

Java Mobile Code Dynamic
Verification by Bytecode Modification

DAN LU

Graduate School of Information Systems

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS

June 2008

 ii

Java Mobile Code Dynamic
Verification by Bytecode Modification

APPROVED BY EXAMINING COMMITTEE:

Prof. Akihiko Ohsuga

Prof. Yoshikatsu Tada

Prof. Toshinori Watanabe

Prof. Masahiro Sowa

Asc.Prof. Tadashi Ohmori

Prof. Emeritus Mamoru Maekawa

 iii

Copyright
by

DAN LU
2008

 iv

バイトコードモディフィケーションによる

JAVAモバイルコードの動的な検証方法の研究

概 要

モバイルコードはネットワーク内で移動、リモートマシンで実行されるプ

ログラムである。こうしたプログラムは、セキュリティが重要な課題となる。

Java言語は移動性、安全性、プラットフォーム独立などの特徴を有し、現在

モバイルコードの実現に広く用いられている。本研究は、Javaモバイルコー

ドシステムのホストセキュリティを保守するため、検証精度がより高い検証

方法を確立することを目指している。

アクセル制御とオーセンティケーションなどのセキュリティ保護方式と

比べて、情報流分析技術はセキュリティ保護、特に秘密保護に有用な考え方

である。ソースコードを分析対象としている従来の情報流分析に対して、

Javaモバイルコードシステムにおいてはモバイルコードを実行するホスト

はソースコードを知ることはなし、バイトコードという形のコードを実行す

る。ですから、本研究ではバイトコードの情報流分析を行った。

モバイルコードに情報流分析を適用したアプローチはいくつかあるが、こ

れらのアプローチはモバイルコードシステムにおけるセキュリティの特徴

を見落とし、検証精度が満足できるレベルに達成していない。本研究は、モ

バイルコードシステムにおけるオブジェクトとサブジェクトを明確にし、モ

バイルコードシステムに相応しいセキュリティモデルを提案した。オブジェ

クトであるローカルホストのデータにセキュリティレベルを、サブジェクト

である第三者ホストに許可レベルを割り当てる。そして、モバイルコードの

中の情報流を監視し、情報のセキュリティレベルを計算する。モバイルコー

ドが情報を第三者ホストに送信する時、情報のセキュリティレベルと第三者

ホストの許可レベルによって情報漏洩が発生するかを判断する。

また、実行前にモバイルコードを検証する静的なアプローチに対して、本

研究は実行中に検証を行う動的なアプローチである。検証対象のモバイルコ

ードがJavaVMへ送られる前に、モバイルコードの情報流に対してもとのモバ

イルコードを変更し、検証機能を実現するコードを追加する。そして、変更

されたモバイルコードを実行するとき、もとのモバイルコードの機能と共に

検証機能も行う。実行中の状況を把握できるため、本研究はより高い検証精

度を達成した。

その上、動的な検証方法しか対応できない異常処理の情報流も本研究で検

討された。本研究はモバイルコードにおける異常処理が如何な情報流を生成

するかを分析して、対応する検証コードの生成方法を提案した。異常処理の

情報流の検証が対応されたため、本研究では検証精度と実用性が満足できる

レベルに到達した。

 v

Java Mobile Code Dynamic Verification by
Bytecode Modification

Dan Lu

ABSTRACT

Mobile code program can be transmitted via network from a remote source to a

local system and be executed on that local host. And such programs may raise the

security problems of the host because they could interact with the resources of the

local host and malicious or defective programs will tamper data or release secure

information of the local host. The Java language has been used widely in the

implementation of mobile code systems because of its portability, security and

platform-independency. In our research, we are heading for building a verification

approach with high precision in order to protect the host security in mobile code

systems.

Compared with the security mechanisms such as access control and

authentication, the Secure Information Flow theory is a useful mechanism for the

security protection, especially for the confidentiality protection. In the traditional

information flow analysis, the source code is taken as the analysis object. While in

mobile code systems, the host executing the mobile code can only get the bytecode

of the programs. Therefore, we analyzed the bytecode’s information flow in our

research.

Though several approaches have used the information flow analysis, those

approaches neglected the characteristics of security demand in mobile code systems

and did not achieve satisfying verification precision. In our approach, we make it

clear that what are the subjects and objects in mobile code systems, and put forward

the appropriate security model. We assign security-levels to the data of the

local-host and clearance-level to the third-party hosts. Then we trace the

information flow during the mobile code and check whether a data-leaking is raised

when the mobile code tries to send data to a third-party host.

 vi

Furthermore, different from static approaches that verify the mobile code before

the JVM executes the bytecode, our approach is a dynamic approach that verifies

the mobile code when the JVM is executing the bytecode. Before the mobile code

is sent to the JVM, we analyze the information flow in the bytecode and insert

proper instructions implementing the verification function into the original

bytecode. Thus when the JVM executes the modified bytecode, the verification

function is done as while as the original function of the mobile code. The dynamic

approach can get the runtime information during the mobile code execution (such

as which branch of the implicit information transferring will be executed, whether

an instruction will throw an exception or not, and so on), and it can achieve better

verification precision than static ones.

In addition, we also discuss the information flow during the exception handling

in our research, which is almost impossible for static verification approaches. We

analyze what kind of information flow can be caused during the exception handling

of Java mobile code, and put forward the corresponding verification bytecode for

the information flow caused by exception handling. Since our approach can deal

with the verification of the exception handling in bytecode, the verification

precision and practicality of our approached are improved further.

 vii

Contents

1 Introduction.. 1

2 Mobile Code Security .. 4

2.1 Mobile Code System .. 4
2.1.1 Client-Server Paradigm.. 4
2.1.2 Code-on-Demand Paradigm .. 5

2.1.3 Remote Evaluation Paradigm .. 6

2.1.4 Mobile Agent Paradigm. .. 7
2.2 Advantages of Mobile Code System ... 9
2.3 Applications of Mobile Code System ... 10

2.3.1 Distributed Information Retrieval.. 10

2.3.2 Active Documents.. 10
2.3.3 Advanced Telecommunication Services .. 11
2.3.4 Remote Device Control and Configuration ... 11
2.3.5 Workflow Management and Cooperation .. 12
2.3.6 Active Networks .. 12
2.3.7 Electronic Commerce .. 13

2.4 Security of Mobile Code System... 13
2.4.1 Security Requirements... 14
2.4.2 Evaluation Criteria of Protection Mechanisms.. 15
2.4.3 Conventional Protection Techniques ... 16

2.4.4 Distinctiveness ... 18
2.5 Protection Mechanisms for Mobile Code Systems.. 21

2.5.1 Discretion... 21
2.5.2 Verification... 23
2.5.3 Transformation... 27
2.5.4 Arbitration.. 29

3 Java Virtual Machine and Bytecode .. 36

3.1 Java Language.. 36

3.2 Java Virtual Machine .. 38
3.3 Java Bytecode and Instruction Set ... 40

3.3.1 Bytecode .. 40
3.3.2 Instruction Set .. 49

 viii

4 Analysis of Information Flow in Bytecode ...55

4.1 Security Model..55

4.2 Semantics Rules ..62

4.3 Implicit Information Flow Analysis..68
4.3.1 Implicit Information Flow Caused by if-instructions...............................68

4.3.2 Implicit Information Flow Caused by switch Statement71

4.3.3 Nested Implicit Information Transferring Blocks74

5 Method of Bytecode Modification...75

5.1 Overview ...75
5.1.1 Motivation of Dynamic Verification ..75

5.1.2 Bytecode Modification Technique ...77

5.1.3 Load-time Modification ...79
5.1.4 Modification Contents..81

5.2 Class Redefinition...82

5.2.1 Redefinition for Intra-procedural Information Transferring86
5.2.2 Redefinition for Inter-procedural Information Transferring90

5.3 Instructions Insertion...91
5.3.1 Intra-procedural Information Transferring ...92

5.3.2 Inter- procedural Information Transferring ..95

5.3.3 Data-leaking Checking...96

6 Information Flow in Exception Handling ..97

6.1 Motivation ...97
6.2 Exception Handling in Java Language...98
6.3 Exception Handling in Java Bytecode ..104

6.3.1 Compilation of try Statement in Java Bytecode.....................................104
6.3.2 Locating the try Block ...109
6.3.3 Locating the catch Block ..110
6.3.3 Locating the finally Block ... 111

6.4 Implicit Information Flow in Exception Handling......................................113
6.5 Explicit Information Flow in Exception Handling......................................121

7 Implementation and Evaluation ...122

7.1 System Architecture ...122
7.1.1 Security policies ...123
7.1.2 Modifier..123

7.2 Implementation...125

7.2.1 Class Parser ..125
7.2.2 Class Modification ...129

 ix

7.2.3 Method Modification ...130
7.3 Examples of Applying BMOS ... 138

7.3.1 Applying MOBS in AgentSpace .. 138

7.3.2 Example Agent... 144
7.3.3 Evaluation .. 156

7.4 Discussion ... 161
7.4.1 Improvements .. 161
7.4.2 Preconditions ... 162
7.4.3 Limitations ... 164
7.4.4 Applications ... 167

8 Conclusion .. 170

8.1 Summary... 170
8.2 Future Work... 172

References.. 174

Acknowledgments ... 183

Author Biography ... 184

List of Publications Related to the Thesis... 185

 1

1 Introduction

With the significant development of distributed computing and the internet

technology, the utilization of mobile code systems (such as applets, mobile-agent

systems) is increasing. And the Java language is widely used to build mobile code

systems because of its mobile and safe characteristics.

This new mode of distributed computation promises great opportunities for

electronic commerce, mobile computing, and information harvesting as well as the

problems of security. As a distributed system architecture, a mobile code system

usually involves two processes, that is, a code producer process (e.g., a web server

process) and a code consumer process (e.g., a web browser). Mobile programs are

able to migrate from remote sites to a host when the producer process sends the

consumer process a program (e.g., a mobile agent), and interact with the resources

and facilities of the host, which causes side effects to be produced on the consumer

side. Such an arrangement gives rise to serious security threats. If there is no

control on this kind of mobile programs that can be executed in the consumer

process, a malicious mobile program could try to observe, leak or alter the

information it is not authorized on the host and then compromise data

confidentiality, system integrity and resource availability. The situation in mobile

code systems requires more stable security mechanisms to provide protection of the

host against the potential attack caused by executing such malicious code than in

the stand-alone systems. It has been a general consensus that security is the key to

the success of mobile code computation.

The host security involves three aspects: confidentiality, integrity and availability.

Decades of research in operating systems has provided significant experience and

insight into the nature of system security. Some protection techniques used in

operating systems, such like Authentication, Access Control and Secure

Information Flow, have been used to prevent host data from leaking to

unauthorized hosts in mobile code systems. However, the existing protection

mechanisms for operating systems do not fully address the security needs of mobile

 2

code systems. In Java mobile code systems, the availability property can be

protected by JVM secure mechanism. Existing approaches for enforcing

confidentiality and integrity properties tend to confine mobile code so as to ensure

that it can do no harm to the host. This goal is achieved by enforcing stringent

access control policies that prevent mobile code from executing any action that can

potentially compromise the security of the host system running the code. For

example, Java applets are denied to read or write any files resident on their host

system since malicious applets may be able to use such an access to alter user data

or leak it to unauthorized parties. Such access control policies are useful to keep

malicious applets in check. However they preclude a large number of useful

applications of mobile code.

An ideal mobile code security framework should put less restriction as much as

possible on the mobile code on the precondition that the host is protected from the

attack of malicious or faulty mobile code. Compared to simply informal

endorsement such as Authentication and Access Control, the Secure Information

Flow is a kind of program-analytic mechanisms and more precise. Information-flow

control is a technique that provides ensuring confidentiality and integrity. However,

the studies in this field focus on high-level languages and the source code of the

program is analyzed in compile time. These approaches cannot be applied to mobile

code system because the consumer of the mobile code system cannot obtain the

source code of the mobile programs that migrate from the producer.

The approaches for Java mobile code security by now are almost static ones.

They verify Java mobile code and decide the code is secure or not before the local

JVM executes the code. Thus all static approaches could not get any runtime

information of the mobile code execution. That inherent limitation of static

approaches causes that those approaches cannot achieve satisfying verification

precision in implicit information transferring since it is impossible for static

approaches to judge which branch of the implicit information transferring will be

executed in runtime. Furthermore, the static approaches cannot trace the

information flow in the exception handling because exceptions are thrown

dynamically during the execution. And this limitation makes the static approaches

lose the practicality.

 3

This dissertation provides a dynamic verification approach to protect the host

security in Java mobile code systems by the bytecode modification. We analyze the

information flow of Java bytecode, and put forward a suitable security model for

mobile code systems based on the secure information flow theory. In our security

model, we do not restrict the mobile code to read sensitive information from the

host and transfer the information in the mobile code. Instead, we record and

calculate the information flow to master where the sensitive information is in the

mobile code. Only when the mobile code sends information out, we check and

restrict the possible information-leak.

Furthermore, we make use of the bytecode modification technique to achieve

dynamic implementation of our security model. Before the JVM executes the

mobile code, we modify it in order to add the verification function into the original

bytecode. Then the modified bytecode is submitted to the local JVM, and its

original functionalities and the added verification function are executed at the same

time.

We analyze the structure of Java bytecode and class files, and put forward the

modification mechanism that can insert appropriate instructions into the original

bytecode to trace and check the information flow during the bytecode execution.

Especially, our research covers the information flow in Java bytecode exception

handling, which makes our approach more practical and achieve better verification

precision.

 4

2 Mobile Code Security

2.1 Mobile Code System

Mobile code is an architectural paradigm for structuring distributed software

systems. Different from the other paradigms used to construct the distributed

system such as Client-Server Paradigm, the most impressive character of mobile

code systems is the notion of code mobility: communicating processes in mobile

code systems exchange program code instead of simply passing data messages.

In one program, there are three elements:

� Data (stored result sets)

� Code (commands)

� State (current execution status of the program)

A distributed computing system can be called as a mobile code system if there

are the codes that can migrate from one host to another. Mobile code systems can

revolutionize the design and development of distributed systems. In the following,

we will provide a brief overview and comparison of four programming paradigms

for distributed computing: client-server, code-on-demand, remote revaluation and

mobile agents.

2.1.1 Client-Server Paradigm

In the client-server paradigm, there is a set of services provided by the server, by

which the client is able to access to some resources (e.g., databases, files). Although

the service is used by the client, the code that implements these services still

belongs to the server. In a word, it is the server itself that executes the service, and

thus has the processor capability. If the client wants to get information from certain

resource hosted by the server, it is able reached the data resource not by itself but

 5

by seeking help from the server to provide an appropriate service instead. The

server owns all, including the resources, the tool to get the resource and processor.

Currently, most distributed systems were constructed on this paradigm in which a

wide range of technologies have been involved, such as Remote Procedure Calling,

Object Request Brokers (CORBA) and Java Remote Method Invocation (RMI). In

the client-server systems, the ownership of the code used in the service and the host

is not changed during the process of information transition, only the data of the

program is transferred, thus these systems are not considered as mobile code

systems.

� Data → mobile

� Code→ static

� State→ static

Figure 2-1. Client-Server Paradigm.

2.1.2 Code-on-Demand Paradigm

 In the code on demand paradigm, one client has to first get the know-how

when the client needs it because the client initially is not able to perform its task

properly due to a lack of code (know-how). In the network, there is another host can

provide the code needed. Once the code is received, the client performs the

computation by itself. The client holds the processor capability as well as the local

resources. Different from the client-server paradigm, the client does not need the

ClientClientClientClient

ServerServerServerServer

S
E
R
V
I
C
E

2. call procedure

3. return result

code

1. execute
4. continue

data
System
resources

 6

detail information of the remote since all the necessary code will be transmitted to

the local system. The client has both the resources and processor, while the server

has the know-how. A good example is the Java applet. In the paradigm, applets are

downloaded from remote sites in the web and executed locally.

� Data → static

� Code→ mobile

� State→ static

Figure 2-2. Code-on-Demand Paradigm.

2.1.3 Remote Evaluation Paradigm

In the remote evaluation paradigm, see Figure 2-3, a client has the know-how

(code) necessary to perform the service and a remote server owns the resource. To

perform the task the client sends the service know-how to the remote site. When the

server receives the service know-how, it will execute the code using the resources

available there. After the execution, the server will return the result back to the

client. A typical example is SQL. The client sends SQL query to the DB server, and

then the server executes the query and returns data to the client.

� Data → static

� Code→ mobile

� State→ static

ClientClientClientClient

ServerServerServerServer

S
E
R
V
I
C
E

1. send request

2. transfer code

code

3. execute
code

code

code

 7

Figure 2-3. Remote evaluation Paradigm.

2.1.4 Mobile Agent Paradigm.

A key characteristic of the mobile agent paradigm, see Figure 2-4, is that any

host in the network is allowed a high degree of flexibility to possess any mixture of

know-how, resources, and processors. Its processing capabilities can be combined

with local resources. Know-how expressed in the form of mobile agents is not

limited in a single host but can execute freely at any host in the net work.

� Data → static/mobile

� Code→ mobile

� State→ static/mobile

ClientClientClientClient ServerServerServerServer

S
E
R
V
I
C
E

2. send code

4. return result

code

1. execute
5. continue

code

code 3. execute

System resources

 8

Figure 2-4. Mobile Agent Paradigm.

In these four distributed computing paradigms, code-on-demand, remote

revaluation and mobile agents are considered as mobile code systems because the

code on one host is transferred to another. Beside the code, the execution state of

the program may also be moved to the other hosts, which divides the mobile code

system into the strong mobility and the weak mobility.

Strong mobility enables an executing unit to move as a whole by retaining its

execution state (e.g., the instruction pointer) across migration. Migration is

transparent, in that the executing unit resumes execution on the new host right after

the instruction that triggered the migration.

Weak mobility enables the transfer of application code towards or from a

HostHostHostHost HostHostHostHost

S
E
R
V
I
C
E

2. transfer code
code

1. initialize

code

code 3. execute

System resources

HostHostHostHost

S
E
R
V
I
C
E

4. transfer code

6. return result

code

code

5. execute

System resources

 9

different host. At the destination, the code may be run into a newly created

executing unit or it may be linked into an already running one.

2.2 Advantages of Mobile Code System

Mobile code represents a new way of building distributed software systems.

Motivation for adopting the mobile code paradigm has been surveyed in great detail

in [23, 29,58and 65]. Here we list several representative examples.

Real-time interaction with remote resources: Most computing resources in the

host, such as databases, file systems or even physical displays, are not allowed to be

transported. For a computation that requires real time interaction with these

resources, it must be conducted in the exact site which the resources reside. Code

mobility provides the possibility to prescribe the location of computation, so as to

bring real-time interaction into reality. For example, active contents like Java

applets prescribe interactive presentation that is to be rendered on the browser side.

Reduction of communication traffic: Mobile computers usually interact with

servers through unreliable, low-bandwidth, high-latency, high-cost networks.

Mobile programs become an attractive alternative because network traffic can be

reduced by migrating the client program to the server side, thus avoiding the

potential cross-network communication bottlenecks.

Customization and extension of server capabilities: In traditional client-server

applications, valuable hardware resources are usually managed by server software

(e.g., an operating system). The server offers a predefined set of services which are

defined based on extremely general access policies and tends to ignore the specific

needs of individual clients. It is very difficult to extend the capability of the serve

without redefining its interface. Remote evaluation offers a flexible infrastructure

for extensible server. Recently, various proposals have been made to allow

application-specific extension code to be downloaded dynamically into server

software, so as to customize the access policies to meet the specific needs of clients.

Asynchronous distribution computing: In traditional client-server applications,

the state of computation is distributed among servers and clients. As a consequence,

 10

it is difficult to maintain the consistency of the distributed states and articulate the

correctness of the computation. Mobile code systems localize computation states in

a single process. They offer a better abstraction that makes the crafting of

distributed software a more manageable task.

2.3 Applications of Mobile Code System

Any application that can be crafted under the mobile code paradigm can also be

structured as a client-server application [58]. However mobile code systems offer

many software engineering advantages that their client-server counterpart lacks

such as those mentioned above. Thus mobile code systems can be applied to the

following application domains.

2.3.1 Distributed Information Retrieval

Distributed information retrieval applications collect information from the certain

resources scattered in the network. The information matches some specified criteria.

During the information retrieval process, the information sources visited by the

applicants can be defined statically or determined dynamically. This is a domain

encompassing a big diversity of applications. For example, the wide range of

information to be retrieved can be the list of all the publications of a given author to

the software configuration of hosts in a network. The efficiency could be improved

by code mobility because the code can migrate from remote to close to the

information when performing the search process.

2.3.2 Active Documents

Traditional passive data, such as e-mail or web pages, is enhanced by active

documents applications with the capability of executing the programs which have

certain relationship to the content of the document, enabling enhanced presentation

and interaction. Mobile code system is the premise for realizing these applications

because it allows the embedding of code, stating the code into documents, and

executing the dynamic contents during document fruition. A typical instance is

represented by an application that uses graphic forms to compose and submit

 11

queries to a remote database. The interaction with the user is modeled by using the

COD paradigm, i.e., the user first raises requests for the active document

component to the server and then using the document as an interface to perform the

computation. This type of application can be easily implemented by a technology

which can fetch remote code fragments. A typical choice is a combination of

WWW technology and Java applets.

2.3.3 Advanced Telecommunication Services

Support, management, and accounting of advanced telecommunication services,

such as video conference, video on demand or tele-meeting, require a specialized

“middleware” providing mechanisms for the dynamic reconfiguration and the user

customization—advantages brought with code mobility. For example, in a

tele-conference, the application components managing the setup, signaling, and

presentation services could be dispatched to the users by a service broker. Examples

of approaches exploiting code mobility can be found in [57and 74]. A special class

of advanced telecommunications services supports mobile users. In this special

circumstance, the autonomous components can provide support for disconnected

operations, as discussed in [80].

2.3.4 Remote Device Control and Configuration

Remote device control applications are focusing on configuring a network of

devices and monitoring their status. Several other applications are included in this

domain, i.e., industrial process control and network management. Traditionally,

monitoring is performed by randomly or periodically picking up the resource states

while configuration is conducted by a predetermined set of services. This approach,

based on the client-server paradigm, can bring a number of problems. Mobile code

could be used in this incident to design and implement monitoring components that

shared with the devices being monitored and report events that represent the

evolution of the device state. Additionally, the management components migration

to remote sites could improve both performance and flexibility.

 12

2.3.5 Workflow Management and Cooperation

In a business or engineering process, workflow management applications support

the cooperation of persons and tools involved. The workflow defines which

activities must be carried out to accomplish a given task as well as how, where,

when and at what distance these activities should involve each party. To represent

activities as autonomous entities is a practice to this approach. During their

evolution, they are circulated among the entities involved in the workflow. Mobile

code could be used to provide support for mobility of activities that encapsulate

their definition and state. For example, a mobile component could encapsulate a

text document that undergoes several revisions. The component maintains

information about the document state, the legal operations on its contents, and the

next scheduled step in the revision process. An application of these concepts can be

found in [22].

2.3.6 Active Networks

The concept of active networks is recently be proposed by several articles, which

acts as a means to introduce flexibility into networks and provide more powerful

mechanisms to weave or systemize the elements in the network according to

applications’ needs. They can be classified in tiers delimited by two extremes

represented by the programmable switch and the capsule approaches. The

programmable switch approach basically is an example of the COD paradigm, and

it aims at providing dynamic extensibility of network devices through dynamic

linking of code. On the other hand, the capsule approach aims to attach to every

packet flowing in the network, some codes describing a computation that must be

performed on packet data, at each node. Clearly, active networks aim at leveraging

the advantages provided by mobile code in terms of deployment and maintenance,

customization of services, and protocol encapsulation. As an example, in this

scenario a multi protocol router could be downloaded on demand of the code

needed to handle a packet corresponding to an unknown protocol, or even receive

the protocol together with the packet.

 13

2.3.7 Electronic Commerce

Electronic commerce applications make it possible to perform business

transactions through the internet. A transaction may involve negotiation with

remote entities and may require access to information that is continuously evolving,

e.g., stock exchange quotations. In this context, there is the need to customize the

behavior of the parties involved in order to match a particular negotiation protocol.

Moreover, it is desirable to move application components close to the information

relevant to the transaction. This makes mobile code appealing for this kind of

applications. The term “mobile agent” is often related with electronic commerce.

Another application of code mobility to electronic commerce can be found in [83].

2.4 Security of Mobile Code System

By its very nature, mobile code is fraught with inherent security risks. With the

emergence of various forms of malicious active contents, users of mobile code

systems are now aware of the increasingly serious security threats associated with

mobile code computation. A malicious or faulty mobile code unit may tamper

valuable data on local disks, covertly transmit sensitive information to another party,

or masquerade as another trusted application.

Mobile code units may originate from unfamiliar sources, making it difficult for

users to determine if a given code unit should be granted certain execution rights.

The host user never writes them, nor does he know a lot about them, and sometime

he does not know where they came from. Anonymity is a central reality of mobile

code computing. A naive response will consider all mobile code as malicious and

reject them or forbid all mobile code capabilities. Though that policy can give the

host the maximum security, it is the most useless method because of the fact that

there are many benefits of mobile code system and increasingly software

infrastructures are built around mobile code technologies. The question is not to

avoid downloading or using, but to protect the host from the downloaded mobile

code running wild. Thus our objective is to verify the Java mobile code precisely as

much as possible, that is, to let the mobile code causing no security problems

(intentionally or involuntarily) pass our verification as many as possible.

 14

2.4.1 Security Requirements

There are two classes of security issues in mobile code systems: Host Security

and Code Security. The host security is concerned with the protection of the host

from being attacked by malicious or faulty mobile programs, and with the

avoidance of mutual interference among execution units. While the code security is

concerned with the assurance of correctness and confidentiality for the computation

that is delegated to a remote host. When an untrusted host carries out a computation

on behalf of a client, the host may maliciously corrupt or expose the internal state

of the client’s execution units.

This dissertation is mainly devoted to the exploration of issues concerning the

host security. There are three aspects concerned with the host security:

� Integrity: System resources should be protected from unauthorized

modification, deletion, or other means of tampering.

� Confidentiality: Sensitive information should be protected from leaking to

unauthorized parities through some channels.

� Availability: The services of computing system should be protected from

monopolizing or denial.

In order to establish and evaluate the security of a computing system, one should

refine the criteria above, and lay out exactly what the security requirements are in

concrete terms. In general, the following attacks threat the host security in mobile

code systems.

� Denial of service: The downloaded mobile program may monopolize shared

the resources like the terminal screen, CPU time, threading services, etc.

Such attacks destroy the availability of the host system.

� Corruption: Some malicious or faulty mobile code may modify or erase

important data. Other may tamper with the internal state of the system,

rendering the system state incoherent. Such attacks compromise the integrity

of the system.

� Leakage: Some mobile codes may actively release sensitive information on

an outside party. Other may engage in data processing activities from which

malicious third parties can infer information that is supposed to be classified.

Such attacks are direct violation of the system’s confidentiality.

 15

� Masquerading: Some malicious mobile programs may masquerade as

another one by faking the UI of the latter, thus fooling the users into

entrusting them with critical resources and data. Others may pretend to

originate from a trusted origin. And malicious mobile programs may even

fool the type system by appearing to be of another type, thus gaining access

to the internal state of the system. Masquerading is a very subtle form of

attack that could potentially lead to the compromising of all the three aspects

of host security.

2.4.2 Evaluation Criteria of Protection Mechanisms

Protection mechanisms are technologies built into the computing environment

for the sake of enforcing security policies. Protection is based on the notion of

separation. Separation can be physical (allocating physically distinct resources to

competing parties), temporal (scheduling competing processes to execute at a

different time), logical (creating logical barrier to avoid interference), or

cryptographic (encrypting sensitive information).

To design secure protection mechanisms, there are several principles can be

referred [106 and 107].

� Economy of mechanisms: The design of the protection mechanism should

be small and simple. A small and simple mechanism can be carefully

analyzed and validated.

� Fail-safe default: The default condition should be denial of access. The

designer of a protection mechanism should determine what is accessible

instead of when access is denied.

� Complete mediation: The protection mechanism should be designed so that

all possible access to system resources is covered. In a system that will be

used continuously, and in which access rights may be revoked, every access

attempt should be checked.

� Open design: The security of the protected system should not depend on

keeping the design of the protection mechanism secret.

� Separation of privilege: Access on an object should depend on more that

one condition. In this way, complete security breach will not occur when one

protection system is defeated.

 16

� Least privilege: The mobile code should be granted the bare minimum

amount privilege necessary to complete the job.

� Psychological acceptability: If the users feel that protecting their system

resources is too much work, they will not use it. The human interface should

be designed for naturalness, ease of use, and simplicity, so that users will

routinely and automatically apply the protection mechanisms.

2.4.3 Conventional Protection Techniques

In traditional operating systems, besides operating protection techniques such as

CPU protection, Memory Protection and Access Control are other two protection

mechanisms relevant to mobile code systems.

� Memory Protection

The purpose of memory protection is to prevent the malfunctioning of one

execution unit from interfering other execution units or even the host. With the

memory protection, the execution units are restricted and not able to interfere either

with the execution states of other units or with the state of the global host.

There are three mechanisms in total that provide the memory protection in the

traditional operating systems:

1. Processes are isolated in separate address spaces. No matter it is a data

reference or a control transfer, the hardware will check the every address reference

at run-time to see if the address space of the running process includes the location

of the address reference. Or a memory exception will be generated to halt the

process and return control to the operating system.

2. There are two types of executions provided by CPU which are named as the

kernel mode and the user mode. Instructions that set the boundary of address space

are protected and can only be executed in the kernel mode. User processes are then

forbidden to redefining the boundary of their address spaces.

3. The kernel mode of operating system checks the control flowing outside of the

 17

address space by a special interface which is usually achieved by providing a set of

predefined system calls accessible by a special TRAP instruction. When a system

call is invoked by outside execution, the CPU switches to kernel mode, and control

is transferred to the operating system correspondingly, then the operating system

starts to process the system call on behalf of the user process.

Furthermore, some operating systems provide complex mode to separate

different security-levels by the group of concentric rings instead of a simple

dichotomy of kernel and user modes. Usually it needs special hardware and

operating system support. In the concentric ring mode, only the code running in the

rings with higher trust level are allowed to access data and code in the rings with

lower trust level, in another word it is a one-way flow. Accordingly the control will

be hand over to the code in the ring of higher trust level via special entry points

called gates.

� Access Control

Access control is achieved by protected information resources which identify the

special execution units that can be granted the access to certain resources. In

traditional operating systems, resources of the host are modeled as objects, while

user processes are modeled as subjects. With permission, a subject can perform

certain operations on an object. The permission of this kind of performance is

called access right. Security policies are expressed as an assignment of rights to

subjects. A protection domain is a collection of access rights. A user process

acquires its access rights by being associated to a protection domain.

A matrix is introduced to describe the access rights in a multiprogramming

system. In the matrix, protection domains are expressed in rows while objects are

expressed in columns. Access rights are given to a protection domain (row) for the

accessing of an object (column). It is easy to define the access right by labeling an

entry in the matrix with access operations. In traditional operating systems, the

access matrixes are usually implemented either of two ways. The access control list

is one of the two ways. It is a list of <subject, right> pairs associated with every

system resource. When an access occurs to a resource, the associated list will be

checked to see if the accessing subject is in the list and access right is appropriately

 18

granted. Another is called capability. A capability is an unforgettable pointer to a

system resource. The right was granted to a subject to access an object at the

moment of received the pointer. In a sense, capability controls access through

visibility which means it is impossible for a process to access a system resource if it

is not even visible to the process.

In traditional operating systems, access control can be described in two related

mechanisms which are Authentication and Authorization. Authentication is the

process of establishing the identity of a user. Authorization is granting the right

access to authenticated users according to the result of authentication. Under such a

system, it is the user’s identity that largely determines the right to perform an

operation, or, be more precisely, it depends on the operating system’s knowledge

upon the user in a large extend.

2.4.4 Distinctiveness

Mobile code systems share many similarities with the traditional operating

systems. In fact the security issues in them are all related to the multiprogramming,

specifically resource sharing. But the mobile code is different from other

multiprogramming languages used in traditional operating systems. The protection

mechanisms in these traditional systems can not be directly transplanted to mobile

code systems to address the similar security needs. Several distinguishing features

of mobile code make the security needs different from those of traditional

multiprogramming operating systems.

� Layered Protection

Traditional discretionary access control [108] relies on trusted resources which

means a user should be a known party. The access control is based on the trust to

the origination of the codes including the user’s identity and the ownership of the

resources. A straight simple implementation of this idea to mobile code security is

to label every mobile code unit with a digital signature that indicating its origin. In

this view, the idea of traditional operating system security is extended to mobile

execution, and the access authorization is only issued to those codes whose origin is

well-known to the host. This approach works well when the mobile program is

 19

developed by a famous brand name, or when it is sent from a credible source.

However, the approach is dysfunctional when the foreign code is written by an

author unknown to the host or comes from an uncertain origin. The key conception

of the Internet computing is that any party can freely share information or actively

contact with others who have access to the Internet. It is foreseeable that in the

future more and more useful mobile programs are going to be developed and

distributed by parties unknown to the average users. Security solely based on

identity cannot afford to handle such complex demanding. This difficulty was first

articulated by Ousterhout et al [94], and then found its full expression in a paper of

Chess [28].

Based on the above understanding, the identity or the origin of the information

should not restrict security engineers to authorize the access. No matter what the

programs are anonymous or not, if they are trustworthy, they should be accepted by

a sound security infrastructure. Therefore, it is accepted as an axiom the origin of

the program should not hamper it from being download to a computing

environment. Thus anonymous trust is the first fundamental challenge in mobile

code security.

� Layered Protection

Another fundamental aspect of mobile code system is that a mobile code system

creates a complete multiprogramming environment above the existing operating

system. In the environment, mobile code is able to define its own computing model,

provide its own set of services, maintain its own resources and hence define its own

security model. As a result, it is not usually realistic to simply treat an execution

unit as same as just another normal process in the operating system, running in just

another protection domain. Furthermore, our desire for platform independence will

conflict with any approach designed particularly to the security model of an

operating system. On the other hand, as one of the users in the underlying platform,

a mobile code computing environment may expose some of the operating system

resources to the visiting execution units. The mobile code security model must

comply with the security constraints imposed by the operating system.

In traditional operating systems, a process defines both the boundary for memory

 20

protection and the protection domain for access control. A mobile code system

usually occupies only one process, which in turn hosts secondary threads

representing execution units. In order to make it possible to protect the computing

environment process from the execution units and to protect the execution units

from interfering each other, we should set up two protection mechanisms. One is a

memory protection to define secondary address spaces inside the address space of

the computing environment process. And the other is the access control mechanism

to define secondary protection domains inside the protection domain of the

computing environment process. Thus a parent-child relationship is formed

between the security model of the operation system and the security model of the

mobile code system.

Layered protection is a characteristic feature in single-address-space operating

systems like OPAL [27] and Mungi [62], also extensible operating systems like

SPIN [17], VINO [111], and Exokernel [42]. In such kind of operating systems,

untrusted code may be (dynamically) introduced into a privileged protection

domain (e.g., the kernel) in order to prevent these units from exploiting the

resources into that domain. Some recent works [30] focus on the Operating System

community and endeavor to address the need for intra-address-space protection

mechanisms motivated by software plug-ins, device drivers and data-driven

security threats.

� Implicit Acquisition

Different from the traditional slow, manual, explicit software acquisition, the

code mobility defines a new model of software acquisition. In the past, system

administrators know exactly what package are installed on the system and

announce any potential impact to users since all alternatives are reviewed and tested.

In a mobile code system, software acquisition is completely different. A mobile

code unit may arrive without the user’s acknowledgment. Simple activities such as

opening an email or browsing a webpage could invoke the installation of active

mobile code unit. Acquisition is therefore implicit, which is also a design goal. In

such an environment, only automatable checks are allowed such as signature

checking, program analysis, type-checking and so on. All such checking should

take only limited time to complete. It is this time constraint acquisition process

 21

established trust gradually. With the time constraint a computing environment has

to establish the trustworthiness of a mobile program without going through the

traditional evaluation cycle. In fact the time to establish the trust should be only a

small part of the total execution time of the mobile program. Implicit acquisition is

the third fundamental challenge of the mobile code security.

2.5 Protection Mechanisms for Mobile Code Systems

Discretion, verification, transformation, and arbitration are four kinds of

approaches in mobile code systems protection. Most current protection mechanisms

of existing mobile code systems can be considered as the combination of the four

approaches.

2.5.1 Discretion

Discretion refers to the protection mechanisms which make security decisions

based on identifying the “tokens” of trust. In particular, it turns to various

authentication techniques [82] for help to establish the trust. Every mobile code unit

is associated with certain digital signature(s). Once the host received a foreign

mobile code unit the digital signature of the mobile code will be authenticated, and

a (mechanical) process of authorization will authorize access privileges to the

mobile code unit according to the result of authentication. The signature

authentication in such kind of systems is assumed to be highly efficient.

Discretion-based protection addresses the challenge of implicit acquisition pretty

well because the signature authentication inherited in it is simple and the efficient.

As a result, it has been studied as a general protection infrastructure [47and 63] and

has been utilized in quite a few existing mobile code systems [54].

The core of discretion approach is the semantics of the signature. Eventually it is

the meaning of a signature that determines which level of access rights is granted.

A digital signature is an unforgettable token that can denote the security property

of the signed code unit. There are three potential denotations can be attached to the

signatures of mobile code units.

Identity/Origin Semantics: This method is a direct translation of the traditional

 22

discretionary access control found in many operating systems. The signature of a

mobile code unit discloses its origin or author. The computing environment keeps a

record of the connection between known signatures and their relevant rights. The

performance of the schemes which based on recognizing the owners or authors of

programs is not satisfied in establishing the anonymous trust in mobile code

systems.

Authoritative Endorsement Semantics: Giving a signature to a mobile code

unit means that the signing party endorses the unit as being “safe”, normally it is in

an informal sense. Certain trusted authorities will be responsible for certifying

mobile code units in this approach. Developers submit their mobile programs to the

trustworthy certification authorities to get the signature before the publication.

Usually, what it means to be “safe” is informally defined by the signature, if it is

properly defined at all. By this approach, a signature can only provide endorsement

of the mobile code unit, but the endorsement has no formal semantics, which means

it cannot be reduced to formally defined security properties. Because the

endorsement is based on trust, therefore the security provided by it largely depends

on the extent of trustworthy on the signing party.

Program-Analytic Semantics: The signature denotes a formal program-analytic

property such as type safety or invariance of a particular assertion (program

invariant). Only when the corresponding formal property can be found in the unit,

signature is attached to the mobile code unit. There are three conditions that will

result the attachment of the signature:

Code is trusted if it is generated by a trustworthy compiler [89 and 101].

Code is trusted if it has been properly rewritten by a trustworthy program

transformer [17 and 111].

Code is trusted if it has been certified by a trustworthy program analyzer.

Compare to informal endorsement, a program-analytic semantics can be more

reliable, because it builds the trust on a formally defined, publicly available

program certifying algorithm instead of merely by human judgment. Unfortunately,

currently, there are only small numbers of security properties have been processed

by formalization. Memory safety and confidentiality are the rare cases that have

 23

been formalized into program-analytic terms. To further explore the space of

application of this approach, studies are being carried on to translate more security

properties into program-analytic terms.

2.5.2 Verification

In the verification approach to mobile code security, security policies are

formulated as program analytic properties. Before landing the computation

environment, in coming mobile code units must pass through a trusted program

analyzer, usually named as a verifier whose job is to deny potentially unsafe

programs from the various incoming units. Therefore the execution units that pass

the analysis and reach the computation environment are guaranteed to satisfy

certain security properties.

� Verification for Memory Protection

The application of the verification approach for memory protection is currently

the most successful model. Following three examples give detail illustration.

First is Typed Intermediate Language. By the using a safe intermediate language

memory protection is achieved in Java programs [55]. Java source programs are

compiled into the format of Java Virtual Machine (JVM) bytecode [75]. The

bytecode format is specially designed to protect execution units from interfering

with each other and prevent them to access the JVM’s internal state. Firstly, the

JVM bytecode language is strictly typed. Secondly, pointer arithmetic is not

allowed in the bytecode. Therefore, only in a type-safe manner could bytecode

instructions access the memory. As a consequence, memory protection can be

simplified into type-checking. All Java class files must be screened by a bytecode

verifier before dynamically connecting to the JVM. Because the JVM bytecode is

unstructured, data-flow analysis has to be introduced in to ensure that the type

safety of the class file. In fact, dataflow analysis within the JVM also can be carried

to check for other safety concerns such as operand stack overflow as well as to

check for type safety. Therefore, runtime checks that would otherwise be needed to

avoid operand stack overflow and ensure type safety can be safely avoided.

 24

Second is Typed Assembly Language. While Java has to rely on an intermediate

language in order to check the type information, and Necula and Lee have to resort

to a highly expressive logical proof to capture similar information for machine code,

Morrisett et al [52,84 and 85] demonstrated that type checking actually can be

performed in an assembly language. Especially, it has been demonstrated by a

typed assembly language (TAL) [84] which carries the type in formation of a rich,

functional source language (a call-by-value variant of System F, the polymorphic

λ-calculus augmented with products and recursion on terms). There are three

important conclusions of this remarkable work. Firstly, it demonstrates that type

safety can be achieved without using an abstract intermediate language, thus the

run-time performance will be significantly reduced. In fact, type check of typed

assembly code can be fully performed without referring to the original source pro-

gram. Secondly, the typing construct imposes almost no restrictions on optimization,

which makes it possible to exclude the safety property of the program from the

code compiler. Thirdly, there is an effective type-preserving procedure that can

interpreter the source language into TAL. Compared with this work, the approach

of Necula and Lee [87] is more general and the verification is incomplete.

In summary, Java bytecode can be taken as a portable intermediate representation

which allows attachment of type annotation in order to enforce memory protection

statically. When it is applied solely to memory protection, proof-carrying code can

use a very expressive logic to capture typing information for a target language,

Therefore it can provide static typing without using an interpretive intermediate

language. Last but not the least, static typing can be performed in a target language

instead of resorting to an overly expressive formalism, which has been actually

demonstrated in TAL.

� Verification for Confidentiality

Program-analytic approaches to the enforcement of confidentiality have received

a lot of attention, and are relatively well-understood. Building on Bell and La

Padula’s security model [13 and 69], the work of Dorothy Denning [38, 39 and 40]

has laid the foundation for the study of Secure Information Flow analysis.

The information flow model can be defined by

 25

 FM = <N, P, SC, ⊕, →> (2-1)

In the above model N is a set of logical storage objects or information receptacles.

Elements of N may be files, or program variables. P is a set of process. SC is a set

of security classes corresponding to disjoint classes of information. The

class-combining operator “⊕” is an associative and commutative binary operator.

A flow “ →” relation is defined on pairs of security classes. For classes A and B,

A→B means if and only if information in class A is permitted to flow into class B

[15].

The security requirement of the model is that a flow model FM is secure if and

only if execution of a sequence of operations cannot violate the relation “→”. To

comply with this policy, information at a given security-level is not allowed to flow

to lower levels. A security system is composed of a set S of subjects and a disjoint

set O of objects. Each subject s∈S is associated with a fixed security class C(s),

denoting it clearance. Likewise, each object o∈O is associated with a fixed

security class C(o), denoting its classification level. The security classes are

partially ordered by a relation ≤, which forms a lattice. To avoid subjects with low

clearance accessing sensitive data and subjects with high clearance to release

sensitive data to low-clearance subjects, we need that a subject may only read

objects with classification level no higher than its clearance, but may only write to

objects with classification level no lower than its clearance. Information is always

flowing unidirectionally from low classification source to high classification

destination.

Information flow could be explicit or implicit. Given two variables X and Y, the

information flow from Y to X is explicit in the following command:

X := Y + 2;

In that command the variable X gets the information of the data stored in the

variable Y directly. Such information flow is called explicit information flow.

Therefore the classification level of the data in variable X should be the

classification level of the data in variable Y.

Information flow could also be implicit. Conditional statements may convert

information into control flow just like the following commands:

 26

if Y > Z then

 X := 0;

else

 X := 1;

end if

In that conditional statement, the value of the data in the variable X depends on

the values of the data in the variable Y and Z. Thus the variable X gets information

from the data in the variable Y and Z indirectly and such information flow is called

implicit information flow. Likewise, looping constructs can also cause implicit

information flow.

X :=0;

while Y < 10 do

 Y := Y + 1;

 X := X + 2;

end while;

In the conditional statements above, the variable X gets information from the data

in more than one variable. In such cases, the classification level of the data in the

and thus the classification level of the data in variable X should be the one of the

data in the variable X should be the Least Upper Bounder (LUB) of classification

levels of the data in variables from which the variable X gets information.

Assuming the classification levels of the data in the variable Y and Z are Ly and Lz,

the classification level Lx of the data in the variable X should be Lx = Ly∨ Lz, where

∨ denotes the calculation of LUB.

To deal with explicit information flow, each expression is associated with a se-

cure flow type, which represents the classification level of the data item. The lattice

structure of the classification levels induces a natural sub typing relationship among

the secure flow types: if type τ represents a classification level at least as high as

that of type τ’

then τ ≥ τ’

. An expression involving operands with distinct security

types receives the least upper bound of the operands’ types as its type. For example,

if e and e’

have security types τ and τ’

respectively, and τ ≤ τ’, then e + e’

can be

assigned security type τ’

.Each variable also has a type τ var, indicating that it holds

contents with type no higher than τ. Explicit leaking is then prevented by requiring

that assignment of the form X := a is well-typed only if X has type τ var and a has

 27

type no higher than τ. To formally express this, we allow expression type τ to be

coerced to any type τ’

if τ ≤ τ’, and then require that X := a is well-typed if and only

if X has type τ var and a has type τ. With this arrangement, the above example code

that explicitly leaks information will not be well-typed.

To handle implicit information flow, every command is associated with a type τ

com. Intuitively, a command has type τ com if every variable that is being assigned

in the command has type τ’

var where τ ≤ τ’

. That is, τ is a lower bound for the

security-levels of the variables being assigned in the command. The idea is that if a

conditional or iterative construct involves a condition expression of type τ then

commands in the body should not assign to variables with security-levels lower

than τ. To make this work, we need two more sub typing rules. For the variables, τ

var ≤ τ’

var if and only if τ ≤ τ’

. For the commands, the opposite must hold: τ com ≤

τ’

com if and only if τ’

≤ τ. Again, expressions can be freely coerced to their super

types.

The verification can be done statically or dynamically. Static verification

approaches analyze a program prior to the execution and judge whether the

program is secure or not, while the dynamic ones implement the verification of the

program during the run-time. The static approaches cannot achieve satisfying

verification precision in implicit information transferring because of the inherent

limitation of static verification approaches that it is impossible for them to judge

which branch of the implicit information transferring will be executed in runtime.

Furthermore the static approaches cannot trace the information flow in the

exception handling because exceptions are thrown dynamically during the

execution, which makes the static approaches lose the practicality. While since the

dynamic approaches implement the verification during the run-time, they can get

better verification precision and trace the information flow in exception handling.

The disadvantage of dynamic approaches is that they cost more run-time overhead

than the static ones.

2.5.3 Transformation

Sometimes a mobile code representation may not be well tailored for execution

although it is good for transportation (e.g., platform independent, compact for

 28

transport efficiency). In many mobile code systems, code units are transported in

the byte-code form of virtual machine. The bytecode then is transformed into a

native code for efficient execution just after it arrived to a host. Now such a

just-in-time (JIT) compilation [120] becomes an important feature of mobile code

systems like Java [55] and Omniware [84]. The Link-time code generation also

adds portability to the mobile code systems [85]. Yet, dynamic code generation can

also be considered as a protection mechanism. Mobile code units are expressed in a

high level representation (e.g., a type-safe intermediate language as in Java) in

which unsafe behavior cannot be expressed. While arriving at the host, the code

units are converted to a format which can be executed on the host machine directly.

Because the code generation is completed by a trusted compiler located on the host,

and the unsafe behaviors cannot be expressed in the source code, the generated

code can be considered as safe.

Transformation can also be used to tailor an untrusted code into a more secure

form in a similar way. In contrast to the dynamic code generation, unsafe behaviors

can be expressed in the migrated code. The code unit is statically analyzed while

arriving at the host, and extra protection code is injected at program points where

the security cannot be guaranteed.

� Transformation for Memory Protection

It was at early 1970’s, the method of code rewriting has been applied to memory

protection within a single address space [115]. Recently, the Omniware mobile

code system [79] starts to use transformation to implement memory protection for

untrusted mobile code units. Omniware mobile code units are transported as

bytecode on the Omniware Virtual Machine (OmniVM) [128]. OmniVM is

designed to resemble an RISC architecture, thus it provides efficient performance,

simple implementation, and retarget ability. OmniVM divides its address space into

segments, in order to ensure that execution units can only access those segments

which they have been authorization to assess. Software-based Fault Isolation (SFI)

is introduced in [83]. The basic idea of SFI is to rewrite untrusted mobile code units

thus to turn it into versions cancel the access to unauthorized segments. Each

memory address is divided into two parts, namely, a segment identifier and an

offset within the segment. There are two possible rewriting rules can be formulated

 29

as below:

Segment Matching: For every memory reference, guard code is inserted before

the reference has been initiated by the instructions. Initiatively the inserted code

checks whether the referred segment matches the current segment. A memory fault

will be raised if it failed in the check.

Sandboxing: For every memory reference, the segment identifier of the target

address is dynamically overwritten by the identifier of the current segment.

The systematic application of either rule to every memory reference in a program

guarantees that no interference occurs between disjoint segments.

Experience indicates that observable run-time overhead is caused by this

approach because additional code is introduced by the transformation. Despite this

overhead, native code which is executed in this way can run at a speed comparable

to the speed of original code execution [83], though not as sane efficient as a the

proof-carrying code version [88].

In extensible operating systems VINO [111] and Exo kernel [129], users are

allowed to dynamically download untrusted extension code into the kernel address

space to modify the behavior of the operating systems. Untrusted extension code

units are subject to SFI transformation before downloading to protect the

integration of the kernel address space.

2.5.4 Arbitration

Another way to completely protect a host is to cut the “direct” contact between

the host and untrusted execution units. Once an untrusted execution unit requests

the execution of an operation, the arbitrator, as a trusted party is called in to carry

out the operation of the execution unit. Unsafe operations can be fully blocked by

the arbitrator which can restrict the kind of operations visible to the execution unit,

and can examine the client’s run-time state. The cost of such flexibility is usually a

considerable run-time overhead.

Arbitration can be used to enforce both memory protection and access control.

An interpreter is often used to enforce the memory protection. An interposition is

 30

frequently used to enforce the access control. Each of them will be examined in

turn.

� Memory Protection by Interpreter

Using an interpreter to conduct computation in a safe and portable way has

become very popular. Mobile code languages like Java [55], Safe Tcl [94],

Scheme48 [100], and Telescript [62], JavaScript, all include the interpretation of

some source or intermediate languages. The mechanism of interpreter approach to

achieve memory protection can be explained in two ways:

Restricting expressiveness: A safe intermediate representation can be defined

for mobile code units. With the limitation of the language, some unsafe operations

cannot be expressed, while some can be statically checked. Take the JVM bytecode

representation [75] as an example, in which privileged native instructions cannot be

expressed; no pointer arithmetic; the language is strictly typed; interactions with

host resources are performed through a public application programming interface

(API). Therefore, memory interference can be avoided.

Dynamic checking: The interpreter can screen out all potentially dangerous

moves by run-time checking because only through the arbitration of the interpreter

could the execution unit interact with the host CPU. For an example, the JVM

checks against null pointer dereferencing, out-of-bound array access, and illegal

type-cast [75].

� Access Control by Interposition

Interposition means to insert trusted arbitration code in the form of a reference

monitor [95] between a protected service and the entry point of the service. In a

traditional operating system settings and processes usually access system resources

via an on-bypass system which is called interface. Any attempts to access the

protected resources are therefore subjected to the monitoring of the trusted

arbitration code before they can reach the target services. Access control policies

can be programmed into the arbitration code by which inappropriate access to the

service can be screened out with flexibility. There are several implementations of

 31

interposition in mobile code systems: application wrappers, reference monitors,

reference monitor in lining, and name resolution control.

Application wrappers. Application wrappers are software containers which are

designed for controlling the interactions between untrusted programs and their

execution environments. It was designed to retrofit arbitration code into a legacy

software system in a non-intrusive manner.

Janus [111] is an application wrapper especially customized for protecting a host

against insecure mobile code computing environments. The reflection of the design

of Janus is that an untrusted process is not able to harm the host if its restriction of

access to the underlying operating system has been placed appropriately. By using

the process tracing facilities and the proc virtual file system in Solaris, Janus creates

a user-level sandbox that put all system calls made by an untrusted process under

the monitoring. Since legacy computing environments which have unreliable

protection mechanisms (e.g., an old version of ghost view or a buggy, therefore

Java-enabled web browser) can be executed inside the Janus sandbox, the Janus

monitor can effectively block out unsafe system access initiated by the execution

units running inside the legacy computing environment. Users may even supply

their own policy module to specify which system calls should be allowed, which

ones should be denied. A function must be called to determine what to do in

deferent conditions.

Janus can provide effective protection to the host from any unreliable computing

environment without requiring modification to the kernel and the computing

environment. It is a good example to provide a practical solution to a very practical

problem. However, even disregarding its platform-dependent nature, Janus can

hardly address the layered protection problem. Firstly, Janus does not allow the

computing environment to define a different protection domain for each execution

unit. Secondly, the kind of security policy expressed by Janus is limited because it

ignores the semantics of the computing environment. For an instance, when a JVM

is running inside a Janus sandbox, the policy modules of Janus is not able to figure

out the internal state of the JVM, and have to make the decision of their access

control without understanding the state of JVM. In a word, layered protection can

only be adequately addressed when interposing is a built-in feature of the

 32

computing environment instead of being a retrofitted patch of the operating system.

Reference Monitors. The security manager and stack inspection are the two

mechanisms composed the Java reference monitor. All accesses to operating system

services are isolated in the standard Java API. Whenever a service routine is

invoked, the API transfers control to a corresponding monitor method of the global

security manager object. The monitor method will inspect the Java run-time stack

thus to conclude if the call is safe or not. If the monitor method does not allow the

access, either an exception will then be created, or control is returned to the service

routine to execute the original request. The security authority may oversee these

monitor methods of the security manager class in order to customize the security

policy of the JVM.

The Java security model allows one to define intricate security policies. For

example, stack inspection allows the security manager use the micro control to

decide what access level will be granted to the requestor. There are several

drawbacks of this approach listed as follows. Firstly, the security manager needs to

implement complex stack inspection logic to differentiate among accesses initiated

by different execution units. From a software engineering point of view, both the

construction and maintenance of this logic are difficult and fallible. Secondly, a

procedure based definition of security policy is not easy to be understood. A

popular solution is to introduce traditional access control lists in the arbitration code

(asin Java [46] and Agent Tcl [56]). Subsequently, Netscape has attempted to

extend the Java stack inspection mechanism by providing stack annotation which

simplifies the logic for access right checking [123]. This extended version of stack

inspection is later on proven by Wallach, Appel and Felten [121 and 122] to be

equivalent to formal deduction in ABLP logic [1].

Reference Monitor in Lining. Code rewriting can be applied at load time to

introduce monitoring code into an untrusted program. Here, the arbitration code

does not reside at the entry points of privileged services, but instead is injected into

the program itself to detect and avoid misuse of privileged services. Specifically,

this strategy has been used for implementing the Java stack inspection [43and 122].

SFI has also been applied to enforce security policies expressed as security

automata [44]. Besides a number of other efforts are involved in applying load time

 33

code rewriting to enforce high level access control policies [46, 102, 103 and125].

Name Resolution Control. In this approach, arbitration occurs while dynamic

linking happens. The name resolution provides a relative simple way to offer the

potential of centralizing all security logic into a single mechanism.

Safe-Tcl [94] is a security-aware extension of the popular Tcl scripting language

[100]. Protection is achieved by three mechanisms — safe interpreters, aliases, and

hidden commands. Similar to other shell scripting languages, Tcl is a

command-based language which means the access to operating system facilities are

provided through a set of commands. Safe-Tcl defines a padded cell security model,

in which each individual execution unit is executed by its own interpreter. All

system services are available in a trusted, master interpreter. When an untrusted

script is executed, it is sandboxed in a separate, untrusted, safe interpreter. Who acts

just as a separate name space. Privileged commands can be embedded in the safe

interpreter in order to prevent untrusted script from unauthorized access to system

resources. Additionally, to achieve the finer-grained control, a command may be

aliased. Such as the name of a privileged command in the safe interpreter maybe

“overshadowed” by a trusted arbitration routine in the master interpreter. If the

access is granted the arbitration routine decides at run-time. If the access is

permitted, it delegates the original call to the overshadowed command in the master

interpreter.

The padded cell model refers to a form of interposition called name resolution

control. In this approach the mechanism of name resolution is to control the

selective access to the privileged services. In essence, name resolution control

includes two component mechanisms. Firstly, granting of capabilities is realized by

name visibility control. The notion of a safe interpreter, which is essentially a

namespace, coincides with that of a protection domain. A privileged service can be

accessed only if it can be named in the safe interpreter. It is easy for one to define a

different access policy for each script because each script is assigned to separate

name space and the name can be encrypted as well. Secondly, message interception

selectively binds names of privileged services to wrapper code that protects the

entry points of those services. Here, accessibility is not controlled by visibility, but

instead by dynamic checking of the possession of rights.

 34

Scheme [94 and 100] is another early mobile code system that set up its primary

protection mechanism based on the approach of name resolution control. In Scheme,

a procedure is considered to be a function closure, which contains a lambda

expression and a binding environment. When a procedure is triggered, the only

visible objects inside the lambda expression are the actual arguments and the values

of the names in the lexical environment. Scheme48 allows programs to construct

arbitrary binding environments, thus to execute untrusted code inside these

carefully-crafted special environment. During the course of constructing such

environments, the names of privileged procedures can be encrypted or be renamed

to be invisible to arbitration routines.

Wallach et al [97] describe a way to implement name resolution control in the

context of Java. In Java, a name space coincides with a class loader. A class name

in one class loader represents a different class than another class with the same

name in a different class loader. The class loader was originally conceived for name

space partitioning so that there will be no name conflict among separate execution

units. Taking advantage of this design, one may create a subclass of the standard

class loader class, in which all requests for name resolution are monitored. As a

result, if a privileged name is to be hidden, the class loader can throw an exception

when the name is resolved. Aliasing can be simulated by resolving the names of

privileged classes to arbitration classes.

The extensible operating system SPIN [17] also models protection domains by

name spaces. All extension code in SPIN is written in the type-safe language

Modula 3. Capabilities are directly modeled as pointers. Therefore, if a name is

well-typed in a code unit, then the resource or service it refers to will be accessible.

Typing thus provides a means of expressing conditional visibility of a symbol.

Fine-grained protection is achieved by allowing users to manipulate name spaces.

Name spaces can be created dynamically, and code units are executed within the

confine of that name space, thus restricting its capabilities. An interesting feature is

that name spaces can be extended by the Combine operation, which creates a union

of two name spaces. In general, a system that uses name resolution control for

protection needs ways to construct and extend name spaces.

Besides the advantage of implementing name space in modeling protection

 35

domains, there are still some potential problems within this approach. One of them

is that there is no way of revoking capability. The J-Kernel [101] is a Java security

kernel that provides a capability revocation mechanism within a name-space

domain framework.

 36

3 Java Virtual Machine and Bytecode

3.1 Java Language

Platform independence, security, and network-mobility are three facets of Java's

architecture that work together to make Java fit for the emerging distributed

computing environment of mobile code systems. Among these three aspects the

network-mobility of the code and objects is more important compared with the

other two. The same code can be sent to all the computers and devices interlinked

together in the network. Objects can be exchanged among the various components

of a distributed system which can be executed on different kinds of hardware. The

built-in security framework of Java also helps to make the software

network-mobility more practical. By reducing the risks, the trust in a new paradigm

of network-mobile software is build up with the help of the security framework.

A single Java program can run on various computers and devices without being

changed to adapt itself to the running environment. Compared with the programs

compiled specially for some certain hardware or an operating system, it is much

easier and cheaper to develop, administrate and maintain the platform independence

Java programs.

Networks provide a venue for malicious programmers to leak or tamper

information, destroy computing resources, or simply do something annoying. Virus

producers, for example, may place malicious piece of wares on the network which

can be downloaded by unsuspecting users. Java addresses the security challenge by

providing an environment in which programs downloaded across a network can be

run with security in customizable degrees.

Robustness of simple program is one of the security aspects. Just like devious

code written by malicious programmers, buggy code written by well-meaning

programmers also can bring troubles such as potentially destroying information,

monopolizing compute cycles, or causing systems to crash. Java's architecture

 37

guarantees a certain level of program robustness by preventing certain types of

pernicious bugs, such as memory corruption, from ever occurring in Java programs.

That guarantees that mobile code will not inadvertently crash.

By enabling the transmission of binary code in small pieces across networks,

Java takes advantage of distribution computing. Compared with other programs that

are not network-mobile, the special feature of Java program makes it easier and

cheaper to be delivered.

The emerging of mobile code provides another opportunity that both code and

state can transmits across the network with the mobile objects. Java achieved object

mobility in its APIs for object serialization and RMI (Remote Method Invocation).

Based on Java's underlying architecture, the object serialization and RMI together

provide an infrastructure that allows the objects to be shared by various components

of distributed systems. The network-mobility of objects makes new models possible

for distributed systems programming, therefore the benefits of object-oriented

programming are effectively brought to the network.

Figure 3-1. The Java programming environment.

A.java B.java C.java

Java
 compiler

A.class
s

B.class C.class

Object.class String.class

User program’s source file

User program’s class files

Java API’s class files

User program’s class files

Compile-time environment Run-time environment

A.class
s

B.class C.class

…

move

Java
virtual machine

 38

Figure 3-1 shows the relationship among various parts of Java programs. Java

program source files written in the Java programming language are compiled into

Java class files in the form of bytecode. Then those class files are loaded and

executed in Java virtual machine (the local JVM or a remote JVM). During the

execution, the Java bytecode accesses system resources (such as I/O) by calling

methods in the classes implementing the Java Application Programming Interface

(Java API).

A “platform” is formed by the Java virtual machine and Java API together, on

which all the Java programs are compiled. More than to be called as the Java

runtime system, the combination of the Java virtual machine and the Java APIs is

also called as the Java Platform (or, starting with version 1.2, the Java 2 Platform).

It is because the Java platform can be implemented in software that makes it

possible for Java programs to run on many different kinds of computers.

3.2 Java Virtual Machine

The core of Java's network-orientation is the Java virtual machine. All the three

features, platform independence, security, and network-mobility, of Java's

network-oriented architecture are supported by JVM.

The JVM is a stack machine manipulating an operand stack and a set of local

registers for each method and a heap containing object instances. Its specification

defines certain essential features that every Java virtual machine must have, while

leaves many options to the designers of each implementation. For example, all Java

virtual machines must be able to execute Java bytecode programs, while developers

can choose any technique to make it happen. Further, the feature of flexibility of the

Java virtual machine's specification enables it to be implemented on a wide variety

of computers and devices.

A major job of Java virtual machine is to load class files and execute the

bytecodes contained in those files. As shown in Figure 3-2, the Java virtual

machine contains a class loader, which loads class files from both the user’s

program and the Java API, and a execute engine, which actually executes the

bytecode loaded by the class loader. Only those class files from the Java API that

 39

are actually needed by a running program are loaded into the virtual machine. The

bytecodes are executed in an execution engine.

Figure 3-2. A basic block diagram of the Java virtual machine.

As a part of the virtual machine, the execution engine varies in different

implementations. On a Java virtual machine implemented in software, the simplest

kind of execution engine just interprets the bytecode once at a time. Just-in-time

compiler is another kind of execution engine which is faster but requires more

memory. In this scheme, the bytecode of a method are compiled to native machine

code at the first call of the method. The native machine code for the method is then

cached, and at the next time when the same method is invoked again it will be

re-used. An adaptive optimizer is the third type of execution engine. By this

approach, the virtual machine starts by interpreting bytecode, monitors the activity

of the running program and identifies the most heavily used areas of the codes.

Along with the running program, the virtual machine compiles to native and

optimizes just these heavily used areas. The rest areas of the codes, which are not

heavily used, remain as bytecode and still need to be interpreted by the virtual

machine when be in use. This adaptive optimization approach enables a Java virtual

machine to put typically 80 to 90% of its time at executing highly optimized native

codes, while requiring it to compile and optimize only the 10 to 20% of the code

Host operating system

Execute Engine

Class Loader

Java Virtual Machine

Native method invocations

bytecodes

Java API’s
class files

User program’s
class files

 40

that really matters to performance. Finally, in a Java virtual machine built on the

top of a chip that executes Java bytecode natively, the execution engine is actually

embedded in the chip.

All Java methods can be divided into two kinds: Java method and native method.

A Java method is written in the Java language, compiled to bytecode, and stored in

class files. A native method is written in other languages, such as C, C++, or

assembly, and compiled to the native machine code of a particular processor. Java

methods are platform independent, while native methods are stored in a

dynamically linked library whose exact form is platform specific. During the

execution of bytecode on a Java virtual machine that is implemented in software on

the top of the host operating system, an interaction between the Java program and

the host happens when Java program invokes the native methods. At that time the

dynamic library that contains the native method will be loaded on the virtual

machine and the native method then invoked. As it is shown in Figure 3-2, native

methods are the connection between a Java program and an underlying host

operating system.

3.3 Java Bytecode and Instruction Set

3.3.1 Bytecode

For analyzing bytecode program, we should understand the format of the

program in the form of bytecode. Java programs consist of a set of classes. Each

class is stored in one class file, which has the ClassFile structure as shown in

Figure 3-3.

 ClassFile {

 u4 magic;

 u2 minor_version;

 u2 major_version;

 u2 constant_pool_count;

 cp_info constant_pool[constant_pool_count-1];

 u2 access_flags;

 u2 this_class;

 41

 u2 super_class;

 u2 interfaces_count;

 u2 interfaces[interfaces_count];

 u2 fields_count;

 field_info fields[fields_count];

 u2 methods_count;

 method_info methods[methods_count];

 u2 attributes_count;

 attribute_info attributes[attributes_count];

 }

Figure 3-3. The format of class file.

magic:

The magic item supplies the magic number identifying the class file format; it

has the value 0xCAFEBABE.

minor_version, major_version:

The values of the minor_version and major_version items are the

minor and major version numbers of this class file. Together, a major and a minor

version number determine the version of the class file format. If a class file has

major version number M and minor version number m, we denote the version of its

class file format as M.m. Thus, class file format versions may be ordered

lexicographically, for example, 1.5 < 2.0 < 2.1.

A Java virtual machine implementation can support a class file format of version

v if and only if v lies in some contiguous range Mi.0 ≤v ≤Mj.m. Only Sun can

specify what range of versions a Java virtual machine implementation conforming

to a certain release level of the Java platform may support.

constant_pool_count:

The value of the constant_pool_count item is equal to the number of

entries in the constant_pool table plus one. A constant_pool index is

considered valid if it is greater than zero and less than constant_pool_count ,

with the exception for constants of type long and double.

constant_pool[]:

 42

The constant_pool is a table of structures representing various string

constants, class and interface names, field names, and other constants that are

referred to within the ClassFile structure and its substructures. The format of

each constant_pool table entry is indicated by its first "tag" byte.

The constant_pool table is indexed from 1 to constant_pool_count-1.

access_flags:

The value of the access_flags item is a mask of flags used to denote access

permissions to and properties of this class or interface.

An interface is distinguished by its ACC_INTERFACE flag being set. If its

ACC_INTERFACE flag is not set, this class file defines a class, not an interface.

If the ACC_INTERFACE flag of this class file is set, its ACC_ABSTRACT flag

must also be set and its ACC_PUBLIC flag may be set. Such a class file may not

have any of the other flags.

If the ACC_INTERFACE flag of this class file is not set, it may have any of the

other flags. However, such a class file cannot have both its ACC_FINAL and

ACC_ABSTRACT flags set.

The setting of the ACC_SUPER flag indicates which of two alternative

semantics for its invokespecial instruction the Java virtual machine is to

express; the ACC_SUPER flag exists for backward compatibility for code compiled

by Sun's older compilers for the Java programming language. All new

implementations of the Java virtual machine should implement the semantics for

invokespecial documented in this specification. All new compilers to the

instruction set of the Java virtual machine should set the ACC_SUPER flag. Sun's

older compilers generated ClassFile flags with ACC_SUPER unset. Sun's older

Java virtual machine implementations ignore the flag if it is set.

All bits of the access_flags item not assigned are reserved for future use.

They should be set to zero in generated class files and should be ignored by Java

virtual machine implementations.

this_class:

The value of the this_class item must be a valid index into the

constant_pool table. The constant_pool entry at that index must be a

CONSTANT_Class_info structure representing the class or interface defined by

this class file.

 43

super_class :

For a class, the value of the super_class item either must be zero or must be

a valid index into the constant_pool table. If the value of the super_class

item is nonzero, the constant_pool entry at that index must be a

CONSTANT_Class_info structure representing the direct super class of the

class defined by this class file. Neither the direct super class nor any of its super

classes may be a final class.

If the value of the super_class item is zero, then this class file must represent the

class Object, the only class or interface without a direct super class.

For an interface, the value of the super_class item must always be a valid index

into the constant_pool table. The constant_pool entry at that index must

be a CONSTANT_Class_info structure representing the class Object.

interfaces_count:

The value of the interfaces_count item gives the number of direct super

interfaces of this class or interface type.

interfaces[]:

Each value in the interfaces array must be a valid index into the

constant_pool table. The constant_pool entry at each value of

interfaces[i], where 0 ≤ i < interfaces_count, must be a

CONSTANT_Class_info structure representing an interface that is a direct

super interface of this class or interface type, in the left-to-right order given in the

source for the type.

fields_count :

The value of the fields_count item gives the number of field_info

structures in the fields table. The field_info structures represent all fields, both

class variables and instance variables, declared by this class or interface type.

fields[] :

Each value in the fields table must be a field_info structure giving a

complete description of a field in this class or interface. The fields table includes

only those fields that are declared by this class or interface. It does not include

items representing fields that are inherited from super classes or super interfaces.

 44

methods_count:

The value of the methods_count item gives the number of method_info

structures in the methods table.

methods[]:

Each value in the methods table must be a method_info structure giving a

complete description of a method in this class or interface. If the method is not

native or abstract, the Java virtual machine instructions implementing the method

are also supplied.

The method_info structures represent all methods declared by this class or

interface type, including instance methods, class (static) methods, instance

initialization methods, and any class or interface initialization method. The methods

table does not include items representing methods that are inherited from super

classes or super interfaces.

attributes_count:

The value of the attributes_count item gives the number of attributes in

the attributes table of this class.

attributes[]:

Each value of the attributes table must be an attribute structure.

The only attributes defined by the Java Virtual Machine specification as

appearing in the attributes table of a ClassFile structure are the SourceFile

attribute and the Deprecated attribute.

A Java virtual machine implementation is required to silently ignore any or all

attributes in the attributes table of a ClassFile structure that it does not

recognize. Attributes not defined in this specification are not allowed to affect the

semantics of the class file, but only to provide additional descriptive information.

In Figure 3-4 and Figure 3-5, we give one example of the result of a Java

program complied into bytecode and the definition of the class file.

 45

Figure 3-4. Java source code and bytecode.

Source code:

class Act {

public static void doMathForever() {

 int i = 0;

 for (;;) {

 i += 1;

 i *= 2;

 }

 }

}

Bytecode:

CA FE BA BE 00 03 00 2D 00 11 07 00 07

07 00 10 0A 00 02 00 04 0C 00 06 00 05 01

00 03 28 29 56 01 00 06 3C 69 6E 69 74 3E

01 00 03 41 63 74 01 00 08 41 63 74 2E 6A

61 76 61 01 00 04 43 6F 64 65 01 00 0D 43

6F 6E 73 74 61 6E 74 56 61 6C 75 65 01 00

0A 45 78 63 65 70 74 69 6F 6E 73 01 00 0F

4C 69 6E 65 4E 75 6D 62 65 72 54 61 62 6C

65 01 00 0E 4C 6F 63 61 6C 56 61 72 69 61

62 6C 65 73 01 00 0A 53 6F 75 72 63 65 46

69 6C 65 01 00 0D 64 6F 4D 61 74 68 46 6F

72 65 76 65 72 01 00 10 6A 61 76 61 2F 6C

61 6E 67 2F 4F 62 6A 65 63 74 00 20 00 01

00 02 00 00 00 00 00 02 00 09 00 0F 00 05

00 01 00 09 00 00 00 30 00 02 00 01 00 00

00 0C 03 3B 84 00 01 1A 05 68 3B A7 FF

F9 00 00 00 01 00 0C 00 00 00 12 00 04 00

00 00 05 00 02 00 07 00 05 00 08 00 09 00

06 00 00 00 06 00 05 00 01 00 09 00 00 00

1D 00 01 00 01 00 00 00 05 2A B7 00 03 B1

00 00 00 01 00 0C 00 00 00 06 00 01 00 00

00 02 00 01 00 0E 00 00 00 02 00 08

 46

hex bytes name

--------- ----

CAFEBABE magic

0003 minor_version

002D major_version

0011 constant_pool_count

07 tag

0007 name_index

07 tag

0010 name_index

0A tag

0002 class_index

0004 name_and_type_index

0C tag

0006 name_index

0005 descriptor_index

01 tag

0003 length

282956 "()V" bytes[length]

01 tag

0006 length

3C696E69743E "<init>" bytes[length]

01 tag

0003 length

416374 "Act" bytes[length]

01 tag

000B length

736E697065742E6A617661 "Act.java" bytes[length]

01 tag

0004 length

436F6465 "Code" bytes[length]

01 tag

000D length

436F6E7374616E7456616C7565 "ConstantValue" bytes[length]

01 tag

 47

000A length

457863657074696F6E73 "Exceptions" bytes[length]

01 tag

000F length

4C696E654E756D6265725461626C65 "LineNumberTable" bytes[length]

01 tag

000E length

4C6F63616C5661726961626C6573 "LocalVariables" bytes[length]

01 tag

000A length

536F7572636546696C65 "SourceFile" bytes[length]

01 tag

000D length

646F4D617468466F7265766572 "doMathForever" bytes[length]

01 tag

0010 length

6A6176612F6C616E672F4F626A656374 "java/lang/Object" bytes[length]

0020 access_flags

0001 this_class

0002 super_class

0000 interfaces_count

0000 fields_count

0002 methods_count

0009 access_flags

000F name_index

0005 descriptor_index

0001 attributes_count

0009 attribute_name_index

00000030 length

0002 max_stack

0001 max_locals

0000000C code_length

033B8400011A05683BA7FFF9 code[code_length]

0000 exception_table_length

0001 attributes_count

 48

000C attribute_name_index

00000012 attribute_length

0004 line_number_table_length

0000 start_pc iconst_0, istore_0

0005 line_number int i = 0;

0002 start_pc iinc 0 1

0007 line_number i += 1

0005 start_pc iload_0, iconst_2, imul, istore_0

0008 line_number i *= 2

0009 start_pc goto 2

0006 line_number while (true) {

0000 access_flags

0006 name_index

0005 descriptor_index

0001 attributes_count

0009 attribute_name_index

0000001D attribute_length

0001 max_stack

0001 max_locals

00000005 code_length

2AB70003B1 code[code_length]

0000 exception_table_length

0001 attributes_count

000C attribute_name_index

00000006 attribute_length

0001 line_number_table_length

0000 start_pc aload_0, invokespecial #3, return

0002 line_number class Act {

0001 attributes_count

000E attribute_name_index

00000002 attribute_length

0008 sourcefile_index

Figure 3-5. The definition of the class Act.

 49

3.3.2 Instruction Set

A method's bytecode stream is a sequence of instructions for the Java virtual

machine. Each instruction consists of a one-byte opcode followed by zero or more

operands. The opcode indicates the operation to be performed. Operands supply

extra information needed by the Java virtual machine to perform the operation

specified by the opcode. The opcode itself indicates whether or not it is followed by

operands, and the form the operands (if any) take. Many Java virtual machine

instructions take no operands, and therefore consist only of an opcode. Depending

upon the opcode, the virtual machine may refer to data stored in other areas in

addition to (or instead of) operands that trail the opcode. When it executes an

instruction, the virtual machine may use entries in the current constant pool, entries

in the current frame's local variables, or values sitting on the top of the current

frame's operand stack.

The JVM is a stack-oriented interpreter that creates a local stack frame of fixed

size for every method invocation. The size of the local stack has to be computed by

the compiler. Values may also be stored intermediately in a frame area containing

local variables which can be used like a set of registers. These local variables are

numbered from 0 to 65535, i.e. you have a maximum of 65536 of local variables.

The stack frames of caller and callee method are overlapping, i.e. the caller pushes

arguments onto the operand stack and the called method receives them in local

variables.

The byte code instruction set currently consists of 204 instructions, 44 opcodes

are marked as reserved and may be used for future extensions or intermediate

optimizations within the Virtual Machine. The instruction set can be roughly

grouped as follows:

� Stack operations: Constants can be pushed onto the stack either by loading

them from the constant pool with the ldc instruction or with special

“short-cut” instructions where the operand is encoded into the instructions,

e.g. iconst 0 or bipush (push byte value).

� Arithmetic operations: The instruction set of the Java Virtual Machine

 50

distinguishes its operand types using different instructions to operate on

values of specific type. Arithmetic operations starting with i , for example,

denote an integer operation and the instruction iadd adds two integers and

pushes the result back on the stack. The Java types boolean , byte ,

short , and char are handled as integers by the JVM.

� Control flow: There are branch instructions like goto and if icmpeq ,

which compares two integers for equality. There is also a jsr (jump

sub-routine) and ret pair of instructions that is used to implement the

finally clause of try-catch blocks. Exceptions may be thrown with

the athrow instruction. Branch targets are coded as offsets from the current

byte code position, i.e. with an integer number.

� Load and store operations for local variables like iload and istore .

There are also array operations like iastore which stores an integer value

into an array.

� Field access: The value of an instance field may be retrieved with

getfield and written with putfield . For static fields, there are

getstatic and putstatic counterparts.

� Method invocation: Methods may either be called via static references with

invokestatic or be bound virtually with the invokevirtual

instruction. Super class methods and private methods are invoked with

invokespecial .

� Object allocation: Class instances are allocated with the new instruction,

arrays of basic type like int[] with newarray , arrays of references like

String[][] with anewarray or multianewarray .

� Conversion and type checking: For stack operands of basic type there exist

casting operations like f2i which converts a float value into an integer. The

validity of a type cast may be checked with checkcast and the

instanceof operator can be directly mapped to the equally named

instruction.

 51

Most instructions have a fixed length, but there are also some variable-length

instructions: In particular, the lookupswitch and tableswitch instructions,

which are used to implement switch() statements. Since the number of case

clauses may vary, these instructions contain a variable number of statements.

αload x Push the value with type α of the register x onto the

operand stack

αstore x Pop a value with a type α off the stack and store it to local

register x.

αipush Push a constant onto the operand stack

αconst d Push constant d with type α onto the operand stack.

pop Pop top operand stack element

dup Duplicate top operand stack element

αop Pop two operands with type α off the operand stack,

perform the operation op ∊ {add, mult, compare .. }, and

push the result onto the stack.

ifcond j Pop a value off the operand stack, and evaluate it against

the condition cond ∊ { eq, ge, null, ... }; branch to j if the

value satisfies cond.

goto j Jump to j.

getfield C.f Pop a reference to an object of class C off the operand

stack; fetch the object’s field f and put it onto the operand

stack.

putfield C.f Pop a value k and a reference to an object of class C from

the operand stack; set field f of the object to k.

invoke C.mt Pop value k and a reference r to an object of class C from

the operand stack; invoke method C.mt of the referenced

object with actual parameter k

αreturn Pop the α value off the operand stack and return it from

the method.

new C Create an instance of class C and push a reference

to this instance on the stack

Figure 3-6. JVM Instructions set.

 52

Figure 3-6 summarizes the instruction set of the Java virtual machine. A specific

instruction, with type information, is built by replacing the α in the instruction

template in the opcode column by the letter in the type column. For instance, iload

represents loading an integer value, aload represents loading an object.

The abstract execution engine runs one instruction at a time during the execution

of Java bytecode. This process takes place for each thread (execution engine

instance) of the application running in the Java virtual machine. An execution

engine fetches an opcode and, if that opcode has operands, fetches the operands. It

executes the action requested by the opcode and its operands, and then fetches

another opcode. Execution of bytecodes continues until a thread completes either

by returning from its starting method or by not catching a thrown exception.

From time to time, the execution engine may encounter an instruction that

requests a native method invocation. On such occasions, the execution engine will

dutifully attempt to invoke that native method. When the native method returns (if

it completes normally, not by throwing an exception), the execution engine will

continue executing the next instruction in the bytecode stream.

One way to think of native methods, therefore, is as programmer-customized

extensions to the Java virtual machine's instruction set. If an instruction requests an

invocation of a native method, the execution engine invokes the native method.

Running the native method is how the Java virtual machine executes the instruction.

When the native method returns, the virtual machine moves on to the next

instruction. If the native method completes abruptly (by throwing an exception), the

virtual machine follows the same steps to handle the exception as it does when any

instruction throws an exception.

A part of the job of executing an instruction is determining the next instruction to

execute. An execution engine determines the next opcode to fetch in one of three

ways. For many instructions, the next opcode to be executed directly follows the

current opcode and its operands, if any, in the bytecode stream. For some

instructions, such as goto or return , the execution engine determines the next

opcode as part of its execution of the current instruction. If an instruction throws an

exception, the execution engine determines the next opcode to fetch by searching

 53

for an appropriate catch clause.

Several instructions can throw exceptions. The instruction athrow , for example,

throws an exception explicitly. This instruction is the compiled from of the throw

statement in Java programming source code. Other instructions throw exceptions

only when certain conditions are encountered. For example, if the Java virtual

machine discovers that the program is attempting to perform an integer divide by

zero, it will throw an ArithmeticException . This can occur while executing

any of four instructions--idiv , ldiv , irem , and lrem --which perform divisions

or calculate remainders on int or long .

Each type of opcode in the Java virtual machine's instruction set has a mnemonic.

In the typical assembly language style, streams of Java bytecodes can be

represented by their mnemonics followed by (optional) operand values.

Note that jump addresses are given as offsets from the beginning of the method.

In Figure 3-5, the instruction goto causes the virtual machine to jump to the

instruction at offset two (the instruction iinc). The actual operand in the stream is

minus seven. To execute this instruction, the virtual machine adds the operand to

the current contents of the pc register. The result is the address of the iinc

instruction at offset two. To make the mnemonics easier to read, the operands for

jump instructions are shown as if the addition has already taken place. Instead of

saying "goto -7," the mnemonics say, "goto 2."

The central focus of the Java virtual machine's instruction set is the operand stack.

Values are generally pushed onto the operand stack before they are used. Although

the Java virtual machine has no registers for storing arbitrary values, each method

has a set of local variables. The instruction set treats the local variables, in effect, as

a set of registers that are referred to by indexes. Nevertheless, other than the

instruction iinc , which increments a local variable directly, values stored in the

local variables must be moved to the operand stack before being used.

For example, to divide one local variable by another, the virtual machine must

push both onto the stack, perform the division, and then store the result back into

the local variables. To move the value of an array element or object field into a

 54

local variable, the virtual machine must first push the value onto the stack, then

store it into the local variable. To set an array element or object field to a value

stored in a local variable, the virtual machine must follow the reverse procedure.

First, it must push the value of the local variable onto the stack, then pop it off the

stack and into the array element or object field on the heap.

 55

4 Analysis of Information Flow in Bytecode

In this chapter, we will present the security model of protecting the host security

in mobile code systems which is based on the secure information flow theory. Then

we will analyze the information flow in Java bytecode and propose the mechanisms

of tracing implicit information in Java bytecode.

4.1 Security Model

Different from traditional programs, the mobile code programs may move from

host to host via network. In mobile code systems, the security approach should

protect the host from malicious or defective mobile code programs. Since the low

level security aspects like memory protection has been enforced well by the

security characteristics of Java virtual machine, the work left is to protect the data

integrity and confidentiality. In our research, we focus on the confidentiality.

Figure 4-1 shows the architecture of Java mobile code systems. When bytecode

programs migrate from one remote host to the local system via the network, they

are loaded to the local Java virtual machine. The JVM verifier checks whether the

program is well typed to provide low level security. In such mobile code systems,

the possible data-leaking process is shown in Figure 4-2 [77]. To detect such data

leaking caused by mobile programs, some traditional protection-mechanisms used

in operating systems could be utilized, such as Authentication, Access Control and

Secure Information Flow theory. Authentication is usually implemented just after

the mobile program arrives at the host (Step 1 in Figure 4-2). With some algorithm,

the host can infer the mobile program’s identity from the certain information

carried by the mobile program. Depending on the mobile program’s identity, the

host judges whether the mobile program is secure or not. The Access Control is

implemented when the mobile program tries to read some sensitive data from a host

file (Step 2 in Figure 4-2). According to the mobile program’s identity, the host

grants certain read rights to the mobile program. The mobile program cannot get the

data it is not authorized to access.

 56

Figure 4-1. Framework of Java mobile code system.

The approaches based on authentication and access control confine the program

from accessing the local system and network resources in order to ensure host’s

confidentiality. In other words, such approaches prevent data flowing from the local

system or network resources to the program. While actually many mobile programs

need the local information to perform their tasks. In those approaches, however, the

programs cannot fulfill their tasks because of the access control mechanism, which

makes it meaningless to download the mobile programs. And in fact it is not always

true that the mobile program that gets the sensitive information of the local host

will leak the information to some unauthorized parties. It is because the access

control mechanism cannot trace and control the following propagation of the

information that it denies the access to the sensitive information from unauthorized

mobile programs. If a program gets sensitive data by some channel, the access

control mechanism has no idea which party the information is transferred to, let

alone controls the information transferring.

Run time environment

Operating system

Network

bytecode

Local resources

host

 57

Internet

Mobile Program

Host

Host File

Step 1: A mobile p rogram arrives at a host

Step 2: The mobile program reads data from a host file

Host Data d

Container c1 Container c2

Container c4 Container c3

Container c6 Container c5

Step 3: Host data is transferred among data containers

Internet

A third party

Step 4: The mobile program tries to leak data to a third party

Figure 4-2. The process of data-leaking in mobile code systems.

 58

Obviously, a program-analytic semantics may be more reliable than such

informal endorsement like authentication and access control. The Secure

Information Flow theory in Denning [38, 39, and 40] is a kind of program-analytic

mechanism and has been adopted in many approaches for mobile code systems

security [11, 14, 15 and 16]. In order to make it as much as possible that mobile

code programs can complete their functions without impairing the host security, we

build the security model base on the secure information flow theory.

As mentioned in Chapter 2, in the secure information flow theory a security

system is composed of a set S of subjects and a disjoint set O of objects. Each

subject s∈S is associated with a fixed security class C(s), denoting it clearance.

Likewise, each object o∈O is associated with a fixed security class C(o), denoting

its classification level. The security classes are partially ordered by a relation ≤,

which forms a lattice. To avoid subjects with low clearance accessing sensitive data

and subjects with high clearance to release sensitive data to low-clearance subjects,

we need that a subject may only read objects with classification level no higher than

its clearance, but may only write to objects with classification level no lower than

its clearance. Information is always flowing unidirectionally from low classification

source to high classification destination.

In mobile code systems, the objects are same to those in traditional operation

systems, which are the system resources on the host we need to protect (we refer to

that host as the local-host). But the subjects in mobile code systems are different

from the ones in traditional operation systems. In traditional operating system the

subjects are the processes running on the local-host, while the subjects in mobile

code systems are all the other hosts trying to get information from the local-host

(we refer to them as observer-hosts). That difference makes that the approaches

used in traditional operating systems cannot be adopted in mobile code systems

without any ameliorating. The data-leaking in mobile code systems thus means that

an observer-host gets some information on the local host it is not authorized.

Therefore security classes denoting classification levels should be assigned to the

local-host’s files, and security classes denoting the clearance should be assigned to

observer-hosts. As for the mobile code, it is just the intermediate transferring

information between objects and subjects. It is not necessary to assign any security

class to the mobile code or its information carriers.

 59

Before the mobile program leaves the local-host or sends information out, the

information being transferred in the mobile code is not leaked yet. It is when the

mobile code tries to send information to observer-hosts that the data-leaking may be

caused. Whether a data-leaking arises is not decided by that the mobile code gets

some sensitive information but that it transfers the information to an unauthorized

observer-host. It is not necessary to set any restriction or do any checking when

information is being transferred in mobile code. What we need to do is only tracing

and recording the information flow in the mobile code. By this way when the

mobile code tries to send information to an observer-host, we could understand the

information’s classification level and check whether the observer-host has the right

to get the information.

The approaches in [11, 15, and 16] based on the secure information flow theory

neglect the difference of security demand between mobile code systems and

traditional operating systems. They treat the mobile code as the subject in the way

that the processes are treated in traditional operating systems. In [11 and 15] the

approaches assign security-levels (denoting the clearance) to information carriers

(objects, method’s parameters and return value, etc.) in the mobile code and the

host rejects any mobile program causing an illicit information flow which means

that information at a given security-level flows to lower levels. In [16] the authors

adopt a security policy that grants access to private data based on the program’s

need and check if data with high security-level can ever propagate to observers with

low security-level, that is, the approach makes the judgment at Step 3 in Figure 4-2.

These approaches are more precise than the ones that only use authentication and

access control. But they make two mistakes that they assign security-levels to the

mobile code and consequently they detect data-leaking when the information is still

being transferring in the mobile code. The two mistakes result in unnecessary

restrictions in verification procedure and reduce the verification precision.

Considering two data containers H with a higher security-level and L with a lower

security-level, such statement

H := L;

L := H

will not do any harm to the host confidentiality. However the statement will be

considered to cause an illicit information flow by the approaches in [11, 15, and 16].

The mobile programs that pass the verification of those approaches are only a part

 60

of all the mobile programs that will not do any harm to the local host security.

Based on the analysis above, we give the definition of basic conceptions and the

security model as follows.

Security-level. In our approach, we refer to the security class denoting

classification as security-level. The security-level indicates the host system

resources’ sensitivity. The higher the security-level is, the more sensitive the

resource file is. All the information gotten from a resource has the same

security-level as the resources. The system resources that should be protected

include:

� file system

� network

� output devices (entire display, various windows, speaker ...)

� input devices (keyboard, microphone, ...)

Clearance-level. In our approach, we refer to the security class denoting

clearance as clearance-level. The clearance-level indicates the trust level of an

observer-host to receive the information on the local-host. The higher the

clearance-level is, the more trustful the observer-host is. At present, the

clearance-level is assigned to an observer-host according to its network address in

our approach.

Distribution Map of Security-level. During the execution of the mobile

program, the mobile program reads data from files of the local-host and transfers

the data among its data containers. We maintain a distribution map to represent the

security-levels of the local-host information in the mobile program’s containers.

When the execution starts, all elements in the distribution map have no value since

there is no local-host information held by any container of the mobile code program.

Each time the data in a container of the mobile code program changes, the

corresponding element in the distribution map updates its value to the security-level

of the new data.

Data-leaking. In our approach the data-leaking is defined as that the mobile code

sends the sensitive information of the local-host to an unauthorized observer-host,

 61

that is, the security-level of the information is higher than the clearance-level of the

observer-host.

Data-leaking Channel. We define the way by which the mobile code may cause

data-leaking directly or indirectly as a data-leaking channel. The action of detecting

data-leaking should be done at every data leaking channel in the mobile code. In

mobile code systems, data-leaking channels have three types: 1) the mobile code

requests a network link and 2) the mobile code moves to next destination We

should compare the security-level of the information to be sent with the

clearance-level of the observer-host to receive the information.

Definition 1. Let DLC be a data-leaking channel in one mobile code. Let I be

the information to be sent at the DLC and D be the information destination (the

observer-host or the file on the local-host) at the DLC. Denoting by LI the

security-level of I and by LD the clearance-level or security-level of D, a DLC is

secure if and only if the following property holds:

LI ≤ LD .

Definition 2. Let MC is a mobile code. MC is secure if and only if each DLC in

the MC is secure.

In summary, we assign security-levels to system resources of the local-host and

clearance-levels to observer-hosts at first. Then during the local-host information is

being transferred in the mobile code (Step 3 in Figure 4-2), we set no restriction to

the information flow in the mobile code and just record the information flow it in

the distribution map of security-level. When the mobile code tries to send

information out (to an observer-host at Step 4 in Figure 4-2 or write to local-host

files), we say that the execution encounters data-leaking channel and we check if a

data-leaking is caused according to the record stored in the distribution map of

security-level.

Our security model can be implemented by static approaches (as we have done in

[78 and 77]) or dynamic approaches. In both kinds of approaches, to maintain a

distribution map of security-level for recording the information flow is the core of

the implementation. In the following section, we introduce the semantics rules used

 62

to update the distribution map of security-level according to the information flow.

4.2 Semantics Rules

In our security model, the key to verify the mobile code precisely is maintaining

a correct distribution map of security-level during the execution of the mobile code,

that is, tracing and recording the information flow in the mobile code correctly. In

this section we will give the semantics rules that indicate the relationship between

Java bytecode instructions and the change of the distribution map of security-level.

The JVM is a stack machine manipulating an operand stack and a set of local

registers for each method and a heap containing object instances [75]. So the data

container in bytecode could be the element of operand stack, the local register or

the field of an object instance on the heap. We denote by S the aggregation of all

security-levels of the data in operand stack. Similarly we denote by R the

aggregation for registers and by F the aggregation for objects’ fields. In this way

the distribution map of security-levels could be represented by a tuple (S, R, F).

We denote S by the alphabet “S” followed by a sequence of numbers separated

by the marker “·”. The first number after “S” represents the security-level of the

data in the top element on the stack, and the last one represents the security-level of

the data in the bottom element on the stack. Given an index j, we denote by R(j) the

security-level of the data in the local register with the index j (j should be less than

the maximal number of registers). Given an object reference oref and a constant

pool index cpi, we denote by F(oref.cpi) the security-level of the data held in the

object’s field resolved from the object reference oref plus the constant pool index

cpi (the item at index cpi should be CONSTANT_Fieldref indicating the field).

For a container of operand stack or a local register, if the data in the container is

type long or double, i or j is the index of the first one of the two successive words

used to store the data.

Furthermore we denote by R(j ← l) the operation on R that updates the element’s

value at index j in R to l while keeps all other elements in R unchanged. Similarly

we define F(oref.cpi ← l) for F, too.

 63

The change on the distribution map of security-levels results from the

information flow among data containers of the mobile code, which could be divided

into explicit flow and implicit flow as mentioned in Chapter 2. Even the same

instructions will cause different change on the distribution map of security-level in

explicit information flow and implicit information flow. Therefore we define the

semantics rules for the explicit information flow and the implicit information flow

respectively.

� Semantics Rules for Explicit Information Flow

The explicit information flow is quite simple and easy to trace. In one explicit

information flow, the information in the used data is transferred to the defined data.

Thus the security-level of the defined data should be assigned the security-level of

the used data or, if the used data are more than one, the LUB of the security-levels

of all the used data.

We list a subset of JVM bytecode instructions causing explicit information flow

in Figure 4-3. Such instructions can cause explicit information flow among the

registers, operand stack and class fields.

For example, consider the instruction iload 4 which pushes the data in the

local register R4 at the index 4 to the top element S0 of the operand stack. By

executing the instruction, the data in S0 gets the information of the data in R4. We

say that an explicit information flow is caused between the operand stack element

S0 and the local register R4, and the security-level of the data in S0 has the same

value with security-level of the data in R4. Consequently the element in the

distribution map of security-level representing the security-level of the data in S0

should be updated to the new value.

pop Pop the top operand stack element.

αop Pop two operands with type α off the operand stack,

perform the operation op ∊ { add, cmpg, cmpl, div, mul,

rem, sub}, and push the result onto the stack.

αconst_c Push constant c with type α onto the operand stack.

 64

αload x Push the value with type α at the index x onto the operand

stack

αstor e x Pop a value with type α off the operand stack and store it

into local variable at index x.

getfield x1, x2 Pop a reference to an object off the operand stack; fetch the

value of the object’s field resolved from the reference plus

the constant pool item at (x1<<8)| x2 and put it onto the

operand stack.

putfield x1, x2 Pop a value and a reference to an object from the operand

stack; store the value into the object’s field resolved from

the reference plus the constant pool item at (x1<<8)| x2.

Figure 4-3. A subset of JVM instructions causing the explicit information flow.

Figure 4-4. Semantics rules for instructions in explicit information flow.

pop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(2)·S(1)·S, R, F)

αop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(2)· (S(1)∨S(0))·S, R, F)

(α∊{ d, f, i, l}, op∊{ add, div, mul, rem, sub})

αconst_c (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(0)· 0·S, R, F) (α∊{ d, f, i, l})

αload x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(0)· R(x)·S, R, F) (α∊{ a, d, f, i, l})

αstore x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(1)· S, R(x ← S(0)), F) (α∊{ a, d, f, i, l})

getfield x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(0)·F(oref.cpi)·S, R, F)

(oref is the reference to an object held by the top element on

stack; cpi = (x1<<8)| x2)

putfield x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(3)·S(2)·S, R, F(oref.cpi ←S(0)))

(oref is the reference to an object held by the second top

element on stack; cpi = (x1<<8)| x2)

 65

Denoting by ∨ the least upper bound (LUB) operation and considering the

security-level of a constant is 0 (the lowest security-level), we define the semantics

rules for Java bytecode instructions in an explicit information flow in Figure 4-4.

� Semantics Rules for Implicit Information Flow

The implicit information flow is much more complex than the explicit ones. We

denote the data used as the condition of the implicit information flow by

conditional data. In one implicit information flow, beside the information in the

used data the defined data will also get the information in the conditional data of

the implicit information flow. Therefore the security-level of the defined data

should be assigned as the LUB of the security-levels of the used data and the

conditional data of the implicit information flow.

We list a subset of the Java bytecode instructions that may cause implicit

information flow in Figure 4-5. In Java bytecode, the family of if-instructions (e.g.

if_acmp<cond> , if<cond> and ifnull) and the instructions of the switch

statement (tableswith and lookupswitch) will generate conditional control

transfer and thus cause implicit information flow. (The exception handling in Java

bytecode may cause implicit information flow, too. We will discuss it later in

Chapter 6.) The implicit information flow usually has two or more execution

branches, some of which may be blank, that is, there is no instructions on the

branch except instructions at the fork and join points. All the data that may be

changed in the scope of the any branch will get the information of the conditional

data of the implicit information flow additionally.

if_acmp <cond> j Pop 2 values of type ref off the operand stack and

compare them. Branch to offset j if the result of the

comparison satisfies the condition <cond> ∊ {eq, ne}.

if_icmp <cond> j Pop 2 values of type int off the operand stack and

compare them. Branch to offset j if the result of the

comparison satisfies the condition <cond> ∊ {eq, ne ,

lt , le , gt , ge}.

if<cond> j Pop a value off the top of the operand stack, and

compare it against zero. Branch to offset j if the result

 66

of the comparison satisfies the condition <cond> ∊

{eq, ne , lt , le , gt , ge}.

ifnonull j Pop a value of type ref off the top of the operand

stack. If the value is not null, branch to offset j.

ifnull j Pop a value of type ref off the top of the operand

stack. If the value is null, branch to offset j.

lookupswitch Pop a value key of type int from the operand stack and

compare key against the match values. If it is equal to

one of them, a target address is calculated by adding the

corresponding offset to the address of this

lookupswitch . If the key does not match any of the

match values, the target address is calculated by adding

default to the address of this lookupswitch .

Execution continues at the target address.

Figure 4-5. A subset of JVM instructions causing the implicit information flow.

For example, consider the following section of Java bytecode.

0:iload_1

1:iload_2

2:if_icmple 9

5:iload_4

7:istore_3

8:goto 12

11:iload_5

13:istore_3

14: … …

The section of Java bytecode compares the value of data in local register at index 1

and 2, and then stores the greater one into the local register at index 3. The instruction

if_icmple 9 at address 2 causes a conditional control transfer according to the

result of comparing the data in local register at index 1 and 2, and thus it causes

implicit information flow whose conditional data are the data in local register at index

1 and 2. In the branches of that implicit information flow, the data in the local register

at index 3 may be changed and it gets information of the used data (the data in local

register at index 4 or 5 depending on which branch is executed) and information of

 67

the conditional data (the data in local register at index 1 and 2). Therefore the

security-level of the data in the local register at index 3 should be assigned to the

LUB of the security-levels of the data in the local register at index 1, 2, 4 and 5. Here

we define the environment security-level of one implicit information flow as the

security-level of the conditional data or, if there are more than one conditional data,

the LUB of the security-levels of all conditional data of the implicit information flow.

Thus the security-level of the data changed in one implicit information flow should be

assigned to the LUB of the conditional security-level of the implicit information flow

and the security-level(s) of its used data.

Denoting by Lenv the conditional security-level of implicit information flow, we

could rewrite the rules in Figure 4-4 to define semantics rules for Java bytecode

instructions in the implicit information flow as shown in Figure 4-6.

pop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(2)·S(1)·S, R, F)

αop (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(2)· (S(1)∨S(0)∨Lenv)·S, R, F)

(α∊{ d, f, i, l}, op∊{ add, div, mul, rem, sub})

αconst_c (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(0)· Lenv·S, R, F) (α∊{ d, f, i, l})

αload x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(0)·(R(x) ∨ Lenv)·S, R, F) (α∊{ a, d, f, i, l})

αstore x (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(1)·S, R(x ←(S(0) ∨ Lenv)), F) (α∊{ a, d, f, i, l})

getfield x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(0)·(F(oref.cpi) ∨ Lenv)·S, R, F)

(oref is the reference to an object held by the top element on

stack; cpi = (x1<<8)| x2)

putfield x1, x2 (S(n)·S(n-1)·…S(1)·S(0)·S, R, F) →

(S(n)·S(n-1)·…S(3)·S(2)·S, R, F(oref.cpi ← (S(0) ∨ Lenv))

(oref is the reference to an object held by the second top

element on stack; cpi = (x1<<8)| x2)

Figure 4-6. Semantics rules for instructions in implicit information flow.

 68

4.3 Implicit Information Flow Analysis

As we have analyzed above, the same Java bytecode instructions will cause

different change on the distribution map of security-levels in explicit information

flow and implicit information flow. Thus we need to divide the Java mobile code

into explicit information transferring block and implicit information transferring

block in order to update the distribution map of security-levels correctly and verify

the mobile code precisely. Though the explicit information flow is quite simple, the

scope of an explicit information transferring block cannot be located directly

because only the instruction that is not in any implicit information transferring

block may cause explicit information flow. In other words, locating the scopes of

implicit information transferring blocks in Java mobile code is the precondition of

locating the scopes of explicit ones. As soon as we get the location of implicit

blocks, the problem of locating explicit blocks becomes quite simple. The scope of

an explicit information transferring block is the instruction causing the explicit

information flow, which is not in any implicit information transferring block. (In

some meanings, we can consider the explicit information flow as one kind of

special implicit information flow whose conditional security-level is the lowest

one.) Thus we will analyze the implicit information flow in Java bytecode and give

the algorithms to locate the scopes of the implicit information transferring blocks.

As mentioned above, the implicit information flow could be cause by the family of

if-instructions (e.g. if_acmp<cond> , if<cond> and ifnull) and the

instructions of the switch statement (tableswith and lookupswitch) in Java

bytecode. In the following we discuss those two cases respectively.

4.3.1 Implicit Information Flow Caused by if-instructions

The if-instructions in Java bytecode could be compiled from loop constructs (for,

while and do-while) or if-else constructs in Java programming language. The if-else

constructs in Java programming language is complied into bytecode straightly. Java

if-else constructs could be complied into the bytecode formats shown in Figure 4-7

and Figure 4-8. The formats may have one or two non-blank branches, which

depends on whether the construct has an else clause or not. While the case of

compiling a loop construct is a little complex. A Java language conditional loop

could be complied into two bytecode formats: the if-instruction is at the bottom of

 69

the loop or at the top of the loop as shown in Figure 4-9. In both formats of the

bytecode, the conditional loop has only one non-blank branch composed by the

instructions of the loop construct.

0:iload_1

1:iload_2

2:if_icmple 8

5:iload_1

6:istore_ 3

7:goto 12

10:iload_2

11:istore_3

12:return

public void test

(int a, int b)

{

if (a > b)

int c = a;

else

int c = b;

}

0

1

2

5

6

7

10

11

12

Figure 4-7. The bytecode and CFG of if-else construct with else clause.

0:iload_1

1:iload_2

2:if_icmple 6

5:iload_1

6:istore_3

8: return

public void test

(int a, int b)

{

if (a > b)

int c = a;

}

0

1

2

5

6

8
Figure 4-8. The bytecode and CFG of if-else construct without else clause.

 70

Figure 4-9. The bytecode and CFG of the conditional loop construct.

Since Java programming language has no goto clause, the loop is the only

construct that could be compiled into the bytecode format including one instruction

(either an if-instruction or an instruction goto) that transfers the control flow

backward to some instruction before it. If an if-else construct has two non-blank

branches, an instruction goto will be used to separate the two branches in the

corresponding bytecode. Furthermore if there is a return clause at the first

non-blank branch’s end of the Java program, the instruction goto will be replaced

by an instruction αreturn or return in the bytecode, which is just like an

instruction goto jumping to the method’s end. Based on these facts, we give the

algorithm to locate the non-blank branch’s scope in the if-instruction construct in

Figure 4-10.

 71

Figure 4-10. The algorithm to locate the branch’s scope of if-instructions.

4.3.2 Implicit Information Flow Caused by switch Statement

Java programming language’s the switch structure is another kind of instructions

that may cause conditional control transfer. They are compiled using

tableswitch and lookupswitch instructions. Each case block of a normal

Java language switch statement should be ended with a break clause and the default

block (if there is one) should be the last block of the switch statement. However,

this ideal format is optional and a disordered Java switch statement as shown in

Figure 4-11 could also be compiled correctly. So we could not use the target

addresses to locate the scopes of branches in a switch statement directly.

Given an if-instruction, i: if<op><cond> j, the i_max is the address of the last

instruction in the method, the n is the number of the branches and the Si is the

scope of the branch bi.

If j < 0 then

n = 1 and S1 = [i+ j, i) //the if-instruction forms a loop

else

If the instruction just before i+ j is i’ : goto j’ then

If j’ < 0 then

n = 1 and S1 = (i, i’) //the if-instruction forms a loop

else

n = 2 and S1 = (i, i’), S2 = [i+ j, i’ +j’)

 end if

else

If the instruction just before i+ j is i’ : αreturn or return then

n = 2 and S1 = (i, i’), S2 = [i+ j, i_max)

else

n = 1 and S1 = (i, i+ j)

end if

end if

end

 72

public void test (int a, int b)

{

switch (a)

{

case 0:

b = 0;

break;

default:

b = 5;

case 2:

b = 2;

break;

case 3:

b = 3;

}

}

0: iload_1

1: tableswitch{ //0 to 3

0: 31;

1: 36;

2: 38;

3: 43;

default: 36 }

32: iconst_0

33: istore_2

34: goto 12

37: iconst_5

38: istore_2

39: iconst_2

40: istore_2

41 :goto 5

44 :iconst_3

45 :istore_2

46 :return

a. A Java language switch statement b. The JVM bytecode

32

33

34

37

38

39

39

40

40

44

45

41

41

0

1

46

32

33

34

37

38

39

40

44

45

41

0

1

46

c. The original CFG d. The simplified CFG

Figure 4-11. The bytecode and CFG of the Java language switch statement.

 73

Figure 4-12. The algorithm to locate the branch’s scope in switch statement.

When the control flow gets to the default block in Figure 4-11, the block of case

2 will also be executed since there is no break clause at the end of the default block.

Thus the branch from default block (1→37→38→39→40→41→ 46) includes the

block of case 2. The branch from the block of case 2 (1→39→40→41→46) could

be omitted because it is a part of another branch. In this way the CFG could be

Given an instruction tableswitch or lookupswitch at the address i, form

the target offsets into an array T[m] in ascending order. The i_max is the address

of the last instruction in the method, the n is the number of the branches and the

Sn is the scope of the branch bn.

n = 0, ret_exist = false, begin_address = T[0] + i and end_address = 0

For each pair of elements T[a] and T[a+1] in array T (0<= a < m - 1), in forward

order loop

If the instruction just before T[a+1] + i is i’ : αreturn or return then

n = n +1, Sn = [begin_address, i’),

ret_exist = true, begin_address = T[a+1] + i, end_address = i_max

else

If the instruction just before T[a+1] + i is i’ : goto j then

If ret_exist is true then

n = n +1, Sn = [begin_address, i’) ∪ [i’ + j, end_address)

else

n = n + 1, Sn = [begin_address, i’), end_address = j

begin_address = T[a+1] + i

end if

end if

end if

end loop

If T[m] + i< end_address then

n = n +1, Sn = [T[m] + i, end_address)

end if

If n =0 then

n= 1, S1 = [T[0] + i, T[m - 1] + i)

end if

 74

simplified as shown in Figure 4-11. The break clause in the switch statement can be

replaced by a return clause. Based on the simplified CFG we could draw a

conclusion that the break clause (compiled into the instruction goto j) and the

return clause (compiled into the instruction αreturn or return) are the

boundary between two branches in switch statement. Thus we give the algorithm to

locate the non-blank branch’s scope in the switch statement in Figure 4-12.

4.3.3 Nested Implicit Information Transferring Blocks

In Java programming language the if-else construct and switch statements could

be nested, that is, one if-else construct is in the branch of another if-else construct or

switch statements, and vice versa. Therefore the implicit information transferring

blocks in Java bytecode could also be nested. Since the scope of each branch in one

implicit information transferring block can be calculated by our algorithms shown

in Figure 4-10 and Figure 4-12, the nested implicit transferring blocks can also be

resolved. The algorithm calculating inner implicit transferring is given in Figure

4-13. With those algorithms, we can divide a section of Java mobile code into

explicit transferring blocks and implicit transferring blocks and then apply the

proper semantics rules for the instruction in those blocks.

Figure 4-13. The algorithm to locate the branch’s scope of inner implicit blocks.

Given an branch bo with the scope S[s,e]of the outer implicit transferring block,

bi is one branch of the inner implicit transferring block in bo.

Use the proper algorithm in Figure 4-11 or Figure 4-12 to calculate the coarse

scope of bi, S’i[i, j]

If s > i then

i = s

endif

If e < j then

j = e

endif

The real scope of bi is S[i, j].

 75

5 Method of Bytecode Modification

5.1 Overview

5.1.1 Motivation of Dynamic Verification

The verification of mobile code can be done statically or dynamically. By now

the works on mobile code verification for the host security are almost static

verification approaches [11, 14, 15, 16, 18, 19, 77 and 78]. The static approach

verifies the mobile code from remote hosts before the local JVM executes the code

as shown in Figure 5-1. The advantage of the static approaches is that they will not

cause additional runtime overhead and will not slow down the execution. But the

static approaches have an inherent limitation that it could not get any runtime

information of the mobile code execution. This limitation affects the verification

precision badly and may make the static approach to lose its practicality. For

example, it is impossible for a static approach to get to know which branch of a

conditional structure will be executed, where an exception will happen, whether the

invoking of a method returns normally or exceptionally, and so on. Therefore the

static approach has to verify all the branches of a conditional structure in order to

find all potential violation of the security policy, which means that a mobile

program may be rejected by the local host for an instruction that will not be

executed actually in runtime. As for the exception handling in the mobile code, the

static approach has no idea to deal with the information flow in exception handling

precisely. What the static approach could do is only to find out all the instructions

that may raise exceptions potentially and verify all the instructions possibly

executed in runtime. Therefore the same misjudgment occurring in the verification

of conditional structure may arise here, too. Obviously, such misjudgment impairs

the verification precision and diverges from our research objective.

To get better verification precision, we implement our security model by

dynamic approach, which means that the verification is done during the execution

 76

of the mobile code. Compared with the static ones, the dynamic approaches have

the merit that they can get enough execution information to trace the information

flow correctly and to further verify the mobile code more precisely. For example

when the execution encounters a conditional instruction, the dynamic approach can

get to know which branch will be executed. Thus the approach just verifies

instructions to be executed, and eliminates the possibility of verifying the mobile

code as malicious for some instructions that will not be executed. Similarly, the

dynamic approach can master the change of control flow caused by exception

throwing and trace the information flow in exception handling. And all those are

too difficult for static approaches to achieve. That merit of dynamic approaches that

makes they can get better verification precision than static ones, which is consistent

with our objective. While the cost of better verification precision is the additional

runtime overhead caused by the verification work done in execution, the

development of hardware techniques provides more and more fast calculating speed.

We may also need to reduce the additional overhead in runtime caused by the

dynamic verification.

Figure 5-1. Static verification approaches.

Figure 5-2. Dynamic verification approaches.

Verification is done here Execution is done here

JVM

Mobile Code

Mobile Code
Ready for

Verification

Verification and execution
are done here.

ac ba f 2
a 2 3 b 04

… .

ac ba
a 2 3 b

Preparation Tool

 77

5.1.2 Bytecode Modification Technique

Java bytecode modification presents the opportunity to change the execution

semantics of java programs. A wide range of possible applications have been

discussed, ranging from the addition of performance counters, to the support of

orthogonal persistence, agent migration, and new security semantics. Here we list

some related projects.

Access Control. By intercepting or wrapping calls to potentially dangerous Java

methods, systems by Pandey and Hashiiip [96], Erlingsson and Schneider [45], and

Chander et al. [26] can apply desired security policies to arbitrary codelets without

requiring these policies to be built directly into the Java system code, as done with

Java’s built-in security system.

Resource Management and Accounting. J-kernel [59] and J-SEAL2 [20] both

focus primarily on isolation of codelets. Bytecode modification is used to prevent

codelets from interferring in operations of each other. JRes [35] focuses more on

resource accounting; bytecode modification is used to instrument memory

allocation and object finalization sites.

Optimization. Cream [32] and BLOAT (Bytecode-Level Optimization and

Analysis Tool) [91] are examples of systems, which employ Java bytecode

modification for the purpose of optimization. Cream uses side-effect analysis, and

performs a number of standard optimizations, including dead code elimination and

loop-invariant code motion. BLOAT uses Static Single Assignment form (SSA) [34]

to implement these and several other optimizations.

Profiling. BIT (Bytecode Instrumenting Tool) [71] is a system which allows the

user to build Java instrumenting tools. The instrumentation itself is done via

bytecode modification. Other generic bytecode transformation frameworks, such as

JOIE [33] and Soot [116], also have hooks to instrument Java code for profiling.

Other Semantics. Sakamoto et al. [105] describe a system for thread migration

implemented using bytecode modification. Marquez et al. [81] describe a persistent

system implemented in Java entirely using bytecode transformations at class load

time. Notably, Marquez et al. also describe a framework for automatically applying

 78

bytecode transformations, although the status of this framework is unclear. Kava

[126] is reflective extension to Java. That is, it allows for run-time modification and

dynamic execution of Java classes and methods.

All of those systems could also be implemented with customized JVMs (and

many such customized JVMs have been built.) Of course, fully custom JVMs can

outperform JVMs with semantics “bolted on” via bytecode modification because

changes can be made to layers of the system that are not exposed to the bytecode,

such as how methods are dispatched, or how memory is laid out.

But the price of building custom JVMs is the loss of the portability that is one of

the most important advantages of Java. While the strongest argument in favor of

bytecode modification is its portability: changes made exclusively at the bytecode

level can be moved with little effort from on Java virtual machine to another, so

long as the modified bytecode still complies to the JVM specification [75]. To

preserve Java’s promise “Write Once, Run Anywhere”, we adopt the bytecode

modification technique rather than the custom JVMs to implement our dynamic

verification. An additional benefit is that code added by bytecode modification can

still be optimized by the underlying JVM.

And Java has two properties that assist the bytecode modification. Transportable

Java code arrives from the network as class files: these class files retain a great deal

of symbolic information, allowing the receiver to determine the structure of the

class and to modify it on-the-fly. Methods are represented as JVM bytecode: since

JVM bytecode are stack instructions, it is relatively easy to splice new code into

existing methods. To modify the Java bytecode, we need reflection functionality to

get the structure of a class file, such as the symbolic information, fields, methods,

interfaces and attributes. The runtime reflection functionality is added into the 1.1

release of the Java Developer’s Kit (JDK). However the Java reflection API is

available only after the class has been loaded into the JVM, which is too late for us

to do any modification. And the reflection was not designed to extend functionality,

and so it does not make available the implementation of class methods. Method

implementations are accessible through the javap disassembler included in the

standard Java Developer’s Kit, but javap runs from the shell and prints to its

standard output; it is not integrated into the Java reflection API, nor does it produce

 79

a data structure that can be manipulated by the program. Thus we need more

powerful reflection toolkit for our bytecode modification. The reflection

functionality of Java bytecode had been studied in [124], and some toolkits such as

JOIE and BCEL [21] are available for our modification.

5.1.3 Load-time Modification

There are a number of stages in the program lifecycle during which a program

author or user can specify the functionality of a class or set of classes. Some

examples of tools used at different stages are detailed in Table 5-1. Originally the

base functionality is declared by the class author in the source code, and that source

code is translated into an executable image by a compiler.

Stage Example Use Example Tool

Pre-processor macros or conditional compilation cpp

Compiler translation from source to classfile javac

Post-processor Instrumentation ATOM, BIT

Component

Integration Setting text, color Bean Builder

Load-time User-supplied modification, templates ClassLoader, KOIE

Just-In-Time

compilation Compilation to native code JIT

Table 5-1. Stages in the program development life cycle.

Authors or users can employ post-processors such as instrumentation tools to

insert new method calls into an existing executable image. A popular example of

that is the tool ATOM [114], which works on executable images for Alpha

processor; similar functionality is available for Java with BIT [70]. Most often, this

instrumentation is used for performance analysis or as an interface to platform

simulation. An important guarantee typically made by instrumentation tools is that

the semantics of the original program are not changed. However Shasta [109]

processes executable images to run on distributed shared memory systems. Object

Design Incorporateds’s Object Store PSE [92] also uses a post-processor, to insert

 80

persistence methods into existing code. Rational Software Corporation’s tool Purify

[99] changes code to detect memory leaks.

Multiple third-party components (classes or more often collections of interacting

classes) are integrated during application composition. In Java, these components

are known as Beans and are often handled in visual builders. This composition

allows consumers of code – either end-users or programmers using components in

their own application – to modify certain properties of the component. However,

users can only modify those properties foreseen by the original author. They cannot

independently add features except through the basic object-oriented techniques of

inheritance.

After application composition, the classes are eventually loaded into the

environment. During execution, the bytecode can be translated into native local

platform instructions by Just-In-Time compiler (JIT). JITs only re-implement the

bytecode in a different language. They do not add new functionality (although JITs

may transform the code for optimization, for example unrolling loops or recording

instructions.)

The JVM loads Java classes from disks or elsewhere through class loaders,

invoked as part of Java’s dynamic linking mechanism. The process of loading a

class through a class loader is shown in Figure 5-3. When an already loaded class

(the class Vehicle) uses an undefined class (the class Car), either by accessing a

static member or creating an instance of the class, the JVM traps the undefined

reference and send a request for the class loader to load the class. The class loader

fetches the class file (Car.class) from the files system. Then the input class is loaded

into the JVM and the execution continues.

In the program development life cycle, we choose the Load-time to apply the

bytecode modification. The architecture of JVM, in which classes are loaded on

demand by a user-extensible class loader, offers a complementary alternative to the

previous steps: load-time modification meaning that the class loader is responsible

not only for locating the class, but for modifying the bytecode in ways specified by

the user. Therefore in the process of loading class files, after the class loader fetches

the class file it implements the modification of the bytecode and then sends the

 81

modified class file to the JVM.

public class Vehicle {
 Car a;
}

ClassLoader {
 . . .
}

Car.class

JVM

ByteCode Modifier {
 . . .
}

public class Car {
 . . .
}

(1)Executing class Vehicle

(6) Class is loaded
(4a) Bytecode Modifier
rewrites Car.class

(5) Class loader
loads Car.class
into JVM

(3) Calls
class loader

(2) Undefined
reference to Car

(4) Fetches
Car.class
from file
system

Figure 5-3. The process of loading class files through the class loader.

Load-time modification is precisely late enough that the modification cannot

burden other users, and yet early enough that the JVM is unaware that any

modification has taken place, and the modified class is still verified by the JVM

before it is accepted. A modification registered with a class loader can be applied to

all classes that are eventually loaded into the JVM.

5.1.4 Modification Contents

As mentioned in Chapter 4, to use our approach to verify a mobile code program,

we should maintain a distributed map of security-level during the execution in order

the trace and record the information flow. And then at each data-leaking channel,

we compare the security-levels and clearance-level to check whether a data-leaking

arises according to the security-level distribution map.

In order to achieve the dynamic verification of mobile code programs, we chose

the technique of bytecode modification to implement our approach. At first to

 82

construct a distribution map of security-level, we need to allocate additional

containers to store the security-level of the data held by the mobile code’s

information carriers, which are called security-level containers. Then to maintain

the distribution map of security-level during the execution of the bytecode, we need

to insert additional instructions to calculate the change of the security-levels caused

by information transferring, both the transferring among carriers in one method and

the transferring between methods in order to update the distribution map of

security-levels. At last to check whether any data-leaking rises, we need to insert

instructions of comparing the security-levels and clearance-levels to each

data-leaking channel. All those work can be achieved by modifying the parameters,

methods and classes’ declaration in the mobile code program. In general, the

bytecode modification in our approach can be divided into two main parts, class

redefinition and instruction insertion. The former includes adding additional data

containers, modifying the parameters and return type of methods, while the latter

includes inserting proper instructions to calculate security-levels and check

data-leaking.

5.2 Class Redefinition

We have discussed the structure of the class file and the information flow in Java

bytecode in Chapter 3 and Chapter 4. The information transferring in the Java

bytecode may be among the information carriers in one method, or between the

caller and callee methods. Thus we discuss the class redefinition necessary for the

two kinds of information transferring respectively.

To explain the modification more clearly, we give an example class here. The

Java program in Figure 5-4 defines a class named as Circle. The Java bytecode and

the class file structure of the class Circle are shown in Figure 5-5 and Figure 5-6.

In the class file of the class Circle, the section Header includes the magic

number and the version information. The section Constant Pool represents

various string constants, class and interface names, field names, and other constants,

such as the initialization method’s name, the field radius’s type and the constant

3.14 defined in the class Circle. The section of Access Right gives the value

used to denote access permissions to and properties of the class Circle. The section

 83

Fields gives a complete description of the fields center_x, center_y and radius,

which are defined directly in the class Circle. The section Methods gives a

complete description of all methods declared by the class Circle, including instance

methods area and the instance initialization methods Circle. At last the section

Class Attributes defines some attributes of the class Circle such as

SourceFile attribute and the Deprecated attribute.

The following discussion of class redefinition will take the class Circle as an

example.

Figure 5-4. The Java program of the class Circle.

public class Circle{

 private float center_x;
 private float center_y;
 private float radius;
 final float pi = 3.14;

 Circle(float x, float y, float r){
 center_x = x;
 center_y = y;
 radius = r;
 }

 float area(){
 return pi*radius*radius;
 }

 boolean isInCircle(float x, float y){
 boolean result = false;
 float dis = (x – center_x)* (x – center_x)

+ (y – center_y)* (y – center_y);
 if (dis <= radius*radius){

result = true;
 }
 return result;
 }
}

 84

Compiled from "Circle.java"
public class Circle extends java.lang.Object{
final float pi;

Circle(float, float, float);
 Code:
 0: aload_0
 1: invokespecial #1; //Method java/lang/Object."<init>":()V
 4: aload_0
 5: ldc #2; //float 3.14f
 7: putfield #3; //Field pi:F
 10: aload_0
 11: fload_1
 12: putfield #4; //Field center_x:F
 15: aload_0
 16: fload_2
 17: putfield #5; //Field center_y:F
 20: aload_0
 21: fload_3
 22: putfield #6; //Field radius:F
 25: return

float area();
 Code:
 0: ldc #2; //float 3.14f
 2: aload_0
 3: getfield #6; //Field radius:F
 6: fmul
 7: aload_0
 8: getfield #6; //Field radius:F
 11: fmul
 12: freturn

boolean isInCircle(float, float);
 Code:
 0: iconst_0
 1: istore_3
 2: fload_1
 3: aload_0
 4: getfield #4; //Field center_x:F
 7: fsub
 8: fload_1
 9: aload_0
 10: getfield #4; //Field center_x:F

 85

Figure 5-5. The Java bytecode of the class Circle.

13: fsub
 14: fmul
 15: fload_2
 16: aload_0
 17: getfield #5; //Field center_y:F
 20: fsub
 21: fload_2
 22: aload_0
 23: getfield #5; //Field center_y:F
 26: fsub
 27: fmul
 28: fadd
 29: fstore 4
 31: fload 4
 33: aload_0
 34: getfield #6; //Field radius:F
 37: aload_0
 38: getfield #6; //Field radius:F
 41: fmul
 42: fcmpg
 43: ifgt 48
 46: iconst_1
 47: istore_3
 48: iload_3
 49: ireturn

}

 86

Header

Constant Pool

Access Right

Implementeed Interface

Fields

Methods

Class attributes

0: ldc 3.14f
2: aload_0
3: getfield radius:F
6: fmul

ConstantMethodRef
"init"
"()V"
"java.lang.Object"

ConstantFieldRef
ACC_PRIVATE
"radius"
"F"
""

ConstantFloat
"3.14"

Figure 5-6. The class file structure of the class Circle.

5.2.1 Redefinition for Intra-procedural Information Transferring

The Java Virtual Machine is a stack machine manipulating an operand stack and

a set of local registers for each method and a heap containing object instances. The

elementary information carrier in JVM bytecode could be the element of operand

stack, the local register or the field of an object instance. Thus all the information

transferring in one method can be considered as the information transferring among

the three kinds of elementary information carriers. Therefore we need to add

security-level containers for the information in those elementary carriers

respectively.

 87

� Local Register

For the local register (which is used to store the local variables of the method),

we allocate an additional register as the security-level container of the information

in the original register. Adding new local registers is trickier than adding new

entries to the Constant Pool. In particularly the JVM specification requires that the

arguments to the method appear in order at the low local registers before the local

variables appear. Considering that we will add new arguments to a method (which

will be discussed later) and the local registers’ indices in instructions should be

recalculated, we store the security-level of the information in a local variable to the

register just after the one storing the local variable. By this way it is convenient to

calculate the index of one local register’s security-level container (the index of the

local register plus one or two according to the length of the local variable in the

register). In the attributes table of the method_info structure, the Code attribute

defines the maximum size of the local registers in the item max_locals . And we

also should reset the value of the item max_locals to make the JVM allocate

additional local registers used as security-level containers for the method. We show

the allocating new registers as seceurity-level containers for the method isInCircle

in Figure 5-7 as an example.

Ref

P2

P1

L1

L2

0

1

2

4

3

Ref

P2

P1

L1

SL1

0

1

2

4

3

L2

SL26

5

Figure 5-7. The security-level containers for information in local registers. Ref is a

reference to the method's instance; P1 and P2: the parameters of the method; L1 and

L2: the local variables in the method; SL1 and SL2: the security-levels of the

information in V1 and V2 respectively.

 88

� Operand Stack

For the element on the operand stack, we allocate an additional stack element as

the security-level container of the information in the original element. We store the

security-level of the information in one stack element to the element just before the

original one in the direction counted from the top of the stack, that is, we keep an

internal order of variables and their security-levels on the stack. By this way, we

make the JVM push the security-level of one variable to the stack after it push the

variable, and pop the security-level from the stack before it pop the variable.

Similar to the local registers, we also need to reset the value of the item

max_stack defining the maximum size of the stack since the elements pushed to

the stack during the execution of the modified bytecode increase. We give an

example of allocating new stack elements as security-level containers in Figure 5-8.

E3

SL3

SL2

E2

SL1

E1

E2

E3

E1

Figure 5-8. The security-level containers for information in the elements on the

operand stacks. E1, E2 and E3: the elements on the operand stack; SL1, SL2 and SL3:

the security-levels of the information in E1, E2 and E3 respectively.

� Class Fields

Adding security-level containers for the fields of one class is much different from

adding containers for local variables. We should decide the new field’s type, name,

access flag and the position we insert it.

To decide the types of the new fields (used as the security-level containers for the

Top

Bottom

 89

original fields), we divide the original fields into three kinds according to their

types: the fields of primary types, the fields of class types and the fields of array

types. For the field of primary type, it can only hold one data in it. Thus, we add a

new field of type byte (because all security-levels are integers) as the

security-level container of the original field. For the field of class type, it can

concern with a lot of information since the data held in it is a reference. Thus we

add a new field of the same class type as the original field, and the security-levels

of the original field’s members are stored in the added field’s corresponding

members (not the members have the same names, but those added as security-level

containers when the class of the field’ type is modified). So that the new field

(security-level container) can hold the same number of data as the original one. For

the field of array types, the field also holds one reference like the field of class type.

Thus we also add a new field of the same array type as the original one, which is

used as the security-level container for the original field.

The name of the new field used as the security-level containers is the original

field’s name suffixed with “_SL”. And the new field has the same access flag as the

original one. Since there are no ordering constraints on the Constant Pool and

Fields structures, any new fields and entries could be appended rather than

inserted in the middle in order to preserve the indices of existing entries.

Beside the original fields of one class, the class instance itself (the reference) also

holds information and can be used in the information flow. That fact makes it

necessary for us to do two things: first is that we need to add a new field of type

byte as the security-level container of the class reference itself; second, which has

been mentioned above, is that we use the added members in the added field rather

than the added members in original field to store security-level because the original

field may be null and we cannot use the member of a null reference to store the

security-level of the reference itself.

We give an example of adding new fields as security-level containers in Figure

5-9.

 90

ConstantFieldRef
ACC_PRIVATE
"radius"
"F"
""

ConstantFieldRef
ACC_PRIVATE
"radius"
"F"
""

ConstantFieldRef
ACC_PRIVATE
"radius_SL"
"F"
""

Origianl Field

Added Field

Figure 5-9. The security-level containers for information in the class fields.

5.2.2 Redefinition for Inter-procedural Information Transferring

The information can be transferred not only among the information carriers in

one method, but also between methods by arguments and return values. Thus it is

necessary to add new arguments and return values to transfer the security-levels of

the information being transferred between methods at the same time.

Adding security-level container for parameters is the combine of locating new

local registers and adding new fields. Given one method having one or more

arguments, we add one new argument as the security-level container for each

original argument. The type of the new arguments is decided in the same way as we

decide the type of the new fields. As for the new parameter’s order in the sequence

of all parameters, we insert the new argument just after the original argument. By

this way keep the alternate order of the local registers and their security-level

containers since the arguments will be loaded to the local registers. Because the

arguments’ names are not saved in the class file, we need not name the new

arguments. For example, considering the method void Circle(float x, float y, float r)

with the descriptor (FFF)V in the class Circle shown in Figure 5-4, we add one

argument of type byte after each original argument. Thus the descriptor of the

 91

modified method Circle is (FBFBFB)V.

For the return value of one method, we cannot deal with it as we do for

parameters since one method may have multiple parameters but it can only return

one value. The only thing that we can do is to change the type of the return value.

Given one method with a return value of primitive type or class type, we alter the

return type to an array of the original return type, which has two elements: the first

one is the return value and the second one is the security-level container for the

return value. (For the security-level container of the return value of primary types,

we convert the security-level to the type byte .) If the return type is an array

T[n1][n2]...[nm], we alter the return type to the array type of T[2][n1][n2]...[nm]. The

first element of the first dimension is the original return value, and the second

element is the security-level container for the original one.

By this way, we keep consistent with the rules of adding local registers, fields

and parameters. For example, considering a method float area() with the descriptor

()F, we alter the return type to the array of type float . Thus the descriptor of the

modified method area is ()[F.

5.3 Instructions Insertion

To achieve dynamic verification, we need to insert proper instructions to

calculate the security-levels of the information in the mobile code’s data carrier and

check whether every data-leaking channel in the mobile code is secure. To reduce

the additional overhead in runtime caused by the bytecode modification we make

the JVM execute the inserted instructions and the original instructions in one frame,

that is, the inserted instructions and the original instructions share one set of local

registers and one operand stack. (The adding of security-level containers mentioned

above also follows this principle.) Therefore we should make sure that the inserted

instructions would not do any harm to the original functions of the class. Another

important thing is that the offset of conditional instruction should be recalculated so

that they can branch to the correct instruction. Similar to the discussion of class

redefinition, we discuss the instructions insertion for the information transferring in

one method and the information transferring between the caller and callee methods

respectively. And we also discuss the insertion of the instruction for checking

 92

data-leaking.

5.3.1 Intra-procedural Information Transferring

The information transferring can be divided into explicit transferring and implicit

transferring. By the algorithms given in Chapter 4, we can partition the bytecode of

one method into explicit blocks and implicit blocks. In explicit blocks, the

information flow is explicit flow and the information is transferred from the used

variable(s) to the defined variable. Thus we should insert proper instruction(s) to

assign the security-level of the used variable or the LUB of the security-levels of

the used variables to the security-level container of the defined variable.

In implicit blocks, the information flow is implicit flow and the information is

transferred from the conditional variables of the implicit flow to the defined

variables additionally. Since the implicit blocks can be nested, one implicit

information flow may consist of several implicit blocks and in the case the

conditional data of the implicit information flow include all the conditional

variables of the implicit blocks. We define the conditional security-level of one

implicit transferring block as the security-level of the conditional variable or, if

there are more than one conditional variable, the LUB of the security-levels of all

conditional variable of the implicit transferring block. And we can get the formula

5-1, in which Lenv is the environment security-level of one implicit information flow,

Lconi is the conditional security-level of the ith block of implicit transferring blocks

composing the implicit information flow, and m is the number of the implicit

transferring blocks.

Lenv = Lcon1∨Lcon2∨...∨Lconm 5-1

Thus at the beginning of one implicit transferring block, we should first insert

proper instructions to calculate the conditional security-levels of the current implicit

block, and then calculate the environment security-level and store it (in order to

make it easier to calculate the environment security-level of the inner implicit

information flow). Then we should insert proper instructions to assign the LUB of

the environment security-level and the all security-levels if used variables to the

security-level container of the defined variable.

The execution of a method’s bytecode is a procedure of pushing data to the stack

 93

and popping data from the stack. According to the operation on the stack, the JVM

bytecode instructions could be divided into three kinds: loading instructions (those

pushing data to the stack, such as iload, faload, bipush), storing instructions (those

popping data from the stack, such as lstore, putfield, pop) and operating instructions

(those popping and operating two element on the stack top and pushing back the

result to the stack, such as dadd, lrem, ior). In particularly we consider faload as a

loading instruction but not an operating instruction because the semantics of faload

is loading data to the stack and such classification could reduce the number of

inserted instructions for faload. The similar cases are putfield, getfield, iastore, etc.

In explicit blocks considering the operand stack in JVM is LIFO

(last-in-first-out), we insert instruction(s) loading the security-level from proper

container to the stack for each loading instruction after it, and insert instruction(s)

storing the security-level from the stack to proper container for each storing

instruction before it. The operating instruction is a little complicated. One operating

instruction will first pop elements from the stack and then push back the result to

the stack. Therefore we insert the instructions popping the security-levels of the

operands and calculating the LUB of them before the operating instruction, and

insert instructions loading the result of LUB calculation to the stack after the

operating instruction. In the way, when the JVM executes one original bytecode

instruction, the operands used by the instruction on the stack are laid as if no

instruction is inserted, which assure that the inserted instructions has no side affect

on the original functionality of the bytecode.

We give an example of inserting instructions in Figure 5-10. We list the Java

source code and the original bytecode compiled from it at the left. The bytecode at

the right is the modified code. In modified bytecode the instructions at address 1, 3,

32 and 35 are inserted for loading instructions, the instructions at address 27 and 26

are inserted for storing instructions, and the instructions at address 4 to 22, 25, 37 to

54 and 57 are inserted for operating instructions in original bytecode respectively.

And in the modified bytecode, the indices of local variables have been recalculated

and the new indices of original local variable are 1, 3, 5 and 7.

In implicit blocks besides the instructions inserted in explicit blocks, we should

insert additional instructions to calculate and store the environment security-level.

 94

For an implicit block the conditional security-level of is the LUB of all

security-levels of its conditional variables. And the current environment

security-level SLcenv of one implicit block is the LUB of the old SLc and the

conditional security-level of the implicit block. Thus we allocate an array of type

byte to store the environment security-levels of each layer for nested implicit

blocks. At the beginning of an implicit block in nested implicit blocks, we store the

old SLc to the array and calculate the new one. Then at the end of that implicit block

we load back the old SLc from the array. By this way in each block of nested

implicit blocks we could use the correct current environment security-level to

calculate the defined variable’s security-level.

In JVM the operand stack is just a kind of intermediate information carrier and

all data pushed to the stack could not be transferred to other carriers until they are

popped from the stack. Considering this characteristic, we calculate the LUB of the

environment security-level and the defined variable’s security-level only when the

variable is popped from the stack, that is, we insert the instructions to calculate the

LUB only for storing instructions rather than for all the loading instructions,

operating instructions and storing instructions. By this way the additional overhead

cause by bytecode modification could be reduced.

 95

Figure 5-10. An example of instructions insertion.

5.3.2 Inter- procedural Information Transferring

If the type of a method’s return value is not void , we alter the type of the return

value to an array of original type. Therefore we should insert instructions into the

callee method to encapsulate the return value and its security-level to an array of

proper type. The encapsulation procedure is 1) allocating a new array of the proper

type with two elements, 2) storing the security-level to the second element and the

return value to the first element, and 3) returning the reference of the array to the

caller method. Furthermore, we should insert instructions into the caller method to

push the elements of the returned array to the stack. To preserve the consistency of

the arrangement of security-levels and information on the operand stack, we push

the original return value (the first element) at first and then the security-level (the

second element) to the stack. We also insert instructions to convert the

security-level to type byte if it is not for the return value of primary types.

public void cal(int a, int b){
 int c = a + b;
 int d = a * c;
 return;
}

0: iload_1
1: iload_2
2: iadd
3: istore_3
4: iload_1
5: iload_3
6: imul
7: istore 4
9: return

0: iload_1
1: iload_2
2: iload_3
3: iload_4
4: istore 9
6: istore 10
8: iload 9

10: If_icmple 9
13: pop
14: istore 9
16: goto 6
19: istore 9
21: pop
22: iload 10
24: iadd
25: iload 9
27: istore 6
29: istore 5
31: iload_1

32: iload_2
33: iload 5
35: iload 6
37: istore 9
39: istore 10
41: iload 9
43: If_icmple 9
46: pop
49: istore 9
51: goto 6
54: istore 9
56: pop
57: iload 10
59: iadd
60: iload 9
62: istore 8
64: istore 7
66: return

a. Java source code

b. Java bytecode c. modified bytecode

 96

5.3.3 Data-leaking Checking

As mentioned above, at each data-leaking channel we should compare the

security-level of the information to be sent with the clearance-level or

security-level of the destination in order to check whether the data-leaking channel

is secure. We insert the checking instructions after the instructions loading the

information to be sent to the operand stack, but before the instructions sending the

information. The checking procedure of is 1) at first reading the clearance-level or

security-level of the destination from the certain local host file and pushing it to

the stack, 2) then comparing the two security-levels or the security-level and the

clearance-level on the stack, 3) if the security-level of the information to be sent is

higher, the data-leaking channel is not secure and a user-defined exception is

thrown out to inform the host user the mobile code is not secure. Or else the

execution of the mobile code continues.

 97

6 Information Flow in Exception Handling

The Java programming language supports exception-handling mechanisms to

ease the difficulty of developing robust software systems. In Java bytecode, an

exception will cause a non-local transfer of control and affect the information flow.

In this chapter we will analyze the information transferring in the exception

handling of Java bytecode and give the mechanisms to deal with the information

flow in Java bytecode exception handling.

6.1 Motivation

When a program violates the semantic constraints of the Java programming

language, the Java virtual machine signals this error to the program as an exception.

Besides the implicit occurrence, the exception can also be explicitly caused by the

statement throw in Java programming language. The Java programming language

specifies that an exception will cause a non-local transfer of control from the point

where the exception occurred to a point that can be specified by the programmer.

An exception is said to be thrown from the point where it occurred and is said to be

caught at the point to which control is transferred to. Obviously, the occurrence of

an exception and the corresponding exception handling will change the control

flow and thus affect the information flow. A failure to account for the effects of

exception occurrence and exception handling constructs in performing analyses

system can result in incorrect analysis information, which in turn can result in

unreliable security verification systems.

The additional expense that is required to perform analyses accounting for the

effects of exception handling constructs may not be justified unless these

constructs occur frequently in practice. In [112], Sinha and Harrold examined a

number of non-trivial, real-life Java programs from a diverse group of applications

in order to determine the frequency with which java programs use exception

handling statements. The result of the study is shown in Table 6-1, which includes

the description of each program group, the number of programs examined and the

 98

usage of exception handling statements.

Program Group Programs that Contain

Name Description

Numbers of

Programs try Stmts throw Stmts

jacorb ORB implementation in java. 1062 271 229

javacup LALR-parser generator for Java. 34 5 17

jdk Sun’s JDK 1.1.5. 1256 342 372

jlex Lexical-analyzer generator for Java. 1 1 1

swing Sun’s Swing API 1.0.2. 692 87 106

tdb Debugger for Java. 8 3 5

toba Java bytecode-to-C translator. 43 13 27

Total 3096 722 757

Table 6-1. Presence of exception handling statements in Java programs.

As the tables illustrates, 23.3% and 24.5% of the examined programs contained

try and throw statements respectively. Within a program group, ignoring the values

for jlex , these percentages varied from 12.6% to 37.5% for try statements and,

15.3% to 62.8% for throw statements. Several programs contained both try and

throw statements, and over all program groups, there were 497 such programs.

Therefore, there were 982 programs, which comprise 31.7% of all examined

programs, which contained either a try statement or a throw statement. The study

supports that the use of exception handling statements in real-life programs is

significant enough that it should be considered during various analyses.

The discussion above proves that the information flow in Java bytecode

exception handling cannot be ignored in our analyses for the Java bytecode

verification. The ignorance of exception handling will cause unreliable verification

result and make the verification approach unpractical.

6.2 Exception Handling in Java Language

In java, exceptions can be synchronous or asynchronous. Synchronous

exceptions occur at particular program points and are caused by expression

evaluation, statement execution, or explicit throw statements. Synchronous

 99

exceptions can be checked or unchecked: for checked exceptions, the compiler

must find a handler or a signature declaration for the method that raised the

exception; for unchecked exceptions the compiler does not attempt to find such an

associated handler or a signature declaration. Synchronous exceptions are further

classified as pre-defined or user-defined: pre-defined exceptions are defined by the

Java language; user-defined exceptions are defined by users of the language. For

example, the method write () defined in java.io.DataOutputStream can

raise a pre-defined checked exception IoException . While the method pop ()

defined in java.util.Stack can raise a pre-defined unchecked exception

EmptyStackException . Users can define a checked exception by extending

java.lang.Exception or java.lang.Throwable . Similarly, users can

define an unchecked exception by extending java.lang.Error or

java.lang.RuntimeException .

Asynchronous exceptions occur at arbitrary, non-deterministic points in a

program’s execution, and are unchecked. Asynchronous exceptions occur when

either the Java Virtual Machine raised an instance of InternalError (because

of faults in the virtual-machine software, the host-system software, or the

hardware), or a thread invokes the method stop () that raised an instance of

ThreadDeath in another thread. Figure 6-1 shows the types of Java exceptions.

Java Exceptions

Synchronous 5. Asynchronous

Checked Unchecked

1. Pre-defined 2. User-defined 3. Pre-defined 4. User-defined

Figure 6-1. Exception types in Java.

 100

In Java programs, all synchronous, pre-defined exceptions (type 1 and 3 in

Figure 6-1) are raised as a result of expression evaluations, statement executions or

throw statements. While synchronous, user-defined exceptions (type 2 and 4 in

Figure 6-1) are raised by the throw statements only. In Java all thrown exceptions

are instances of classes derived from the class java.lang.Throwable .

In Java language, a try statement is the exception-handling construct. A try

statement consists of a try block and, optionally, a catch block and a finally

block. The legal constructs for a try statement are try-catch, try-catch-finally and

try-finally. When an exception is raised in a statement within a try block or in

some method called within a try block, control transfers to the catch block

associated with the last try block in which control entered, but has not yet exited.

This catch block is the nearest dynamically-enclosing catch block, and can be

in the same try statement, in an enclosing try statement, or in a calling method. If a

matching catch handler is found, the handler code is executed and normal

execution resumes at the first statement following the try statement where the

exception was handled. If no matching catch handler is found in the nearest

dynamically-enclosing catch block, the search continues in the catch block of

the enclosing try statement and subsequently in some calling method. Before the

control exits a try statement, the finally block of the try statement is executed,

if it exists, regardless of whether control exits the try statement with an unhandled

exception. Thus the exception handling in Java will cause intra-procedural control

transferring (if the exception is handled in the method where it is raised) or

inter-procedural control transferring (if the exception is not handled in the method

where it is raised and thrown to the caller method). We summarize the exception

handling process in Figure 6-2. The figure shows a try statement and its

components blocks; the conditions triggering the control flow between the blocks

are numbered and listed under to the figure. In the following, we list all possible

types of path within a try statement.

Path 1 is taken if the try block raises no exception and no finally block is

specified in this try statement.

Path 2 is taken if the try block raises exception and no matching catch block

can be found in this try statement. No finally block is specified in this

try statement.

 101

Path 3-10 is taken if the try block raises no exceptions. The finally block is

specified in this try statement and raises no exception.

Path 3-11 is taken if the try block raises no exceptions. The finally block is

specified in this try statement and raises exception.

Path 4-11 is taken is if the try block raises exception and no matching catch

block can be found in this try statement. The finally block is specified

in this try statement. If the finally block raises no exception, the

exception raised in the try block is propagated to the outer try statement.

If the finally block raises exception, the exception raised in the

finally block is propagated to the outer try statement.

Path 5-6-10 is taken if the try block raises exception and the matching catch

block is found in this try statement. The catch block raises no exception

and the exception is handled. The finally block is specified in this try

statement and raises no exception.

Path 5-6-11 is taken if the try block raises exception and the matching catch

block is found in this try statement. The catch block raises no exception

and the exception is handled. The finally block is specified in this try

statement and raises exception.

Path 5-7-11 is taken if the try block raises exception and the matching catch

block is found in this try statement. The catch block raises exception

and the exception is not handled. The finally block is specified in this

try statement. If the finally block raises no exception, the exception

raised in the try block is propagated to the outer try statement. If the

finally block raises exception, the exception raised in the finally

block is propagated to the outer try statement.

Path 5-8 is taken if the try block raises exception and the matching catch

block is found in this try statement. The catch block raises no exception

and the exception is handled. No finally block is specified in this try

statement.

Path 5-9 is taken if the try block raises exception and the matching catch

block is found in this try statement. The catch block raises exception

and the exception is not handled. No finally block is specified in this

try statement.

Path 12-6-10 is taken if an unhandled exception is propagated from nested

blocks and the matching catch block is found in this try statement. The

 102

catch block raises no exception and the exception is handled. The

finally block is specified in this try statement and raises no exception.

Path 12-6-11 is taken if an unhandled exception is propagated from nested

blocks and the matching catch block is found in this try statement. The

catch block raises no exception and the exception is handled. The

finally block is specified in this try statement and raises exception.

Path 12-7-11 is taken if an unhandled exception is propagated from nested

blocks and the matching catch block is found in this try statement. The

catch block raises exception and the exception is not handled. The

finally block is specified in this try statement. If the finally block

raises no exception, the exception raised in the try block is propagated to

the outer try statement. If the finally block raises exception, the

exception raised in the finally block is propagated to the outer try

statement.

Path 12-8 is taken if an unhandled exception is propagated from nested blocks

and the matching catch block is found in this try statement. The catch

block raises no exception and the exception is handled. No finally

block is specified in this try statement.

Path 12-9 is taken if an unhandled exception is propagated from nested blocks

and the matching catch block is found in this try statement. The catch

block raises exception and the exception is not handled. No finally

block is specified in this try statement.

Path 13-11 is taken if an unhandled exception is propagated from nested blocks

and no matching catch block is found in this try statement. The

finally block is specified in this try statement. If the finally block

raises no exception, the exception raised in the try block is propagated to

the outer try statement. If the finally block raises exception, the

exception raised in the finally block is propagated to the outer try

statement.

Path 14 is taken if an unhandled exception is propagated from nested blocks and

no matching catch block is found in this try statement. No finally

block is specified in this try statement.

Within catch blocks, all handlers are examined in the order in which they

appear to find one handler that is a super-type of a raised exception. And no

 103

priority is given to an exact match handler over one requiring the application of an

inheritance relationship. A raised exception E matches a catch handler H if E and

H are of the same type or H is a super-class of E.

 1. no exceptions raised in try block; no finally block
 2. exception raised in try block; no matching catch block; no finally block
 3. no exceptions raised in try block; finally block specified
 4. exception raised in try block; no matching catch block; finally block specified
 5. exception raised in try block; matching catch block specified
 6. exception handled; finally block specified
 7. catch block raises exeption; finally block specified
 8. exception handled; no finally block
 9. catch block raises exeption; no finally block
10. no exceptions raised in finally block
11.finally block propagates previous exception or raised another exception
12. unhandled exception from nested block; matching catch block specified
13.unhandled exception from nested block; no matching catch block; finally block specified
14. unhandled exception from nested block; no matching catch block; no finally block

try block catch block

try statement

method or enclosing try statement

normal entry exceptional entry

normal try
statement end

exceptional try
statement end

finally block

unhandled exception
from nested block

3

4 6

5

8

10

11

12 13

normal exit excpetional exit

1 2

14

7 9

Figure 6-2. Control flow in Java exception handling constructs.

 104

6.3 Exception Handling in Java Bytecode

In Java bytecode, exceptions can be thrown explicitly by the instruction

athrow or implicitly by some specific instructions such as those shown in Figure

6-3. The exception handling In Java bytecode has the same procedure as that in

Java programming language, and thus has all the possible paths shown above.

However, the presentation of try statements in Java bytecode is not so clear as that

in Java programming language. In the latter, the scope of each block (try block,

catch block and finally block) in a try statement can be located easily by the

enclosing symbols “{“ and “}”. While the location in Java bytecode is not so

straight. In next section, we will discuss the presentation of try statements in Java

bytecode and give the algorithm to locate the scope of each block in a try

statement.

Instruction Stack Exceptions Thrown

aaload arrayref, index => v

ArrayIndexOutOfBoundsException,

NullPointerException

bastore arrayref, index, v =>

ArrayIndexOutOfBoundsException,

NullPointerException

iaload arrayref, index => v

ArrayIndexOutOfBoundsException,

NullPointerException

idiv value1,value2 =>result ArithmeticException

instanceof objectref =>restult Resolution Exceptions

invokestatic [arg1,[arg2…]] Resolution Exceptions

Ldc …=>item Resolution Exceptions

newarray count =>arrayref NegetiveArraySizeException

putfield objectref,value=>

Resolution Exceptions,

NullPointerException

Figure 6-3. Some Java bytecode instructions that can throw exceptions.

6.3.1 Compilation of try Statement in Java Bytecode

Different from the straight and clear presentation format of try statements in

 105

Java programming language, the presentation format in Java bytecode is a little

complex.

� Compilation of try and catch Blocks

The compilation of Java’s try -catch construct is straightforward. Figure 6-4

give a simple example of Java program with try -catch construct being

compiled into Java bytecode. The try block is compiled just as it would be if the

try were not present. If no exception is thrown during the execution of the try

block, it behaves as though the try were not there. Following the try block is the

Java bytecode implementing the single catch block. The contents of the catch

block are also compiled like a normal method. However, the presence of a catch

clause caused the compiler to generate an instruction between the bytecode of try

and catch blocks, which can change the control flow to avoid the unconditional

execution of the catch block such as return , jsr , goto and so on.

Furthermore the compiler will generates an exception table entry for each catch

block to indicate the scope of try block that the catch block deals with by the

index pairs [from, to], the beginning index of the catch block by the column

target and the exception type that the catch block can handle by the column type.

In the example shown in Figure 6-4, if some value that is an instance of TestExc is

thrown during the execution of the instructions between indices 0 and 4 (inclusive),

the control is transferred to the instruction at index 5, which is the beginning of the

catch block.

Multiple catch blocks of a given try statement are compiled by simply

appending the Java bytecode for each catch block one after the other, and adding

entries to the exception table. If during the execution of the try block, an

exception is thrown that matches the handler type of one or more of the catch

blocks, the first such catch block is selected. Control is transferred to the

bytecode for the catch block. Here no priority is given to the catch block with

the exact matching exception type over one with super-class exception type. If no

such catch block can be found, the JVM re-throws the exception without invoke

the bytecode in any catch block. And nested try statements are compiled very

like a try statement with multiple catch blocks. The nesting of catch blocks is

represented only in the exception table. When an exception is thrown, the

 106

innermost catch block containing the site of the exception and having a matching

handler type is selected to handle the exception. It is so even that the exception

occurs within the bounds of the outer catch block and even the outer catch

block might otherwise have been able to handle the thrown exception.

void catchOne() {
 try {
 tryItOut();
 }
 catch (TestExc e) {
 handlExc (e);
 }
}

Method void catchOne()
 0 alod_0 //Beginning of try block
 1 invokevirtaul #6 //Method tryItOut()V
 4 return //End of try block
 5 astore_1 //Beginning of catch block
 6 aload_0
 7 aload_1
 8 invokevirtual #5 //Method handleExc(LTestExc;)V
11 return

 Exception table:
 From To Target Type
 0 4 5 Class TestExc

Figure 6-4. An example of try -catch construct’s compilation.

� Compilation of finally Block

In Java bytecode, the finally block can be compiled as an embedded routine

or as bytecode appended to the try block and catch blocks (if there is any). The

Java program in Figure 6-5 has a try statement with try , catch and finally

blocks. We give the bytecode compiled from the program in the two compilation

ways in Figure 6-6 and Figure 6-7.*

* The bytecode in Figure 6-6 is generated by JDK 1.4.1 and that in Figure 6-7 by JDK 1.4.2.

 107

void testOfcatch(int[] a, int b){
 try{
 int c = a.length;
 int d = a[b];
 raiseException();
 }
 catch (NullPointerException e){
 handleException(e);
 }
 finally{
 wrapItUp();
 }
}

Figure 6-5. An example of Java program with the finally block.

void
testOfcatch(int[],int);
Code:
 0: aload_1
 1: arraylength
 2: istore_3
 3: aload_1
 4: iload_2
 5: iaload
 6: istore 4
 8: aload_0
 9: invokevirtual #5
10: jsr 36
13: goto 44
16: astore_3

Exception table:
from to target type
 0 10 16 Class java/lang/NullPointerException
 0 13 28 any
 16 25 28 any
 28 33 28 any

17: aload_0
18: aload_3
19: invokevirtual #8
22: jsr 36
25: goto 44
28: astore 5
30: jsr 36
33: aload 5
35: athrow
36: astore 6
38: aload_0
39: invokevirtual #6
42: ret 6
44: return

Figure 6-6. The finally block is compiled as a subroutine.

 108

void testOfcatch(int[],int);
Code:
 0: aload_1
 1: arraylength
 2: istore_3
 3: aload_1
 4: iload_2
 5: iaload
 6: istore 4
 8: aload_0
 9: invokevirtual #5
12: aload_0
13: invokevirtual #6
16: goto 41

Exception table:
from to target type
 0 12 19 Class java/lang/NullPointerException
 0 12 32 any
 19 25 32 any
 32 34 32 any

19: astore_3
20: aload_0
21: aload_3
22: invokevirtual #8
25: aload_0
26: invokevirtual #6
29: goto 41
32: astore 5
34: aload_0
35: invokevirtual #6
38: aload 5
40: athrow
41: return

Figure 6-7. The finally block is compiled as code appended to try and

catch blocks.

In the compilation format of subroutine as shown in Figure 6-6, an instruction

jsr is added at the end of try block and catch blocks (if there is any) in order

to transfer the control to the code implementing the finally block if the

execution of the try or catch block ends normally (edges 3 and 6 in Figure 6-2).

In more detail, the subroutine call works as follows: The instruction jsr (at

indices 10 and 22 in Figure 6-6) pushes the address of the following instruction

onto the operand stack before jumping. The first instruction (astore 6 at index

36 in Figure 6-6) in the code implementing the finally block stores the address

on the operand stack into local registers. The following code (instructions from

index 38 to 42 in Figure 6-6) is run. Assuming the execution of the finally

block completes normally, the instruction ret (at index 42 in Figure 6-6) at the

bottom of the subroutine retrieves the address stored to local registers and resumes

execution at that address.

 109

Furthermore in order to deal with the exceptional exit of the try and catch

blocks (edges 4 and 7 in Figure 6-2), the compiler generates one exception table

entry for each try or catch block with the handler type any, which can handle

any type of exceptions thrown with the scope of try or catch block. (Usually

such a entry is also generated for the finally block itself.) When the try or

catch block throws an exception and the matching catch block is not found,

the exception table entries for the finally block is searched for an appropriate

exception handler. Then the control is transferred to the instruction (at index 28 in

Figure 6-6) indicated by the column target. After storing the reference value of the

thrown exception to local registers (the instruction astore 5 at index 28 in Figure

6-6), the following instruction jsr does a subroutine call to the code

implementing the finally block. Assuming that code returns normally, the

reference value of the thrown exception is pushed back to the operand stack (the

instruction aload 5 at index 35 in Figure 6-6) and re-thrown by the following

instruction athrow (at index 35 in Figure 6-6).

In the other compilation format, the code implementing the finally block is

appended to the try block and catch blocks (if there is any) as shown in Figure

6-7. If the execution exits the try or catch block normally (edges 3 and 6 in

Figure 6-2), the execution continues to work on the following code, which

implements the finally block and is appended to the try or catch block by

the compiler. In Figure 6-7, the code appended to the try block is the instructions

between [72, 110] and the code appended to the catch block is those between [37,

3]. For the exceptional exit of to the try or catch block, the compiler generates

one exception table entry for each try or catch block with the handler type any

just like the compilation in the subroutine format. The instructions from the index

indicated by the column target do similar work as those in the subroutine format

except that the subroutine call is replaced by executing the code implementing the

finally block directly.

6.3.2 Locating the try Block

Since the scope of the try block is indicated by the columns from and to in

exception table entries, it is easier to locate the scope of the try block compared

with locating the scope of the catch or finally block. What we should pay

 110

attention to is that the compiler generates exception table entries for catch blocks

if the try statement contains a finally block and such entries should be

excluded.

If the catch block is specified in a try statement, the compiler generates a

exception table entry with a particular handler type for each catch block. Thus if

there are one or more entries whose handler type is not any, the catch block is

specified and the scope of the try block is indicated by the index pair [from, to) in

those entries. Each different pair corresponds to one try block in a try statement.

For example, the scope the try block of in Figure 6-6 is [0, 10) and that in Figure

6-7 is [0, 12).

If no catch block is specified in a try statement, all the entries in the exception

table are generated for the finally block by the compiler and the handler types

of all entries should be any. These entries are generated to deal with the exception

thrown either in the try block or the finally block. Since the entries generated

for the latter case should have equal values in columns from and target, the scope

of the try block is indicated by the index pair [from, to) in the entry whose

column from’s value is not equal to column target’s value.

6.3.3 Locating the catch Block

If the catch block is specified in a try statement, the compiler generates an

exception table entry for each catch block, in which the beginning index of the

catch block is indicated by the column target. What we need to do is to locate

the ending index of the catch block.

If no finally block is specified in the try statement, the control is transferred

to the immediate post-dominator instruction of the try statement after the execution

exits the try block normally. Thus the immediate post-dominator instruction of

the try block, which is indicated by the column to in the exception table, should

be the instruction goto if there are instructions left to be executed in the method

or the instruction return (αreturn) if the end of the try statement is the bottom

of the method. In the former case the end index of the last catch block is

indicated by the branch index of the instruction goto , and in the latter case the

 111

end index is the index of the last instruction in the method. The end of other

catch blocks (if there are more than one catch block in the try statement) can

be located by the beginning index of the next catch block since the catch

blocks are compiled into successive bytecode. For example the in bytecode shown

in Figure 6-9, the scope of the first catch block is [6, 14) indicated by values in

the column target and the scope of the last catch block is [14, 19) indicated by

the value in the column target and the branch index of the instruction goto at

index 3 which is the immediate post-dominator of the try block.

If the finally block is specified in the try statement, the compiler generates

for finally block one exception table entry to deal with the exception thrown in

the try block that the catch block cannot deal with, one entry to deal with the

exception thrown in each catch block and one entry to deal with the exception

thrown in the finally block itself. Thus the scopes of the catch blocks are

indicated by the columns from and to in those entries to deal with exception

thrown in catch blocks, just like the scope of the try block is indicated by the

entry generated for the catch block. The entry generated to deal with exception

in the try block can be found by compare the value of columns from and to with

the scope of the try block, and the one generated to deal with exception in the

finally block has equal values in the columns from and target. Excluding those

entries, the left ones are generated to deal with the exception in the catch block

and can be used to locate the scope of the catch block by the index pair [from,

to). For example in the bytecode shown in Figure 6-7, the third exception table

entry is generated for the finally block to deal with the exception in the catch

block, and the scope of the catch block is [19, 25) indicated by the columns from

and to.

6.3.3 Locating the finally Block

Locating the scopes of the catch and finally blocks is complicated because

of the finally block’s compilation. The compiler generates an exception table

entry for each catch block and one or more entries with type any for the

finally block. The exception table entry with handler type any is generated and

can be only generated for the finally block in the try statement by the complier.

Thus if there are any entries with handler type any in the exception table, the

 112

finally block is specified in this try statement.

In the case of the finally block being compiled into subroutine, the last

instruction in the try block (whose index is indicated by the value of the column

to in the exception table entry) should be the instruction jsr i. The instruction

jsr i transfers the control to the subroutine compiled from the finally block,

whose starting index is i. Assuming the index of the instruction ret in the

subroutine is i’, the scope of the finally block is (i, i ’). As for locating the

scope of the catch block, if there is any, the index of the first instruction in the

catch block is indicated by the column target in the exception table entry whose

handler type is not any. At the end of the catch block there should be one

instruction jsr transferring the control to the subroutine of the finally block.

Since the scope of the finally block has been located as (i, i’), the end of the

catch block is the first jsr i post-dominating the first instruction of the catch

block. Assuming the value of the column Target in the exception table entry

indicating the catch block is k and the index of the instruction jsr i transferring

the control to finally block is k’, the scope of the catch block is [k, k’].

For example, in Figure 6-5 the finally block is specified because there are 3

entries with the handler type any in the exception table. The first entry in the

exception table has a handler type of java/lang.NullPointerException

and indicates the scope of the try block as [0, 10] by the columns from and to.

Since the last instruction in the try block is jsr 36 at index 10, the subroutine

complied from the finally block starts from the instruction at index 36. And the

index of the instruction ret is 42, thus the scope of the finally block is (36,

42). As the scope of the catch block, the starting index had been indicated as 16

by the column target in the first entry of the exception table. Since the instruction

transferring control to the finally block is jsr 36, the first such instruction

post-dominating the instruction at index 16 (the beginning of the catch block) is

the instruction at index 22. Thus the scope of the catch block is [16, 22].

In the other case, the finally block is compiled into the code appended to the

try and catch blocks respectively. That is, the same code compiled from the

finally block will appear after each try and catch blocks, and the last

instruction in the try block could not be the instruction jsr . To divide the try

 113

block from the following catch or finally blocks, the complier generates the

instruction return (or αreturn) or goto between them. Assuming the index

of that dividing instruction is j’ and the index of the last instruction in the try

block is j, the scope of the finally block appended to the try block is [j, j’].

As for locating the scope of the catch block, the index of the first instruction

in the catch block is indicated by the Target’s value in the exception table entry.

From the first instruction we search the instruction block matching the instructions

in [j, j’] and the last one of found instruction blocks is the finally block

appended to the catch block. If there are any entries whose handler types are not

any in the exception table, the catch block is specified. The locating of the

catch block’s the scope is based on the scope of the finally block. In the

other case, assume the value of the Target is k and the scope of the finally

block appended to the catch block is [l, l’]. The scope of the catch block is [k,

l]. For example, in Figure 6-6 the scope of the try block is [0, 10], the scope of

the finally block is (36, 42) and the scope of the catch block is [16, 22]. In

Figure 6-7 the scope of the try block is [0, 12], the scope is of the finally

block is [12, 16], [25, 26] and [34, 35] respectively, and the scope of the catch

block is [19, 25).

6.4 Implicit Information Flow in Exception Handling

In Java bytecode, exceptions can be thrown explicitly by the instruction athrow

or implicitly by some specific instructions such as those shown in Figure 6-3. For

the exceptions raised implicitly by one Java bytecode instruction, whether the

exception occurs depends on the values of the variables operated in the instruction.

In other words, the occurrence of one exception carries the information of the data

affecting the exception’s generation. Therefore it is reasonable to assign a

security-level to each exception. We define the security-level of one exception as

the LUB of security-levels of the data determining whether the exception is raised.

For example, consider the exception of type NullPointerException raised

by the instruction iaload . Since whether the exception is raised or not depends

on the value of the variable arrayref, the security-level of the exception is the

security-level of data in the variable arrayref.

 114

Considering that exception handling will not only cause intra-procedural control

transfer but also inter-procedural control transfer, we add one new field SL of type

byte to every exception class including both pre-defined exception classes and

user-defined exception classes, and use it to store the security-level of the

exception instance. By this way when an exception is thrown from the callee

method to the caller method, we can trace the information flow correctly and

understand the security-level of the exception when it is handled in the caller

method.

As mentioned above, in Java bytecode exceptions can be thrown implicitly by

some specific instructions, which are called as PEIs (Potential Exception-throwing

Instructions). When the execution of Java bytecode encounters a PEI, where the

control flow is transferred depends on that whether the PEI raises an exception and

what exception the PEI will raise. In other words, the PEI acts as a conditional

branch node and it may have some of the branches shown in Figure 6-2. It means

that one PEI can cause implicit information transferring just like the if-instructions

and initiates an implicit transferring block. Obviously the conditional

security-level of such one implicit transferring block is the security-level of the

exception that may be raised by the PEI (or the LUB of the security-levels of all

exceptions that may be raised by the PEI). To distinguish it from the conditional

security-level of if-instructions, we call that conditional security-level as the

exceptional security-level of the PEI.

In Java Virtual Machine specification, which instructions can raise exceptions

and what type of exceptions they can raise have been defined clearly. We can

calculate the exceptional security-level of one PEI just before the PEI is executed.

As for the scope of the implicit transferring block initiated by one PEI, it varies

with the location where the exception(s) raised possibly by the PEI can be handled,

that is, in the same method where the PEI raises exception(s) or in the caller

method. According to the Java Virtual Machine specification, 40 instructions could

throw exceptions implicitly in the total 204 instructions in Java bytecode. And in

those 40 PEIs, 7 instructions can only throw one type of exception (we call such

one PEI as single-exception PEI) and the others can throw two or more types of

exception (we call such one PEI as multiple-exception PEI). Thus for the

exceptions that can be raised by multiple-exception PEIs, there are three kinds of

 115

exception handling: 1) all of they may be handled in the same method where they

are raised (only intra-procedural transferring may be caused); 2) none of they may

be handled in the same method where they are raised (only inter-procedural

transferring may be caused); or 3) some of they may be handled and the others can

not be handled in the same method where they are raised (both intra-procedural

and inter-procedural information transferring may be caused). Since what type of

exceptions that one PEI can raise has been defined by JVM specification and what

type of exceptions one method can handle had been defined by the exception table,

we can judge that one PEI may cause intra-procedural information transferring,

inter-procedural transferring or both of them. We discuss these cases respectively.

� Intra-procedural Information Transferring May be Caused

In this case, all the exception(s) raised by one PEI can be handled by the proper

catch blocks in the same method. The branches of the implicit transferring block

caused by the PEI are 1 and 5-7 (no finally block) or 3 and 5-6 (finally

block specified) in Figure 6-2. The scope of the normal branch (1 or 3 in Figure

6-2) is from the immediate post-dominator of the PEI to the end of the try block.

(This branch will be blank if the PEI is the last instruction in the try block.) And

the scope of the exceptional branch(es) (5-7 or 5-6 in Figure 6-2) is the whole

catch block(s) handling the exception(s). Thus when the execution encounters

one PEI that can only raise intra-procedural implicit information transferring, we

should backup the current environment security-level SLc, and set SLc to the LUB

of original SLc and the exceptional security-level of the PEI. Then at the end of

each branch we should set the SLc back to the original one.

� Inter-procedural Information Transferring May be Caused

In this case, no proper catch block can be found in the same method for the

exception(s) raised by the PEI and JVM throws the exception(s) to the caller

method. The branches of the implicit transferring block caused by the PEI is 1 and

2 (no finally block) or 3 and 4-9 (finally block specified) in Figure 6-2.

The scope of the normal branch (1 or 3 in Figure 6-2) is from the immediate

post-dominator of the PEI to the end of the method exclusive the finally block

if it is specified. And the scope of the exceptional branch(es) (2 or 4-9 in Figure

 116

6-2) is the whole catch block(s) that can handle the exception(s). (Such catch

block may be in the caller method or in the further outer caller method, or does not

exist in which case the exceptional branch is blank.) Since the control may be

transferred to the caller method in this case, we should insert proper instructions to

transfer the exceptional security-level of the PEI raising the exception(s) to the

caller method. As mentioned above, we add one new field SL to every exception

class to transfer the security-level between methods in the case of one method’s

exceptional exiting. Thus we should set the field SL of the current exception

instance to the current environment security-level before the execution exit the

method. If there is one finally block specified in the try statement where the

exception is raised, we can insert the instructions setting the field SL in the

finally block. Or else we should add one finally block that does nothing but

the setting of the field SL. When the execution encounters one PEI that may raise

inter-procedural implicit information transferring, we should set the SLc to the

LUB of the SLc and the exceptional security-level of the PEI. If a finally block

is specified, we should backup the current environment security-level SLc before

we change it, then restore the backup SLc at the start of the finally block in

order to exclude it from the normal branch, and at the end of the finally block

we set SLc to the one calculated just before the PEI. As for the exceptional branch,

we should backup current environment security-level SLc (which is the SLc of the

method being executed, not the method where the exception is raise since at that

point the execution has exited that method), and then set the SLc to the LUB of the

original SLc and the security-level stored in the field SL of the exception. At the

end of the exceptional branch we should restore the SLc to the original one.

� Both kinds of Information Transferring May be Caused

In this case, some of the exceptions that may be raised by the PEI can be

handled in the same method and the others cannot be. The branches of the implicit

transferring block caused by the PEI are 1, 2 and 5-7 (no finally block) or 3,

4-9 and 5-6 (finally block specified) in Figure 6-2. The scope of the normal

branch (1 or 3 in Figure 6-2) is from the immediate post-dominator of the PEI to

the end of the method exclusive the finally block if it is specified. The scope of

the intra-procedural exceptional branch(es) (5-7 or 5-6 in Figure 6-2) is from the

start of the catch block that can handle the exception in the same method to the

 117

end of the method exclusive the finally block if it is specified. The scope of the

inter-procedural exceptional branch is the whole catch block that can handle the

exception, which may be in the caller method or in the further outer caller method,

or does not exist in which case the inter-procedural exceptional branch is blank.

What we should do in the normal branch and inter-procedural exceptional branch

is same to what we do in case of inter-procedural implicit information transferring.

As for the intra-procedural exceptional branch, we should only exclude the

finally block from the intra-procedural exceptional branch with the same way

used in the normal branch if the finally block is specified.

� Procedure of Dealing with Implicit Information Flow Caused by PEIs

Based on the analysis above, we can find that the PEIs in Java bytecode act as

the if-instructions in the information transferring. Here we define the procedure of

dealing with the implicit block caused by PEIs and give an example in the

following.

Given a method m, the procedure could be defined as following.

a Locate the scopes of all the try blocks, finally blocks and catch

blocks in m.

b Search for all the PEIs in m and calculate the exceptional security-level of

each PEI just before it.

c If all the PEIs in one try block are intra-procedural PEIs, at the end of the

try block and the corresponding catch blocks (if they are specified)

restore the SLc that is backupped before the first PEI in the try block.

d If any PEIs in one try block is inter-procedural PEIs, at start of the

corresponding finally block backup the SLc and restore the SLc that is

backupped before the first PEI in the try block. Then at the end of the

finally block, restore the SLc that is backupped at the start of the

finally block.

e At the start of each catch block, check the value of the field SL in the

exception instance caught. If it is not 0, set the SLc to the LUB of the SL and

SLc.

f If there are any inter-procedural PEIs and the finally block is specified,

set the field SL of the exception instance caught in the finally block to

 118

the SLc.

g If there are any inter-procedural PEIs and the finally block is not

specified, add one finally block to m and set the field SL of the exception

instance caught in that finally block to the SLc.

Here we give an example. Consider the section of Java program whose bytecode

and CFG are shown in Figure 6-8. Using the procedure above we could deal with

implicit transferring caused by PEIs in that Java bytecode. We give the modified

bytecode in Figure 6-9. Referring to the exception table, we can find the scope of

the try block is [0, 12], the scopes of the finally blocks are [12, 16], [25, 26]

and [34, 35] respectively, and the scope of the catch block is [19, 25] in Figure

6-8. The PEIs are arraylength at index 1 and iaload at the index 5 in Figure

6-8. (Here to simplify the example we assume that the instruction invokevirtual

itself will not raise any exception.). We insert instructions at the address 2, 3 and

14-20 in Figure 6-9 to calculate the exceptional security-level of the two PEIs. By

checking the handler type of the catch block, we can find that the

arraylength is intra-procedural PEI and the iaload is inter-procedural PEI.

Thus we insert instructions at the address 71-83 in Figure 6-9 to the finally

blocks to set the correct current environment security-level. At the start of the

catch block we insert instructions at the address 44-55 in Figure 6-9 to check

whether the field SL of exception instance caught is 0 and set the current

environment security-level to the correct value.

 119

void testOfcatch(int[] a, int b){
 try{
 int c = a.length;
 int d = a[b];
 raiseException();
 }
 catch (NullPointerException e){
 handleException(e);
 }
 finally{
 wrapItUp();
 }
}

0

4

3

2

1

5

6

9

8

16

19

20

21

22

25

26

29

32

34

 41

12

13

40

35

38

void testOfcatch(int[],int);
Code:
 0: aload_1
 1: arraylength
 2: istore_3
 3: aload_1
 4: iload_2
 5: iaload
 6: istore 4
 8: aload_0
 9: invokevirtual #5
12: aload_0
13: invokevirtual #6
16: goto 41
19: astore_3
20: aload_0
21: aload_3
22: invokevirtual #8
25: aload_0
26: invokevirtual #6
29: goto 41
32: astore5
34: aload_0
35: invokevirtual #6
38: aload 5
40: athrow
41: return

Exception table:
from to target type
 0 12 19 Class java/lang/NullPointerException
 0 12 32 any
 19 25 32 any
 32 34 32 any

Figure 6-8. An example of implicit information transferring caused by PEIs.

 120

Figure 6-9. The modified bytecode of that shown in Figure 6-8.

void testOfcatch(int[],
byte[], int, byte);
Code:
 0: aload_1
 1: iload_3
 2: dup
 3: istore 13
 5: istore 7
 7: arraylength
 8: istore 6
10: aload_1
11: aload_2
12: iload 4
14: iload 5
16: iload_3
17: jsr 80
20: istore 13
22: swap
23: iload 4
25: iaload
26: istore 9
28: iaload
29: istore 8
31: aload_0
32: invokevirtual #5
35: aload_0
36: invokevirtual #6
39: goto 54
42: astore 6
44: aload 6
46: getfield #9;
 //Field SL; B
49: dup
50: ifne 36
53: iload 13

55: istore 12
57: aload_0
58: aload_0
59: invokevirtual #8
62: aload_0
63: invokevirtual #6
66: goto 27
69: astore 10
71: aload 10
73: getfield #9;
 //Field SL; B
76: ifne 10
79: aload 10
81: iload 12
83: putsield #9;
 // Field SL; B
86: aload_0
87: invokevirtual #6
90: aload 10
92: athrow
93: return

95: istore 14
97: dup2
98: if_icmple 86

101: istore 15
103: pop
104: istore 15
106: goto 68
109: pop
110: ret 14

Exception table:
from to target type
 0 25 30 Class jave/lang/NullPointerException

0 25 45 any
 30 49 45 any
 45 52 45 any

 121

6.5 Explicit Information Flow in Exception Handling

In Java bytecode the exception can be thrown by the instruction athrow

explicitly. The instruction athrow transfers the control from it to the point where

the exception thrown by it can be handled, and thus cause explicit information

transferring. Similar to the implicit information transferring caused by PEIs, the

explicit information transferring caused by athrow can also be divided into the

intra-procedural and inter-procedural transferring depending on where the

exception thrown. But different from PEIs, the instruction athrow causing

explicit information transferring acts as an unconditional control-trsferring

instruction goto in the information flow. The effect of the instruction athrow on

the information flow is that the environment security-level of the block where the

instruction athrow throws an exception is transferred to the block where the

exception is handled. Therefore it is quite simple to deal with the explicit

information transferring caused by the instruction athrow . What we should do is

to set the field SL of the exception instance that will be thrown by the athrow to

the current environment security-level SLc. As for the block where the exception is

handled, we compare the current environment security-level with the security-level

in the field SL of the exception instance and updates to the current environment

security-level to the value of the higher one, which is just like we do for implicit

information flow at the handler block.

 122

7 Implementation and Evaluation

7.1 System Architecture

A prototype verification system implementing the approach described in this

thesis has been developed, and it is named as BMOS (Bytecode MOdification

System). This system is written in Java language so as to be adopted by various

mobile systems. The input of BMOS is a class file in memory. Modified by the

modifier, the bytecode containing verification code is delivered to the local runtime

platform. During the execution of the bytecode, an information-leak exception will

be thrown if there is any violation of host security policies. In this way, the

verification system interrupts the process causing information-leak to protect the

local host security. Of course, the user can choose to ignore the exception in order

to make the bytecode finish its job.

Figure 7-1. BMOS architecture.

The BMOS is built using the techniques described in this thesis. As shown in

Figure 7-1, the system consists of two main parts: the security policies and the

Security policies

Untrusted
bytecode

Modifier

Runtime
platform

Verification systemVerification systemVerification systemVerification system

ac fe ba
0a 2b …

Modified bytecode
containing
verification code

ac ba fe
ba dd aa
0a 2b …

Local host

 123

modifier. The security policies define the security requirement of the local host.

These policies are described by the security-levels of resources and the

clearance-levels of third-party hosts, and stored in a configuration file. The core of

the system is the modifier, which redefines the class and inserts the verification

code for the dynamic verification during the execution.

7.1.1 Security policies

In BMOS, the security policies are described by the security-levels and the

clearance-levels.

A security-level defines a host file’s sensitivity. The higher the security-level is,

the more sensitive the file is. All the information stored in a file get the file’s

security-level, and all the files in one directory get the security-level of the

directory.

Security-level definition:

SL.level=res 1, res 2, …

e.g. SL.3=/home/temp, /home/usr/

A clearance-level defines the trust level of an observer-host to receive the

information on the local-host. The higher the clearance-level is, the more trustful

the observer-host is. The clearance-level is assigned to an observer-host according

to its network address.

Clearance-level definition:

CL.level= res1, res2,…

e.g. CL.2=www.abc.com, ftp.xy.com, 201.118.23.234

7.1.2 Modifier

The modifier is the core part of this system. It performs the modification of

bytecode used for the dynamic verification during the execution. The modification

can be divided roughly into three steps. The first step is to parse the class file from

bytecode to the instance of ClassInfo class defined beforehand. The second step

is class-level modifications and method-level modifications, including adding fields,

rewriting the method-descriptors, adding local variables, changing the stack size

and inserting verification instructions, etc. The final step is to generate the bytecode

 124

of the modified class. In Figure 7-2, we give the process steps of the modifier.

Figure 7-2. Processing steps of Modifier.

Figure 7-3. The Program of Class-level Modification.

Class Parser

Class Modification

Adding Fields

Invoking
 Method Modification
 for Each Method

Rewriting
Descriptor

Adding Local
Variables

Changing
Stack Size

Inserting
Instruction

Class File Generator

public ClassModifier(File classFile)
throws FileNotFoundException, IOException{

classInfo = new ClassInfo(classFile);
cp = classInfo.getConstantPool();//Constant Pool
indexOfByteInCP = cp.getUtf8(String. valueOf

(TypeDiscriptorParser. BYTE)).getIndex();

}

public void modifyClass(){

//adding fields as Security-Level Container for the original fields
addFields();

//modify each method of the ClassFile
modifyMethods();

}

ClassModifier.java

 125

Figure 7-4. The Program of Method-level Modification.

We illustrate part of the source code of the modifier in Figure 7-3 and 7-4. In the

constructor of class ClassModifier , the class file to be modified is parsed to an

instance of class ClassInfo . The method modifyClass of class

ClassModifier performs the class-level modification. And in the method

modifyMethods , one instance of class MethodModifier is generated for

each method in the class file, and the method modifyMethod shown in Figure

7-4 is invoked to perform the method-level modification.

7.2 Implementation

7.2.1 Class Parser

In order to analyze and modify the class file, the class file is transformed to the

format to meet our needs. This process is implemented by a Class Parser, which

reads information from the class file and then converts it to instances of classes

defined beforehand. Some tools, such like Bytecode Engineering Library (BCEL)

and Java Object Instrument Environment (JOIE), have been developed to

implement such class parsing. But to implement our approach, we need not only

parse the class file to instances, but also modify the instances and regenerate the

class file. Thus we adapted the JOIE to meet our need of class file modification.

MethodModifier.java
 public void modifyMethod() {

// Rewrite the descriptor: add parameters as Securi ty-Level Container
// for original, and modify the return type
addParameters();

// add local variables as Security-Level Container for original
addLocalVariable();

// add stack as Security-Level Container for origin al
addStack();

// add verification code
initiaInstruction();
addVerificationCode();

}

 126

Figure 7-5. UML diagram of the classes representing class file.

Figure 7-6. UML diagram of the classes representing the constant pool.

 127

JOIE is a framework for safe Java bytecode transformation. It provides both

low-level and high-level functionality to extend or adapt compiled Java classes. The

low-level interface allows manipulating the bytecodes itself whereas the high-level

interface provides methods for inserting new interfaces, fields, methods or whole

code splices. In order to modify the class file more easily, we ameliorate some

classes of JOIE. Figure 7-5 shows the UML diagram of the classes used to

represent the class file, and Figure 7-6 shows the UML diagram of the classes used

to represent the information in the constant pool.

The input of the class parser should be one class file in the format of bytecode

file or InputStream . The constructor of class ClassInfo will invoke proper

methods to read information of the class file from bytecode or InputStream ,

generate instances of necessary classes (such as ConstantPool , Field ,

Method , Code, Instruction and so on) and construct the instance of class

ClassInfo containing all information of the class file. For example, the class file

“c:\workspace\bin\bms\Tester.class” can be parsed by the following code:

File file = new File(“c:¥workspace¥bin¥bms¥Tester.c lass”);

ClassInfo ci = new ClassInfo(file);

As we get ClassInfo instance of one class file, we can get all information we

need about the class file. For example, the methods and fields of the class file

“Tester.class” can be obtained by the following code:

Method[] methods = ci.getMethods();

Field[] fields = ci.getFields();

For an instance of class Method , the information necessary for modification,

such as descriptor, code, local variables and instructions can be obtained easily as

following code:

Code code = method.getCode();

LocalVariableTable lv= code.getLocalVariableTable() ;

CodeIterator iter = code.getSplice().getCodeIterato r();

As for the Java bytecode instructions, a base class Instruction represents a

 128

single JVM instruction. Some subclasses, such as Load , Branch , are defined to

represent the instructions performing the similar operation. Such subclasses hide

subtle distinctions among different forms of the same instruction. For example, the

JVM specification defines fifty separate bytecode forms that can load or store a

value, depending on the size and type of the value and its location in the frame.

Unified Load and Store instruction classes can generate the correct bytecode

form for the operands. Other subclasses of Instruction represent the few instructions

with multiple or a variable number of operands, including table switches,

multidimensional object array creation, and interface method invocation.

Instruction operands and arguments are represented as logical references to other

objects rather than as numeric offsets into tables. For example, a Branch

instruction instance contains a reference to the target Instruction instance,

rather than a byte offset. Also references to methods are represented by instances of

the class Methodref , instead of as raw integers as in the byte stream interface. To

achieve this, a class Label is generated to represent the offset of branch

instruction, such as goto , if_icmpne . And the size of instruction Label is

defined as 0 in order to cause no side effect on original bytecode.

Figure 7-7. UML diagram of the classes representing the bytecode instructions.

Instruction classes contain logic to preserve referential integrity across changes

 129

to the class file. For example, a Branch instruction automatically updates its offset

field if new instructions appear between the branch and its target. Figure 7-7 shows

the hierarchy of the classes representing the bytecode instructions.

7.2.2 Class Modification

The jobs performed at class-level modification are adding new fields as

security-level container for the original fields and the class itself, and invoking

method-level modification for each method in the class.

For the original field of primary types, we add one field of type byte . For the

original field of an array for primary types, we add one field of byte array with the

same dimension as the original one. And for the field of classes or array for classes,

we add one field of the same type as the original one. Beside these, we also add one

field of type byte as the security-level container for the class itself. The added

field’s name is the original field’s name suffixed with “_SL”. The added field has

the same access flag as the original one. Since there are no ordering constraints on

the Constant Pool and Fields structures of Java class file, any new fields and

entries could be appended rather than inserted in the middle in order to preserve the

indices of existing entries.

In order to judge the type of the field and thus add new field of proper type, we

generated a class TypeParser to parse the method’s descriptor to an array of

variables’ descriptors, and judge the type that one variable’s descriptor represents.

Figure 7-8 shows part of the program of adding fields.

Field[] fields = classInfo.getFields();//All origin al fields

if (fields != null && fields.length > 0){

for (int i=0; i < fields.length; i++){
Field field = fields[i];
String descriptor = field.getDescriptor();

int typeOfFiled = TypeParser. judgeType(descriptor);

//Add new field
Field newField = null;
String fieldName = field.getName();
String newFieldName = fieldName+ TypeParser. SL_SUFFIX;

 130

Figure 7-8. Part of the program of adding fields.

After the fields adding, the method-level modification should be invoked for

each method in the class file, which is performed by the method modifyMethods

shown in Figure 7-9.

Figure 7-9. The program of invoking method-level modification.

7.2.3 Method Modification

Method-level modification is the main part of the whole modification. The tasks

performed here are adding security-level containers for parameters, modifying the

indexOfName = cp.getUtf8(newFieldName).getIndex();
int indexOfDescriptor;
if (typeOfFiled == TypeParser. WRONG_TYPE){

throw new IllegalArgumentException();
}else if (typeOfFiled == TypeParser. PRIMARY_TYPE){//primary

indexOfDescriptor = indexOfByteInCP;
newField = new Field(newFieldName, Type. BYTE);

}else if (typeOfFiled%10 == TypeParser. PRIMARY_TYPE){//array
ArrayType arrayType =

new ArrayType(Type. BYTE, typeOfFiled/10);
indexOfDescriptor =

cp.getUtf8(arrayType.getDescriptor()).getIndex();
newField = new Field(newFieldName, arrayType);

}else {//class or array of class
newField = new Field(newFieldName, field.getType()) ;
indexOfDescriptor = cp.getUtf8(descriptor).getIndex ();

}

 newField.setDesc_index(indexOfDescriptor);
 newField.setName_index(indexOfName);
 newField.setClassInfo(classInfo);
 classInfo.addField(newField);

}
}

private void modifyMethods(){
 //all the methods of the Class file

Method[] methods = classInfo.getMethods();

if (methods != null && methods.length > 0){
 for(int i = 0; i < methods.length; i++){

MethodModifier mm = new MethodModifier(methods[i], cp);
mm.modifyMethod();

 }
}

}

 131

return type, adding security-level containers for local variables, increasing the stack

size, locating the implicit blocks’ scopes, and the most important one, inserting the

verification instructions.

� Modifying method’s descriptor

Adding security-level containers for parameters means to modify the

descriptor of the method, that is, to insert the descriptor of the new parameter

into the method’s original descriptor. In order to keep the alternate order of

variables and their security-level containers, we insert the descriptor of the new

parameter just after the descriptor of the original one. The rules used to decide

types of new parameters are the same as the ones used when we add new fields.

Figure 7-10. Part of the program of modifying the method’s descriptor.

The return type of one method is also defined in the method’s descriptor. In

if (numOfParams > 0) {
for (int i = 0; i < numOfParams; i++) {

String paramType = paraRetTypes [i];
newDescriptor.append(paramType);
int type = TypeParser. judgeType(paramType);

if (type == TypeParser. WRONG_TYPE){

throw new IllegalArgumentException();
}else if (type == TypeParser. PRIMARY_TYPE){

newDescriptor.append(TypeParser. BYTE);
}else if (type % 10 == TypeParser. PRIMARY_TYPE){//array

newDescriptor.append(paramType.substring(0, type / 10)
+ TypeParser. BYTE);

}else {//class or array of class
newDescriptor.append(paramType);

}
}

}
// modify the return type if it is not Void;
String returnType = paraRetTypes[numOfParams];
int type = TypeParser. judgeType(returnType);
if (TypeParser. VOID_TYPE == type) {

newDescriptor.append(returnType);
} else {

newDescriptor.append('['];
newDescriptor.append(returnType);

}
// Set new Descriptor to Constant Pool
int constantIndex = method.getDesc_index();
cp.getUtf8(constantIndex).setString(newDescriptor.t oString());

 132

order to return the security-level of the result, we assemble an array by the result

and its security-level and return the array as the execution result of the method.

At Figure 7-10 shows part of the program modifying the method’s descriptor.

� Adding local variables

Adding security-level containers for local variables is almost same as adding

security-level containers for parameter on theory. But they are quite different in

implementation and the former is much more difficult than the later. All

parameters of one method are defined in one item in the constant pool, while the

local variables are defined in the LocalVariableTable attribute separately.

To add a local variable, we need to define its available scope in instructions, its

name index and descriptor in constant pool, and its index in all local variables.

Similar to parameters, in order to keep the alternate order of variables and their

security-levels, we insert new local variables into the original ones rather than

append them. Thus we also need to recalculate the index of all local variables

and the operands of the instructions using local variables. Figure 7-11 shows part

of the program adding local variables and recalculating the index.

Figure 7-11. Part of the program of adding local variables.

� Increasing stack size

if (lvType == TypeParser. PRIMARY_TYPE) {//primary type
descriptorIndex = indexOfByteInCP;

}else if(lvType%10 == TypeParser. PRIMARY_TYPE){//array
String descriptor = lve.getDescriptor()

.substring(0,lvType/10)+TypeParser. BYTE;
descriptorIndex = cp.getUtf8(descriptor).getIndex() ;

} else {//class or array of class
descriptorIndex = cp.getUtf8(lve.getDescriptor()).g etIndex();

}

LocalVariableEntry newLve = new LocalVariableEntry(lve.getStart(),

lve.getLength(), nameIndex, descriptorIndex, lvPosi ton + 1);
newLve.setStart_inst(lve.getStart_inst());
newLve.setEnd_inst(lve.getEnd_inst());
newLve.setCpool(cp);
lvEntries.add(lvPositon + 1, newLve);

// Modify the frame index of the original lv
lve.setFrame_index(lvPositon);

// Deal with the LocalVarible
code.addLocalAt(lvPositon + 1, lvPositon + 1);

 133

For the operands on the stack, we also need to keep the variables and their

security-levels in alternate order. This order is kept by using correct instructions

to push and pop operands to and from stack. We need not do anything to the

stack except double the size of the stack, since we push the security-level of each

operand to the stack.

� Locating implicit blocks’ scopes

In order to calculate the correct security-levels of variables, we need to know

which instructions are in the implicit blocks and what are the environment

security-levels of those implicit blocks. As we have discussed in Chapter 4, the

if-instructions and switch instructions can cause implicit blocks. And we also

give the algorithm to locate the scope of implicit blocks, including nest ones.

To implement the algorithms, we use one variable impBlkScps of type

Stack to manage the scopes of implicit blocks. We also use two arrays of type

int to represent the implicit block and all the instructions’ implicit-block

layer-number as shown in Figure 7-12. We loop all instructions of the method to

find the if-instructions and switch . Before we locate the scopes of the implicit

blocks caused by one if-instruction or Switch , we need to decide the current

implicit block, that is, the instruction is in any outer implicit blocks. We peek the

scope on the top from impBlkScps . If the address of current instruction is in

the scope, the scope of the current implicit block is the one just peeked. Or the

loop has exited the scope, and we pop the implicit block since it will not be used

any more.

Figure 7-12. The arrays representing the implicit block and instructions’ layers.

When the loop encounters one if-instruction or switch , we located the

scopes of implicit blocks according to the algorithms in Chapter 4. Then we push

int[] impBlkScope = { startAddr, endAddr, LayerNo } ;

The first element represents the start address, the second element represents the end
address, and the third element represents the layer number.

int[] instrLayerNo = new int [maxAddr]

maxAddr is the max address of instructions in the method.

 134

the scopes to the variable impBlkScps ascending (at first push the scope of the

block appearing later in the instruction sequence, then the scope of the one

appearing earlier). At last we set the implicit-block layer-number of the

instructions in one implicit block to its layer number. Figure 7-13 shows part of

the program of deciding current implicit block and locating the scopes of implicit

blocks.

while (iter.hasNext()) {
Instruction instr = iter.nextInstruction();
int addr = instr.getAddr();

// find the current implicit scope
while (!impBlkScps.isEmpty()) {

nextImpBlkScp = (int[]) impBlkScps.peek();
if (addr <= nextImpBlkScp[1] && addr >= nextImpBlkS cp[0]) {

curImpBlkScp = nextImpBlkScp;
break;

} else {// exit nextImpBlk
curImpBlkScp = null;
impBlkScps.pop();

}
}

if (curImpBlkScp != null) {

outerBlkStart = curImpBlkScp[0];
 outerBlkEnd = curImpBlkScp[1];
 curLayerNo = curImpBlkScp[2];

}else{
 outerBlkStart = 0;
 outerBlkEnd = maxAddr;
 curLayerNo = 0;

}

// if-instruction
if (Instruction. isIfInstruction(instr)) {

int addr = instr.getAddr();// I
 int op = instr.getOp();// j

 if (op < 0) {// loop

int[] tempScope = { addr + op, addr - 1 };
pushImpScp(tempScope);

 } else {
Instruction instrBfreTar =

splice.getPrevious(instr.getTarget());
int addr2 = instrBfreTar.getAddr();// i'

if (instrBfreTar.getOpcode() == Opcode. GOTO

 || instrBfreTar.getOpcode() == Opcode. GOTO_W) {
int op2 = instrBfreTar.getOpcode();// j'
if (op2 < 0) {// loop

int[] tempScope={ addr + 1, addr2 - 1, curLayerNo + 1};
pushImpScp(tempScope);
} else {// two branches, common if-instruction

 135

Figure 7-13. Part of the program locating implicit blocks.

� Tracing information flow

Inserting instructions to trace the information flow is the most important part

of the method-level modification. What we should do here is to insert proper

instructions to implement that loading security-level to stack, calculating LUB of

security-level and store the security-level back to local variables or fields.

During the operation be the inserted instruction, we should keep two rules: 1.

When the JVM executes one original bytecode instruction, the operands used by

the instruction on the stack should be laid as if no instruction is inserted, which

assure that the inserted instructions has no side affect on the original function of

the bytecode; 2. When the JVM executed the original instruction and the

instructions inserted for it, the operands on the stack should keep the alternate

order of variables and their security-levels, which assure that we may insert

instructions for single original instruction and need not to consider the context.

To keep the two rules, we load the security-level after the variable, and store

the security-level before the variable. As for the instruction operating two or

more operands, we add several local variables and use them as temporary

containers for security-level or variables when we arrange the operands on the

int[]tempScope2={addr+op,addr2+op2-1,curLayerNo+1};
pushImpScp(tempScope2);
int[] tempScope1={addr+1,addr2 - 1, curLayerNo + 1 };
pushImpScp(tempScope1);

}
} else if (instrBfreTar.getOpcode() == Opcode. ARETURN

|| instrBfreTar.getOpcode() == Opcode. RETURN) {
int[] tempScope2={addr + op, maxAddr - 1, curLayerN o + 1};
pushImpScp(tempScope2);
int[] tempScope1 = { addr + 1, addr2 - 1, curLayerN o + 1 };
pushImpScp(tempScope1);

} else {
int[] tempScope={addr + 1, addr + op - 1, curLayerN o + 1 };
pushImpScp(tempScope);

}
}...

}else if (instr.getCategory() == ByteCode. CAT_SWITCH) {
...
...
...
}

}

 136

stack, and insert a little complicate instruction to keep the two rules above.

Figure 7-14 shows part of the program inserts instructions for loading

security-levels and calculating security-levels.

Figure 7-14. Part of the program inserting instructions.

Furthermore, we add a local variable of type int[] to store the environment

security-level of each implicit block layer. So that we can know correct

environment security-level every original instruction according to the

implicit-block layer-number of the instruction. Thus we also need to insert

instructions to manage the environment security-level’s array. Figure 7-15 shows

private void insertCodeForCompare(Instruction instr){
splice.insertBefore(instr, getCodeForESL());
splice.insertAfter(instr, loadTempSL);

}

private void insertCodeForLoad(Load instr){

Instruction load = null;
int lvNo = instr.getOperandIndex();
if (instr.getOpcode() == Opcode. ALOAD){

load = new Load(Opcode. ALOAD, lvNo + 1 , code);
}else{

load = new Load(Opcode. ILOAD, lvNo + 1 , code);
}
splice.insertAfter(instr, load);
iter.forward(1);

}

private Splice getCodeForESL(){

Splice splice = new Splice();
//Store the second operand to temp-Operand local va riable
int operandType = ((Integer)operandTypes.peek()).in tValue();
int index = indexOfTempOperand[operandType] ;
short formOp = (short)(Opcode. ISTORE + operandType);
Instruction instrStoreOp = new Store(formOp, index, code);
splice.append(instrStoreOp);
//Load the second operand from temp-Operand local variable
Instruction instrLoadOp =

new Load((short)(formOp - 33), index, code);

//insert instructions
splice.append(storeTempSL);
splice.append(instrStoreOp);
splice.append(loadTempSL);
splice.append(spliceOfLUB);
splice.append(instrLoadOp);
return splice;

}

 137

an example of calculating the environment security-level and storing it.

Figure 7-15. Part of the program dealing with environment security-level.

/**
* insert verification code for switch-instruction
*
* @param instr
*/

public void insertInstrForSwitch(Switch instr) {

splice.insertBefore(instr, storeTempSL);

// calculate the LUB of ESL and outer layer ESL
int layerNo = instrLayerNo[instr.getAddr()];
if (layerNo > 0) {

Splice spliceESL = new Splice();
 Instruction instrPushIndex = new ConstantInst(laye rNo - 1);
 Instruction instrLoadESL = new Load(Opcode. BALOAD, code);
 spliceESL.append(loadTempSL);
 spliceESL.append(loadESLsRef);
 spliceESL.append(instrPushIndex);
 spliceESL.append(instrLoadESL);
 spliceESL.append(spliceOfLUB);

splice.insertBefore(instr, spliceESL);
}

// store the ESL to ESLs
Instruction instrPushIndex = new ConstantInst(layer No);
Instruction instrStoreESL = new Store(Opcode. BASTORE, code);

Splice spliceESLs = new Splice();

spliceESLs.append(loadESLsRef);
spliceESLs.append(instrPushIndex);
spliceESLs.append(loadTempSL);
spliceESLs.append(instrStoreESL);

splice.insertBefore(instr, spliceESLs);

// set ESL to curESL
Instruction instrStoreCurESL =

new Store(Opcode. ISTORE, indexOfCESL, code);
splice.insertBefore(instr, loadTempSL);
splice.insertBefore(instr, instrStoreCurESL);

}

 138

7.3 Examples of Applying BMOS

To prove the validity of our new security model and dynamic approach, we give

examples of applying our verification system BMOS to an agent system

AgentSpace to verify the security of agents.

7.3.1 Applying MOBS in AgentSpace

� AgentSpace system

We use an agent system called AgentSpace (http://research.nii.ac.jp/~ichiro

/agent/agentspace.html) to demonstrate how to apply our verification method to one

agent system.

Figure 7-16. Architecture of AgentSpace system.

The runtime system of AgentSpace is shown in Figure 7-16. In AgentSpace, a

mobile agent is a Java object containing code and state, and it can be transmitted to

a remote host and then be executed.

In AgentSpace system, the AgentServer works as the platform of the mobile

agent system. And AgentReceiver, AgentMonitor and AgentSender, are used to

perform the agent operations. The AgentReceiver listens to the socket in order to

receive any agent from other hosts. If the AgentReceiver gets any agent, the

AgentLoader will transform the serialized data to one object representing the agent

and register the agent to the AgentManager. The AgentManager manages all the

agents running on the host, and will initialize a thread for each agent and invoke the

 139

method arrive() to make the agent begin its work. AgentMonitor watches over

and executes the operation done on the agents by the host user. And before the

AgentSender sends the agent to its next destination, the method dispatch() of the

agent is invoked to do the wrapping operation. The receiving process and the

sending process of one agent on a host in the AgentSpcae system are shown in

Figure 7-17 and Figure 7-18.

Figure 7-17. Agent receiving process in AgentSpace.

AgentReceiver starts

AgentReceiver listens
to the socket

Does

AgentReceiver
receive any
agent?

N

Y

AgentLoader reads
serialized data and

creates agent instance

AgentLoader registers
agent to

AgentManager

AgentManager
initializes a thread to

run agent

AgentManager
invokes arrive() of the

agent

 140

Figure 7-18. Agent sending process in AgentSpace.

� AgentSpace system with embedded modifier

In the AgentSpace system, the security issues are not considered. Therefore, we

embed our verification system into AgentSpace in order to protect the host security

from agents. The modified architecture of AgentSpace is shown in Figure 7-19.

Figure 7-19. Architecture of AgentSpace system with modifier.

Dispatch() of method
is invoked

AgentSender
serializes the code

and state of the agent

AgentSender
unregisters the agent
from AgentManager

AgentSender sends
the serialized data to
a next destination

AgentManager kills
the thread of the

agent

Agent Context

Agent Runtime

Java VM

 Modifier

OS + Hardware

Modified Agent

☺

 141

As discussed in Chapter 5, the task of the modifier is to insert verification code

into classes of mobile programs, which are agents in the AgentSpace system. The

inserted code includes the code calculating security-levels and the code detecting

data-leaking. And since the data-leaking channels have two types (data-leaking

through network connection built by the mobile code itself and data-leaking

through the movement of the mobile code), the code detecting data-leaking can be

divided into two parts detecting the two types of data-leaking further.

The code calculating security-levels and the code detecting data-leaking through

network connection built by the mobile code should be inserted into all the classes

of the mobile program and such insertion is independent of the mobile code system.

Thus such codes should be inserted by the modifier to the agent’s classes in

AgentSpace system.

 The insertion of the code detecting the data-leaking through the movement of

the mobile code is dependent on the architecture of the mobile code system. In the

AgentSpace system, the state of one agent can also be transferred with the agent

between hosts. When the agent moves to the next destination, the information held

in its fields will be taken out of the local host. Thus, according to our security

model, the information in the fields should be checked before the agent moves to

the next destination. Since the method dispatch() will be invoked by the

AgnetManager before the AgentSpace system sends out the agent, the modifier

should insert such checking codes into the method dispatch() .

The timing of invoking the modifier should be late enough that the code of the

agent is read from the serialized data, and also early enough that the object of the

agent has not been created. In AgentSpace, the method agentClassDataLoad
of the class AgentClassLoader is used to unzip and read the code of the agent

from serialized data. Thus we add the code of invoking our modifier to the method

agentClassDataLoad as shown in the box of Figure 7-20. In this way, every

agent loaded into the local host will be modified and inserted with verification

codes; and the agent will be verified during its execution.

 142

Figure 7-20. Code added into AgentLoader to invoke the modifier.

The execution and verification process of the agent in AgentSpace system with

embedded modifier is shown in Figure 7-21.

When one agent arrives at a host, the AgentLoader reads the serialized data and

then invokes the modifier to modify the classes of the agent. Verification code is

inserted into the agent, especially the code checking the information in all the fields

into the method dispatch() . And then the AgentLoader creates one instance of

the modified agent. After the AgentManager initializes a thread and makes the

instance of the agent run, the method arrive() is invoked by the AgentManager

and the agent begins its work. During the execution of the modified agent, the

public Hashtable agentClassDataLoad(byte[] data) {
try {

ByteArrayInputStream byteInStream =
new ByteArrayInputStream(data);

ZipInputStream zipInStream =
new ZipInputStream(byteInStream);

 ZipEntry zipEnt;
 while ((zipEnt = zipInStream.getNextEntry()) != null) {
 String entryName = zipEnt.getName();
 if (entryName.startsWith("META-INF")) {
 continue;
 }
 int count;
 ByteArrayOutputStream byteOutStream =

new ByteArrayOutputStream();
 byte[] classBytes = new byte[1024];
 while ((count = zipInStream.read(classBytes)) != -1) {
 byteOutStream.write(classBytes, 0, count);

}
 byte[] bytes = byteOutStream.toByteArray();

 //Code added to embed BMOS to AgentSpace

ClassInfo ci = new ClassInfo(bytes, true);
 ClassModifier cm = new ClassModifier(ci);
 cm.modifyClass();
 bytes = ci.writeToBytes();

cache .put(entryName, bytes);
 }
 zipInStream.close();
 byteInStream.close();

} catch (IOException e) {
 System. err.println(e);

}
return cache ;

}

 143

security-levels are calculated. And if the agent tries to send out any data through the

network connection, the data to be sent will be checked to detect data-leaking. If

any data-leaking is detected, an exception will be thrown out and the execution is

interrupted to prevent the data-leaking from happening.

Figure 7-21. Agent receiving process in AgentSpace with modifier.

Dispatch() of method
is invoked

AgentManager kills
the thread of the
modified agent

Detect
data-leaking

AgentLoader reads
serialized data

Modifier is invoked

AgentLoader creates
instance of modified

agent

AgentLoader
registers agent to
AgentManager

AgentManager
initializes a thread to
run modified agent

AgentManager
invokes arrive() of
modified agent

Modified agent
performs its works

and detects
data-leaking

 144

When the work of the agent finished, the agent will move to its next destination.

Before the agent is sent out, the method dispatch() will be invoked by the

AgnetManager. The code inserted into the method dispatch() will check the

information stored in all the fields of the agent. If the information is sent to one

unauthorized host, an exception will be thrown out and the execution is interrupted

to prevent the data-leaking from happening. If no data-leaking is detected, the agent

will be sent to its next destination.

7.3.2 Example Agent

Here we give an example agent of AgentSpace system to show how the modifier

works. The agent Evaluation is a quite simple tool to calculate the estimated

salary based on the education, working years and the age of the user. And if the

user agrees, the agent will take or send the result back to its original host, or it will

discard the result.

We implemented two versions of the agent Evaluation . The difference

between the two versions is the way of sending the estimated salary. One version

uses the field to take the estimated salary back to the original host; while the other

version will send the estimated salary back to the original host directly by socket

built by the agent itself. We discuss the verification process of the two versions in

the AgentSpace system with embedded modifier respectively.

� Agent Evaluation of the version I

In this version, the agent Evaluation will use the field salary to take the

estimated salary back to the original host. The Java source code is shown in Figure

7-22.

 145

Figure 7-22. Java source ode of the sample agent Evaluation of the version I.

When the agent Evaluation of the version shown in Figure 7-22 arrives at a

host, the AgentListener passes the serialized data to the AgentLoader to create the

instance of the agent. After the AgentManager initializes a thread and make the

instance of the agent Evaluation run, the method arrive() is invoked by the

AgentManager and the agent begins its works. In method evaluation() , the

public class Evaluation extends Agent{
private int salary = 0;

public void arrive(){
 evaluation(28, 2, 3, 1);
}

public void evaluation(int age, int workingYears,

int education, int sendFlag){
 int result = 0;
 int baseSal = 0;
 int ageToWork = 0;
 switch (education) {
 case 0: // High schoole
 baseSal = 200;
 ageToWork = 18;
 break;
 case 1: // Bachelor
 baseSal = 300;
 ageToWork = 22;
 break;
 case 2: // Master
 baseSal = 400;
 ageToWork = 24;
 break;
 case 3: // Doctor
 baseSal = 500;
 ageToWork = 27;
 break;
 case 4: // post doctorate
 baseSal = 550;
 ageToWork = 30;
 }

result = baseSal+(workingYears*2-(age-ageToWork))*2 0;

 if (sendFlag == 1) { // the user agrees to send
 salary = result;
 }

}

public void dispatch(){}

}

 146

salary is calculated based on the age, working years and education; and the result is

stored in the temporary variable result . Thus variable result will get the

information of the variables age , workingYears and education . And then

the value of result is transferred to the field salary if the variable sendFlag

is “1”; in this case the field salary gets the information of the variables age ,

workingYears and education indirectly. After the execution of the method

evaluation() , the AgentManager will invoke the method dispatch() and

then the AgentSender will send the agent Evaluation to its next destination with

the field salary . Obviously, the information held in the field salary will be

taken out of the local host and may be leaked to some unauthorized hosts.

Our approach can be used to trace the information flow and detect possible

data-leaking in the agent Evaluation of version I. When the agent

Evaluation shown in Figure 7-22 arrives at a host where the modifier is

embedded into the AgentSpace system as shown in Figure 7-20, the AgentReceiver

of the local AgentSpace system detects it and passes the agent to the AgentLoader.

After the AgentLoader reads bytecode of the agent, the modifier is invoked to

modify the agent and insert the verification codes into the agent. Then the

AgentLoader will generate the agent instance based on the modified bytecode

instead of the original bytecode.

In Figure 7-23, we give the original bytecode of the method evaluation() in

the agent Evaluation of version I and the modified bytecode generated by our

modifier described above. In the modified bytecode shown in Figure 7-23(b), the

bold codes are the original codes of the method evaluation() (the indices of

local registers have been changed) and others are the codes inserted to calculate the

security-levels. Especially, the codes in shadow are the codes used to calculate the

LUB of two security-levels. And in Figure 7-24, we give the code inserted into the

method dispatch() to detect data-leaking through the movement of the agent.

 147

a. original bytecode.

0 iconst_0
1 istore 5
3 iconst_0
4 istore 6
6 iconst_0
7 istore 7
9 iload_3
10 tableswitch
 0: 44 (34)
 1: 56 (46)
 2: 68 (58)
 3: 80 (70)
 4: 92 (82)
 default: 101(91)
44 sipush 200
47 istore 6
49 bipush 18
51 istore 7
53 goto 48
56 sipush 300
59 istore 6
61 bipush 22
63 istore 7
65 goto 36
68 sipush 400
71 istore 6
73 bipush 24
75 istore 7
77 goto 24
80 sipush 500

83 istore 6
85 bipush 27
87 istore 7
89 goto 12
92 sipush 550
95 istore 6
97 bipush 30
99 istore 7
101 iload 6
103 iload_2
104 iconst_2
105 imul
106 iload_1
107 iload 7
109 isub
110 isub
111 bipush 20
113 imul
114 iadd
115 istore 5
117 iload 4
119 iconst_1
120 if_icmpne 9
123 aload_0
124 iload 5
126 putfield 12
129 aload_0
130 invokevirtual 32
133 return

 148

0 sipush 255
3 newarray 8
5 astore 16
7 iconst_0
8 iconst_0
9 istore 11
11 istore 10
13 iconst_0
14 iconst_0
15 istore 13
17 istore 12
19 iconst_0
20 iconst_0
21 istore 15
23 istore 14
25 iload 6
27 iload 7
29 aload 16
31 iconst_1
32 bastore
33 tableswitch
 0: 67(34)
 1: 127(94)
 2: 187(154)
 3: 247(214)
 4: 307(274)
 default: 364(331)
67 sipush 200
70 iconst_0
71 aload 16
73 iconst_1
74 baload
75 istore 18
77 istore 19
79 iload 19
81 iload 18
83 if_icmplt 7
86 iload 19
88 istore 18
90 iload 18
92 istore 13
94 istore 12
96 bipush 18
98 iconst_0
99 aload 16
101 iconst_1
102 baload
103 istore 18
105 istore 19
107 iload 19
109 iload 18
111 if_icmplt 7
114 iload 19
116 istore 18
118 iload 18
120 istore 15

122 istore 14
124 goto 240
127 sipush 300
130 iconst_0
131 aload 16
133 iconst_1
134 baload
135 istore 18
137 istore 19
139 iload 19
141 iload 18
143 if_icmplt 7
146 iload 19
148 istore 18
150 iload 18
152 istore 13
154 istore 12
156 bipush 22
158 iconst_0
159 aload 16
161 iconst_1
162 baload
163 istore 18
165 istore 19
167 iload 19
169 iload 18
171 if_icmplt 7
174 iload 19
176 istore 18
178 iload 18
180 istore 15
182 istore 14
184 goto 180
187 sipush 400
190 iconst_0
191 aload 16
193 iconst_1
194 baload
195 istore 18
197 istore 19
199 iload 19
201 iload 18
203 if_icmplt 7
206 iload 19
208 istore 18
210 iload 18
212 istore 13
214 istore 12
216 bipush 24
218 iconst_0
219 aload 16
221 iconst_1
222 baload
223 istore 18
225 istore 19
227 iload 19

229 iload 18
231 if_icmplt 7
234 iload 19
236 istore 18
238 iload 18
240 istore 15
242 istore 14
244 goto 120
247 sipush 500
250 iconst_0
251 aload 16
253 iconst_1
254 baload
255 istore 18
257 istore 19
259 iload 19
261 iload 18
263 if_icmplt 7
266 iload 19
268 istore 18
270 iload 18
272 istore 13
274 istore 12
276 bipush 27
278 iconst_0
279 aload 16
281 iconst_1
282 baload
283 istore 18
285 istore 19
287 iload 19
289 iload 18
291 if_icmplt 7
294 iload 19
296 istore 18
298 iload 18
300 istore 15
302 istore 14
304 goto 60
307 sipush 550
310 iconst_0
311 aload 16
313 iconst_1
314 baload
315 istore 18
317 istore 19
319 iload 19
321 iload 18
323 if_icmplt 7
326 iload 19
328 istore 18
330 iload 18
332 istore 13
334 istore 12
336 bipush 30
338 iconst_0

 149

b. modified bytecode.

Figure 7-23. Java bytecode of the method evaluation () of version I.

In the execution of the modified method evaluation() shown in Figure

7-23(b), the codes at address from 33 to 362 will assign the initial values to the

variable baseSal and ageToWork based on the value of the variable

education , and calculate the security-levels of them. The codes at address from

364 to 514 will calculate the estimated salary and store it in the variable result ;

339 aload 16
341 iconst_1
342 baload
343 istore 18
345 istore 19
347 iload 19
349 iload 18
351 if_icmplt 7
354 iload 19
356 istore 18
358 iload 18
360 istore 15
362 istore 14
364 iload 12
366 iload 13
368 iload 4
370 iload 5
372 iconst_2
373 iconst_0
374 istore 18
376 istore 20
378 iload 18
380 istore 18
382 istore 19
384 iload 19
386 iload 18
388 if_icmplt 7
391 iload 19
393 istore 18
395 iload 20
397 imul
398 iload 18
400 iload_2
401 iload_3
403 iload 14
405 iload 15
407 istore 18
409 istore 20
411 iload 18
413 istore 18
415 istore 19

417 iload 19
419 iload 18
421 if_icmplt 7
424 iload 19
426 istore 18
428 iload 20
430 isub
431 iload 18
433 istore 18
435 istore 20
437 iload 18
439 istore 18
441 istore 19
443 iload 19
445 iload 18
447 if_icmplt 7
450 iload 19
452 istore 18
454 iload 20
456 isub
457 iload 18
458 bipush 20
461 iconst_0
462 istore 18
464 istore 20
466 iload 18
468 istore 18
470 istore 19
472 iload 19
474 iload 18
476 if_icmplt 7
479 iload 19
481 istore 18
483 iload 20
485 imul
486 iload 18
488 istore 18
490 istore 20
492 iload 18
494 istore 18
496 istore 19

498 iload 19
500 iload 18
502 if_icmplt 7
505 iload 19
507 istore 18
509 iload 20
511 iadd
512 iload 18
514 istore 11
516 istore 10
518 iload 8
520 iload 9
522 iconst_1
523 iconst_0
524 istore 18
526 istore 20
528 iload 18
530 istore 18
532 istore 19
534 iload 19
536 iload 18
538 if_icmplt 7
541 iload 19
543 istore 18
545 aload 16
547 iconst_1
548 iload 18
550 bastore
551 iload 20
553 if_icmpne 20
556 aload_0
557 aload_1
558 iload 10
560 iload 11
562 istore 18
564 swap
565 iload 18
567 putfield 22
570 putfield 12
573 return

 150

the security-level of the estimated salary is calculated as well by these codes. If the

sendFlag is “1”, the codes at address from 556 to 570 will set the estimated

salary to the field salary and update the security-level of the field. And in the

modified code, the codes at address from 29 to 32 and from 524 to 550 are used to

calculate the environment security-level of the implicit blocks caused by the

instructions tableswitch and if_icmpne.

Figure 7-24. The bytecode of the modified method dispatch() .

In such a way, the security-levels of all the variables can be calculated.

Furthermore, different from static approaches, our approach will update the

security-level of the field salary only when the filed does get the information in

the variables age , workingYears and education . Thus the information flow

in the method evaluation() can be traced precisely and the preparation of

detecting data-leaking can be done well.

As mentioned above, the information held in the fields of one agent will be taken

out of the local host when the agent moves to next destination. In the case of the

agent Evaluation , the information held in the field salary will be taken to the

next destination host. The codes inserted into the method dispatch() as shown

in Figure 7-24 compare the security-level of the information in the field salary

(stored in the added field indicated by the index 22 in the constant pool) with the

clearance-level of the next destination host (stored in static field indicated by the

index 29 in the constant pool). And the codes will throw an exception if the

security-level is greater, which means that a data-leaking happens.

0 aload_0
1 getfield 22
4 getstatic 29
7 if_icmple 11
10 new 50
13 dup
14 invokespecial 52
17 athrow
18 return

 151

� Agent Evaluation of the version II

In this version, the agent Evaluation will send the estimated salary back to

the original host through a socket directly. The Java source code is shown in Figure

7-25.

Figure 7-25. Java source ode of the sample agent Evaluation of the version II.

public class Evaluation extends Agent{
private final String hostName = "192.168.21.3" ;
private final int hostPort = 8080;

public void arrive(){
 evaluation(28, 2, 3, 1);
}

public void evaluation(int age, int workingYears,

int education, int sendFlag){
 int result = 0;
 int baseSal = 0;
 int ageToWork = 0;
 switch (education) {
 case 0: // High schoole
 baseSal = 200;
 ageToWork = 18;
 break;
 case 1: // Bachelor
 baseSal = 300;
 ageToWork = 22;
 break;
 case 2: // Master
 baseSal = 400;
 ageToWork = 24;
 break;
 case 3: // Doctor
 baseSal = 500;
 ageToWork = 27;
 break;
 case 4: // post doctorate
 baseSal = 550;
 ageToWork = 30;
 }

result = baseSal+(workingYears*2-(age-ageToWork))*2 0;

 if (sendFlag == 1) { // the user agrees to send
 Socket socket = new Socket(hostName , hostPort);
 OutputStream out = socket.getOutputStream();
 out.write(salary);
 }

}

public void dispatch(){}

}

 152

When the agent Evaluation of the version shown in Figure 7-25 arrives at a

host, the process of the agent is the same as the one shown in Figure 7-22 until the

value of the variable sendFlag is checked. Different from version I, the agent of

version II will send the variable result out through a socket if the variable

sendFlag is “1”. Obviously, the information held in the variable result will be

taken out of the local host and may be leaked to some unauthorized hosts. And in

version II, there are no fields used to take data out of the local host.

Our approach can be used to trace the information flow and detect possible

data-leaking in the agent Evaluation of version II, too. When the agent

Evaluation shown in Figure 7-25 arrives at a host where the modifier is

embedded into the AgentSpace system as shown in Figure 7-20, the AgentReceiver

of the local AgentSpace system detects it and passes the agent to the AgentLoader.

After the AgentLoader reads bytecode of the agent, the modifier is invoked to

modify the agent and verification code is inserted into the agent. Then the

AgentLoader will generate the agent instance based on the modified bytecode

instead of the original bytecode.

In Figure 7-26, we give the original bytecode of the method evaluation() in

the agent Evaluation of version II and the modified bytecode generated by our

modifier described above. In the modified bytecode shown in Figure 7-26(b), the

bold codes are the original codes of the method evaluation() (the indices of

local registers have been changed) and others are the codes inserted to calculate the

security-levels. Especially, the codes in shadow are the codes used to calculate the

LUB of two security-levels; and the codes in the black box are used to detect

data-leaking. Since no field is used to take data out of the local host, no verification

code is inserted into the method dispatch() .

 153

a. original bytecode.

0 iconst_0
1 istore 5
3 iconst_0
4 istore 6
6 iconst_0
7 istore 7
9 iload_3
10 tableswitch
 0: 44 (34)
 1: 56 (46)
 2: 68 (58)
 3: 80 (70)
 4: 92 (82)
 default: 101(91)
44 sipush 200
47 istore 6
49 bipush 18
51 istore 7
53 goto 48
56 sipush 300
59 istore 6
61 bipush 22
63 istore 7
65 goto 36
68 sipush 400
71 istore 6
73 bipush 24
75 istore 7
77 goto 24
80 sipush 500
83 istore 6
85 bipush 27
87 istore 7

89 goto 12
92 sipush 550
95 istore 6
97 bipush 30
99 istore 7
101 iload 6
103 iload_2
104 iconst_2
105 imul
106 iload_1
107 iload 7
109 isub
110 isub
111 bipush 20
113 imul
114 iadd
115 istore 5
117 iload 4
119 iconst_1
120 if_icmpne 31
123 new 44
126 dup
127 ldc 8
129 sipush 8080
132 invokespecial 46
135 astore 8
137 aload 8
139 invokevirtual 49
142 astore 9
144 aload 9
146 iload 5
148 invokevirtual 53
151 return

 154

0 sipush 255
3 newarray 8
5 astore 16
7 iconst_0
8 iconst_0
9 istore 11
11 istore 10
13 iconst_0
14 iconst_0
15 istore 13
17 istore 12
19 iconst_0
20 iconst_0
21 istore 15
23 istore 14
25 iload 6
27 iload 7
29 aload 16
31 iconst_1
32 bastore
33 tableswitch
 0: 67(34)
 1: 127(94)
 2: 187(154)
 3: 247(214)
 4: 307(274)
 default: 364(331)
67 sipush 200
70 iconst_0
71 aload 16
73 iconst_1
74 baload
75 istore 18
77 istore 19
79 iload 19
81 iload 18
83 if_icmplt 7
86 iload 19
88 istore 18
90 iload 18
92 istore 13
94 istore 12
96 bipush 18
98 iconst_0
99 aload 16
101 iconst_1
102 baload
103 istore 18
105 istore 19
107 iload 19
109 iload 18
111 if_icmplt 7
114 iload 19
116 istore 18
118 iload 18
120 istore 15

122 istore 14
124 goto 240
127 sipush 300
130 iconst_0
131 aload 16
133 iconst_1
134 baload
135 istore 18
137 istore 19
139 iload 19
141 iload 18
143 if_icmplt 7
146 iload 19
148 istore 18
150 iload 18
152 istore 13
154 istore 12
156 bipush 22
158 iconst_0
159 aload 16
161 iconst_1
162 baload
163 istore 18
165 istore 19
167 iload 19
169 iload 18
171 if_icmplt 7
174 iload 19
176 istore 18
178 iload 18
180 istore 15
182 istore 14
184 goto 180
187 sipush 400
190 iconst_0
191 aload 16
193 iconst_1
194 baload
195 istore 18
197 istore 19
199 iload 19
201 iload 18
203 if_icmplt 7
206 iload 19
208 istore 18
210 iload 18
212 istore 13
214 istore 12
216 bipush 24
218 iconst_0
219 aload 16
221 iconst_1
222 baload
223 istore 18
225 istore 19
227 iload 19

229 iload 18
231 if_icmplt 7
234 iload 19
236 istore 18
238 iload 18
240 istore 15
242 istore 14
244 goto 120
247 sipush 500
250 iconst_0
251 aload 16
253 iconst_1
254 baload
255 istore 18
257 istore 19
259 iload 19
261 iload 18
263 if_icmplt 7
266 iload 19
268 istore 18
270 iload 18
272 istore 13
274 istore 12
276 bipush 27
278 iconst_0
279 aload 16
281 iconst_1
282 baload
283 istore 18
285 istore 19
287 iload 19
289 iload 18
291 if_icmplt 7
294 iload 19
296 istore 18
298 iload 18
300 istore 15
302 istore 14
304 goto 60
307 sipush 550
310 iconst_0
311 aload 16
313 iconst_1
314 baload
315 istore 18
317 istore 19
319 iload 19
321 iload 18
323 if_icmplt 7
326 iload 19
328 istore 18
330 iload 18
332 istore 13
334 istore 12
336 bipush 30
338 iconst_0

 155

b. modified bytecode.

Figure 7-26. Java bytecode of the method evaluation () of version II.

In the execution of the modified method evaluation() shown in Figure

7-26(b), the information flow is the same as the one in the version I until the

instruction at address 553, which checks the value of the variable sendFlag . If

the variable sendFlag is “1”, the agent will send the value of the variable

339 aload 16
341 iconst_1
342 baload
343 istore 18
345 istore 19
347 iload 19
349 iload 18
351 if_icmplt 7
354 iload 19
356 istore 18
358 iload 18
360 istore 15
362 istore 14
364 iload 12
366 iload 13
368 iload 4
370 iload 5
372 iconst_2
373 iconst_0
374 istore 18
376 istore 20
378 iload 18
380 istore 18
382 istore 19
384 iload 19
386 iload 18
388 if_icmplt 7
391 iload 19
393 istore 18
395 iload 20
397 imul
398 iload 18
400 iload_2
401 iload_3
403 iload 14
405 iload 15
407 istore 18
409 istore 20
411 iload 18
413 istore 18
415 istore 19
417 iload 19
419 iload 18
421 if_icmplt 7

424 iload 19
426 istore 18
428 iload 20
430 isub
431 iload 18
433 istore 18
435 istore 20
437 iload 18
439 istore 18
441 istore 19
443 iload 19
445 iload 18
447 if_icmplt 7
450 iload 19
452 istore 18
454 iload 20
456 isub
457 iload 18
458 bipush 20
461 iconst_0
462 istore 18
464 istore 20
466 iload 18
468 istore 18
470 istore 19
472 iload 19
474 iload 18
476 if_icmplt 7
479 iload 19
481 istore 18
483 iload 20
485 imul
486 iload 18
488 istore 18
490 istore 20
492 iload 18
494 istore 18
496 istore 19
498 iload 19
500 iload 18
502 if_icmplt 7
505 iload 19
507 istore 18
509 iload 20

511 iadd
512 iload 18
514 istore 11
516 istore 10
518 iload 8
520 iload 9
522 iconst_1
523 iconst_0
524 istore 18
526 istore 20
528 iload 18
530 istore 18
532 istore 19
534 iload 19
536 iload 18
538 if_icmplt 7
541 iload 19
543 istore 18
545 aload 16
547 iconst_1
548 iload 18
550 bastore
551 iload 20
553 if_icmpne 47
556 new 44
559 dup
560 ldc 8
562 sipush 8080
565 invokespecial 46
568 astore 21
570 aload 21
572 invokevirtual 49
575 astore 23
577 aload 23
579 iload 10
581 ilaod 11
583 getstatic 33
586 if_icmple 11
589 new 50
592 dup
593 invokespecial 52
596 athrow
597 invokevirtual 53
600 return

 156

result out of the local host through the socket built by the instruction at address

565. Thus the inserted codes at address from 581 to 596 compare the security-level

of the information in the variable result (stored in the local register 11) with the

clearance-level of the destination host (store in stored in static field indicated by the

index 33 in the constant pool). And the codes will throw an exception if the

security-level is greater, which means that a data-leaking happens.

7.3.3 Evaluation

� Efficiency evaluation

For dynamic verification approach, the preparation time (the modification time in

our method) and the execution time increment are important evaluation factors. We

take the agent Evaluation shown above as the evaluation example and give the

result in Figure 7-27.

Test Environment:

OS: Windows Vista

JVM: JDK 1.4.2.16

CPU: Intel Core2 6320(1.86GHz)

Memory: 2.5G

 Original Modified Increase to

Number of Instruction 53 293 553%

Execution Time(ms) 92.2×10-7 441.5×10-7 478%

Modification Time (ms) 12

a. Evaluation result of version I

 Original Modified Increase to

Number of Instruction 60 294 490%

Execution Time(ms) 25.9 26.0 100.4%

Modification Time (ms) 13

b. Evaluation result of version II

Figure 7-27. Performance evaluation result of the agent Evaluation .

 157

Figure 7-28. The code used to execute the agent of version I 10 million times.

Since the execution time of the agent (no matter the original one or the modified

one) of the version I is too short to be measured, we add a loop in the

AgnetManager to execute the original agent and modified agent 10 million times;

public class AgentRuntime extends Thread {
 ...
 ...

public void run() {
theAgent = theInfo .getAgent();

 if (theAgent == null) {
 return;
 }
 if(theInfo .getAgentStatus().equals(AgentStatus. PREINIT)) {
 theInfo .setAgentStatus(AgentStatus. ONCREATE);
 theAgent .create();
 theInfo .setAgentStatus(AgentStatus. NORMAL);
 } else if (theInfo .getAgentStatus().

equals(AgentStatus. ONTRANSMIT)) {
 theInfo .setAgentStatus(AgentStatus. ONARRIVE);
 for (int i = 0; i < 10000000; i ++){

theAgent .arrive();
theAgent .dispatch();

}
 theInfo .setAgentStatus(AgentStatus. NORMAL);
 } else if (theInfo .getAgentStatus().

equals(AgentStatus. PERSISTENT)) {
 theInfo .setAgentStatus(AgentStatus. ONRESUME);
 theAgent .resume();
 theInfo .setAgentStatus(AgentStatus. NORMAL);
 } else if (theInfo .getAgentStatus().

equals(AgentStatus. CHILD)) {
 theInfo .setAgentStatus(AgentStatus. ONCLONE);
 theAgent .child(theInfo .getParentIdentifier());
 theInfo .setAgentStatus(AgentStatus. NORMAL);
 } else if (theInfo .getAgentStatus().

equals(AgentStatus. ERROR)) {
 theInfo .setAgentStatus(AgentStatus. ONEXCEPT);
 if (!(theAgent .except(theInfo .getAgentError()))) {
 theInfo .setAgentStatus(AgentStatus. DEATH);
 theInfo .setAgentError(null);
 return;
 }
 theInfo .setAgentError(null);
 theInfo .setAgentStatus(AgentStatus. NORMAL);
 } else {
 System. out.println("unknown status: " +

theInfo .getAgentStatus());
 }

...
 ...

 158

and then calculate the average time as the execution time of the original one and

modified one. And we also add code to invoke the method dispatch() in order

to make the result time involve the execution time of the method dispatch() .

The codes added into the AgentManager are the ones in the black box in Figure

7-28.

As for the execution time of the agent of version II shown in Figure 7-27(b), we

execute the original agent and modified agent 10 times respectively, and use the

average value as the result.

From the result shown in Figure 7-27, we can find that the execution times of

version I and version II are quite different though the numbers of the instructions of

them are almost same. The reason is that there is one instruction to build a socket

connection in version II. Such an operation will not finish until the other party

responds it through the next work; and costs quite more time than common

instructions that can be finished by the local JVM.

From the result of version I, we can get to know that the modification time is

short. For a class composed of 4000 instructions (the average number of

instructions in one Java core class is about 150), the modification will be finished

less than one second. While the number of instructions and the execution time

increase to about 5 times. This will slow down the execution speed. But considering

the time itself, the execution time of the modified agent is still too short to be felt

though it has increased to 5 times of original one. From the result, we can estimate

that: even for one agent composed of 600,000 instructions, the execution of the

modified agent will finish in 0.5 second. Therefore in some degree the additional

overhead caused by the code inserted is acceptable.

The result of version II also proved the execution time increment caused by

verification code is so small that it is can even be omitted. The number of modified

instructions increased to about 5 times of the original one. But the execution time of

original code and modified code is almost the same. The reason is that connecting

the socket (the instruction at address 132 in Figure 7-26(a)) occupied most (almost

100%) of the execution time; even the execution time of other codes is increased to

about 5 times by the verification codes, this part of execution time is still so small

 159

and can be omitted compared with the time of connecting socket. Thus the

execution times of original code and modified code are almost the same.

As for the codes detecting data-leaking in version I and II, we can estimate that

the execution time of these codes only takes up a small part of the total execution

time because 1. the codes do not include any instructions costing much time; 2. the

number of these codes only take a small part of total instructions (3% in version I

and 2.3% in version II).

� Security verification evaluation

In Figure 7-29, we compare our approach with type-system approaches and static

approaches of non-type-system on the aspect that whether the agent can be verified

correctly, that is, verified as malicious when data-leaking happens and as secure

when data-leaking does not happen.

1 2 3 4

Value of sendFlag is “1” ○ ○ × ×

CL ≥ SL × ○ × ○

Data-leaking happens ○ × × ×

Agent is Malicious or Secure M S S S

by Type-system
approaches

M M M M

by Static approach of
non-type-system

M S M S
Agent is

verified as

by Our approach M S S S

Figure 7-29. The comparison of our approach with type-system and static approaches.

(CL denotes the destination host’s clearance-level; SL denotes the LUB of the

security-levels of the age, workingYears and education; M denotes the agent is

verified as malicious; S denotes the agent is verified as secure.)

Compared with the type-system verification approaches, our approach is more

precise. For example, the variable baseSal in the method evaluation() will

get the information of the variables education . If the security-level of the

 160

variable baseSal is set lower (in fact the security-level of such temporary

variable is usually set to the lowest one in type-system) than the variables

education , the type-system approaches will reject the agent since they consider

that the instruction at address 44 in Figure 7-23(a) and Figure 7-26(a) causes one

data-leaking. Obviously such a judgment is wrong in the case 2, 3 and 4 in Figure

7-29. (In the case 1, though the type-system approaches can get a correct judgment,

they do not find the instruction that really caused data-leaking.) In our approach,

only the variable to be sent out of the local host will be checked whether a

data-leaking is caused. Thus the variable baseSal is not the checking target in our

approach in the all cases. In this way, the problem of imprecise verification is

overcome in our approach.

And as analyzed above, in the evaluation() shown in Figure 7-22, the field

salary will get information of variables age , workingYears and

education only when the sendFlag is “1”. But in static approaches, the field

salary is considered to get the information no matter the sendFlag is “1” or

not. If the clearance-level of the destination host is set lower than any one of the

variables age , workingYears and education , the static approaches will

consider that the agent causes one data-leaking since it will leak data to

unauthorized host, no matter the sendFlag is “1” or not. Obviously such

judgment is wrong when the sendFlag is not “1” (the case 3 in Figure 7-29).

While in our approach such misjudgment is avoided since our approach is dynamic

and updates the security-level of the information in the field salary only when

the sendFlag is “1”. Thus our approach will not make the misjudgment of

considering one agent as malicious for the unexecuted code; while such

misjudgment is not avoidable in static approaches. In this way, the verification

precision is improved further. As for the version II shown in Figure 7-25, the static

approaches will also make similar misjudgment while our approach can avoid such

mistake.

Based the analysis above, we can find that our verification approach resolved the

inherent problems of type-system verification approaches and the static verification

approaches and improved the verification precision. While the cost of the

improvement is the additional execution overhead caused by the code inserted to

calculate security-levels and detect data-leaking, which can usually be omitted.

 161

7.4 Discussion

7.4.1 Improvements

� Less restriction on mobile code program

In our approach, we only check and restrict the output operation of the

bytecode. The mobile programs can obtain any information (input) from the host

to perform their tasks. The restriction on mobile code program is less than that of

traditional access control approaches. A lot of mobile code program can be

implemented.

� Better verification granularity

In static approaches, all instructions of the bytecode are verified and the

bytecode will be rejected if there is any malicious section of instructions.

Different from static approaches, our dynamic approach achieved the runtime

verification of bytecode, and only verifies the sections of instructions that are

executed. In our approach, the bytecode will not be rejected by reason of its code

that will not be executed in runtime. Thus the verification precision is improved.

� Recursive method invoking

For static verification approaches, the analysis will never stop if a recursive

method is invoked. To solve this problem, some static approaches assume that

the return variable of one recursive method depends on all of the arguments,

which reduces the verification precision. In our approach, the verification of

recursive methods is resolved without any additional effort. Just like other

common methods, verification code is inserted into recursive methods. The

verification for recursive invoking starts when the recursive method begins to

invoke itself, and the verification finishes when recursive invoking stops. Thus in

our approach, the verification precision will not be reduced because of the

existence of recursive invoking.

 162

� Dynamic variables determination.

For static approaches, it is impossible to disclose the information flow caused

by the variables that are not determined until the program is executed. For

example, the name of a file used to read information from is obtained from the

console when the program is executed, so it is impossible to determine the

information flow between the file and other objects.

The similar case is the elements of the array. Not until the program is

executed, it is impossible to know which element of the array will be used. All

the elements of the array have to share the same security class, which causes the

security class of the element is too high and impairs the verification precision.

Our approach eliminates such limitation because it is dynamic verification

approach. The value of all variables can be determined when the verification is

performed. Thus our approach achieved better verification precision than static

approaches.

7.4.2 Preconditions

In order to implement my approach, some preconditions must be satisfied as

follows.

� Knowledge of API Definition

The first precondition is the knowledge of API definition used in the mobile

code. The definition here means the relation between the input and output. And

from it, the security-level relation between the input and output can be derived.

The APIs used in Java mobile code include the common Java API and the

original API.

As for the Java API, the definition has been defined clearly in the Java

platform specifications. Therefore, the security-level relation between the input

and the output could be derived. So in my approach, the Java API is considered

as a black box. The class files of Java APIs will not be modified, and the

 163

security-level relation is used to calculate the output security-level. A library of

the security-level relation should be built for the Java API.

Here is an example. For the method min () in the class math, the definition is

“Returns the smaller of two int values.” Therefore, I can derive the

security-level relation is that the security-level of the output should be the LUB

of security-levels of the two input.

As for the original API, if the Java class files are available, it will be

modified as same as other class files. If definition is available, it will be

considered as black box and the security-level relation library should be updated

to support the API. If nothing is available, the mobile code could not be

supported.

� Platform-independency of mobile code

The second precondition is the Platform-independency of mobile code. In

Java program, all methods can be divided into Java methods and native methods.

In the execution, the mobile code class files and necessary Java API class files

are loaded by the class loader. Then the execution engine will execute these class

files and invoke necessary native methods. Usually, the mobile code invokes the

proper Java APIs and then Java APIs invoke the native methods. This kind of

mobile code is called platform-independent code. Since my approach supports all

JVM instructions and considers the Java API as a black box, the

platform-independent mobile code is supported by my approach. While, some

mobile code invokes the native methods directly through the Java Native

Interface. And such mobile code is called platform-dependent code. Since the

native methods are written in other language rather than Java, this kind of mobile

code is not support by our approach.

� Knowledge of Migration Method

The third precondition is Knowledge of Migration Method. Since

information could be taken out when the mobile code moves to next destination,

data-leaking is checked before the mobile code migration. So where and when

 164

the mobile code migrates is necessary to my approach.

� Configuration files of security-level and clearance-level

The fourth precondition is the configuration files of security-level and

clearance-level. To judge a data-transferring is data-leaking or not, the

security-level of the data and the clearance-level of the destination host are

necessary. The configure file of security-level could be set by the local host user.

The user can assign proper security-level to his local resources to protect them.

In my approach, the security-level is defined in the format as shown in Figure

7-30. And some examples defining the security-levels of the personal

information are also shown in the figure. While the configure file of

clearance-level could also be set by the local host user if the data is transmitted in

a limited scope of hosts. Or, the clearance-level should be decided by the

negotiation between hosts. The format and examples of clearance-level are

shown in Figure 7-31.

Figure 7-30. Security-level configuration file format.

Figure 7-31. Clearance-level configuration file format.

7.4.3 Limitations

� Input/Output operation disclosing

Output operation disclosing is difficult because it contains a sequence of

operation. The following is an example program to write a line to a file. This

res.level = res 1, res 2,…

e.g. res.255 = /personal/income, /personal/address

 res.150 = /personal/birthday, /personal/telNo

 res.100 = /personal/loanStatus

 res.50 = /personal/maritalStatus

type.level = res 1, res 2,…

 e.g. url.150 = www.abc.com:8080

 ip.100 = 202.118.34:15016

 165

program consists of 5 method invocations, in which the information flows from

the string strInfo to the file strFile . In the source code level, it is not easy

to analyze the information flow. In the bytecode program, it is obviously that the

information flow analysis comes to more difficult. Figure 7-32 shows the

bytecode of this file writing operation. In order to get the security-level of the

local file, the input operations should also be determined. Similar to output

operation, the input operation disclosing is difficult too. The operation pattern

and information flow behavior need to be studied further.

Figure 7-32 The Java program and bytecode of writing operation

� No semantic analysis

In the approach described in this thesis, the security-level of output data is

new <java.io.FileOutputStream>
dup
aload_1
iconst_1
invokespecial java.io.FileOutputStream.<init>
astore 4
new <java.io.PrintWriter>
dup
new <java.io.OutputStreamWriter>
dup
aload 4
invokespecial java.io.OutputStreamWriter.<init>
iconst_1
invokespecial java.io.PrintWriter.<init>
astore 5
aload 5
aload_2
invokevirtual java.io.PrintWriter.println
aload 5
invokevirtual java.io.PrintWriter.close

FileOutputStream fos =
new FileOutputStream(strFile, true);

PrintWriter prt =
new PrintWriter(new OutputStreamWriter(fos), true);

prt.println(strInfo);
Prt.close();

 166

calculated from all the security-levels of the data that the output data depends on.

That is, our approach requires that the sensitive data should not affect the output

data to be sent to the third-party hosts. In many cases, the third-party host cannot

retrieve the sensitive data from the output data it received, even the sensitive

information affect the output data. Though the bytecode causing such output data

should be considered as secure code, our approach will determine the bytecode as

malicious code and reject it.

In the following example, the s1, s2, s3 represent the salary of three persons.

Suppose these data is sensitive for the host. The average salary can be achieved by

the computation of the statement. Although the information flows from the

sensitive data to the output data average salary, it is impossible to obtain someone’s

salary from the average salary. Obviously even the average salary is sent to one

third-party host that has no privilege to know any person’s salary, the security

policy will not be violated. While the action of sending average salary to the

third-party host will be detected as one data-leaking in our approach.

average: =(s1+s2+s3)/3

� Additional Overhead

Though the additional overhead caused by the inserted verification code can be

omitted in most cases, it is still a problem for some applications of mobile code

where the execution time is a critical factor such as some real-time systems, or the

hardware is not so powerful such as mobile phones.

Thus the modification method should be revised to decrease the number of

instructions inserted into the mobile code. For example, in the Figure 7-23(b) the

instructions at address 378 and 380 can be deleted without causing any impair on

the verification. Such redundant instructions are inserted because our modification

method analyzes the original instructions and insert code for them one by one. The

modification method should be revised to avoid such redundant insertion.

And the modification method should also be revised to reduce the execution time

of verification code. For example, in a simple loop without branches, the

 167

verification code will executed the same times as the original code. While in such a

loop, it is enough to calculate the security-level only once since the relation

between variables cannot change. In the case that the number of the loop’s

execution times is quite large, the execution time can be reduced in a large scale.

Finally the current modification method of our approach inserts verification code

into mobile program; so that the original functions and the verification function are

executed on the same stack. This situation caused that many instructions have to be

inserted to arrange the operands on the stack, so that the original function and the

verification function will not affect each other. And these inserted instructions slow

down the execution further. If the original function and verification function are

executed on different stack, the number of inserted instructions can be reduced.

7.4.4 Applications

Our dynamic verification approach can be implemented to protect the

confidential information on the local host in many mobile code systems, such as the

agent-based e-commerce systems.

Electronic commerce (e-commerce) is increasingly assuming a pivotal role in

many organizations. It offers opportunities to significantly improve the way that

businesses interact with both their customers and suppliers. Recently agent-based

e-commerce has been researched widely [132, 133 and 134].

In general, according to the nature of the transactions, the following types of

e-commerce are distinguished: business-to-business (B2B), business-to-consumer

(B2C), consumer-to-business (C2B) and consumer-to-consumer (C2C). In all of the

types, the agent can be used as the medium between the two sides of the

e-commerce. An example of the agent-based e-commerce system is shown in the

Figure 7-33.

 168

Figure 7-33. An example of agent-based e-commerce system.

Like other agent systems, the security problems in agent-based e-commerce

systems can also be divided into two categories: the problem of protecting the host

from agent and the problem of protecting the agent from the host. Our approach can

deal with the security problem of the former one. As discussed above, our approach

can verify the agent correctly and precisely; and make it possible that the user can

use more agent-based e-commerce services securely. The actions of the agent

arrives at a local host will be traced precisely (by calculating the security-levels of

variables in the agent). The agent may access any confidential information on the

host to perform its work and provide services to the user, that is, makes a

negotiation between the two sides of the trade. When the agent takes confidential

information out of the local host, no matter how, by the way of building network

directly or by the way of the agent’s movement to other host, our approach can

check whether the destination host has the right to get the confidential information.

In this way, the user can use the e-commerce service securely without worrying

about the leak of his confidential information.

For example, an agent-based personal loan application system is shown in Figure

7-34. The consumer uses an agent to apply for a loan from some company. When

the agent arrives at the intermediary server, it submits the loan application to the

server. Then the server judges whether to permit the loan application under the help

of the credit management server. At last the agent goes back to the consumer with

NegotiationNegotiationNegotiationNegotiation

Business

Consumer

Order form
Payment

 Agent

Transportation
After-sale

 169

the application result. In this process, our approach can be applied to protect the

confidential information of the loan company from being leaked to some malicious

consumers. Our approach will not block any agent even it access some confidential

information when the agent is executed on the host. Instead, our approach traces the

information flow in the agent and records what information the agent gets from the

host. Before the agent leaves the intermediary server or sends information out, our

approach will check whether the confidential information is sent out. In this way,

the loan company can receive more loan application without any loss of

confidentiality.

Figure 7-34. An example of applying BMOS in e-commerce system.

 170

8 Conclusion

8.1 Summary

An innovative dynamic approach of information security is described in this

thesis. This approach is able to provide protection of data confidentiality of the host

by verifying the Java mobile code downloaded dynamically in the runtime. It

analyses and traces information flow inside the Java bytecode and checks if there

are any data-leaking caused in the Java mobile code that may potentially destroy the

data confidentiality of the host. Our dynamic verification approach improves the

verification precision and practicability. With our approach, the user can use more

mobile code without worrying about the leak of his information.

Traditional host protecting approaches, such as type-system approaches, tend to

confine untrusted mobile code from doing harm to the host by restricting the action

that the code can do on the host. These security policies are helpful in keeping

untrusted code in checked but unfortunately they have the side effect of precluding

a large number of useful applications of mobile code.

The existing verification approaches for mobile code are almost static ones which

verify the mobile code before the execution. Because of their inherent limitation,

static approaches will verify some mobile programs as malicious for the code that

will not be executed in the runtime, and reject such secure mobile programs. Such

mistake made by static approaches will also preclude many useful application of

mobile code.

To overcome the two verification precision problems above, we put forward one

dynamic verification approach based on the theory of secure information flow.

Compared with the traditional type-system approaches, the advantage of our

approach is that our approach protects the host confidentiality while put less

restriction on mobile code. We analyze the security requirement in mobile code

systems well and put forward a security model suitable to the mobile code

 171

environment. In our security model the information flow in the mobile code is just

traced and recoded. We do not set any restriction to the information transferring in

the mobile code. Only when the mobile code tries to send information out to some

third party, we check whether the action causes a data-leaking based on the

information we collected. To implement our security model, we define the

semantics rules used to trace and record information and give the algorithms to

locate implicit and explicit blocks in Java bytecode. Considering that the

data-leaking can only be caused by the output operation, the verification precision

is improved by our approach.

Compared with those static verification approaches, our approach is dynamic and

implements the verification during the execution of the mobile code. By this way,

our approach only verifies the code that is actually executed during the runtime; and

avoids the misjudgment of considering the mobile code as malicious for some code

what will not be executed. Thus compared with static approaches, the verification

precision is improved further. The dynamic verification of our approach is

implemented by the technique of bytecode modification. That is, the verification

code is inserted into the mobile code; and the verification function is executed as

well as the original function in the runtime.

Furthermore the information flow in the exception handling and the recursion

calling can also be traced and verified by our approach, which is too difficult to

achieve for static approaches. The exception handling has been studied in many

works by now. However those works are almost exception analysis in terms of

high-level languages. In this thesis, we analyze the exception handling in the Java

bytecode and give the algorithms to locate the blocks in the try statement in Java

bytecode. We analyze the information flow in the exception handling and give the

methods to deal with both intra-procedural and inter-procedural information

transferring caused by the exception handling. The ability to deal with the

exception handling and the recursion calling makes our approach more practicable.

In this thesis, we introduce the prototype verification system implementing our

verification approach, which is called BMOS. And an example of applying BMOS

in one agent system is discussed, too. By studying the verification of several

example agents by our approach, the performance efficiency and security

 172

verification precision of our approach are proved.

In this thesis, we focus our research on the Java mobile code. In fact, the security

model and the modification method can also be applied to other mobile code in the

bytecode format. As for as defining the code inserted for each kind of instruction,

our dynamic approach can be used to verify the mobile code build in other

language.

We believe that our research, especially the research of dynamic verification, is

an instructive attempt for bytecode verification.

8.2 Future Work

This thesis describes a novel dynamic approach to verify the mobile code

security, which achieves better verification precision than static approaches. While

there are still a plenty of work to be done for developing a practical system and

enforcing more security properties by our approach.

� Input/output operation disclosing. In order to verify the bytecode program,

the security-level of the objects should be retrieved when input operations

occur and the security verification rule should be certified when output

operations occur. However these input/output operations are not a simple

instruction. The input/output operations consist of a sequence of operations.

There are various patterns perform these operations. The disclosing of these

behaviors will be the next research topic.

� Meliorate the modification method to trace all the information in the array.

By now most of the information held by one array can be dealt with in our

approach. But the information held by the array reference itself and the array’s

length can not be traced. Although we can add special security-containers for

the one-dimension array to solve the problem, it become hardly difficult to add

such security-level containers in the case of multi-dimension array because the

numbers of elements in each dimension are arbitrarily different and it is not

easy to calculate, load and store the security-levels of the arrays in one

multi-dimension array. To build an appropriate construct to transfer the

 173

security-levels with the information in the array is the key to deal with this

problem.

� Reduce the execution time increment. As mentioned above, the additional

execution overhead caused by the inserted verification code should be reduced

in order to improve the practicability of our approach. The modification

method should be revised to reduce the number of inserted instructions, the

number of execution times of inserted instructions and separate the operand

stacks of the original function and the verification function.

� In this thesis, only the conditional transfer instruction is concerned when

detecting implicit information flow. In a real situation, there are many other

kinds of covert channels that may also lead to implicit information flows, such

as termination channels, timing channels, probabilistic channels, resource

exhaustion channels and power channels. All these channels should be

considered in the future study for host security.

� Multiple mobile code owner policies. In our security model, the security

policy is set for all mobile code from other hosts. In a more precise model, the

security policies should be defined according to the origin of the individual

mobile code, in another word, different mobile code programs are applied to

different security policies even they immigrate from the same host.

 174

 References

[1] Abadi, Michael Burrows, Butler Lampson, and Gordon D. Plotkin, “A Calculus
for Access Control in Distributed Systems.” ACM Transactions on Programming
Languages and Systems, 15(4), pp.706–734, September 1993.

[2] Adl-Tabatabai, Geoff Langdale, Steven Lucco, and Robert Wahbe, “Efficient and

Language-Independent Mobile Programs”, Proceedings of ACM SIGPLAN’96
Conference on Programming Language Design and Implementa-tion (PLDI’96),
pp.127–136, May 1996.

[3] Aho, R. Sethi, and J. D. Ullman, “Compilers Principles, Techniques, and Tools”,
Addison-Wesley, 1986.

[4] Amtoft and Anindya Banerjee, “Information Flow Analysis in Logical Form”,
11th Static Analysis Symposium, Verona, Italy, Springer-Verlag, pp.100–115,
August 2004.

[5] Andrews and Richard P. Reitman, “An Axiomatic Approach to Information Flow
in Programs”, ACM Trans. Program. Lang. Syst., 2(1), pp.56–76, 1980.

[6] Avvenuti, C. Bernardeschi, and N. D. Francesco, “Java Bytecode Verification for
Secure Information Flow”, SIGPLAN Not., 38(12), pp.20–27, 2003.

[7] Avvenuti, Cinzia Bernardeschi and Nicoletta De Francesco, “Java Bytecode
Verification for Secure Information Flow”, SIGPLAN Not., 38(12), pp.20–27,
2003.

[8] Aycock, “A Brief History of Just-In-Time”, ACM Computing Surveys, 35(2), pp.
97–113, June 2003.

[9] Banatre, C. Bryce and D. Le M’etayer, “Compile-Time Detection of Information
Flow”, Sequential Programs, 1994.

[10] Banerjee and D. Naumann, “Secure Information Flow and Pointer Confinement
in a Java-Like Language”, 2002.

[11] Barbuti, C. Bernardeschi, and N. D. Francesco, “Checking Security of Java
Bytecode by Abstract Interpretation”, The 17th ACM Symposium on Applied
Computing: Special Track on Computer Security Proceedings. Madrid, March
2002.

[12] Bell and L. J. LaPadula Leonard J. La Padula, “Secure Computer Systems: A
Mathematical Model”, volume II, 1975.

[13] Bell and Leonard J. LaPadula, “Secure Computer Systems: Mathematical
Foundations”, Technical Report 2547 (Volume I), MITRE, March 1973.

[14] Bernardeschi and N. D. Francesco, “Combining Abstract Interpretation and
Model Checking for Analyzing Security Properties of Java Bytecode”, Third
International Workshop on Verification, Model Checking and Abstract
Interpretation Proceedings, pp.1–15. LNCS 2294, Venice, January 2002.

[15] Bernardeschi, N. D. Francesco, and G. Lettieri, “An Abstract Semantics Tool for

 175

Secure Information Flow of Stack-Based Assembly Programs”, Microprocessors
and Microsystems, 26(8), pp.391–398, 2002.

[16] Bernardeschi, Nicoletta De Francesco, Giuseppe Lettieri, “Using Standard
Verifier to Check Secure Information Flow in Java Bytecode”, COMPSAC
pp.850-855, 2002.

[17] Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, David Becker,
Marc Fiuczynski, Craig Chambers, and Susan Eggers, “Extensibility, Safety and
Performance in the SPIN Operating System”, Proceedings of the 15th ACM
Symposium on Operating System Principles, pp.267–284,Copper Mountain,
Colorado, December 1995.

[18] Bian, Ken Nakayama, Yoshitake Kobayashi, and Mamoru Maekawa, “Java
Mobile Code Security by Bytecode Analysis”, ECTI Transactions on Computer
and Information Technology.

[19] Bian, Ken Nakayama, Yoshitake Kobayashi, and Mamoru Maekawa，“Mobile

Code Security by Java Bytecode Dependence Analysis”, Proceedings of the
International Symposium on Communications and Information Technologies
2004 (ISCIT 2004), Sapporo, Japan, pp.923-926 October 26- 29 2004.

[20] Binder, W. “Design and implementation of the J-SEAL2 mobile agent kernel”,
2001 Symposium on Applications and the Internet, San Diego, CA, USA 2001.

[21] Bytecode Engineering Library (BCEL), http://bcel.jakarta.jp/
[22] Cai, P. Gloor, and S. Nog, “DataFlow: A Workflow Management System on the

Web Using Transportable Agents”, Technical Report TR96-283, Dept. of
Computer Science, Dartmouth College, Hanover, N.H., 1996.

[23] Carzaniga, G. Pietro Picco, and G. Vigna, “Designing distributed applications
with mobile code paradigms”, Proceedings of the 19thInternational Conference
on Software Engineering(ICSE’97), 1997.

[24] Chambers, Igor Pechtchanski, Vivek Sarkar, Mauricio J. Serrano, Harini
Srinivasan, “Dependence Analysis for Java”, LCPC, pp.35-52, 1999

[25] Chander, J. C. Mitchell, and I. Shin, “Mobile Code Security by Java Bytecode
Instrumentation”, DARPA Information Survivability Conference and Exposition
(DISCEX II'01), Volume II-Volume 2.

[26] Chander,A., Mitchell, J.C., Shin, I, “Mobile code security by Java bytecode
instrumentation”, 2001 DARPA Information Survivability Conference &
Exposition (DISCEX II), Anaheim, CA, USA, 2001.

[27] Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska, “Sharing
and Protection in A Single-Address-Space Operating System”, ACM
Trans-actions on Computer Systems, 12(4): 271–307, November 1994.

[28] Chess, “Security Issues in Mobile Code Systems”, Mobile Agents and Security,
volume 1419, Lecture Notes in Computer Science, Springer-Verlag, 1998.

[29] Chess, B. Grosof, C. Harrison, D. Levine, and C. Paris, “Itinerant agents for
mobile computing”, IEEE Personal Communications, vol. 2, no. 5, pp.34-49, Oct.
1995.

[30] Chiueh, Ganesh Venkitachalam, and Prashant Pradhan, “Integrating
Segmentation and Paging Protection for Safe, Efficient and Transparent Software
Extensions”, Proceedings of the 17th ACM Symposium on Operating Systems

 176

Principles, pp.140–153, Charleston, South Carolina, December 1999.
[31] Cifuentes, “Reverse Compilation Techniques”, PhD thesis, Queensland

University of Technology, 1994.
[32] Clausen, L.R, “A Java bytecode optimizer using side-effect analysis”,

Concurrency: Practice and Experience 9, pp.1031–1045, 1997.
[33] Cohen, G., Chase, J., Kaminsky, D., “Automatic program transformation with

JOIE”, Proceedings of the 1998 Usenix Annual Technical Symposium, New
Orleans, Louisiana, pp.167–178, 1998.

[34] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K., “Efficiently
computing static single assignment form and the control dependence graph”,
ACM Transactions on Programming Languages and Systems 13, pp.451–490,
1991.

[35] Czajkowski, G., von Eicken, T.: JRes, “A resource accounting interface for Java”,
Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, British Columbia pp.21–35, 1998.

[36] Darvas, Reiner H¨ahnle and David Sands, “A Theorem Proving Approach to
Analysis of Secure Information Flow”.

[37] Denning and P. J. Denning, “Certification of Programs for Secure Information
Flow”, Communications of the ACM, 20(7), pp.504–513, 1977.

[38] Denning and Peter J. Denning, “Certification of Programs for Secure Information
Flow”, Communications of the ACM, 20(7), pp.504–513, July 1977.

[39] Denning, “A Lattice Model of Secure Information Flow”, Comm. ACM, 19(5),
pp.236-243, 1976.

[40] Denning, “Cryptography and Data Security”, Addison-Wesley, 1982.
[41] Deutsch and C. A. Grant, “A Flexible Measurement Tool for Software Systems”,

Information Processing, 71, pp.320–326, 1972.
[42] Engler, M. Frans Kaashoek, and James O’Toole Jr, “Exokernel: An Operating

System Architecture for Application-Level Resource Management”, Proceedings
of the 15th ACM Symposium on Operating System Principles, Copper Mountain,
Colorado, December 1995.

[43] Erlingsson and Fred B. Schneider, “IRM Enforcement of Java Stack Inspection”,
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp.246–255,
Berkeley, California, May 2000.

[44] Erlingsson and Fred B. Schneider, “SASI Enforcement of Security Policies: A
Retrospective”, Proceedings of the 1999 New Security Paradigms Workshop, pp.
87–95, Caledon Hills, Ontario, Canada, September 1999.

[45] Erlingsson.U, Schneider,F.B. “IRM enforcement of Java stack inspection”,
Proceedings of the 2000 IEEE Symposium on Security and Privacy, Berkeley,
California, pp.246–255, 2000.

[46] Evans and Andrew Twyman, “Flexible Policy-Directed Code Safety”,
Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp.32– 47,
Oakland, California, May 1999.

[47] Farmer, Joshua D. Guttman and Vipin Swarup, “Security for Mo-bile Agents:
Authentication and State Appraisal”, Proceedings of the Fourth European
Symposium on Research in Computer Security (ESORICS’96), vol-ume 1146,
Lecture Notes in Computer Science, pp.118–130, Springer-Verlag, Rome, Italy,

 177

September 1996.
[48] Faulkner and Ron Gomes, “The Process File System and Process Model in

UNIX System V”, Proceedings of the USENIX Winter 1991 Conference, pp.
243–252, Dallas, Texas, January 1991.

[49] Florio, R. Gorrieri, and G. Marchetti, “Coping with Denial of Service due to
Malicious Java Applets”, Computer Communications, 23(17), pp.1645–1654,
November 2000.

[50] Focardi and S. Rossi, “Information Flow Security In Dynamic Contexts”, 2002.
[51] Franz, “Code-Generation On-the-Fly: A Key to Portable Software”, Doc-toral

Dissertation No. 10497, ETH Zurich, 1994.
[52] Glew and Greg Morrisett, “Type-Safe Linking and Modular Assembly

Language”, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’99), pp.250–261, San Antonio,
Texas, January 1999.

[53] Goldszmidt and Y. Yemini, “Distrisbuted Management by Delegation”, Proc.
15th Int’l Conf. Distributed Computing, June 1995.

[54] Gong, Gary Ellison and Mary Dageforde, “Inside Java 2 Platform Security:
Architecture”, API Design, and Implementation, Addison-Wesley, 2nd edition,
2003.

[55] Gosling, Bill Joy, Guy Steele, and Gilad Bracha, “The Java Language
Specification”, Addison-Wesley, 2nd Edition, 2000.

[56] Gray, “Agent Tcl: A Flexible and Secure Mobile Agent System”, Pro-ceedings of
the 4th Annual USENIX Tcl/Tk Workshop, pp.9–23, Monterey, California, July
1996.

[57] Gray, D. Kotz, S. Nog, D. Rus and G. Cybenko, “Mobile Agents for Mobile
Computing”, Proc. Second Aizu Int’l Symp. Parallel Algorithms/Architectures
Synthesis, Fukushima, Japan, Mar 1997.

[58] Harrison, D.M.Chess, A.Kershenbaum, “Mobile Agents: Are they a good idea?”,
IBM Research Report, T.J.Watson Research Center, NY, 1995.

[59] Hawblitzel, C., Chang, C.C., Czajkowski, G., Hu, D., von Eicken, T,
“Implementing multiple protection domains in Java”, USENIX Annual Technical
Conference, New Orleans, Louisiana, USENIX, 1998.

[60] Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu and Thorsten von
Eicken, “Implementing Multiple Protection Domains in Java”, Proceedings of
the 1998 USENIX Annual Technical Conference, New Orleans, Louisiana, June
1998.

[61] Heintze and J. G. Riecke, “The SLam Calculus: Programming with Secrecy and
Integrity”, Proc. ACM Symp. on Principles of Programming Languages, pp.
365–377, Jan. 1998.

[62] Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell and Jochen Liedtke,
“The Mungi Single-Address-Space Operating System”, Software Practice and
Experience, 28(9), pp.901–928, July 1998.

[63] Jaeger, Atul Prakash, Jochen Liedtke and Nayeem Islam, “Flexible Control of
Downloaded Executable Content”, ACM Transactions on Information and
System Security, 2(2), pp.177–228, May 1999.

[64] Joshi and K. Rustan M. Leino, “A Semantic Approach to Secure Information

 178

Flow”, Science of Computer Programming, 37(1–3), pp.113–138, 2000.
[65] Knabe. “Language Support for Mobile Agents”, PhD thesis, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA15213-3891, USA,
December 1995.

[66] Kobayashi, Keita Shirane, “Type-based Information Flow Analysis for a
Low-level Languages”, Computer Software, Vol.20, No.2 pp.2-21, 2003.

[67] Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katuro Inoue, "An Efficient
Information Flow Analysis of Recursive Programs Based on a Lattice Model of
Security Classes", Proceedings of Third International Conference on Information
and Communications Security (ICICS 2001), Xian, China, Lecture Notes in
Computer Science 2229, pp. 292-303, Nov. 2001.

[68] Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katuro Inoue, “An Information
Flow Analysis of Recursive Programs Based on Lattice Model of Security
Classes”, IEICE Transactions (D-I), J85-D-I(10), pp.961-973, Oct. 2002.

[69] LaPadula and D. Elliot Bell, “Secure Computer Systems: A Mathematical
Model”, Technical Report 2547 (Volume II), MITRE, May 1973.

[70] Lee and Benjamin G. Zorn. “BIT: A Tool for Instrumenting Java Bytecodes”, The
USENIX Symposium on Internet Technologies and Systems, pp.73-82, 1997.

[71] Lee, H.B., Zorn, B.G., “BIT: A tool for instrumenting java bytecodes”, USENIX
Symposium on Internet Technologies and Systems, Monterey, California,
USA ,1997.

[72] Leroy, “Java Bytecode Verification: Algorithms and Formalizations”, J. Autom.
Reasoning 30(3-4), pp.235-269, 2003.

[73] Liang and Gilad Bracha, “Dynamic Class Loading in the Java Virtual Machine”,
Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’98), pp.36–44,
Vancouver, British Columbia, October 1998.

[74] Limongiello, R. Melen, M. Roccuzzo, A. Scalisi, V. Trecordi, and J. Wojtowicz,
“ORCHESTRA: An Experimental Agent-Based Service Control Architecture for
Broadband Multimedia Networks”, GLOBAL Internet‘96, Nov. 1996.

[75] Lindholm and Frank Yellin, “The Java Virtual Machine Specification”, Ad-dison
Wesley, 2nd edition, 1999.

[76] Lu, K. Nakayama, Y. Kobayashi, and M. Maekawa, “Java Mobile Code Dynamic
Verification by Bytecode Modification for Host Confidentiality”, International
Journal of Network Security.

[77] Lu, K. Nakayama, Y. Kobayashi, and M. Maekawa, “Verification for Host
Confidentiality by Abstract Interpretation in Mobile Code Systems”, IEE
Mobility Conference 2005, Guangzhou, China, Nov. 2005.

[78] Lu, K. Nakayama, Y. Kobayashi, M. Maekawa, “Abstract Interpretation for

Mobile Code Security”, IEEE Proceedings of International Symposium on
Communications and Information Technologies 2005 (ISCIT 2005),
pp.1068-1071, Beijing, China, Oct. 2005.

[79] Lucco, Oliver Sharp and Robert Wahbe, “Omniware: A Universal Sub-strate for
Web Programming”, Proceedings of the 4th International World Wide Web
Conference, Boston, Massachusetts, December 1995.

 179

[80] Magedanz, K. Rothermel and S. Krause, “Intelligent Agents: An Emerging
Technology for Next Generation Telecommunications?”, INFOCOM’96, San
Francisco, Mar 1996.

[81] Marquez, A., Zigman, J.N., Blackburn, S.M, “A fast portable orthogonally
persistent Java”, Software: Practice and Experience Special Issue: Persistent
Object Systems 30, pp.449–479, 2000.

[82] Menezes, Paul C. van Oorschot and Scott A. Vanstone, “Handbook of Applied
Cryptography”, CRC Press, 1996.

[83] Merz and W. Lamersdorf, “Agents, Services, and Electronic Markets: How Do
They Integrate?”, Proc. Int’l Conf. Distributed Platforms, IFIP/IEEE, 1996.

[84] Morrisett, David Walker, Karl Crary and Neal Glew, “From System F to Typed
Assembly Language”, Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’98), pp.85–97,
SanDiego, CA., January 1998.

[85] Morrisett, Karl Crary, Neal Glew and David Walker, “Stack-Based Typed
Assembly Language”, Workshop on Typesin Compilation, pp.95–118, Kyoto,
Japan, March 1998.

[86] Myers and B. Liskov, “A Decentralized Model for Information Flow Control”,
Proc. ACM Symp. on Operating System Principles, pp.129–142, Oct. 1997.

[87] Necula and Peter Lee, “Safe kernel Extensions without Run-Time Check-ing”.
Proceedings of the Second Symposium on Operating System Design and
Implementation (OSDI’96), pp.229–243, Seattle, Washington, October 1996.

[88] Necula and Peter Lee, “Safe, Untrusted Agents Using Proof-Carrying Code”,
Mobile Agent Security, volume 1419, Lecture Notes in Computer Science
Springer-Verlag, 1998.

[89] Necula and Peter Lee, “The Design and Implementation of A Cer-tifying
Compiler”, Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation (PLDI’98), pp.333–344,
Montreal, Quebec, November 1998.

[90] Necula, “Proof-Carring Code”, ACM Symposium on Principles of Programming
Languagues(POPL), 1997.

[91] Nystrom, N.J, “Bytecode level analysis and optimization of Java classes”,
Master’s thesis, Purdue University, 1998.

[92] Object Design Inc. Object-Store PSE Resource Center, 1998.
http://www.odi.com/ content/products/PSEHome.html.

[93] Ousterhout, “Tcl and the Tk Toolkit”, Addison-Wesley, 1994.
[94] Ousterhout, Jacob Y. Levy, and Brent B. Welch, “The Safe-Tcl Secu-rity Model”,

Mobile Agents and Security, volume 1419, Lecture Notesin Computer Science,
Springer-Verlag, 1998.

[95] Palsberg and P. Ørbæk, “Trust in the λ-Calculus”, Proc. Symposiumon Static
Analysis, pp. 983 in LNCS, pp. 314–329, Springer-Verlag, Sept. 1995.

[96] Pandey, R., Hashii, B., “Providing fine-grained access control for Java
programs”, 13th Conference on Object-Oriented Programming (ECOOP’99),
No.1628, Lecture Notes in Computer Science, Lisbon, Portugal, Springer-Verlag,
1999.

[97] Paoli, Andre L. Dos Santos and Richard A. Kemmerer, “Web Browsers and

 180

Security”, Mobile Agents and Security, volume 1419, Lecture Notes in Computer
Science, Springer-Verlag, January 1998.

[98] Podgurski and Lori A. Clarke, “A Formal Model of Program Dependences and
Its Implications for Software Testing, Debugging, and Maintenance”. IEEE
Transactions on Software Engineering, 16(9), pp.965–979, September 1990.

[99] Rational Software Corporation. Purify,1998.
http://www.pure.com/products/purify.

[100] Rees, “A Security Kernel Based on the Lambda-Calculus”, A. I. Memo 1564,
MIT, 1996.

[101] Rouaix, “A Web Navigator with Applets in Caml”, Proceedings of the 5th
International World Wide Web Conference, pp.1365–1371, Paris, France, May
1996.

[102] Rudys and Dan S. Wallach, “Termination in Language-Based Systems”, ACM
Transactions on Information and System Security, 5(2), pp.138–168, May 2002.

[103] Rudys and Dan S. Wallach, “Transactional Rollback for Language-Based
Systems”, Proceedings of the International Conference on Dependable Systems
and Networks (DSN’02), pp.439–448, Washington, D.C., June 2002.

[104] Sabelfeld and A. C. Myers, “Language-Based Information-Flow Security”,
IEEE Journal on Selected Areas in Communications, 21(1), pp.5--19, January
2003.

[105] Sakamoto, T., Sekiguchi, T., Yonezawa, A., “Bytecode transformation for
portable thread migration in Java”, Proceedings of the Joint Symposium on
Agent Systems and Applications /Mobile Agents (ASA/MA). pp.16–28, 2000.

[106] Saltzer and J.H, “Protection and the Control of Information Sharing in
MULTICS”, Communications of ACM, 17(7), pp.388-402, July, 1974.

[107] Saltzer and M. Schroeder, “The Protection of Information in Computer
Systems”, Proceedings of the IEEE, 63(9) pp.1278—1308, Sep. 1975.

[108] Samarati and Sabrinade Capitanidi Vimercati, “Access Control: Policies,
Models, and Mechanisms”, Foundations of Security Analysis and Design:
Tutorial Lectures, volume 2171, Lecture Notes in Computer Science,
Springer-Verlag, January 2001.

[109] Scales and Kourosh Gharachorloo, “Towards Transparent and Efficient
Software Distributed Shared Memory”, The Sixteenth ACM Symposium on
Operating Systems Principles, 1997.

[110] Sekar, V. N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar, Daniel C.
DuVarney, “Model-Carrying Code: A Practical Approach for Safe Execution of
Untrusted Applications”, SOSP, pp.15-28, 2003.

[111] Seltzer, Yasuhiro Endo, Christopher Small and Keith A. Smith, “Deal-ing with
disaster: surviving misbehaved kernel extensions”, Proceedings of the 2nd
USENIX Symposium on Operating Systems Design and Implementation, Seattle,
Washington, October 1996.

[112] Sinha and Mary Jean Harrold, “Analysis and testing of programs with
exception-handling constructs”. IEEE Trans. on Software Engineering,
26(9):849-871, 2000.

[113] Smith and D. Volpano, “Secure Information Flow in A Multithreaded
Imperative Language”, Proc. ACM Symp. on Principles of Programming

 181

Languages, pp. 355–364, Jan. 1998.
[114] Srivastava and Alan Eustace. “ATOM: A System for Building Customized

Program Analysis Tools”, Proceedings of the SIGPLAN '94 Conference on
Programming Language Design and Implementation, pp.196-205, June 1994.

[115] Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall and G.J. Minden, “A
Survey of Active Network Research”, IEEE Comm., vol. 35, no.1, pp.80–86, Jan
1997.

[116] Vall´ee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P., “Soot
– a Java bytecode optimization framework”, Proceedings of CASCON 1999,
Mississauga, Ontario, Canada, pp.125–135, 1999.

[117] Venkatakrishnan and R. Sekar, “Empowering Mobile Code Using Expressive
Security Policies”, 10th New Security Paradigms Workshop (NSPW), 2002.

[118] Venners, “Inside the Java Virtual Machine”, 1998.
[119] Volpano, G. Smith, and C. Irvine, “A Sound Type System for Secure Flow

Analysis”, J. Computer Security, Vol. 4, No. 3, pp.167–187, 1996.
[120] Wahbe, Steven Lucco, Thomas E. Anderson and SusanL. Graham, “Efficient

Software-Based Fault Isolation”, Proceedings of the 14th ACM Symposium on
Operating Systems Principles, pp.203–216, Asheville, North Carolina,
De-cember 1993.

[121] Wallach and Edward W. Felten, “Understanding Java Stack in Spection”,
Proceedings of 1998 IEEE Symposium on Security and Privacy, Oakland.

[122] Wallach, Andrew W. Appel and Edward W. Felten, “SAFKASI: A Security
Mechanism for Language-Based Systems”, ACM Transactions on Software
Engineering and Methodology, 9(4), pp.341–378, October 2000.

[123] Wallach, Dirk Balfanz, Drew Dean and Edward W. Felten, “Extensible Security
Architectures for Java”, Proceedings of the 16th ACM Symposium on Operating
Systems Principles, pp.116–128, Saint Malo, France, October 1997.

[124] Welch and R. Stroud, “Using Reflection as a Mechanism for Enforcing
Security Policies in Mobile Code”, Proceedings of the Sixth European
Symposium on Research in Computer Security, 2000.

[125] Welch and Robert J. Stroud, “Using Reflection as a Mechanism for Enforcing
Security Policies on Compiled Code”, Journal of Computer Security, 10(4),
pp.399– 432, 2002.

[126] Welch, I., Stroud, R., “Kava–a reflective Java based on bytecode rewriting”,
Lecture Notes in Computer Science 1826. Springer-Verlag, 2000.

[127] White, “Mobile Agents”, In Jeffrey Bradshaw, Editor, Software Agents, chapter
19, pp.437–472. AAAI Press/MIT Press, 1996.

[128] Yemini and S. da Silva, “Towards Programmable Networks” IFIP/IEEE Int’l
Workshop Distributed Systems: Operations and Management, L’Aquila, Italy,
Oct. 1996.

[129] Yemini, “The OSI Network Management Model”, IEEE Comm., pp.20–29,
May 1993.

[130] Zhao, “Analyzing Control Flow in Java Bytecode”, Proc. 16th Conference of
Japan Society for Software Science and Technology, pp.313-316, Japan,
September 1999.

[131] Zhao, “Dependence Analysis of Java Byte-code”, Proc. 24th IEEE Annual

 182

International Computer Software and Applications Conference
(COMP-SAC’2000), pp.486-491, IEEE Computer Society Press, Taipei, Taiwan,
October 2000.

[132] B. Banerjee, A. Biswas, and M. Mundhe, S. Depnath, and S. Sen, “Using
Bayesian Networks to Model Agent Relationships”, Applied Artificial
Intelligence, vol. 14, no. 9, pp. 867-879, 2000.

[133] A. Byde, C. Preist, and N.R. Jennings, “Decision Procedures for Multiple
Auctions”, Proc. First Int'l Joint Conf. Autonomous Agents and Multi-Agent
Systems, pp. 613-620, July 2002.

[134] M. Dastani, N. Jacobs, C.M. Jonker, and J. Treuer, “Modeling User Preferences
and Mediating Agents in Electronic Commerce”, Agent Mediated Electronic
Commerce, F. Dignum and C. Sierra, eds., pp. 163-193, 2001.

 183

 Acknowledgments

This dissertation is my doctoral study from October 2003 to March 2007 at the

Graduate School of Information System of the University of

Electro-communications, Tokyo, Japan. I am grateful to a large number of people

who have helped me finish this work.

My sincerest thanks go to my supervisory committee and my examiners for their

insight advice and great support. And my most heartful thanks go to Professor

Maekawa, my senior supervisor, for being my advisor for this thesis. He led me

into this research area and whose insight and vision has directly guided my research

over the past four years. Without the benefit from his generous financial support,

care and encouragement, this dissertation would have never been written out, and it

would be impossible for me to finish my PhD career.

Special thanks to the members in Maekawa lab and Ohsuga lab, for their

technical expertise, talent dedication to the craft, and honest feedback.

This dissertation is dedicated to my family. I want to express my gratitude to my

parents, who have been supporting me such a long time since I was a little boy. And

I also want to thank my wife for helping me throughout the course of my study,

especially in the last one year. I cannot finish this dissertation without the love and

support from my family.

 184

Author Biography

Dan Lu was born in Heilongjiang China, on October 10th, 198. He graduated

from Harbin Engineering University in 2001 and he received the M.S. degree in

computer control and application from Harbin Engineering University in 2003. He

has been with the Graduate School of Information Systems, University of

Electro-communications, Tokyo, Japan, working towards the PhD degree. His

research interests include Java Virtual Machine, Java bytecode, and Mobile code.

 185

List of Publication Related to the Thesis

1. Dan Lu, K. Nakayama, Y. Kobayashi, M. Maekawa, “Abstract Interpretation

for Mobile Code Security”, IEEE Proceedings of International Symposium on

Communications and Information Technologies 2005 (ISCIT 2005),

pp.1068-1071, Beijing, China, Oct. 2005.

2. Dan Lu, K. Nakayama, Y. Kobayashi, and M. Maekawa, “Verification for Host

Confidentiality by Abstract Interpretation in Mobile Code Systems”, IEE

Mobility Conference 2005, Guangzhou, China, Nov. 2005.

3. Dan Lu, K. Nakayama, Y. Kobayashi, and M. Maekawa, “Analysis of

Information Flow in Exception Handling of Java Bytecode”, Applied Science

and Technology, Vol.34, No.2, 2007, pp. 28-30

4. Dan Lu, K. Nakayama, Y. Kobayashi, and M. Maekawa, “Java Mobile Code

Dynamic Verification by Bytecode Modification for Host Confidentiality”,

International Journal of Network Security, Vol. 7, No. 3, 2008, pp. 416-427

