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概要

LDPC符号を用いた音楽用電子透かし：圧縮と同期破りに耐性のあるアルゴリズム

マルチネズ　ノリエガ　ラウル

電気通信大学

電子透かしは、ディジタル著作物の内部に情報を秘匿するプロセスである。例えばオーデ

イオ・画像・動画に対して、ある程度の頑強さをもって埋め込まれる情報と著作物は一体

の分離できないコンテンツとなる。電子透かしは、広告への利用からセキュリティ目的ま

で、その応用は広がっている。その中でもっとも一般的なものはディジタル著作物の不正

利用を防止である。本論文では、オーディオデータに電子透かしに入れることと、自動的

に同期可能な電子透かしの復元を扱う。オーディオデータへの電子透かし埋め込みを対象

とし、高い埋め込みデータ量、MPEG-1 AudioレイヤーIII（以下、MP3と呼ぶ）64kbpsと

いう強い圧縮にも頑強な保持される電子透かしに焦点を当てた。また埋め込まれた電子透

かしの同期による抽出は未解決の問題として検討を加えた。本研究で提案する同期の問題

の解決方法は電子透かしのみならず通信全般への解決手法も提案するものである。電子透

かしは、透かしが埋め込まれる、言い換えれば伝送されるという、ある種の通信であり、

雑音を付加されたコンテンツから復元（つまり通信における受信）されていると見ること

ができる。しかし、これまでの研究ではそうした通信と透かし埋め込みの対比に着目した

研究はほとんど行われていなかった。この視点によれば高信頼の埋め込み（伝送）を実

現する電子透かしは、そのほかの通信システムと同様に誤り制御符号の適用により達成

しうるのは明らかである。しかしながらこれまでの電子透かしの研究ではほとんど、こ

の事実を利用していない。頑強な電子透かしを作り出す新しい方向はこの論文によって

示される。計算が複雑でなく、大きなペイロードをもつが、埋め込み手法としては弱い

電子透かしであるQuantization Index Modulation (QIM) を埋め込みアルゴリズムとし、近

年強力な誤り訂正符号として注目されているLow-Density Parity-Check (LDPC)を組み合

わせる方法に取り組んだ。電子透かし方式の解析評価においては、透かしを頑強に埋め

込むことができる可聴周波数を検討した。また基本的なQIM法から派生したQIM型の埋め

込み手法に対してガウス雑音やMP3圧縮に対する特性を評価した。さらに繰り返し符号
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とLDPC符号による連接符号化によるLDPC符号の復号性能向上について検討している。

研究結果として、64kbpsの品質のMP3圧縮に対して頑丈に埋め込むことができる電子透か

し方式を実現している。またそのペイロードは（229.7ビット／秒）であり、これまで発

表されたどのロバストなオーディオ電子透かしより高い埋め込み性能を有している。この

電子透かしのペイロードの大きさは、広告のようなアプリケーションを考えることができ

るし、電子指紋方式の様な長いデータを埋め込む必要がある場合にも有効である。提案す

る電子透かしの品質を主観評価実験により行ったところ、最高5点中、平均で4点を超える

良い品質を実現している。（ここで5点は原音とまったく区別がつかないことを意味して

いる。）通信における同期は通常同期パターンをヘッダとしていれることで行われること

が多い。しかし、このアプローチは最適とは言い難い。我々は、この同期用ヘッダを必要

としないLDPC符号に基づく新しい自己同期アルゴリズムを提案する。このアルゴリズム

は単に電子透かしに有効なだけでなく、一般的な通信システムに対する有効性も評価して

いる。LDPC符号の符号長が増えると、提案する同期復号アルゴリズムは同期用ヘッダを

用いる場合の復号性能に近づいた。例えば、符号長504の符号化率1/2LDPC符号で、我々

のアルゴリズムと同期ヘッダを用いる方式はEb/N0=4 dBの点で同じ復号誤り率性能を実

現する。またこのアルゴリズムに関する理論的な諸性能を定式化し記述している。また、

復号特性を定める理論的限界を、符号長の小さいLDPC符号に対する最尤推定法復号を用

いて示した。以上により、頑強な電子透かし方式と自己同期のアルゴリズムがオーディオ

に対する電子透かしというアプリケーションにおいて統合され、これまでにない、頑強さ

と多量のデータ埋め込める新しい電子透かし方式が実現できた。
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Abstract

LDPC Coded Watermarks for Audio: Algorithms Tolerant to Compression

and Desynchronization

by

Raúl Mart́ınez Noriega

The University of Electro-Communications

Professor Kazuhiko Yamaguchi, Chair

Digital watermarking is the process of hiding information inside digital work, e.g. audio,

image or video, with certain robustness in such a way that the information and the digital

work are inseparable. Applications ranging from advertising until security-related can be

benefited with digital watermarking, however the most popular and still potential application

of digital watermarking is preventing illegal uses of digital work.

Audio watermarking and synchronization are the concerns of this dissertation. The inter-

est on audio watermarking is focused in high embedding rates robust to strong compression

like MPEG-1 Audio layer III (MP3) at 64 kbps. Synchronization is an open problem to dig-

ital watermarking, however our study on synchronization offers solutions not only to digital

watermarking but general transmissions.

Watermarking is a sort of communication where the watermark is embedded/transmitted,

contaminated with noise and retrieved/received from the digital work. Therefore reliable em-

bedding/transmission on watermarking, as any other communication scheme, can be achieved

with error-control codes (ECC). However, almost no previous study exploits this fact.

A new direction about the generation of robust watermarks is introduced in this disserta-

tion. The algorithm combines low-complex, weak and high-payload watermarking algorithms

like quantization index modulation (QIM) with powerful ECC like low-density parity-check

(LDPC) codes.

The analysis on watermarking comprises audio frequencies where the watermark can be

robustly embedded, behavior of different QIM-based watermark algorithms under Gaussian

noise and compression, the repercussions of concatenating repetition codes with LDPC codes
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and smart use of the channel to improve the decoding of the LDPC code. Thus, we intro-

duce proposals which embed a coded-watermark in frequency domain. We explain how the

statistics of noise, used by the LDPC decoder and generated due to MP3 compression, can

be computed with accuracy improving the reliability of the decoded bits.

The result is the highest embedding payload, 229.7 bits per second, to an audio water-

mark algorithm with robustness to compression with quality of 64 kbps. This result allows

audio watermarking to be used in applications like advertising or information carrier. The

watermarked audio also achieves good audio quality, obtaining a score higher than 4 out of

5, where 5 represents indistinguishability with the original audio file, in both subjective and

objective tests.

Synchronization is highly important in scenarios, including watermarking, where the in-

formation is transmitted as blocks of bits. Usually synchronization can be achieved using

pilot bits, however this approach is by far non-optimal. We introduce a new self-synchronous

decoding algorithm based on the cyclically permutable characteristics of LDPC codes. The

algorithm does not need pilot symbols and its performance approaches synchronized trans-

missions when the code length is increased. For example, with a half-rate LDPC code with

length of 504 the performance of our algorithm and synchronized transmission is the same

for Eb/N0 = 4 dB.

Theoretical results which include the scope, restrictions and the error-performance bound

are also presented. The impact of this algorithm goes further than watermarking and therefore

the algorithm is analyzed from the point of view of general communications.

Finally, watermarking and the self-synchronous algorithm were combined in a practical

application of audio watermarking producing a new algorithm which has higher embedding

capacity and more robustness than the original algorithm proposed by Lie in 2005.
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1

Introduction

1994 was the beginning of the third-party services for processing on-line credit sales, the

e-commerce was born. Internet is a huge market with the most rich variety of stuff including

music. Selling audio or music through Internet brings many advantages like buying only a

specific song, cheaper prices, and buying without leaving home. An example of this huge

market is the well-known on-line store from a computer-related company who had sold more

than 10 billion of songs by February 2010 [1].

This increasing growth of e-commerce has fostered research on techniques for preventing

illegal uses of digital work such as audio, image, and video by means of cryptography and

watermarking.

Watermarking describes methods to embed auxiliary information transparently into a

work. The oldest register about watermarking dates back to 1282 in Italy, where paper

watermarks were made by adding thin wire patterns to the paper molds. However the meaning

and purpose of the earliest watermarks are uncertain.

Nowadays, watermarking is often used to increase the security of the bills. For example,

held up a Japanese ¥1000 to the light. The echoed portrait that you are looking at the middle

of the bill is called watermark and indicates the authenticity of the bill. The watermark is

embedded directly into the paper during the papermaking process, and is therefore very

difficult to forge. The purpose of the watermark is to carry information about the object in

which it is hidden [2].

Digital watermarking was inspired by its analog counterpart. In this case the watermark,

usually a stream of bits, is embedded into the digital work in such a way that the digital work

and the watermark are inseparable unless the quality of the digital work loses its commercial

value.

Applications of digital watermarking are many and cover a wide number of fields. For

example, authenticity of images, extension of narrow bands in telephony speech, and fin-
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gerprinting just to mention some. Furthermore, digital watermarking is not only applied to

audio, image and video but to text and computer graphics as well.

Our interest in this dissertation is to develop watermark algorithms for audio tolerant to

compression and desynchronization.

The first contribution proposes an audio watermark algorithm which achieves the highest

embedding payload, 229.7 bps, robust to compression with quality of 64 kbps (similar to

radio quality). The characteristics, payload and robustness, of this algorithm are suitable to

applications like the insertion of advertisements in free samples of music or the embedding of

subtitles or lyrics inside the audio file itself.

The second contribution is an algorithm to recover the synchronization in transmissions

of block of bits. The algorithm was thought as a solution to clipping attack in audio wa-

termarking. However, the impact of the proposal goes further than watermarking and it

can be applied to any transmission based on iterative decoding of forward error correction

techniques.

1.1 Retrospective

Although this dissertation is mainly related with audio watermarking, we impress a strong

emphasis on low-density parity-check (LDPC) codes which are a class of forward error cor-

rection techniques. This philosophy is because we think that efficient watermark algorithms,

in terms of payload and robustness, can be developed with highly noise-tolerant codes like

LDPC codes and high-payload embedding functions. Moreover, LDPC codes are an impor-

tant part in our proposal for synchronization. This proposal is useful for, but not restricted

to, watermarking.

The literature review is related to watermarking, but we include important facts from

error correcting coding1 (ECC).

1.1.1 Research progress

Definitely error correcting coding is older than formal watermarking2 technology. Neverthe-

less, very early applications of watermarking were developed around the same time when the

first error correcting code, Hamming code, was invented.

Watermarking technology has at most 25 years old, and audio watermarking at least eight

years less. However, in the last seven years, we have seen prominent audio techniques with

good robustness-payload trade-off that show new insights toward more efficient algorithms.

LDPC codes were proposed long time ago but were forgotten until 1996. Recently, these

1Error control codes is an application of coding theory that enable reliable delivery of digital data over
unreliable communication channels.

2We will use the term watermarking to refer specifically to digital watermarking.
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codes have been selected, over turbo codes, to be in standards like the satellite transmission

of digital television and WiMAX.

ECC and primitive watermarking: Before the 80s

The history of ECC started with the introduction of the Hamming codes in 1947, at or about

the same time as the seminal work of Shannon in 1948 [3]. At this stage, watermarking was

not yet invented. However the first commercial applications with the fundamental bases of

watermarking were just about to be shown. The first record of watermark technology can be

traced back to the 50s.

Several codes were discovered right after Shannon published the theoretical limits of

reliable communications over noisy channels. Some of them are: Hamming codes (1947),

Golay codes (1949), Reed-Muller codes (1954), convolutional codes (1955), BCH codes (1959)

and Reed-Solomon codes (1960).

LDPC codes were proposed in 1962, [4], but were ignored because their decoding was

complex to the computational capacity of that time. Nowadays, LDPC codes are decoding

using a soft-decoding approach. However the bases of soft-decoding were developed in the

60s.

Heuristic watermarking: The 80s

The first attempts on watermarking research were in the 80s. Watermarking was not con-

sidered an independent technology and therefore all the research was basically heuristic ap-

proaches. The cover work and the watermark were considered to be independent signals and

the constraint of fidelity-robustness was rawly adapted with a global power constraint at the

embedder.

In 1981, Tanner [5] designed a method to represent codes by means of bipartite graphs.

Later, these graphs will be important in the conception of efficient decoding algorithms for

LDPC codes.

Watermarking as technology: The 90s

The middle of 90s was very important for watermarking as well as for LDPC codes. Water-

marking was finally considered an independent technology and LDPC codes were rediscovered.

The understanding of watermarking at this point was more rigorous and with theoretical

foundations. The published papers were increased not only in number but also in quality.

Indeed, the fundamental bases of watermarking rely in several of those papers.

Theoretical studies modeled watermarking as a communication channel, where the cover

work and further distortions were represented with a noisy channel in which the watermark
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was transmitted through. Advances on fidelity included the aid of perceptual models, like

the human visual system or the human auditory system, to adjust the watermark strength

according to the cover work [6].

Parallel to the introduction of the perceptual modeling, important watermark algorithms

were proposed: spread spectrum (SS) [7], [8], and patchwork [9]. At this point watermarking

stop being exclusive to digital images, the proposals were extended to audio and video as

well. However these first proposals only adapted algorithms from images to audio or video.

1996 is when finally the first proposal dedicated entirely to audio files was published by

Boney [10].

Error correcting coding techniques had an explosive growing but none had achieved per-

formances close to the theoretical limits until 1993, when turbo coding [11] was discovered.

Three years later in 1996 MacKay and Neal show to the world that LDPC codes have also

near-ideal performance using a new decoding algorithm based in the back-propagation prin-

ciple and called sum-product, [12] and [13].

By the end of 90s, the watermarking model was revised and results from [14], [15] and [16]

began to recognize that watermarking is more accurately modeled as communication with side

information [17]. These new algorithms were referred as informed watermarking [18].

Finally, more rigorous quantitative measures of performance were introduced based on

traditional false alarm and bit error rate techniques.

Watermarking and error control codes: Early 2000

The watermarking community was excited about the results of informed watermarking ob-

tained in the last years. It was not long until 2001 that informed watermarking was refined

with the introduction in [19], [20] and [21] of Costa’s paper, Writing on Dirty Paper [22],

to the watermarking community. This result is important to watermarking because the idea

shows that the watermark performance is not affected by the cover work always that a proper

encoding is conveyed on the watermark.

Quantization index modulation (QIM), a Costa-based algorithm, was introduced in 2001

by Chen [21]. QIM has been popular because is low-complex, has amenability to theoretical

analysis and can achieve high payloads. Due to the impact of QIM, many variations have

been proposed, being rational dither modulation [23] the most popular one. However no one

has such performance benefit that justified the increasing of complexity.

This watermarking era is also the beginning of error correcting coding techniques as

means of reliable retrieval of the watermark. The early studies were focused on BCH and

convolutional codes, [24] and [25]. Only one year later in 2001, deeply studies about strategies

of image watermarking using concatenations of BCH and repetition codes were published

in [26]. In the same year, more advanced decoding techniques relying on soft-decision were
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introduced by Pérez-González in [27]. However convolutional codes were the main topic, turbo

coding was mentioned but not deeply analyzed. These techniques were mainly restricted to

still images and there is not such deeply study dedicated to audio files.

An extensive analysis in 2002 about BCH and convolutional codes applied to watermark-

ing [28] showed that these codes do not substantially improve the watermark performance

due to watermarking channels are very noisy. This statement was reaffirmed three years later

by Gu [29] who said that “for common signal processing including compression and noise

corruption in images, BCH cannot improve the robustness of watermarking”.

Spread spectrum was adapted to audio watermarking in 2003 by Kirovski [30] and in the

same year, SS is combined with turbo codes [31] also for audio. This algorithm is robust to

compression of 64 kbps and has payload of 21.6 bps.

Watermarking meets LDPC codes until 2004 when Bastug [32] used the codes to increase

the embedding payload of SS watermarking in still images by twice more than the achievable

with BCH codes and 2.7 times more than using repetition codes. The encoding/decoding

of the LDPC code is the traditional one, the only novelty is the addition of the LDPC to

watermarking.

LDPC codes are suitable for very noisy channels, like watermarking ones, because they

have a near-optimal decoding algorithm with linear complexity and its minimum distance

increases according to the code length. Moreover, LDPC codes have shown to approach the

capacity of various channels and they have better performance than turbo codes for large

codes.

Turbo codes and LDPC codes assume acknowledge of the statistics of the channel noise.

This assumption is difficult to satisfy in watermarking because the watermark is exposed to a

wide range of attacks which are unknown. However, Balado [33] proposed a solution applied

to turbo codes in 2004. The drawback is that the analysis assumed only Gaussian noise which

is not true to all the attacks in watermarking.

Characterization of compression and filtering for audio watermarking were studied by

Cvejic et ál. also in 2004, [34]. Their algorithm obtains information from the attack and then

decides the best place to embed the watermark, however the characterization is not exploited

by any error control coding technique.

In addition, more accurate noise models were developed, particularly for the quantization

noise which is very common after compression of images or audio files. The effect of quan-

tization was rigorously modeled in [35] and the result showed that dither modulation was

analogous to watermarking.
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Robust and high-payload watermarking: 2005 ∼

These last years have brought many advances in audio watermarking as well as theoretical

studies related with the joint iterative decoding of watermarking and error control codes.

For example, attacks like Gaussian noise, scaling and desynchronization were characterized

in [36] using the expectation-maximization algorithm for still images.

In 2006 Coumou [37] proposed the first algorithm of audio watermarking and LDPC codes.

The proposal is aimed to synchronization rather than dealing with conventional attacks.

However the synchronization is achieved with a synchronization code and the LDPC code do

not present any novelty. In the same year, Dikici [38] investigated the design of the quantizers

in QIM and its relation with the decoding of LDPC codes. This proposal is mainly theoretical,

and real attacks are not considered.

A proposal on rational dither modulation and ECC was proposed in 2007, [39], however

the authors again concluded than repetition codes are better fitted to audio watermarking

than other codes. This conclusion is because they analyzed common ECC techniques like

BCH, Golay or convolutional codes.

The vogue in audio watermarking is to develop robust algorithms with considerable pay-

load. The most prominent results have been obtained by Deshpande [40] in 2008 and Bhat [41]

in 2010. The former achieves 220 bps of payload, however it is only robust to compression

of 96 kbps. The latter is a recent proposal which is robust to compression of 64 kbps and

obtains 196 bps.

Image watermarking has shown mature algorithms that are already implemented in com-

mercial applications. The research on audio watermarking is a bit behind compared with im-

ages but with a promising future. Trends on watermarking include watermarking protocols,

reliable communications with forward error correction techniques, high payload techniques,

among others.

1.1.2 Commercial applications

Commercial applications involving watermarks are not new and indeed, one of them pro-

posed by Emil Hembrooke, was used for almost 30 years. In 1954, Hembrooke [2] of Muzak

Corporation filed a patent for watermarking of musical works. The watermark was used to

identify music using the Morse code. The embedding of the watermark was achieved with a

notch filter centered at 1 kHz. The absence of energy at this frequency indicated that the

notch filter had been applied and the duration of the absence used to code either a dot or a

dash.

Profitable fields where watermarking has been widely used are advertisement monitoring

and audience measurement. Both “Nielsen Media Research” and “Competitive Media Re-
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porting” employ watermarking to verify how many times a certain advertisement is aired.

“Verance Corporation” has introduced a service to monitor television and radio broadcast

media using their audio watermarking technology.

Watermarks are also useful to control electronic devices. The advantage is that the

control signal is embedded in the main signal, saving the bandwidth dedicated to the control

one. Probably the first attempt of signaling embedding was patent by Tomberlin [42], who

proposed to embed an auxiliary signal in the radio broadcasting which allows the receivers

to remove the advertisements. Later, in 1962 Noller [43] of “Lynch Carrier Systems Inc.”

patented a system to control telephony equipment by adding a watermark to the speech

signal.

Video watermarking has also its own applications, being interactive television the first

goal. In 1976 Baer [44] of the Sanders Associates Inc. was issued a patent related with

interactive television by means of the embedding of an auxiliary signal. Almost a decade later,

in 1989, Interactive Systems Inc. was awarded a patent [45] for “commands to interactive

television”. An early application of this technology was in the synchronization of children’s

toys with live-broadcast or recorded video.

Dolby Labs [46] has also developed applications which involve watermarking. In 1981,

they proposed “A sub-audible in-band tone system . . . for identifying an FM stereophonic

radio broadcast which is specially encoded, as with dynamic range improvement encoding or

quadraphonic encoding, . . . [and] which can control a visual display and switch in appropriate

signal decoding circuitry when the tone is detected.”

Nowadays Digimarc Inc. and its partners Media Science International (MSI), Civolution,

Verance and MarkAny offer commercial watermarking solutions to audio, still image and

video. MSI provides forensic audio watermarks and copy protection for CDs. Civolution

offers tracking and monetization of audio content on the Internet. Verance provides solutions

for copy protection within the DVD-audio, SD-audio and SDMI formats.

Moreover Digimarc Inc. expects to release an audio watermarking application in the first

quarter of 2011.

1.2 Dissertation overview

This dissertation is about high-payload algorithms for audio watermarking robust to com-

pression and desynchronization. In order to achieve our goals, watermarking is analyzed as

a communication scheme in which the reliability of the delivered bits relies highly in forward

error correction techniques.

The first contribution is an audio watermark algorithm with the highest payload tolerant

to the lowest compression with commercial value (64 kbps) and the second contribution is
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a solution to recover the synchronization with LDPC codes. The synchronization algorithm

was firstly thought to endure clipping attacks in audio files, however we propose a generalized

algorithm which can be applied not only to watermarking but general communications.

We start this dissertation in Chapter 2 with a briefly introduction to general topics related

with our concerns. We explain the role of watermarking in secure systems, then we introduce

in detail the main embedding algorithm, called QIM. Selected topics on digital audio, MPEG-

1 layer III (MP3) compression and desynchronization due to clipping attack are also included.

The Chapter ends with a description of LDPC codes.

Chapter 3 is dedicated to an extensive analysis of audio watermarking using QIM-based

algorithms. We define a generic watermark scheme in frequency domain to analyze the

properties of dither modulation (DM) and spread transform dither modulation (ST), both

them with and without distortion-compensation (DC) post-processing. Further improvements

are analyzed with the addition of LDPC codes. The robustness of the algorithms is tested

against common signal processing like MP3 compression and low-pass filtering. Finally, a

benchmark for audio watermarking named Audio StirMark was used to show the performance

of the proposed methods.

Compressed audio is probably the audio format most played over the world, hence Chap-

ter 4 concerns about audio watermark algorithms robust to MP3 with a compression rate

of 64 kbps (equivalent to radio quality). Efficient frequencies in terms of robustness and

imperceptibility were found after an analysis of the sub-bands produced by a wavelet packet

decomposition of the audio file. Then, a new watermark algorithm is proposed by using

dither modulation and coded-watermarks. The algorithm takes advantage of the analysis

in Chapter 3 about LDPC codes. The embedding capacity of the algorithm was increased

with a novel idea using erasures at the LDPC decoder resulting in the algorithm with highest

embedding capacity for audio watermarking resistant to MP3 at 64 kbps. This Chapter also

includes a comparison of performance between our algorithm and recently related proposals.

Finally, the Chapter is closed with results about the sound quality of the watermarked audio.

Chapter 5 was motivated because the desynchronization produced by the clipping attack

in audio watermarking. However, the Chapter is treated from the point of view of general

communications because the proposal can be applied not only to watermarking but to general

transmissions. We propose a novel algorithm which recovers the synchrony using LDPC codes

after a continuous deletion of bits in the channel. The theoretical bases of encoding/decoding,

scope, and restrictions are also explained. The good performance of the algorithm is shown

through simulations over BPSK3 channel with Gaussian noise and its errors are bounded

with an idea based on cyclic codes. Reflections about the characteristics of the codes and its

impact in the performance of our algorithm are addressed at the end of the Chapter.

3Binary phase-shift keying
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The unification of audio watermarking and the self-synchronous algorithm, presented

in the previous Chapter, is the topic of Chapter 6. We develop an improvement to Lie’s

algorithm for audio watermarking in time-domain. At the beginning of the Chapter, Lie’s

algorithm is introduced and we also explain its two disadvantages. Then, an application of

the algorithm of Chapter 5 is proposed as improvement to Lie’s algorithm. The advantages

of this new algorithm are shown through simulations of both algorithms, Lie’s and ours.

Finally, in Chapter 7 the ideas presented in this dissertation are concluded and we also

include some suggestion to future research.
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2

Foundations

Understanding of basic concepts is fundamental to conceive new ideas.

In this Chapter we describe general concepts which are needed to further comprehension

of this dissertation. Among these topics are a formal definition of watermarking, similarities

and differences between watermarking and cryptography, detailed explanation of the main

embedding function, some facts about digital audio, compression, clipping attack, and an

introduction to low-density parity-check (LDPC) codes.

2.1 Digital watermarking

Digital watermarking is formally defined as:

The process in which a signal, called watermark, is embedded in another

signal, called cover work, with a certain robustness [14].

In watermarking, unlike other data hiding techniques, the watermark always carries in-

formation about the cover work. Usually, the watermark is a binary stream and the cover

work is audio, still images, or video.

A generic watermarking scheme is composed of two main parts: the embedding and the

detection. The former combines the cover work with the watermark producing a unique entity,

called watermarked work. The job of the detector is to retrieve the watermark as accurate

as possible. If the watermarked work has not suffered distortion, then the extraction of the

watermark is an easy job. However the watermarked work might suffer alterations which

make difficult recovering the watermark.

In the 90s, watermarking was considered a sort of communications, see Fig. 2.1, in which

the watermark (information to be transmitted) is embedded, the watermarked work is at-

tacked (transmitted through noisy channels), and finally the watermark is retrieved (re-

ceived). This analogy implies that reliable transmission in watermarking can be achieved
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with the aid of coding theory, that is, using channel characterization and forward error cor-

rection techniques.

Fig. 2.1: Generic block diagram of a watermark system.

Later on, around the beginning of 2000, the watermarking model was refined and the

conclusion was that watermarking is better fitted with a sort of channel firstly analyzed by

Costa and called communications with side information

In 1983, Costa [22] studied a variation of the Gaussian-Shannon channel, depicted in

Fig. 2.2, which has two sources of noise. One of them known by the encoder but them both

unknown to the decoder.

Fig. 2.2: Variation of Gaussian-Shannon channel.

Costa found that the channel capacity is:

C =
1

2
log2

(

1 +
σ2
w

σ2
v

)

, (2.1)

where σ2
w and σ2

v are the variances of the source and the unknown-noise respectively. Ac-

cording to (2.1), the channel capacity is not affected by the known-noise and therefore, the

channel of Fig. 2.2 is equivalent to a channel without the known-noise.

This abstraction is important to watermarking because the channel with the two noise

sources is also known as informed watermarking. The two noises in Fig. 2.2 can be seen as the

cover work (known-noise) and the attack (unknown-noise) to watermarking, Fig. 2.3. Thus

(2.1) shows analogously that the watermarking capacity does not depend on the cover work.

However, Costa’s result cannot be straightforward applied to practical solutions because

Costa considered the transmission of bits taken from huge and random codebooks. Never-

theless suboptimal watermarking approaches based in the same principle, e.g. quantization

index modulation (QIM) watermarking, have shown good and interesting properties.
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Fig. 2.3: Watermarking as communications with side information.

2.1.1 Applications of audio watermarking

The most popular application of watermarking is the insertion of a code, usually a few bits,

into the digital work to resolve right ownership. However watermarking can be applied to

many more applications. For example, high payload watermarking has been used to extend

narrow bands from 8 kHz to 16 kHz in telephony speech [47], which results in better quality

of the voice with the same physical resources.

Common applications of audio watermarking are:

• Ownership protection. The watermark enables the owner to demonstrate the presence

of this watermark in case of dispute of ownership.

• Authentication and tampering detection. The watermark is used to determine whether

the cover work was tampered.

• Fingerprinting. Additional data embedded by a watermark in the fingerprinting appli-

cations are used to trace the originator or recipients of a particular copy of a multimedia

file.

• Broadcast monitoring. Watermarking is an obvious alternative method of coding iden-

tification information for an active broadcast monitoring. It has the advantage of being

embedded within the cover work rather than exploiting a particular segment of the

broadcast signal.

• Copy control and access control. The embedded watermark represents a certain copy

control or access control policy. A watermark detector is usually integrated in a record-

ing or playback system.

• Information carrier. High embedding capacity is desirable in this application. While the

robustness against intentional attacks is not required, however a certain degree of ro-

bustness against processing like MPEG compression may be desirable. The watermark

can be used as link to external data bases, copyright information, licensing conditions

or metadata information.
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The algorithms presented in this dissertation are suitable to information carrier appli-

cations. Our achieved payloads are high, around 200 bps, and they are robust to MPEG-1

compression. This means that the watermark can carry with at least 25 characters (assum-

ing 8 bits/character) per second, perfectly fitting in applications like advertising or metadata

information.

2.2 Watermarking is not cryptography

Many comparisons have been made between watermarking and cryptography since the in-

terest on the former is strongly motivated by security on multimedia. However both them

have different goals but they can complement each other. Cryptography is related with se-

cure transmission involving privacy, integrity and authentication of the data. Meanwhile,

watermarking concerns with reliable transmission, Fig. 2.4.

Fig. 2.4: Concerns of cryptography and watermarking.

Given the watermarking objective, why watermarking is considered as an analogy to

copyrights protection?. Well, copyright protection is only an application of watermarking

which has become very popular due to the social impact of its realization. The most basic

requirement of watermarking is the ability to embed and detect a hidden message within

a host signal. However, applications of watermarking, e.g. authentication, fingerprinting,

etc., might require very much more. Therefore security threats depend on the application of

watermarking which must not be confused with watermarking itself.

Secure systems can be built using different layers, similar to Fig. 2.5. In such design,

watermarking is responsible for the synchronization and delivery of bits while cryptography

is responsible of guaranteeing its privacy, integrity and authenticity.

In this dissertation, watermarking is assumed to be the responsible only of the information

hiding layer in a secure system.

2.3 Quantization index modulation

In 2001 Chen and Wornell introduced a new watermarking algorithm, called quantization

index modulation (QIM) [21], based on Costa’s abstraction. The QIM foundation is to embed
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Fig. 2.5: Design of secure systems using layers.

the watermark by means of quantizing the cover work. Thereby QIM is easy to implement

in software or hardware, has low complexity, and is amenable to theoretical analysis.

Let us assume that the watermark is a binary vector m = m1,m2, . . . where mi ∈ {0, 1}.
Furthermore, the cover work is a vector X = X1,X2, . . . with zero mean and variance σ2

X
.

Along this dissertation we use bold letters, e.g. X or x, to represent vectors and Xi or xi

refer to their respective i-th element.

QIM associates each symbol of the watermark with a different quantizer, that is, mi = 0 is

related to the quantizer Q0 and mi = 1 associated to Q1. Thus, QIM embeds the watermark

by quantizing the cover work with the appropriate quantizer using the next function:

X̂i = Qj(Xi,∆), for j = mi;

where ∆ is the step quantization size and X̂ = X̂1, X̂2, . . . is the watermarked work. The step

quantization size is directly related with the trade-off between robustness and imperceptibility

of the watermark. A bigger ∆ produces more robustness but also higher degradation of the

audio quality.

In the watermark extraction is assumed that a noisy version Y = X̂+v of the watermarked

work is received, where v is the noise. Then, the extracted watermark m̂i is defined by

computing the distance between the received samples Yi and its quantization Qj(Yi,∆).

Finally, the extracted bit is equal to the argument of j which minimize the distance:

m̂i = arg min
j

|Yi − Qj(Yi,∆)|, for j ∈ {0, 1}.

2.3.1 Dither modulation

Dither modulation (DM) is a practical implementation of QIM based on scalar and uniform

quantizers which produces a very low-complex embedding and extracting algorithms.

DM uses only one quantizer Q to embed the watermark, however two constants known
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as dithered parameters are needed. The first dithered parameter v(0) is generated in pseudo-

random way with a uniform distribution between [−∆/2,∆/2], where ∆ is the quantization

step size. The second parameter v(1) is computed according to:

v(1) =







v(0) + (∆/2), if v(0) < 0

v(0) − (∆/2), if v(0) ≥ 0
.

In that way, it is ensured that both dithered parameters differ in ∆/2 each other.

Unlike QIM, DM does not associate the watermark with the quantizer but with the

dithered parameters. Thereby, mi = 0 and mi = 1 are associated with v(0) and v(1) respec-

tively. DM embeds the watermark mi by adding the corresponding dithered parameter v(mi)

to the digital work Xi, quantizing the result with Q, and then subtracting the same dithered

parameter v(mi) added in the beginning. This process is summarized in the next function:

X̂i = Q
(

Xi + v(mi),∆
)

− v(mi), (2.2)

where X̂ = X̂1, X̂2 . . . is the watermarked work.

The watermark extraction follows the same foundations than QIM which is the measure-

ment of distances between the received signal Y = Y1, Y2, . . . and its closest reconstruction

points. The recovered watermark, m̂i, is the argument of j which minimizes:

m̂i = arg min
j

|Yi − Q
(

Yi + v(j),∆
)

+ v(j)|, for j ∈ {0, 1}. (2.3)

2.3.2 Spread-Transform dither modulation

Spread-transform watermarking is based on the idea that the watermark is not directly em-

bedded into the original work X = X1,X2, . . . but into the projection S of a set of the original

work Xk = X1,X2, . . . ,Xl onto a pseudo-random sequence z = z1, z2, . . . , zl. Although z is

random, proper normalization must be assumed.

Let us l denotes the spreading factor, meaning the number of elements of X belonging

to one element Sk. The term spreading factor is because the information to be embedded

in Sk will be spread on l elements of X by the inverse spread-transform, thus l controls the

embedding rate. Projected samples S = S1, S2, . . . are computed with

Sk =
lk

∑

i=l(k−1)+1

Xizi. (2.4)

If (2.2) is used to embed the watermark mi into Sk, the method is called spread-transform

dither modulation, denoted with ST for short. Once the bit is already embedded on Sk, the
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Section 2.3 Quantization index modulation

inverse spread-transform,

X̂k = Xk − Skz + Ŝkz, (2.5)

is applied to obtain the watermarked work X̂, where Ŝk refers to the watermarked samples

in the transform domain.

In the detection phase, the received samples Y has to be projected onto z as mentioned

above and then the detection method using (2.3) is applied.

2.3.3 Distortion-Compensation

Distortion-compensation (DC) is not an embedding algorithm like DM or ST, however DC is

a process that improves the trade-off between distortion-robustness of QIM-based algorithms,

e.g. DM and ST. The main goal of DC is to increase the reliability of the decoded bits against

a certain attack by maximizing the quantization step size until a desirable level of quality

degradation in the cover work.

Given a quantizer ensemble, DC scales all the quantizers by 0 < α ≤ 1. Thus the square

minimum distance, d2
min, between reconstruction points will be increased by a factor of 1/α2

and therefore the robustness is increased as well. Increasing d2
min produces higher distortion

in the cover work, hence DC compensates this additional distortion by adding back a fraction

1 − α of the quantization error to the quantization value [21]. The embedding function of

QIM with DC property is:

X̂i = Qj(Xi,∆/α) + (1 − α)
[

Xi − Qj(Xi,∆/α)
]

, for j = mi. (2.6)

The second term in (2.6) is the compensation term and can be treated as independent

noise at the decoder because it is statistically independent of m. Therefore the watermark

extraction process is the same as QIM.

The optimal choice for the parameter α in ideal cases depends on the watermark-to-noise

power ratio (WNR) and is given by

αopt =
σ2
w

σ2
w + σ2

v

=
1

1 + 10−WNR[dB]/10
, (2.7)

where σ2
v is the noise power and σ2

w is the watermark signal power, w = X̂− X.

WNR is defined as the ratio between the watermark signal power w and that of the noise

introduced by the attack v:

WNR = 10 log10

(σ2
w

σ2
v

)

, (2.8)

and it is related with the strength of the attack. Along this dissertation, we will also use the
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signal-to-noise ratio,

SNR = 10 log10

(σ2
X

σ2
w

)

, (2.9)

however it is used as measurement of the watermarked work quality.

2.4 Digital audio

The sound is the human response to certain vibrations that travel along different mediums,

being air the most common one, in form of waves.

Wavelength, period, and amplitude are the main characteristics of waves. The wavelength

is the horizontal distance between to equivalent points of the wave, e.g. two peaks. The time

taken by the wave to complete a full cycle is called period and finally the amplitude is the

height of the wave. These characteristics are pictured in Fig. 2.6. Thus, the frequency of a

wave is defined as the inverse of its period, that is, the number of cycles per second.

wavelength

(distance)

a
m

p
lit

u
d

e

period (time)

Fig. 2.6: Characteristics of waves.

For humans, hearing is normally limited to frequencies between 20 Hz and 20 kHz, al-

though the exact limits are slightly different for each person and their age. In addition,

the ear has nonlinear response to sounds of different loudness levels. This fact is used in

compression techniques as well as in watermarking.

The waves of a sound can be converted in electrical signals, known as analog audio, by

means of transducers, e.g. microphone. Such signals are two dimensional and they represent

the variation of voltage with respect to time.

Digital audio is simply an alternative means of carrying an audio waveform. Although

there are many techniques to convert analog audio into digital one, pulse code modulation

(PCM) has virtually a universal use. PCM represents the audio signal as a discrete vector

which contains the voltage value of the signal in certain time, Fig. 2.7. The voltage values

are measured in equally intervals of time, this process is known as sampling and how frequent

the samples are taken is called sampling rate. The last step of PCM is to decide how many

bits are used to store the voltage value or, in other words, the accuracy of the sample.

Waveform audio (WAV) file format is a Microsoft and IBM audio format standard for

storing an audio bit stream. Though a WAV file can hold compressed audio, the most com-
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Fig. 2.7: PCM converts analog audio signals into digital ones.

mon WAV format contains uncompressed audio in PCM format. This dissertation proposes

watermark algorithms for audio files in WAV format sampled at 44 100 samples per second

and 16 bits per sample which is equivalent to the quality of compact discs.

2.4.1 Audio watermarking singularity

Watermarking of audio signals is more challenging compared to watermarking of images

or video sequences due to wider dynamic range of the human auditory system (HAS) in

comparison with the human visual system. The HAS perceives sounds over a range of power

greater than 109 : 1 and a range of frequencies greater than 103 : 1. The sensitivity of HAS

to the additive white Gaussian noise is high as well; this noise in a sound file can be detected

as low as 70 dB below ambient level. On the other hand, opposite to its large dynamic

range, HAS contains a fairly small differential range. That is, loud sounds generally tend to

mask out weaker sounds. Additionally, HAS is insensitive to a constant relative phase shift

in a stationary audio signal and some spectral distortions interprets as natural, perceptually

non-annoying ones [48].

Auditory perception is based on the critical band analysis in the inner ear where a

frequency-to-location transformation takes place along the basilar membrane. The power

spectra of the received sounds are not represented on a linear frequency scale but on limited

frequency bands called critical bands. The auditory system is usually modeled as a band-

pass filter bank, consisting of strongly overlapping bandpass filters with bandwidths around

100 Hz for bands with a central frequency below 500 Hz and up to 5000 Hz for bands placed

at high frequencies. If the highest frequency is limited to 24000 Hz, 26 critical bands have to

be taken into account.

Two properties of the HAS used by watermarking algorithms are frequency masking

and temporal masking. This concept was firstly used in wideband audio coding. Masking

properties are used to embed additional bits into an existing bit stream without generating
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audible noise in the audio sequence.

The requirements of watermarking in audio are inaudibility, robustness to attacks, and

the embedding capacity. When one of them is increased the remaining two are affected.

Therefore is very difficult to obtain a high payload algorithms with good robustness.

2.5 Attacks

In digital watermarking any modification of the watermarked work is considered as attack.

The modification can be unintentionally produced by common audio processing or by an

attacker aiming to break the watermark. In either case the watermark must be fully or

partially recovered depending of the application, if and only if the watermarked work still

has enough quality to hold commercial value.

This dissertation proposes algorithms tolerant to compression and desynchronization. The

former is conveyed by using MP3 compression algorithm which is considered a tough attack

to audio watermarking. The latter, desynchronization, is considered still an open problem to

watermarking.

2.5.1 MPEG-1 layer III (MP3)

MPEG-1 Audio is a popular audio encoding and lossy compression format, designed to greatly

reduce the amount of data required to present audio, yet still sound like a faithful reproduction

of the original uncompressed audio to most listeners [49].

The MPEG-1 standard incorporates several methods including subband decomposition,

filter-bank analysis, transform coding, entropy coding, dynamic bit allocation, nonuniform

quantization, adaptive segmentation, and psychoacoustic analysis. The compression algo-

rithm operates on 16-bit PCM input data at samples rates of 32, 44.1 and 48 kHz. Moreover

MPEG-1 offers separate modes for mono, stereo, dual independent mono, and joint stereo.

The MPEG-1 architecture contains three layers of increasing complexity, delay, and output

quality. Each higher layer incorporates functional blocks from the lower layers. The layer III

is the most efficient in the sense of audio-quality versus compression-rate, thus is the most

popular one and it is known as MP3.

MP3 architecture, Fig. 2.8, achieves performance improvements by adding several impor-

tant mechanisms on top of the layer I/II foundation. MP3 algorithm operates on consecutive

frames of data. Each frame consists of 1152 audio samples; a frame is further split into two

subframes of 576 samples each. A subframe is called granule. At the decoder, every gran-

ule can be decoded independently. A hybrid filter bank is introduced to increase frequency

resolution and thereby better approximate critical band behavior. The hybrid filter bank

includes adaptive segmentation to improve pre-echo control. Sophisticated bit allocation and
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quantization strategies that rely upon nonuniform quantization, analysis-by-synthesis, and

entropy coding are introduced to allow reduced bit rates and improved quality. The hybrid

filter bank is constructed by following each subband filter with and adaptive modified discrete

cosine transform. This practice allows for higher-frequency resolution and pre-echo control.

Shorter blocks (4 ms) provide for temporal pre-masking and pre-echoes during transients;

longer blocks during steady-state periods improve coding gain by reducing side information

and hence bit rate.

Bit allocation and quantization of the spectral lines are realized in a nested loop procedure

that uses both nonuniform quantization and Huffman coding. The inner loop adjust the

nonuniform quantizer step sizes for each block until the number of bits required to encode

the transform components falls within the bit budget. The outer loop evaluates the quality

of the coded signal in terms of quantization noise relative to the just noticeable difference

(JND) thresholds [50].
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Fig. 2.8: ISO/MPEG-1 layer III (MP3) encoder.

2.5.2 Clipping attack

Most of the watermarking schemes assume perfect synchrony, that is, both embedder and

detector should know the correct place where the watermark is embedded. Moreover, if the

information was divided and embedded as blocks of information due to any error-control

coding technique then the detector must be capable to detect the beginning of each block.

Real applications are susceptible to suffer desynchronization attacks and therefore without

a synchronization scheme the detector might emits unintelligible results even in noise free

channels.

Clipping attack attempts to desynchronize the detector by removing or clipping random

samples along the cover work. Fig. 2.9 pictures this situation. Each square represents a

sample of the cover work, solid-line squares are where the watermark was embedded. Since

samples 2, 6 and 13 were removed, the detector faces problems to distinguish the beginning

of the watermark as well the bounds of each block of information.
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Fig. 2.9: Clipping attack removes random samples from the cover work.

2.6 Low-density parity-check codes

Low-density parity-check (LDPC) codes are linear codes that are constructed by designing a

sparse parity check matrix H. They were discovered by Robert Gallager in 1962 [4], however

because the computational complexity of its decoding algorithm were forgotten until early

80’s when Tanner introduced an idea to represent codes based on graphs. But it was not

until 1996 when LDPC codes took great attention due to MacKay and Neal showed that

LDPC could perform as well as turbo codes on the additive white Gaussian noise (AWGN)

channel [12].

The good properties of LDPC codes arise when the code length is increased because

the error probability decreases exponentially, its minimum distance is increased, and the

complexity grows linearly.

2.6.1 Construction

LDPC codes can be defined only with its parity check matrix H. The generator matrix G

can be obtained from H. Gallager proposed an LDPC construction based in pseudo-random

allocation of the ones along H. The construction is the following:

• Make a sparse parity check matrix H by randomly determining the position of 1’s with

a fixed number, s and v, of 1’s per column and per row respectively.

• The number of 1’s per column must satisfies s > 2

• The overlapping of 1’s per column and per row should be at most equal to one.

• s and v should be small number compared with the code length n.

The above construction often produces H in non-systematic form. Therefore, using Gaus-

sian elimination H can be converted to systematic form H ′ = [In−k P T ], where n is the
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Section 2.6 Low-density parity-check codes

code length, k the information block length and In−k is an identity submatrix of dimension

(n − k) × (n − k). Finally we can obtain the generator matrix G = [P Ik].

In 1981 Tanner [5] proposed and pictorial representation of the parity check matrix using

a bipartite graph. Tanner graph, named after its inventor, depicts the relations between

symbols nodes which represent the transmitted symbols and the parity checks nodes which

represent the parity check equations. Given an LDPC code, if the entry {i, j} of the sparse

parity check matrix H is equal to one, Hi,j = 1, then there is connection between the symbol

node j and the check node i. For example, assume the next parity check matrix H of a

Hamming code (7, 4),

H =









1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1









,

thus the corresponding Tanner graph is show in Fig. 2.10.

Fig. 2.10: Tanner graph of the parity-check matrix H of the Hamming code (7, 4).

2.6.2 Encoding

Assuming that the information is represented by a binary vector m, the encoding is produced

by the binary multiplication between m and the generator matrix G:

m̄ = m · G,

so that the coded vector m̄ satisfies the syndrome equation m̄ · HT = 0, where HT is the

transpose of the parity-check matrix H.

2.6.3 Decoding: Sum-product algorithm

Decoding of LDPC codes can be conveyed in several ways, however the most popular methods

are bit-flipping (BF) and sum-product algorithm (SPA). BF [51] is a hard-decision algorithm

that offers a good trade-off between error performance and decoding complexity. However

soft-decision algorithms can achieve better error performance than those with hard-decision.

SPA [13] is a soft-decision and iterative decoding, based on belief propagation that is ex-

tremely efficient for decoding LDPC codes and yet is practically implementable.

SPA processes the received symbols iteratively to improve the reliability of each code
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symbol based on the parity-check matrix H of an LDPC code. The reliability of the coded

symbol can be measured by its marginal a posteriori probability, its log-likelihood ratio (LLR)

or the value of its corresponding received symbol. The computed reliability measures of code

symbols at the end of each decoding iteration are used as input for the next iteration. The

decoding iteration process continues until a certain stopping condition is satisfied. Then,

based on the computed reliability measures of code symbols, hard decisions are made [51].

Let hi,j denote the entry of H in the i-th row and the j-th column. Let

L(k) = {ℓ : hk,ℓ = 1}

denote the set of code positions that participate in the m-th parity-check equation, and let

K(ℓ) = {k : hk,ℓ = 1}

denote the set of check positions in which code position ℓ participates.

The SPA iteratively computes two types of conditional probabilities:

qx
kℓ, the probability that the ℓ-th bit of m̄ has the value x, given the information obtained

via the check nodes other than check node k.

rx
kℓ, the probability that a check node k is satisfied when bit ℓ is fixed to a value x and

the other bits are independent with probabilities qkℓ′ , ℓ
′ ∈ L(k) \ ℓ.

Assuming binary transmission over an AWGN channel and that the modulated symbols

φ(m̄i) = (−1)m̄i

√
Es are received as yi = φ(m̄i) + vi, where vi is a Gaussian distributed

random variable with zero mean and variance σ2
v.

SPA is initialized as it follows. For ℓ ∈ {1, 2, . . . , N}, initialize the a priori probabilities

of the code nodes

p1
ℓ =

1

1 + exp(yℓ
2

σ2
v

)

and p0
ℓ = 1 − p1

ℓ . For every (ℓ, k) such that hk,ℓ = 1,

q0
k,ℓ = p0

ℓ , q1
k,ℓ = p1

ℓ .

Then, the message passing of SPA consists of two steps:

Step 1: Bottom-up (horizontal)

For each ℓ, k, compute

δyk,ℓ =
∏

ℓ′∈L(k)\ℓ
(q0

k,ℓ′ − q1
k,ℓ′),

and

y0
k,ℓ = (1 + δyk,ℓ)/2, y1

k,ℓ = (1 − δyk,ℓ)/2.
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Step 2: Top-down (vertical)

For each ℓ, k, compute

q0
k,ℓ = p0

ℓ

∏

k′∈K(ℓ)\k
y0

k′,ℓ, q1
kℓ = p1

ℓ

∏

k′∈K(ℓ)\k
y1

k′,ℓ,

and normalize, with α = 1/(q0
kℓ + q1

kℓ),

q0
k,ℓ = αq0

k,ℓ, q1
k,ℓ = αq1

k,ℓ.

For each ℓ compute the a posteriori probabilities

q0
ℓ = p0

ℓ

∏

k∈K(ℓ)

y0
k,ℓ, q1

ℓ = p1
ℓ

∏

k∈K(ℓ)

y1
k,ℓ,

and normalize, with α = 1/(q0
ℓ + q1

ℓ ),

q0
ℓ = αq0

ℓ , q1
ℓ = αq1

ℓ .

Finally the soft-outputs are decoding with:

m̂i = sgn
(

q0
i − 1

2

)

,

for i = 1, 2, . . . , N . If m̂H⊤ = 0̄, then m̂ is the estimated codeword and the soft outputs are

Λ(mi) = log(q1
i ) − log(q0

i ), 1 ≤ i ≤ N.

The algorithm stops.

Otherwise, return to Step 2. If the number of iterations exceeds a predetermined thresh-

old, a decoding failure is declared.
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Audio watermarking

Audio watermarking started slightly later than watermarking for still images. The first

proposal dedicated to audio signals was published in 1996 by Boney [10].

Early research of audio watermarking was oriented to adapt algorithms originally devel-

oped for images, e.g. patchwork or spread spectrum, to audio files.

Patchwork [9] technique separates the data to be watermarked into two distinct subsets.

One feature of the data is chosen and modified in opposite directions in both subsets. The

separation of the samples is the secret used in the embedding and detection step. The

watermark can be easily detected if the data satisfies some statistical properties.

Spread spectrum (SS) communications were invented to send guidance information to

torpedoes believed to be resistant to jamming. SS foundations were applied to digital water-

marking for images by Cox [6] and later by Kirovski to audio signals [30]. In SS, each message

is represented by a pseudo-random sequence which is spread along different frequencies of the

signal, the sequence must be small enough to avoid serious degradation of the host signal.

The detection is usually conveyed by a matched filtering.

Either patchwork or SS represents watermark algorithms with good robustness but their

embedding rates are low.

High embedding rates can be achieved with quantization index modulation (QIM) algo-

rithms, however the cost to be paid is weak robustness. Alternatives to increase the robustness

are the embedding in frequency domain and addition of error-control codes (ECC) to encode

the watermark.

This Chapter is dedicated to the analysis of QIM algorithms applied to audio files with the

purpose of setting up a watermark framework for the Chapter 4. Our interest is to study the

behavior of different QIM-based algorithms in frequency domain and its robustness against

attacks.

Firstly, a brief introduction about the one-dimensional discrete wavelet transform is given

in Section 3.1. In the same Section, we also describe how the frequency coefficients can
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be obtained from the audio file and which of them are selected to embed and retrieve the

watermark.

Then, algorithms to embed the watermark in the audio’s frequencies using dither modu-

lation (DM) and spread-transform dither modulation (ST) are explained in Section 3.2.

Watermarking channels tend to be very noisy and QIM alone is not enough to obtain

robust watermarks even if the watermarks are embedded in frequency. Therefore, we propose

the addition of powerful codes like low-density parity-check (LDPC) codes to encode the wa-

termark and thus improving the weakness of QIM. Section 3.3 addresses the implementation

of QIM-based algorithms with LDPC codes and Section 3.4 shows comparisons and analysis of

all watermark algorithms, including coded and uncoded versions. We compare the robustness

of the algorithms against Gaussian noise and common audio processing techniques.

Finally the last Section, 3.5, of this Chapter is regarding small improvements which can

be implemented in practical systems but they are not deeply studied because are out of the

scope of this dissertation.

3.1 Embedding on frequency domain

The embedding in frequency domain emerges due to the need of robust watermarks. Fre-

quency is more robust than time domain because the watermark is placed in the fundamental

frequencies of the audio signal. Thus, the attacker should introduce strong distortions to the

audio, which makes the audio worthless, in order to destroy or remove the watermark.

The frequency representation of a signal can be computed with mathematical transfor-

mations like fast Fourier transform (FFT), discrete cosine transform (DCT), and discrete

wavelet transform (DWT). Each of them, depending of the signal to be analyzed, represents

different constraints of complexity and frequency response. In our algorithms, DWT is used

to compute the frequency representation of the audio signals.

3.1.1 Discrete wavelet transform

Wavelet is a mathematical transform that provides a time-frequency representation. Un-

like Fourier transform, wavelet produces more accurate information about the frequencies

and when they occur, especially in non-stationary signals like audio files. Although the

wavelet natural representation is based on scale-time, the representation of the information

in frequency-time is straight forward.

DWT offers decomposition oriented to low-frequencies. In other words, if we picture

the wavelet decomposition as a binary tree, Fig. 3.1, where the left node belongs to low-

frequencies and right node to high-frequencies then, the decomposition is done always to the

left node until the desired level.
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Fig. 3.1: Decomposition of the audio file using discrete wavelet transform.

Thereby the lowest left node, in this example “L-5” of Fig. 3.1, is considered as the

approximation coefficients of the signal which contain the fundamental information. The

lowest right node, “H-5”, is called the detail coefficients.

3.1.2 Framework of the embedding

Let us assume that the audio file is represented by a vector X = X1,X2, . . . where each

Xi denotes an audio sample in time domain. The vector X is divided into non-overlapping

blocks of n continuous samples. DWT is applied to each block until the fifth level.

Since small changes in the approximation coefficients, “L-5”, produce audible distortion

in the audio file, only coefficients from the block “H-5” are taken to form the vector x =

x1, x2, . . . . Other frequency coefficients are kept for later reconstruction of the audio file.

The watermark m = m1,m2, . . . is embedded in each coefficient of x using the embedding

function f(xi,mi) = x̂i, producing the watermarked coefficients x̂ = x̂1, x̂2, . . . .

The watermarked audio X̂ = X̂1, X̂2, . . . is reconstructed using the blocks L-5, H-4, H-3,

H-2, H-1 and x̂ by means of the inverse discrete wavelet transform (IDWT). This process is

summarized in Fig. 3.2 and will be assumed for all the algorithms described in this Chapter.

3.1.3 Framework of the detection

At the detection phase the attacked audio Y = X̂ + v is assumed to be received, where v is

noise and X̂ is the watermarked audio.

The audio file Y is divided in blocks of n samples, similar to the embedding phase. DWT

until the fifth level is applied to each block and only the detail coefficients, “H-5”, are used.

The detection function g(yi) takes the frequency coefficients y = y1, y2, . . . and decides

the bit of the recovered watermark m̂ = m̂1, m̂2, . . . . Fig. 3.3 summarizes the detection
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Fig. 3.2: General embedding scheme on frequency domain for audio files.

structure.

This framework will be also used in the watermark algorithms described in this Chapter.

The objective is to compare the performance of different embedding functions like DM or ST

but using the same embedding and detection framework.
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Fig. 3.3: General detection scheme on frequency domain for audio files.

3.2 QIM-based watermarking

Audio watermarking schemes based on dither modulation (DM) and spread-transform dither

modulation (ST) will be proposed and analyzed in this Section. Inside the analysis, we also

include improvements of DM and ST by using distortion-compensation (DC).
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Each algorithm will be compared by measuring its bit error rate (BER) over a channel

contaminated with AWGN. In order to obtain fair comparison, the step size ∆ = .02 and the

embedding rate ≈ 20 bps is the same to all the schemes.

The audio files used in the simulations are in WAVE format, sampled at 44.1 kHz with

16 bits, and monaural.

3.2.1 Dither modulation

DM is the simplest watermark algorithm based on QIM. The watermark is embedded follow-

ing the idea pictured in Fig. 3.2 with the characteristic that the embedding function f(xi,mi)

is given by DM.

The audio file is divided in blocks of 512 samples, for each block DWT with Haar mother-

wavelet and five levels are computed. Only detail coefficients x = x1, x2, . . . from the fifth

level are chosen for embedding.

Even the embedding is conveyed in frequency domain, the watermark is still weak. There-

fore the watermark has to be embedded repeatedly in order to increase its robustness. This

redundancy can be controlled by coding the watermark with a repetition code before the

embedding, Fig. 3.4.

embedding 

function

1 2
, ,m mm

watermark

1 2 1

1 1 1 2
, , , ,,

l
m m m mm

repetition code

l

)( ,i if x m

Fig. 3.4: Using repetition codes before embedding

For example, Fig. 3.5 shows the performance of DM using different repetition codes of

length l. The horizontal axis measures the robustness using WNR, (2.8), the more left the

better robustness. The robustness is clearly improved when the repetition code is increased.

From now and in further Sections and Chapters, we will refer to this method as the “uncoded

DM” even it uses repetition codes.

Thinking about the payload-robustness constraint, we must define an appropriate length l

for the repetition code. According to [52], the watermark rate for audio watermarking should

be higher than 20 bps, then fixing l = 68 our proposal obtains a watermark rate of 20.26 bps.

After the repetition code, each symbol from the coded watermark m̄ is embedded in x using

the function (2.2).

Reconstruction of the watermarked audio file X̂ is conveyed by the IDWT using the

watermarked coefficients x̂ and the unused coefficients as showed in Fig. 3.2.

Watermark detection proceeds as in Fig. 3.3 until obtain the watermarked coefficients

y = y1, y2, . . . . In order to decide whether zero or one was embedded in yi, the distance di is
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Fig. 3.5: DM robustness using repetition codes with different length l.

computed between y and its quantization with respect to zero:

di = |yi − Q(yi + v(0),∆) + v(0)|. (3.1)

The result from (3.1) still contains the redundancy added by the repetition code and its

mean is different from zero. Then, subtracting ∆/4 from each symbol we obtain zero mean

and the repetition code can be easily decoded by adding the contribution from each symbol,

ˆ̂mk =

lk
∑

i=l(k−1)+1

di −
∆

4
.

Finally the recovered watermark m̂ = m̂1, m̂2, . . . is decided according to:

m̂k =







0, if ˆ̂mk < 0, or

1, if ˆ̂mk ≥ 0
.

The performance of this proposal, which uses DM, is showed in Fig. 3.6 with dotted line.

DM obtains a robustness of WNR = −14 dB at BER = 10−4 against AWGN.

The performance of DM can be improved with a post-processing called DC. This improve-

ment is based on increasing the minimum distance between reconstruction points and, at the

same time, controlling the distortion due to the increment. The embedding framework is the

same as DM however the embedding function is changed to:

x̂i =

{

Q
(

xi + v(j),
∆

α

)

+ (1 − α)
[

xi − Q
(

xi + v(j),
∆

α

)

]

}

− v(j), (3.2)
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where α is a parameter that scales ∆. We refer to this algorithm as distortion-compensated

dither modulation (DCDM).

In the ideal case, the optimal value of α is computed with (2.7). Nevertheless the ideal case

is not practical because involves huge and random quantization codebooks. For suboptimal

codebooks, e.g. the scalar and uniform codebook of DM, the optimal value of α∗
opt can be

computed with [53]:

α∗
opt =

σw

√
12

∆
. (3.3)

The side effect produced by the scaling of ∆ is taken as additive noise at the decoder.

Therefore the watermark detection of DCDM is exactly the same as DM.

DCDM’s performance against AWGN is shown in Fig. 3.6. Clearly DCDM with α∗
opt has

better performance than DM, about 2 dB better. In the same simulation we also included

DCDM with α 6= α∗
opt. When α is far from α∗

opt the performance is definitely worst than DM

but an interesting result is obtained with α = .5 because it obtains better performance in

low WNR than DCDM with α∗
opt.

The audio quality of the watermarked work was measured using the SNR defined by (2.9).

DM and STDM schemes obtained an audio quality of SNR > 33 dB.

3.2.2 Spread-Transform dither modulation

Spread-Transform dither modulation (ST) is a watermark algorithm that combines proper-

ties of spread spectrum communications with QIM-based methods. While DM embeds the

watermark directly into the cover work, ST embeds the watermark into a projection of the
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cover work.

The embedding phase follows the general approach explained in Section 3.1.2 until the

wavelet coefficients x = x1, x2, . . . are obtained. The vector x is again divided in blocks of

length l and every block is projected with (2.4) to obtain sk. Each bit from the watermark is

embedded into one projected coefficient s = s1, s2, . . . by means of DM, ŝk = Q(si+v(j),∆)−
v(j), where v(j) is a dither parameter, explained in Section 2.3.1. Then, the inverse spread

transform (2.5) is applied to ŝ = ŝ1, ŝ2, . . . and the watermarked coefficients x̂ = x̂1, x̂2, . . .

are obtained. Finally the audio file is reconstructed with the IDWT using x̂.

The signal Y is received at the detection phase. Y is decomposed in blocks and trans-

formed to frequency domain. Detail coefficients y are again divided in blocks of length l

and projected with (2.4). Since projections are computed in the encoder and the decoder,

the pseudo-random vector z must be known in both embedding and detection phase. How-

ever, the same private key used to compute the dither parameters v(j) can be again used

to compute z. The recovered watermark is retrieved by computing (2.3) with the projected

coefficients s obtained from y.

Fig. 3.7 shows the performance of ST using l = 68 over a channel with Gaussian noise.

Remember that the parameter l was also used in Section 3.2.1 with DM for controlling the

repetition code. However in ST, l is used to control the spreading factor. Although l has

different meaning for DM and ST, in both cases l controls the embedding rate. In either ST

or DM, the embedding rate is 20.26 bps and thus fairly comparison can be conveyed. ST

obtains a robustness of WNR = −20 dB at BER < 10−4, which is 6 dB more robust than

DM.
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DC property can be also applied to ST and increasing its robustness. The only modifi-

cation is applied in the embedding function since ∆ must be scaled by α. Spread-transform

dither modulation with distortion-compensation property (DCST) is defined with the next

embedding function:

ŝi =

{

Q
(

si + v(j),
∆

α

)

+ (1 − α)
[

si − Q
(

si + v(j),
∆

α

)

]

}

− v(j). (3.4)

When DC is applied in any quantization method, the extra distortion due to scaling of

∆ is taken as additive noise at the decoder. Therefore the detection method is the same as

normal ST watermarking.

Computing the scaling factor α with (3.3) and considering also l = 68, the optimal scale

factor for this scheme is α∗
opt = .9. Fig. 3.8 shows that the performance of DCST with α∗

opt is

almost the same than ST. When α 6= α∗
opt, the performance of DCST decreases drastically.

According to the results of the simulations, DC property does not represent a substantial

improvement for ST watermarking. On the other hand ST watermarking methods, including

ST and DCST, obtain very high audio quality, SNR = 51 dB.

3.3 Increasing the watermark robustness with ECC

Watermarking is often model as the transmission of a message over a very noisy channel.

Indeed, the watermark power must be very low to ensure invisibility, and the modifications

suffered by the digital work can be rather strong, leading to a high noise level. To ensure

a reliable transmission on a channel with such a low SNR, channel coding is thus manda-
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tory [24].

In this Section we introduce improvements of the schemes of Section 3.2 by adding LDPC

codes for encoding the watermark.

3.3.1 Dither modulation with LDPC codes

Using LDPC codes we expect to improve the robustness of the watermark, however coding

at sampling level is tough because QIM-based algorithms are very weak. Therefore concate-

nation of LDPC with repetition codes is needed. Otherwise only LDPC codes cannot control

the noise generated in these watermarking channels. Our general scheme for watermarking

with LDPC codes is shown in Fig. 3.9.

Fig. 3.9: General scheme using LDPC codes to improve the robustness in watermarking.

The watermark m is firstly encoded with an LDPC code and the output is again encoded

with a repetition code of length l producing the coded watermark m̄. The embedding follows

the same layout described in Section 3.1.2. Thus m̄ is embedded in the detail coefficients of

the wavelet transform using DM.

At the detection phase, the audio Y is decomposed with DWT and the distance d, between

the frequency coefficients y and its quantization respect to zero, is measured with (3.1) in

the same way as Section 3.2.1.

The soft-information r = r1, r2, . . . , rn is computed with r = d−∆/4 where ∆ is the step

size used by the quantizers.

LDPC decoder uses the log-likelihood ratio llr = llr1, llr2, . . . , llrn as metric to decode

the watermark using an algorithm called the sum-product. The llri of a embedded bit m̄i is

computed as the ratio between the probability that a given value ri could be 1 (represented

by ∆/4) or 0 (represented by −∆/4):

llri = ln
P (m̄i = ∆/4|ri)

P (m̄i = −∆/4|ri)
. (3.5)

Knowledge of statistics of the channel noise is needed to compute (3.5). Using a Gaussian

kernel and assuming that the statistics of the channel noise, in this case the noise variance
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σ2, are known then the llr can be computed with:

llri = ln





1√
2πσ2

exp
(

− (ri−(∆/4))2

2σ2

)

1√
2πσ2

exp
(

− (ri+(∆/4))2

2σ2

)



 ,

=
∆ri

2σ2
. (3.6)

The repetition code of length l is decoded with:

LLRk =
lk

∑

i=l(k−1)+1

llri. (3.7)

Finally, LLR = LLR1, LLR2, . . . is forwarded to the LDPC decoder and the watermark

m̂ is recovered.

From now on and for the sake of simplicity, we will use the symbol “ c ” to discern the

algorithms that use LDPC codes from those who does not; e.g. DMc means the algorithm

with dither modulation plus LDPC codes, and DM is the acronym for the uncoded dither

modulation algorithm.

Recalling, the uncoded methods either DM or ST have an embedding rate of 20 bps.

When the LDPC is added, we have to be aware of keeping the same embedding rate than the

uncoded algorithms to produce fair comparisons. Thus, the length l of the repetition code in

the coded algorithms has to be variable depending on the LDPC code. For example, let us

assume that the length of the repetition code used in the uncoded DM is l = L. Therefore if

DMc uses an LDPC code of rate 1/4, the length of the repetition code only for this scheme

has to be shortened to l = L/4.

Fig. 3.10 shows a simulation where uncoded DM is compared with DMc against AWGN.

That is, the watermarked audio in time domain is contaminated with Gaussian noise. The

step size and the embedding rate were set for all the curves to ∆ = .02 and 20 bps respectively.

The LDPC codes showed in the simulation were chosen as the best results from a cluster of

30 codes, and they are detailed in Table 3.1. All DMc algorithms obtained better robustness

than uncoded DM (dotted line). The worst DMc, which uses a high-rate LDPC code, has a

benefit of 1.3 dB in comparison with uncoded DM and the best cases reach benefits up to

2.2 dB.

The difference between the worst and the best result of DMc schemes is around .9 dB.

The best results were achieved with codes E and F. The former is a Margulis half-rate code

with length 2640 and the latter is a low-rate code of length 13298.

Now, we will add DC property to DMc. The embedding procedure, for this instance, is the

same as Section 3.2.1 and the embedding function is given by (3.2). However the watermark

has to be encoded with LDPC codes prior the embedding.
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Table 3.1: Characteristics of the LDPC codes used in the simulations.

Rate Code length Rate Code length

A .87 3584 E .5 2640

B .87 495 F .24 13298

C .5 504 G .25 2000

D .5 816 H .26 200
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Fig. 3.10: Comparison of DM with LDPC codes (DMc) and uncoded DM over AWGN channel.
The details of the LDPC codes are reported in Table 3.1.

The robustness of dither modulation with DC (DCDM) is controlled by the scaling param-

eter α that must be computed before embedding. The optimal α∗
opt depends on the scenario

and can be computed with (3.3). As shown in Fig. 3.6 the best performance of DCDM is

obtained with α∗
opt.

Fig. 3.11 shows the performance of DCDMc and the uncoded cases. Only the two best

LDPC codes from the previous simulation, E and F, were used. DCDMc increased the ro-

bustness up to WNR = −19.7 dB which is a benefit of 5.7 dB compared with uncoded DM.

An important property is that, due to the LDPC correction capabilities, DCDMc performs

better with a scaling parameter α slightly lower than the optimal α < α∗
opt. DCDMc with

α = .5 is .7 dB better than DCDMc with α∗
opt. The codes E and F perform very similar with

α∗
opt. There is a minimum advantage, less than .3 dB, of code F with α = .5 over code E.

Finally, DCDMc is almost 4 dB better than DMc.

3.3.2 Spread-Transform dither modulation with LDPC codes

Based on the watermarking scenario of Fig. 3.9, we change the embedding function from

DM to spread-transform dither modulation (ST). In this case the coded watermark m̄ is

embedded in the projection s of coefficients x. The embedding follows the same procedure

already explained in Section 3.2.2. However the length of the repetition code will be variable
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depending on the LDPC code. In that way, we keep the same embedding rate of 20 bps.

At the decoder, the detail coefficients y are obtained and its projection s is computed.

Using (3.1) and s the distance d is calculated, subsequently the llr is computed, (3.6), and

finally the LLR is obtained, (3.7). The embedding-extraction procedures of STc are very

similar to DMc, the only difference is the embedding function.

Using the same LDPC codes described in Table 3.1, uncoded ST and STc were tested over

AWGN channel. Fig. 3.12 shows the comparison. As expected, STc performs better than

uncoded ST. The best results have a benefit of 4.2 dB and the worst of 3 dB, Fig. 3.12a.

In the previous simulation, Fig. 3.10, the codes E and F obtained the best results. In ST,

the code E has again good performance but the result obtained with code F is not as good as

before. Other LDPC code with good performance was the code G which is a low-rate code

with length 2000.

Applying DC property to STc (DCSTc), we obtained the results pictured in Fig. 3.13.

The codes used in this simulation were codes E and G which were the best results of STc.

The best performance of STDCc, Fig. 3.13b, is obtained with code E, it achieves a robustness

of -25.3 dB using an α = .8 again lower than the optimal α∗
opt. The code G with optimal α∗

opt

has an acceptable performance but G could not obtain an improvement using a scaling factor

lower than the optimal, α = .8 < α∗
opt.
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Fig. 3.12: Performance of ST using LDPC codes (STc) and uncoded ST over AWGN channel.
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Fig. 3.13: Performance of coded DCST (DCSTc) against AWGN channel.

3.4 General analysis of QIM-based algorithms

The previous Section shows the analysis of dither modulation (DC) and spread-transform

dither modulation (ST), both them with improvements of distortion-compensation (DC). We

also introduced coded versions of those algorithms using LDPC codes.

In this Section, we perform a comparison between all of them and with BCH codes.

Furthermore, we measure the robustness of those schemes against MP3 compression and

low-pass filtering. Finally the algorithms are tested with Audio StirMark [54] benchmark.

The best LDPC code from the previous Section was E, see Table 3.1, because its length of

2640 is not too large and it keeps good performance with both DM and ST. Other two codes

with good results were F and G, both them are low-rate codes with length 13298 and 2000

respectively. However, they only have good performance with DM or ST but not with both.

Besides, the code F has a very large code length that cannot be suitable for watermarking

purpose due to constraints of length in the digital work.

In the next comparisons we only include coded cases using the LDPC code E which is the

best LDPC code from our experiments in Section 3.3. Fig. 3.14 shows the performance of all
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methods introduced in this Chapter and summarized in Table 3.2.

Table 3.2: Summary of the proposals analyzed in Chapter 3 for audio watermarking.

Algorithm Description

DM Algorithm based on dither modulation.

ST Algorithm based on spread-transform dither modulation.

DCDM Dither modulation algorithm improved with distortion-compensation.

DCST Spread-transform dither modulation improved with distortion compensation.

DMc Algorithm based on dither modulation and coded watermark with LDPC codes.

STc Algorithm based on spread-transform dither modulation and coded watermark with

LDPC codes.

DCDMc Coded dither modulation with distortion-compensation property. The coded water-

mark is obtained with LDPC codes.

DCSTc Coded spread-transform dither modulation with distortion-compensation property.

The coded watermark is obtained with LDPC codes.

The first conclusion about Fig. 3.14 is that ST-based performs better than DM-based,

the benefit of the best ST-based result over the best DM-based result is 5.9 dB for AWGN

channel. The best result from all the methods is for DCSTc with α = .8 < α∗
opt that achieves

a robustness of WNR = −25.28 dB with an error probability lower than 10−3. This represent

a benefit of 4.2 dB compared with uncoded ST.

Related with DM, the best method was DCDM with α = .4 < α∗
opt which obtained a

robustness of WNR = −19.38 dB with error probability lower than 10−4. The benefit is of

5.38 dB compared with uncoded DM.

Finally the best result among all methods is DCSTc which performs 11 dB better than

uncoded DM.

In Fig. 3.15, we show a comparison of the algorithms using LDPC code E and a half-rate

BCH code (1023,503). In general the performance using BCH codes is poor. For example, in

DM with BCH codes the improvement over uncoded DM is only of 1.19 dB at 10−4. Using

LDPC codes the performance of DCDMc is improved by 3.32 dB compared with DCDM with

BCH codes. Results related with ST confirm the better performance of LDPC codes. DCSTc

has a benefit of 2.53 dB compared with the same method with BCH codes. Finally, due to

the lower error correction capability of BCH codes, DCST with α = .8 < α∗
opt is not capable

achieve better performance than ST.

ST-based algorithms have better performance than DM-based algorithms for AWGN

channels. This advantage is increased when the SNR of the watermarked files was mea-

sured. In DM-based algorithms the average SNR obtained was 33 dB and with ST-based the

SNR achieved was, in average, 51 dB. Thus, ST-based algorithm proved to be more robust

than DM-based and furthermore, they produce less distortion in the audio signal.

Until now the analysis has been based on AWGN channels, however the audio files are

41



Chapter 3 Audio watermarking

−30 −28 −26 −24 −22 −20 −18 −16 −14 −12 −10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

X: −25.28
Y: 0.0003133

WNR [dB]

B
E

R

X: −19.38
Y: 0.0002904

X: −13.44
Y: 5.556e−05

DM
DCDM, α

opt

*
=.5

DM
c

DCDM
c
, α=.4

ST
DCST, α

opt

*
=.9

ST
c

DCST
c
, α=.8

DM

ST

11 dB

5.9 dB

5.38 dB

DCDM
c
,

α=.4

DCST
c
,

α=.8

4.2 dB

Fig. 3.14: Comparison of the best results of uncoded algorithms and coded algorithms using
the LDPC code E from Table 3.1.

susceptible to different distortions produced by common signal processing. Therefore, in

order to complete our analysis Fig. 3.16 shows the robustness of the algorithms against MP3

compression and low-pass filtering. In contrast with the results obtained for AWGN where

ST-based algorithms were better, DM-based algorithms are more robust against common

signal processing.

DCDMc is the algorithm with the best result after MP3 compression, the watermark

resist compressions up to 80 kbps with very low BER ≈ 0 and for the lowest compression

with commercial value, 64 kbps, the BER = .1 is still not high for watermarking standards,

Fig. 3.16a. When low-pass filtering is applied to the algorithms, DCDMc and DCSTc have

very similar performance but DCDMc is still slightly better, Fig. 3.16b. The watermark can

be recovered with high reliability from a frequency cutoff of 1.5 kHz and also it supports

cutoff of 800 Hz with BER ≈ .1.

Finally the watermarked audio was tested with Audio StirMark benchmark. StirMark

applies different attacks to the audio file with the purpose to erase the watermark from the

audio. The attacks are varied, they ranging from attacks in time, frequency, attacks that

add noise or more complex like audio denoising, and even attacks that desynchronize the

detection of the watermark.

Table 3.3 summarizes the results of StirMark benchmark for two algorithms DCDMc and

DCSTc, both them with LDPC code E which obtained the best results from the previous

analysis. DM-based algorithms again show more robustness than ST-based algorithms for

common signal processing. Attacks like copysample, cutsamples and zero-attacks removed
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Fig. 3.16: Robustness against MP3 compression and low-pass filtering.

totally the watermark from the audio file because they produce desynchronization and, in

this Chapter, we assumed that both decoder and encoder were in synchrony. Therefore

without sync control, the desynchronization attacks tend to have very high BER.

In the beginning of the analysis, ST-based algorithms showed good performance against

AWGN. However when more common attacks were applied to the audio files, the robustness

of ST-based algorithms decreased dramatically. On the other hand, DM-based algorithm had

acceptable robustness against AWGN and good robustness with common attacks, especially

against MP3 compression which is a very popular compression algorithm for audio. Moreover,

DM algorithms have less computational complexity than ST algorithms.
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Table 3.3: Results of StirMark Audio benchmark for the best methods using dither modula-
tion (DM) and spread-transform (ST). Details and description of each attack can be found
in [54] and [55].

Attack
DCDMc, DCSTc,

Attack
DCDMc, DCSTc,

α= .5 α= .9 α= .5 α= .9
[BER] [BER] [BER] [BER]

addbrumm 100 0.0000 0.5288 addbrumm 4100 0.0000 0.5076

addbrumm 9100 0.3321 0.4727 addbrumm 10100 0.2773 0.5048

addnoise 100 0.0000 0.0000 addnoise 900 0.0000 0.4391

addsinus 0.3328 0.3912 amplify 0.1970 0.4455

compressor 0.0000 0.0000 copysample 0.5018 0.5013

cutsamples 0.4960 0.4952 dynnoise 0.0000 0.4879

echo 0.5449 0.4894 exchange 0.0000 0.0000

extrastereo 30 0.0000 0.0000 extrastereo 50 0.0000 0.0000

extrastereo 70 0.0000 0.0000 fft hlpass 0.1045 0.5265

fft invert 0.4253 0.0000 fft real reverse 0.0000 0.1053

fft stat1 0.3477 0.4025 fft test 0.3475 0.3952

flippsample 0.0604 0.2949 invert 0.4177 0.0000

lsbzero 0.0000 0.0000 normalize 0.4513 0.6139

nothing 0.0000 0.0000 original 0.0000 0.0000

rc highpass 0.2788 0.5098 rc lowpass 0.0000 0.0000

resampling 0.0000 0.0000 smooth2 0.0000 0.1149

smooth 0.0000 0.0000 stat2 0.0000 0.0000

stat1 0.0000 0.0000 voiceremove 0.4937 0.5114

zerocross 0.5293 0.5088 zerolength 0.5088 0.5035

zeroremove 0.5035 0.4962

3.5 Further improvements

Traditional dither modulation (DM) uses uniform quantization step size ∆. However, since

the audio is not a stationary signal there are audio segments where the watermark can

be embedded stronger than others. Thus, in this Section we propose an adaptive dither

modulation (ADM) which uses a variable quantization size δ.

Similar proposal are described in [56] and [57]. In the former, Li and Cox presented an

adaptive algorithm based on QIM for still images. The adaptive step size was computed with

Watson’s perceptual model which is inherent to images and cannot be used on audio. The

results show an improvement in the image quality, achieving the same or better robustness

than traditional QIM. The latter is a proposal for audio introduced by Li and Yu. They used

the psychoacoustic model generated by MPEG-1 to control the watermark strength in spread

spectrum watermarking.

Our algorithm embeds the watermark in frequency domain using ADM. The adaptation

of the step size δ depends on the masking threshold computed with the aid of the analysis

of MPEG-1 layer I, and the frequency coefficients were computed with the discrete wavelet
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packet transform (DWPT). LDPC codes were used to encode the watermark, however two

different kernels to compute the log-likelihood ratio, llr, were implemented. Fig. 3.17 is a

block diagram with the most important steps of our proposal.

Fig. 3.17: General block diagram of adaptive dither modulation.

DWT produces a decomposition oriented only to low frequencies. DWPT offers richer

frequency decomposition because unlike DWT, DWPT also decompose the high frequencies

of a signal. If we picture the decomposition like a binary tree, DWPT produces 2k sub-bands

were k is the desired level of decomposition. Fig. 3.18 represents the decomposition tree of a

segment of audio signal until the fifth level using DWPT. As result, the audio is divided into

25 = 32 sub-bands, each of them containing certain range of frequencies.

Fig. 3.18: Discrete wavelet packet transform of an audio signal until the 5th level.

Before the embedding, the watermark m is encoded with a concatenation of LDPC code

and repetition code, in the same fashion as Section 3.3.1, producing a coded watermark m̄.

According to the analysis of the aforementioned Section, the best code for DM was a half-rate

Margulis code with length of 2640, code E of Table 3.1. Thus, in this algorithm only the code

E is used.

The embedding phase starts dividing the audio into non-overlapped blocks Ti of 512

samples. Each block Ti is forwarded in parallel to the wavelet decomposition and to the

masking analysis. The block Ti is decomposed with Haar mother wavelet and DWPT until

the fifth level producing 32 sub-bands with 16 coefficients each. Parallel to the wavelet

analysis, the same block Ti is analyzed with the psychoacoustic model of MPEG-1 layer I
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to compute the minimum masking threshold of that block. Based on the minimum masking

threshold of the block Ti and following the procedure described in [57], the parameter aj is

calculated for each wavelet sub-band of the block Ti, where j ∈ [1, 32]. Thus, a different

quantization step size δi
j is computed for every wavelet sub-band j of the i-th block, with

δi
j = aj ∗ ∆.

For this proposal, ∆ is a global constant known in both encoder/decoder, and is anal-

ogous to the step size ∆ of traditional DM which also has to be known during the whole

watermarking process. The constant ∆ is empirically adjusted to meet the requirements of

imperceptibility of the watermark. In our experiments ∆ was set to be .025 producing the

audio quality of SNR = 27 dB.

The watermark m̄ is embedded in the coefficients x = x1, x2, . . . of the wavelet sub-bands

5 to 15 as shown in Fig. 3.18. The embedding function is DM with the adaptive step size δ:

x̂i = Q
(

xi + v(m̄i), δj

)

− v(m̄i),

where x̂i is the watermarked coefficient and v(·) is a dither parameter dependent of m̄i and

explained in Section 2.3.1. Then, x is replaced with the watermarked coefficients x̂ and the

audio is reconstructed with the inverse DWPT.

The decoder assumes an audio file Y that might have degradations due to attacks or

noise. The audio is divided into blocks, the wavelet coefficients are computed and also the

adaptive step size δ has to be obtained from the minimum masking threshold. The decoding

process is very similar to the embedding phase.

Once the frequency coefficients y and the variable step size δ were already obtained, the

distance between y and its quantization respect to the reconstruction points belonging to the

watermark symbol 0 is computed

di = |yi − Q(yi + v(0), δj) + v(0)|, (3.8)

and then, the soft-information is r = d− δj/4.

Using r, we need to compute the log-likelihood ratio llr which is used by the SPA of

the LDPC decoder to recover the watermark m̂. In traditional DM, the llr can be fairly

computed with a Gaussian kernel because the probability density function (PDF) of the soft-

information r after AWGN addition behaves like Gaussian variable. This behavior can be

seen in Fig. 3.19a. However when ADM is used the PDF of r is more similar to a Rayleigh

fading distribution, see Fig. 3.19b, even if the audio is contaminated with AWGN in time

domain. Thus, using a Rayleigh fading kernel we expect to compute more accurate “a priori”

probabilities of the received bits.
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Fig. 3.19: Probability density function of the soft-information extracted with DM.

Computing the llr with a Rayleigh fading kernel, we have:

llri =
2

σ2
ria, (3.9)

where σ2 is the noise variance computed with

σ2 =
4 − π

2
a2,

and a is a parameter estimated by

a =

√

√

√

√

1

2N

N
∑

i=1

r2
i for N = |r|.

Finally, the repetition code is decoded with (3.7), the LLR is obtained and forwarded to

the LDPC decoder. The embedding rate achieved was of 43 bps that is 23 bps better than

the schemes previously explained in this Chapter.

The first simulation, Fig. 3.20, shows a comparison of uncoded DM and uncoded ADM

for AWGN. Uncoded means that LDPC codes were not used but due to the weakness of

DM, repetition codes had to be used. ADM and DM produced the same audio quality,

SNR = 27 dB, however ADM is more robust than DM. ADM has much lower BER with high

noise variance, however when the noise is very small the performance of ADM is decreased.

This effect is because there are audio segments with bad masking properties and therefore

ADM uses small step size δ to keep the imperceptibility of the watermark.

Fig. 3.21 shows the histogram of the step size δ used in ADM. The good robustness of

ADM is because we are able to use big quantization step δ > .2 in some parts of the audio

file. However there are places when δ has to be very small and therefore even in situations

when the noise is small, we still find a few errors. The solution is to use an error control code
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Fig. 3.20: Performance of traditional DM and ADM for AWGN.

like LDPC codes to correct those errors.
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Fig. 3.21: Histogram of the step size δ used in ADM.

The last simulation on Fig. 3.22 shows the performance of ADM, over AWGN channel,

using different kernels to compute the probabilities of the received symbols.

First, ADM was decoded using a Gaussian kernel calculated with (3.6). The addition of

LDPC codes correct the errors produced by smalls δ and clearly increase the robustness up

to σ2 = 0.005. In order to obtain fair comparison, the payload of both methods, uncoded

and coded ADM, is the same.
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Second, ADM was decoded with a Rayleigh fading kernel increasing even more the ro-

bustness of the watermark. Thus, the noise in ADM is better modeled using a Rayleigh

fading channel. The watermark achieved robustness up to σ2 = 0.01 of AWGN with a BER

lower than 10−3.
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Fig. 3.22: Coded adaptive dither modulation using Gaussian kernel and Rayleigh fading
kernel.

3.6 Conclusion

We have defined a framework for digital audio watermarking. The framework has an embed-

ding in frequency domain, QIM-based algorithms as embedding functions and coded water-

marks produced by concatenation of LDPC codes and repetition codes.

The aforementioned framework has been extensively analyzed. The decomposition of

the audio file in its frequency components was studied with the DWT and DWPT. Several

QIM-based algorithms like dither modulation, spread transform and its improvements with

distortion-compensation were implemented. The coded watermarks were produced with many

combinations of LDPC codes and repetition codes of which, a half-rate Margulis code with

length 2640 was the best code.

From the analysis, ST-based algorithms show better performance than DM-based algo-

rithms when the audio file was contaminated with AWGN in time domain. However when

the watermarked audio was tested with common audio signal processing like compression and

filtering, DM-based algorithms were more robust especially against MP3 compression, achiev-

ing a compression quality of 80 Kbps with BER ≈ 0. The better robustness of DM-based

over ST-based algorithms was confirmed with the StirMark benchmark, where DM obtained
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again better results than ST.

Finally, we proposed further improvements using an adaptive version of DM. This algo-

rithm produces better audio quality than traditional DM with the same or better robustness.

The adaption was controlled with the minimum masking threshold computed with MPEG-1

layer I and the decoding was approached with a Rayleigh fading kernel which produced better

results than using a Gaussian one. Since the algorithm used DWPT, the audio was divided

into more frequencies that allowed us to embed more information. Thus the payload of this

algorithm achieved 43 bps.
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High payload watermarks for

MP3 compression

MPEG-1 layer III (MP3) is a popular format of compressed digital audio because offers good

audio quality within small storage space. These characteristics have been used by on-line

stores to sell and deliver audio files in a short period of time through the Internet. However

those same characteristics, make easier the unauthorized copying of audio files. Moreover,

MP3 compression is considered a tough attack to audio watermarking.

Our aim in this Chapter is to develop audio watermark algorithms robust to compression

with the lowest commercial value (64 kbps) and with high embedding payload. This scenario

is pictured in Fig. 4.1. Security-related applications of watermarking usually require a few

bits but if the embedding capacity1 is increased, then more applications can be benefited

from watermarking.

Fig. 4.1: General diagram of the studied system.

Since the pioneer paper of Boney [10] in 1996 for audio watermarking, many algorithms

with robustness to MP3 compression have been proposed. For example in 2003, Cvejic [31]

1The term “capacity” refers to watermark payload and it is different from the theoretical channel capacity
defined by information theory.
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proposed a scheme using spread spectrum and characterization of the attack, with a payload of

27.1 bps. In the same year, In-Kwon [58] used patchwork algorithm to embed the watermark

in audio files producing a scheme with 10 bps. Later, in 2004, Wang [59] introduced a decoding

algorithm using linear predictive coding to recover the watermark from wavelet domain; the

achieved payload was 10.72 bps. Another two proposals [60] and [61] were described in 2006,

the former includes neural networks to increase the robustness and the latter proposes a

solution for time-scale modification, obtaining 86 bps and 4.26 bps respectively. Between 2007

and 2008, Xiang presented two schemes in [62] and [63] based on modifying the histogram of

the audio files; with embedding rates of 3 bps and 2 bps. At the same time, two papers with

high embedding rates were published, [64] with a payload of 170 bps and [40] with 220 bps;

however those payloads were achieved with MP3 of 128 kbps and 96 kbps respectively. More

recently, in 2009 Fan [65] proposed an embedding of a chaotic-based watermark on discrete

fractional sine transform domain, with 86 bps of payload. Also, in the same year, Wang [66]

introduced a robust algorithm against MP3 at 64 kbps but the embedding payload was not

reported. Finally, in 2010 a self-synchronized algorithm was introduced by Meǵıas [67] with

an embedding rate of 30.09 bps. Almost all the works aforementioned have an embedding

rate lower than 100 bps and those with payload higher than 100 bps are not robust to MP3

with quality of 64 kbps.

We use dither modulation (DM) to embed a coded-watermark in wavelet domain. Similar

proposals can be found in [68] and [41]. The former is an algorithm with self-synchronization

in wavelet domain that embeds the watermark in the low-frequency coefficients. The scheme

achieves 172 bps, however is well-known that modifications to low-frequencies produce audible

distortion, and the authors did not report evidence of the audio quality. The latter is a recent

proposal, 2010, that embeds the watermark by quantizing the Euclidean norm of a singular

value decomposition of an audio segment. The reported payload is 196 kbps, however the bit

error probabilities are computed with short simulations, around 5 seconds.

Our algorithm embeds the coded-watermark in a specific range of frequencies which were

found to be robust against MP3, Section 4.1. The coded-watermark was obtained with the

concatenation of an outer LDPC encoder and inner repetition codes. Watermarking channels

tend to have very high BER, therefore repetition codes are needed to increase the SNR [28].

Audio watermarking with powerful ECC can be found in [31] where Turbo codes together

with spread spectrum are used achieving 21.6 bps. LDPC codes have been already used, but

in image watermarking [32] where they produced very high embedding rates. Nevertheless

only normal decoding was applied.

Our main algorithm is explained in Section 4.2. The decoder is implemented in two

versions: semi-blind and blind decoding. In semi-blind decoding, the “watermarked audio

without noise” is compared with the noisy audio in order to compute the noise variance. The
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statistics of the channel noise, variance, can be approximated with different techniques that

are not the aim of this Chapter. However we implemented a blind decoding with the aid of

pilot symbols.

The proposed algorithm achieves an embedding capacity of 155 bps with blind decoding

and 204 with semi-blind decoding, shown in Section 4.3. Then, the proposal was improved

using erasures at LDPC decoder, Section 4.4. The result is an embedding capacity of 229.7

bps which represents a benefit of more than 15 bps in comparison with normal decoding and

more than 33 bps compared with any other proposal robust to MP3 at 64 kbps, Section 4.5.

It is worth to mention that there are very high payload techniques for data hiding in audio

which achieve embedding rates of 689 bps in [69], 2996 bps in [70] and 11000 bps in [71] but

they are not robust to MP3 of 64 kbps.

Finally, the last two Sections, 4.6 and 4.7, are dedicated to the audio quality and conclu-

sions respectively.

4.1 Repercussions of MP3 on wavelet domain

We are focused in one of the most popular manipulation on audio files, MP3 compression.

The key to MP3 is lossy. Nonetheless, this algorithm can give transparent, perceptually

lossless compression. To achieve this transparency, the compression is done according to the

human auditory system which has different responses depending on the frequency. Therefore,

it is expected that different range of frequencies of the audio files will be affected with different

intensity.

When the audio file is decomposed with wavelet packet, each sub-band represents a differ-

ent range of frequencies. We are interested in measuring the distortion of different sub-bands

after MP3 compression to find suitable sub-bands for embedding.

The audio files were divided in blocks of 512 samples and wavelet packet decomposition

was applied to each block using 5 levels. Simple Haar was used as mother wavelet. After

decomposition, 32 wavelet sub-bands are obtained. The binary watermark was embedded

in each sub-band individually using DM and repetition codes, no other ECC was involved.

Finally, the audio files were reconstructed and attacked with MP3 compression at 128 kbps.

Two experiments were conducted. First, Fig. 4.2a shows the error percentage of each

wavelet sub-band for three different embedding rates 10.76, 21.53 and 43.06 bps. Classic

music: Egmont Op. 84 mono, 44.1 kHz/16 bits and with 8 minutes long was used. Second,

Fig. 4.2b shows the bit error percentage of each wavelet sub-band for three different music

genres with an embedding rate of 21.53 bps. Every music gender was a cluster with 10

different audio files of 2 minutes long each.

In both results of Fig. 4.2, the wavelet sub-bands 25, 26, 27 and 28 obtained better
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Fig. 4.2: Error percentage of the wavelet sub-bands after MP3 at 128 kbps.

robustness against compression, those sub-bands belong to frequencies ranging from 11 kHz

to 13.7 kHz.

With Fig. 4.2a is guaranteed that the sub-band robustness behaves similar for different

embedding rates, and then, the result is expanded to different music with Fig. 4.2b. In the

simulations, ∆ was fixed according to SNR > 30 dB. We define SNR as the ratio between

original audio signal power and that of the audio file with information embedded, see (2.9).

4.2 High payload audio watermark algorithm

The main idea is to embed a coded-watermark inside wavelet domain using DM. The coded-

watermark is obtained by concatenation of an outer LDPC code and inner repetition codes.

The watermark is decoded by retrieving soft-information with DM, computing the metric,

and finally decoding the metric with sum-product [13] algorithm. The statistics of the channel

noise, noise variance σ2, are involved in the computation of the metric and the performance

of the sum-product algorithm depends highly in a good estimation of σ2. These ideas are

summarized as block diagram in Fig. 4.3.

Two different decoding strategies are introduced. The first one considers general statistics

of the channel noise to compute the metric, i.e. the log-likelihood ratio llr, and the second

one computes independent statistics about the noise for different segments along the audio

file.

4.2.1 Embedding

In the embedding process, the audio file in time domain X is divided in non-overlapped

blocks, Th, of 512 samples. Wavelet packet decomposition is applied in five levels using

simple Haar mother wavelet. From each time-domain block Th, 32 wavelet sub-bands with

16 coefficients each are obtained. According to Section 4.1, only coefficients from the sub-
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Fig. 4.3: General watermarking scheme.

bands 25 to 28 will be used for embedding. From now on, we will use the notation “25-28”

to means wavelet sub-bands from 25 to 28. Frequency coefficients from 25-28 are arranged

in a vector x = x1, x2, . . . , xn which contains not only the coefficients from the block Th but

from all blocks ordered according to time.

The binary watermark m = m1,m2, . . . is firstly encoded with a Margulis half-rate LDPC

code with code length of 2640. The output of the LDPC encoder is again encoded with an

inner repetition code of length l, the output is permuted with an interleaving and finally the

coded-watermark m̄ = m̄1, m̄2, . . . , m̄n is obtained.

The watermark robustness is variable depending solely on the repetition code because the

LDPC code will be the same and also the quantization step size ∆ is fixed. If the repetition

code is large then the robustness is better but the embedding capacity is lower and vice versa.

Each bit from the coded-watermark m̄ is embedded in one coefficient xi using DM, x̂i =

Q
(

xi +v(m̄i),∆
)

−v(m̄i) where Q represents the quantization function with step ∆, v(m̄i) is

a dithered parameter that modulates the watermark symbol m̄i, and x̂i is the watermarked

coefficient. Then x is replaced with x̂ and the inverse wavelet packet transform is applied.

The watermarked audio X̂ is susceptible to suffer any sort of degradation due to common

signal manipulations, e.g. MP3 compression, or direct attacks which attempt to destroy the

watermark. Therefore, Y is the watermarked audio with degradations or attacks.

4.2.2 Decoding

Y is divided in blocks T̂h of 512 samples and wavelet packet in five levels is computed. Wa-

termarked coefficients from 25-28 are extracted and arranged as the vector y = y1, y2, . . . , yn.

The distance d = d1, d2, . . . , dn is computed as the absolute value of y and its closest recon-

struction point with respect to v(0), di =
∣

∣yi − Q
(

yi + v(0),∆
)

+ v(0)
∣

∣.

The soft information r = r1, r2, . . . , rn is computed with r = d − ∆/4. Heuristically, we

have seen that the noise, due to MP3, in the coefficients of 25-28 behave very similar to a

Gaussian distribution. Therefore, the llr is computed with a Gaussian kernel, llri = ∆ri/2σ
2,

where σ2 is the noise variance.

In the next Subsections, two different decoding variations are explained. However all the
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steps explained above are common for them both.

Global Noise Variance

A good estimation of the noise variance σ2 is important to obtain good performance. In

traditional communications many sources of noise can be modeled as Gaussian, moreover

in many of them a single noise variance characterizes the channel. Digital watermarking

has been shown to be a sort of communications and also the noise in wavelet coefficients,

due to MP3, behave similar to Gaussian. Therefore, this approach is an analogy to those

communication systems which use a single noise variance to model the noise in the whole

channel.

Log-likelihood ratio is computed straightforward with llr = ∆r/2σ2. De-interleaving is

applied to llr and the repetition code, of length l, is decoded with LLRk =
∑lk

i=l(k−1)+1 llri.

Finally, LLR = LLR1, LLR2, . . . is forwarded to the LDPC decoder and the watermark m̂

is recovered.

Particular Noise Variance

MP3 takes into account the human auditory system, then the compression is not constant

because the audio is not a stationary signal. Therefore, different amount of distortion is

expected in different segments of the audio along time.

Fig. 4.4 shows the histograms of the soft-information r for different segments along the

audio after MP3 at 128 kbps. In those graphs, we can distinguish between soft-information

which belongs to the embedded bits m̄i = 1 with solid lines and m̄i = 0 with dotted lines.

Fig. 4.4a represents the density when all the frequency coefficients from a certain audio

are taken into account. That is, the coefficients of 25-28 from all the blocks T̂h are used.

Figs. 4.4b, 4.4c and 4.4d, are densities from small continuous segments of a certain audio file.

These segments contain only 320 frequency coefficients, that is, the equivalent to 5 continuous

blocks T̂h. The segments were chosen randomly along the audio file.

The audio used to generate Fig. 4.4 was A change of season by Dream Theater sampled

at 44.1 kHz with 16 bits. The binary information was embedded in sub-bands 25-28 using

DM with only repetition codes of length 4, ∆ was set to .01.

Figs. 4.4b, 4.4c and 4.4d show that the noise in the audio file due to MP3 is not constant.

For example in Fig. 4.4d, the difference between ones and zeros is perfectly distinguishable

and therefore, a decoding without errors is expected. Other regions like Fig. 4.4b suffered

more distortion and probably many errors will be produced. Nevertheless, if the statistics

of the channel noise are computed using the whole audio file, Fig. 4.4a, the reliability is not

good.
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Fig. 4.4: Histograms of the soft-information obtained from the frequency coefficients after
MP3 compression. “a” was computed with the whole audio file. “b”, “c” and “d” are
histograms from random segments of 320 coefficients.

Based on the previous experiment, will be more reliable to compute individual noise

variances for different segments along the audio file. The decoding proposal in this Section

aims to compute independent noise variances along time to obtain a better model of the noise

produced by MP3.

The log-likelihood ratio llr is computed with:

llri =
∆ri

2ς2
, (4.1)

where ς2 = ς2
1 , ς2

2 , . . . ς2
p is estimated by dividing the soft-information r in p blocks and com-

puting an individual noise variance for each block. For example, if ri belongs to the block j

therefore llri = (∆ri)/(2ς
2
j ). Then, de-interleaving is applied to llr and the repetition code

is decoded with (3.7). The LLR is forwarded to the LDPC decoder and the watermark m̂ is

recovered.
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4.3 Embedding capacity tolerant to MP3

This Section is divided in two parts: decoding for semi-blind schemes and decoding for blind

schemes. This division is because an accurate estimation of the noise variance is needed at

the decoding part, therefore the difference between them is about how to compute the noise

variance. With the semi-blind scheme the decoder has knowledge of the watermarked audio

X̂ and it is capable to compute the real noise generated in the audio due to MP3. Semi-blind

decoding was developed to show the potential of this proposal.

In blind decoding, an estimation of the noise is needed. Several techniques about channel

estimation have been proposed and implemented in practical communications schemes, e.g.

“training symbols”, “least-squares” or even more complex techniques which involves “turbo

equalization”.

Our aim in this Chapter is to develop reliable watermark techniques rather that focus on

describing the noise generated by MP3 compression. Therefore, we propose a blind detection

using a basic technique with pilot symbols, nevertheless our blind decoding produces better

performance than, in our knowledge, most of the previous watermark schemes for MP3 at 64

kbps.

The audio files used in the simulations have the next characteristics: WAVE files, mono

and sampled at 44.1 kHz with 16 bits. All the results are an average of simulations based

on three audio files, classic: Egmont Op. 84 (7 minutes), pop: Billie Jean by M. Jackson (4

minutes) and rock: A change of seasons by Dream Theater (8 minutes). Those audio pieces

were chosen because its rich variety of sounds, silent passages and abrupt changes.

The step ∆, which is different for each audio file, was decided according to SNR > 40 dB.

4.3.1 Semi-blind decoding

In Section 4.2.2 were defined two decoding strategies: global noise variance and particular

noise variance. In this Section we show results of them both using X̂ to compute the noise

variance.

Let us assume that Y is the watermarked audio after compression. x̂ and y are frequency

coefficients taken from 25-28 of X̂ and Y respectively, and they are properly ordered according

to time.

For global noise variance method, the statistics of channel noise are computed with:

σ2 =
1

n

n
∑

i=1

(

(x̂i − yi) − (x̂ − y)
)2

. (4.2)

This unique σ2 is used to compute the llr of Section 4.2.2.

An alternative way, particular noise variance method, to compute the noise variance is
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Fig. 4.5: Particular noise variance scheme using different number of samples j to compute
the noise variance ς2

p .

dividing the frequency coefficients x̂ and y in blocks x̆p, y̆p and computing independent

statistics of the channel noise:

ς2
p =

1

j

jp
∑

i=jp−j+1

(

(x̂i − yi) − (x̆p − y̆p)
)2

, (4.3)

where j is the number of samples for each block x̆p, y̆p and ς2
p is its noise variance. x̆p and

y̆p are vectors with elements from [jp − j + 1,jp], i.e. x̆p = x̂jp−j+1, . . . , x̂jp.

The next step is to decide how many samples j are needed to estimate a reliable ς2
p . Our

proposal divides the audio file in blocks T̂h of 512 samples. From each time-domain block T̂h,

64 frequency coefficients are obtained considering that only elements from 25-28 are taken.

Therefore, the number of elements j is preferable to be a multiple of 64 because in that way

the system keeps relation with the division on time domain.

Fig. 4.5 is a simulation for particular noise variance method using different number of

samples j to compute the noise variance after compression with MP3. The best performance

is achieved when ς2
p is computed using j = 64 frequency coefficients which is equivalent to

estimate an independent noise variance for each block T̂h of 512 samples. If the number

of samples j is increased the performance tends to decrease. Therefore, the best way to

characterize the noise produced by MP3 is to compute independent statistics of the channel

noise according to the division in time domain.

The proposed methods, global noise variance and particular noise variance using semi-

blind decoding are compared in Fig. 4.6, together with another two helpful simulations. In

“Full-band repetition code”, the watermark was embedded in all wavelet sub-bands, from 1
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Fig. 4.6: Performance of the proposed method using semi-blind decoding.

to 32, and only repetition codes were used. The performance is the worst and we were unable

to obtain lower BER.

“Full-band” uses a concatenation of outer LDPC code with inner repetition code to encode

the watermark. The coded-watermark was embedded in all wavelet sub-bands. With this

method low BER was achieved but the performance is still poor. The LDPC decoder uses

semi-blind estimation of the noise variance.

“Global noise variance” is the method described in Section 4.2.2, the watermark is only

embedded in 25-28 achieving an embedding capacity of 23.56 bps.

Finally “Particular noise variance”, proposed in Section 4.2.2, is the best method. In

this case, the watermark was embedded in 25-28 as well. The payload is 204.2 bps with

probability of error lower than 10−5. This method embeds 8.2 more bits per second than the

proposal in [41].

4.3.2 Blind decoding

In the previous Section the watermarked audio X̂ is needed to estimate the noise. However

blind decoding systems are desirable because audio files, especially in WAVE format, need

considerable storage space. Therefore, we propose a blind algorithm using pilot symbols only

for particular noise variance method which was the best method from Section 4.3.1.

In pilot symbols approach, a few bits are known for both encoder and decoder. Thus, the

decoder is capable to estimate the noise variance with those bits.

The pilot bits are multiplexed with the encoded-watermark m̄ and embedded in the audio

file. We have seen that particular noise variance performs better, therefore the noise variance
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must be computed individually for each block in time domain.

Let us assume that Th represents a block of 512 audio samples in time domain. After

wavelet packet transformation of Th and gathering only coefficients from 25-28, a block Fh

with 64 frequency coefficients is obtained. The coded-watermark m̄ is divided in blocks Wh

of 64− j elements. Then, j pilot bits are generated in pseudo-random way using a secret key.

The block Wh is multiplexed with the j pilot bits and the result is embedded in Fh using

DM. The output of this process will be the watermarked frequency coefficients which include

the watermark and the pilot bits, Fig. 4.7.

Fig. 4.7: Multiplexing pilot bits with the coded-watermark.

The decoder uses a demultiplexer to separate the noisy version of the pilot bits and the

watermark. Since the decoder has perfect knowledge of the pilot bits, and estimate ς2
h is

computed for each block F̂h and the log-likelihood ratio is obtained with (4.1).

However there is a trade-off between the number of pilot bits j and the watermark payload.

That is, the more pilot bits per block Fh, the better channel estimation that results in a better

decoding. But, the more pilot bits the lower redundancy of the watermark and therefore

weaker watermarks.

Fig. 4.8 is a comparison of blind decoding of particular noise variance method using a

different number of pilot bits j after MP3 at 64 kbps. With a few pilot bits, j = 5, per

block Fh the performance is the worst. Choosing j = 20 produces good channel estimation,

however the watermark is weak and MP3 generates many errors. The best performance is

achieved when j = 10 pilot bits per block are used to compute the noise variance ς2
h. The

embedding capacity of this proposal using blind decoding is 155 bps.

The difference between blind decoding and semi-blind decoding for particular noise vari-

ance method is shown in Fig. 4.9, they differ in 49.2 bps. The gap between both methods can

be reduced if more advanced techniques to compute the noise variance are implemented in the

blind method. Nevertheless our blind proposal achieves similar payload than, in our knowl-

edge, the highest payload algorithm [41] from the literature for blind audio watermarking

with attacks of MP3 at 64 kbps.
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Fig. 4.8: Particular noise variance scheme using different number of pilot bits j per block
Fh.

4.4 Increasing the embedding capacity with erasures.

Error correcting codes are capable to correct twice erasures than errors assuming that the

non-erased bits are correct. An erasure means that no information about a certain bit is

provided. For example, erasure of the bit m̄i can be represented with ri = 0.

From Section 4.2.2 and also from Fig. 4.4, we have seen that certain parts of the audio files

are susceptible to produce more errors after the attack. If there is a correlation related with

the errors, we can define erasures in regions with high density of noise and avoid many errors.

Table 4.1 shows the correlation between the amount of noise in sub-bands 25-28 and some

characteristics of the audio file. The attacks applied to the audio files were MP3 compression

at 64 kbps and low-pass filtering with a cutoff of 6 kHz. High correlation is obtained between

the amount of noise and the average energy of sub-bands 25-28. Based on this correlation,

erasures can be defined in places with high average energy of sub-bands 25-28.

The encoding method for this proposal is the same method already explained in this

Chapter. At the decoder, r is computed as in Section 4.2.2. For each block T̂h, the average

energy eh of its wavelet sub-bands 25-28 is computed. If ri comes from a block where eh > t

then ri = 0 is defined as erasure, where t is a threshold. De-interleaving is applied to r and

the rest of the decoding process is exactly as particular noise variance.

Using erasures, the embedded capacity can be increased by more than 15 bps in compar-

ison with normal decoding for MP3 compression, Fig. 4.10. The final embedding capacity

achieved is 229.7 bps, yet with MP3 at 64 kbps.

Since MP3 cuts the high frequencies of the audio file, we also tested the algorithm against

low-pass filtering with a cutoff frequency of fc = 6 kHz. The result, shown in Fig. 4.11,
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Fig. 4.9: Particular noise variance scheme: Performance of blind decoding versus semi-blind
decoding.

confirms the good performance of our algorithm using erasures at the decoder. The benefit is

of 5 bps compared with normal decoding. The embedding capacity achieved was of 115 bps

with a BER lower than 10−5.

Due to huge dynamic range of audio signals, we have not found a constant threshold t for

audio files, even for the same audio file the best threshold is different for different watermark

rates. For example, in Fig. 4.12 the best thresholds for the audio file: A change of seasons

are shown. So far, it has been noticed that the best threshold can be found in at most 10

iterations using a brute force search in a range t ∈ [.001, .05].

Even there is a strong noise-correlation, higher than .8, we have noticed that noisy

blocks F̂h only have a number of errors slightly higher than half of the total bits em-

bedded. The reason of this behavior is that DM only does a decoding mistake when

mod (|x̂i −yi|,∆/2) > (∆/4) and it is not strictly related with the noise strength. Therefore,

when the whole noisy block F̂h is defined as erasures, we are discarding erroneous information

that represents slightly more than half of the embedded bits in that block, but we are also

rejected a considerable amount of correct information.

Better schemes could be developed if there is a correlation between each wavelet coefficient

itself and the errors. In that case, there would not be need to define the whole block as

erasures, only the most likely erroneous coefficients will be defined as erasures instead.
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Fig. 4.10: Outperform of semi-blind particular noise variance scheme using erasures at de-
coder for MP3 compression.
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Fig. 4.11: Outperform of semi-blind particular noise variance scheme using erasures at de-
coder for low-pass filtering.
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Section 4.5 Comparison with related algorithms

Table 4.1: Correlations related with the amount of noise in wavelet sub-bands 25-28.

Amount of noise from Value of correlation
sub-bands 25-28 and MP3 64 kbps Low-pass 6 kHz

Variance (time) 0.193 0.170

Block energy (time) 0.193 0.171

Block av. energy (time) 0.190 0.170

Frequency (time) 0.651 0.658

Av. energy of sub-band 1-4 0.134 0.130

Av. energy of sub-band 5-8 0.572 0.568

Av. energy of sub-band 9-12 0.678 0.679

Av. energy of sub-band 13-16 0.715 0.710

Av. energy of sub-band 17-20 0.567 0.564

Av. energy of sub-band 21-24 0.609 0.690

Av. energy of sub-band 25-28 0.819 0.830

Av. energy of sub-band 29-32 0.782 0.779

4.5 Comparison with related algorithms

MP3 is a challenging attack for audio watermarking, and this fact is reflected in Table 4.2

where 71% percent of the reported algorithms have a payload lower than 100 bps. In some

cases, e.g. [60] and [67], the authors claim that their algorithms are robust to compression

but they did not report the BER.

Algorithms that overcome the barrier of 100 bps are reported in [64], [40], [68] and [41].

However the achieved payload, by [64] and [40], is not tolerant to compression of 64 kbps.

Wu et ál. [68] proposed an interesting algorithm that achieves 172 bps for compression at

64 kbps with BER = 0.043. Our basic algorithm using pilot symbols achieves the same

payload, 172.3 bps with a lower BER = 0.025, see Fig. 4.9.

The best algorithm, in our knowledge, reported in the literature is the scheme proposed

in [41] by Bhat et ál. This algorithm has a payload of 196 bps and it is resistant to MP3

at 64 kbps although its BER = .01 is still high, because 1 of every 100 embedded bits

is erroneous. Our basic algorithm using pilot symbol has similar performance, achieving

193.8 bps with BER = .08. Using semi-blind decoding our algorithm embeds 8.2 bps more

than Bhat’s algorithm with an even much lower BER = 8.19 × 10−6, that is, around 8

erroneous bits of every million of embedded bits, refers to Fig. 4.9.

Moreover our best result, Fig. 4.10, has a benefit of 33.7 bps over Bhat’s algorithm. In

summary, our algorithms obtain a payload of 155 bps for the basic algorithm with pilot sym-

bols, in Section 4.3.2; 204.2 bps for the semi-blind algorithm of Section 4.3.1, and 229.7 bps

for the algorithm with erasures at decoder, described in Section 4.4.

Since the aim of this paper is not the channel estimation and for the sake of simplicity,

we introduced only a basic blind decoding which uses pilot symbols. However, our semi-
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Table 4.2: BER and payload comparison of related algorithms against MP3 compression.

Algorithm MP3 Quality BER Payload
[kbps] [bps]

Cvejic [31], 2003 32 .0028 27.1

In-kwon [58], 2003 96 .0020 10

Wang [59], 2004 128 .0571 10.72

Wu [68], 2005 64 .0434 172

Chang [60], 2006 56 YES 86

Li [61], 2006 32 .0156 4.26

Xiang [62], 2007 128 .1500 3

Xiang [63], 2008 64 .1750 2

Erçelebi [64], 2008 128 .4900 170

Deshpande [40], 2008 96 .0025 220

Fan [65], 2009 48 .0347 86

Wang [66], 2009 64 .0100 Not reported

Meǵıas [67], 2010 96 YES 30.09

Bhat [41], 2010 64 .0100 196

Ours 64 1.323 × 10−4 229.7

blind decoding algorithm could be easily converted to blind using a good channel estimation

technique, because X̂ is only required to compute the noise variance.

4.6 Audio quality tests

Quality of the watermarked signal is important because a signal with bad quality loses its

commercial value. This aspect becomes even more important in audio files because the human

auditory system is more sensible to perceive changes than other senses, e.g. the sight.

All the simulations presented in this Section produced watermarked audio with an average

SNR = 44.1 dB and variance of .02. However, SNR is not the most suitable metric for mea-

suring audible distortion. Therefore, the quality of the watermarked audio is also measured

with two different tests: the ITU-R BS.1116 [72] and the ITU-R BS 1387.1 [73] standards.

The former is a subjective evaluation of small impairments of high-quality perceptual audio

codecs. The latter is an objective measurement better known as perceptual evaluation of

audio quality (PEAQ).

The subjective test, ITU-R BS.1116, was applied to 23 persons with three different audio

files: classic, pop and rock music. The grading is defined with 5.0 to refer that the watermark

is imperceptible from the audio file, 4.0 for perceptible, but not annoying, 3.0 for slightly

annoying, 2.0 for annoying and 1.0 for very annoying. The results are shown in Table 4.3, in

all of them the quality of the watermarked audio is higher than 4.0.

The last quality test was performed with PEAQ standard. This test is objective but has

similar grading that the previous. A grading of 0.0 means that the watermark is imperceptible,
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Table 4.3: Subjective evaluation of audio quality based on ITU-R BS.1116 standard.

Audio Score

Classic:
4.14

Egmont Op. 84

Pop:
4.78

Billie Jean by M. Jackson

Rock:
4.28

A change of seasons by Dream Theater

-1.0 for perceptible, but not annoying, -2.0 for slightly annoying, -3.0 for annoying and -4.0

for very annoying. The results, reported in Table 4.4, show that the watermark is almost

imperceptible for rock and pop music. We have noticed that in quiet segments of the music

the watermark is apparently perceptible because there is not a strong masking sound. This is

reflected in the grading for classic music which contains many quiet segments that enables the

perception of the watermark, however this perception is thin and not annoying as reported

in the subjective test in Table 4.3.

Table 4.4: Objective evaluation of audio quality based on ITU-R BS 1387.1 standard, PEAQ.

Audio Score

Classic:
-1.3035

Egmont Op. 84

Pop:
-0.661

Billie Jean by M. Jackson

Rock:
-0.411

A change of seasons by Dream Theater

4.7 Conclusion

High payload algorithms for audio watermarking resilient to MP3 compression have been

proposed. Our algorithms embed a binary coded-watermark inside the frequency of audio

files using DM. The coded-watermark is generated with a concatenation of LDPC codes with

repetition codes.

Effects of MP3 on wavelet coefficients were analyzed. Coefficients from sub-bands 25 to

28 were found to suffer less distortion considering that the audio is decomposed with wavelet

packet until the fifth level. Sub-bands 25 to 28 belong to middle frequencies of the audio,

equivalent to frequencies from the 11 kHz until 13.7 kHz.

The statistics of the channel noise were computed using independent estimations along

the audio file, producing a more accurate variance of the channel noise.
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Reflections from the previous paragraphs allow us to propose an algorithm called particu-

lar noise variance which has an embedding capacity higher than all previous known proposals

resilient to MP3 at 64 kbps. This algorithm is capable to use semi-blind and blind decoding.

With semi-blind decoding, the algorithm obtained a benefit of 8.2 bps over the algorithm with

the highest payload reported in literature [41] for MP3 of 64 kbps and with blind decoding,

our algorithm has similar performance to [41].

A strong correlation between the amount of noise and the average energy from sub-bands

25-28 was found. This correlation was used to define erasures on places which are likely to be

noisy. This idea increased the embedding capacity of the particular noise variance method

by more than 15 bps. The final achieved payload was of 229.7 bps, which overperforms the

algorithm in [41] by 33.7 bps.

Finally, the distortion in the watermarked audio was evaluated. The quality of audio was

measured with three methods. The first one shows SNR higher than 40 dB. The second one

was a subjective evaluation with more than 20 persons. The results showed a score higher

than 4 of 5 possible for the watermarked audio, where 5 represents the best audio quality.

The last one is an objective measurement based on the ITU-R BS 1387.1 standard better

known as “PEAQ” and showed that the watermark is imperceptible for rock and pop music

while perceptible but not annoying for classic music.
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5

Self-synchronous decoding with

LDPC codes

Reliable communications through noisy channels must involve techniques to prevent errors

generated in the transmissions. Block error-correcting codes are algorithms that attempt to

correct those errors by dividing the information into blocks and adding redundancy to each

block. However the encoder and the decoder must be in perfect synchrony, that is, they must

know exactly where a certain block begins and ends. Otherwise, even with the lack of noise,

the decoder will emit unintelligible results. Hence, synchronization is important when the

information is transmitted as blocks of bits called codewords.

Synchronization can be lost due to many reasons. For example, clipped codewords pro-

duced by deletion of symbols in the channel, interruption of the communication between

transmitter-receiver, carrier phase offset, etc.

One of the first attempts to keep the synchronization was the use of a special symbol

which delimited the end and the beginning of different codewords, with the constraint that

the special symbol was not a member of the information alphabet. Morse code applies this

technique, and the letter space is the delimiter among codewords.

Codeword separation is implicit on comma-free codes [74] and [75]. These codes have the

property that no valid codeword is a prefix of any other valid codeword. Therefore, if the

received stream is read from left to right the codeword is immediately recognized because it

is the only block that looks like valid codeword. However comma-free codes do not have such

good error-correction capability as other codes do. In addition, if the code length is large,

the decoding produces delays.

In 1965, Levenshtein proposed binary codes which aided maintaining the synchroniza-

tion [76]. His aim was not codeword separation, he defined a code that is capable of recover-

ing codewords with s or fewer deletions/insertions instead. However, depending on the code,

69



Chapter 5 Self-synchronous decoding with LDPC codes

some restrictions must be applied. For example, in some cases the code is only capable of

correcting one deletion from every three codewords.

Popular codes used to recover the synchronization are cyclically permutable (CP) codes

proposed by Gilbert [77]. Generic CP codes do not have implicit synchronization capability

by themselves, but the synchronization property appears if there are redundant codewords at

the decoder. An example of this principle was applied by Kuribayashi [78] in watermarking

to endure desynchronization attacks. Generally, CP codes are constructed by discarding

codewords from a cyclic code [77] and [79]. Therefore, CP codes have a low coding rates

which is its major disadvantage. There is a subset of CP codes that are also comma-free

codes, however CP code does not imply comma-free. A formal definition of comma-free

codes and CP codes can be found in Section 5.1.

Most of the algorithms with self-synchronous capability are tied to some specific code,

e.g. CP codes, comma-free, Levenshtein’s codes. However powerful error correcting codes,

e.g. low-density parity-check (LDPC) codes or turbo codes, are desirable in noisy channels

like the ones found in watermarking.

In [80] and [81], LDPC codes have been already used in schemes that keep the transmitter

and the receiver in sync. However, the desynchronization problem is from a different nature.

They both assume desynchronization because carrier phase offset which differs from the aim

of our proposal. They do not consider loss of synchronization because of clipped codewords

at decoder.

We propose, in this Chapter, a novel algorithm that recovers the synchronization using

LDPC codes. We consider scenarios where the desynchronization is lost due to deletions in

the channel that produce clipped codewords at the receiver. This problem is common in

digital watermarking where attacks like clipping causes desynchronization [82], however we

introduce and describe the proposal from a general point of view because the algorithm can

be applied to any transmission which uses iterative decoders. The problem is described and

formulated in Section 5.2 and some useful definitions are stated in Section 5.3.

In Section 5.4, we describe the self-synchronous algorithm [83] and [84] with addition of

the fundamentals behind the synchronization capability, its complexity and restrictions. The

algorithm assumes a received bit stream with clipped codewords. Thus, the decoder achieves

synchronization with the nearest unclipped codeword. The foundations about our algorithm

are based on the good CP-characteristics of the codes, i.e. CP-distance different from zero

or large code length. The algorithm produces several sequences as potential codewords,

then it decides the synchronized codeword based on the fact that only the synchronized

codeword exists in the codebook. Theoretical results about these foundations are presented

in Section 5.4.1.

The algorithm can recover the synchronization with any code with good CP-characteristics
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including large and small codes. Our scheme loses around 3 dB, in comparison with synchro-

nized transmission, for a very short LDPC code but the algorithm recovers the synchroniza-

tion without pilot symbols. We show that the difference in performance between synchronized

transmission and our algorithm is reduced when the code length is increased. For example,

with a half-rate LDPC code with length 504 our algorithm performs equal than synchro-

nized transmission at BER of 10−6. Moreover, the algorithm is also capable to recover

synchronization in scenarios without redundant codewords. All these simulations are shown

in Section 5.5.

We introduce an idea about the performance bound of the proposed algorithm, in Sec-

tion 5.6, with the aid of maximum likelihood decoding. An interesting point about the error

bound analysis is the generation of a code which is non-linear but with cyclic-like character-

istics.

In Section 5.7, we engage in some discussion related with the CP-distance and its reper-

cussion on the performance.

Finally, our proposal is not restricted to a specific code, e.g. CP codes. Indeed, a wide

variety of codes can be used including non CP codes. Section 5.8 concludes the Chapter.

5.1 Codes for synchronization

In binary transmission, a synchronization code is sequence of bits used to delimit frames of

information. Since the information is also represented with bits, the synchronization code

is a unique sequence which has very low probability to appear inside the information bits.

This technique is widely used because its simplicity, however it is not efficient because the

synchronization code does not contain any information from the source and therefore the

payload is reduced.

In this Section two fundamental codes that have implicit synchronization capabilities,

that is, they do not need any extra-bits to recover the synchronization but the codeword

itself, are described.

5.1.1 Comma-free codes

Comma-free codes are self-separable codes that do not need any header or prefix to distinguish

between two different codewords [74]. A comma-free code includes only codewords that are

not prefix of any other valid codeword. Thus, the transmitted codewords are the only blocks

which look like a codeword and therefore can be decoded without compare them with any

other codeword.

Definition 5.1 (Comma-free code). For any two different codewords Ci = (ci
1, c

i
2, . . . , c

i
m)
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and Cj = (cj
1, c

j
2, . . . , c

j
n) of length m and n, respectively, in a codebook C ′,

ci
t, . . . , c

i
mcj

1, . . . , c
j
t−1 /∈ C

′, t ∈ [2, n];

then, C ′ is referred as a comma-free code.

5.1.2 Cyclically permutable codes

Let us define C = (c1, c2, . . . , cn) as a codeword of length n. Thus, one-bit cyclic-shift named

“cyclic equivalent permutation” RC of the codeword C is:

RC = (c2, c3, . . . , cn, c1),

in the same way we find that C contains n cyclic equivalent permutations, RC,R2C, . . . , RnC,

where C = RnC.

In 1963, Gilbert [77] defined an error correcting code called cyclically permutable (CP)

code. The main characteristic of this code is that any valid codeword cannot be obtained by

cyclically permuting another valid codeword.

Definition 5.2 (Cyclically permutable (CP) code). CP code is a set of codewords of length n

such that for any two valid codewords Ci = ci
1, c

i
2, . . . , c

i
n, Cj = cj

1, c
j
2, . . . , c

j
n and considering

t ∈ [1, n − 1]:

Ci 6= RtCi,

and for any j, where i 6= j,

RtCi 6= Cj.

Gilbert [77] and Kuribayashi [79], individually, proposed constructions of CP codes based

on cyclic codes. However these codes have a disadvantage from the point of view of coding

rate because CP codes are constructed by discarding cyclic equivalent codewords from the

cyclic codebook.

The synchronization characteristics of CP codes arise when the same codeword is iter-

atively transmitted. Thus, the receiver does not need to recover synchronization, the mes-

sage can be decoded from any successive n symbols instead, where n is the code length.

Kuribayashi et ál. applied the previous characteristic to synchronization in digital video

watermarking [78].

5.2 Problem definition and statements

Consider transmissions where codewords Ci from a codebook C are sequentially and iter-

atively transmitted p > 1 times each of them, i.e. the same codeword Ci is continuously
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transmitted p times before a different codeword Cj could be transmitted:

. . . , Ci
1, C

i
2, . . . , C

i
pC

j
1 , C

j
2 , . . . , C

j
p, . . . ,

and every codeword C = (c1, c2, . . . , cn) contains n bits.

Assume loss of synchronization due to any consecutive deletion of α bits. Therefore, the

decoder obtains a stream that contains a clipped codeword followed of an unclipped codeword,

. . . , ci
α+1, c

i
α+2, . . . , c

i
n, ci

1, c
i
2, . . . , c

i
n, . . . ,

thus the decoder does not know where the unclipped codeword begins. The problem is to

recover the synchronization with the nearest, unclipped codeword.

Deletions could occur among same codewords, Ci
1, C

i
2, . . . , C

i
p, or different ones Ci, Cj, . . . .

However due to the sake of simplicity, we will focus firstly in the former case and then we

will generalized the algorithm to include the latter case. Any other deletion pattern, e.g. a

bit deletion per each codeword, is out of the scope of this algorithm.

This problem can be found in watermarking, especially for audio files. A coded binary

stream, called watermark, is embedded sequentially in the audio file. However the length of

the audio file might be changed due to compression or clipping attack. For example, MP3

encoders add samples at the beginning of the audio file. On the other hand, clipping attacks

delete audio samples. The changes of length in the audio file produce desynchronization

because misalignments of codewords or clipped codewords when the watermark is retrieved.

5.3 Preliminaries

Consider two codewords, Ci and Cj of length n them both. Hamming distance dH(Ci, Cj) is

defined as the number of bits in which they differ. If the cyclic permutations of the codewords

are considered, define cyclic Hamming distance as:

DH(Ci, Cj) = min
x

dH(Ci, RxCj),

where RxCj means that the codeword Cj has been cyclic permuted x bits

Definition 5.3 (CP-distance). In a code (n, k) with 2k codewords and code length n the

CP-distance S is defined:

S = min
i6=j

DH(Ci, Cj). (5.1)

Consider any codeword Ci = (ci
1, c

i
2, . . . , c

i
n) ∈ C c. If all its cyclic permutations RtCi are

also valid codewords, then C c is named cyclic code.
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Definition 5.4 (Cyclic Code). The linear code C c of length n is a cyclic code if it is invariant

under a cyclic permutation:

Ci ∈ C
c ⇔ RtCi = Cj ∈ C

c, for t ∈ [1, n).

Then, a cyclic code contains all n cyclic permutation of any codeword.

Proposition 1 (CP-distance of cyclic codes). The CP-distance of a cyclic code C c is zero.

Proof. By Definition 5.4, every codeword Ci in a cyclic code can be generated by the cyclic

permutation of another codeword RaCj, that is Ci = RaCj and therefore DH(Ci, Cj) = 0.

Subsequently:

S = min
i6=j

DH(Ci, Cj) = 0.

Proposition 2 (CP-distance of CP codes). The CP-distance of a CP code C is different

from zero.

Proof. All codewords Ci ∈ C , where C is CP, are cyclically nonequivalent by Definition 5.2.

If any two codewords {Ci, Cj} ∈ C are non-cyclic equivalent then Ci 6= RtCj for 1 ≤
t < n, where n is the code length. Therefore DH(Ci, Cj) > 0 and subsequently S =

mini6=j DH(Ci, Cj) > 0.

Finally, we define the minimal distance of a code dmin as the minimal Hamming distance

between any two valid codewords {Ci, Cj} ∈ C .

5.4 Self-synchronous decoding algorithm

The synchronization capability of the proposed algorithm is based mainly on the decoding

part. The encoder is a traditional LDPC code which takes blocks of k information bits and

produces codewords of n bits.

The decoder receives a desynchronized stream, . . . , c̃1, c̃2, . . . , c̃2n−1, . . . , c̃3n, . . . , of noisy

bits. The index of c̃i could or could not match with the index of a certain codeword, i.e.

c̃1 does not necessarily mean the beginning of a codeword. The decoding algorithm aims to

synchronize with the nearest unclipped codeword. Fig. 5.1 depicts this idea.

The decoder assumes desynchronization and takes the first 2n−1 symbols from the noisy

received stream. Those symbols are divided into n sequences C̃i of length n, each sequence

differs from the previous one in a shifted bit to the right.
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Section 5.4 Self-synchronous decoding algorithm

Fig. 5.1: Decoding with self-synchronization capability.

Sum-product algorithm (SPA) with only one iteration is applied to each sequence C̃i pro-

ducing updated sequences Ĉi. Hamming distance dH(C̃i, Ĉi) between the updated sequences

Ĉi and its corresponding C̃i is measured.

With long codes, the Hamming distance dH(C̃i, Ĉi) provides reliable information about

which sequence is the synchronized codeword. Fig. 5.2 shows the Hamming distances dH(C̃i, Ĉi)

between potential codewords and its counterpart after one iteration of SPA decoding for a

half-rate LDPC code with code length of 816. In the horizontal axis, negative and positive

numbers represent desynchronized codewords shifted to the left and to the right, respectively;

and zero represents the synchronized codeword. The simulation was done with different in-

tensities of Gaussian noise SNR= {0, 1.5, 3.0, 5.0} dB over BPSK channel. In most of them,

the synchronized codeword obtained the minimum Hamming distance. When SNR= 0 dB,

the noise is very high and the decoder cannot decode the correct codeword. SNR is defined

as the ratio between noise power and carrier power.

However for codes with poor CP-characteristics or short codes, the Hamming distance

is not enough because sometimes the minimum Hamming distance belongs to an invalid

codeword. Hence, how reliable is the Hamming distance dH(C̃i, Ĉi) can be associated with

the number of parity checks violated by Ĉi. Thus, the number of invalid parity checks Bi

from each sequence Ĉi is computed as well.

A simple way to combine the Hamming distance and the number of violated parity checks

is to add them. Then the metric Mi, which decides whether a sequence C̃i is synchronized,
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Fig. 5.2: Hamming distance dH(C̃, Ĉ) of potential codewords and its counterpart after one
iteration of sum-product decoding.

is computed with:

Mi = dH(C̃i, Ĉi) + Bi. (5.2)

Finally, the synchronized codeword is assumed to be the sequence which minimizes,

C̃syn = min
i

Mi,

the metric. A basic example that illustrates the decoding algorithm can be found in Ex-

ample 5.1. We refer to this algorithm as low complexity and it is our main proposal of

this Chapter. We will propose a slightly modification to low complexity which produces an

improvement of performance but with a rise of complexity.

Once the main algorithm was proposed, we introduce a modification in the decoding

procedure to increment the performance, this second algorithm is referred as tree because

the potential codewords are discarded in an inverted tree fashion. Each of the algorithms

cover a different constraint, in low complexity the most important is the computational cost

and in tree the performance is what matters. However we consider low complexity the main

algorithm because the performance-complexity benefit is better.

The approach tree is shown in Fig. 5.3. The algorithm starts from the top, each node

represents a potential codeword C̃i and in the top layer there are n nodes, where n is the

length of the code. Every up-down transition represents an iteration of sum-product. The

nodes which go to next lower layer are chosen according to the minimum value of the metric,

mini Mi. If there is more than one minimum for the metric Mi, e.g. Mi = 0, then all
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Section 5.4 Self-synchronous decoding algorithm

Example 5.1 Recovering synchronization: noise free

Let us consider the next CP codebook C :

0 0 0

1 1 0.

Assume that the next stream was transmitted:

1 1 0 1 1 0 1 1 0,

then desynchronization occurs because deletion of the first two bits producing

0 1 1 0 1 1 0.

According to the algorithm, the first 2n−1 = 2(3)−1 = 5 bits are taken 0 1 1 0 1 and divided

into sequences C̃i of n=3 continuous bits:

C̃1 = 011

C̃2 = 110

C̃3 = 101.

Each sequence C̃i is updated with SPA producing Ĉi.

C̃1 = 011 6= Ĉ1

C̃2 = 110 = Ĉ2 = 110

C̃3 = 101 6= Ĉ3

∴

dH(C̃1, Ĉ1) > 0, B1≥0

dH(C̃2, Ĉ2) = 0, B2 =0

dH(C̃3, Ĉ3) > 0, B3≥0

Since {C̃1, C̃3} /∈ C , hence C̃1 6= Ĉ1 and C̃3 6= Ĉ3 because SPA attempts to correct the

errors. Thus, C̃2 is the only sequence with metric M2 = dH(C̃2, Ĉ2) + B2 = 0 equal to zero

and therefore C̃syn = mini Mi = C̃2, i ∈ [1, 3], is the correct and synchronized codeword.

nodes with minimum metric go to the next layer. Otherwise, if there is only one node which

minimize the metric, the second minimum of Mi is also included in the next layer. Every

time that a new layer is defined the children nodes are compared with its parent node, if a

child node has the same Mi value as its father, that node is discarded. The process continue

until obtain only one node that represents the synchronized codeword C̃syn.

5.4.1 Fundamentals of synchronization capability

Let us think about the input segment of 2n − 1 bits which is processed by the decoder.

Assuming that desynchronization occurred between the same codewords, then the segment

of 2n − 1 contains the codeword Ci = (ci
1, c

i
2, . . . , c

i
n) concatenated with a prefix Ci

pre =

(ci
1, c

i
2, . . . , c

i
l) or suffix Ci

suf = (ci
t+1, c

i
t+2, . . . , c

i
n) of the same codeword Ci, for {l, t} ∈ [1, n).

That is, the decoder could obtain one of the next concatenations: [Ci
suf , Ci], [Ci, Ci

pre] or
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Fig. 5.3: Decoding approach following an inverted tree technique.

[Ci
suf , Ci, Ci

pre]. Without distinction about the kind of concatenation, all the n-tuples inside

that segment are cyclic equivalent codewords RtCi of Ci. This claim can be proved with

Theorem 5.1.

Theorem 5.1 (Cyclically equivalent codewords). Any sequence of n consecutive bits taken

from the concatenation of [Csuf , C], [C,Cpre] or [Csuf , C,Cpre] is a cyclic equivalent code-

word of C = (c1, c2, . . . , cn), where C has length n and Csuf = (ct+1, ct+2, . . . , cn), Cpre =

(c1, c2, . . . , cl) are its suffix and prefix respectively with {t, l} ∈ [1, n).

Proof. A cyclic permutation RtC of a codeword C = (c1, c2, . . . , cn), where 1 ≤ t < n, is

defined as:

RtC = (ct+1, ct+2, . . . , cn, c1, . . . , ct). (5.3)

Let us analyze the first case when [Csuf , C]. If C has length n, thus its suffix is:

Csuf = (ct+1, ct+2, . . . , cn).

Then, the concatenation of [Csuf , C] produces:

[Csuf , C] = (ct+1, ct+2, . . . , cn, c1, c2, . . . , cn).

Taking any sequence of n consecutive elements from [Csuf , C], we obtain:

ct+1, ct+2, . . . , cn, c1, . . . , ct,

which is exactly the definition of cyclic permutation (5.3) of the codeword C.

Second case, [C,Cpre]. Since C has length n, the first n consecutive bits are the codeword

C itself. From the second n consecutive bits the problem turns to be:

[Csuf , Cpre] = (ct+1, ct+2, . . . , cn, c1, c2, . . . , cl),

78



Section 5.4 Self-synchronous decoding algorithm

and

Cpre = c1, c2, . . . , cl,

with 1 ≤ l < n. Considering that Csuf has n − t elements, any consecutive string of n inside

[Csuf , Cpre] is defined as:

ct+1, ct+2, . . . , cn, c1, . . . , ct,

which is again the definition of cyclic permutation (5.3).

In the last case when [Csuf , C,Cpre], there cannot be a sequence of n consecutive bits

which contains elements of both Csuf and Cpre at the same time, because there is a codeword

C of length n between them. Therefore, this problem can be broken in two sub-problems:

[Csuf , C] and [C,Cpre] which were already proved.

If the encoder uses CP codes then no cyclic equivalent codeword RtCi of Ci exists in

the codebook. Thus, after one iteration of SPA all the updated sequences of C̃i, which are

RtCi, will be changed but only Ĉsyn = C̃syn remains the same. Therefore, dH(C̃i, Ĉi) will

be zero only when i = syn, that is the synchronized codeword. Following the same principle

for transmission over noisy channels, the codeword C̃i with mini dH(C̃i, Ĉi) is expected to be

the most likely synchronized codeword.

The larger the CP-distance of a code, the larger the difference between dH(C̃syn, Ĉsyn)

and dH(C̃i, Ĉi) for i 6= syn. Therefore the larger CP-distance, the better synchronization

characteristics because C̃syn has lower probability to be confused with any other C̃i for

i 6= syn.

When the code is not precisely a CP code, it must have good CP-characteristics or a

long code length. Good CP-characteristics mean that the code must have the less possible

number of equivalent codewords in its codebook. For short codes, this can be achieved with

equivalent codes generated by elementary row operation in its generator matrix.

With long codes is difficult to say that a code is strictly CP code because the number of

codewords is huge. However this characteristic itself is a great advantage in our algorithm

because the probability that any desynchronized sequence belongs to the codebook is reduced

when the code length is increased. For long codes is expected that our method performs very

close to perfect synchronized transmission.

It has been discussed the specific case when desynchronization happens between the same

codewords. However desynchronization may also occur among different codewords, producing

different concatenations, [Ci
suf , Cj], [Ci, Cj

pre] or [Ch
suf , Ci, Cj

pre] where Theorem 5.1 does not

hold. However if the code is large, the probability of errors due to an invalid sequence RtCj

turns into a codeword Ci, including j = i, is low. We refer to this error as mis-decoding.
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5.4.2 Complexity

According to CP-characteristics of a code, it is possible to find the synchronized codeword

C̃syn without the aid of the metric Mi but using an exhaustive search. Assuming that there

are n potential sequences C̃i and λ is the maximum number of sum-product iterations then,

the exhaustive search has a complexity nearly to n · λ iterations because desynchronized

sequences never converge. However this complexity is highly reduced in our low complexity

algorithm because it only needs at most n+λ iterations. Table 5.1 shows a comparison of the

number of iterations needed to find the synchronized codeword with exhaustive search and

with our proposal: low complexity algorithm. λ was set to be 100, however is not necessary to

iterate up to the maximum if the algorithm converges earlier. Two different half-rate random

LDPC codes were used, code length 2640 and 816.

Table 5.1: Number of sum-product iterations needed to decode a desynchronized codeword
of length 2640 and 816 using an exhaustive search and our proposal: low complexity.

SNR
Code length 2640 Code length 816

Exhaustive search Proposal Exhaustive search Proposal

0.0 264000 2740 81600 915
1.5 263923 2716 81519 834
3.0 263905 2644 81504 819
5.0 263903 2642 81502 817

5.4.3 Restrictions

The main restrictions of this algorithm are two. The first one is related with the kind of code.

By definition 5.4, a cyclic code contains the cyclic permutation of each valid codeword which

is exactly what our algorithm is trying to avoid. Therefore cyclic codes are not suitable for

this proposal.

The second restriction comes from the desynchronization nature. This proposal assumes

that after the continuous deletion of α bits, there is a segment of 2n − 1 bits which contains

the unclipped codeword C. Any other deletion pattern, e.g. one deleted bit every codeword

or similar, is out of the scope of this proposal.

Let us assume a bit stream which is a concatenation of codewords C = (c1, c2, . . . , cn),

then all the continuous deletion can be classified in three different patterns:

1. The first one is when the deletion occurs at the middle and leaves the beginning and

the end of a codeword:

c1, ct, ?1, . . . , ?α, ct+α, . . . , cn, c1, c2, . . . , cn
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2. Second one is when the last part of a codeword is missed:

c1, c2, . . . , ct, ?1, . . . , ?α, c1, c2, . . . , cn

3. The last is when the beginning of a codeword was deleted:

?1, . . . , ?α, ct+1, . . . , cn, c1, c2, . . . , cn

Theoretical analysis was described from the point of view of case 3. However if the code

has good CP-distance, errors due to cases 1 and 2 are negligible. Moreover, cases 1 and 2

become case 3 if the left part of the deletions is discarded. Theorem 5.1 can be applied when

the erasure (case 3) occurs between the same codewords. Therefore, all codewords in the

segment ct+1, . . . , cn, c1, c2, . . . , cn are cyclic equivalent of the synchronized codeword.

5.5 Performance over BPSK transmissions with Gaussian noise

In this Section comparison between desynchronized transmissions using the proposed algo-

rithms and perfect synchronized transmissions are shown. The channel is a binary phase-shift

keying with AWGN.

Recalling, the fundamental problem is desynchronization due to clipped codewords. There-

fore, the decoder should be capable to decode the next unclipped codeword, that is, recover

the synchronization. Usually in digital audio watermarking, clipped attack produces few

clipped codewords, nevertheless the extreme case will be when from every two transmitted

codewords one of them is clipped. In the simulation the synchronization is recovered for the

extreme case, that is, a clipped codeword from every two transmitted codewords. The length

of the clipped bits was chosen each time randomly.

One of the advantages of this proposal is that a wide variety of codes, e.g. short or long,

can be used. Fig. 5.4 shows the comparison between the proposed algorithm and synchronized

transmission for a short LDPC code with rate .25, code length 12 and CP-distance S = 2.

The simulation was conveyed by applying desynchronization to every transmitted codeword

but, in this case, the desynchronization happens only among redundant codewords. The

difference of performance is about 3 dB, however the synchronization was recovered with a

short code and without the aid of pilot symbols. This big gap is due to the code is very short,

but is expected that the performance of both methods tend to be the same with large codes.

For example in Fig. 5.5, we use a half-rate LDPC code with length of 96 and the difference

between synchronized transmission and our algorithm is reduced to only 1.8 dB.

The proposed algorithm is not restricted to CP codes, however attention must be paid to

the CP-characteristics of the code. That is, the code might have CP-distance S = 0 but the

81



Chapter 5 Self-synchronous decoding with LDPC codes

−2 0 2 4 6 8 10 12 14 16
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

 

 

synchronized

desynchronized: tree

desynchronized: low complexity 3 dB

Fig. 5.4: Performance comparison between synchronized transmissions and our self-
synchronizable decoding algorithm over AWGN channel using a tiny LDPC code.

code should contain a few number of equivalent cyclic codewords because those codewords

produce mis-decoding which affects the performance of the algorithm. Fig. 5.6 shows the

previous idea. In this simulation, two high rate LDPC codes were used. The first code “(a)”

has length 273 and rate .69, the second one “(b)” has length 495 and rate .87. Whether these

codes are precisely a CP codes or not is difficult to compute. Nevertheless, since the codes

are high-rate then is highly probable that the CP-distance is zero. In this simulation, the

code length is bigger than previous simulations on Figs. 5.4 and 5.5, therefore the difference

between both methods has been reduced to nearly 1 dB. The deletion is still among redundant

codewords. In this and further simulations only performance of low complexity algorithm will

be shown.

In general, the proposed method works with codes of different lengths. The longer the

length the better performance and less restrictions.

When the fundamentals behind this proposal were explained in Section 5.4.1, we assumed

that the desynchronization occurred in places with redundant codewords. We also explained

that Theorem 5.1 does not hold when desynchronization happens among different codewords.

However, if the code has long code length or good CP-characteristics the probability of

mis-decoding due to desynchronization among different codewords is low and the proposed

algorithm performs as well as before.

Fig. 5.7 pictures the above situation. We used a half rate LDPC code with length 504.

“synchronized” scheme is a normal transmission which was perfectly synchronized and only

contaminated with AWGN. “desynchronized: A” is our proposal when the desynchronization
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Fig. 5.5: Recovering synchronization with a small half-rate LDPC code with code length 96.

happens only among redundant codewords and “desynchronized: B” is when desynchroniza-

tion occurs among different codewords. Without distinction of the desynchronization place,

the algorithm performs around .75 dB less than perfect synchronized transmission for low

SNR and almost the same for high SNR. Comparing the gaps between synchronized trans-

mission and our method in Figs. 5.4, 5.5, 5.6 and 5.7, we are aware that the difference is

reduced when the code length is increased.

The decoder performance relies on the CP-characteristics of the code, the larger CP-

distance the better performance. Generally, large codes have good CP-characteristics, e.g.

LDPC codes with codeword length around 500 or higher. LDPC cannot be considered as

formal CP codes because they are constructed in random way. Nevertheless, the number cyclic

equivalent codewords in its codebook is expected to be small due to the same randomness

nature.

5.6 Toward the bound: Maximum likelihood decoding

The proposal’s behavior has been defined and also its scopes have been discussed. However

a theoretical bound that ensures the reliability of the algorithm is needed. In this Section,

we introduce a simple approach based on maximum likelihood (ML) decoding which shows

the bound of the error performance. Let us define C as the code used in our proposal. For

convenience, a very small LDPC code (12,3) will be used as toy example.

Recapitulating, the proposed algorithm works under the premise that no cyclic equivalent

codeword of a valid codeword Ci exists in the codebook or the number of cyclic equivalent
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Fig. 5.6: Performance comparison between synchronized transmissions and our self-
synchronizable decoding algorithm for low complexity over AWGN channel using a non CP
codes: high-rate LDPC codes.

codewords are very few. Consider codewords {Ci, Cj} ∈ C including i = j. Thus, the

algorithm produces a decoding error when either: an invalid sequence RtCj becomes Ci or

when the synchronized codeword Ci becomes a cyclic equivalent codeword RtCj of any valid

codeword in the codebook.

Now, let us think about a cyclic code C c. For any codeword Ci in a cyclic codebook, its

cyclic equivalent codewords are also valid codewords. Then, a decoding error occurs when

either any cyclic equivalent codeword RtCj becomes Ci or vice versa, including i = j.

This behavior of cyclic codes under normal circumstances, i.e. synchronized transmissions,

is very similar to our desynchronized model. Therefore, would be natural to think that the

proposed algorithm could be bounded by a cyclic code C c over a synchronized transmission,

in which C is a subcode of C c.

However, it turns that the code C c cannot be generated when C is extended, that is when

all cyclic equivalent codewords of C are computed. A special code which is neither linear

nor cyclic appears instead, we will define this code as C ∗. Therefore, well-known bounds for

linear codes, e. g. union bound, cannot be applied.

Fig. 5.8 shows a simulation using the previous idea with a very short LDPC code, rate

.25 and code length 12. “synchronized” refers to synchronized transmission using C , “desyn-

chronized: proposal” is the proposed algorithm with desynchronization and the codebook

C , “desynchronized: proposal ML” means the proposal with ML decoding and C , finally

“synchronized: C ∗” stands for the potential bound using codebook C ∗, synchronized, and
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Fig. 5.7: Recovering synchronization due to, A: deletions among same codewords and B:
deletions among different codewords.

with ML decoding.

This simple idea shows a good approximation about the bound of the algorithm described

in this Chapter.

5.7 Codes and its CP-distance

The performance of our proposal highly relies in the CP-distance. The repercussion of dif-

ferent CP-distances, small and large, are analyzed in this Section.

5.7.1 Codes with large CP-distance

Codes with large CP-distance are good for synchronization. They have good performance in

our scheme and its application is straightforward.

According to Theorem 5.1, all the potential codewords C̃i are cyclic equivalent but only

the synchronized codeword Csyn exist in the codebook. The Hamming distance dH(C̃i, Ĉi)

tends to be large for desynchronized codewords and small for the synchronized one. The

larger is the CP-distance, the bigger is the difference between dH(C̃syn, Ĉsyn) and any other

dH(C̃i, Ĉi) for i 6= syn. Therefore, synchronization with CP-codes is easily achieved.

Codes with large CP-distance belong to CP codes category. Unfortunately, according to

Gilbert’s [77] and Kuribayashi’s [79] constructions of CP codes, these codes have a disadvan-

tage from the point of view of coding rate. CP codes have lower coding rate than its former

code because its construction is based on discarding cyclic equivalent codeword from a cyclic
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Fig. 5.8: Maximum likelihood decoding for our algorithm and its potential bounded code.

codebook. Nevertheless is always desirable to use CP codes in our algorithm if the coding

rate is not a restriction.

5.7.2 Codes with small CP-distance

Small CP-distance but not zero, means that there is at least one pair of codewords in the

codebook which are very similar or some of their cyclic equivalent codewords are similar.

In other words, with small CP-distance is easy that a certain sequence C̃i can be turned

into a valid codeword because the noise. Therefore, synchronization with codes with small

CP-distance is possible but difficult.

Theoretically our algorithm cannot use codes with CP-distance zero. However further

conclusions can be conveyed if the codes are analyzed separately in short and long codes.

CP-distance zero means that there is at least two codewords in the codebook which are cyclic

equivalent. Our algorithm decodes under the assumption that from the sequences C̃i only

one exist in the codebook and all the others are cyclic equivalent. Therefore, if there are

cyclic equivalent codeword in the codebook, the decoder can produce errors because cyclic

equivalent codewords can be confused between each other. We already referred to this error

as mis-decoding.

Short codes must have CP-distance different from zero to perform well with our algorithm.

Short codes have a small number of codewords and therefore if the code has CP-distance zero

is very likely that the decoder makes mis-decoding even in noise free transmission.

However, with long codes the number of valid codewords is huge. Therefore, if the number
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of cyclic equivalent codewords is small, the probability of mis-decoding is small as well, and

synchronization can be achieved even when CP-distance is zero. Fig. 5.6 is an example of

the previous fact. Nevertheless the performance of the code will be affected according to the

number of cyclic equivalent codewords. The algorithm can use codes with CP-distance zero

as long as the code has good CP-characteristics, that is, large length and small number of

cyclic equivalent codewords.

Generally small codes have also small CP-distance or even CP-distance equal to zero.

However, certain small codes are desirable in specific situations due to its good error correction

capability or because of constraint length in the system. Those codes must have good CP-

characteristics in order to work properly with our algorithm. That is, the less number of

cyclic equivalent codewords in the codebook, the better.

Small codes with bad CP-characteristics can be replaced by equivalent codes with better

CP-characteristics. Equivalent codes can be generated by applying elementary row operation

in the generator matrix G. For example, if we apply column permutation to a codebook with

code length n, we obtain n! different codebooks with different number of cyclic equivalent

codewords. Therefore, is preferable to choose a code with the minimum number of equivalent

codewords.

In Fig. 5.9, a simulation using two equivalent codes with the proposed algorithm is shown.

First, a random LDPC code of length 20 is generated. However its performance is bad because

it contains 60 cyclic equivalent codewords. Using its generator matrix, G, an equivalent code

is found by elementary row operations. The equivalent code contains 0 cyclic equivalent

codewords and therefore the code performs well with our self-synchronous algorithm.

5.8 Conclusion

Synchronization is a very important issue for transmission where the information is sent in

blocks. In this Chapter, we described a novel self-synchronous decoding scheme for desyn-

chronization due to continuous deletions in the channel. Besides, we extended the study by

defining its scope and restrictions.

The proposal works under the assumption that the synchronized codeword has the min-

imum Hamming distance between the potential codewords and its updated codewords after

one iteration of sum-product decoding. It was shown that the previous property holds be-

cause the CP-characteristics of the code. The longer the CP-distance of a code, the better

the synchronization capability.

The results showed that the algorithm is capable to use a wide range of codes and it is not

restricted to CP codes as previous proposals are. When short codes are needed, a solution

was proposed by computing equivalent codes with better CP-characteristics.
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Fig. 5.9: Short codes: Performance of equivalent codes in desynchronized transmissions.

Simulation results clarify the good performance of the proposed scheme over BPSK chan-

nel with Gaussian noise. The computational complexity of the proposed algorithm is accept-

able because full iterative decoding is only applied to the most likely synchronized codeword.

Two major restrictions of this algorithm are the deletion pattern and the incompatibility

with cyclic codes, i.e. the algorithm cannot work with cyclic codes. The algorithm is defined

only for continuous deletions, e.g. watermarking under clipping attack.

Our algorithm is capable to use CP codes and some non-CP codes. Whether CP codes

are better that its counterpart non-CP is still an open question. CP codes have better

performance but lower coding rate than its former non-CP code and vice versa. The previous

reflection is an interesting topic to the future work.

Finally, an idea for bounding the number of errors in the algorithm was introduced. An

important point is that the potential code which bounds the number of errors is neither

linear nor cyclic. This idea was demonstrated with the comparison of the ML decoding of

the proposed algorithm and its bounding code.
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6

Self-synchronizable audio

watermarking based on LDPC

coding

Generally, watermarking in frequency domain produces robust watermarks [85]. Nevertheless

two problems arise, desynchronization and high computational cost. Desynchronization is

because the host media is clipped in time-domain and therefore is difficult to recognize the

clipped part in frequency. On the other hand, even nowadays there are algorithms like the fast

Fourier transform, there is not lower complexity than the native domain, e.g. time-domain.

Proposals for audio watermarking in time-domain have been described in [86] and [87].

The former is a proposal for digital instruments like synthesizers, and even the technique

shows interesting results, is not suitable for a wider kind of music. The latter is a proposal

from Lie et ál. which produces watermarks resistant to the most common audio manip-

ulations, e.g. MPEG-1 Layer III (MP3) and low-pass filtering. Due to the algorithm was

developed for time-domain, it has low computational complexity which could be good enough

for practical applications working in real time. Lie’s algorithm, explained in Section 6.1, is ro-

bust to clipping attack by using synchronization codes and also, the watermark was protected

with convolutional coding to prevent errors due to the noise.

However, there are two disadvantages in Lie’s method: the convolutional code and the

synchronization code. Watermarking channels tend to obtain high BER which means than

powerful coding techniques are desirable. Common techniques like BCH codes and convolu-

tional codes practically do not improve the watermark robustness [29]. The use of synchro-

nization codes reduces the payload because the synchronization code does not include any

information about the watermark at all.

We have introduced a self-synchronous decoding algorithm using LDPC codes in Chap-
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ter 5. This algorithm does not need extra-bits, e.g. synchronization codes, to keep the

synchrony between the encoder and the decoder. The synchronization capability is due to

the good cyclically permutable (CP) characteristics of the LDPC codes. The synchronized

codeword is searched in a region which is as large as almost twice the code length. The

algorithm finds the synchronized codeword after applying only one iteration of sum-product

algorithm (SPA), [13], on each possible sequence.

In this Chapter, we propose an improvement to Lie’s method [87] using our self-synchronous

algorithm [83] and [84]. The proposed algorithm is introduced in Section 6.2. The improve-

ments are more robust watermarks and higher embedding payload. The experimental results,

in Section 6.3, show that the watermark can be correctly retrieved after combination of at-

tacks, e.g. MP3 compression and clipping attack. Finally, conclusions are addressed in

Section 6.4.

6.1 Lie’s watermark algorithm

Time-domain audio watermarking can be categorized in: algorithms that modify indepen-

dently each audio sample and those which modify the audio in groups of samples. The former

obtains high embedding rates, however the algorithms are not robust against intentional at-

tacks. The latter, besides producing robust watermarks, controls better the distortion in the

audio file.

In this Section, the algorithm proposed by Lie et ál. [87] is explained. The algorithm scales

the audio amplitudes in a grouping and consistent manner while embedding the watermark

information. Hence, the audio envelope is almost preserved and good audio quality can be

achieved. Before the embedding, the watermark is encoded with a half-rate convolutional

code and, the synchrony is kept with synchronization codes which are concatenated at the

beginning of each block of bits.

Definition 6.1 (GOS). Group of samples (GOS) is defined as an audio segment, in time,

of consecutive L samples. Each GOSi is composed of three sections, seci
1, sec

i
2 and seci

3, of

length Li = Li
1 + Li

2 + Li
3 respectively, as shown in Fig. 6.1.

Fig. 6.1: GOS, of length L, is composed of three different sections seci
1, sec

i
2 and seci

3.
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Section 6.1 Lie’s watermark algorithm

The audio file is divided into consecutive and non-overlapped GOS. Each bit will be

embedded in a different GOS by modifying the average of absolute amplitudes (AOAA) of

sections sec1, sec2 and sec3. The AOAA Ei
1, Ei

2, Ei
3 of the GOSi are computed as:

Ei
1 =

1

Li
1

Li

1
−1

∑

j=0

|X(L·i+j)|,

Ei
2 =

1

Li
2

Li

1
+Li

2
−1

∑

j=Li

1

|X(L·i+j)|,

Ei
3 =

1

Li
3

L
i−1

∑

j=Li

1
+Li

2

|X(L·i+j)|,

where X = X1,X2, . . . are the audio samples.

E1, E2, E3 are sorted and classified in the section with the minimum, middle, and maxi-

mum energy: Emin, Emid, Emax respectively. The differences, A and B, are computed with:

A = Emax − Emid, (6.1)

B = Emid − Emin. (6.2)

For a certain GOSi, the watermark bit “1” will be represented when Ai ≥ Bi otherwise

that GOSi contains a “0”.

The embedding is conveyed according to the next rules:

• Watermark bit “1”:

If (A − B ≥ Thd), then no operation is performed.

Else, increase Emax and decrease Emid by the same amount ρ(1) so that the above

condition is satisfied.

• Watermark bit “0”:

If (B − A ≥ Thd), then no operation is performed.

Else, increase Emid and decrease Emin by the same amount ρ(0) so that the above

condition is satisfied.

The threshold Thd is computed with:

Thd = (Emax + 2Emid + Emin) · γ,

where γ is a parameter that controls the robustness-distortion trade-off. Thus, ρ is computed
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depending on the bit to be embedded:

ρ(1) =
Thd − (A − B)

3
,

ρ(0) =
Thd − (B − A)

3
.

Finally, Emin, Emid, Emax can be modified by scaling (up or down) sample amplitudes

in the corresponding GOS. The watermarked audio is obtained with X̂ = ω · X, where

X = X1,X2, ... ∈ secj , j = 1, 2 or 3 and ω is computed with

ωup = 1 + (ρ/E)

and otherwise, to decrease we have

ωdown = 1 − (ρ/E).

Initially γ is set to γ = 0.05 for each GOSi, however not all the GOS has the same masking

characteristics and therefore the watermark can be audible in some GOS. Thus, γ has to be

independently tuned for each GOSi according to the psychoacoustic model. If the distortion

with the initial conditions is high, then γ is decreased by .01 and the whole embedding process

is repeated until the audio quality constraint is satisfied. For more details refer to [87].

The watermark extraction is done by computing A′ and B′ from the watermarked audio,

in the same fashion as in the embedding phase using (6.1) and (6.2). Then, if A′ ≥ B′ the

bit “1” is retrieved otherwise “0” is recovered.

6.1.1 Encoding the watermark

The watermark is protected with a half-rate convolutional code (2,1,3) which takes one input

bit and produces 2 output bits. The output bits depend on the last 3 input bits. At the

decoder, Viterbi algorithm is used to recover the watermark.

6.1.2 Synchronization

Lie’s algorithm is also robust to desynchronization produced by clipping attack. The solution

is to concatenate a synchronization code at the beginning of each bit stream as shown in

Fig. 6.2a. The synchronization code is a special vector of N1 = 20 bits. This vector is unique

and is very low likely that the synchronization code appears inside the coded watermark

stream.

The decoder searches for the synchronization code in an area of L · (N1 + N2) samples,

where N1 and N2 are the numbers of bits of the synchronization code and the convolutional-
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Fig. 6.2: Structure of the embedding: (a) Lie’s method, concatenation of convolution-coded
watermark and synchronization code. (b) Our proposal, LDPC-coded watermark with self-
synchronization capabilities.

coded watermark respectively. The decoder takes a window with the first L ·N1 samples and

retrieves the embedded bits, those bits are compared with the synchronization code pattern.

If they do not match, the window is shifted one sample to the right and the embedded bits

are retrieved again until match with the synchronization code.

6.2 Self-synchronizable audio watermarking

Lie’s method, described in [87] and summarized in Section 6.1, has low-complexity and ac-

ceptable robustness e.g. against MP3 at 128 kbps. However, it has two main disadvantages:

first, the synchronization code reduces the payload and second, watermarking channels tend

to be very noisy and therefore convolutional codes are not the best selection.

We introduced a novel self-synchronous decoding algorithm for common transmission

in Chapter 5. In this Section, we present an improvement of Lie’s method by replacing

the convolutional code and the synchronization code with our self-synchronous algorithm.

The improved algorithm obtains higher payload than the original because it does not need

synchronization codes. The robustness is also increased due to LDPC codes are more powerful

codes than convolutional codes.

6.2.1 Watermark embedding

The binary watermark m = m1,m2, . . . is encoded with an LDPC code. The coded water-

mark m̄ = m̄1, m̄2, . . . is embedded in the audio file X = X1,X2, . . . following the procedure
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of Section 6.1. However, Section 6.1.1 and Section 6.1.2 are omitted; that is, the convolutional

code is not used and the synchronization code is not concatenated either. Fig. 6.2b pictures

this idea.

6.2.2 Watermark detection

The watermarked audio X̂ is susceptible to suffer distortions due to attacks. Therefore

Y = X̂ + v is defined as the watermarked audio with attacks or noise v.

When the decoder receives Y, it does not have any knowledge about where the embedded

watermark begins. Therefore, synchronization is needed. Let us assume that every coded

watermark bit m̄i was embedded in a GOSi. The code length of the LDPC code is N2. Also

assume that the coded watermark was embedded continuously, that is one codeword after

another. Therefore the synchronized codeword C̃syn = c1, c2, . . . , cn exists inside a segment

P of (2N2 − 1) · L samples.

The audio segment P is divided into overlapped blocks bj of LN2 samples. Every block

bj has an overlap of LN2−5 with the previous one, that is, the difference between the blocks

bj and bj+1 is only 5 samples shifted to the right. From each block bj, N2 bits are retrieved

using the extraction algorithm of Section 6.1. Those bits represent a potential codeword C̃j.

Also, for each block bj the log-likelihood ratio is computed with:

llrj =
2rjµ

σ2
, (6.3)

where rj = A′−B′ is a vector with soft-information from the block bj , σ2 is the noise variance

and µ is the mean of |A − B|.

Each llrj is decoded with only one iteration of SPA, thus, an updated codeword Ĉj and

its syndrome Bj are obtained. The metric Mj = dH(C̃j, Ĉj) + Bj is used to decide whether

a codeword C̃j is synchronized, where dH(C̃j , Ĉj) is the hamming distance between C̃j and

Ĉj. Therefore the codeword C̃j that minimize the metric Mj is selected as the synchronized

codeword C̃syn, and it is decoded using full-iterations of SPA.

6.3 Results and comparisons

The watermark was embedded in random segments of 30 seconds taken from three different

audio files: Egmont Op. 84 (7 min.), Billie Jean by M. Jackson (4 min.) and A change of

seasons by Dream Theater (21 min.). Those audio files are mono in WAVE format, sampled

at 44.1 kHz/16 bits. The LDPC code is a random half-rate code with code length 96.

The parameters that control the embedding phase were set to the same value used in [87].

L1 = L2 = L3 = 340, γ was initially set to be 0.05 and the audio quality was controlled with
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the psychoacoustic model in silence using a quality of 85%.

Table 6.1 shows the BER results for Lie’s method and for our algorithm after MP3 and low-

pass filtering. In general, Lie’s method is robust against several audio manipulations however

with strong attacks, e.g. MP3 at 64 kbps, the BER is not low enough. Our contribution to

Lie’s method produces more robust watermarks that do not need synchronization codes. The

improvement in robustness might be small but the payload is increased as well. In [87] is

not mentioned the length of the convolutional code N2, therefore is difficult to quantify the

payload benefit. However, in Fig. 6.2 is clear that our method has a benefit of 20 bits per

each block of embedded information.

The results of our method, see Table 6.1, were a combination of two attacks: MP3 or

low-pass filtering with clipping attack. The number of continuous clipped samples was chosen

randomly in each iteration from an uniform distribution between [1,LN2]. In Lie’s method,

we assumed that the system was in perfect synchrony and only attacks like compression or

low-pass filtering were implemented.

Table 6.1: BER results against MP3 compression and low-pass filtering.

Attacks
Lie’s method [87] Proposed method

(BER) (BER)
uncoded coded coded

MP3
160 kbps 0.0006 0.0000 0.0000
128 kbps 0.0104 0.0001 0.0000
64 kbps 0.0945 0.0259 0.0000

Low-pass
10 kHz 0.0000 0.0000 0.0000
4 kHz 0.0280 0.0007 0.0000

It is expected that certain audio segments have stronger watermarks because the water-

mark’s strength depends on the psychoacoustic model. Therefore, the watermark reliability

varies depending on the audio file. That explains why different BER can be obtained with

the same method but different audio files. In our comparison both methods, Lie’s and ours,

were tested with the same audio files.

Due to the good error correction capability of LDPC codes is not necessary to search

the watermark in every audio sample. Searching the watermark every 5 samples is enough

to decode the correct information, this explains the length of the overlap in Section 6.2.2.

Clearly, if the search is done every 5 samples instead of every sample, the complexity is

reduced. However, perfect alignment cannot be produced. In our opinion, perfect alignment

is not important if the embedded watermark is retrieved correctly.

LDPC codes increase its performance with larger code length. Therefore, if larger LDPC

codes were used the robustness would be increased. Small codes were used in this proposal be-

cause computational complexity restrictions. However, if smarter searches were implemented

95



Chapter 6 Self-synchronizable audio watermarking based on LDPC coding

then better LDPC codes could be used.

6.4 Conclusion

In this Chapter we proposed a modification to Lie’s audio watermark algorithm in time-

domain. The modification produces a more robust algorithm because LDPC codes are used

instead of convolutional codes. The payload is also increased because synchronization codes

are avoided but the synchrony is still kept, even after combination of attacks.

Our self-synchronous decoding algorithm is based on the good CP-characteristics of LDPC

codes. The algorithm is not capable to produce prefect alignment, however the watermark

is perfectly recovered. This misalignment is less than 10 audio samples, the same as in Lie’s

algorithm.

The synchronized codeword is searched in audio segments with size depending on the

code length. Therefore small LDPC codes were used in order to keep the computational

complexity low. However if the code length is increased our proposal becomes more robust.

As future work, we are planning to implement smart searches which allow us to use larger

codes with acceptable complexity.
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Concluding remarks

We have studied watermarking algorithms for audio files from the communications point

of view. The major results were two new algorithms: the first is an audio watermarking

algorithm which achieves the highest embedding capacity robust to MP3 compression at

64 kbps and the second is an algorithm to recovering synchronization with LDPC codes that

can be applied to general transmissions.

Quantization index modulation (QIM) algorithms were our main concern because they are

embedding techniques that can achieve very high payloads. At first, a general watermarking

scheme on wavelet domain was proposed and tested with different QIM-based techniques like

dither modulation (DM) and spread-transform dither modulation (ST).

ST showed better performance against Gaussian noise achieving a robustness of watermark-

to-noise ratio of -25 dB. However DM had better performance against common signal pro-

cessing like compression and low-pass filtering. Thus, in further watermark algorithms, the

watermark was embedded with DM in certain frequencies which were found to be robust to

MP3 compression.

The weakness of QIM-based algorithms is well-known but using a concatenation of low-

density parity-check (LDPC) codes and repetition codes the robustness was increased well

enough to endure highly lossy compressions. Our analysis included many kind of LDPC codes

from which a half-rate Margulis code had the best performance and yet its code length of

2640 is acceptable to watermarking purposes.

Decoding of LDPC codes means knowledge of the statistics of the channel noise. We

proposed an accurate fashion to compute the statics of the channel noise due to MP3 com-

pression. This idea allows us to develop two variations of the main watermarking algorithm:

blind and semi-blind decoding. With the former we implemented a basic idea using pilot

symbols to compute the channel noise, and the algorithm performs very similar, achieving

193.8 bps with BER = .08, to the best algorithm from the literature proposed by Bhat. The

latter achieves 8.2 bps better than Bhat’s algorithm with a BER < 10−5.
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The embedding capacity was over performed by defining erasures in likely noisy segments

of the audio. Thus, the LDPC decoder improved its performance. The final embedding

capacity achieved was of 229.7 bps which has 33.7 bps of benefit over Bhat’s proposal.

We proposed a new self-synchronous algorithm with LDPC codes which recovers the syn-

chronization without the aid of any extra-bits, assuming that the desynchronization was pro-

duced by a continuous deletion in the channel. Clipping attack produces desynchronization

in audio watermarking because it clips samples from the audio. The algorithm to recovering

the synchronization was thought with the clipping attack on mind. However the algorithm

was explained for general transmissions due to it can be applied to any coded transmission

with LDPC codes. The algorithm achieves synchronization with several codes but cyclic

codes. With a very small LDPC code, the performance its 3 dB away from synchronized

transmission; however the synchronization is achieved without any pilot symbols. The larger

the length of the code the closer our algorithm performs from synchronized transmission. For

example with a half-rate LDPC code of length 504, the performance of our algorithm is the

same than synchronized transmission for Eb/N0 = 4 dB.

The self-synchronized algorithm achieves synchronization with or without redundant code-

words always that the code has good cyclically permutable characteristics. We also intro-

duced an idea about how to bound the errors in the algorithm, this idea was illustrated by

the maximum likelihood decoding of a small code.

Finally we combine the synchronous algorithm with watermarking. The result is a water-

mark algorithm with higher robustness and payload. The algorithm was developed with an

idea proposed by Lie et ál. for time-domain watermarking. We modified the synchronization

process and the coded-watermark in Lie’s algorithm. Our algorithm uses LDPC codes to

encode the watermark and the synchronization codes in Lie’s algorithm were changed to our

self-synchronous algorithm. The experimental results show that our algorithm is capable to

recover synchronization after combination of attacks, e.g. MP3 compression and clipping

attack.

7.1 Reflections about future research

Digital audio watermarking was conceived as potential solution to protect the copyrights of

digital works. However due to copyright protection is a very demanding and coarse task there

are still many open problems to achieve a reliable system. However, watermarking is used in

many other applications nowadays.

In summary, the next topics might be considered as future work.

• A blind algorithm was introduced in Section 4.3.2. The algorithm computes the statis-

tics of the channel noise using a basic technique with pilot symbols. Improvements can
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be applied if a better channel characterization algorithm was used.

• In Section 4.4 we introduce a technique which defines erasures based on a correlation

between the noise and the characteristics of the audio file. The technique can be

improved searching a better correlation and also can be extended to other attacks like

additive noise, echo addition, etc.

• Related with the self-synchronizable algorithm of Chapter 5. Considering that cyclically

permutable (CP) codes have disadvantage of low-rate and that non-CP codes generates

mis-decoding in our algorithm, there is an interesting question about whether a CP-

code has better trade-offs of performance-rate than a non-CP code with good CP-

characteristics.

• We combine the self-synchronous algorithm with time-domain watermarking in Chap-

ter 6. However due to complexity restrictions we used small LDPC codes, length lower

than 100. Smart searches are necessary in order to exploit the error correction capabil-

ities of large LDPC codes.

• Our last proposal includes synchronization for watermark schemes on time. However,

synchronization with algorithms in frequency is still very computational costly.
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Raúl Mart́ınez-Noriega was born in Mexico City, Mexico, on September 1982. He received

the B.Sc. and M.Sc. degrees from the National Polytechnic Institute (IPN from the name

in Spanish - Instituto Politecnico Nacional) of Mexico in 2004 and 2007 respectively. He has

been with the Department of Information and Communications Engineering of The University

of Electro-Communications in Tokyo, Japan, towards the Doctoral degree.

He was exchange student in UEC from 2006 to 2007 where he received the best exchange

research student award.

His research interest are coding theory especially LDPC codes, information theoretic

security towards development of secure coding for the wire-tap channel, and watermarking

in audio and images.

112


