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Abstract 

Development of an organ and subsequently the whole system from an embryo is a highly integrated 

process. Although there are evidence that different systems are interconnected during developmental 

stages, the molecular understanding of this relationship is either not known or only to a limited extent. 

Nervous system development, amongst all, is maybe the most crucial and complex process. It relies on 

the correct distribution of specific neuronal growth factors and hormones to the specific receptors. 

Among the plethora of proteins that are involved in downstream signalling of neuronal growth factors, 

we find the Kinase-D Interacting Substrate of 220 kDa (KIDINS220), also known as Ankyrin-rich Repeat 

Membrane Spanning (ARMS) protein. KIDINS220 has been shown to play a substantial role in the 

nervous system and vascular system development as well as in neuronal survival and differentiation. It 

serves as a downstream regulator for many important neuronal and vascular growth factors such as 

Vascular Endothelial Growth Factor (VEGF), the neurotrophin family, glutamate receptors and ephrin 

receptors. Moreover, activation and differentiation of B- and T-cells, as well as tumour cell proliferation 

has also shown to be related KIDINS220. This review comprehensively summarises the existing research 

data on this protein, with a particular interest in its role in cancer and in other pathologies.  
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Introduction  

 

Interaction of different proteins plays an important functional role in the development of interconnected 

systems of all organisms. In human beings, nervous system development and differentiation is one of the 

most sophisticatedly regulated mechanisms. Among many neurotrophic factors, a group of closely 

related compounds called neurotrophin (NT) has a crucial role in controlling the number, growth, and 

differentiation of neurones, the functional unit of the nervous system. These neurotrophic factors bind 

to high-affinity Tropomyosin Receptor Kinases (Trks) and/or the low-affinity pan-neurotrophin nerve 

growth factor receptor (NGFR) present on neuronal cells surface. Binding of NTs to these receptors 

initiates specific intracellular signalling cascades resulting in many important functions such as neuronal 

survival and proliferation, growth and differentiation of axon and dendrite, and the expression and 

function of important proteins like ion channels and neurotransmitter receptors1–3. Synaptic strength 

and plasticity are also regulated by Trk receptors in the adult nervous systems, and the activation of cell 

surface receptors leads to one of many intracellular signalling pathways. The specificity of the receptors 

to NTs and the corresponding intracellular signalling cascade depends on the expression of Trk/NGFR on 

cell surface and availability of signalling intermediates inside the neuronal cell. At the intracellular level, 

activated Trk/NGFR provide docking sites at phosphorylated tyrosine residues for different adapters 

present in the cytoplasm depending on cell type. The most important initial adapter proteins involved in 

the corresponding intracellular signalling events are RAS protein family, Extracellular regulated Kinases 

(ERK or MAPK), Phospholipase-Cϒ (PLC-ϒ), Phosphatidyl Inositol-3 Kinase (PI3-K), AKT and KIDINS2204,5 

(Figure 1). Among these, KIDINS220 was successfully cloned and identified in 2000 as the first 

physiological substrate of Protein Kinase-D (PKD)6. It is a transmembrane protein phosphorylating 

proteins at serine and threonine residues. At the same time, it was also identified as a downstream 

signalling target of neurotrophin receptor tyrosine kinase NTRK7 and named ARMS (Ankyrin-rich Repeat 

Membrane Spanning) owing to its characteristic structural features. Later studies revealed that it is a hub 

for several cellular interactions of paramount importance. Through protein-protein interactions, it plays 

a major role in the development of various systems8,9. This is exemplified by nervous system processes 

such as neuronal outgrowth10, neuronal polarity11 and differentiation12, neuronal survival13, synaptic 

transmission14, vascular system development15, neuroblastoma cell proliferation16, UV irradiation-

induced apoptotic cell-death in melanoma17 and B and T-cells activation and differentiation18,19. 

KIDINS220 also forms a ternary complex with Trk and NGFR 20 and plays an important role in human 

immunodeficiency virus type-1 Tat-induced microglial activation21. Finally, a recent study has shown that 
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KIDINS220 acts as an interactional partner of synembrin-B and thus plays a role in the NGF-induced 

cellular secretions22. Recent reviews on KIDINS220 have been published and summarise the available 

data on the history, structure and associated functions of this protein5,9. Therefore, we will focus on the 

functions and importance of KIDINS220 in the development of human pathologies, with a particular 

interest in cancer in this review.  

 

Structural insight of KIDINS220  

KIDINS220 is a large protein with 1771 amino acids and an apparent molecular weight of 220 kDa, 

encoded by the human gene KIDINS220 situated at 2p25.1. The amino acid sequence of KIDINS220 can 

be divided into several different structural domains including protein interaction domains, 

transmembrane domains and phosphorylation site. The central part (amino acids 500-706) has four 

transmembrane domains whereas both N- and C-terminals are cytoplasmic. The cytoplasmic N-terminal 

domain harbours 11 ankyrin repeats (amino acids 37-402) that serve as a docking site for different 

protein partners10. Next to this region (amino acids 467-474) is a consensus motif ATP/GTP binding site 

(P-loop, AQWGSGKS). Due to the presence of nucleotide-binding Walker A and Walker B motifs in 

juxtamembrane regions of KIDINS220, it has been suggested as a P-loop Nucleotide Phosphatases of the 

“KAP Family”, named after KIDINS220/ARMS and PIFA9.However, the functional role of these latter 

motifs in KIDINS220 is still unclear. At its C-terminal end, KIDINS220 harbours several other important 

interacting domains. Some of these domains include; KIM region (amino acids 1356-1395) for binding of 

KIDINS220 with Kinesin-112, Proline-rich region (amino acids 1080-1092) that binds the adapter protein 

CRKL9,23, a sterile alpha motif (SAM; amino acids 1231-1300) and a PDZ-binding motif (PSD-95/Disc 

large/Zonula occludens-1) which comprises of the last four amino acids of the KIDINS220 sequence7,24.  

 

Sequence evolution of KIDINS220  

KIDINS220 protein or orthologues thereof are found in a large selection of diversely evolved organisms 

(Table 1). The analysis of the sequence evolution of KIDINS220 shows a more than 90% homology and 

identity within higher mammals. For avian and reptilian proteins, sequence similarities with the human 

protein decrease to between 80 and 90%. Orthologues of KIDINS220 are found in several metazoans like 

Caenorhabditis elegans (26.4% identity, 42.7% homology) and Drosophila melanogaster (28.6% identity, 

42.0% similarity)6,7. This highly conserved protein sequence from nematodes to humans strongly 
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suggests that KIDINS220 plays evolutionarily conserved functions, which is confirmed in particular by the 

protein-protein interactions (see hereunder). Overall, the N-terminal region of KIDINS220 is highly 

conserved, unlike the more divergent C-terminal region, suggesting a differential evolutionary 

importance of properties associated with N- or C-terminal domains of the protein.  

Presence of KIDINS220 in cells of different tissues and its role in different systems, like immune 

system25,26,18,19, the vascular system8,15, nervous system, and pathological conditions like tumour 

proliferation and neural disorders, can also be a consequence of the evolutionary divergence that some 

parts of KIDINS220 have underwent.  

 

KIDINS220/ARMS and human diseases  

In addition to its involvement in cancer (see next paragraph), KIDINS220 has been associated with 

different pathological situations in humans (Figure 2).  

NGF is considered to be an important player in bronchial hyper-responsiveness and inflammation in 

asthma patients27,28. Recent studies revealed that KIDINS220 is overexpressed in the lung, spleen and 

peripheral blood of BALB/c mice after allergen challenge29,30. On the other hand, a significant reduction 

in the expression of KIDINS220 occurs after intra-nasal administration with anti-NGF antibodies to mice, 

suggesting that KIDINS220 is regulated by NGF signalling in the asthma30. Interestingly, the ovalbumin-

induced expression of NFKB, IL1B, IL-4, and TNF in ovalbumin-sensitized mice was limited by the 

treatment with anti-KIDINS220 antibodies. Based on these findings, it is clear that NGF/NTRK1-

KIDINS220-ERK signalling pathway holds a major position in the pathogenesis of allergic asthma29 and, if 

validated in humans, KIDINS220 can serve as a new therapeutic approach towards the allergic diseases of 

the airway30,31. 

KIDINS220 has also shown its pivotal role in HIV-associated neurocognitive disorders (HAND). HIV infects 

central nervous system-resident immune cells, microglia, which in turn releases proinflammatory 

molecules causing HANDS32,33. KIDINS220 has shown to be expressed in microglial cells of central nervous 

system and to be involved in the activation of NFKB21. A study showed that production of tumour 

necrosis factor alpha and activation of NFKB falls down remarkably when KIDINS220 is downregulated34. 

It is well established that KIDINS220 holds a pivotal position in neuronal disorders through its role in the 

signalling of neurotrophins. It has also been shown that KIDINS220 expression is regulated by certain 
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pathological conditions e.g. cerebral ischemia. The underlying mechanism of this behaviour relies on N-

methyl-D-aspartate receptors (NMDAR) excitotoxicity due to the overproduction of glutamate during 

ischemic conditions35. Hyper-activation of NMDARs causes an increased influx of Ca2+ in the post-synaptic 

neurons36,37. This influx of Ca2+ causes downregulation of KIDINS220 in two different ways which are 

either calpain dependent (cleavage of C-terminals of KIDINS220 and NR2A/NR2B subunits of NMDARs) or 

calpain-independent (transcriptional inhibition of KIDINS220 gene)35. These findings suggest that 

neuronal degeneration induced by cerebral ischemia might be due to cleavage of PDZ-binding domain on 

C-terminal of KIDINS220 which is responsible for the downstream signalling during neuronal 

differentiation and survival.  

Unlike its reduction in cerebral ischemia, KIDINS220 has shown an enhanced expression in Alzheimer’s 

disease (AD) where it correlates with TAU38. TAU is a microtubule-associated protein which is 

hyperphosphorylated in AD39,40. Necropsies from AD patients with different progression stages showed 

that KIDINS220 expression levels are increased in human brain owing to the increased resistance to 

calpain cleavage associated with a hyperphosphorylation of KIDINS22038. Potential mechanisms of the 

involvement of KIDINS220 in the AD have been suggested elsewhere41. Based on all this data and a short 

study on KIDINS220 expression in AD brain and cerebrospinal fluid using an anti-KIDINS220 antibody, it 

has been suggested that KIDINS220 can serve as a novel biomarker for AD neurodegeneration42. Further 

studies, however, would have a far-reaching importance concerning regulation of KIDINS220 expression 

in other similar pathologies like hypoxia, acute trauma and other neurodegenerative diseases.  

Still, in relation to neurological diseases, it was shown that genetic variation in the signalling pathways of 

neurotrophins, and thereby in KIDINS220, was associated with increased risk of schizophrenia and 

psychosis. These include A557V, H1085R and A1299G mutations in patients with schizophrenia-related 

psychosis, and the mutations are probably modifying the interaction with CRKL and the subsequent 

MAPK signalling, or the SAM-domain-related properties43,44. Although rare, such genetic variants in 

KIDINS220, together with other genes, can explain certain cases of psychiatric disorders45. 

Three childhood cases of a new syndrome named SINO have been associated with variants of KIDINS220 

with premature stop codons46. SINO syndrome is characterized by spastic paraplegia, intellectual 

disability, nystagmus and obesity. The variants of KIDINS220 responsible for this sort of syndrome were 

closely related to an isoform of KIDINS220 with alternative splicing and present only in adult tissues47. 

The study has shown the importance of the delicate balance of KIDINS220 isoforms’ expression during 

the developmental phases of an embryo46. Other genetic variants were found in unborn fetuses 
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corresponding to a premature termination codon in exon 25 resulting in nonsense-mediated mRNA 

decay and absence of protein 48. The fetuses had enlarged cerebral ventricles and limb contractures that 

suggested the association between the phenotype and KIDINS220.  

 

KIDINS220 and cancer 

There is currently a growing amount of published data showing the involvement of KIDINS220 in various 

cancers (Figure 2). Here, we discuss the link between KIDINS220 and cancer by separating what has been 

shown directly with this protein (table 2), what can be suggested from indirect studies, and how these 

data constitute the basis for new therapeutic approaches.  

 

Direct roles of KIDINS220 in cancer 

First of all, KIDINS220 is clearly involved in cell proliferation and survival, as KIDINS220 knock out mice 

have a large rate of increased apoptotic cells as compared to control mice8. Melanoma, a tumour 

ontogenetically originating from neural crest, highly expresses KIDINS220 which protects tumour cells 

from stress-induced apoptotic death by activation of ERK signalling pathway17. KIDINS220-depleted 

melanoma cell lines expressed a significant inhibition of anchorage-independent growth in soft agar and 

an extended cell death by UVB-induced apoptosis. Its down-regulation also decreased the tumorigenicity 

in severe combined immunodeficient mice, strongly evidencing the functional role of the protein in this 

disease17. This was validated in another study by the same authors, together with the finding of a 

correlation between KIDINS220 protein expression and clinical outcome for melanoma patients49. 

Indeed, there was a better overall survival of patients with a negative KIDINS220 expression as compared 

to those with weak, moderate or strong expression.  

Another study showed that an increased expression of KIDINS220 stimulated cell proliferation in human 

neuroblastoma cells, another neural crest tumor16. The underlying mechanism of this function suggested 

that the downregulation of KIDINS220 is associated with a decreased level of cyclin D1/CDK4 during the 

G1 phase of cell cycle. CCND1/CDK4 is a protein frequently overexpressed and associated with 

tumorigenesis in many cancers50. Decreased KIDINS220 also upregulates P21 (a cyclin-dependent kinase 

inhibitor, CDKN1A) which in turn reduces the hyperphosphorylation of RB1, a tumour suppressor 

protein, by suppressing the kinase activity of CCNG1/CDK complexes16. KIDINS220 is expressed in 
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different neuroblastoma tumours and cell lines from these tumours in which its downregulation results 

in a decreased NGF induced-MAPK signalling. However, its downregulation has no effect on BDNF 

induced-MAPK signaling51. Depletion of KIDINS220 in neuroblastoma cell lines has also been associated 

with the neural to Schwann like transition52. Quantification and presence of Schwannian cells in the 

peripheral neuroblastic tumours is one of the markers for favourable prognosis53 and is being used by 

the International Neuroblastoma Pathology Classification (INPC) guidelines to stage these tumors54. 

Thus, KIDINS220 promoting the decrease of these cells is thus associated with a bad prognosis. 

In prostate cancer, KIDINS220 is involved in angiogenesis and castration resistance55. KIDINS220 binds 

with VEGFR2 and VEGFR3 which act as co-receptors for the interaction between VEGF and VEGFR. This 

leads to the activation of VEGF/PI3K/AKT signalling pathway, which in turn promotes proliferation and 

vasculogenic mimicry formation. It also impairs apoptosis of prostate cancer cells as well as increases the 

expression level and secretion of VEGF to stimulate angiogenesis in an autocrine manner. The micro-RNA 

miR-4638-5p targets KIDINS220 3’-UTR sequence and thereby down-regulates its expression in prostate 

cancer cells, which is associated with an increased sensitivity to castration. This is hypothesized to be the 

functional explanation of the tumour suppressor activity of this micro-RNA.  

A fusion protein between KIDINS220 and PAX5 has been described in acute lymphoblastic leukaemia 

(ALL)56. This protein corresponds to the 306 first amino acids of PAX5 and the 901 last amino acids of 

K220 (871-1171). Paired box-5 (PAX-5) is a transcriptional regulator that ensures the commitment to B-

lymphoid lineage and maintenance of its normal phenotype57,58. Any tempering in the functions of 

protein due to fusions at genetic level causes an abnormal deviation from the development and 

differentiation of B-cells at an uncommitted progenitor stage. It preludes to the development of B-cell 

ALL59,60. The fusion protein between KIDINS220 and PAX5 contains the N-terminal region of PAX5 which 

incorporates its DNA-binding domains, and the C-terminal region of KIDINS22056. This latter is therefore 

still able to interact with other proteins through the proline-rich domain.  

KIDINS220 has also shown interaction with B-cell antigen receptor (BCR) in unstimulated B lymphocytes. 

However, B-cells stimulation and Src-independent signalling enhance this interaction19. Studies have 

shown that KIDINS220 expression is essential for bracketing BCR to the Ca2+ and RAS-ERK pathways and 

hence plays a vital role in BCR-mediated cellular activation and B cell development in bone marrow.  

A detailed characterization of gene expression and protein localization of KIDINS220 during early phases 

of embryogenesis has shown that it is dynamically regulated during development and therefore has an 
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imperative role in distinct spatiotemporal differentiative events61. The nervous system, eye, branchial 

arches, heart and somites are different embryonic regions expressing KIDINS220 mRNA from neurula to 

larval stage. Protein expression has also shown a similar behaviour, with embryonic expression in central 

nervous system, cranial nerves, motor nerves, intersomitic junctions, retinal ganglion cells, lens, otic 

vesicle, heart and branchial arches. As compared to the earlier examined stages, embryos during stage 

42 displayed a differential localization of KIDINS220 protein in some regions like retina and somites61. 

Aberrant re-expression of embryonic and developmental genes, eventually by epigenetic modifications, 

has been repeatedly shown to be associated with cancer progression62. Given the described roles for 

KIDINS220 in both development and cancer, this could also be a potential explanation of its role in 

certain cancers.  

In summary, the available data clearly suggests that KIDINS220 is directly associated with cancer growth 

and development. For the moment, no clear and single molecular mechanism is identified as being 

responsible for this, and as shown in the previous paragraphs, multiple cancer types have been identified 

as being influenced by KIDINS220. Future work should therefore be performed in order to confirm both 

involvement in identified cancers and the underlying mechanisms, and to elucidate whether this 

complex protein can be considered an oncogene, used as a biomarker and if its cancer-related properties 

are related to its phosphorylation by protein kinase D (PKD) or not (see hereafter).  

 

Indirect roles of KIDINS220 in cancer 

In addition to studies focusing directly on KIDINS220, data exists on the potential involvement of this 

protein in cancer through its protein partners. First, KIDINS220 has been shown to interact with VEGFR2 

and the intracellular signalling of VEGF in some conditions15. Thus, if this is also the case in tumours, 

KIDINS220 can be involved in the angiogenetic activity of VEGF and thus the cancer progression.  

Protein kinases are enzymes responsible for catalyzing the phosphorylation of different proteins to 

modulate the activity inside the cell in response to activated membrane receptors by certain stimuli. 

They play major roles in cancer and have become an attractive target for cancer treatment63. PKD is a 

PKC-like serine/threonine kinase that phosphorylates the synthetic peptide Syntide 2, but, as compared 

to PKC, only very weakly physiological substrates that have been evaluated64. KIDINS220, and more 

precisely its serine 919, was thus identified as the first physiological substrate of PKD upon its cloning 

and initial characterization6. Since then, several substrates for PKD have been described, including 
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cancer-related proteins. The phosphorylation of SSHL1 by PKD, for example, causes a cofilin-mediated 

decrease in the migration of breast cancer cells65–67. PKD is also involved in the suppression of epithelial-

to-mesenchymal transition through phosphorylation of the transcription factor Snail68. Moreover, PKD-

HDAC5 pathway plays a vital role in VEGF regulation of gene transcription and angiogenesis69. 

Considerable evidence suggests PKD be a potential therapeutic target owing to its effective role in 

different types of cancers70. The phosphorylation of KIDINS220 by PKD has been shown to regulate the 

secretion of neurotensin71. In addition, studies have shown that loss of KIDINS220 and PKD1/2 have a 

similar phenotype i.e. multiple axons and aberrant dendrites72, underlying the functional importance of 

the interaction between these two proteins. Therefore, it could be possible that some of the cancer-

related properties of PKD could be mediated by KIDINS220. Additional work should be performed in 

order to clarify this association. Finally, the involvement of KIDINS220 in cancer could be related to Trks 

or to NGFR. There is indeed an increasing amount of data in the literature demonstrating the role of 

these receptors in cancer. Both receptors were recently shown to be highly expressed at the protein 

level in thyroid cancer and their targeting by siRNA decreased the cell viability73. Increased expression of 

NGFR or both NGFR and Trks was also shown in ovarian cancer74, neuroblastoma75, renal cell carcinoma76 

and Schwannomas77, whereas NGFR expression has been shown to be decreased in both gastric cancer78 

and hepatocellular carcinomas79. In addition, the possibility to target neurotrophin receptors was shown 

in several of the cited here over as well as for melanomas80 and pancreatic cancer cells81. The potential 

role of KIDINS220 was not evaluated in any of these studies on neurotrophin-receptors and cancer, but 

due to its central position in neurotrophin signalling, we imagine that it's involved as well. The precise 

role of KIDINS220 in this phenomenon should, of course, be confirmed by additional studies. 

 

Targeting KIDINS220 in cancer 

Based on the existing data reviewed here, we believe that upcoming research will validate KIDINS220 as 

a potential target for cancer therapy. Various strategies could be used to target this large multifunctional 

protein based on the molecular mechanism involved in the tumour development. As no enzymatic 

activity of the protein is known, its inhibition would be based on less classical approaches. As several of 

its activities are based on the physical interaction with other proteins, small molecules inhibiting these 

interactions could be used to target a given effect mediated by a specific interaction. This approach has 

been successful in cancer as exemplified for example by compounds targeting the interaction between 

TP53 and MDM282. This strategy would, however, need a better knowledge about the tridimensional 
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structure of either the complete KIDINS220 protein or the targeted domain in order to used 

bioinformatics tools to search for inhibitors. An enhanced understanding of the molecular mechanisms 

involved in each cancer type and for each protein interaction is also a prerequisite to this approach.  

Based on whether the phosphorylation of KIDINS220 by PKD is needed for the cancer-promoting effects 

of PKD, this could be used by targeting, for example, the phosphorylation site of KIDINS220 with an 

antibody. This would then inhibit specifically the KIDINS220-related effect of PKD whereas other 

potentially interesting phosphorylated proteins would not be affected. For the specific case of ALL 

patients expressing the fusion protein PAX5-KIDINS22056, a specific monoclonal antibody targeting the 

fusion protein could be developed and used for treatment purposes. This would however depend on the 

membrane expression of the fusion protein. Finally, targeting the extracellular domains of KIDINS220 

with therapeutic monoclonal antibodies could be a possibility if this would be associated internalization 

of the protein, induction of cell death via the activation of the immune system (antibody-dependent cell 

cytotoxicity) or with structural modifications leading to decreased intracellular signalling or protein-

protein interactions. This latter is, however, less likely as the extracellular domain of KIDINS220 is very 

small. 

 

Concluding remarks 

As described in this review, KIDINS220, a protein that was first studied at from a biochemical and a 

cellular biology point of view, has now clearly been associated with the development or the status of 

several diseases. Possible molecular explanations of these roles have sometimes been proposed, but 

much is still to be done both in order to understand the shown roles and to validate them in additional 

patient groups. As for cancer, KIDINS220 has a major role in cell proliferation in several cancer types, and 

the mechanism seems to be quite specific for each cancer and difficult to generalize. Since the inhibition 

of KIDINS220 expression, if often associated with decreased cell proliferation, this intriguing protein 

could turn out to be an interesting drug target. Another remaining part in the field of cancer and 

KIDINS220 is to understand the expression of this protein in some cancers, and whether this could be 

related to re-expression of embryonic genes or not.   
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Figure legends 

Figure 1. Structural features of KIDINS220 and signaling pathways of neurotrophins through KIDINS220 

inducing cancer-related cellular processes. The pathways are multistep and involve several cellular 

proteins as indicated in the text and in references. ANK: Ankyrin repeats; WA: Walker A domain; WB: 

Walker B domain; PRD: Prolin-rich Domain; SAM: Sterile Alpha Motive; KIM: Kinesin-1 binding motif; 

PDZ: PDZ-binding Motif; Trks: Tropomyosin Receptor Kinases. 

 

Figure 2. Known or suggested associations between KIDINS220 and human pathologies. Proven 

molecular mechanisms or cellular modifications are indicated in italic. See text for abbreviations and 

explanations.  
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Table 1. Percentage of protein homology and identity between Kidins220 from human and different species. 

Sequences were obtained from PubMed and compared be alignment using EMBOSS Needle nucleotide 

alignment (EMBL-EBI website).   

Taxon Species Biological nomenclature Identity Homolog 

Mammalia 

Monkey Macaca mulatta 99.1% 99.5% 

Sumatran orangutan Pongo abelii 98.4% 98.6% 

Dog Canis lupus familiaris 96.9% 98.3% 

Cattle Bos Taurus(isoformX7) 93.6% 95.9% 

Rat Rattus norvegicus 93.1% 95.9% 

Mouse Mus musculus 92.9% 95.8% 

Elephant Loxodonta africana 92.9% 94.4% 

Rabbit Oryctolagus cuniculus 83.4% 86.7% 

Brandt's bat Myotis brandtii 74.4% 77.3% 

Aves 

Chicken Gallus gallus 86.4% 91.9% 

Zebra finch Taeniopygia guttata 86.1% 91.8% 

Reptilia 

Lizard Anolis carolinensis 85.0 % 91.4% 

Green sea turtle 

(Reptiles) 

Chelonia mydas 83.8% 89.2% 

Amphibia Frog Xenopus tropicalis 79.2% 87.6% 

Actinopterygii 

Zebrafish Dario rerio 70.0% 79.5% 

Tilapia Oreochromis niloticus 69.7% 79.5% 

Puffer fish Tetraodon nigroviridis 60.8% 69.1% 

Insecta 

 

Wasp Nasonia vitriopennis 34.2% 48.9% 

Pea aphid Acyrthosiphon pisum 34.2 % 50.2% 

Red Beetle Tribolium castaneum 33.2% 47.3% 

Buff-tailed bumble Bombus terrestris 31.2% 45.9% 
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Common bumblebee Bombus impatiens 31.1% 45.9% 

Carpenter ant Camponotus floridanus 29.5% 43.6% 

Yellow fever mosquito Culex quinquefasciatus 29.5% 43.6% 

Malaria mosquito Anopheles gambiae 28.9% 42.8% 

Fruit fly Drasophila melanogaster 28.6% 42.0% 

Jumping ant Harpegnathos saltator 26.4% 38.3% 

Chromadorea Pig roundworm Ascaris suum 27.1% 43.2% 

Secernentea 

Round worm Burgia malayi 26.4% 43.8% 

Worm Caenorhabditis briggsae 26.1% 4.8% 

Chromadorea 

Worm Caenorhabditis elegans 26.4% 42.7% 

Eye worm Loa loa 25.8% 42.1% 

Appendicularia Sea squirt Oikopleura dioica 25.1% 37.7% 

Hydrozoa Hydra Hydra vulgaris 20.1% 33.7% 

Adenophorea Pork worm Trichinella spiralis 11.7% 17.6% 
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Table 2. Cancer-related studies on Kidins220.  

Cancer type Sample / Model Observation Reference 

Melanoma Melanoma cell 

lines and 100 

clinical samples 

 

 

Kidins220 is overexpressed in melanoma 

samples and high expression of Kidins220 is 

associated with poor survival in patients. 

siRNA-mediated inhibition of Kidins220 is 

associated with decreased cell proliferation, 

colony formation, cell migration, in vivo 

growth and formation of metastasis, and with 

enhanced sensitivity to UVB radiations. 

17
 
49

 

Neuroblastoma Neuroblastoma cell 

line 

shRNA-mediated inhibition of Kidins220 is 

associated with decreased cell proliferation 

due to longer G1 phase  

16
 

Neuroblastoma Neuroblastoma cell 

lines and 62 clinical 

samples  

 

Protein expression in cell lines and mRNA 

expression in patient samples 

siRNA-mediated inhibition of Kidins220 is 

associated with a lower pERK response to NGF 

and morphological changes, but is not 

associated with cell migration or sensitivity to 

cancer drugs 

51
 
52

 

Prostate cancer Prostate cancer cell shRNA-mediated inhibition of Kidins220 is 
55
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lines and 48 clinical 

samples 

 

associated with decreased cell proliferation, 

vascluar development and in vivo tumor 

growth, and with increased apoptosis. The 

effects of Kidins220 in prostate cancer cells 

seems to be regulated by miR-4638-5p 

Acute 

Lymphoblastic 

Leukemia  

One clinical sample A fusion protein PAX5-Kidins220 is potentially 

associated with a lack of differentiation of B 

cells and an increased proliferation of leukemic 

cells.  

56
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Structural features of Kidins220 and signaling pathways of neurotrophins through Kidins220 inducing 
cancer-related cellular processes. The pathways are multistep and involve several cellular proteins as 

indicated in the text and in references. ANK: Ankyrin repeats; WA: Walker A domain; WB: Walker B domain; 
PRD: Prolin-rich Domain; SAM: Sterile Alpha Motive; KIM: Kinesin-1 binding motif; PDZ: PDZ-binding Motif; 

Trks: Tropomyosin Receptor Kinases.  
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or cellular modifications are indicated in italic. See text for abbreviations and explanations.  

 

20x11mm (600 x 600 DPI)  

 

 

Page 25 of 25

John Wiley & Sons

Genes, Chromosomes & Cancer

This article is protected by copyright. All rights reserved.




