary to assign any security 

class to the mobile code or its information carriers.  
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Before the mobile program leaves the local-host or sends information out, the 

information being transferred in the mobile code is not leaked yet. It is when the 

mobile code tries to send information to observer-hosts that the data-leaking may be 

caused. Whether a data-leaking arises is not decided by that the mobile code gets 

some sensitive information but that it transfers the information to an unauthorized 

observer-host. It is not necessary to set any restriction or do any checking when 

information is being transferred in mobile code. What we need to do is only tracing 

and recording the information flow in the mobile code. By this way when the 

mobile code tries to send information to an observer-host, we could understand the 

information’s classification level and check whether the observer-host has the right 

to get the information. 

 

The approaches in [11, 15, and 16] based on the secure information flow theory 

neglect the difference of security demand between mobile code systems and 

traditional operating systems. They treat the mobile code as the subject in the way 

that the processes are treated in traditional operating systems. In [11 and 15] the 

approaches assign security-levels (denoting the clearance) to information carriers 

(objects, method’s parameters and return value, etc.) in the mobile code and the 

host rejects any mobile program causing an illicit information flow which means 

that information at a given security-level flows to lower levels. In [16] the authors 

adopt a security policy that grants access to private data based on the program’s 

need and check if data with high security-level can ever propagate to observers with 

low security-level, that is, the approach makes the judgment at Step 3 in Figure 4-2. 

These approaches are more precise than the ones that only use authentication and 

access control. But they make two mistakes that they assign security-levels to the 

mobile code and consequently they detect data-leaking when the information is still 

being transferring in the mobile code. The two mistakes result in unnecessary 

restrictions in verification procedure and reduce the verification precision. 

Considering two data containers H with a higher security-level and L with a lower 

security-level, such statement  

H := L;  

L := H  

will not do any harm to the host confidentiality. However the statement will be 

considered to cause an illicit information flow by the approaches in [11, 15, and 16]. 

The mobile programs that pass the verification of those approaches are only a part 
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of all the mobile programs that will not do any harm to the local host security.  

 

Based on the analysis above, we give the definition of basic conceptions and the 

security model as follows.  

 

Security-level. In our approach, we refer to the security class denoting 

classification as security-level. The security-level indicates the host system 

resources’ sensitivity. The higher the security-level is, the more sensitive the 

resource file is. All the information gotten from a resource has the same 

security-level as the resources. The system resources that should be protected 

include: 

� file system  

� network  

� output devices (entire display, various windows, speaker ...)  

� input devices (keyboard, microphone, ...)  

 

Clearance-level. In our approach, we refer to the security class denoting 

clearance as clearance-level. The clearance-level indicates the trust level of an 

observer-host to receive the information on the local-host. The higher the 

clearance-level is, the more trustful the observer-host is. At present, the 

clearance-level is assigned to an observer-host according to its network address in 

our approach. 

 

Distribution Map of Security-level. During the execution of the mobile 

program, the mobile program reads data from files of the local-host and transfers 

the data among its data containers. We maintain a distribution map to represent the 

security-levels of the local-host information in the mobile program’s containers. 

When the execution starts, all elements in the distribution map have no value since 

there is no local-host information held by any container of the mobile code program. 

Each time the data in a container of the mobile code program changes, the 

corresponding element in the distribution map updates its value to the security-level 

of the new data. 

 

Data-leaking. In our approach the data-leaking is defined as that the mobile code 

sends the sensitive information of the local-host to an unauthorized observer-host, 
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that is, the security-level of the information is higher than the clearance-level of the 

observer-host. 

 

Data-leaking Channel. We define the way by which the mobile code may cause 

data-leaking directly or indirectly as a data-leaking channel. The action of detecting 

data-leaking should be done at every data leaking channel in the mobile code. In 

mobile code systems, data-leaking channels have three types: 1) the mobile code 

requests a network link and 2) the mobile code moves to next destination We 

should compare the security-level of the information to be sent with the 

clearance-level of the observer-host to receive the information.  

 

Definition 1.  Let DLC be a data-leaking channel in one mobile code. Let I be 

the information to be sent at the DLC and D be the information destination (the 

observer-host or the file on the local-host) at the DLC. Denoting by LI the 

security-level of I and by LD the clearance-level or security-level of D, a DLC is 

secure if and only if the following property holds: 

LI  ≤  LD . 

 

Definition 2. Let MC is a mobile code. MC is secure if and only if each DLC in 

the MC is secure. 

 

In summary, we assign security-levels to system resources of the local-host and 

clearance-levels to observer-hosts at first. Then during the local-host information is 

being transferred in the mobile code (Step 3 in Figure 4-2), we set no restriction to 

the information flow in the mobile code and just record the information flow it in 

the distribution map of security-level. When the mobile code tries to send 

information out (to an observer-host at Step 4 in Figure 4-2 or write to local-host 

files), we say that the execution encounters data-leaking channel and we check if a 

data-leaking is caused according to the record stored in the distribution map of 

security-level.  

 

Our security model can be implemented by static approaches (as we have done in 

[78 and 77]) or dynamic approaches. In both kinds of approaches, to maintain a 

distribution map of security-level for recording the information flow is the core of 

the implementation. In the following section, we introduce the semantics rules used 



 62

to update the distribution map of security-level according to the information flow.  

 

4.2 Semantics Rules 
 

In our security model, the key to verify the mobile code precisely is maintaining 

a correct distribution map of security-level during the execution of the mobile code, 

that is, tracing and recording the information flow in the mobile code correctly. In 

this section we will give the semantics rules that indicate the relationship between 

Java bytecode instructions and the change of the distribution map of security-level. 

 

The JVM is a stack machine manipulating an operand stack and a set of local 

registers for each method and a heap containing object instances [75]. So the data 

container in bytecode could be the element of operand stack, the local register or 

the field of an object instance on the heap. We denote by S the aggregation of all 

security-levels of the data in operand stack. Similarly we denote by R the 

aggregation for registers and by F the aggregation for objects’ fields. In this way 

the distribution map of security-levels could be represented by a tuple (S, R, F). 

 

We denote S by the alphabet “S” followed by a sequence of numbers separated 

by the marker “·”. The first number after “S” represents the security-level of the 

data in the top element on the stack, and the last one represents the security-level of 

the data in the bottom element on the stack. Given an index j, we denote by R(j) the 

security-level of the data in the local register with the index j (j should be less than 

the maximal number of registers). Given an object reference oref and a constant 

pool index cpi, we denote by F(oref.cpi) the security-level of the data held in the 

object’s field resolved from the object reference oref plus the constant pool index 

cpi (the item at index cpi should be CONSTANT_Fieldref  indicating the field). 

For a container of operand stack or a local register, if the data in the container is 

type long or double, i or j is the index of the first one of the two successive words 

used to store the data. 

 

Furthermore we denote by R(j ← l) the operation on R that updates the element’s 

value at index j in R to l while keeps all other elements in R unchanged. Similarly 

we define F(oref.cpi ← l) for F, too. 
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The change on the distribution map of security-levels results from the 

information flow among data containers of the mobile code, which could be divided 

into explicit flow and implicit flow as mentioned in Chapter 2. Even the same 

instructions will cause different change on the distribution map of security-level in 

explicit information flow and implicit information flow. Therefore we define the 

semantics rules for the explicit information flow and the implicit information flow 

respectively. 

 

� Semantics Rules for Explicit Information Flow 

 

The explicit information flow is quite simple and easy to trace. In one explicit 

information flow, the information in the used data is transferred to the defined data. 

Thus the security-level of the defined data should be assigned the security-level of 

the used data or, if the used data are more than one, the LUB of the security-levels 

of all the used data.  

 

We list a subset of JVM bytecode instructions causing explicit information flow 

in Figure 4-3. Such instructions can cause explicit information flow among the 

registers, operand stack and class fields. 

 

For example, consider the instruction iload  4 which pushes the data in the 

local register R4 at the index 4 to the top element S0 of the operand stack. By 

executing the instruction, the data in S0 gets the information of the data in R4. We 

say that an explicit information flow is caused between the operand stack element 

S0 and the local register R4, and the security-level of the data in S0 has the same 

value with security-level of the data in R4. Consequently the element in the 

distribution map of security-level representing the security-level of the data in S0 

should be updated to the new value. 

 

pop Pop the top operand stack element. 

αop Pop two operands with type α off the operand stack, 

perform the operation op ∊ { add, cmpg, cmpl, div, mul, 

rem, sub}, and push the result onto the stack. 

αconst_c Push constant c with type α onto the operand stack. 
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αload  x Push the value with type α at the index x onto the operand 

stack 

αstor e x Pop a value with type α off the operand stack and store it 

into local variable at index x. 

getfield  x1, x2 Pop a reference to an object off the operand stack; fetch the 

value of the object’s field resolved from the reference plus 

the constant pool item at (x1<<8)| x2 and put it onto the 

operand stack. 

putfield  x1, x2 Pop a value and a reference to an object from the operand 

stack; store the value into the object’s field resolved from 

the reference plus the constant pool item at (x1<<8)| x2. 

 

Figure 4-3. A subset of JVM instructions causing the explicit information flow. 

 

Figure 4-4. Semantics rules for instructions in explicit information flow. 

pop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) → 

(S(n)·S(n-1)·…S(2)·S(1)·S, R, F) 

αop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(2)· (S(1)∨S(0))·S, R, F)  

(α∊{ d, f, i, l}, op∊{ add, div, mul, rem, sub}) 

αconst_c (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(0)· 0·S, R, F)              (α∊{ d, f, i, l}) 

αload  x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) → 

(S(n)·S(n-1)·…S(0)· R(x)·S, R, F)         (α∊{ a, d, f, i, l}) 

αstore  x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(1)· S, R(x ← S(0)), F)     (α∊{ a, d, f, i, l}) 

getfield  x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) → 

(S(n)·S(n-1)·…S(0)·F(oref.cpi)·S, R, F) 

(oref is the reference to an object held by the top element on 

stack; cpi = (x1<<8)| x2) 

putfield  x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(3)·S(2)·S, R, F(oref.cpi ←S(0))) 

(oref is the reference to an object held by the second top 

element on stack; cpi = (x1<<8)| x2) 
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Denoting by ∨ the least upper bound (LUB) operation and considering the 

security-level of a constant is 0 (the lowest security-level), we define the semantics 

rules for Java bytecode instructions in an explicit information flow in Figure 4-4. 

 

� Semantics Rules for Implicit Information Flow 

 

The implicit information flow is much more complex than the explicit ones. We 

denote the data used as the condition of the implicit information flow by 

conditional data. In one implicit information flow, beside the information in the 

used data the defined data will also get the information in the conditional data of 

the implicit information flow. Therefore the security-level of the defined data 

should be assigned as the LUB of the security-levels of the used data and the 

conditional data of the implicit information flow. 

 

We list a subset of the Java bytecode instructions that may cause implicit 

information flow in Figure 4-5. In Java bytecode, the family of if-instructions (e.g. 

if_acmp<cond> , if<cond>  and ifnull ) and the instructions of the switch 

statement (tableswith  and lookupswitch ) will generate conditional control 

transfer and thus cause implicit information flow. (The exception handling in Java 

bytecode may cause implicit information flow, too. We will discuss it later in 

Chapter 6.) The implicit information flow usually has two or more execution 

branches, some of which may be blank, that is, there is no instructions on the 

branch except instructions at the fork and join points. All the data that may be 

changed in the scope of the any branch will get the information of the conditional 

data of the implicit information flow additionally. 

 

if_acmp <cond> j  Pop 2 values of type ref  off the operand stack and 

compare them. Branch to offset j if the result of the 

comparison satisfies the condition <cond> ∊ {eq, ne}.  

if_icmp <cond> j  Pop 2 values of type int  off the operand stack and 

compare them. Branch to offset j if the result of the 

comparison satisfies the condition <cond>  ∊ {eq, ne , 

lt , le , gt , ge}. 

if<cond> j Pop a value off the top of the operand stack, and 

compare it against zero. Branch to offset j if the result 
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of the comparison satisfies the condition <cond>  ∊ 

{eq, ne , lt , le , gt , ge}. 

ifnonull j Pop a value of type ref  off the top of the operand 

stack. If the value is not null, branch to offset j. 

ifnull j  Pop a value of type ref off the top of the operand 

stack. If the value is null, branch to offset j. 

lookupswitch Pop a value key of type int  from the operand stack and 

compare key against the match values. If it is equal to 

one of them, a target address is calculated by adding the 

corresponding offset to the address of this 

lookupswitch . If the key does not match any of the 

match values, the target address is calculated by adding 

default to the address of this lookupswitch . 

Execution continues at the target address. 

 

Figure 4-5. A subset of JVM instructions causing the implicit information flow. 

 

For example, consider the following section of Java bytecode.  

0:iload_1 

1:iload_2 

2:if_icmple 9 

5:iload_4 

7:istore_3 

8:goto 12 

11:iload_5 

13:istore_3 

14: … … 

The section of Java bytecode compares the value of data in local register at index 1 

and 2, and then stores the greater one into the local register at index 3. The instruction 

if_icmple  9 at address 2 causes a conditional control transfer according to the 

result of comparing the data in local register at index 1 and 2, and thus it causes 

implicit information flow whose conditional data are the data in local register at index 

1 and 2. In the branches of that implicit information flow, the data in the local register 

at index 3 may be changed and it gets information of the used data (the data in local 

register at index 4 or 5 depending on which branch is executed) and information of 
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the conditional data (the data in local register at index 1 and 2). Therefore the 

security-level of the data in the local register at index 3 should be assigned to the 

LUB of the security-levels of the data in the local register at index 1, 2, 4 and 5. Here 

we define the environment security-level of one implicit information flow as the 

security-level of the conditional data or, if there are more than one conditional data, 

the LUB of the security-levels of all conditional data of the implicit information flow. 

Thus the security-level of the data changed in one implicit information flow should be 

assigned to the LUB of the conditional security-level of the implicit information flow 

and the security-level(s) of its used data. 

 

Denoting by Lenv the conditional security-level of implicit information flow, we 

could rewrite the rules in Figure 4-4 to define semantics rules for Java bytecode 

instructions in the implicit information flow as shown in Figure 4-6. 

 

pop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(2)·S(1)·S, R, F) 

αop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(2)· (S(1)∨S(0)∨Lenv)·S, R, F) 

(α∊{ d, f, i, l}, op∊{ add, div, mul, rem, sub}) 

αconst_c (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(0)· Lenv·S, R, F)             (α∊{ d, f, i, l}) 

αload  x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) → 

(S(n)·S(n-1)·…S(0)·(R(x) ∨ Lenv)·S, R, F)    (α∊{ a, d, f, i, l})  

αstore  x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(1)·S, R(x ←(S(0) ∨ Lenv)), F) (α∊{ a, d, f, i, l})  

getfield x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) → 

(S(n)·S(n-1)·…S(0)·(F(oref.cpi) ∨ Lenv)·S, R, F) 

(oref is the reference to an object held by the top element on 

stack; cpi = (x1<<8)| x2) 

putfield  x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →  

(S(n)·S(n-1)·…S(3)·S(2)·S, R, F(oref.cpi ← (S(0) ∨ Lenv)) 

(oref is the reference to an object held by the second top 

element on stack; cpi = (x1<<8)| x2) 

 

Figure 4-6. Semantics rules for instructions in implicit information flow. 
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4.3 Implicit Information Flow Analysis 
 

As we have analyzed above, the same Java bytecode instructions will cause 

different change on the distribution map of security-levels in explicit information 

flow and implicit information flow. Thus we need to divide the Java mobile code 

into explicit information transferring block and implicit information transferring 

block in order to update the distribution map of security-levels correctly and verify 

the mobile code precisely. Though the explicit information flow is quite simple, the 

scope of an explicit information transferring block cannot be located directly 

because only the instruction that is not in any implicit information transferring 

block may cause explicit information flow. In other words, locating the scopes of 

implicit information transferring blocks in Java mobile code is the precondition of 

locating the scopes of explicit ones. As soon as we get the location of implicit 

blocks, the problem of locating explicit blocks becomes quite simple. The scope of 

an explicit information transferring block is the instruction causing the explicit 

information flow, which is not in any implicit information transferring block. (In 

some meanings, we can consider the explicit information flow as one kind of 

special implicit information flow whose conditional security-level is the lowest 

one.) Thus we will analyze the implicit information flow in Java bytecode and give 

the algorithms to locate the scopes of the implicit information transferring blocks. 

As mentioned above, the implicit information flow could be cause by the family of 

if-instructions (e.g. if_acmp<cond> , if<cond>  and ifnull ) and the 

instructions of the switch statement (tableswith  and lookupswitch ) in Java 

bytecode. In the following we discuss those two cases respectively. 

 

4.3.1 Implicit Information Flow Caused by if-instructions 

The if-instructions in Java bytecode could be compiled from loop constructs (for, 

while and do-while) or if-else constructs in Java programming language. The if-else 

constructs in Java programming language is complied into bytecode straightly. Java 

if-else constructs could be complied into the bytecode formats shown in Figure 4-7 

and Figure 4-8. The formats may have one or two non-blank branches, which 

depends on whether the construct has an else clause or not. While the case of 

compiling a loop construct is a little complex. A Java language conditional loop 

could be complied into two bytecode formats: the if-instruction is at the bottom of 
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the loop or at the top of the loop as shown in Figure 4-9. In both formats of the 

bytecode, the conditional loop has only one non-blank branch composed by the 

instructions of the loop construct.  

0:iload_1

1:iload_2

2:if_icmple 8

5:iload_1

6:istore_ 3

7:goto 12

10:iload_2

11:istore_3

12:return

public void test 

(int a, int b)

{

if (a > b)

int c = a;

else

int c = b;

}

0

1

2

5

6

7

10

11

12
 

Figure 4-7. The bytecode and CFG of if-else construct with else clause. 

 

0:iload_1

1:iload_2

2:if_icmple 6

5:iload_1

6:istore_3

8: return

public void test 

(int a, int b)

{

if (a > b)

int c  = a;

}

0

1

2

5

6

8  
Figure 4-8. The bytecode and CFG of if-else construct without else clause. 
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Figure 4-9. The bytecode and CFG of the conditional loop construct. 

 

Since Java programming language has no goto clause, the loop is the only 

construct that could be compiled into the bytecode format including one instruction 

(either an if-instruction or an instruction goto ) that transfers the control flow 

backward to some instruction before it. If an if-else construct has two non-blank 

branches, an instruction goto  will be used to separate the two branches in the 

corresponding bytecode. Furthermore if there is a return clause at the first 

non-blank branch’s end of the Java program, the instruction goto  will be replaced 

by an instruction αreturn  or return  in the bytecode, which is just like an 

instruction goto  jumping to the method’s end. Based on these facts, we give the 

algorithm to locate the non-blank branch’s scope in the if-instruction construct in 

Figure 4-10. 
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Figure 4-10. The algorithm to locate the branch’s scope of if-instructions. 

 

4.3.2 Implicit Information Flow Caused by switch Statement 

Java programming language’s the switch structure is another kind of instructions 

that may cause conditional control transfer. They are compiled using 

tableswitch  and lookupswitch instructions. Each case block of a normal 

Java language switch statement should be ended with a break clause and the default 

block (if there is one) should be the last block of the switch statement. However, 

this ideal format is optional and a disordered Java switch statement as shown in 

Figure 4-11 could also be compiled correctly. So we could not use the target 

addresses to locate the scopes of branches in a switch statement directly. 

 

Given an if-instruction, i: if<op><cond>  j, the i_max is the address of the last 

instruction in the method, the n is the number of the branches and the Si is the 

scope of the branch bi. 

If j < 0 then 

n = 1 and S1 = [i+ j, i)  //the if-instruction forms a loop 

else  

If the instruction just before i+ j is i’ : goto  j’ then 

If j’ < 0 then 

n = 1 and S1 = (i, i’ )  //the if-instruction forms a loop 

else 

n = 2 and S1 = (i, i’ ), S2 = [i+ j, i’ +j’ ) 

       end if 

else 

If the instruction just before i+ j is i’ : αreturn or return  then 

n = 2 and S1 = (i, i’ ), S2 = [i+ j, i_max) 

else 

n = 1 and S1 = (i, i+ j) 

end if 

end if 

end 
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public void test ( int a, int b)

{

switch (a)

{

case 0: 

b = 0;

break;

default:

b = 5;

case 2:

b = 2;

break;

case 3:

b = 3;

}

}

0: iload_1

1: tableswitch{ //0 to 3

0: 31;

1: 36;

2: 38;

3: 43;

default: 36 }

32: iconst_0

33: istore_2

34: goto 12

37: iconst_5

38: istore_2

39: iconst_2

40: istore_2

41 :goto 5

44 :iconst_3

45 :istore_2

46 :return

a. A Java language switch statement b. The JVM bytecode

32

33

34

37

38

39

39

40

40

44

45

41

41

0

1

46

32

33

34

37

38

39

40

44

45

41

0

1

46

c. The original CFG d. The simplified CFG

 

Figure 4-11. The bytecode and CFG of the Java language switch statement. 
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Figure 4-12. The algorithm to locate the branch’s scope in switch statement. 

 

When the control flow gets to the default block in Figure 4-11, the block of case 

2 will also be executed since there is no break clause at the end of the default block. 

Thus the branch from default block (1→37→38→39→40→41→ 46) includes the 

block of case 2. The branch from the block of case 2 (1→39→40→41→46) could 

be omitted because it is a part of another branch. In this way the CFG could be 

Given an instruction tableswitch  or lookupswitch  at the address i, form 

the target offsets into an array T[m] in ascending order. The i_max is the address 

of the last instruction in the method, the n is the number of the branches and the 

Sn is the scope of the branch bn. 

n = 0, ret_exist = false, begin_address = T[0] + i and end_address = 0 

For each pair of elements T[a] and T[a+1] in array T (0<= a < m - 1), in forward 

order loop 

If the instruction just before T[a+1] + i is i’ : αreturn or return then 

n = n +1, Sn = [begin_address, i’ ), 

ret_exist = true, begin_address = T[a+1] + i, end_address = i_max 

else 

If the instruction just before T[a+1] + i is i’ : goto j then 

If ret_exist is true then 

n = n +1, Sn = [begin_address, i’ ) ∪ [i’  + j, end_address) 

else  

n = n + 1, Sn = [begin_address, i’ ), end_address = j 

begin_address = T[a+1] + i 

end if 

end if 

end if 

end loop 

If T[m] + i< end_address then 

n = n +1, Sn = [T[m] + i, end_address) 

end if 

If n =0 then 

n= 1, S1 = [T[0] + i, T[m - 1] + i) 

end if 



 74

simplified as shown in Figure 4-11. The break clause in the switch statement can be 

replaced by a return clause. Based on the simplified CFG we could draw a 

conclusion that the break clause (compiled into the instruction goto  j) and the 

return clause (compiled into the instruction αreturn  or return ) are the 

boundary between two branches in switch statement. Thus we give the algorithm to 

locate the non-blank branch’s scope in the switch statement in Figure 4-12. 

 

4.3.3 Nested Implicit Information Transferring Blocks 

In Java programming language the if-else construct and switch statements could 

be nested, that is, one if-else construct is in the branch of another if-else construct or 

switch statements, and vice versa. Therefore the implicit information transferring 

blocks in Java bytecode could also be nested. Since the scope of each branch in one 

implicit information transferring block can be calculated by our algorithms shown 

in Figure 4-10 and Figure 4-12, the nested implicit transferring blocks can also be 

resolved. The algorithm calculating inner implicit transferring is given in Figure 

4-13. With those algorithms, we can divide a section of Java mobile code into 

explicit transferring blocks and implicit transferring blocks and then apply the 

proper semantics rules for the instruction in those blocks. 

 

Figure 4-13. The algorithm to locate the branch’s scope of inner implicit blocks.  
 

Given an branch bo with the scope S[s,e]of the outer implicit transferring block, 

bi is one branch of the inner implicit transferring block in bo.  

Use the proper algorithm in Figure 4-11 or Figure 4-12 to calculate the coarse 

scope of bi, S’i[i, j] 

If s > i then 

i = s 

endif 

If e < j then 

j = e 

endif 

The real scope of bi is S[i, j]. 
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5 Method of Bytecode Modification 

5.1 Overview  
 

5.1.1 Motivation of Dynamic Verification 

The verification of mobile code can be done statically or dynamically. By now 

the works on mobile code verification for the host security are almost static 

verification approaches [11, 14, 15, 16, 18, 19, 77 and 78]. The static approach 

verifies the mobile code from remote hosts before the local JVM executes the code 

as shown in Figure 5-1. The advantage of the static approaches is that they will not 

cause additional runtime overhead and will not slow down the execution. But the 

static approaches have an inherent limitation that it could not get any runtime 

information of the mobile code execution. This limitation affects the verification 

precision badly and may make the static approach to lose its practicality. For 

example, it is impossible for a static approach to get to know which branch of a 

conditional structure will be executed, where an exception will happen, whether the 

invoking of a method returns normally or exceptionally, and so on. Therefore the 

static approach has to verify all the branches of a conditional structure in order to 

find all potential violation of the security policy, which means that a mobile 

program may be rejected by the local host for an instruction that will not be 

executed actually in runtime. As for the exception handling in the mobile code, the 

static approach has no idea to deal with the information flow in exception handling 

precisely. What the static approach could do is only to find out all the instructions 

that may raise exceptions potentially and verify all the instructions possibly 

executed in runtime. Therefore the same misjudgment occurring in the verification 

of conditional structure may arise here, too. Obviously, such misjudgment impairs 

the verification precision and diverges from our research objective.  

 

To get better verification precision, we implement our security model by 

dynamic approach, which means that the verification is done during the execution 
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of the mobile code. Compared with the static ones, the dynamic approaches have 

the merit that they can get enough execution information to trace the information 

flow correctly and to further verify the mobile code more precisely. For example 

when the execution encounters a conditional instruction, the dynamic approach can 

get to know which branch will be executed. Thus the approach just verifies 

instructions to be executed, and eliminates the possibility of verifying the mobile 

code as malicious for some instructions that will not be executed. Similarly, the 

dynamic approach can master the change of control flow caused by exception 

throwing and trace the information flow in exception handling. And all those are 

too difficult for static approaches to achieve. That merit of dynamic approaches that 

makes they can get better verification precision than static ones, which is consistent 

with our objective. While the cost of better verification precision is the additional 

runtime overhead caused by the verification work done in execution, the 

development of hardware techniques provides more and more fast calculating speed. 

We may also need to reduce the additional overhead in runtime caused by the 

dynamic verification.   

 

 

 

 

 

 

 

Figure 5-1. Static verification approaches.  

 

 

 

 

 

 

 

Figure 5-2. Dynamic verification approaches. 
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5.1.2 Bytecode Modification Technique 

Java bytecode modification presents the opportunity to change the execution 

semantics of java programs. A wide range of possible applications have been 

discussed, ranging from the addition of performance counters, to the support of 

orthogonal persistence, agent migration, and new security semantics. Here we list 

some related projects.  

 

Access Control. By intercepting or wrapping calls to potentially dangerous Java 

methods, systems by Pandey and Hashiiip [96], Erlingsson and Schneider [45], and 

Chander et al. [26] can apply desired security policies to arbitrary codelets without 

requiring these policies to be built directly into the Java system code, as done with 

Java’s built-in security system. 

 

Resource Management and Accounting. J-kernel [59] and J-SEAL2 [20] both 

focus primarily on isolation of codelets. Bytecode modification is used to prevent 

codelets from interferring in operations of each other. JRes [35] focuses more on 

resource accounting; bytecode modification is used to instrument memory 

allocation and object finalization sites. 

 

Optimization. Cream [32] and BLOAT (Bytecode-Level Optimization and 

Analysis Tool) [91] are examples of systems, which employ Java bytecode 

modification for the purpose of optimization. Cream uses side-effect analysis, and 

performs a number of standard optimizations, including dead code elimination and 

loop-invariant code motion. BLOAT uses Static Single Assignment form (SSA) [34] 

to implement these and several other optimizations. 

 

Profiling. BIT (Bytecode Instrumenting Tool) [71] is a system which allows the 

user to build Java instrumenting tools. The instrumentation itself is done via 

bytecode modification. Other generic bytecode transformation frameworks, such as 

JOIE [33] and Soot [116], also have hooks to instrument Java code for profiling. 

 

Other Semantics. Sakamoto et al. [105] describe a system for thread migration 

implemented using bytecode modification. Marquez et al. [81] describe a persistent 

system implemented in Java entirely using bytecode transformations at class load 

time. Notably, Marquez et al. also describe a framework for automatically applying 



 78

bytecode transformations, although the status of this framework is unclear. Kava 

[126] is reflective extension to Java. That is, it allows for run-time modification and 

dynamic execution of Java classes and methods. 

 

All of those systems could also be implemented with customized JVMs (and 

many such customized JVMs have been built.) Of course, fully custom JVMs can 

outperform JVMs with semantics “bolted on” via bytecode modification because 

changes can be made to layers of the system that are not exposed to the bytecode, 

such as how methods are dispatched, or how memory is laid out.  

 

But the price of building custom JVMs is the loss of the portability that is one of 

the most important advantages of Java. While the strongest argument in favor of 

bytecode modification is its portability: changes made exclusively at the bytecode 

level can be moved with little effort from on Java virtual machine to another, so 

long as the modified bytecode still complies to the JVM specification [75]. To 

preserve Java’s promise “Write Once, Run Anywhere”, we adopt the bytecode 

modification technique rather than the custom JVMs to implement our dynamic 

verification. An additional benefit is that code added by bytecode modification can 

still be optimized by the underlying JVM. 

 

And Java has two properties that assist the bytecode modification. Transportable 

Java code arrives from the network as class files: these class files retain a great deal 

of symbolic information, allowing the receiver to determine the structure of the 

class and to modify it on-the-fly. Methods are represented as JVM bytecode: since 

JVM bytecode are stack instructions, it is relatively easy to splice new code into 

existing methods. To modify the Java bytecode, we need reflection functionality to 

get the structure of a class file, such as the symbolic information, fields, methods, 

interfaces and attributes. The runtime reflection functionality is added into the 1.1 

release of the Java Developer’s Kit (JDK). However the Java reflection API is 

available only after the class has been loaded into the JVM, which is too late for us 

to do any modification. And the reflection was not designed to extend functionality, 

and so it does not make available the implementation of class methods. Method 

implementations are accessible through the javap  disassembler included in the 

standard Java Developer’s Kit, but javap  runs from the shell and prints to its 

standard output; it is not integrated into the Java reflection API, nor does it produce 
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a data structure that can be manipulated by the program. Thus we need more 

powerful reflection toolkit for our bytecode modification. The reflection 

functionality of Java bytecode had been studied in [124], and some toolkits such as 

JOIE and BCEL [21] are available for our modification.   

 

5.1.3 Load-time Modification 

There are a number of stages in the program lifecycle during which a program 

author or user can specify the functionality of a class or set of classes. Some 

examples of tools used at different stages are detailed in Table 5-1. Originally the 

base functionality is declared by the class author in the source code, and that source 

code is translated into an executable image by a compiler.  

 

Stage Example Use Example Tool 

Pre-processor macros or conditional compilation cpp 

Compiler translation from source to classfile javac 

Post-processor Instrumentation ATOM, BIT 

Component 

Integration Setting text, color Bean Builder 

Load-time User-supplied modification, templates ClassLoader, KOIE 

Just-In-Time 

compilation Compilation to native code JIT 

 

Table 5-1. Stages in the program development life cycle. 

 

Authors or users can employ post-processors such as instrumentation tools to 

insert new method calls into an existing executable image. A popular example of 

that is the tool ATOM [114], which works on executable images for Alpha 

processor; similar functionality is available for Java with BIT [70]. Most often, this 

instrumentation is used for performance analysis or as an interface to platform 

simulation. An important guarantee typically made by instrumentation tools is that 

the semantics of the original program are not changed. However Shasta [109] 

processes executable images to run on distributed shared memory systems. Object 

Design Incorporateds’s Object Store PSE [92] also uses a post-processor, to insert 
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persistence methods into existing code. Rational Software Corporation’s tool Purify 

[99] changes code to detect memory leaks.  

 

Multiple third-party components (classes or more often collections of interacting 

classes) are integrated during application composition. In Java, these components 

are known as Beans and are often handled in visual builders. This composition 

allows consumers of code – either end-users or programmers using components in 

their own application – to modify certain properties of the component. However, 

users can only modify those properties foreseen by the original author. They cannot 

independently add features except through the basic object-oriented techniques of 

inheritance.  

 

After application composition, the classes are eventually loaded into the 

environment. During execution, the bytecode can be translated into native local 

platform instructions by Just-In-Time compiler (JIT). JITs only re-implement the 

bytecode in a different language. They do not add new functionality (although JITs 

may transform the code for optimization, for example unrolling loops or recording 

instructions.) 

   

The JVM loads Java classes from disks or elsewhere through class loaders, 

invoked as part of Java’s dynamic linking mechanism. The process of loading a 

class through a class loader is shown in Figure 5-3. When an already loaded class 

(the class Vehicle ) uses an undefined class (the class Car ), either by accessing a 

static member or creating an instance of the class, the JVM traps the undefined 

reference and send a request for the class loader to load the class. The class loader 

fetches the class file (Car.class) from the files system. Then the input class is loaded 

into the JVM and the execution continues.   

 

In the program development life cycle, we choose the Load-time to apply the 

bytecode modification. The architecture of JVM, in which classes are loaded on 

demand by a user-extensible class loader, offers a complementary alternative to the 

previous steps: load-time modification meaning that the class loader is responsible 

not only for locating the class, but for modifying the bytecode in ways specified by 

the user. Therefore in the process of loading class files, after the class loader fetches 

the class file it implements the modification of the bytecode and then sends the 
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modified class file to the JVM.   

 

public class Vehicle {
     Car  a;
}

ClassLoader {
    . . .
}

Car.class

JVM

ByteCode Modifier {
    . . .
}

public class Car {
    . . .
}

(1)Executing class Vehicle

(6) Class is loaded
(4a) Bytecode Modifier
rewrites Car.class

(5) Class loader
loads Car.class
into JVM

(3) Calls
class loader

(2) Undefined
reference to Car

(4) Fetches
Car.class
from file
system

 

Figure 5-3. The process of loading class files through the class loader. 

 

Load-time modification is precisely late enough that the modification cannot 

burden other users, and yet early enough that the JVM is unaware that any 

modification has taken place, and the modified class is still verified by the JVM 

before it is accepted. A modification registered with a class loader can be applied to 

all classes that are eventually loaded into the JVM. 

 

5.1.4 Modification Contents 

As mentioned in Chapter 4, to use our approach to verify a mobile code program, 

we should maintain a distributed map of security-level during the execution in order 

the trace and record the information flow. And then at each data-leaking channel, 

we compare the security-levels and clearance-level to check whether a data-leaking 

arises according to the security-level distribution map.  

 

In order to achieve the dynamic verification of mobile code programs, we chose 

the technique of bytecode modification to implement our approach. At first to 
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construct a distribution map of security-level, we need to allocate additional 

containers to store the security-level of the data held by the mobile code’s 

information carriers, which are called security-level containers. Then to maintain 

the distribution map of security-level during the execution of the bytecode, we need 

to insert additional instructions to calculate the change of the security-levels caused 

by information transferring, both the transferring among carriers in one method and 

the transferring between methods in order to update the distribution map of 

security-levels. At last to check whether any data-leaking rises, we need to insert 

instructions of comparing the security-levels and clearance-levels to each 

data-leaking channel. All those work can be achieved by modifying the parameters, 

methods and classes’ declaration in the mobile code program. In general, the 

bytecode modification in our approach can be divided into two main parts, class 

redefinition and instruction insertion. The former includes adding additional data 

containers, modifying the parameters and return type of methods, while the latter 

includes inserting proper instructions to calculate security-levels and check 

data-leaking.  

 

5.2 Class Redefinition 
 

We have discussed the structure of the class file and the information flow in Java 

bytecode in Chapter 3 and Chapter 4. The information transferring in the Java 

bytecode may be among the information carriers in one method, or between the 

caller and callee methods. Thus we discuss the class redefinition necessary for the 

two kinds of information transferring respectively. 

 

To explain the modification more clearly, we give an example class here. The 

Java program in Figure 5-4 defines a class named as Circle. The Java bytecode and 

the class file structure of the class Circle are shown in Figure 5-5 and Figure 5-6.  

 

In the class file of the class Circle, the section Header  includes the magic 

number and the version information. The section Constant Pool  represents 

various string constants, class and interface names, field names, and other constants, 

such as the initialization method’s name, the field radius’s type and the constant 

3.14 defined in the class Circle. The section of Access Right  gives the value 

used to denote access permissions to and properties of the class Circle. The section 
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Fields  gives a complete description of the fields center_x, center_y and radius, 

which are defined directly in the class Circle. The section Methods  gives a 

complete description of all methods declared by the class Circle, including instance 

methods area and the instance initialization methods Circle. At last the section 

Class Attributes  defines some attributes of the class Circle such as 

SourceFile  attribute and the Deprecated attribute. 

 

The following discussion of class redefinition will take the class Circle as an 

example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4. The Java program of the class Circle. 

 

 

 

public class Circle{ 
     
    private float center_x; 
    private float center_y; 
    private float radius; 
    final float pi = 3.14; 
     
    Circle(float x, float y, float r){ 
        center_x = x; 
        center_y = y; 
        radius = r; 
    } 
     
    float area(){ 
        return pi*radius*radius; 
    } 
     
    boolean isInCircle(float x, float y){ 
        boolean result = false; 
        float dis = (x – center_x)* (x – center_x)  

+ (y – center_y)* (y – center_y); 
        if (dis <= radius*radius){ 

result = true; 
  } 
  return result; 
    } 
} 
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Compiled from "Circle.java" 
public class Circle extends java.lang.Object{ 
final float pi; 
 
Circle(float, float, float); 
  Code: 
   0: aload_0 
   1: invokespecial #1; //Method java/lang/Object."<init>":()V 
   4: aload_0 
   5: ldc #2; //float 3.14f 
   7: putfield #3; //Field pi:F 
   10: aload_0 
   11: fload_1 
   12: putfield #4; //Field center_x:F 
   15: aload_0 
   16: fload_2 
   17: putfield #5; //Field center_y:F 
   20: aload_0 
   21: fload_3 
   22: putfield #6; //Field radius:F 
   25: return 
 
float area(); 
  Code: 
   0: ldc #2; //float 3.14f 
   2: aload_0 
   3: getfield #6; //Field radius:F 
   6: fmul 
   7: aload_0 
   8: getfield #6; //Field radius:F 
   11: fmul 
   12: freturn 
 
boolean isInCircle(float, float); 
  Code: 
   0: iconst_0 
   1: istore_3 
   2: fload_1 
   3: aload_0 
   4: getfield #4; //Field center_x:F 
   7: fsub 
   8: fload_1 
   9: aload_0 
   10: getfield #4; //Field center_x:F  
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Figure 5-5. The Java bytecode of the class Circle. 

13: fsub 
   14: fmul 
   15: fload_2 
   16: aload_0 
   17: getfield #5; //Field center_y:F 
   20: fsub 
   21: fload_2 
   22: aload_0 
   23: getfield #5; //Field center_y:F 
   26: fsub 
   27: fmul 
   28: fadd 
   29: fstore 4 
   31: fload 4 
   33: aload_0 
   34: getfield #6; //Field radius:F 
   37: aload_0 
   38: getfield #6; //Field radius:F 
   41: fmul 
   42: fcmpg 
   43: ifgt 48 
   46: iconst_1 
   47: istore_3 
   48: iload_3 
   49: ireturn 
 
}  
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Header

Constant Pool

Access Right

Implementeed  Interface

Fields

Methods

Class attributes

0:  ldc         3.14f
2:  aload_0
3:  getfield      radius:F
6:  fmul

ConstantMethodRef
"init"
"()V"
"java.lang.Object"

ConstantFieldRef
ACC_PRIVATE
"radius"
"F"
""

ConstantFloat
"3.14"

 

Figure 5-6. The class file structure of the class Circle. 

 

5.2.1 Redefinition for Intra-procedural Information Transferring 

The Java Virtual Machine is a stack machine manipulating an operand stack and 

a set of local registers for each method and a heap containing object instances. The 

elementary information carrier in JVM bytecode could be the element of operand 

stack, the local register or the field of an object instance. Thus all the information 

transferring in one method can be considered as the information transferring among 

the three kinds of elementary information carriers. Therefore we need to add 

security-level containers for the information in those elementary carriers 

respectively. 
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� Local Register  

 

For the local register (which is used to store the local variables of the method), 

we allocate an additional register as the security-level container of the information 

in the original register. Adding new local registers is trickier than adding new 

entries to the Constant Pool. In particularly the JVM specification requires that the 

arguments to the method appear in order at the low local registers before the local 

variables appear. Considering that we will add new arguments to a method (which 

will be discussed later) and the local registers’ indices in instructions should be 

recalculated, we store the security-level of the information in a local variable to the 

register just after the one storing the local variable. By this way it is convenient to 

calculate the index of one local register’s security-level container (the index of the 

local register plus one or two according to the length of the local variable in the 

register). In the attributes table of the method_info  structure, the Code attribute 

defines the maximum size of the local registers in the item max_locals . And we 

also should reset the value of the item max_locals  to make the JVM allocate 

additional local registers used as security-level containers for the method. We show 

the allocating new registers as seceurity-level containers for the method isInCircle 

in Figure 5-7 as an example. 
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Figure 5-7. The security-level containers for information in local registers. Ref is a 

reference to the method's instance; P1 and P2: the parameters of the method; L1 and 

L2: the local variables in the method; SL1 and SL2: the security-levels of the 

information in V1 and V2 respectively. 
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� Operand Stack 

 

For the element on the operand stack, we allocate an additional stack element as 

the security-level container of the information in the original element. We store the 

security-level of the information in one stack element to the element just before the 

original one in the direction counted from the top of the stack, that is, we keep an 

internal order of variables and their security-levels on the stack. By this way, we 

make the JVM push the security-level of one variable to the stack after it push the 

variable, and pop the security-level from the stack before it pop the variable. 

Similar to the local registers, we also need to reset the value of the item 

max_stack  defining the maximum size of the stack since the elements pushed to 

the stack during the execution of the modified bytecode increase. We give an 

example of allocating new stack elements as security-level containers in Figure 5-8. 

 

 

E3

SL3

SL2

E2
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E1

E2

E3
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Figure 5-8. The security-level containers for information in the elements on the 

operand stacks. E1, E2 and E3: the elements on the operand stack; SL1, SL2 and SL3: 

the security-levels of the information in E1, E2 and E3 respectively. 

 

� Class Fields 

 

Adding security-level containers for the fields of one class is much different from 

adding containers for local variables. We should decide the new field’s type, name, 

access flag and the position we insert it.  

 

To decide the types of the new fields (used as the security-level containers for the 

Top 

Bottom 
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original fields), we divide the original fields into three kinds according to their 

types: the fields of primary types, the fields of class types and the fields of array 

types. For the field of primary type, it can only hold one data in it. Thus, we add a 

new field of type byte  (because all security-levels are integers) as the 

security-level container of the original field. For the field of class type, it can 

concern with a lot of information since the data held in it is a reference. Thus we 

add a new field of the same class type as the original field, and the security-levels 

of the original field’s members are stored in the added field’s corresponding 

members (not the members have the same names, but those added as security-level 

containers when the class of the field’ type is modified). So that the new field 

(security-level container) can hold the same number of data as the original one. For 

the field of array types, the field also holds one reference like the field of class type. 

Thus we also add a new field of the same array type as the original one, which is 

used as the security-level container for the original field. 

 

The name of the new field used as the security-level containers is the original 

field’s name suffixed with “_SL”. And the new field has the same access flag as the 

original one. Since there are no ordering constraints on the Constant Pool  and 

Fields structures, any new fields and entries could be appended rather than 

inserted in the middle in order to preserve the indices of existing entries.  

 

Beside the original fields of one class, the class instance itself (the reference) also 

holds information and can be used in the information flow. That fact makes it 

necessary for us to do two things: first is that we need to add a new field of type 

byte  as the security-level container of the class reference itself; second, which has 

been mentioned above, is that we use the added members in the added field rather 

than the added members in original field to store security-level because the original 

field may be null and we cannot use the member of a null reference to store the 

security-level of the reference itself. 

 

We give an example of adding new fields as security-level containers in Figure 

5-9. 
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ConstantFieldRef
ACC_PRIVATE
"radius"
"F"
""

ConstantFieldRef
ACC_PRIVATE
"radius"
"F"
""

ConstantFieldRef
ACC_PRIVATE
"radius_SL"
"F"
""

Origianl Field

Added Field
 

 

Figure 5-9. The security-level containers for information in the class fields. 

 

5.2.2 Redefinition for Inter-procedural Information Transferring 

The information can be transferred not only among the information carriers in 

one method, but also between methods by arguments and return values. Thus it is 

necessary to add new arguments and return values to transfer the security-levels of 

the information being transferred between methods at the same time. 

 

Adding security-level container for parameters is the combine of locating new 

local registers and adding new fields. Given one method having one or more 

arguments, we add one new argument as the security-level container for each 

original argument. The type of the new arguments is decided in the same way as we 

decide the type of the new fields. As for the new parameter’s order in the sequence 

of all parameters, we insert the new argument just after the original argument. By 

this way keep the alternate order of the local registers and their security-level 

containers since the arguments will be loaded to the local registers. Because the 

arguments’ names are not saved in the class file, we need not name the new 

arguments. For example, considering the method void Circle(float x, float y, float r) 

with the descriptor (FFF)V in the class Circle shown in Figure 5-4, we add one 

argument of type byte  after each original argument. Thus the descriptor of the 



 91 

modified method Circle is (FBFBFB)V. 

 

For the return value of one method, we cannot deal with it as we do for 

parameters since one method may have multiple parameters but it can only return 

one value. The only thing that we can do is to change the type of the return value. 

Given one method with a return value of primitive type or class type, we alter the 

return type to an array of the original return type, which has two elements: the first 

one is the return value and the second one is the security-level container for the 

return value. (For the security-level container of the return value of primary types, 

we convert the security-level to the type byte .) If the return type is an array 

T[n1][n2]...[nm], we alter the return type to the array type of T[2][n1][n2]...[nm]. The 

first element of the first dimension is the original return value, and the second 

element is the security-level container for the original one.  

 

By this way, we keep consistent with the rules of adding local registers, fields 

and parameters. For example, considering a method float area() with the descriptor 

()F, we alter the return type to the array of type float . Thus the descriptor of the 

modified method area is ()[F. 

 

5.3 Instructions Insertion 
 

To achieve dynamic verification, we need to insert proper instructions to 

calculate the security-levels of the information in the mobile code’s data carrier and 

check whether every data-leaking channel in the mobile code is secure. To reduce 

the additional overhead in runtime caused by the bytecode modification we make 

the JVM execute the inserted instructions and the original instructions in one frame, 

that is, the inserted instructions and the original instructions share one set of local 

registers and one operand stack. (The adding of security-level containers mentioned 

above also follows this principle.) Therefore we should make sure that the inserted 

instructions would not do any harm to the original functions of the class. Another 

important thing is that the offset of conditional instruction should be recalculated so 

that they can branch to the correct instruction. Similar to the discussion of class 

redefinition, we discuss the instructions insertion for the information transferring in 

one method and the information transferring between the caller and callee methods 

respectively. And we also discuss the insertion of the instruction for checking 
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data-leaking. 

5.3.1 Intra-procedural Information Transferring 

The information transferring can be divided into explicit transferring and implicit 

transferring. By the algorithms given in Chapter 4, we can partition the bytecode of 

one method into explicit blocks and implicit blocks. In explicit blocks, the 

information flow is explicit flow and the information is transferred from the used 

variable(s) to the defined variable. Thus we should insert proper instruction(s) to 

assign the security-level of the used variable or the LUB of the security-levels of 

the used variables to the security-level container of the defined variable.  

 

In implicit blocks, the information flow is implicit flow and the information is 

transferred from the conditional variables of the implicit flow to the defined 

variables additionally. Since the implicit blocks can be nested, one implicit 

information flow may consist of several implicit blocks and in the case the 

conditional data of the implicit information flow include all the conditional 

variables of the implicit blocks. We define the conditional security-level of one 

implicit transferring block as the security-level of the conditional variable or, if 

there are more than one conditional variable, the LUB of the security-levels of all 

conditional variable of the implicit transferring block. And we can get the formula 

5-1, in which Lenv is the environment security-level of one implicit information flow, 

Lconi is the conditional security-level of the ith block of implicit transferring blocks 

composing the implicit information flow, and m is the number of the implicit 

transferring blocks.  

Lenv = Lcon1∨Lcon2∨...∨Lconm .................... 5-1 

 

Thus at the beginning of one implicit transferring block, we should first insert 

proper instructions to calculate the conditional security-levels of the current implicit 

block, and then calculate the environment security-level and store it (in order to 

make it easier to calculate the environment security-level of the inner implicit 

information flow). Then we should insert proper instructions to assign the LUB of 

the environment security-level and the all security-levels if used variables to the 

security-level container of the defined variable. 

 

The execution of a method’s bytecode is a procedure of pushing data to the stack 
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and popping data from the stack. According to the operation on the stack, the JVM 

bytecode instructions could be divided into three kinds: loading instructions (those 

pushing data to the stack, such as iload, faload, bipush), storing instructions (those 

popping data from the stack, such as lstore, putfield, pop) and operating instructions 

(those popping and operating two element on the stack top and pushing back the 

result to the stack, such as dadd, lrem, ior). In particularly we consider faload as a 

loading instruction but not an operating instruction because the semantics of faload 

is loading data to the stack and such classification could reduce the number of 

inserted instructions for faload. The similar cases are putfield, getfield, iastore, etc. 

 

In explicit blocks considering the operand stack in JVM is LIFO 

(last-in-first-out), we insert instruction(s) loading the security-level from proper 

container to the stack for each loading instruction after it, and insert instruction(s) 

storing the security-level from the stack to proper container for each storing 

instruction before it. The operating instruction is a little complicated. One operating 

instruction will first pop elements from the stack and then push back the result to 

the stack. Therefore we insert the instructions popping the security-levels of the 

operands and calculating the LUB of them before the operating instruction, and 

insert instructions loading the result of LUB calculation to the stack after the 

operating instruction. In the way, when the JVM executes one original bytecode 

instruction, the operands used by the instruction on the stack are laid as if no 

instruction is inserted, which assure that the inserted instructions has no side affect 

on the original functionality of the bytecode.  

 

We give an example of inserting instructions in Figure 5-10. We list the Java 

source code and the original bytecode compiled from it at the left. The bytecode at 

the right is the modified code. In modified bytecode the instructions at address 1, 3, 

32 and 35 are inserted for loading instructions, the instructions at address 27 and 26 

are inserted for storing instructions, and the instructions at address 4 to 22, 25, 37 to 

54 and 57 are inserted for operating instructions in original bytecode respectively. 

And in the modified bytecode, the indices of local variables have been recalculated 

and the new indices of original local variable are 1, 3, 5 and 7. 

 

In implicit blocks besides the instructions inserted in explicit blocks, we should 

insert additional instructions to calculate and store the environment security-level. 
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For an implicit block the conditional security-level of is the LUB of all 

security-levels of its conditional variables. And the current environment 

security-level SLcenv of one implicit block is the LUB of the old SLc and the 

conditional security-level of the implicit block. Thus we allocate an array of type 

byte  to store the environment security-levels of each layer for nested implicit 

blocks. At the beginning of an implicit block in nested implicit blocks, we store the 

old SLc to the array and calculate the new one. Then at the end of that implicit block 

we load back the old SLc from the array. By this way in each block of nested 

implicit blocks we could use the correct current environment security-level to 

calculate the defined variable’s security-level.  

 

In JVM the operand stack is just a kind of intermediate information carrier and 

all data pushed to the stack could not be transferred to other carriers until they are 

popped from the stack. Considering this characteristic, we calculate the LUB of the 

environment security-level and the defined variable’s security-level only when the 

variable is popped from the stack, that is, we insert the instructions to calculate the 

LUB only for storing instructions rather than for all the loading instructions, 

operating instructions and storing instructions. By this way the additional overhead 

cause by bytecode modification could be reduced. 
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Figure 5-10. An example of instructions insertion. 

5.3.2 Inter- procedural Information Transferring 

If the type of a method’s return value is not void , we alter the type of the return 

value to an array of original type. Therefore we should insert instructions into the 

callee method to encapsulate the return value and its security-level to an array of 

proper type. The encapsulation procedure is 1) allocating a new array of the proper 

type with two elements, 2) storing the security-level to the second element and the 

return value to the first element, and 3) returning the reference of the array to the 

caller method. Furthermore, we should insert instructions into the caller method to 

push the elements of the returned array to the stack. To preserve the consistency of 

the arrangement of security-levels and information on the operand stack, we push 

the original return value (the first element) at first and then the security-level (the 

second element) to the stack. We also insert instructions to convert the 

security-level to type byte  if it is not for the return value of primary types. 

 

 

public void cal(int a, int b){ 
    int c = a + b; 
    int d = a * c; 
    return; 
}  

0: iload_1 
1: iload_2 
2: iadd 
3: istore_3 
4: iload_1 
5: iload_3 
6: imul 
7: istore 4 
9: return 

0: iload_1 
1: iload_2 
2: iload_3 
3: iload_4 
4: istore 9 
6: istore 10 
8: iload 9 

10: If_icmple 9 
13: pop 
14: istore 9 
16: goto 6 
19: istore 9 
21: pop 
22: iload 10 
24: iadd  
25: iload 9 
27: istore 6 
29: istore 5 
31: iload_1 

32: iload_2 
33: iload 5 
35: iload 6 
37: istore 9 
39: istore 10 
41: iload 9 
43: If_icmple 9 
46: pop 
49: istore 9 
51: goto 6 
54: istore 9 
56: pop 
57: iload 10 
59: iadd  
60: iload 9 
62: istore 8 
64: istore 7 
66: return 

a. Java source code 

b. Java bytecode c. modified bytecode 
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5.3.3 Data-leaking Checking 

As mentioned above, at each data-leaking channel we should compare the 

security-level of the information to be sent with the clearance-level or 

security-level of the destination in order to check whether the data-leaking channel 

is secure. We insert the checking instructions after the instructions loading the 

information to be sent to the operand stack, but before the instructions sending the 

information. The checking procedure of is 1) at first reading the clearance-level or 

security-level of the destination from the certain local host file and pushing it to 

the stack, 2) then comparing the two security-levels or the security-level and the 

clearance-level on the stack, 3) if the security-level of the information to be sent is 

higher, the data-leaking channel is not secure and a user-defined exception is 

thrown out to inform the host user the mobile code is not secure. Or else the 

execution of the mobile code continues. 
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6 Information Flow in Exception Handling 

The Java programming language supports exception-handling mechanisms to 

ease the difficulty of developing robust software systems. In Java bytecode, an 

exception will cause a non-local transfer of control and affect the information flow. 

In this chapter we will analyze the information transferring in the exception 

handling of Java bytecode and give the mechanisms to deal with the information 

flow in Java bytecode exception handling.  

 

6.1 Motivation 
 

When a program violates the semantic constraints of the Java programming 

language, the Java virtual machine signals this error to the program as an exception. 

Besides the implicit occurrence, the exception can also be explicitly caused by the 

statement throw in Java programming language. The Java programming language 

specifies that an exception will cause a non-local transfer of control from the point 

where the exception occurred to a point that can be specified by the programmer. 

An exception is said to be thrown from the point where it occurred and is said to be 

caught at the point to which control is transferred to. Obviously, the occurrence of 

an exception and the corresponding exception handling will change the control 

flow and thus affect the information flow. A failure to account for the effects of 

exception occurrence and exception handling constructs in performing analyses 

system can result in incorrect analysis information, which in turn can result in 

unreliable security verification systems. 

 

The additional expense that is required to perform analyses accounting for the 

effects of exception handling constructs may not be justified unless these 

constructs occur frequently in practice. In [112], Sinha and Harrold examined a 

number of non-trivial, real-life Java programs from a diverse group of applications 

in order to determine the frequency with which java programs use exception 

handling statements. The result of the study is shown in Table 6-1, which includes 

the description of each program group, the number of programs examined and the 
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usage of exception handling statements.    

 

Program Group Programs that Contain 

Name Description 

Numbers of 

Programs try Stmts throw Stmts 

jacorb ORB implementation in java. 1062 271 229 

javacup LALR-parser generator for Java. 34 5 17 

jdk Sun’s JDK 1.1.5. 1256 342 372 

jlex Lexical-analyzer generator for Java. 1 1 1 

swing Sun’s Swing API 1.0.2. 692 87 106 

tdb Debugger for Java. 8 3 5 

toba Java bytecode-to-C translator. 43 13 27 

Total  3096 722 757 

 

Table 6-1. Presence of exception handling statements in Java programs. 

 

As the tables illustrates, 23.3% and 24.5% of the examined programs contained 

try and throw statements respectively. Within a program group, ignoring the values 

for jlex , these percentages varied from 12.6% to 37.5% for try statements and, 

15.3% to 62.8% for throw statements. Several programs contained both try and 

throw statements, and over all program groups, there were 497 such programs. 

Therefore, there were 982 programs, which comprise 31.7% of all examined 

programs, which contained either a try statement or a throw statement. The study 

supports that the use of exception handling statements in real-life programs is 

significant enough that it should be considered during various analyses.  

 

The discussion above proves that the information flow in Java bytecode 

exception handling cannot be ignored in our analyses for the Java bytecode 

verification. The ignorance of exception handling will cause unreliable verification 

result and make the verification approach unpractical. 

 

6.2 Exception Handling in Java Language 
 

In java, exceptions can be synchronous or asynchronous. Synchronous 

exceptions occur at particular program points and are caused by expression 

evaluation, statement execution, or explicit throw statements. Synchronous 
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exceptions can be checked or unchecked: for checked exceptions, the compiler 

must find a handler or a signature declaration for the method that raised the 

exception; for unchecked exceptions the compiler does not attempt to find such an 

associated handler or a signature declaration. Synchronous exceptions are further 

classified as pre-defined or user-defined: pre-defined exceptions are defined by the 

Java language; user-defined exceptions are defined by users of the language. For 

example, the method write () defined in java.io.DataOutputStream  can 

raise a pre-defined checked exception IoException . While the method pop () 

defined in java.util.Stack  can raise a pre-defined unchecked exception 

EmptyStackException . Users can define a checked exception by extending 

java.lang.Exception  or java.lang.Throwable . Similarly, users can 

define an unchecked exception by extending java.lang.Error  or 

java.lang.RuntimeException .  

 

Asynchronous exceptions occur at arbitrary, non-deterministic points in a 

program’s execution, and are unchecked. Asynchronous exceptions occur when 

either the Java Virtual Machine raised an instance of InternalError  (because 

of faults in the virtual-machine software, the host-system software, or the 

hardware), or a thread invokes the method stop () that raised an instance of 

ThreadDeath  in another thread. Figure 6-1 shows the types of Java exceptions. 

 

Java Exceptions

Synchronous 5. Asynchronous

Checked Unchecked

1. Pre-defined 2. User-defined 3. Pre-defined 4. User-defined

 

Figure 6-1. Exception types in Java. 
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In Java programs, all synchronous, pre-defined exceptions (type 1 and 3 in 

Figure 6-1) are raised as a result of expression evaluations, statement executions or 

throw statements. While synchronous, user-defined exceptions (type 2 and 4 in 

Figure 6-1) are raised by the throw statements only. In Java all thrown exceptions 

are instances of classes derived from the class java.lang.Throwable .  

 

In Java language, a try statement is the exception-handling construct. A try 

statement consists of a try  block and, optionally, a catch  block and a finally  

block. The legal constructs for a try statement are try-catch, try-catch-finally and 

try-finally. When an exception is raised in a statement within a try  block or in 

some method called within a try  block, control transfers to the catch  block 

associated with the last try  block in which control entered, but has not yet exited. 

This catch  block is the nearest dynamically-enclosing catch  block, and can be 

in the same try statement, in an enclosing try statement, or in a calling method. If a 

matching catch handler is found, the handler code is executed and normal 

execution resumes at the first statement following the try statement where the 

exception was handled. If no matching catch handler is found in the nearest 

dynamically-enclosing catch  block, the search continues in the catch  block of 

the enclosing try statement and subsequently in some calling method. Before the 

control exits a try statement, the finally  block of the try statement is executed, 

if it exists, regardless of whether control exits the try statement with an unhandled 

exception. Thus the exception handling in Java will cause intra-procedural control 

transferring (if the exception is handled in the method where it is raised) or 

inter-procedural control transferring (if the exception is not handled in the method 

where it is raised and thrown to the caller method). We summarize the exception 

handling process in Figure 6-2. The figure shows a try statement and its 

components blocks; the conditions triggering the control flow between the blocks 

are numbered and listed under to the figure. In the following, we list all possible 

types of path within a try statement.   

 

Path 1 is taken if the try  block raises no exception and no finally  block is 

specified in this try statement. 

Path 2 is taken if the try  block raises exception and no matching catch  block 

can be found in this try statement. No finally  block is specified in this 

try statement. 
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Path 3-10 is taken if the try  block raises no exceptions. The finally  block is 

specified in this try statement and raises no exception. 

Path 3-11 is taken if the try  block raises no exceptions. The finally  block is 

specified in this try statement and raises exception. 

Path 4-11 is taken is if the try  block raises exception and no matching catch  

block can be found in this try statement. The finally  block is specified 

in this try statement. If the finally  block raises no exception, the 

exception raised in the try  block is propagated to the outer try statement. 

If the finally  block raises exception, the exception raised in the 

finally  block is propagated to the outer try statement. 

Path 5-6-10 is taken if the try  block raises exception and the matching catch  

block is found in this try statement. The catch  block raises no exception 

and the exception is handled. The finally  block is specified in this try 

statement and raises no exception. 

Path 5-6-11 is taken if the try  block raises exception and the matching catch  

block is found in this try statement. The catch  block raises no exception 

and the exception is handled. The finally  block is specified in this try 

statement and raises exception. 

Path 5-7-11 is taken if the try  block raises exception and the matching catch  

block is found in this try statement. The catch  block raises exception 

and the exception is not handled. The finally  block is specified in this 

try statement. If the finally  block raises no exception, the exception 

raised in the try  block is propagated to the outer try statement. If the 

finally  block raises exception, the exception raised in the finally  

block is propagated to the outer try statement.  

Path 5-8 is taken if the try  block raises exception and the matching catch  

block is found in this try statement. The catch  block raises no exception 

and the exception is handled. No finally  block is specified in this try 

statement. 

Path 5-9 is taken if the try  block raises exception and the matching catch  

block is found in this try statement. The catch  block raises exception 

and the exception is not handled. No finally  block is specified in this 

try statement. 

Path 12-6-10 is taken if an unhandled exception is propagated from nested 

blocks and the matching catch  block is found in this try statement. The 
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catch  block raises no exception and the exception is handled. The 

finally  block is specified in this try statement and raises no exception. 

Path 12-6-11 is taken if an unhandled exception is propagated from nested 

blocks and the matching catch  block is found in this try statement. The 

catch  block raises no exception and the exception is handled. The 

finally  block is specified in this try statement and raises exception. 

Path 12-7-11 is taken if an unhandled exception is propagated from nested 

blocks and the matching catch  block is found in this try statement. The 

catch  block raises exception and the exception is not handled. The 

finally  block is specified in this try statement. If the finally  block 

raises no exception, the exception raised in the try  block is propagated to 

the outer try statement. If the finally  block raises exception, the 

exception raised in the finally  block is propagated to the outer try 

statement. 

Path 12-8 is taken if an unhandled exception is propagated from nested blocks 

and the matching catch  block is found in this try statement. The catch  

block raises no exception and the exception is handled. No finally  

block is specified in this try statement. 

Path 12-9 is taken if an unhandled exception is propagated from nested blocks 

and the matching catch  block is found in this try statement. The catch  

block raises exception and the exception is not handled. No finally  

block is specified in this try statement. 

Path 13-11 is taken if an unhandled exception is propagated from nested blocks 

and no matching catch  block is found in this try statement. The 

finally  block is specified in this try statement. If the finally  block 

raises no exception, the exception raised in the try  block is propagated to 

the outer try statement. If the finally  block raises exception, the 

exception raised in the finally  block is propagated to the outer try 

statement. 

Path 14 is taken if an unhandled exception is propagated from nested blocks and 

no matching catch  block is found in this try statement. No finally  

block is specified in this try statement. 

 

Within catch  blocks, all handlers are examined in the order in which they 

appear to find one handler that is a super-type of a raised exception. And no 



 103 

priority is given to an exact match handler over one requiring the application of an 

inheritance relationship. A raised exception E matches a catch  handler H if E and 

H are of the same type or H is a super-class of E.  

 

  1. no exceptions raised in try  block; no finally  block
  2. exception raised in try  block; no matching catch  block; no finally  block
  3. no exceptions raised in try  block; finally  block specified
  4. exception raised in try  block; no matching catch  block; finally  block specified
  5. exception raised in try  block; matching catch  block specified
  6. exception handled; finally  block specified
  7. catch  block raises exeption; finally block specified
  8. exception handled; no finally block
  9. catch block raises exeption; no finally block
10. no exceptions raised in finally  block
11.finally  block propagates previous exception or raised another exception
12. unhandled exception from nested block; matching catch  block specified
13.unhandled exception from nested block; no matching catch  block; finally  block specified
14. unhandled exception from nested block; no matching catch  block; no finally  block

try block catch block

try statement

method or enclosing try statement

normal entry exceptional entry

normal try
statement end

exceptional try
statement end

finally block

unhandled exception
from nested block

3

4 6

5

8

10

11

12 13

normal exit excpetional exit

1 2

14

7 9

 

Figure 6-2. Control flow in Java exception handling constructs. 
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6.3 Exception Handling in Java Bytecode 
 

In Java bytecode, exceptions can be thrown explicitly by the instruction 

athrow or implicitly by some specific instructions such as those shown in Figure 

6-3. The exception handling In Java bytecode has the same procedure as that in 

Java programming language, and thus has all the possible paths shown above. 

However, the presentation of try statements in Java bytecode is not so clear as that 

in Java programming language. In the latter, the scope of each block (try  block, 

catch  block and finally  block) in a try statement can be located easily by the 

enclosing symbols “{“ and “}”. While the location in Java bytecode is not so 

straight. In next section, we will discuss the presentation of try statements in Java 

bytecode and give the algorithm to locate the scope of each block in a try 

statement.  

 

Instruction Stack Exceptions Thrown 

aaload  arrayref, index => v 

ArrayIndexOutOfBoundsException, 

NullPointerException 

bastore  arrayref, index, v =>  

ArrayIndexOutOfBoundsException, 

NullPointerException 

iaload  arrayref, index => v 

ArrayIndexOutOfBoundsException, 

NullPointerException 

idiv  value1,value2 =>result ArithmeticException 

instanceof  objectref =>restult Resolution Exceptions 

invokestatic [arg1,[arg2…]] Resolution Exceptions 

Ldc …=>item Resolution Exceptions 

newarray count =>arrayref NegetiveArraySizeException 

putfield objectref,value=> 

Resolution Exceptions, 

NullPointerException 

 

Figure 6-3. Some Java bytecode instructions that can throw exceptions. 
 

6.3.1 Compilation of try Statement in Java Bytecode 

Different from the straight and clear presentation format of try statements in 



 105 

Java programming language, the presentation format in Java bytecode is a little 

complex.  

 

� Compilation of try and catch Blocks 

 

The compilation of Java’s try -catch  construct is straightforward. Figure 6-4 

give a simple example of Java program with try -catch  construct being 

compiled into Java bytecode. The try  block is compiled just as it would be if the 

try  were not present. If no exception is thrown during the execution of the try  

block, it behaves as though the try  were not there. Following the try  block is the 

Java bytecode implementing the single catch  block. The contents of the catch  

block are also compiled like a normal method. However, the presence of a catch  

clause caused the compiler to generate an instruction between the bytecode of try  

and catch  blocks, which can change the control flow to avoid the unconditional 

execution of the catch  block such as return , jsr , goto  and so on. 

Furthermore the compiler will generates an exception table entry for each catch  

block to indicate the scope of try  block that the catch  block deals with by the 

index pairs [from, to], the beginning index of the catch  block by the column 

target and the exception type that the catch  block can handle by the column type. 

In the example shown in Figure 6-4, if some value that is an instance of TestExc is 

thrown during the execution of the instructions between indices 0 and 4 (inclusive), 

the control is transferred to the instruction at index 5, which is the beginning of the 

catch  block.  

 

Multiple catch  blocks of a given try statement are compiled by simply 

appending the Java bytecode for each catch  block one after the other, and adding 

entries to the exception table. If during the execution of the try  block, an 

exception is thrown that matches the handler type of one or more of the catch  

blocks, the first such catch  block is selected. Control is transferred to the 

bytecode for the catch  block. Here no priority is given to the catch  block with 

the exact matching exception type over one with super-class exception type. If no 

such catch  block can be found, the JVM re-throws the exception without invoke 

the bytecode in any catch  block. And nested try statements are compiled very 

like a try statement with multiple catch  blocks. The nesting of catch  blocks is 

represented only in the exception table. When an exception is thrown, the 
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innermost catch  block containing the site of the exception and having a matching 

handler type is selected to handle the exception. It is so even that the exception 

occurs within the bounds of the outer catch  block and even the outer catch  

block might otherwise have been able to handle the thrown exception.  

 

void catchOne() {
    try {
        tryItOut();
    }
    catch (TestExc e) {
        handlExc (e);
   }
}

Method void catchOne()
 0 alod_0                //Beginning of try  block
 1 invokevirtaul #6  //Method tryItOut()V
 4 return                 //End of try  block
 5 astore_1             //Beginning of catch  block
 6 aload_0
 7 aload_1
 8 invokevirtual #5 //Method handleExc(LTestExc;)V
11 return

 Exception table:
 From     To    Target  Type
 0           4      5         Class TestExc

 
Figure 6-4. An example of try -catch  construct’s compilation. 

 

� Compilation of finally Block 

 

In Java bytecode, the finally  block can be compiled as an embedded routine 

or as bytecode appended to the try  block and catch  blocks (if there is any). The 

Java program in Figure 6-5 has a try statement with try , catch  and finally  

blocks. We give the bytecode compiled from the program in the two compilation 

ways in Figure 6-6 and Figure 6-7.* 
                                                   
*  The bytecode in Figure 6-6 is generated by JDK 1.4.1 and that in Figure 6-7 by JDK 1.4.2. 
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void testOfcatch(int[] a, int b){
    try{
        int c = a.length;
        int d = a[b];
        raiseException();
    }
    catch (NullPointerException e){
        handleException(e);
    }
    finally{
        wrapItUp();
    }
}

 
Figure 6-5. An example of Java program with the finally  block. 

 

void
testOfcatch(int[],int);
Code:
  0: aload_1
  1: arraylength
  2: istore_3
  3: aload_1
  4: iload_2
  5: iaload
  6: istore 4
  8: aload_0
  9: invokevirtual #5
10: jsr 36
13: goto 44
16: astore_3

Exception table:
from   to  target  type
    0    10   16    Class java/lang/NullPointerException
    0    13    28    any
  16    25    28    any
  28    33    28    any

17: aload_0
18: aload_3
19: invokevirtual #8
22: jsr 36
25: goto 44
28: astore 5
30: jsr 36
33: aload 5
35: athrow
36: astore 6
38: aload_0
39: invokevirtual #6
42: ret 6
44: return

 
Figure 6-6. The finally  block is compiled as a subroutine. 
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void testOfcatch(int[],int);
Code:
  0: aload_1
  1: arraylength
  2: istore_3
  3: aload_1
  4: iload_2
  5: iaload
  6: istore 4
  8: aload_0
  9: invokevirtual #5
12: aload_0
13: invokevirtual #6
16: goto 41

Exception table:
from   to  target  type
    0    12    19     Class java/lang/NullPointerException
    0    12    32    any
  19    25    32    any
  32    34    32    any

19: astore_3
20: aload_0
21: aload_3
22: invokevirtual #8
25: aload_0
26: invokevirtual #6
29: goto 41
32: astore 5
34: aload_0
35: invokevirtual #6
38: aload 5
40: athrow
41: return

 
 

Figure 6-7. The finally  block is compiled as code appended to try  and 

catch  blocks. 

 

In the compilation format of subroutine as shown in Figure 6-6, an instruction 

jsr  is added at the end of try  block and catch  blocks (if there is any) in order 

to transfer the control to the code implementing the finally  block if the 

execution of the try  or catch  block ends normally (edges 3 and 6 in Figure 6-2). 

In more detail, the subroutine call works as follows: The instruction jsr  (at 

indices 10 and 22 in Figure 6-6) pushes the address of the following instruction 

onto the operand stack before jumping. The first instruction (astore  6 at index 

36 in Figure 6-6) in the code implementing the finally  block stores the address 

on the operand stack into local registers. The following code (instructions from 

index 38 to 42 in Figure 6-6) is run. Assuming the execution of the finally  

block completes normally, the instruction ret  (at index 42 in Figure 6-6) at the 

bottom of the subroutine retrieves the address stored to local registers and resumes 

execution at that address. 
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Furthermore in order to deal with the exceptional exit of the try  and catch  

blocks (edges 4 and 7 in Figure 6-2), the compiler generates one exception table 

entry for each try  or catch  block with the handler type any, which can handle 

any type of exceptions thrown with the scope of try  or catch  block. (Usually 

such a entry is also generated for the finally  block itself.) When the try  or 

catch  block throws an exception and the matching catch  block is not found, 

the exception table entries for the finally  block is searched for an appropriate 

exception handler. Then the control is transferred to the instruction (at index 28 in 

Figure 6-6) indicated by the column target. After storing the reference value of the 

thrown exception to local registers (the instruction astore  5 at index 28 in Figure 

6-6), the following instruction jsr  does a subroutine call to the code 

implementing the finally  block. Assuming that code returns normally, the 

reference value of the thrown exception is pushed back to the operand stack (the 

instruction aload  5 at index 35 in Figure 6-6) and re-thrown by the following 

instruction athrow  (at index 35 in Figure 6-6). 

 

In the other compilation format, the code implementing the finally  block is 

appended to the try  block and catch  blocks (if there is any) as shown in Figure 

6-7. If the execution exits the try  or catch  block normally (edges 3 and 6 in 

Figure 6-2), the execution continues to work on the following code, which 

implements the finally  block and is appended to the try  or catch  block by 

the compiler. In Figure 6-7, the code appended to the try  block is the instructions 

between [72, 110] and the code appended to the catch  block is those between [37, 

3]. For the exceptional exit of to the try  or catch  block, the compiler generates 

one exception table entry for each try  or catch  block with the handler type any 

just like the compilation in the subroutine format. The instructions from the index 

indicated by the column target do similar work as those in the subroutine format 

except that the subroutine call is replaced by executing the code implementing the 

finally  block directly.  

 

6.3.2 Locating the try    Block 

Since the scope of the try  block is indicated by the columns from and to in 

exception table entries, it is easier to locate the scope of the try  block compared 

with locating the scope of the catch  or finally  block. What we should pay 
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attention to is that the compiler generates exception table entries for catch  blocks 

if the try statement contains a finally  block and such entries should be 

excluded.  

 

If the catch  block is specified in a try statement, the compiler generates a 

exception table entry with a particular handler type for each catch  block. Thus if 

there are one or more entries whose handler type is not any, the catch  block is 

specified and the scope of the try  block is indicated by the index pair [from, to) in 

those entries. Each different pair corresponds to one try  block in a try statement. 

For example, the scope the try  block of in Figure 6-6 is [0, 10) and that in Figure 

6-7 is [0, 12). 

 

If no catch  block is specified in a try statement, all the entries in the exception 

table are generated for the finally  block by the compiler and the handler types 

of all entries should be any. These entries are generated to deal with the exception 

thrown either in the try  block or the finally  block. Since the entries generated 

for the latter case should have equal values in columns from and target, the scope 

of the try  block is indicated by the index pair [from, to) in the entry whose 

column from’s value is not equal to column target’s value.  

 

6.3.3 Locating the catch    Block 

If the catch  block is specified in a try statement, the compiler generates an 

exception table entry for each catch  block, in which the beginning index of the 

catch  block is indicated by the column target. What we need to do is to locate 

the ending index of the catch  block. 

 

If no finally  block is specified in the try statement, the control is transferred 

to the immediate post-dominator instruction of the try statement after the execution 

exits the try  block normally. Thus the immediate post-dominator instruction of 

the try  block, which is indicated by the column to in the exception table, should 

be the instruction goto  if there are instructions left to be executed in the method 

or the instruction return  (αreturn ) if the end of the try statement is the bottom 

of the method. In the former case the end index of the last catch  block is 

indicated by the branch index of the instruction goto , and in the latter case the 
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end index is the index of the last instruction in the method. The end of other 

catch  blocks (if there are more than one catch  block in the try statement) can 

be located by the beginning index of the next catch  block since the catch  

blocks are compiled into successive bytecode. For example the in bytecode shown 

in Figure 6-9, the scope of the first catch  block is [6, 14) indicated by values in 

the column target and the scope of the last catch  block is [14, 19) indicated by 

the value in the column target and the branch index of the instruction goto  at 

index 3 which is the immediate post-dominator of the try  block.  

 

If the finally  block is specified in the try statement, the compiler generates 

for finally  block one exception table entry to deal with the exception thrown in 

the try  block that the catch  block cannot deal with, one entry to deal with the 

exception thrown in each catch  block and one entry to deal with the exception 

thrown in the finally  block itself. Thus the scopes of the catch  blocks are 

indicated by the columns from and to in those entries to deal with exception 

thrown in catch  blocks, just like the scope of the try  block is indicated by the 

entry generated for the catch  block. The entry generated to deal with exception 

in the try  block can be found by compare the value of columns from and to with 

the scope of the try  block, and the one generated to deal with exception in the 

finally  block has equal values in the columns from and target. Excluding those 

entries, the left ones are generated to deal with the exception in the catch  block 

and can be used to locate the scope of the catch  block by the index pair [from, 

to). For example in the bytecode shown in Figure 6-7, the third exception table 

entry is generated for the finally  block to deal with the exception in the catch  

block, and the scope of the catch  block is [19, 25) indicated by the columns from 

and to.  

 

6.3.3 Locating the finally    Block 

Locating the scopes of the catch  and finally  blocks is complicated because 

of the finally  block’s compilation. The compiler generates an exception table 

entry for each catch  block and one or more entries with type any  for the 

finally  block. The exception table entry with handler type any is generated and 

can be only generated for the finally  block in the try statement by the complier. 

Thus if there are any entries with handler type any in the exception table, the 
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finally  block is specified in this try statement.  

 

In the case of the finally  block being compiled into subroutine, the last 

instruction in the try  block (whose index is indicated by the value of the column 

to in the exception table entry) should be the instruction jsr  i. The instruction 

jsr  i transfers the control to the subroutine compiled from the finally  block, 

whose starting index is i. Assuming the index of the instruction ret  in the 

subroutine is i’, the scope of the finally  block is (i, i ’). As for locating the 

scope of the catch  block, if there is any, the index of the first instruction in the 

catch  block is indicated by the column target in the exception table entry whose 

handler type is not any. At the end of the catch  block there should be one 

instruction jsr  transferring the control to the subroutine of the finally  block. 

Since the scope of the finally  block has been located as (i, i’), the end of the 

catch  block is the first jsr  i post-dominating the first instruction of the catch  

block. Assuming the value of the column Target in the exception table entry 

indicating the catch  block is k and the index of the instruction jsr  i transferring 

the control to finally  block is k’, the scope of the catch  block is [k, k’]. 

 

For example, in Figure 6-5 the finally  block is specified because there are 3 

entries with the handler type any in the exception table. The first entry in the 

exception table has a handler type of java/lang.NullPointerException  

and indicates the scope of the try  block as [0, 10] by the columns from and to. 

Since the last instruction in the try  block is jsr  36 at index 10, the subroutine 

complied from the finally  block starts from the instruction at index 36. And the 

index of the instruction ret  is 42, thus the scope of the finally  block is (36, 

42). As the scope of the catch  block, the starting index had been indicated as 16 

by the column target in the first entry of the exception table. Since the instruction 

transferring control to the finally  block is jsr  36, the first such instruction 

post-dominating the instruction at index 16 (the beginning of the catch  block) is 

the instruction at index 22. Thus the scope of the catch  block is [16, 22]. 

 

In the other case, the finally  block is compiled into the code appended to the 

try  and catch  blocks respectively. That is, the same code compiled from the 

finally  block will appear after each try  and catch  blocks, and the last 

instruction in the try  block could not be the instruction jsr . To divide the try  
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block from the following catch  or finally  blocks, the complier generates the 

instruction return  (or αreturn ) or goto  between them. Assuming the index 

of that dividing instruction is j’ and the index of the last instruction in the try  

block is j, the scope of the finally  block appended to the try  block is [j, j’].   

 

As for locating the scope of the catch  block, the index of the first instruction 

in the catch  block is indicated by the Target’s value in the exception table entry. 

From the first instruction we search the instruction block matching the instructions 

in [j, j’] and the last one of found instruction blocks is the finally  block 

appended to the catch  block. If there are any entries whose handler types are not 

any in the exception table, the catch  block is specified. The locating of the 

catch  block’s the scope is based on the scope of the finally  block. In the 

other case, assume the value of the Target is k and the scope of the finally  

block appended to the catch  block is [l, l’]. The scope of the catch  block is [k, 

l]. For example, in Figure 6-6 the scope of the try  block is [0, 10], the scope of 

the finally  block is (36, 42) and the scope of the catch  block is [16, 22]. In 

Figure 6-7 the scope of the try  block is [0, 12], the scope is of the finally  

block is [12, 16], [25, 26] and [34, 35] respectively, and the scope of the catch  

block is [19, 25). 

 

6.4 Implicit Information Flow in Exception Handling  
 

In Java bytecode, exceptions can be thrown explicitly by the instruction athrow 

or implicitly by some specific instructions such as those shown in Figure 6-3. For 

the exceptions raised implicitly by one Java bytecode instruction, whether the 

exception occurs depends on the values of the variables operated in the instruction. 

In other words, the occurrence of one exception carries the information of the data 

affecting the exception’s generation. Therefore it is reasonable to assign a 

security-level to each exception. We define the security-level of one exception as 

the LUB of security-levels of the data determining whether the exception is raised. 

For example, consider the exception of type NullPointerException  raised 

by the instruction iaload . Since whether the exception is raised or not depends 

on the value of the variable arrayref, the security-level of the exception is the 

security-level of data in the variable arrayref.  
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Considering that exception handling will not only cause intra-procedural control 

transfer but also inter-procedural control transfer, we add one new field SL of type 

byte  to every exception class including both pre-defined exception classes and 

user-defined exception classes, and use it to store the security-level of the 

exception instance. By this way when an exception is thrown from the callee 

method to the caller method, we can trace the information flow correctly and 

understand the security-level of the exception when it is handled in the caller 

method.  

 

As mentioned above, in Java bytecode exceptions can be thrown implicitly by 

some specific instructions, which are called as PEIs (Potential Exception-throwing 

Instructions). When the execution of Java bytecode encounters a PEI, where the 

control flow is transferred depends on that whether the PEI raises an exception and 

what exception the PEI will raise. In other words, the PEI acts as a conditional 

branch node and it may have some of the branches shown in Figure 6-2. It means 

that one PEI can cause implicit information transferring just like the if-instructions 

and initiates an implicit transferring block. Obviously the conditional 

security-level of such one implicit transferring block is the security-level of the 

exception that may be raised by the PEI (or the LUB of the security-levels of all 

exceptions that may be raised by the PEI). To distinguish it from the conditional 

security-level of if-instructions, we call that conditional security-level as the 

exceptional security-level of the PEI.  

 

In Java Virtual Machine specification, which instructions can raise exceptions 

and what type of exceptions they can raise have been defined clearly. We can 

calculate the exceptional security-level of one PEI just before the PEI is executed. 

As for the scope of the implicit transferring block initiated by one PEI, it varies 

with the location where the exception(s) raised possibly by the PEI can be handled, 

that is, in the same method where the PEI raises exception(s) or in the caller 

method. According to the Java Virtual Machine specification, 40 instructions could 

throw exceptions implicitly in the total 204 instructions in Java bytecode. And in 

those 40 PEIs, 7 instructions can only throw one type of exception (we call such 

one PEI as single-exception PEI) and the others can throw two or more types of 

exception (we call such one PEI as multiple-exception PEI). Thus for the 

exceptions that can be raised by multiple-exception PEIs, there are three kinds of 
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exception handling: 1) all of they may be handled in the same method where they 

are raised (only intra-procedural transferring may be caused); 2) none of they may 

be handled in the same method where they are raised (only inter-procedural 

transferring may be caused); or 3) some of they may be handled and the others can 

not be handled in the same method where they are raised (both intra-procedural 

and inter-procedural information transferring may be caused). Since what type of 

exceptions that one PEI can raise has been defined by JVM specification and what 

type of exceptions one method can handle had been defined by the exception table, 

we can judge that one PEI may cause intra-procedural information transferring, 

inter-procedural transferring or both of them. We discuss these cases respectively. 

 

� Intra-procedural Information Transferring May be Caused 

 

In this case, all the exception(s) raised by one PEI can be handled by the proper 

catch  blocks in the same method. The branches of the implicit transferring block 

caused by the PEI are 1 and 5-7 (no finally  block) or 3 and 5-6 (finally  

block specified) in Figure 6-2. The scope of the normal branch (1 or 3 in Figure 

6-2) is from the immediate post-dominator of the PEI to the end of the try  block. 

(This branch will be blank if the PEI is the last instruction in the try  block.) And 

the scope of the exceptional branch(es) (5-7 or 5-6 in Figure 6-2) is the whole 

catch  block(s) handling the exception(s). Thus when the execution encounters 

one PEI that can only raise intra-procedural implicit information transferring, we 

should backup the current environment security-level SLc, and set SLc to the LUB 

of original SLc and the exceptional security-level of the PEI. Then at the end of 

each branch we should set the SLc back to the original one. 

 

� Inter-procedural Information Transferring May be Caused 

 

In this case, no proper catch  block can be found in the same method for the 

exception(s) raised by the PEI and JVM throws the exception(s) to the caller 

method. The branches of the implicit transferring block caused by the PEI is 1 and 

2 (no finally  block) or 3 and 4-9 (finally  block specified) in Figure 6-2. 

The scope of the normal branch (1 or 3 in Figure 6-2) is from the immediate 

post-dominator of the PEI to the end of the method exclusive the finally  block 

if it is specified. And the scope of the exceptional branch(es) (2 or 4-9 in Figure 
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6-2) is the whole catch  block(s) that can handle the exception(s). (Such catch  

block may be in the caller method or in the further outer caller method, or does not 

exist in which case the exceptional branch is blank.) Since the control may be 

transferred to the caller method in this case, we should insert proper instructions to 

transfer the exceptional security-level of the PEI raising the exception(s) to the 

caller method. As mentioned above, we add one new field SL to every exception 

class to transfer the security-level between methods in the case of one method’s 

exceptional exiting. Thus we should set the field SL of the current exception 

instance to the current environment security-level before the execution exit the 

method. If there is one finally  block specified in the try statement where the 

exception is raised, we can insert the instructions setting the field SL in the 

finally  block. Or else we should add one finally  block that does nothing but 

the setting of the field SL. When the execution encounters one PEI that may raise 

inter-procedural implicit information transferring, we should set the SLc to the 

LUB of the SLc and the exceptional security-level of the PEI. If a finally  block 

is specified, we should backup the current environment security-level SLc before 

we change it, then restore the backup SLc at the start of the finally  block in 

order to exclude it from the normal branch, and at the end of the finally  block 

we set SLc to the one calculated just before the PEI. As for the exceptional branch, 

we should backup current environment security-level SLc (which is the SLc of the 

method being executed, not the method where the exception is raise since at that 

point the execution has exited that method), and then set the SLc to the LUB of the 

original SLc and the security-level stored in the field SL of the exception. At the 

end of the exceptional branch we should restore the SLc to the original one. 

 

� Both kinds of Information Transferring May be Caused 

 

In this case, some of the exceptions that may be raised by the PEI can be 

handled in the same method and the others cannot be. The branches of the implicit 

transferring block caused by the PEI are 1, 2 and 5-7 (no finally  block) or 3, 

4-9 and 5-6 (finally  block specified) in Figure 6-2. The scope of the normal 

branch (1 or 3 in Figure 6-2) is from the immediate post-dominator of the PEI to 

the end of the method exclusive the finally  block if it is specified. The scope of 

the intra-procedural exceptional branch(es) (5-7 or 5-6 in Figure 6-2) is from the 

start of the catch  block that can handle the exception in the same method to the 
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end of the method exclusive the finally  block if it is specified. The scope of the 

inter-procedural exceptional branch is the whole catch  block that can handle the 

exception, which may be in the caller method or in the further outer caller method, 

or does not exist in which case the inter-procedural exceptional branch is blank. 

What we should do in the normal branch and inter-procedural exceptional branch 

is same to what we do in case of inter-procedural implicit information transferring. 

As for the intra-procedural exceptional branch, we should only exclude the 

finally  block from the intra-procedural exceptional branch with the same way 

used in the normal branch if the finally  block is specified. 

 

� Procedure of Dealing with Implicit Information Flow Caused by PEIs 

 

Based on the analysis above, we can find that the PEIs in Java bytecode act as 

the if-instructions in the information transferring. Here we define the procedure of 

dealing with the implicit block caused by PEIs and give an example in the 

following. 

 

Given a method m, the procedure could be defined as following. 

a Locate the scopes of all the try  blocks, finally  blocks and catch  

blocks in m. 

b Search for all the PEIs in m and calculate the exceptional security-level of 

each PEI just before it. 

c If all the PEIs in one try  block are intra-procedural PEIs, at the end of the 

try  block and the corresponding catch  blocks (if they are specified) 

restore the SLc that is backupped before the first PEI in the try  block. 

d If any PEIs in one try  block is inter-procedural PEIs, at start of the 

corresponding finally  block backup the SLc and restore the SLc that is 

backupped before the first PEI in the try  block. Then at the end of the 

finally  block, restore the SLc that is backupped at the start of the 

finally  block. 

e At the start of each catch  block, check the value of the field SL in the 

exception instance caught. If it is not 0, set the SLc to the LUB of the SL and 

SLc. 

f If there are any inter-procedural PEIs and the finally  block is specified, 

set the field SL of the exception instance caught in the finally  block to 
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the SLc. 

g If there are any inter-procedural PEIs and the finally  block is not 

specified, add one finally  block to m and set the field SL of the exception 

instance caught in that finally  block to the SLc. 

 

Here we give an example. Consider the section of Java program whose bytecode 

and CFG are shown in Figure 6-8. Using the procedure above we could deal with 

implicit transferring caused by PEIs in that Java bytecode. We give the modified 

bytecode in Figure 6-9. Referring to the exception table, we can find the scope of 

the try  block is [0, 12], the scopes of the finally  blocks are [12, 16], [25, 26] 

and [34, 35] respectively, and the scope of the catch  block is [19, 25] in Figure 

6-8. The PEIs are arraylength  at index 1 and iaload  at the index 5 in Figure 

6-8. (Here to simplify the example we assume that the instruction invokevirtual 

itself will not raise any exception.). We insert instructions at the address 2, 3 and 

14-20 in Figure 6-9 to calculate the exceptional security-level of the two PEIs. By 

checking the handler type of the catch  block, we can find that the 

arraylength  is intra-procedural PEI and the iaload  is inter-procedural PEI. 

Thus we insert instructions at the address 71-83 in Figure 6-9 to the finally  

blocks to set the correct current environment security-level. At the start of the 

catch  block we insert instructions at the address 44-55 in Figure 6-9 to check 

whether the field SL of exception instance caught is 0 and set the current 

environment security-level to the correct value. 
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void testOfcatch(int[] a, int b){
    try{
        int c = a.length;
        int d = a[b];
        raiseException();
    }
    catch (NullPointerException e){
        handleException(e);
    }
    finally{
        wrapItUp();
    }
}  
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void testOfcatch(int[],int);
Code:
  0: aload_1
  1: arraylength
  2: istore_3
  3: aload_1
  4: iload_2
  5: iaload
  6: istore 4
  8: aload_0
  9: invokevirtual #5
12: aload_0
13: invokevirtual #6
16: goto 41
19: astore_3
20: aload_0
21: aload_3
22: invokevirtual #8
25: aload_0
26: invokevirtual #6
29: goto 41
32: astore5
34: aload_0
35: invokevirtual #6
38: aload 5
40: athrow
41: return

Exception table:
from   to  target  type
    0    12    19     Class java/lang/NullPointerException
    0    12    32     any
  19    25    32     any
  32    34    32     any

 
 

Figure 6-8. An example of implicit information transferring caused by PEIs. 
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Figure 6-9. The modified bytecode of that shown in Figure 6-8. 

void testOfcatch(int[],  
byte[], int, byte);  
Code: 
 0: aload_1 
 1: iload_3 
 2: dup 
 3: istore 13 
 5: istore 7 
 7: arraylength 
 8: istore 6 
10: aload_1 
11: aload_2 
12: iload 4 
14: iload 5 
16: iload_3 
17: jsr 80 
20: istore 13 
22: swap 
23: iload 4 
25: iaload 
26: istore 9 
28: iaload 
29: istore 8 
31: aload_0 
32: invokevirtual #5 
35: aload_0 
36: invokevirtual #6 
39: goto 54 
42: astore 6 
44: aload 6 
46: getfield #9; 
   //Field SL; B 
49: dup 
50: ifne 36 
53: iload 13 

55: istore 12 
57: aload_0 
58: aload_0 
59: invokevirtual #8 
62: aload_0 
63: invokevirtual #6 
66: goto 27 
69: astore 10 
71: aload 10 
73: getfield #9; 
   //Field SL; B 
76: ifne 10 
79: aload 10 
81: iload 12 
83: putsield #9; 
   // Field SL; B 
86: aload_0 
87: invokevirtual #6 
90: aload 10 
92: athrow 
93: return 

 
95: istore 14 
97: dup2 
98: if_icmple 86 

101: istore 15 
103: pop 
104: istore 15 
106: goto 68 
109: pop 
110: ret 14 
 

Exception table: 
from  to  target  type 
  0   25   30   Class jave/lang/NullPointerException 

0   25   45   any 
 30   49   45   any 
 45   52   45   any 



 121 

6.5 Explicit Information Flow in Exception Handling  
 

In Java bytecode the exception can be thrown by the instruction athrow  

explicitly. The instruction athrow  transfers the control from it to the point where 

the exception thrown by it can be handled, and thus cause explicit information 

transferring. Similar to the implicit information transferring caused by PEIs, the 

explicit information transferring caused by athrow  can also be divided into the 

intra-procedural and inter-procedural transferring depending on where the 

exception thrown. But different from PEIs, the instruction athrow causing 

explicit information transferring acts as an unconditional control-trsferring 

instruction goto  in the information flow. The effect of the instruction athrow  on 

the information flow is that the environment security-level of the block where the 

instruction athrow  throws an exception is transferred to the block where the 

exception is handled. Therefore it is quite simple to deal with the explicit 

information transferring caused by the instruction athrow . What we should do is 

to set the field SL of the exception instance that will be thrown by the athrow  to 

the current environment security-level SLc. As for the block where the exception is 

handled, we compare the current environment security-level with the security-level 

in the field SL of the exception instance and updates to the current environment 

security-level to the value of the higher one, which is just like we do for implicit 

information flow at the handler block.  
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7 Implementation and Evaluation 

7.1 System Architecture 
 

A prototype verification system implementing the approach described in this 

thesis has been developed, and it is named as BMOS (Bytecode MOdification 

System). This system is written in Java language so as to be adopted by various 

mobile systems. The input of BMOS is a class file in memory. Modified by the 

modifier, the bytecode containing verification code is delivered to the local runtime 

platform. During the execution of the bytecode, an information-leak exception will 

be thrown if there is any violation of host security policies. In this way, the 

verification system interrupts the process causing information-leak to protect the 

local host security. Of course, the user can choose to ignore the exception in order 

to make the bytecode finish its job. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-1. BMOS architecture. 

 

The BMOS is built using the techniques described in this thesis. As shown in 

Figure 7-1, the system consists of two main parts: the security policies and the 

Security policies 

Untrusted 
bytecode 

Modifier 

 
Runtime 
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Verification systemVerification systemVerification systemVerification system    
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Modified bytecode 
containing 
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modifier. The security policies define the security requirement of the local host. 

These policies are described by the security-levels of resources and the 

clearance-levels of third-party hosts, and stored in a configuration file. The core of 

the system is the modifier, which redefines the class and inserts the verification 

code for the dynamic verification during the execution. 

7.1.1 Security policies 

In BMOS, the security policies are described by the security-levels and the 

clearance-levels.  

 

A security-level defines a host file’s sensitivity. The higher the security-level is, 

the more sensitive the file is. All the information stored in a file get the file’s 

security-level, and all the files in one directory get the security-level of the 

directory. 

Security-level definition: 

SL.level=res 1, res 2, … 

e.g.   SL.3=/home/temp, /home/usr/ 

 

A clearance-level defines the trust level of an observer-host to receive the 

information on the local-host. The higher the clearance-level is, the more trustful 

the observer-host is. The clearance-level is assigned to an observer-host according 

to its network address. 

Clearance-level definition: 

CL.level= res1, res2,… 

e.g.   CL.2=www.abc.com, ftp.xy.com, 201.118.23.234 

7.1.2 Modifier 

The modifier is the core part of this system. It performs the modification of 

bytecode used for the dynamic verification during the execution. The modification 

can be divided roughly into three steps. The first step is to parse the class file from 

bytecode to the instance of ClassInfo  class defined beforehand. The second step 

is class-level modifications and method-level modifications, including adding fields, 

rewriting the method-descriptors, adding local variables, changing the stack size 

and inserting verification instructions, etc. The final step is to generate the bytecode 
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of the modified class. In Figure 7-2, we give the process steps of the modifier.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-2. Processing steps of Modifier. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3. The Program of Class-level Modification. 
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public ClassModifier(File classFile)  
throws FileNotFoundException, IOException{ 

 
classInfo = new ClassInfo(classFile); 
cp = classInfo.getConstantPool();//Constant Pool   
indexOfByteInCP = cp.getUtf8(String. valueOf 

(TypeDiscriptorParser. BYTE)).getIndex(); 
 

} 
   
public void modifyClass(){  
  

//adding fields as Security-Level Container for the  original fields  
addFields(); 

     
//modify each method of the ClassFile 
modifyMethods(); 
 

}  

ClassModifier.java    
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Figure 7-4. The Program of Method-level Modification. 

 

We illustrate part of the source code of the modifier in Figure 7-3 and 7-4. In the 

constructor of class ClassModifier , the class file to be modified is parsed to an 

instance of class ClassInfo . The method modifyClass  of class 

ClassModifier  performs the class-level modification. And in the method 

modifyMethods , one instance of class MethodModifier  is generated for 

each method in the class file, and the method modifyMethod  shown in Figure 

7-4 is invoked to perform the method-level modification. 

 

7.2 Implementation 
 

7.2.1 Class Parser 

In order to analyze and modify the class file, the class file is transformed to the 

format to meet our needs. This process is implemented by a Class Parser, which 

reads information from the class file and then converts it to instances of classes 

defined beforehand. Some tools, such like Bytecode Engineering Library (BCEL) 

and Java Object Instrument Environment (JOIE), have been developed to 

implement such class parsing. But to implement our approach, we need not only 

parse the class file to instances, but also modify the instances and regenerate the 

class file. Thus we adapted the JOIE to meet our need of class file modification.  

 

MethodModifier.java    
 public void modifyMethod() { 

 
// Rewrite the descriptor: add parameters as Securi ty-Level Container  
// for original, and modify the return type 
addParameters(); 

 
// add local variables as Security-Level Container for original 
addLocalVariable(); 

 
// add stack as Security-Level Container for origin al 
addStack(); 

 
// add verification code 
initiaInstruction(); 
addVerificationCode(); 

}  
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Figure 7-5. UML diagram of the classes representing class file. 

 

 

Figure 7-6. UML diagram of the classes representing the constant pool. 
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JOIE is a framework for safe Java bytecode transformation. It provides both 

low-level and high-level functionality to extend or adapt compiled Java classes. The 

low-level interface allows manipulating the bytecodes itself whereas the high-level 

interface provides methods for inserting new interfaces, fields, methods or whole 

code splices. In order to modify the class file more easily, we ameliorate some 

classes of JOIE. Figure 7-5 shows the UML diagram of the classes used to 

represent the class file, and Figure 7-6 shows the UML diagram of the classes used 

to represent the information in the constant pool. 

 

The input of the class parser should be one class file in the format of bytecode 

file or InputStream . The constructor of class ClassInfo  will invoke proper 

methods to read information of the class file from bytecode or InputStream , 

generate instances of necessary classes (such as ConstantPool , Field , 

Method , Code, Instruction  and so on) and construct the instance of class 

ClassInfo  containing all information of the class file. For example, the class file 

“c:\workspace\bin\bms\Tester.class” can be parsed by the following code: 

 
File file = new File(“c:¥workspace¥bin¥bms¥Tester.c lass”); 

ClassInfo ci = new ClassInfo(file);  
 

As we get ClassInfo  instance of one class file, we can get all information we 

need about the class file. For example, the methods and fields of the class file 

“Tester.class” can be obtained by the following code:  

 

Method[] methods = ci.getMethods(); 

Field[] fields = ci.getFields(); 

 

For an instance of class Method , the information necessary for modification, 

such as descriptor, code, local variables and instructions can be obtained easily as 

following code: 

 

Code code = method.getCode(); 

LocalVariableTable lv= code.getLocalVariableTable() ;  

CodeIterator iter = code.getSplice().getCodeIterato r(); 

 

As for the Java bytecode instructions, a base class Instruction  represents a 
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single JVM instruction. Some subclasses, such as Load , Branch , are defined to 

represent the instructions performing the similar operation. Such subclasses hide 

subtle distinctions among different forms of the same instruction. For example, the 

JVM specification defines fifty separate bytecode forms that can load or store a 

value, depending on the size and type of the value and its location in the frame. 

Unified Load  and Store  instruction classes can generate the correct bytecode 

form for the operands. Other subclasses of Instruction represent the few instructions 

with multiple or a variable number of operands, including table switches, 

multidimensional object array creation, and interface method invocation. 

 

Instruction operands and arguments are represented as logical references to other 

objects rather than as numeric offsets into tables. For example, a Branch  

instruction instance contains a reference to the target Instruction  instance, 

rather than a byte offset. Also references to methods are represented by instances of 

the class Methodref , instead of as raw integers as in the byte stream interface. To 

achieve this, a class Label  is generated to represent the offset of branch 

instruction, such as goto , if_icmpne . And the size of instruction Label is 

defined as 0 in order to cause no side effect on original bytecode. 

 
Figure 7-7. UML diagram of the classes representing the bytecode instructions. 

 

Instruction classes contain logic to preserve referential integrity across changes 
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to the class file. For example, a Branch instruction automatically updates its offset 

field if new instructions appear between the branch and its target. Figure 7-7 shows 

the hierarchy of the classes representing the bytecode instructions. 
 

7.2.2 Class Modification 

The jobs performed at class-level modification are adding new fields as 

security-level container for the original fields and the class itself, and invoking 

method-level modification for each method in the class. 

 

For the original field of primary types, we add one field of type byte . For the 

original field of an array for primary types, we add one field of byte  array with the 

same dimension as the original one. And for the field of classes or array for classes, 

we add one field of the same type as the original one. Beside these, we also add one 

field of type byte  as the security-level container for the class itself. The added 

field’s name is the original field’s name suffixed with “_SL”. The added field has 

the same access flag as the original one. Since there are no ordering constraints on 

the Constant Pool  and Fields structures of Java class file, any new fields and 

entries could be appended rather than inserted in the middle in order to preserve the 

indices of existing entries.  

 

In order to judge the type of the field and thus add new field of proper type, we 

generated a class TypeParser  to parse the method’s descriptor to an array of 

variables’ descriptors, and judge the type that one variable’s descriptor represents. 

Figure 7-8 shows part of the program of adding fields. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Field[] fields = classInfo.getFields();//All origin al fields  
   
if (fields != null && fields.length > 0){ 

for (int i=0; i < fields.length; i++){ 
Field field = fields[i]; 
String descriptor = field.getDescriptor(); 

     
int typeOfFiled = TypeParser. judgeType(descriptor); 

     
//Add new field  
Field newField = null; 
String fieldName = field.getName();  
String newFieldName = fieldName+ TypeParser. SL_SUFFIX; 



 130 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-8. Part of the program of adding fields. 

 

After the fields adding, the method-level modification should be invoked for 

each method in the class file, which is performed by the method modifyMethods  

shown in Figure 7-9.  

 

 

 

 

 

 

 

 

Figure 7-9. The program of invoking method-level modification. 

 

7.2.3 Method Modification 

Method-level modification is the main part of the whole modification. The tasks 

performed here are adding security-level containers for parameters, modifying the 

indexOfName = cp.getUtf8(newFieldName).getIndex(); 
int indexOfDescriptor;  
if (typeOfFiled == TypeParser. WRONG_TYPE){ 

throw new IllegalArgumentException(); 
}else if (typeOfFiled == TypeParser. PRIMARY_TYPE){//primary 

indexOfDescriptor = indexOfByteInCP; 
newField = new Field(newFieldName, Type. BYTE);  

}else if (typeOfFiled%10 == TypeParser. PRIMARY_TYPE){//array  
ArrayType arrayType =  

new ArrayType(Type. BYTE, typeOfFiled/10); 
indexOfDescriptor = 

cp.getUtf8(arrayType.getDescriptor()).getIndex(); 
newField = new Field(newFieldName, arrayType); 

}else {//class or array of class 
newField = new Field(newFieldName, field.getType()) ; 
indexOfDescriptor = cp.getUtf8(descriptor).getIndex (); 

}     
   
 newField.setDesc_index(indexOfDescriptor); 
 newField.setName_index(indexOfName); 
 newField.setClassInfo(classInfo); 
 classInfo.addField(newField);    

} 
} 

private void modifyMethods(){ 
    //all the methods of the Class file 

Method[] methods = classInfo.getMethods(); 
 

if (methods != null && methods.length > 0){ 
 for(int i = 0; i < methods.length; i++){ 

MethodModifier mm = new MethodModifier(methods[i], cp); 
mm.modifyMethod(); 

 } 
} 

} 
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return type, adding security-level containers for local variables, increasing the stack 

size, locating the implicit blocks’ scopes, and the most important one, inserting the 

verification instructions. 

 

� Modifying method’s descriptor 

Adding security-level containers for parameters means to modify the 

descriptor of the method, that is, to insert the descriptor of the new parameter 

into the method’s original descriptor. In order to keep the alternate order of 

variables and their security-level containers, we insert the descriptor of the new 

parameter just after the descriptor of the original one. The rules used to decide 

types of new parameters are the same as the ones used when we add new fields.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-10. Part of the program of modifying the method’s descriptor. 

 

The return type of one method is also defined in the method’s descriptor. In 

if (numOfParams > 0) { 
for (int i = 0; i < numOfParams; i++) { 

String paramType = paraRetTypes [i]; 
newDescriptor.append(paramType); 
int type = TypeParser. judgeType(paramType); 

     
if (type == TypeParser. WRONG_TYPE){ 

throw new IllegalArgumentException(); 
}else if (type == TypeParser. PRIMARY_TYPE){ 

newDescriptor.append(TypeParser. BYTE); 
}else if (type % 10 == TypeParser. PRIMARY_TYPE){//array 

newDescriptor.append(paramType.substring(0, type / 10)  
+ TypeParser. BYTE); 

}else {//class or array of class 
newDescriptor.append(paramType); 

} 
} 

} 
// modify the return type if it is not Void; 
String returnType = paraRetTypes[numOfParams]; 
int type = TypeParser. judgeType(returnType); 
if (TypeParser. VOID_TYPE == type) { 

newDescriptor.append(returnType); 
} else { 

newDescriptor.append('[']; 
newDescriptor.append(returnType); 

} 
// Set new Descriptor to Constant Pool 
int constantIndex = method.getDesc_index(); 
cp.getUtf8(constantIndex).setString(newDescriptor.t oString());  
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order to return the security-level of the result, we assemble an array by the result 

and its security-level and return the array as the execution result of the method. 

At Figure 7-10 shows part of the program modifying the method’s descriptor. 

 

� Adding local variables 

Adding security-level containers for local variables is almost same as adding 

security-level containers for parameter on theory. But they are quite different in 

implementation and the former is much more difficult than the later. All 

parameters of one method are defined in one item in the constant pool, while the 

local variables are defined in the LocalVariableTable  attribute separately. 

To add a local variable, we need to define its available scope in instructions, its 

name index and descriptor in constant pool, and its index in all local variables. 

Similar to parameters, in order to keep the alternate order of variables and their 

security-levels, we insert new local variables into the original ones rather than 

append them. Thus we also need to recalculate the index of all local variables 

and the operands of the instructions using local variables. Figure 7-11 shows part 

of the program adding local variables and recalculating the index. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-11. Part of the program of adding local variables. 
 

� Increasing stack size 

if (lvType == TypeParser. PRIMARY_TYPE) {//primary type 
descriptorIndex = indexOfByteInCP; 

}else if(lvType%10 == TypeParser. PRIMARY_TYPE){//array  
String descriptor = lve.getDescriptor() 

.substring(0,lvType/10)+TypeParser. BYTE; 
descriptorIndex = cp.getUtf8(descriptor).getIndex() ; 

} else {//class or array of class 
descriptorIndex = cp.getUtf8(lve.getDescriptor()).g etIndex(); 

} 
 
LocalVariableEntry newLve = new LocalVariableEntry( lve.getStart(),  

lve.getLength(), nameIndex, descriptorIndex, lvPosi ton + 1); 
newLve.setStart_inst(lve.getStart_inst()); 
newLve.setEnd_inst(lve.getEnd_inst()); 
newLve.setCpool(cp); 
lvEntries.add(lvPositon + 1, newLve); 
 
// Modify the frame index of the original lv 
lve.setFrame_index(lvPositon); 
 
// Deal with the LocalVarible 
code.addLocalAt(lvPositon + 1, lvPositon + 1); 
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For the operands on the stack, we also need to keep the variables and their 

security-levels in alternate order. This order is kept by using correct instructions 

to push and pop operands to and from stack. We need not do anything to the 

stack except double the size of the stack, since we push the security-level of each 

operand to the stack.  

 

� Locating implicit blocks’ scopes  

In order to calculate the correct security-levels of variables, we need to know 

which instructions are in the implicit blocks and what are the environment 

security-levels of those implicit blocks. As we have discussed in Chapter 4, the 

if-instructions and switch instructions can cause implicit blocks. And we also 

give the algorithm to locate the scope of implicit blocks, including nest ones.  

 

To implement the algorithms, we use one variable impBlkScps  of type 

Stack  to manage the scopes of implicit blocks. We also use two arrays of type 

int  to represent the implicit block and all the instructions’ implicit-block 

layer-number as shown in Figure 7-12. We loop all instructions of the method to 

find the if-instructions and switch . Before we locate the scopes of the implicit 

blocks caused by one if-instruction or Switch , we need to decide the current 

implicit block, that is, the instruction is in any outer implicit blocks. We peek the 

scope on the top from impBlkScps . If the address of current instruction is in 

the scope, the scope of the current implicit block is the one just peeked. Or the 

loop has exited the scope, and we pop the implicit block since it will not be used 

any more.  

 

 

 

 

 

 

 

Figure 7-12. The arrays representing the implicit block and instructions’ layers.  

 

When the loop encounters one if-instruction or switch , we located the 

scopes of implicit blocks according to the algorithms in Chapter 4. Then we push 

int[] impBlkScope = { startAddr, endAddr, LayerNo } ;  
 
The first element represents the start address, the second element represents the end 
address, and the third element represents the layer number. 
 
int[] instrLayerNo = new int [maxAddr] 
 
maxAddr is the max address of instructions in the method. 
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the scopes to the variable impBlkScps  ascending (at first push the scope of the 

block appearing later in the instruction sequence, then the scope of the one 

appearing earlier). At last we set the implicit-block layer-number of the 

instructions in one implicit block to its layer number. Figure 7-13 shows part of 

the program of deciding current implicit block and locating the scopes of implicit 

blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

while (iter.hasNext()) { 
Instruction instr = iter.nextInstruction(); 
int addr = instr.getAddr(); 

 
// find the current implicit scope 
while (!impBlkScps.isEmpty()) { 

nextImpBlkScp = (int[]) impBlkScps.peek(); 
if (addr <= nextImpBlkScp[1] && addr >= nextImpBlkS cp[0]) { 

curImpBlkScp = nextImpBlkScp;     
break; 

} else {// exit nextImpBlk 
curImpBlkScp = null; 
impBlkScps.pop(); 

} 
} 

 
if (curImpBlkScp != null) { 

outerBlkStart = curImpBlkScp[0]; 
 outerBlkEnd = curImpBlkScp[1]; 
 curLayerNo = curImpBlkScp[2]; 

}else{ 
 outerBlkStart = 0; 
 outerBlkEnd = maxAddr; 
 curLayerNo = 0; 

} 
 

// if-instruction 
if (Instruction. isIfInstruction(instr)) { 

int addr = instr.getAddr();// I 
 int op = instr.getOp();// j 

 
 if (op < 0) {// loop 

int[] tempScope = { addr + op, addr - 1 }; 
pushImpScp(tempScope); 

 } else { 
Instruction instrBfreTar =  

splice.getPrevious(instr.getTarget()); 
int addr2 = instrBfreTar.getAddr();// i' 

 
if (instrBfreTar.getOpcode() == Opcode. GOTO 

   || instrBfreTar.getOpcode() == Opcode. GOTO_W) { 
int op2 = instrBfreTar.getOpcode();// j' 
if (op2 < 0) {// loop 

int[] tempScope={ addr + 1, addr2 - 1, curLayerNo +  1};  
pushImpScp(tempScope); 
} else {// two branches, common if-instruction 
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Figure 7-13. Part of the program locating implicit blocks.  

 

� Tracing information flow 

Inserting instructions to trace the information flow is the most important part 

of the method-level modification. What we should do here is to insert proper 

instructions to implement that loading security-level to stack, calculating LUB of 

security-level and store the security-level back to local variables or fields. 

During the operation be the inserted instruction, we should keep two rules: 1. 

When the JVM executes one original bytecode instruction, the operands used by 

the instruction on the stack should be laid as if no instruction is inserted, which 

assure that the inserted instructions has no side affect on the original function of 

the bytecode; 2. When the JVM executed the original instruction and the 

instructions inserted for it, the operands on the stack should keep the alternate 

order of variables and their security-levels, which assure that we may insert 

instructions for single original instruction and need not to consider the context. 

 

To keep the two rules, we load the security-level after the variable, and store 

the security-level before the variable. As for the instruction operating two or 

more operands, we add several local variables and use them as temporary   

containers for security-level or variables when we arrange the operands on the 

int[]tempScope2={addr+op,addr2+op2-1,curLayerNo+1};  
pushImpScp(tempScope2); 
int[] tempScope1={addr+1,addr2 - 1, curLayerNo + 1 };  
pushImpScp(tempScope1); 

} 
} else if (instrBfreTar.getOpcode() == Opcode. ARETURN 

|| instrBfreTar.getOpcode() == Opcode. RETURN) { 
int[] tempScope2={addr + op, maxAddr - 1, curLayerN o + 1};  
pushImpScp(tempScope2); 
int[] tempScope1 = { addr + 1, addr2 - 1, curLayerN o + 1 };  
pushImpScp(tempScope1); 

} else { 
int[] tempScope={addr + 1, addr + op - 1, curLayerN o + 1 };  
pushImpScp(tempScope); 

} 
}... 

}else if (instr.getCategory() == ByteCode. CAT_SWITCH) { 
...  
... 
...  
} 

} 



 136 

stack, and insert a little complicate instruction to keep the two rules above. 

Figure 7-14 shows part of the program inserts instructions for loading 

security-levels and calculating security-levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-14. Part of the program inserting instructions.  

 

Furthermore, we add a local variable of type int[] to store the environment 

security-level of each implicit block layer. So that we can know correct 

environment security-level every original instruction according to the 

implicit-block layer-number of the instruction. Thus we also need to insert 

instructions to manage the environment security-level’s array. Figure 7-15 shows 

private void insertCodeForCompare(Instruction instr ){ 
splice.insertBefore(instr, getCodeForESL()); 
splice.insertAfter(instr, loadTempSL); 

} 
 
private void insertCodeForLoad(Load instr){ 

Instruction load = null; 
int lvNo = instr.getOperandIndex(); 
if (instr.getOpcode() == Opcode. ALOAD){ 

load = new Load(Opcode. ALOAD, lvNo + 1 , code); 
}else{ 

load = new Load(Opcode. ILOAD, lvNo + 1 , code); 
} 
splice.insertAfter(instr, load); 
iter.forward(1); 

} 
 
private Splice getCodeForESL(){ 

Splice splice = new Splice();     
//Store the second operand to temp-Operand local va riable 
int operandType = ((Integer)operandTypes.peek()).in tValue();  
int index = indexOfTempOperand[operandType] ; 
short formOp = (short)(Opcode. ISTORE + operandType); 
Instruction instrStoreOp = new Store(formOp, index,  code); 
splice.append(instrStoreOp); 
//Load  the second operand from temp-Operand local variable 
Instruction instrLoadOp =  

new Load((short)(formOp - 33), index, code); 
   

//insert instructions 
splice.append(storeTempSL); 
splice.append(instrStoreOp); 
splice.append(loadTempSL); 
splice.append(spliceOfLUB); 
splice.append(instrLoadOp);   
return splice; 

} 
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an example of calculating the environment security-level and storing it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-15. Part of the program dealing with environment security-level.  

 
 
 
 

/** 
* insert verification code for switch-instruction 
*  
* @param instr 
*/ 

 
public void insertInstrForSwitch(Switch instr) { 
  

splice.insertBefore(instr, storeTempSL); 
   

// calculate the LUB of ESL and outer layer ESL 
int layerNo = instrLayerNo[instr.getAddr()]; 
if (layerNo > 0) { 

Splice spliceESL = new Splice(); 
 Instruction instrPushIndex = new ConstantInst(laye rNo - 1); 
 Instruction instrLoadESL = new Load(Opcode. BALOAD, code); 
 spliceESL.append(loadTempSL); 
 spliceESL.append(loadESLsRef); 
 spliceESL.append(instrPushIndex); 
 spliceESL.append(instrLoadESL); 
 spliceESL.append(spliceOfLUB); 
  

splice.insertBefore(instr, spliceESL); 
} 

 
// store the ESL to ESLs 
Instruction instrPushIndex = new ConstantInst(layer No); 
Instruction instrStoreESL = new Store(Opcode. BASTORE, code); 

  
Splice spliceESLs = new Splice(); 

  
spliceESLs.append(loadESLsRef); 
spliceESLs.append(instrPushIndex); 
spliceESLs.append(loadTempSL); 
spliceESLs.append(instrStoreESL); 

  
splice.insertBefore(instr, spliceESLs); 

  
// set ESL to curESL 
Instruction instrStoreCurESL =  

new Store(Opcode. ISTORE, indexOfCESL, code); 
splice.insertBefore(instr, loadTempSL); 
splice.insertBefore(instr, instrStoreCurESL); 

} 
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7.3 Examples of Applying BMOS 
 

To prove the validity of our new security model and dynamic approach, we give 

examples of applying our verification system BMOS to an agent system 

AgentSpace to verify the security of agents.  

7.3.1 Applying MOBS in AgentSpace  

� AgentSpace system 

 

We use an agent system called AgentSpace (http://research.nii.ac.jp/~ichiro 

/agent/agentspace.html) to demonstrate how to apply our verification method to one 

agent system.   

 

 

 

 

 

 

 

 

 

   

Figure 7-16. Architecture of AgentSpace system. 

 

The runtime system of AgentSpace is shown in Figure 7-16. In AgentSpace, a 

mobile agent is a Java object containing code and state, and it can be transmitted to 

a remote host and then be executed. 

 

In AgentSpace system, the AgentServer works as the platform of the mobile 

agent system. And AgentReceiver, AgentMonitor and AgentSender, are used to 

perform the agent operations. The AgentReceiver listens to the socket in order to 

receive any agent from other hosts. If the AgentReceiver gets any agent, the 

AgentLoader will transform the serialized data to one object representing the agent 

and register the agent to the AgentManager. The AgentManager manages all the 

agents running on the host, and will initialize a thread for each agent and invoke the 
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method arrive()  to make the agent begin its work. AgentMonitor watches over 

and executes the operation done on the agents by the host user. And before the 

AgentSender sends the agent to its next destination, the method dispatch() of the 

agent is invoked to do the wrapping operation. The receiving process and the 

sending process of one agent on a host in the AgentSpcae system are shown in 

Figure 7-17 and Figure 7-18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-17. Agent receiving process in AgentSpace. 
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Figure 7-18. Agent sending process in AgentSpace. 

 

� AgentSpace system with embedded modifier 

 

In the AgentSpace system, the security issues are not considered. Therefore, we 

embed our verification system into AgentSpace in order to protect the host security 

from agents. The modified architecture of AgentSpace is shown in Figure 7-19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-19. Architecture of AgentSpace system with modifier. 
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As discussed in Chapter 5, the task of the modifier is to insert verification code 

into classes of mobile programs, which are agents in the AgentSpace system. The 

inserted code includes the code calculating security-levels and the code detecting 

data-leaking. And since the data-leaking channels have two types (data-leaking 

through network connection built by the mobile code itself and data-leaking 

through the movement of the mobile code), the code detecting data-leaking can be 

divided into two parts detecting the two types of data-leaking further. 

  

The code calculating security-levels and the code detecting data-leaking through 

network connection built by the mobile code should be inserted into all the classes 

of the mobile program and such insertion is independent of the mobile code system. 

Thus such codes should be inserted by the modifier to the agent’s classes in 

AgentSpace system.  

  

 The insertion of the code detecting the data-leaking through the movement of 

the mobile code is dependent on the architecture of the mobile code system. In the 

AgentSpace system, the state of one agent can also be transferred with the agent 

between hosts. When the agent moves to the next destination, the information held 

in its fields will be taken out of the local host. Thus, according to our security 

model, the information in the fields should be checked before the agent moves to 

the next destination. Since the method dispatch()  will be invoked by the 

AgnetManager before the AgentSpace system sends out the agent, the modifier 

should insert such checking codes into the method dispatch() . 

 

The timing of invoking the modifier should be late enough that the code of the 

agent is read from the serialized data, and also early enough that the object of the 

agent has not been created. In AgentSpace, the method agentClassDataLoad  
of the class AgentClassLoader  is used to unzip and read the code of the agent 

from serialized data. Thus we add the code of invoking our modifier to the method 

agentClassDataLoad  as shown in the box of Figure 7-20. In this way, every 

agent loaded into the local host will be modified and inserted with verification 

codes; and the agent will be verified during its execution.  
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Figure 7-20. Code added into AgentLoader to invoke the modifier. 

 

The execution and verification process of the agent in AgentSpace system with 

embedded modifier is shown in Figure 7-21.  

 

When one agent arrives at a host, the AgentLoader reads the serialized data and 

then invokes the modifier to modify the classes of the agent. Verification code is 

inserted into the agent, especially the code checking the information in all the fields 

into the method dispatch() . And then the AgentLoader creates one instance of 

the modified agent. After the AgentManager initializes a thread and makes the 

instance of the agent run, the method arrive() is invoked by the AgentManager 

and the agent begins its work. During the execution of the modified agent, the 

public Hashtable agentClassDataLoad( byte[] data) { 
try { 

ByteArrayInputStream byteInStream =  
new ByteArrayInputStream(data); 

ZipInputStream zipInStream =  
new ZipInputStream(byteInStream); 

 ZipEntry zipEnt; 
 while ((zipEnt = zipInStream.getNextEntry()) != null) { 
     String entryName = zipEnt.getName(); 
     if (entryName.startsWith( "META-INF" )) { 
  continue; 
     } 
     int count; 
     ByteArrayOutputStream byteOutStream =  

new ByteArrayOutputStream(); 
     byte[] classBytes = new byte[1024]; 
     while ((count = zipInStream.read(classBytes)) != -1) { 
         byteOutStream.write(classBytes, 0, count);  

} 
     byte[] bytes = byteOutStream.toByteArray(); 
 
     //Code added to embed BMOS to AgentSpace 

ClassInfo ci = new ClassInfo(bytes, true); 
     ClassModifier cm = new ClassModifier(ci); 
     cm.modifyClass(); 
     bytes = ci.writeToBytes(); 
      

cache .put(entryName, bytes); 
 } 
 zipInStream.close(); 
 byteInStream.close(); 

} catch (IOException e) { 
 System. err.println(e); 

} 
return cache ; 

}  
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security-levels are calculated. And if the agent tries to send out any data through the 

network connection, the data to be sent will be checked to detect data-leaking. If 

any data-leaking is detected, an exception will be thrown out and the execution is 

interrupted to prevent the data-leaking from happening.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-21. Agent receiving process in AgentSpace with modifier. 
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When the work of the agent finished, the agent will move to its next destination. 

Before the agent is sent out, the method dispatch()  will be invoked by the 

AgnetManager. The code inserted into the method dispatch() will check the 

information stored in all the fields of the agent. If the information is sent to one 

unauthorized host, an exception will be thrown out and the execution is interrupted 

to prevent the data-leaking from happening. If no data-leaking is detected, the agent 

will be sent to its next destination. 

 

7.3.2 Example Agent 

Here we give an example agent of AgentSpace system to show how the modifier 

works. The agent Evaluation is a quite simple tool to calculate the estimated 

salary based on the education, working years and the age of the user. And if the 

user agrees, the agent will take or send the result back to its original host, or it will 

discard the result.  

 

We implemented two versions of the agent Evaluation . The difference 

between the two versions is the way of sending the estimated salary. One version 

uses the field to take the estimated salary back to the original host; while the other 

version will send the estimated salary back to the original host directly by socket 

built by the agent itself. We discuss the verification process of the two versions in 

the AgentSpace system with embedded modifier respectively. 

 

� Agent Evaluation  of the version I   

 

In this version, the agent Evaluation will use the field salary  to take the 

estimated salary back to the original host. The Java source code is shown in Figure 

7-22. 
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Figure 7-22. Java source ode of the sample agent Evaluation  of the version I. 

 

When the agent Evaluation of the version shown in Figure 7-22 arrives at a 

host, the AgentListener passes the serialized data to the AgentLoader to create the 

instance of the agent. After the AgentManager initializes a thread and make the 

instance of the agent Evaluation  run, the method arrive() is invoked by the 

AgentManager and the agent begins its works. In method evaluation() , the 

public class Evaluation extends Agent{ 
private int salary  = 0; 
 
public void arrive(){ 
 evaluation(28, 2, 3, 1); 
}  
 
public void evaluation( int age, int workingYears,  

int education, int sendFlag){ 
     int result = 0; 
     int baseSal = 0; 
     int ageToWork = 0; 
     switch (education) { 
      case 0: // High schoole  
   baseSal = 200; 
   ageToWork = 18; 
   break; 
  case 1: // Bachelor  
   baseSal = 300; 
   ageToWork = 22; 
   break; 
  case 2: // Master  
   baseSal = 400; 
   ageToWork = 24; 
   break; 
  case 3: // Doctor  
   baseSal = 500; 
   ageToWork = 27; 
   break; 
  case 4: // post doctorate  
   baseSal = 550; 
   ageToWork = 30; 
     } 

result = baseSal+(workingYears*2-(age-ageToWork))*2 0; 
 
     if (sendFlag == 1) { // the user agrees to send  
  salary  = result; 
     } 

} 
 
public void dispatch(){} 

}  
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salary is calculated based on the age, working years and education; and the result is 

stored in the temporary variable result . Thus variable result  will get the 

information of the variables age , workingYears  and education . And then 

the value of result  is transferred to the field salary  if the variable sendFlag  

is “1”; in this case the field salary  gets the information of the variables age , 

workingYears  and education  indirectly. After the execution of the method 

evaluation() , the AgentManager will invoke the method dispatch() and 

then the AgentSender will send the agent Evaluation  to its next destination with 

the field salary . Obviously, the information held in the field salary  will be 

taken out of the local host and may be leaked to some unauthorized hosts.  

 

Our approach can be used to trace the information flow and detect possible 

data-leaking in the agent Evaluation  of version I. When the agent 

Evaluation  shown in Figure 7-22 arrives at a host where the modifier is 

embedded into the AgentSpace system as shown in Figure 7-20, the AgentReceiver 

of the local AgentSpace system detects it and passes the agent to the AgentLoader. 

After the AgentLoader reads bytecode of the agent, the modifier is invoked to 

modify the agent and insert the verification codes into the agent. Then the 

AgentLoader will generate the agent instance based on the modified bytecode 

instead of the original bytecode.  

 

In Figure 7-23, we give the original bytecode of the method evaluation()  in 

the agent Evaluation  of version I and the modified bytecode generated by our 

modifier described above. In the modified bytecode shown in Figure 7-23(b), the 

bold codes are the original codes of the method evaluation()  (the indices of 

local registers have been changed) and others are the codes inserted to calculate the 

security-levels. Especially, the codes in shadow are the codes used to calculate the 

LUB of two security-levels. And in Figure 7-24, we give the code inserted into the 

method dispatch() to detect data-leaking through the movement of the agent.  

 

 

 

 

 

 



 147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

     

 

 

 

a. original bytecode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 iconst_0 
1 istore 5 
3 iconst_0 
4 istore 6 
6 iconst_0 
7 istore 7 
9 iload_3 
10 tableswitch 
  0: 44 (34) 
  1: 56 (46) 
  2: 68 (58) 
  3: 80 (70) 
  4: 92 (82) 
  default: 101(91) 
44 sipush 200 
47 istore 6 
49 bipush 18 
51 istore 7 
53 goto 48 
56 sipush 300 
59 istore 6 
61 bipush 22 
63 istore 7 
65 goto 36 
68 sipush 400 
71 istore 6 
73 bipush 24 
75 istore 7 
77 goto 24 
80 sipush 500 
 

83 istore 6 
85 bipush 27 
87 istore 7 
89 goto 12 
92 sipush 550 
95 istore 6 
97 bipush 30 
99 istore 7 
101 iload 6 
103 iload_2 
104 iconst_2 
105 imul 
106 iload_1 
107 iload 7 
109 isub 
110 isub 
111 bipush 20 
113 imul 
114 iadd 
115 istore 5 
117 iload 4 
119 iconst_1 
120 if_icmpne 9 
123 aload_0 
124 iload 5 
126 putfield 12 
129 aload_0 
130 invokevirtual 32  
133 return  
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0 sipush 255 
3 newarray 8 
5 astore 16 
7 iconst_0 
8 iconst_0 
9 istore 11 
11 istore 10 
13 iconst_0 
14 iconst_0 
15 istore 13 
17 istore 12 
19 iconst_0 
20 iconst_0 
21 istore 15 
23 istore 14 
25 iload 6 
27 iload 7 
29 aload 16 
31 iconst_1 
32 bastore 
33 tableswitch 
  0: 67(34)  
  1: 127(94) 
  2: 187(154) 
  3: 247(214) 
  4: 307(274) 
  default: 364(331) 
67 sipush 200 
70 iconst_0 
71 aload 16 
73 iconst_1 
74 baload 
75 istore 18 
77 istore 19 
79 iload 19 
81 iload 18 
83 if_icmplt 7 
86 iload 19 
88 istore 18 
90 iload 18 
92 istore 13 
94 istore 12 
96 bipush 18 
98 iconst_0 
99 aload 16 
101 iconst_1 
102 baload 
103 istore 18 
105 istore 19 
107 iload 19 
109 iload 18 
111 if_icmplt 7 
114 iload 19 
116 istore 18 
118 iload 18 
120 istore 15 
 

122 istore 14 
124 goto 240 
127 sipush 300 
130 iconst_0 
131 aload 16 
133 iconst_1 
134 baload 
135 istore 18 
137 istore 19 
139 iload 19 
141 iload 18 
143 if_icmplt 7 
146 iload 19 
148 istore 18 
150 iload 18 
152 istore 13 
154 istore 12 
156 bipush 22 
158 iconst_0 
159 aload 16 
161 iconst_1 
162 baload 
163 istore 18 
165 istore 19 
167 iload 19 
169 iload 18 
171 if_icmplt 7 
174 iload 19 
176 istore 18 
178 iload 18 
180 istore 15 
182 istore 14 
184 goto 180 
187 sipush 400 
190 iconst_0 
191 aload 16 
193 iconst_1 
194 baload 
195 istore 18 
197 istore 19 
199 iload 19 
201 iload 18 
203 if_icmplt 7 
206 iload 19 
208 istore 18 
210 iload 18 
212 istore 13 
214 istore 12 
216 bipush 24 
218 iconst_0 
219 aload 16 
221 iconst_1 
222 baload 
223 istore 18 
225 istore 19 
227 iload 19 
 

229 iload 18 
231 if_icmplt 7 
234 iload 19 
236 istore 18 
238 iload 18 
240 istore 15 
242 istore 14 
244 goto 120 
247 sipush 500 
250 iconst_0 
251 aload 16 
253 iconst_1 
254 baload 
255 istore 18 
257 istore 19 
259 iload 19 
261 iload 18 
263 if_icmplt 7 
266 iload 19 
268 istore 18 
270 iload 18 
272 istore 13 
274 istore 12 
276 bipush 27 
278 iconst_0 
279 aload 16 
281 iconst_1 
282 baload 
283 istore 18 
285 istore 19 
287 iload 19 
289 iload 18 
291 if_icmplt 7 
294 iload 19 
296 istore 18 
298 iload 18 
300 istore 15 
302 istore 14 
304 goto 60 
307 sipush 550 
310 iconst_0 
311 aload 16 
313 iconst_1 
314 baload 
315 istore 18 
317 istore 19 
319 iload 19 
321 iload 18 
323 if_icmplt 7 
326 iload 19 
328 istore 18 
330 iload 18 
332 istore 13 
334 istore 12 
336 bipush 30 
338 iconst_0 
 



 149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. modified bytecode. 

Figure 7-23. Java bytecode of the method evaluation () of version I. 

 

In the execution of the modified method evaluation() shown in Figure 

7-23(b), the codes at address from 33 to 362 will assign the initial values to the 

variable baseSal  and ageToWork  based on the value of the variable 

education , and calculate the security-levels of them. The codes at address from 

364 to 514 will calculate the estimated salary and store it in the variable result ; 

339 aload 16 
341 iconst_1 
342 baload 
343 istore 18 
345 istore 19 
347 iload 19 
349 iload 18 
351 if_icmplt 7  
354 iload 19 
356 istore 18 
358 iload 18 
360 istore 15 
362 istore 14 
364 iload 12 
366 iload 13 
368 iload 4 
370 iload 5 
372 iconst_2 
373 iconst_0 
374 istore 18 
376 istore 20 
378 iload 18 
380 istore 18 
382 istore 19 
384 iload 19 
386 iload 18 
388 if_icmplt 7  
391 iload 19 
393 istore 18 
395 iload 20 
397 imul 
398 iload 18 
400 iload_2 
401 iload_3 
403 iload 14 
405 iload 15 
407 istore 18 
409 istore 20 
411 iload 18 
413 istore 18 
415 istore 19 

417 iload 19 
419 iload 18 
421 if_icmplt 7 
424 iload 19 
426 istore 18 
428 iload 20 
430 isub    
431 iload 18 
433 istore 18 
435 istore 20 
437 iload 18 
439 istore 18 
441 istore 19 
443 iload 19 
445 iload 18 
447 if_icmplt 7 
450 iload 19 
452 istore 18 
454 iload 20 
456 isub 
457 iload 18 
458 bipush 20 
461 iconst_0 
462 istore 18 
464 istore 20 
466 iload 18 
468 istore 18 
470 istore 19 
472 iload 19 
474 iload 18 
476 if_icmplt 7 
479 iload 19 
481 istore 18 
483 iload 20 
485 imul 
486 iload 18 
488 istore 18 
490 istore 20 
492 iload 18 
494 istore 18 
496 istore 19 
 

498 iload 19 
500 iload 18 
502 if_icmplt 7 
505 iload 19 
507 istore 18 
509 iload 20 
511 iadd  
512 iload 18 
514 istore 11 
516 istore 10 
518 iload 8 
520 iload 9 
522 iconst_1 
523 iconst_0 
524 istore 18 
526 istore 20 
528 iload 18 
530 istore 18 
532 istore 19 
534 iload 19 
536 iload 18 
538 if_icmplt 7 
541 iload 19 
543 istore 18 
545 aload 16 
547 iconst_1 
548 iload 18 
550 bastore 
551 iload 20 
553 if_icmpne 20 
556 aload_0 
557 aload_1 
558 iload 10 
560 iload 11 
562 istore 18 
564 swap 
565 iload 18 
567 putfield 22 
570 putfield 12 
573 return    
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the security-level of the estimated salary is calculated as well by these codes. If the 

sendFlag  is “1”, the codes at address from 556 to 570 will set the estimated 

salary to the field salary  and update the security-level of the field. And in the 

modified code, the codes at address from 29 to 32 and from 524 to 550 are used to 

calculate the environment security-level of the implicit blocks caused by the 

instructions tableswitch and if_icmpne.  

 

 

 

 

 

 

 

 

Figure 7-24. The bytecode of the modified method dispatch() . 

 

In such a way, the security-levels of all the variables can be calculated. 

Furthermore, different from static approaches, our approach will update the 

security-level of the field salary  only when the filed does get the information in 

the variables age , workingYears  and education . Thus the information flow 

in the method evaluation()  can be traced precisely and the preparation of 

detecting data-leaking can be done well. 

 

As mentioned above, the information held in the fields of one agent will be taken 

out of the local host when the agent moves to next destination. In the case of the 

agent Evaluation , the information held in the field salary  will be taken to the 

next destination host. The codes inserted into the method dispatch() as shown 

in Figure 7-24 compare the security-level of the information in the field salary  

(stored in the added field indicated by the index 22 in the constant pool) with the 

clearance-level of the next destination host (stored in static field indicated by the 

index 29 in the constant pool). And the codes will throw an exception if the 

security-level is greater, which means that a data-leaking happens.   

 

 

 

0 aload_0 
1 getfield 22 
4 getstatic 29 
7 if_icmple 11 
10 new 50 
13 dup 
14 invokespecial 52 
17 athrow 
18 return  
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� Agent Evaluation  of the version II   

In this version, the agent Evaluation will send the estimated salary back to 

the original host through a socket directly. The Java source code is shown in Figure 

7-25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-25. Java source ode of the sample agent Evaluation  of the version II. 

public class Evaluation extends Agent{ 
private final String hostName  = "192.168.21.3" ;  
private final int hostPort  = 8080; 
 
public void arrive(){ 
 evaluation(28, 2, 3, 1); 
}  
 
public void evaluation( int age, int workingYears,  

int education, int sendFlag){ 
     int result = 0; 
     int baseSal = 0; 
     int ageToWork = 0; 
     switch (education) { 
      case 0: // High schoole  
   baseSal = 200; 
   ageToWork = 18; 
   break; 
  case 1: // Bachelor  
   baseSal = 300; 
   ageToWork = 22; 
   break; 
  case 2: // Master  
   baseSal = 400; 
   ageToWork = 24; 
   break; 
  case 3: // Doctor  
   baseSal = 500; 
   ageToWork = 27; 
   break; 
  case 4: // post doctorate  
   baseSal = 550; 
   ageToWork = 30; 
     } 

result = baseSal+(workingYears*2-(age-ageToWork))*2 0; 
 
     if (sendFlag == 1) { // the user agrees to send  
  Socket socket = new Socket( hostName , hostPort ); 
  OutputStream out = socket.getOutputStream(); 
  out.write(salary); 
     }  

} 
 
public void dispatch(){} 

}  
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When the agent Evaluation of the version shown in Figure 7-25 arrives at a 

host, the process of the agent is the same as the one shown in Figure 7-22 until the 

value of the variable sendFlag  is checked. Different from version I, the agent of 

version II will send the variable result  out through a socket if the variable 

sendFlag  is “1”. Obviously, the information held in the variable result  will be 

taken out of the local host and may be leaked to some unauthorized hosts. And in 

version II, there are no fields used to take data out of the local host.  

 

Our approach can be used to trace the information flow and detect possible 

data-leaking in the agent Evaluation  of version II, too. When the agent 

Evaluation  shown in Figure 7-25 arrives at a host where the modifier is 

embedded into the AgentSpace system as shown in Figure 7-20, the AgentReceiver 

of the local AgentSpace system detects it and passes the agent to the AgentLoader. 

After the AgentLoader reads bytecode of the agent, the modifier is invoked to 

modify the agent and verification code is inserted into the agent. Then the 

AgentLoader will generate the agent instance based on the modified bytecode 

instead of the original bytecode.  

 

In Figure 7-26, we give the original bytecode of the method evaluation()  in 

the agent Evaluation  of version II and the modified bytecode generated by our 

modifier described above. In the modified bytecode shown in Figure 7-26(b), the 

bold codes are the original codes of the method evaluation()  (the indices of 

local registers have been changed) and others are the codes inserted to calculate the 

security-levels. Especially, the codes in shadow are the codes used to calculate the 

LUB of two security-levels; and the codes in the black box are used to detect 

data-leaking. Since no field is used to take data out of the local host, no verification 

code is inserted into the method dispatch() .  
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a. original bytecode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 iconst_0 
1 istore 5 
3 iconst_0 
4 istore 6 
6 iconst_0 
7 istore 7 
9 iload_3 
10 tableswitch 
  0: 44 (34) 
  1: 56 (46) 
  2: 68 (58) 
  3: 80 (70) 
  4: 92 (82) 
  default: 101(91) 
44 sipush 200 
47 istore 6 
49 bipush 18 
51 istore 7 
53 goto 48 
56 sipush 300 
59 istore 6 
61 bipush 22 
63 istore 7 
65 goto 36 
68 sipush 400 
71 istore 6 
73 bipush 24 
75 istore 7 
77 goto 24 
80 sipush 500 
83 istore 6 
85 bipush 27 
87 istore 7  

89 goto 12 
92 sipush 550 
95 istore 6 
97 bipush 30 
99 istore 7 
101 iload 6 
103 iload_2 
104 iconst_2 
105 imul 
106 iload_1 
107 iload 7 
109 isub 
110 isub 
111 bipush 20 
113 imul 
114 iadd 
115 istore 5 
117 iload 4 
119 iconst_1 
120 if_icmpne 31 
123 new 44 
126 dup 
127 ldc 8 
129 sipush 8080 
132 invokespecial 46  
135 astore 8 
137 aload 8 
139 invokevirtual 49  
142 astore 9 
144 aload 9 
146 iload 5 
148 invokevirtual 53  
151 return 
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0 sipush 255 
3 newarray 8 
5 astore 16 
7 iconst_0 
8 iconst_0 
9 istore 11 
11 istore 10 
13 iconst_0 
14 iconst_0 
15 istore 13 
17 istore 12 
19 iconst_0 
20 iconst_0 
21 istore 15 
23 istore 14 
25 iload 6 
27 iload 7 
29 aload 16 
31 iconst_1 
32 bastore 
33 tableswitch 
  0: 67(34)  
  1: 127(94) 
  2: 187(154) 
  3: 247(214) 
  4: 307(274) 
  default: 364(331) 
67 sipush 200 
70 iconst_0 
71 aload 16 
73 iconst_1 
74 baload 
75 istore 18 
77 istore 19 
79 iload 19 
81 iload 18 
83 if_icmplt 7 
86 iload 19 
88 istore 18 
90 iload 18 
92 istore 13 
94 istore 12 
96 bipush 18 
98 iconst_0 
99 aload 16 
101 iconst_1 
102 baload 
103 istore 18 
105 istore 19 
107 iload 19 
109 iload 18 
111 if_icmplt 7 
114 iload 19 
116 istore 18 
118 iload 18 
120 istore 15 

 

122 istore 14 
124 goto 240 
127 sipush 300 
130 iconst_0 
131 aload 16 
133 iconst_1 
134 baload 
135 istore 18 
137 istore 19 
139 iload 19 
141 iload 18 
143 if_icmplt 7 
146 iload 19 
148 istore 18 
150 iload 18 
152 istore 13 
154 istore 12 
156 bipush 22 
158 iconst_0 
159 aload 16 
161 iconst_1 
162 baload 
163 istore 18 
165 istore 19 
167 iload 19 
169 iload 18 
171 if_icmplt 7 
174 iload 19 
176 istore 18 
178 iload 18 
180 istore 15 
182 istore 14 
184 goto 180 
187 sipush 400 
190 iconst_0 
191 aload 16 
193 iconst_1 
194 baload 
195 istore 18 
197 istore 19 
199 iload 19 
201 iload 18 
203 if_icmplt 7 
206 iload 19 
208 istore 18 
210 iload 18 
212 istore 13 
214 istore 12 
216 bipush 24 
218 iconst_0 
219 aload 16 
221 iconst_1 
222 baload 
223 istore 18 
225 istore 19 
227 iload 19 

 

229 iload 18 
231 if_icmplt 7 
234 iload 19 
236 istore 18 
238 iload 18 
240 istore 15 
242 istore 14 
244 goto 120 
247 sipush 500 
250 iconst_0 
251 aload 16 
253 iconst_1 
254 baload 
255 istore 18 
257 istore 19 
259 iload 19 
261 iload 18 
263 if_icmplt 7 
266 iload 19 
268 istore 18 
270 iload 18 
272 istore 13 
274 istore 12 
276 bipush 27 
278 iconst_0 
279 aload 16 
281 iconst_1 
282 baload 
283 istore 18 
285 istore 19 
287 iload 19 
289 iload 18 
291 if_icmplt 7 
294 iload 19 
296 istore 18 
298 iload 18 
300 istore 15 
302 istore 14 
304 goto 60 
307 sipush 550 
310 iconst_0 
311 aload 16 
313 iconst_1 
314 baload 
315 istore 18 
317 istore 19 
319 iload 19 
321 iload 18 
323 if_icmplt 7 
326 iload 19 
328 istore 18 
330 iload 18 
332 istore 13 
334 istore 12 
336 bipush 30 
338 iconst_0 
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b. modified bytecode. 

Figure 7-26. Java bytecode of the method evaluation () of version II. 

 

In the execution of the modified method evaluation() shown in Figure 

7-26(b), the information flow is the same as the one in the version I until the 

instruction at address 553, which checks the value of the variable sendFlag . If 

the variable sendFlag  is “1”, the agent will send the value of the variable 

339 aload 16 
341 iconst_1 
342 baload 
343 istore 18 
345 istore 19 
347 iload 19 
349 iload 18 
351 if_icmplt 7  
354 iload 19 
356 istore 18 
358 iload 18 
360 istore 15 
362 istore 14 
364 iload 12 
366 iload 13 
368 iload 4 
370 iload 5 
372 iconst_2 
373 iconst_0 
374 istore 18 
376 istore 20 
378 iload 18 
380 istore 18 
382 istore 19 
384 iload 19 
386 iload 18 
388 if_icmplt 7  
391 iload 19 
393 istore 18 
395 iload 20 
397 imul 
398 iload 18 
400 iload_2 
401 iload_3 
403 iload 14 
405 iload 15 
407 istore 18 
409 istore 20 
411 iload 18 
413 istore 18 
415 istore 19 
417 iload 19 
419 iload 18 
421 if_icmplt 7  
 

424 iload 19 
426 istore 18 
428 iload 20 
430 isub    
431 iload 18 
433 istore 18 
435 istore 20 
437 iload 18 
439 istore 18 
441 istore 19 
443 iload 19 
445 iload 18 
447 if_icmplt 7 
450 iload 19 
452 istore 18 
454 iload 20 
456 isub 
457 iload 18 
458 bipush 20 
461 iconst_0 
462 istore 18 
464 istore 20 
466 iload 18 
468 istore 18 
470 istore 19 
472 iload 19 
474 iload 18 
476 if_icmplt 7 
479 iload 19 
481 istore 18 
483 iload 20 
485 imul 
486 iload 18 
488 istore 18 
490 istore 20 
492 iload 18 
494 istore 18 
496 istore 19 
498 iload 19 
500 iload 18 
502 if_icmplt 7 
505 iload 19 
507 istore 18 
509 iload 20 
 

511 iadd  
512 iload 18 
514 istore 11 
516 istore 10 
518 iload 8 
520 iload 9 
522 iconst_1 
523 iconst_0 
524 istore 18 
526 istore 20 
528 iload 18 
530 istore 18 
532 istore 19 
534 iload 19 
536 iload 18 
538 if_icmplt 7 
541 iload 19 
543 istore 18 
545 aload 16 
547 iconst_1 
548 iload 18 
550 bastore 
551 iload 20 
553 if_icmpne 47 
556 new 44 
559 dup 
560 ldc 8 
562 sipush 8080 
565 invokespecial 46 
568 astore 21 
570 aload 21 
572 invokevirtual 49 
575 astore 23 
577 aload 23 
579 iload 10 
581 ilaod 11 
583 getstatic 33 
586 if_icmple 11 
589 new 50 
592 dup 
593 invokespecial 52 
596 athrow 
597 invokevirtual 53 
600 return 
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result  out of the local host through the socket built by the instruction at address 

565. Thus the inserted codes at address from 581 to 596 compare the security-level 

of the information in the variable result  (stored in the local register 11) with the 

clearance-level of the destination host (store in stored in static field indicated by the 

index 33 in the constant pool). And the codes will throw an exception if the 

security-level is greater, which means that a data-leaking happens. 

7.3.3 Evaluation 

� Efficiency evaluation   

 

For dynamic verification approach, the preparation time (the modification time in 

our method) and the execution time increment are important evaluation factors. We 

take the agent Evaluation  shown above as the evaluation example and give the 

result in Figure 7-27.  

 

Test Environment: 

OS: Windows Vista 

JVM: JDK 1.4.2.16 

CPU: Intel Core2 6320(1.86GHz) 

Memory: 2.5G 

 

 Original Modified Increase to 

Number of Instruction 53 293 553% 

Execution Time(ms) 92.2×10-7 441.5×10-7 478% 

Modification Time (ms) 12 

a. Evaluation result of version I  

 

 Original Modified Increase to 

Number of Instruction 60 294 490% 

Execution Time(ms) 25.9 26.0 100.4% 

Modification Time (ms) 13 

b. Evaluation result of version II  

 

Figure 7-27. Performance evaluation result of the agent Evaluation . 
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Figure 7-28. The code used to execute the agent of version I 10 million times. 

 

Since the execution time of the agent (no matter the original one or the modified 

one) of the version I is too short to be measured, we add a loop in the 

AgnetManager to execute the original agent and modified agent 10 million times; 

public class AgentRuntime extends Thread { 
 ... 
 ... 

public void run() { 
theAgent  = theInfo .getAgent(); 

 if ( theAgent  == null) { 
     return; 
 } 
 if( theInfo .getAgentStatus().equals(AgentStatus. PREINIT)) { 
     theInfo .setAgentStatus(AgentStatus. ONCREATE); 
     theAgent .create(); 
     theInfo .setAgentStatus(AgentStatus. NORMAL); 
 } else if ( theInfo .getAgentStatus().  

equals(AgentStatus. ONTRANSMIT)) { 
     theInfo .setAgentStatus(AgentStatus. ONARRIVE); 
     for (int i = 0; i < 10000000; i ++){ 

theAgent .arrive(); 
theAgent .dispatch(); 

} 
     theInfo .setAgentStatus(AgentStatus. NORMAL); 
 } else if ( theInfo .getAgentStatus(). 

equals(AgentStatus. PERSISTENT)) { 
     theInfo .setAgentStatus(AgentStatus. ONRESUME); 
     theAgent .resume(); 
     theInfo .setAgentStatus(AgentStatus. NORMAL); 
 } else if ( theInfo .getAgentStatus(). 

equals(AgentStatus. CHILD)) { 
     theInfo .setAgentStatus(AgentStatus. ONCLONE); 
     theAgent .child( theInfo .getParentIdentifier()); 
     theInfo .setAgentStatus(AgentStatus. NORMAL); 
 } else if ( theInfo .getAgentStatus(). 

equals(AgentStatus. ERROR)) { 
     theInfo .setAgentStatus(AgentStatus. ONEXCEPT); 
     if (!( theAgent .except( theInfo .getAgentError()))) { 
  theInfo .setAgentStatus(AgentStatus. DEATH); 
  theInfo .setAgentError( null); 
  return; 
     } 
     theInfo .setAgentError( null); 
     theInfo .setAgentStatus(AgentStatus. NORMAL); 
 } else { 
     System. out.println( "unknown status: "  +  

theInfo .getAgentStatus()); 
 } 

... 
 ... 
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and then calculate the average time as the execution time of the original one and 

modified one. And we also add code to invoke the method dispatch()  in order 

to make the result time involve the execution time of the method dispatch() . 

The codes added into the AgentManager are the ones in the black box in Figure 

7-28.    

 

As for the execution time of the agent of version II shown in Figure 7-27(b), we 

execute the original agent and modified agent 10 times respectively, and use the 

average value as the result.  

 

From the result shown in Figure 7-27, we can find that the execution times of 

version I and version II are quite different though the numbers of the instructions of 

them are almost same. The reason is that there is one instruction to build a socket 

connection in version II. Such an operation will not finish until the other party 

responds it through the next work; and costs quite more time than common 

instructions that can be finished by the local JVM.  

 

From the result of version I, we can get to know that the modification time is 

short. For a class composed of 4000 instructions (the average number of 

instructions in one Java core class is about 150), the modification will be finished 

less than one second. While the number of instructions and the execution time 

increase to about 5 times. This will slow down the execution speed. But considering 

the time itself, the execution time of the modified agent is still too short to be felt 

though it has increased to 5 times of original one. From the result, we can estimate 

that: even for one agent composed of 600,000 instructions, the execution of the 

modified agent will finish in 0.5 second. Therefore in some degree the additional 

overhead caused by the code inserted is acceptable. 

 

The result of version II also proved the execution time increment caused by 

verification code is so small that it is can even be omitted. The number of modified 

instructions increased to about 5 times of the original one. But the execution time of 

original code and modified code is almost the same. The reason is that connecting 

the socket (the instruction at address 132 in Figure 7-26(a)) occupied most (almost 

100%) of the execution time; even the execution time of other codes is increased to 

about 5 times by the verification codes, this part of execution time is still so small 
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and can be omitted compared with the time of connecting socket. Thus the 

execution times of original code and modified code are almost the same. 

 

As for the codes detecting data-leaking in version I and II, we can estimate that 

the execution time of these codes only takes up a small part of the total execution 

time because 1. the codes do not include any instructions costing much time; 2. the 

number of these codes only take a small part of total instructions ( 3% in version I 

and 2.3% in version II). 

 

� Security verification evaluation   

 

In Figure 7-29, we compare our approach with type-system approaches and static 

approaches of non-type-system on the aspect that whether the agent can be verified 

correctly, that is, verified as malicious when data-leaking happens and as secure 

when data-leaking does not happen. 

 
# 1 2 3 4 

Value of sendFlag  is “1” ○ ○ × × 

CL ≥ SL    × ○ × ○ 

Data-leaking happens ○ × × × 

Agent is Malicious or Secure M S S S 

by Type-system 
approaches 

M M M M 

by Static approach of 
non-type-system  

M S M S 
Agent is 

verified as 

by Our approach M S S S 

 

Figure 7-29. The comparison of our approach with type-system and static approaches. 

(CL denotes the destination host’s clearance-level; SL denotes the LUB of the 

security-levels of the age, workingYears and education; M denotes the agent is 

verified as malicious; S denotes the agent is verified as secure.) 

 

Compared with the type-system verification approaches, our approach is more 

precise. For example, the variable baseSal  in the method evaluation() will 

get the information of the variables education . If the security-level of the 
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variable baseSal  is set lower (in fact the security-level of such temporary 

variable is usually set to the lowest one in type-system) than the variables 

education , the type-system approaches will reject the agent since they consider 

that the instruction at address 44 in Figure 7-23(a) and Figure 7-26(a) causes one 

data-leaking. Obviously such a judgment is wrong in the case 2, 3 and 4 in Figure 

7-29. (In the case 1, though the type-system approaches can get a correct judgment, 

they do not find the instruction that really caused data-leaking.) In our approach, 

only the variable to be sent out of the local host will be checked whether a 

data-leaking is caused. Thus the variable baseSal  is not the checking target in our 

approach in the all cases. In this way, the problem of imprecise verification is 

overcome in our approach.    

 

And as analyzed above, in the evaluation()  shown in Figure 7-22, the field 

salary  will get information of variables age , workingYears  and 

education  only when the sendFlag  is “1”. But in static approaches, the field 

salary  is considered to get the information no matter the sendFlag  is “1” or 

not. If the clearance-level of the destination host is set lower than any one of the 

variables age , workingYears  and education , the static approaches will 

consider that the agent causes one data-leaking since it will leak data to 

unauthorized host, no matter the sendFlag  is “1” or not. Obviously such 

judgment is wrong when the sendFlag  is not “1” (the case 3 in Figure 7-29). 

While in our approach such misjudgment is avoided since our approach is dynamic 

and updates the security-level of the information in the field salary  only when 

the sendFlag  is “1”. Thus our approach will not make the misjudgment of 

considering one agent as malicious for the unexecuted code; while such 

misjudgment is not avoidable in static approaches. In this way, the verification 

precision is improved further. As for the version II shown in Figure 7-25, the static 

approaches will also make similar misjudgment while our approach can avoid such 

mistake.   

 

Based the analysis above, we can find that our verification approach resolved the 

inherent problems of type-system verification approaches and the static verification 

approaches and improved the verification precision. While the cost of the 

improvement is the additional execution overhead caused by the code inserted to 

calculate security-levels and detect data-leaking, which can usually be omitted.   
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7.4 Discussion 
 

7.4.1 Improvements 

� Less restriction on mobile code program 

 

In our approach, we only check and restrict the output operation of the 

bytecode. The mobile programs can obtain any information (input) from the host 

to perform their tasks. The restriction on mobile code program is less than that of 

traditional access control approaches. A lot of mobile code program can be 

implemented. 

 

� Better verification granularity 

 

In static approaches, all instructions of the bytecode are verified and the 

bytecode will be rejected if there is any malicious section of instructions. 

Different from static approaches, our dynamic approach achieved the runtime 

verification of bytecode, and only verifies the sections of instructions that are 

executed. In our approach, the bytecode will not be rejected by reason of its code 

that will not be executed in runtime. Thus the verification precision is improved. 

 

� Recursive method invoking 

 

For static verification approaches, the analysis will never stop if a recursive 

method is invoked. To solve this problem, some static approaches assume that 

the return variable of one recursive method depends on all of the arguments, 

which reduces the verification precision. In our approach, the verification of 

recursive methods is resolved without any additional effort. Just like other 

common methods, verification code is inserted into recursive methods. The 

verification for recursive invoking starts when the recursive method begins to 

invoke itself, and the verification finishes when recursive invoking stops. Thus in 

our approach, the verification precision will not be reduced because of the 

existence of recursive invoking. 
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� Dynamic variables determination. 

 

For static approaches, it is impossible to disclose the information flow caused 

by the variables that are not determined until the program is executed. For 

example, the name of a file used to read information from is obtained from the 

console when the program is executed, so it is impossible to determine the 

information flow between the file and other objects. 

 

The similar case is the elements of the array. Not until the program is 

executed, it is impossible to know which element of the array will be used. All 

the elements of the array have to share the same security class, which causes the 

security class of the element is too high and impairs the verification precision. 

 

Our approach eliminates such limitation because it is dynamic verification 

approach. The value of all variables can be determined when the verification is 

performed. Thus our approach achieved better verification precision than static 

approaches. 

 

7.4.2 Preconditions 

In order to implement my approach, some preconditions must be satisfied as 

follows.  

 

� Knowledge of API Definition 

 

The first precondition is the knowledge of API definition used in the mobile 

code. The definition here means the relation between the input and output. And 

from it, the security-level relation between the input and output can be derived. 

The APIs used in Java mobile code include the common Java API and the 

original API.  

 

As for the Java API, the definition has been defined clearly in the Java 

platform specifications. Therefore, the security-level relation between the input 

and the output could be derived. So in my approach, the Java API is considered 

as a black box. The class files of Java APIs will not be modified, and the 
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security-level relation is used to calculate the output security-level. A library of 

the security-level relation should be built for the Java API.  

 

Here is an example. For the method min () in the class math, the definition is 

“Returns the smaller of two int  values.” Therefore, I can derive the 

security-level relation is that the security-level of the output should be the LUB 

of security-levels of the two input.  

 

As for the original API, if the Java class files are available, it will be 

modified as same as other class files. If definition is available, it will be 

considered as black box and the security-level relation library should be updated 

to support the API. If nothing is available, the mobile code could not be 

supported. 

 

� Platform-independency of mobile code 

 

The second precondition is the Platform-independency of mobile code. In 

Java program, all methods can be divided into Java methods and native methods. 

In the execution, the mobile code class files and necessary Java API class files 

are loaded by the class loader. Then the execution engine will execute these class 

files and invoke necessary native methods. Usually, the mobile code invokes the 

proper Java APIs and then Java APIs invoke the native methods. This kind of 

mobile code is called platform-independent code. Since my approach supports all 

JVM instructions and considers the Java API as a black box, the 

platform-independent mobile code is supported by my approach. While, some 

mobile code invokes the native methods directly through the Java Native 

Interface. And such mobile code is called platform-dependent code. Since the 

native methods are written in other language rather than Java, this kind of mobile 

code is not support by our approach. 

 

� Knowledge of Migration Method 

 

The third precondition is Knowledge of Migration Method. Since 

information could be taken out when the mobile code moves to next destination, 

data-leaking is checked before the mobile code migration. So where and when 
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the mobile code migrates is necessary to my approach.  

 

� Configuration files of security-level and clearance-level 

 

The fourth precondition is the configuration files of security-level and 

clearance-level. To judge a data-transferring is data-leaking or not, the 

security-level of the data and the clearance-level of the destination host are 

necessary. The configure file of security-level could be set by the local host user. 

The user can assign proper security-level to his local resources to protect them. 

In my approach, the security-level is defined in the format as shown in Figure 

7-30. And some examples defining the security-levels of the personal 

information are also shown in the figure. While the configure file of 

clearance-level could also be set by the local host user if the data is transmitted in 

a limited scope of hosts. Or, the clearance-level should be decided by the 

negotiation between hosts. The format and examples of clearance-level are 

shown in Figure 7-31. 

 

 

 

 

 

 

Figure 7-30. Security-level configuration file format. 

 

 

 

 

Figure 7-31. Clearance-level configuration file format. 

 

7.4.3 Limitations 

� Input/Output operation disclosing 

 

Output operation disclosing is difficult because it contains a sequence of 

operation. The following is an example program to write a line to a file. This 

res.level = res 1, res 2,… 

e.g.  res.255 = /personal/income, /personal/address 

     res.150 = /personal/birthday, /personal/telNo   

     res.100 = /personal/loanStatus  

     res.50 = /personal/maritalStatus 

type.level = res 1, res 2,… 

     e.g. url.150 = www.abc.com:8080  

         ip.100 = 202.118.34:15016  
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program consists of 5 method invocations, in which the information flows from 

the string strInfo  to the file strFile . In the source code level, it is not easy 

to analyze the information flow. In the bytecode program, it is obviously that the 

information flow analysis comes to more difficult. Figure 7-32 shows the 

bytecode of this file writing operation. In order to get the security-level of the 

local file, the input operations should also be determined. Similar to output 

operation, the input operation disclosing is difficult too. The operation pattern 

and information flow behavior need to be studied further. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-32 The Java program and bytecode of writing operation 

 

� No semantic analysis 

 

In the approach described in this thesis, the security-level of output data is 

new <java.io.FileOutputStream> 
dup 
aload_1 
iconst_1 
invokespecial java.io.FileOutputStream.<init> 
astore 4 
new <java.io.PrintWriter> 
dup 
new <java.io.OutputStreamWriter> 
dup 
aload  4 
invokespecial java.io.OutputStreamWriter.<init>  
iconst_1 
invokespecial java.io.PrintWriter.<init> 
astore  5 
aload  5 
aload_2 
invokevirtual java.io.PrintWriter.println 
aload  5 
invokevirtual java.io.PrintWriter.close  

FileOutputStream fos =  
new FileOutputStream(strFile, true); 

PrintWriter prt = 
new PrintWriter(new OutputStreamWriter(fos), true);  

prt.println(strInfo); 
Prt.close();  
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calculated from all the security-levels of the data that the output data depends on. 

That is, our approach requires that the sensitive data should not affect the output 

data to be sent to the third-party hosts. In many cases, the third-party host cannot 

retrieve the sensitive data from the output data it received, even the sensitive 

information affect the output data. Though the bytecode causing such output data 

should be considered as secure code, our approach will determine the bytecode as 

malicious code and reject it.  

 

In the following example, the s1, s2, s3 represent the salary of three persons. 

Suppose these data is sensitive for the host. The average salary can be achieved by 

the computation of the statement. Although the information flows from the 

sensitive data to the output data average salary, it is impossible to obtain someone’s 

salary from the average salary. Obviously even the average salary is sent to one 

third-party host that has no privilege to know any person’s salary, the security 

policy will not be violated. While the action of sending average salary to the 

third-party host will be detected as one data-leaking in our approach.  

 

average: =(s1+s2+s3)/3 

 

� Additional Overhead 

 

Though the additional overhead caused by the inserted verification code can be 

omitted in most cases, it is still a problem for some applications of mobile code 

where the execution time is a critical factor such as some real-time systems, or the 

hardware is not so powerful such as mobile phones.  

 

Thus the modification method should be revised to decrease the number of 

instructions inserted into the mobile code. For example, in the Figure 7-23(b) the 

instructions at address 378 and 380 can be deleted without causing any impair on 

the verification. Such redundant instructions are inserted because our modification 

method analyzes the original instructions and insert code for them one by one. The 

modification method should be revised to avoid such redundant insertion. 

 

And the modification method should also be revised to reduce the execution time 

of verification code. For example, in a simple loop without branches, the 
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verification code will executed the same times as the original code. While in such a 

loop, it is enough to calculate the security-level only once since the relation 

between variables cannot change. In the case that the number of the loop’s 

execution times is quite large, the execution time can be reduced in a large scale. 

 

Finally the current modification method of our approach inserts verification code 

into mobile program; so that the original functions and the verification function are 

executed on the same stack. This situation caused that many instructions have to be 

inserted to arrange the operands on the stack, so that the original function and the 

verification function will not affect each other. And these inserted instructions slow 

down the execution further. If the original function and verification function are 

executed on different stack, the number of inserted instructions can be reduced.         

 

7.4.4 Applications 

Our dynamic verification approach can be implemented to protect the 

confidential information on the local host in many mobile code systems, such as the 

agent-based e-commerce systems.  

 

Electronic commerce (e-commerce) is increasingly assuming a pivotal role in 

many organizations. It offers opportunities to significantly improve the way that 

businesses interact with both their customers and suppliers. Recently agent-based 

e-commerce has been researched widely [132, 133 and 134].  

 

In general, according to the nature of the transactions, the following types of 

e-commerce are distinguished: business-to-business (B2B), business-to-consumer 

(B2C), consumer-to-business (C2B) and consumer-to-consumer (C2C). In all of the 

types, the agent can be used as the medium between the two sides of the 

e-commerce. An example of the agent-based e-commerce system is shown in the 

Figure 7-33. 

 

 

 

 

 



 168 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-33. An example of agent-based e-commerce system. 

 

Like other agent systems, the security problems in agent-based e-commerce 

systems can also be divided into two categories: the problem of protecting the host 

from agent and the problem of protecting the agent from the host. Our approach can 

deal with the security problem of the former one. As discussed above, our approach 

can verify the agent correctly and precisely; and make it possible that the user can 

use more agent-based e-commerce services securely. The actions of the agent 

arrives at a local host will be traced precisely (by calculating the security-levels of 

variables in the agent). The agent may access any confidential information on the 

host to perform its work and provide services to the user, that is, makes a 

negotiation between the two sides of the trade. When the agent takes confidential 

information out of the local host, no matter how, by the way of building network 

directly or by the way of the agent’s movement to other host, our approach can 

check whether the destination host has the right to get the confidential information. 

In this way, the user can use the e-commerce service securely without worrying 

about the leak of his confidential information. 

 

For example, an agent-based personal loan application system is shown in Figure 

7-34. The consumer uses an agent to apply for a loan from some company. When 

the agent arrives at the intermediary server, it submits the loan application to the 

server. Then the server judges whether to permit the loan application under the help 

of the credit management server. At last the agent goes back to the consumer with 

NegotiationNegotiationNegotiationNegotiation    

 

Business 
 

Consumer 

Order form 
Payment 

 Agent 

Transportation 
After-sale 
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the application result. In this process, our approach can be applied to protect the 

confidential information of the loan company from being leaked to some malicious 

consumers. Our approach will not block any agent even it access some confidential 

information when the agent is executed on the host. Instead, our approach traces the 

information flow in the agent and records what information the agent gets from the 

host. Before the agent leaves the intermediary server or sends information out, our 

approach will check whether the confidential information is sent out. In this way, 

the loan company can receive more loan application without any loss of 

confidentiality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-34. An example of applying BMOS in e-commerce system. 
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8 Conclusion 

8.1 Summary 
 

An innovative dynamic approach of information security is described in this 

thesis. This approach is able to provide protection of data confidentiality of the host 

by verifying the Java mobile code downloaded dynamically in the runtime. It 

analyses and traces information flow inside the Java bytecode and checks if there 

are any data-leaking caused in the Java mobile code that may potentially destroy the 

data confidentiality of the host. Our dynamic verification approach improves the 

verification precision and practicability. With our approach, the user can use more 

mobile code without worrying about the leak of his information.  

 

Traditional host protecting approaches, such as type-system approaches, tend to 

confine untrusted mobile code from doing harm to the host by restricting the action 

that the code can do on the host. These security policies are helpful in keeping 

untrusted code in checked but unfortunately they have the side effect of precluding 

a large number of useful applications of mobile code.  

 

The existing verification approaches for mobile code are almost static ones which 

verify the mobile code before the execution. Because of their inherent limitation, 

static approaches will verify some mobile programs as malicious for the code that 

will not be executed in the runtime, and reject such secure mobile programs. Such 

mistake made by static approaches will also preclude many useful application of 

mobile code.   

 

To overcome the two verification precision problems above, we put forward one 

dynamic verification approach based on the theory of secure information flow. 

Compared with the traditional type-system approaches, the advantage of our 

approach is that our approach protects the host confidentiality while put less 

restriction on mobile code. We analyze the security requirement in mobile code 

systems well and put forward a security model suitable to the mobile code 
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environment. In our security model the information flow in the mobile code is just 

traced and recoded. We do not set any restriction to the information transferring in 

the mobile code. Only when the mobile code tries to send information out to some 

third party, we check whether the action causes a data-leaking based on the 

information we collected. To implement our security model, we define the 

semantics rules used to trace and record information and give the algorithms to 

locate implicit and explicit blocks in Java bytecode. Considering that the 

data-leaking can only be caused by the output operation, the verification precision 

is improved by our approach.  

 

Compared with those static verification approaches, our approach is dynamic and 

implements the verification during the execution of the mobile code. By this way, 

our approach only verifies the code that is actually executed during the runtime; and 

avoids the misjudgment of considering the mobile code as malicious for some code 

what will not be executed. Thus compared with static approaches, the verification 

precision is improved further. The dynamic verification of our approach is 

implemented by the technique of bytecode modification. That is, the verification 

code is inserted into the mobile code; and the verification function is executed as 

well as the original function in the runtime.  

 

Furthermore the information flow in the exception handling and the recursion 

calling can also be traced and verified by our approach, which is too difficult to 

achieve for static approaches. The exception handling has been studied in many 

works by now. However those works are almost exception analysis in terms of 

high-level languages. In this thesis, we analyze the exception handling in the Java 

bytecode and give the algorithms to locate the blocks in the try statement in Java 

bytecode. We analyze the information flow in the exception handling and give the 

methods to deal with both intra-procedural and inter-procedural information 

transferring caused by the exception handling. The ability to deal with the 

exception handling and the recursion calling makes our approach more practicable. 

 

In this thesis, we introduce the prototype verification system implementing our 

verification approach, which is called BMOS. And an example of applying BMOS 

in one agent system is discussed, too. By studying the verification of several 

example agents by our approach, the performance efficiency and security 
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verification precision of our approach are proved.  

 

In this thesis, we focus our research on the Java mobile code. In fact, the security 

model and the modification method can also be applied to other mobile code in the 

bytecode format. As for as defining the code inserted for each kind of instruction, 

our dynamic approach can be used to verify the mobile code build in other 

language. 

 

We believe that our research, especially the research of dynamic verification, is 

an instructive attempt for bytecode verification.  

 

8.2 Future Work 
 

This thesis describes a novel dynamic approach to verify the mobile code 

security, which achieves better verification precision than static approaches. While 

there are still a plenty of work to be done for developing a practical system and 

enforcing more security properties by our approach.  

 

�   Input/output operation disclosing. In order to verify the bytecode program, 

the security-level of the objects should be retrieved when input operations 

occur and the security verification rule should be certified when output 

operations occur. However these input/output operations are not a simple 

instruction. The input/output operations consist of a sequence of operations. 

There are various patterns perform these operations. The disclosing of these 

behaviors will be the next research topic. 

 

� Meliorate the modification method to trace all the information in the array. 

By now most of the information held by one array can be dealt with in our 

approach. But the information held by the array reference itself and the array’s 

length can not be traced. Although we can add special security-containers for 

the one-dimension array to solve the problem, it become hardly difficult to add 

such security-level containers in the case of multi-dimension array because the 

numbers of elements in each dimension are arbitrarily different and it is not 

easy to calculate, load and store the security-levels of the arrays in one 

multi-dimension array. To build an appropriate construct to transfer the 
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security-levels with the information in the array is the key to deal with this 

problem.  

 

� Reduce the execution time increment. As mentioned above, the additional 

execution overhead caused by the inserted verification code should be reduced 

in order to improve the practicability of our approach. The modification 

method should be revised to reduce the number of inserted instructions, the 

number of execution times of inserted instructions and separate the operand 

stacks of the original function and the verification function.  

 

� In this thesis, only the conditional transfer instruction is concerned when 

detecting implicit information flow. In a real situation, there are many other 

kinds of covert channels that may also lead to implicit information flows, such 

as termination channels, timing channels, probabilistic channels, resource 

exhaustion channels and power channels. All these channels should be 

considered in the future study for host security.  

 

� Multiple mobile code owner policies. In our security model, the security 

policy is set for all mobile code from other hosts. In a more precise model, the 

security policies should be defined according to the origin of the individual 

mobile code, in another word, different mobile code programs are applied to 

different security policies even they immigrate from the same host. 
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