
The Pullback-Pushout Approach

to Algebraic Graph Transformation

?

Andrea Corradini1(), Dominque Duval2(), Rachid Echahed2(),
Frédéric Prost2() and Leila Ribeiro3()

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 CNRS and Université Grenoble Alpes, Grenoble, France
Dominique.Duval@imag.fr, Rachid.Echahed@imag.fr, Frederic.Prost@imag.fr

3 INF - Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
leila@inf.ufrgs.br

Abstract. Some recent algebraic approaches to graph transformation
include a pullback construction involving the match, that allows one to
specify the cloning of items of the host graph. We pursue further this
trend by proposing the Pullback-Pushout (pb-po) Approach, where we
combine smoothly the classical modifications to a host graph specified
by a rule (a span of graph morphisms) with the cloning of structures
specified by another rule. The approach is shown to be a conservative
extension of agree (and thus of the sqpo approach), and we show that
it can be extended with standard techniques to attributed graphs. We
discuss conditions to ensure a form of locality of transformations, and
conditions to ensure that the attribution of transformed graphs is total.

1 Introduction

Algebraic graph transformations have been dominated by two main approaches,
namely the Double Pushout (dpo) [9] and the Single Pushout (spo) [14]. These
two approaches o↵er a very simple and abstract definition of a large class of
graph transformation systems [5, 8]. However, they are not suited for modeling
transformations where certain items of the host graph should be copied (cloned),
possibly together with the connections to the surrounding context. This feature is
instead naturally available in approaches to graph transformation based on node
replacement, like Node-Label-Controlled (nlc) grammars [10], and is needed in
several application domains. The nlc approach is typically presented in set-
theoretical terms, but a categorical formulation was proposed in [1]. The key
points there are that a rule is represented as a morphism from the right-hand
side (rhs) to the left-hand side (lhs) (both enriched to represent abstractly the
possible embedding context), and a match is a morphism from the host graph to

? This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-
LABX-0025-01) funded by the French program Investissement d’avenir and by the
Brazilian agency CNPq.

Andrea Corradini
This final publication is avaliable at Springer via https://doi.org/10.1007/978-3-319-61470-0_1

the lhs. Then rewriting is modeled by a pullback: the cloning of edges due to node
replacement is obtained by the multiplicative e↵ect of the limit construction.

Independently, some approaches were proposed to enrich dpo with cloning, in-
cluding Adaptive Star Grammars [6], Sesqui-Pushout (sqpo) [4] and agree [3].
Even if the presentations di↵er, all are based on the idea of introducing a limit
construction in the first phase of rewriting, to model cloning. Coherently with the
dpo, in these approaches a match is a morphism from the lhs of the rule to the
host graph but, at least for sqpo and agree, the match determines implicitly a
morphism from the host graph to an enriched version of the lhs, which is pulled
back along a suitable morphism to model deletion and cloning of items. Other
approaches to structure transformations where the match goes from the host
graph to the rule include [19] for refactoring object-oriented systems, and [20]
for ontologies: in both cases some form of cloning can be modeled easily.

The analysis of these approaches led us to define (yet) an(other) algebraic ap-
proach to graph transformation, called pb-po, that we introduce in this paper.
The pb-po approach conservatively extends agree [3], and thus sqpo [4] with
injective matches, by streamlining the definition of transformation and making
explicit the fact that when cloning is a concern, it is natural to include in the
transformation a pullback construction based on (part of) the match, that has to
go from the host graph to (part of) the lhs of the rule. A rule in pb-po is made
of two spans, the top and the bottom ones, forming two commutative squares. A
match consists of a pair of morphisms, the instantiation from the lhs of the top
span to the host graph (like a standard match in dpo and similar approaches),
and the typing from the host graph to the lhs of the bottom span, that is used to
clone items with the first phase of a transformation, which is a pullback. As the
name of the approach suggests, the second phase is a standard pushout which
glues the pullback object with the rhs of the top span. Thus a pb-po transfor-
mation can be seen as a combination of a standard transformation of structures,
modeled by the top span, with a sort of retyping modeled by the bottom span.

Like other categorical approaches supporting cloning (e.g. [1, 3]) also pb-po may
specify transformations that are not local, in the sense that they a↵ect part of
the host graph that is not in the image of the instantiation. After showing in
which sense the new approach extends agree, we propose a formal notion of
locality for pb-po rules and a su�cient condition to ensure it.

Next we consider the enrichment of the pb-po with attributes, following the ideas
developed in [7] for the sqpo approach. A key feature of this approach is to allow
attributes of items of the host graph to be changed through the application of a
rule, a feature that is possible thanks to the use of partially attributed structures.
As a consequence, in general the result of transforming a completely attributed
graph via a pb-po rule could be a partially attributed graph. We present some
su�cient syntactic conditions over rules in order to ensure that the result of a
transformation is totally attributed.

The paper is organized as follows: In Section 2, we define pb-po rewriting and in
Section 3, we show its relation with the agree and sqpo approaches. Then, we
discuss issues regarding the locality of pb-po rewriting in Section 4. In Section 5,

2

we show how the pb-po approach extends to deal with attributed structures.
Finally, we conclude in Section 6.

2 The pb-po transformation of structures

In this section we introduce the pb-po approach to structure transformation.
The main di↵erences with respect to other algebraic approaches is the shape of
a rule and, as a consequence, the definition of a match. To make the presentation
lighter, we start assuming that all objects and diagrams belong to a category
of “structures” G with “enough” pullbacks and pushouts so that the required
constructions exist. We will introduce any additional requirement on G when
needed. Typical examples of categories of interest are that of graphs, of hyper-
graphs, or of typed graphs (i.e., the slice category Graph # T for a given type
graph T). Such categories have all limits and colimits.

Definition 1 (Rule, Match and Rewrite Step). A pb-po rule ⇢ is a com-

mutative diagram as follows:

L

=tL
✏✏

K

=

loo r //

tK
✏✏

R

tR
✏✏

L0 K 0
l0

oo

r0
// R0

(1)

We call L
l K

r! R the top span of ⇢ and L0 l0 K 0 r0! R0
its bottom span.

The three vertical arrows are called the left-hand (lhs) side, the interface and the

right-hand (rhs) side of ⇢. We say that ⇢ is in canonical form if the left square

is a pullback and the right square is a pushout.

A (pb-po) match of ⇢ in an object G is a factorization of

its left-hand side through G, i.e. a pair (m,m0) such that

m0 �m = tL, as shown on the right. Arrow m : L ! G
is called the instantiation (part) and arrow m0 : G! L0

the typing (part) of the match.

L

m
✏✏

tL =

G

m0

✏✏

L0

A pb-po rewrite step from G to H via rule ⇢, denoted G)⇢ H, is defined

by the following diagram, where square (a) is a pullback, arrow n : K ! D
(making square (a0) commuting) is uniquely determined by the universal property

of pullbacks, square (b) is a pushout, and arrow p0 : H ! R makes square (b0)
commuting and is uniquely determined by the properties of pushouts.

L

= (a0)m

✏✏

tL =

⇠⇠

K

PO (b)

loo r //

n

✏✏

tK =

⇠⇠

R

p

✏✏

tR =

⇠⇠

G

PB (a)m0

✏✏

Dgoo h //

n0

✏✏

H

p0

✏✏

L0 K 0
l0

oo

r0
// R0

= (b0)

(2)

3

Note that if rule ⇢ is in canonical form and it is applied to a match (m,m0), in
the resulting Diagram (2) we have that (a0) is a pullback and (b0) is a pushout
by obvious properties of these universal constructions.
It is worth observing that object R0 of a rule is not involved directly in a rewrite
step, but it determines a default typing for the result of rewriting. Thus a pb-po

rewrite step maps a pb-po match (m,m0) to another pb-po match (p, p0).

Example 2. This example is related to the copy of some “local” web pages,
as discussed in [3]. Nodes represent web pages, and edges represent hyperlinks
among them. Then it is reasonable to expect that creating a copy of a set of
local pages will only copy the hyperlinks contained in such pages, and not those
in remote pages pointing to them. This is modeled by the following pb-po rule ⇢
in the category of graphs, where the vertical morphisms map r, r0, n respectively
to l, l0, n . Note that in order to avoid confusion between morphism names and
graph node names, the latter will be underlined in the rest of the paper.

r r r

0 ! r r

0 //
n

#
l

##

✏✏
g

$$

OO
 l

##

✏✏

l

0%%

}}
g

$$

OO
! l

##

✏✏

l

0%%

}}

//
n

g

$$

OO

A match L
m! G

m0
! L0 classifies the nodes of G as either local (l) or global (g)

thanks to the typing m0 : G ! L0 and it distinguishes one root node (r) of G
thanks to the instantiation m : L! G. In addition, r is local since m0 �m = tL.
The local subgraph of G is defined as the subgraph of G generated by the local
nodes. By applying the rule ⇢ to the match (m,m0) we get a graph H which
contains G together with a copy of its local subgraph with all its outgoing edges,
and with an additional edge from the copy of the root to a new node n. Here is
an instance of such a rewrite step, where the root of G is r1, its local nodes are
r1, l1, l2 and its global nodes are g1, g2:

r r r

0 ! r r

0 //
n

#
r1

✏✏ ""

⌦⌦

l1
//
l2

✏✏
g1

OO <<

//
g2oo

 r1

✏✏ !!

⌦⌦

r

0
1

✏✏ !!

~~

l1
//
l2

✏✏

l

0
1

//
l

0
2

vv
g1

OO <<

//
g2oo

! r1

✏✏ !!

⌦⌦

r

0
1

✏✏ !!

~~

//
n1

l1
//
l2

✏✏

l

0
1

//
l

0
2

vv
g1

OO <<

//
g2oo

#
l

##

✏✏
g

$$

OO
 l

##

✏✏

l

0%%

ww
g

$$

OO
! l

##

✏✏

l

0%%

ww

//
n

g

$$

OO

A natural question is whether rules in canonical forms are as expressive as general
rules. The following result answers positively to this question.

4

Proposition 3 (canonical forms). For each pb-po rule ⇢ there exists a rule

⇢1 in canonical form which is equivalent, that is

– ⇢ and ⇢1 have the same lhs tL : L! L0

– for each match (m,m0) with L
m! G

m0
! L0 = tL, G)⇢ H if and only if

G)⇢1 H.

Proof. The following diagram shows how one can build from rule ⇢ (whose com-
ponents are named as in Diagram (1)) a corresponding rule ⇢1 (where corre-
sponding components have subscript 1).

L

=idL
✏✏

tL

=

��

K

PO

loo r //

n
✏✏

tK =

⇢⇢

R

p
✏✏

tR =

⌫⌫

L1 = L

PBtL1=tL
✏✏

K1

PO

l1oo r1 //

tK1
✏✏

R1

tR1
✏✏

L0
1 = L0 K 0

1 = K 0
l01=l0

oo r01
//

r0
**

R0
1

p00

✏✏

R0

=

First rule ⇢ is applied using the pb-po approach to match (idL, tL), generating
the pullback object K1 and the pushout object R1. Next we build the pushout of
r1 and tK1 , obtaining object R0

1. It is obvious by construction that rule ⇢1, made

of top span L1
l1 K1

r1! R1 and of bottom span L0
1

l01 K 0
1

r01! R0
1, is canonical,

and also that the lhs of ⇢ and ⇢1 coincide.
Now let G be an object and (m,m0) be a pb-po match of ⇢ (and ⇢1) in G, and
consider the following diagram. We argue that G)⇢ H if and only if G)⇢1 H.

=

K

2� PO
l

ss

r //

n
✏✏

tK =

⇠⇠

R

p
✏✏

tR =

⌫⌫

L1 = L

m
✏✏

tL =

⇠⇠

K1

3�
l1oo r1 //

n1

✏✏

R1

p1

✏✏

G

1�m0
✏✏

D1g1oo h1
//

n0
1
✏✏

H

p0
1
✏✏

L0
1 = L0 K 0

1 = K 0
l01=l0

oo r01
//

r0
**

R0
1

p00

✏✏

=

R0

In fact, G)⇢ H if and only if 1� is a pullback and 2� + 3� is a pushout,
while G)⇢1 H if and only if 1� is a pullback and 3� is a pushout. Thus we can
conclude by observing that since 2� is a pushout by construction, 3� is a pushout
if and only if 2�+ 3� is a pushout, by well known properties of composition and
decomposition of pushouts. ut

5

Example 4. It is easy to check that the following three pb-po rules are equivalent
and act as identities on any graph with at least one node. The last one is in
canonical form.

n !
#

n g n g ! n g

n n

n

0
! n

n

0

#
n g n=n

0
g ! n=n

0
g

n n ! n

#
n g n g ! n g

3 Relating pb-po with agree and sqpo rewriting

In this section, we first show that pb-po extends both agree and sqpo with
monic matches (in categories where agree rewriting is defined), and then dis-
cuss informally how the greater expressive power can be exploited in designing
transformation rules.
An agree rule ↵ [3] is a triple of arrows with the same source, as in the left
part of (3), and its application to an agree match m : L ⇢ G is shown in the
right part of (3), defining a rewrite step G)agree

↵ H as explained below.

L K
loo r //

✏✏

t
✏✏

R

TK

L
✏✏

m

✏✏

⌃⌃

⌘L =

⇠⇠

K

PO (b)

loo r //
✏✏

n

✏✏

⇠⇠

t=

⌃⌃

R

p

✏✏

G

PB (a)m
✏✏

D
g

oo h //

n0

✏✏

H

T (L) TK
l0

oo

(3)

Thus an agree rule is made of the usual top span enriched with a mono t : K ⇢
TK having a role similar to arrow tK : K ! K 0 in a pb-po rule. The definition
of rewriting requires the existence in the underlying category of a partial map

classifier [2], i.e. for each object Y , there exists an arrow ⌘Y : Y ⇢ T (Y) such

that for each pair of arrows Z
i� X

f! Y (a partial map from Z to Y) there is
a unique arrow '(i, f) such that the left diagram of (4) is a pullback.

X
✏✏

i
✏✏

f
// Y
✏✏

⌘Y

✏✏

Z
'(i,f)

// T (Y)

L
✏✏

⌘L

✏✏

K
loo

✏✏

t
✏✏

T (L) TK
l0='(t,l)
oo

L
✏✏

m
✏✏

idL // L
✏✏

⌘L

✏✏

G
m='(m,idL)

// T (L)

(4)

The application of the agree rule ↵ to a match m : L ! G is obtained by
first taking the pullback (a) of m and l0, and then the pushout of the resulting
mediating arrow n and of r. Both m and l0 are uniquely determined by T (L) as
shown in the mid and right diagrams of (4). By comparing Diagrams (2) and (3)
we easily obtain the following result.

6

Proposition 5 (relating agree and pb-po). Let ↵ be an agree rule in a

category with a partial map classifier. Then there is a pb-po rule ⇢↵ such that

for each mono m : L ⇢ G we have G)agree

↵ H if and only if G)⇢↵ H using

match (m,m) with m : G! T (L).

Proof. Let ↵ = (L
l K

r! R,K
t⇢ TK) be an agree rule, and TK

r0! R0 tR R

be the pushout of TK
t K

r! R. Let ⇢↵ be the pb-po rule having L
l K

r! R as

top span, T (L)
l0 TK

r0! R0 as bottom span, and ⌘L, t and tR as the three vertical
arrows relating them. Then the statement immediately follows by comparing
Diagrams (2) and (3) defining G)⇢↵ H and G)agree

↵ H, respectively. ut

We easily obtain a similar result for sqpo rewriting with monic matches. An

sqpo rule has the shape � = (L
l K

r! R) and its application to a match
L ! G is defined in [4] via a double-square diagram where the right square
is a pushout (as in dpo), but the left square is a final pullback complement.
In [3] it was shown that for a monic match L ⇢ G, G)sqpo

� H if and only if
G)agree

↵�
H, where ↵� = (�, ⌘K : K ⇢ T (K)) is obtained by enriching � with

the partial map classifier applied to K. The following result is then obvious.

Corollary 6 (relating sqpo and pb-po). Let � be a sqpo rule in a category

with a partial map classifier. Then there is a pb-po rule ⇢� such that for each

mono m : L ⇢ G we have G)sqpo

� H if and only if G)⇢� H using match

(m,m) with m : G! T (L).

There is therefore a progressively increasing expressive power moving from dpo

to sqpo to agree to pb-po, at least for injective matches. A detailed analysis
of the expressive power of pb-po is a topic of future work, but we make a few
considerations with respect to the kind of cloning typical of approaches based on
node replacement. Standard dpo with left injective rules cannot model cloning
of nodes at all. Instead sqpo can, with a non-injective lhs l : K ! L. Referring
to the right diagram in (3), if a node n 2 L is cloned (i.e., it has more than
one inverse image in K via l), then its image in G will be cloned as well in D.
Furthermore, for any embedding edge e, i.e. an edge incident to m(n) in G but
not in m(L), there will be one copy of e in D for each counter-image of m(n).
With agree the same kind of node cloning can be specified, but thanks to
the additional arrow t : K ⇢ TK in the rule, one can specify explicitly which
embedding edges have to be copied for each cloned node of G. Moving to pb-po,
note that arrows tL : L ! L0 and l0 : K 0 ! L0 are explicitly provided by a
pb-po rule, while the corresponding arrows ⌘L : L ⇢ T (L) and l0 : TK ! T (L)
in (3) are uniquely determined by l : K ! L and t : K ! TK in agree. With
suitable definitions of object L0 and arrow l0 : K 0 ! L0, and using the m0 part
of a match, in pb-po one can

– classify in a fine way the context items of the host graph G, i.e. those not in
the image of m;

– for each group of such items, specify if it is deleted, preserved or copied;
– specify additional application conditions.

7

Example 7. Suppose that in an information system there are two security levels:
>, for private information, and ? for public information. We can model the
transformation of a graph containing both private and public information nodes
so that in the resulting graph there is no access (arrow) from public to private
ones. This can be done with a rule having the empty graph for L,K and R, the
following inclusion K 0 ✓ L0 for l0, and the identity for r0:

>
$$&&
?bb

xx l0oo >
$$&&
?
xx

Given a morphism m0 : G! L0, mapping all private information nodes to > and
public nodes to ?, the application of this rule to the match (; ! G,m0) would
erase all arrows from public nodes to private nodes.

4 Constraining the e↵ects of pb-po rewriting

As just discussed (and evident from Example 7), a pb-po rewrite step can a↵ect
any item of the host graph, that is, changes are not limited to the image of L and
its incident edges (as in other approaches like dpo, spo and sqpo). This holds for
agree as well, as discussed in [3] where a notion of local rule was introduced.
Informally, let us denote with A \ B the largest subobject of A disjoint from
B. Then an agree rule is local if for all matches m : L ! G we have that
G \m(L) is preserved after the transformation, i.e. referring to Diagram (3), if
D \ n(K) ! G \m(L) is an isomorphism. Also, in [3] a su�cient condition for
an agree rule to be local was identified.
In the case of pb-po, the greater flexibility in the definition of rules and of
matches on the one hand allows us to introduce a more general notion of locality,
called � -preservation, parametrized by a subobject � ⇢ L0 of the lhs of the
bottom span. On the other hand, however, whether a rewrite step is � -preserving
or not depends not only on the rule but also on the match. After introducing
the notion of � -preservation and characterizing a su�cient condition to ensure
it, we relate it to locality of agree transformations.

Definition 8 (� -preserving rewrite steps). Let ⇢ be a pb-po rule as in

Diagram (1), inc : � ⇢ L0
be a mono, and (m,m0) be a match of ⇢ in G. Let

G� be defined by the pullback on the left of Diagram (5).

Then we say that the rewrite step G)⇢ H is � -preserving if, referring to

Diagram (2), the two squares on the right of Diagram (5) are pullbacks.

G�

✏✏

// i // G

m0

✏✏

� // inc // L0

G�
✏✏

i
✏✏

G�
ooidoo // id //
✏✏

j
✏✏

G�
✏✏

h�j
✏✏

G Dgoo h // H

(5)

8

Intuitively, G� represents the subobject of G typed by � . The right diagram
of (5) says that subobject G� remains unchanged in D (left square) and in the
resulting structure H (right square). Note that in Diagram (5) it follows from
the three squares being pullbacks that i, j and also h � j are mono.
The next result presents su�cient conditions for a rewrite step to be � -preserving,
under suitable assumptions on the underlying category and on the rule.

Proposition 9 (conditions for � -preservation). Let us assume that the un-

derlying category of structures G is adhesive [13] and has a strict initial object

0 (i.e., each arrow with target 0 must have 0 as source). Let ⇢ be a pb-po rule

in canonical form or right-linear, i.e., where r is a mono, and let (m,m0) be a

match of ⇢ in G with m : L ⇢ G mono. Then we have that if the two squares of

Diagram (6) are pullbacks, then G)⇢ H is a � -preserving rewrite step.

0

✏✏

// L

m

✏✏

G�
// i // G

�
✏✏

✏✏

// id // �
✏✏

inc

✏✏

K 0 l0 // L0

(6)

Informally, the left pullback ensures that the subobject of G typed over � is
disjoint from the image of L in G, thus it is not a↵ected by the top rule; the
right pullback guarantees that the subobject � of L0 (and thus the items of G
typed on it) is preserved identically when pulled back along l0, thus it is not
a↵ected by the bottom rule. It is still open if the previous result also holds for
rules that are neither in canonical form nor right linear. To conclude this section,
we relate the pb-po notion of � -preservation with locality of agree rules.

Proposition 10 (� -preservation and agree locality). Let ↵ be an agree

rule as in Diagram (3) and ⇢↵ be the associated pb-po rule as in Proposition 5.

Let �↵ be the subobject T (0) of T (L). If ↵ is local in the sense of [3], then for

each agree match m : L ⇢ G the rewrite step G)⇢↵ H is �↵-preserving.

5 The pb-po transformation of attributed structures

For attributed structures we follow the same approach as in [7]. Given a category
G called the category of structures, with pullbacks and pushouts, a category A

called the category of attributes, and two functors S : G ! Set and T : A !
Set, the category of attributed structures AttG and the category of partially
attributed structures PAttG are defined as in [7]. The issue is that there are not
enough pushouts in the category PAttG. Let Pfn denote the category of sets
with partial maps. A partial map f from X to Y is denoted f : X * Y and its
domain of definition is denoted D(f). The partial order between partial maps
is defined as usual: let f, g : X * Y , then f g means that D(f) ✓ D(g) and
f(x) = g(x) for all x 2 D(f). Then Pfn with this partial order is a 2-category.
By composing S and T with the inclusion of Set in Pfn we get two functors
Sp : G ! Pfn and Tp : A ! Pfn. Let |...| denote any of the four functors
S, T, Sp, Tp (sometimes, |...| is omitted).

9

Definition 11 (attributed structures). The category of attributed struc-
tures AttG (with respect to the functors S and T) is the comma category

(S # T). This means that an attributed structure is a triple

bG = (G,A,↵)
made of an object G in G, an object A in A and a map ↵ : |G| ! |A|; and a

morphism of attributed structures bg : bG1 ! bG2, where
bG1 = (G1, A1,↵1) and

bG2 = (G2, A2,↵2), is a pair bg = (g, a) made of a morphism g : G1 ! G2 in G

and a morphism a : A1 ! A2 in A such that ↵2 � |g| = |a| � ↵1. The category of

partially attributed structures PAttG is defined similarly: a partially attributed
structure is a triple

bG = (G,A,↵) made of an object G in G, an object A in A

and a partial map ↵ : |G| * |A|; and a morphism of partially attributed struc-
tures bg : bG1 ! bG2, where

bG1 = (G1, A1,↵1) and

bG2 = (G2, A2,↵2), is a pair

bg = (g, a) made of a morphism g : G1 ! G2 in G and a morphism a : A1 ! A2

in A such that ↵2 � |g| � |a| � ↵1. A morphism of partially attributed structures

(g, a) is called strict when ↵2 � |g| = |a| � ↵1.

bG1

bg
✏✏

=

G1

g

✏✏

|G1|

|g|
✏✏

↵1 / |A1|

|a|
✏✏

A

a
✏✏

bG2 G2 |G2|
↵2 / |A2|

�

A2

Given an attributed structure bG = (G,A,↵), we write n : x when n has attribute
x (i.e. ↵(n) = x) and n : ? when n is not attributed (i.e. n 62 D(↵)), |G|? denotes
the set of elements of |G| which are not attributed. An attributed structure
bG = (G,A,↵) is said attributed over A, an attributed morphism bg = (g, a) is
said attributed over a, and when a = idA then bg can be said attributed over A.

Remark 12. A morphism of partially attributed structures bg = (g, a) : bG1 ! bG2

is such that bg(n1 : x1) = g(n1) : a(x1) and bg(n1 : ?) = g(n1) : ? or g(n1) : x2

for some x2. When bg is strict, the last case is forbidden, so that the restriction
of bg determines a map |g|? : |G1|? ! |G2|?.

Definition 13. Let bg = (g, a) : bG1 ! bG2 be a morphism of partially attributed

structures. Then bg (or g) is injective if |g| : |G1|! |G2| is injective. Assume that

bg is strict, then bg is surjective on non-attributed elements if |g|? : |G1|? ! |G2|?
is surjective. Besides, bg preserves attributes if bG1 and

bG2 are attributed over the

same A and a = idA.

As in [7], we assume that all horizontal arrows in the rules preserve attributes,
and we will see that this implies that all horizontal arrows in the rewrite steps
also preserve attributes. This implies that there are objects A, A0 and A0 and
arrows a : A! A0 and a0 : A0 ! A0 inA such that, in each rewrite step diagram,
the vertical arrows in the top squares are over a and the vertical arrows in the
bottom squares are over a0. Let tA = a0 � a : A ! A0. Typically, elements of A
are terms with variables, A0 describes types (for example, it could be the final
algebra in which carrier sets are singletons) and the morphism tA gives a type

10

to each variable, and the morphism a denotes an instantiation of the variables
(and terms) in A which respects their types:

A
a
✏✏

tA

⇢⇢

A0

a0
✏✏

A0

example: x_
a✏✏

2_
a0
✏✏

nat

The definitions of pb-po attributed rewrite rules, matches and steps must ensure
that the result of a step is indeed a well-formed attributed structure. Therefore
we have to impose some restrictions on rules and matches with respect to re-
attribution (i.e. change of attribute value): (i) only items that are explicitly
preserved by the rule can be re-attributed; (ii) items being re-attributed can not
be identified with anything neither by the match nor by tL; (iii) the bottom
span of the rule must agree with the upper span with respect to re-attribution
(for example, it is not possible that the attribute of the bottom span of an item
– its type – is changed and the value of the item in the upper span remains
unchanged); and (iv) the left- and right-hand sides of the spans of a rule must
be fully-attributed. Some of these conditions are defined for the rule and some
for the match. Examples 17 and 18 motivate these conditions and illustrate
re-attribution issue.

Definition 14 (pb-po attributed rewrite rules). Given a morphism tA :
A! A0

of A, a pb-po attributed rewrite rule over tA is a pb-po rewrite rule ⇢
in the category PAttG of partially attributed structures, i.e., a diagram:

bL
=btL✏✏

bK
=

bloo br //

btK✏✏

bR
btR✏✏

bL0 bK 0
bl0

oo

br0
// bR0

with the following restrictions: the top line is attributed over A, the bottom line is

attributed over A0
,

bl, bl0, br, and br0 are attribute preserving, the vertical morphisms

are attributed over tA, the objects

bL, bR,

bL0
and

bR0
are totally attributed and the

morphism

btK : bK ! bK 0
is strict and injective on non-attributed items.

The following condition ensures that whenever an item will be re-attributed, it
is (the image of) an item that is preserved by the rule.

Definition 15 (re-attribution condition). Given a pb-po attributed rewrite

rule ⇢ (with notations as above), a totally attributed structure

bG and a pb-po

match (bm, bm0) of ⇢ in

bG, the match satisfies the re-attribution condition with

respect to ⇢ if:

for each nG in |G|, if there is some nK0 in |K 0|? with m0(nG) = l0(nK0) then
there is an nK in |K| with nG = m(l(nK)) and nK0 = tK(nK).

11

Definition 16 (pb-po attributed rewrite system). Given a pb-po attributed

rewrite rule ⇢ and a totally attributed structure

bG, a pb-po attributed match
of ⇢ in

bG is a pb-po match of ⇢ in

bG in the category PAttG, i.e., a pair

(bm, bm0) = ((m, a), (m0, a0)) such that bm� bm0 = btL, with the following restrictions:

bm is injective and (bm, bm0) satisfies the re-attribution condition with respect to

⇢. The pb-po attributed rewrite step applying a pb-po attributed rewrite rule

⇢ to a pb-po attributed match (bm, bm0) is the pb-po rewrite step applying ⇢ to

(bm, bm0) in the category PAttG.

Example 17. All examples are diagrams having the shape of Diagram (2). We
start with two basic examples of re-attribution.

(1) Identity: n is preserved, with its attribute.

(2) Identity of structure only: n is preserved, but its type and attribute are
changed.

n : x n : x ! n : x

#
n : 6 n : 6 ! n : 6

#
n : nat n : nat ! n : nat

(1)

n : x n : ? ! n : char of int(suc(x))

#
n : 68 n : ? ! n : “E”

#
n : nat n : ? ! n : char

(2)

Example 18. We now give three examples to motivate the restrictions about
rules and matches made in Definitions 14 and 16.

(1) Here btK is not strict (and thus the rule is not well-formed). The pushout of
(br, bn) does not exist, so that the rewrite step cannot be constructed.

(2) Here btK is not injective on non-attributed items: again, the rule is not well-
formed, and the pushout of (br, bn) does not exist.

(3) Here the issue is that (bm, bm0) does not satisfy the re-attribution condition,
since n0 (in G) should be re-attributed but it is not an item preserved by the
rule (not an image of an element in K). The pushout of (br, bn) exists, but the
resulting H is not totally attributed.

n : ? n : ? !br n : 2

#bn
n : 6 n : 6 ! n :?

#
n : nat n : nat ! n : nat

(1)

n = n

0 : x n : ?
n

0 : ?
! n : 2

n

0 : 3

#
n = n

0 : 6 n = n

0 : ? ! n = n

0 :?

#
n = n

0 : nat n = n

0 : ? ! n = n

0 : nat

(2)

12

n : x n : ? ! n : suc(x)

#
n : 6

n

0 : 8

 n : ?
n

0 : ?
! n : 7

n

0 : ?
#

n : nat

n

0 : nat

 n : ?
n

0 : ?
! n : nat

n

0 : nat

(3)

We will use “pb-po-a” for “pb-po attributed”. In the rest of this section we show
that the restrictions imposed on attributed rules and matches in Definitions 14,
15 and 16 are su�cient to guarantee that a rewriting step can be completed, and
that the resulting structure is totally attributed. This result is preceded by two
technical lemmas concerning pullbacks and pushouts in PAttG, respectively.

Lemma 19 (on pullbacks in PAttG). Let

bG bm0
! bL0 bl0 bK 0

be a cospan in

PAttG, with

bG and

bL0
totally attributed and

bl0 attribute-preserving. Let us de-

note

bG = (G,A0,↵G), bL0 = (L0, A0,↵L0), bK 0 = (K 0, A0,↵K0), bm0 = (m0, a0) and

bl0 = (l0, idA0), as in the diagram below. Let G
g D

n0
! K 0

be the pullback of

G
m!

0
L0 l0 K 0

in G. Let ↵D : |D| * |A0| be the partial map such that, for

each nD 2 |D|: if |n0|(nD) : ? then nD : ?, otherwise nD : x0 where x0 is

the attribute of |g|(nD). Let bD = (D,A0,↵D), bg = (g, idA0) and bn0 = (n0, a0).
Then bg : bD ! bG and bn0 : bD ! bK 0

are morphisms in PAttG, bn0
is strict, and

bG bg bD bn0
! bK 0

is the pullback of

bG bm0
! bL0 bl0 bK 0

in PAttG.

(G,A0,↵G)

PB(m0,a0)

✏✏

(D,A0,↵D)
(g,idA0)oo

(n0,a0)

✏✏

(L0, A0,↵L) (K 0, A0,↵K)
(l0,idA0)

oo

Lemma 20 (on pushouts in PAttG). Assume that the functor S : G! Set

preserves pushouts. Let

bD bn bK br! bR be a span in PAttG, with

bR totally

attributed, br attribute-preserving and bn injective, strict, and surjective on non-

attributed elements. Let us denote

bD = (D,A0,↵D), bK = (K,A,↵K), bR =

(R,A,↵R), br = (r, idA) and bn = (n, a), as in the diagram below. Let D
h! H

p
R be the pushout of D

n K
r! R in G. Then there is a unique total map

↵H : |H|! |A0| such that, for each nH 2 |H|: if |p|(nR) = nH for some nR : x
in |R| then nH : a(x), and if |h|(nD) = nH for some nD : x0 in |D| then nH : x0.

Let

bH = (H,A0,↵H), bh = (h, idA0) and bp = (p, a). Then bH is totally attributed,

bh : bD ! bH and bp : bR ! bH are morphisms in PAttG, and

bD
bh! bH bp bR is the

pushout of

bD bn bK br! bR in PAttG.

13

(K,A,↵K)

PO

(r,idA)
//

(n,a)

✏✏

(R,A,↵R)

(p,a)

✏✏

(D,A0,↵D)
(h,idA0)

// (H,A0,↵H)

Theorem 21 (rewriting totally attributed structures). Assume that the

functor S : AttG ! Set preserves pullbacks and pushouts. Then for every pb-

po-a rule and every pb-po-a match of this rule, the pb-po-a rewrite step exists,

and in addition the resulting

bH is totally attributed.

Example 22. Let us recall that the rule of Example 2 specifies that the local web
pages of the host graph G (i.e., those mapped by m0 to node l of L0) are cloned
with all outgoing edges, while edges from the global pages to cloned ones are not
copied. Additionally, a selected local node, “root”, is linked to a new page.
The following rule intends to enrich the one of Example 2 by specifying that the
copy of the local root page should get as attribute the successor of the attribute
of the original page (s : nat ! nat is the successor function), and the new page
should get in turn its successor.

r : x r : x r

0 : ? ! r : x r

0 : s(x) //
n : s(s(x))

#
l : nat
++

✏✏

g : nat
((

OO
 l : nat

++

✏✏

l

0 : ?
00

yy
g : nat
((

OO
! l : nat

++

✏✏

l

0 : nat
<<

xx

//
n : nat

g : nat
((

OO

However, if we consider the attributed graph bG
on the right and the same match as in Example 2
(mapping r1, l1 and l2 to l and g

1
and g

2
to g), this

match does not satisfy the re-attribution condition,
because only r1 has a pre-image in K.

b
G =

r1 : 0

✏✏ %%

l1 : 2 //
l2 : 4

✏✏

g

1
: 6

OO 99

//
g

2
: 8oo

The next rule is instead the “right” extension of the rule in Example 2:

r : x r : x r

0 : ? ! r : x r

0 : s(x) //
n : s(s(x))

#
r : nat

✏✏

��

l : nat
++

✏✏

g : nat
((

OO

 r : nat

✏✏

��

r

0 : ?

✏✏

qq

l : nat
++

✏✏

l

0 : nat
<<

xx
g : nat
((

OO

! r : nat

✏✏

r

0 : nat

✏✏

qq

l : nat
++

✏✏

l

0 : nat
<<

ww
g : nat
((

OO

14

The obvious match satisfies the re-attribution condition, and the resulting G
g

D
h! H is:

r1 : 0

✏✏ ""

⌃⌃

l1 : 2 //
l2 : 4

✏✏

g

1
: 6

OO ==

//
g

2
: 8oo

 r1 : 0

✏✏ !!

⌃⌃

r

0
1 :?

✏✏ !!

��

l1 : 2 //
l2 : 4

✏✏

l

0
1 : 2 //

l

0
2 : 4

vv
g

1
: 6

OO ==

//
g

2
: 8oo

! r1 : 0

✏✏ !!

⌃⌃

r

0
1 : 1

✏✏ !!

��

//
n1 : 2

l1 : 2 //
l2 : 4

✏✏

l

0
1 : 2 //

l

0
2 : 4

vv
g

1
: 6

OO ==

//
g

2
: 8oo

6 Conclusions and Related Works

We presented a new categorical approach to graph transformation, the pb-po

approach, that combines the standard transformation of structures of the dpo

approach with a retyping of the host graph, that allows to model both deletion
and cloning of items. pb-po is shown to be a conservative extension of the
agree approach, and thus of the sqpo approach with monic matches. The more
general framework allows to define a notion of locality parametric with respect
to a subgraph of the type graph, and we presented su�cient conditions for a
match and a rule to ensure such locality. Finally we extended the approach to
attributed structures, presenting su�cient conditions to ensure that the result
of transforming a totally attributed structure is still totally attributed.
We discussed in Section 3 the relationships with sqpo and agree, of which the
pb-po approach can be considered as an evolution. Adaptive Star Grammars [6]
were also proposed to model cloning. They include star replacement rules, which
can be seen as a restricted kind of dpo rules, and adaptive star rules, which
can be applied to arbitrarily large matches via an adaptation mechanism that
creates the needed number of copies of items of the lhs. It should be possible to
describe this adaptation mechanism with a limit construction, from which one
could explore the feasibility of encoding this approach in pb-po.
Rewriting in the category of spans [15] has been proposed as a framework that
generalizes dpo, spo and sqpo rewriting, thanks to a powerful gluing construc-
tion able to model cloning. Transformations based on both pushouts and pull-
backs are used in the quite di↵erent framework of collagories [12] or that of model
migration [16, section 4.5]. The analysis of the relationships of pb-po with these
contributions will be a topic of future work. Let us also mention that pullbacks
are also used in [11] to model the e↵ect of a rule on a graph while the same
graph can be subject of other changes caused by the environment, but because
of the restriction to injective rules no cloning e↵ect is modeled.
Finally, since the pb-po rules are defined as two connected spans, one may expect
from this approach to model situations where one span is used for transforming
data graphs while the other span can be used for transforming the typing infor-
mation, just like in [17] where rules, defined as two connected co-spans, are used
to model co-evolutions of meta-models and models.

15

References

1. Bauderon, M., Jacquet, H.: Node rewriting in graphs and hypergraphs: a categor-
ical framework. Theor. Comput. Sci. 266(1-2), 463–487 (2001)

2. Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theor.
Comput. Sci. 294(1–2), 61–102 (2003)

3. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE - Algebraic
Graph Rewriting with Controlled Embedding. In: ICGT 2015. LNCS, vol. 9151,
pp. 35–51. Springer (2015)

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)

5. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Rozenberg [18], pp. 163–246

6. Drewes, F., Ho↵mann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theor. Comput. Sci. 411(34-36), 3090–3109 (2010)

7. Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of attributed struc-
tures with cloning. In: FASE 2014. LNCS, vol. 8411, pp. 310–324. Springer (2014)

8. Ehrig, H., Heckel, R., Kor↵, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part II: single pushout approach
and comparison with double pushout approach. In: Rozenberg [18], pp. 247–312

9. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa,
USA, October 15-17, 1973. pp. 167–180. IEEE Computer Society (1973)

10. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Rozenberg
[18], pp. 1–94

11. Heckel, R., Ehrig, H., Wolter, U., Corradini, A.: Double-pullback transitions and
coalgebraic loose semantics for graph transformation systems. Applied Categorical
Structures 9(1), 83–110 (2001)

12. Kahl, W.: Amalgamating pushout and pullback graph transformation in col-
lagories. In: ICGT 2010. LNCS, vol. 6372, pp. 362–378. Springer (2010)

13. Lack, S., Sobociński, P.: Adhesive Categories. In: FOSSACS’04. LNCS, vol. 2987,
pp. 273–288. Springer (2004)

14. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

15. Löwe, M.: Refined graph rewriting in span-categories - A framework for algebraic
graph transformation. In: ICGT 2012. LNCS, vol. 7562, pp. 111–125. Springer
(2012)

16. Mantz, F.: Coupled Transformations of Graph Structures applied to Model Migra-
tion. Ph.D. thesis, University of Marburg (2014)

17. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their
instance models: A formal approach based on graph transformation. Science of
Computer Programming 104, 2–43 (2015)

18. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific (1997)

19. Schulz, C., Löwe, M., König, H.: A categorical framework for the transformation
of object-oriented systems: Models and data. J. Symb. Comput. 46(3), 316–337
(2011)

20. Wouters, L., Gervais, M.P.: Ontology Transformations. In: IEEE International En-
terprise Distributed Object Computing Conference. pp. 71–80 (2012)

16

