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Abstract. As High Performance Computing (HPC) systems get closer
to exascale performance, job dispatching strategies become critical for
keeping system utilization high while keeping waiting times low for jobs
competing for HPC system resources. In this paper, we take a data-
driven approach and investigate whether better dispatching decisions
can be made by transforming the log data produced by an HPC sys-
tem into useful knowledge about its workload. In particular, we focus on
job duration, develop a data-driven approach to job duration prediction,
and analyze the effect of different prediction approaches in making dis-
patching decisions using a real workload dataset collected from Eurora, a
hybrid HPC system. Experiments on various dispatching methods show
promising results.

1 Introduction

High Performance Computing (HPC) systems have become fundamental “in-
struments” for doing science much like microscopes and telescopes were during
the previous century. The race towards exascale (1018 operations per sec.) HPC
systems is in full swing with several efforts underway. Pushing current HPC sys-
tems to exascale performance requires a 50-fold increase in their speed and an
order of magnitude increase in their energy efficiency [6]. While we can expect
progress in hardware design to be a major contributor towards these goals, rest of
the increase has to come from software techniques and from massive parallelism
employing millions of processor cores. At these scales, job dispatching strategies
become critical for keeping system utilization high while keeping waiting times
low for jobs that are competing for HPC system resources.

HPC systems produce large amounts of data in the form of logs tracing
resource consumption, errors and various other events during their operation.
Data science can transform this raw data into knowledge through models built
from historical data capable of anticipating unseen or future events. We believe
that predictive computational models obtained through data-science tools will
be indispensable for the operation and control of future HPC systems.
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In an HPC system, a dispatcher decides which jobs to run next among those
waiting in the queue (scheduling) and on which resources to run them (allo-
cation). Ideally, dispatching decisions should complete all jobs in the shortest
amount of time possible while keeping the system utilization high. This goal is
achievable only with complete a priori knowledge of the workload which is rarely
available at dispatching time. We therefore rely on predictive models to obtain
useful knowledge about the workload from the log data of an HPC system, with
the purpose of making better dispatching decisions. In particular, we focus on
job duration, investigate an approach to job duration prediction based on the
data available at job submission, and subsequently study the power of different
approaches to prediction in making dispatching decisions. Our data-driven ap-
proach is based on a real workload dataset collected from Eurora [2], a hybrid
HPC system equipped with CPU, GPU and MIC technologies to deliver high
power efficiency. Experimental results on various dispatching methods show that
job duration prediction can significantly benefit dispatching decisions in general,
and specifically our simple data-driven approach can offer a valid alternative.

The contributions of this paper are twofold: (i) development of a simple yet
effective data-driven approach for job duration prediction, (ii) analysis of the
effect of different prediction approaches on various state-of-the-art dispatching
methods.

The rest of the paper is organized as follows. In Sections 2, 3 and 4, we de-
scribe the dataset used, the prediction approaches and the dispatching methods
in consideration, respectively. In Section 5, we evaluate the reliability of the pre-
dictions and then their impact on dispatching decisions. We discuss the related
work in Section 6 and conclude in Section 7 with indications for future work.

2 Data description

The workload dataset used throughout this paper comes from the Eurora system
which is hosted at CINECA4, the largest datacenter in Italy, and was ranked
first on the Green500 list in July 2013. Eurora has a modular architecture based
on nodes (blades), each one having 2 octa-core CPUs and 2 expansion cards that
can be configured to host an accelerator module. Of the 64 nodes, half of them
host 2 powerful NVidia GPUs, meanwhile the other half are equipped with 2
Intel MIC accelerators. Each node has 16GB of RAM memory. These 64 nodes
are dedicated exclusively to computation, with the user interface being managed
by a separate node. Eurora has been used by scientists across Italy to perform
simulation studies from different fields, hence the workload is heterogeneous.

The workload data includes logs for over 400,000 jobs submitted between
March 2014 and August 2015. For each job, we have information on the submis-
sion, start and end times, queue, wall-time, user and job name, together with
resources used and their allocation on the various nodes. The data has been
collected through a dedicated monitoring system [6]. For our study, we selected

4 The Italian Inter University Consortium for High Performance Computing
(http://www.cineca.it).
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Fig. 1. Distribution of job durations on Eurora.

the 10 busiest months, resulting in a total of 372,321 jobs. Figure 1 shows the
distribution of job durations of the selected workload. The maximum job dura-
tion is 24 hours. The figure demonstrates the existence of many short jobs and
fewer longer jobs, with a long tailed distribution of job duration. As observed
earlier, this is typical to HPC [21] and cloud systems [9], hence results on this
system should apply to large scale computational infrastructures in general.

To evaluate the effects of prediction on different job types, we divided the
jobs into classes: short jobs with duration of under 1 hour, medium jobs with
duration between 1 and 12 hours, long jobs with duration over 12 hours. In terms
of frequency, 93.15% of jobs fall into the short class (the vast majority), 6.82%
into the medium class and only 0.03% into the long class. We also computed
the CPU time used by jobs in each class. It is the medium class that uses most
resources, with 87.63% of the total while short and long jobs use only 10.77%
and 1.6%, respectively.

3 Job duration prediction

Duration of jobs is an important consideration in dispatching decisions and
knowing them at job submission time clearly facilitates better algorithms. Dis-
patching algorithms are often developed with the assumption that job durations
are known [17, 4]. Even if this is not practical, in some cases it may be possible
to rely on user-provided estimates of job duration [17, 7]. Many HPC systems
allow users to define a wall-time value, and use a default value when users fail
to provide one. This wall-time, which in the case of Eurora is set on a per-queue
basis, can be considered a crude prediction of job duration.

It has been shown that in general user estimations are not reliable [17],
while predefined wall-times are inflexible to account for all user needs. In these
conditions, prediction of job duration through other means may prove to be an
important resource. Here, we describe a simple data-driven heuristic algorithm
that relies on user histories to predict job duration. The data-driven approach
is particularly useful when user data can be stored for longer periods of time,
which is increasingly feasible through modern Big Data tools and techniques.

Our heuristic constructs job profiles from the available workload data. The
profile includes job name, queue name, user-declared wall-time, and the number
of resources of each type (CPU, GPU, MIC, nodes) requested. Each user is
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analyzed separately. Prediction is based on the observation that jobs with the
same or similar profiles have the same duration for long periods of time — there is
a temporal locality of job durations. Then, at some point, the duration changes
to a new set of values, which are again stable in time. This could be due for
instance to changes in user behavior: a user first tests the code with short runs,
then decides to run the real simulation which may last longer, then may decide
to test again after having made changes, and so on. Another explanation could
be switching between input datasets: the user performs repeated runs on one set
of data, then moves to another. Hence, for each new job, our heuristic searches
for the last job with a similar profile, and uses the duration of that job to predict
the duration of the new one. We analyze users separately. The similar profile is
identified using a set of consecutive rules. First, a full profile match is searched
for, then if this does not exist in the user history, a profile where the job name
has the same prefix is looked up. This follows from the observation that users
often name jobs with similar durations with the same job name followed by a
number (e.g. “job1”,“job2”). If this is unsuccessful, we allow for resources used
to differ, as long as the full job name, queue and wall-time are the same. If also
this search fails, we look for the same match but with the name prefix rather
than the exact name. If none of these rules give a match, we look for the last job
with the same name, or, as a last resort, the same name prefix. If all rules fail,
then we take the wall-time as the predicted duration. In all cases, the prediction
is capped by the wall-time.

We have also used machine learning to predict job duration. However, results
were not satisfactory (not shown for space reasons), with our simple heuristic
providing much better performance. We believe this is due to the temporal local-
ity observed in the data, and also due to the fact that jobs with the same profile
may have several different durations depending on when they were submitted.
This means that a regular regression model would try to fit a wide range of values
with the same features, resulting in an averaging of the observed durations.

4 Job dispatching methods

Job dispatching in HPC systems is an optimization problem which has been
studied extensively [11, 15]. Since it is a hard problem [14], most of the proposed
solutions are heuristic-based methods, which are fast but do not guarantee opti-
mality. In this paper, we examine 5 of such methods reported in the literature. In
the following, we give intuitions for the algorithms underlying these dispatching
methods. We note that in the first three, we have adopted the all-requested-
computers-available policy for resource allocation [24]. For each scheduled job,
this policy searches sequentially the nodes in an attempt to find resources avail-
able for running the job, and if succeeds, it maps the job onto those nodes. The
resource allocation policy of the remaining two are custom made and explained
in their respective subsections. In all methods, the objective of the dispatcher is
to minimize the total waiting time of the submitted jobs. The waiting time of a
job is the time passed between its submission and its starting time.
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Shortest job first, longest job first Shortest Job First (SJF) and Longest Job
First (LJF) use the estimated duration at scheduling time, sorting all jobs that
have to be scheduled in ascending (or descending) order, and then mapping the
shortest job (or the longest job) to a resource [23]. Both algorithms continue
moving through the sorted list until no available resources remain for allocating
to the current job. The aim of SJF is to reduce the waiting time of the short jobs,
thus causing delays for the execution of the long jobs. Conversely, LJF reduces
the waiting time of the long jobs, causing slowdown for short jobs.

EASY-Backfilling A key element of many commercial dispatchers is the back-
filling algorithm [24] which starts scheduling jobs stepping through a priority
list such as SJF or LJF, or commonly (as also adopted here) using the jobs’
submission order (first-in-first-out policy). If a job cannot be dispatched due to
lack of available resources (blocked job), backfilling calculates the time in the
future when enough resources will be released to run the blocked job, based on
the estimated duration of running jobs. While the blocked job is waiting, the
dispatcher maps other jobs in the queue over the available resources. If, however,
the durations have been underestimated, the resources for the blocked job will
not be available when needed, which can force termination of the running jobs.
In such a case, EASY-Backfilling (EBF) [24] does not terminate the running
jobs but instead delays the starting time of the blocked job. To keep all the jobs
running until their termination, we have here adopted EBF.

Priority rule-based As an extension of the first-in-first-out policy, many dis-
patchers sort the set of jobs to be scheduled by certain priority, running those
with higher priorities first. This algorithm is referred to as Priority Rule-Based
(PRB) [18, 1] and is widely used in commercial HPC dispatchers5,6. In our work,
the priority rules are based on [7] and sort the jobs to be scheduled in decreas-
ing order of the jobs’ urgency in leaving the queue. To determine if a job could
wait in the queue, the ratio between the waiting time and the expected waiting
time (assumed to be available for each queue the jobs are submitted) of the job
is calculated. Then, jobs that are closer to surpass their expected waiting time
have priority over the jobs that still could wait in the queue. As a tie breaker
the “job demand” is used, which is the job’s resource requirements multiplied
by the estimated job duration. Hence, among the high priority jobs, those that
have requested less resources and have shorter durations have further priority.
The allocation process tries to assign each job to the nodes containing resources
available for running the job. The nodes are also sorted by their current load
(nodes with fewer free resources are preferred), thus trying to fit as many jobs
as possible on the same node, to decrease the fragmentation of the system.

Hybrid constraint programming method One of the drawbacks of the heuris-
tic methods is the limited exploration of the solution space. Recently, new ap-

5 Altair PBS Works (http://www.pbsworks.com/).
6 SLURM Workload Manager (https://slurm.schedmd.com/).
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proaches have been proposed to improve the performance of traditional schedul-
ing, without violating the real-time requirements. For example, Bartolini et al.
[5] propose a HPC job dispatcher based on Constraint Programming (CP) that
is able to outperform traditional PRB methods. To increase scalability, Borghesi
et al. introduce a hybrid approach combining CP and a heuristic algorithm [7]
(CPH). We adopted this last method in this paper.

CPH is composed of two stages. The first corresponds to scheduling the jobs
using CP with the objective of minimizing the total waiting time. The schedule
is generated using a relaxed model of the problem which considers each resource
type as one unique resource, i.e., CPU availability corresponds to the sum of the
available CPUs of all the computing nodes, memory availability corresponds to
the sum of the memory availability of all the computing nodes, and so on. The
model is solved with a custom search strategy guided by a branching heuris-
tic using the scheduling policy of PRB. Due to the problem complexity, we do
not insist on finding optimal solutions but impose a time limit to bound the
search; the best solution found within the limit is the scheduling decision. The
preliminary schedule generated in the first stage may contain some inconsisten-
cies because of considering the available resources as a whole. During the second
stage, which corresponds to the resource allocation, any inconsistencies are re-
moved. If a job can be mapped to a node then it will be dispatched, otherwise
it will be postponed. The second stage uses the allocation policy of PRB.

5 Experimental results

We have implemented a discrete event simulator for job submission and job
dispatching, named AccaSim7, and used it to simulate the Eurora system with
the workload trace described in Section 2. AccaSim is a freely available Python
library. At every time point, it checks if there are jobs to be dispatched. If
so, it calls a dispatching method to generate a dispatching decision, and then
simulates the running of the jobs on the system. AccaSim library already includes
the implementations of the SJF, LJF and EBF dispatching methods. The PRB
and CPH implementations are available for download in the AccaSim website.
The experiments were ran on a CentOS machine equipped with Intel Xeon CPU
E5-2640 Processor and 15GB of RAM.

The simulation study considered the five dispatching methods described in
Section 4 together with three estimations of job duration: prediction based on
wall-time (W), data-driven prediction presented in Section 3 (D) and real dura-
tion (R). The real duration was included to provide a baseline to which the other
two predictions are compared. Therefore, for each of the five dispatching meth-
ods, there are three estimations of job duration, resulting in 15 combinations
(e.g., for the SJF method we have SJF-W, SJF-D and SJF-R corresponding to
wall-time prediction, data-driven prediction and real duration, respectively).

To compare the quality of the dispatching decisions of the 15 combina-
tions, we have selected two criteria. The first is job slowdown, a common met-

7 https://sites.google.com/view/accasim
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ric for evaluating job scheduling algorithms[16], which quantifies the effect of
each method on the jobs themselves and is directly perceived also by the HPC
users. Slowdown of a job j is a normalized waiting time and is defined as
slowdownj = (Tw,j + Tr,j)/Tr,j where Tw,j is the waiting time and Tr,j is the
duration of job j. A job waiting more than its duration has a higher slowdown
than a job waiting less than its duration. The second criterion is the number of
queued jobs at a given time. This metric is a measure of the effects of dispatching
on the computing system itself, being directly related to system throughput: the
lower the number of waiting jobs, the higher the throughput.

Next, we present the performance of our data-driven prediction of job dura-
tion and then continue with the evaluation of the various dispatching methods.

5.1 Prediction performance

Fig. 2. Absolute data-driven prediction error, compared to wall-time prediction.

To evaluate the performance of our data-driven prediction of job duration, we
compute the absolute error of the prediction and compare with that of the wall-
time prediction. Over all the jobs in the system, our algorithm obtains a mean
absolute error of 38.9 minutes. Using the wall-time, on the other hand, results
in a mean absolute error of 225.11 minutes. Figure 2 shows the distribution of
the absolute errors in the two cases, showing that in the data-driven case, these
are concentrated towards small values, while in the case of the wall-time the
distribution peaks at errors over 1 hour. The plot shows clearly that our data-
driven prediction produces much better results compared to wall-time prediction.

5.2 Dispatching performance using prediction

To analyze the effects of prediction on job dispatching, we plot the distribution
of our evaluation criteria for all 15 combinations of the dispatching methods
and duration predictions. For easy visualization of distributions, we use box-
plots that show the minimum and maximum values (top and bottom horizontal
lines), the range between the 1st and 3rd quartiles (the colored box), the median
(horizontal line within the box) and the mean (the triangles). Note that with
the logarithmic scale on the vertical axis, some of these elements may be missing
from the plots, meaning their value is zero.
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Fig. 3. Distribution of job slowdown for each method.

Effects of prediction on jobs. The first analysis looks at job slowdown for all
372,321 jobs dispatched. Figure 3 shows the distribution of slowdown achieved
by each dispatching method with each prediction type. For better visualiza-
tion, we plot only the jobs where slowdown is different from 1 in at least one
method-prediction combination. The removed jobs are those that are dispatched
immediately as they arrive in the system, so are not relevant for our compari-
son. As the figure shows, the dispatching methods displaying best performance
when the most basic and least effective prediction is used (wall-time) are PRB
and CPH, while the methods performing worst are LJF and SJF. This is un-
derstandable since the latter methods are quite simple while the former employ
more sophisticated reasoning.

An interesting effect when using real duration is that not all dispatching
methods show a clear benefit. While we observe a clear decrease in slowdown in
SJF, EBF and CPH, for LJF a significant increase in slowdown is present, while
for PRB no change is observed. We understand that prediction does not always
help the dispatching methods. One possible explanation is that the incomplete
nature of the dispatching methods tends to lead to suboptimal decisions which
can sometimes be compensated by underestimation of job durations, which will
not be possible anymore with a (perfect) prediction.

When using our data-driven prediction in the dispatching methods, we ex-
pect the performance to stay between the wall-time prediction and the real job
duration. Figure 3 shows that this is true for most methods. In the cases of SJF
and EBF, the real job duration improves the results, so does our prediction,
albeit less effectively. In the case of LJF, real job duration worsens the results,
so does our prediction, but less severely. PRB, which already does not benefit
from real job duration, does not benefit from our prediction either. The only dis-
patching method where the performance improves with perfect prediction but
decreases with our prediction is CPH. We believe this is because our data-driven
prediction may sometimes underestimate job duration, which is never the case
for wall-time and the real duration. CPH is not resilient to job duration under-
estimation, hence an imperfect prediction can actually be detrimental.

Even if PRB and CPH provide the best overall results, we observe that
SJF comes in very close, with comparable slowdown, when adding prediction.
However, the first two methods are more sophisticated and incur an overhead
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when building the dispatching decisions, while SJF is a very simple strategy.
Hence, in the presence of predictions, one may prefer to use a simple method
such as SJF over the heavier methods such as PRB and CPH.

Fig. 4. Distribution of job slowdown for short, medium and long jobs for each method.

To better understand the effects of prediction, we also look at the different
job classes. Figure 4 shows box-plots of slowdown distributions for short, medium
and long jobs. When prediction is beneficial, we see that the jobs that benefit
most are the short ones. This is good news, given that a large number of our
jobs are short, as we saw in Section 2. Some smaller differences are also visible
on medium jobs, while on long jobs the methods seem to be quite comparable,
with slightly larger slowdown values in CPH and SJF compared to the rest.

Effects of prediction on the system. Besides effects on individual jobs, it
is important to understand prediction’s role in improving system-level behavior.
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Fig. 5. Distribution of number of jobs waiting at every second, for each method.

For this we look at the size of the waiting queue. Figure 5 shows the distribu-
tion of the number of jobs in the queue at every second. We removed from the
plot those time points where there were no jobs in the queue for any of the 15
combinations, because these corresponded to low system utilizations and have
no value for our comparison. The figure shows that the effect on the system is
similar to the performance measured by the slowdown. In particular, SJF and
EBF are improved by prediction (both data-driven and real durations). PRB
shows no difference, however queue size is already the shortest among all dis-
patching methods. LJF does not benefit from prediction, while CPH seems to
be improved only by perfect and not by our data-driven prediction.

We also looked at the distribution of resource utilization (amount of CPUs,
GPUs, MICs and memory used at each second), but we observed minor differ-
ences in the total use of resources between methods, so results are not shown.

6 Related work

A number of previous efforts have developed techniques for predicting interest-
ing aspects of workloads such as power consumption and job duration [20, 10].
Borghesi et al. [8] propose a machine learning approach to forecast the mean
power consumption of HPC applications using only information available at
scheduling time, such as the resources requested, the maximum duration, the
user, etc. Sirbu et al. [22] present a support vector machine model to predict the
power consumption of jobs, taking also into account their variability.

Predicting the durations of HPC jobs have also been considered in previous
research works, especially in relation to job dispatching [19, 3]. Tsafrir et al. [12]
propose a model that uses the run times of the last two jobs to predict the
duration of the next job. This prediction is then used for scheduling purposes.
Their approach is lightweight and efficient, however, the prediction accuracy can
be improved using more complex techniques like the ones proposed in this paper.
Gaussier et al. [13] show the importance of estimating the duration of HPC jobs
with backfilling schedulers. Their results clearly suggest that a backfilling policy
benefits from accurate duration predictions; the only limitation is that their work
focuses exclusively on a particular scheduling algorithm.
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7 Conclusions

We have presented an analysis of the effect of job duration prediction on HPC job
dispatching decisions, based on a real workload dataset collected from Eurora, a
hybrid HPC system. We implemented five state-of-the-art dispatching methods
and studied their performance in the presence of predictions based on a data-
driven heuristic and on estimates based on wall-time. These two approaches to
prediction were compared among themselves and also against a baseline: perfect
prediction using the real job duration from the data.

Our conclusions are severalfold. First, our data-driven approach results in
more effective predictions than the estimates based on wall-time. Second, even
a perfect prediction does not necessarily benefit dispatching methods. One pos-
sible explanation is that the incomplete nature of the dispatching methods tend
to lead to suboptimal decisions which can sometimes be compensated by under-
estimation of job durations. Third, prediction is nevertheless beneficial in the
majority of the methods we have considered, and in the presence of our data-
driven prediction, a simple dispatching method can become a valid alternative
to the sophisticated state-of-the-art methods. Finally, when using prediction is
advantageous, the main beneficiaries are the short jobs. Given the prominent
presence of short jobs in typical HPC [21] and cloud system [9] workloads, our
conclusions should apply to large-scale computational infrastructures in general.

The dispatching methods presented here exploit prediction in their scheduling
component. In future work, we will also develop allocation heuristics that can
exploit prediction, especially in the case of hybrid HPC systems. Additionally, we
plan to extend our job duration prediction heuristic to include resources shared
with other jobs, similar to [22], to improve our prediction power. Finally, we plan
to integrate power predictions [22] into the dispatchers, to optimize not only the
system response, but also energy consumption, which is mandatory for building
exascale systems.
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