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ABSTRACT	 We	cast	the	genetic	algorithm-full	waveform	inversion	(GA-FWI)	in	a	probabilistic	
framework	 that	 through	a	multi-step	procedure,	allows	us	 to	estimate	 the	posterior	
probability	distribution	(PPD)	in	model	space.	Since	GA	is	not	a	Markov	chain	Monte	
Carlo method, it is necessary to refine the PPD estimated by GA (GA PPD) via a 
resampling	of	the	model	space	with	a	Gibbs	sampler	(GS),	thus	obtaining	the	GA+GS	
PPDs.	We	apply	this	procedure	to	two	acoustic	2D	models,	an	inclusion	model	and	the	
Marmousi model, and we find a good agreement between the derived PPDs and the 
varying	resolution	due	to	changes	in	the	seismic	illumination.	Finally,	we	randomly	
extract	several	models	from	the	so	derived	PPDs	to	start	many	local	full-waveform	
inversions (LFWIs), which produce final high-resolution models. This set of models 
is then used to numerically estimate the final uncertainty (GA+GS+LFWI PPD). The 
multimodal	and	wide	PPDs	derived	from	the	GA	optimization,	become	unimodal	and	
narrower after LFWI and, in the well illuminated parts of the subsurface, the final 
GA+GS+LFWI PPDs contain the true model parameters. This confirms the ability of 
the GA optimization in finding a velocity model suitable as input to LFWI.
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1. Introduction

Full-waveform	inversion	(FWI)	is	an	optimization	procedure	for	seismic	data	sets	that	is	based	
on	an	accurate	numerical	simulation	of	 the	equations	of	motion	and	on	an	 iterative	procedure	
to fit the waveforms of simulated and observed data (Virieux and Operto, 2009; Sirgue et al.,	
2010; Prieux et al., 2011; Morgan et al., 2013). FWI proved to be a valuable tool to derive high-
resolution	quantitative	models	of	the	subsurface.	In	the	simplest	FWI	implementation	the	Earth	
is regarded as an isotropic and acoustic medium. Other approximations, such as elastic, visco-
elastic,	and	anisotropic	have	been	proposed	to	treat	complex	subsurface	models	that	require	more	
accurate simulations of the wave propagation (Operto et al., 2013). The most common numerical 
method to simulate the wavefield is the finite-difference method; other approaches are the finite 
element methods or the spectral methods (Fichtner, 2010).

Full-waveform	 inversion	 is	 a	 strongly	 non-linear	 and	 multidimensional	 inverse	 problem,	
which	involves	hundreds	or	even	thousands	of	unknown	model	parameters,	and	is	characterised	
by a multi-modal cost function. This inverse problem is usually solved in the framework of the 
acoustic	 approximation	 applying	 a	 local	 linearization	 of	 the	 forward	 modelling	 (based	 on	 the	
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steepest descent or conjugate gradient algorithms). Local methods can efficiently optimize a 
large	number	of	unknown	model	parameters,	whereas	the	limitation	of	describing	the	subsurface	
as	an	acoustic	model	 is	needed	to	reduce	the	computational	cost,	 the	non-linearity	and	the	ill-
posedness of the inverse problem (Operto et al., 2013). From these considerations, it emerges 
that	local	FWI	(LFWI)	is	subjected	to	fall	into	local	minima	of	the	cost	function	in	case	of	lack	of	
low	frequencies,	lack	of	large	source-receiver	offsets,	highly-complex	media,	or	a	poor	starting	
model.	In	particular,	several	methods	have	been	proposed	to	make	the	LFWI	result	less	affected	
by	the	choice	of	the	starting	model	(Bunks	et al., 1995; Diouane et al., 2014; Tognarelli et al.,	
2015, 2016; Sajeva et al., 2016).

In	 addition,	 local	 FWI	 is	 generally	 cast	 in	 the	 framework	 of	 deterministic	 approaches.	
This means that a single best-fitting model is provided and any information on the associated 
uncertainties is discarded. This approach has been generally followed for the sake of pragmatism 
and	computational	feasibility	because	of	 the	 large	number	of	unknowns	 that	are	 involved	 in	a	
FWI (Fichtner, 2010). Nevertheless, the computational power of CPUs and GPUs is continuously 
increasing and new larger and more powerful clusters that efficiently distribute the cost of large 
problems are designed. This progressively moves forward the threshold of what is feasible and 
unfeasible.	Moreover,	FWI	is	a	strongly	ill-conditioned	inverse	problem	in	the	sense	that	many	
solutions	explain	the	observation	equally	well.	Hence,	it	is	more	appropriate	to	appraise	a	region	
of	acceptable	solutions	above	a	certain	threshold,	 that	 is	 the	“equivalence	region	of	solutions”	
(Fernández	Martinez	 et al., 2012), instead of providing a single best-fitting solution. In other 
words, the estimation of the uncertainties affecting the final result of LFWI, in the form of the 
posterior	probability	distribution	(PPD)	in	the	model	space,	can	provide	valuable	insights	on	the	
problem	itself	and	on	the	capability	of	FWI	to	determine	the	subsurface	characteristics.

Stochastic	global	optimization	methods	[i.e.,	genetic	algorithms	(GAs),	simulated	annealing,	
particle	swarm,	neighbourhood	algorithm,	differential	evolution]	offer	another	possible	approach	
to tackle the FWI problem. From one hand, these methods can efficiently explore the entire model 
space,	thus	reducing	the	risk	of	falling	into	local	minima	of	the	cost	function.	From	the	other	hand,	
the	stochastic	approach	makes	it	feasible	to	cast	the	FWI	in	a	probabilistic	framework.	Stochastic	
FWI was first performed by Sen and Stoffa (1991, 1992) for problems with a limited number of 
unknowns and in which a 1D subsurface model was assumed. Other noteworthy applications of 
stochastic FWI can be found in Mallick (1999), Mallick and Dutta (2002), Mallick et al. (2010), 
Fliedner	et al. (2012), and Li and Mallick (2015). The main problem to be addressed in stochastic 
FWI	is	the	high	computational	cost	that	increases	exponentially	with	the	number	of	unknowns.	
This scaling problem [sometimes referred to as the “curse of dimensionality”: Bellman (1957)] 
makes the stochastic approach to FWI often unfeasible for 2D or 3D applications. Nevertheless, 
due	to	the	recent	growth	of	high-performance	computing,	stochastic	FWI	begins	to	be	used	to	
derive	low-resolution	2D	compressional	velocity	models	that,	if	needed,	can	be	used	as	starting	
models	 for	 local	FWI	 (Gao	et al., 2014; Datta and Sen, 2016; Sajeva et al., 2016; Tognarelli 
et al., 2016). Regarding this last point, this work aims to demonstrate that a GA optimization 
can provide a velocity model suitable as input to local FWI. To this end, we cast the FWI in 
a	probabilistic	framework	by	combining	the	stochastic	FWI	method	proposed	by	Sajeva	et al.	
(2016) with the hybrid method for uncertainty estimation in 1D elastic FWI proposed by Aleardi 
and Mazzotti (2017). In particular, the FWI algorithm implemented by Sajeva et al. (2016) is 
aimed	 at	 deriving	 a	 low-resolution	 velocity	 model	 and	 is	 based	 on	 a	 GA-driven	 optimization	
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procedure. The authors used this particular stochastic method because GAs often display the 
best	scaling	with	the	number	of	model	parameters	and	outperform	other	well-known	stochastic	
methods	(such	as	particle	swarm	optimization,	adaptive	simulated	annealing	or	neighbourhood	
algorithm) in finding the global minimum of several different cost functions (Sajeva et al., 2014, 
2017). Other applications of GAs in solving a geophysical optimization problems can be found 
in Sen and Stoffa (2013), Aleardi (2015), Aleardi et al. (2016), Aleardi and Ciabarri (2017), and 
Pafeng	 et al. (2017). However, GAs are not a Markov-Chain Monte Carlo (MCMC) method 
(Rubinstein and Kroese, 2011) and, as a consequence, they offer a biased estimate of the posterior 
probability distributions (PPDs) of model parameters. To overcome this limitation and to derive 
a	reliable	estimate	of	uncertainties,	many	strategies	can	be	followed.	In	this	work,	we	follow	the	
line of Sambridge (1999) who combined a stochastic optimization with a subsequent resampling 
of the model space according to a MCMC method known as the Gibbs sampler [GS: Geman and 
Geman (1984)]. Sambridge (1999) applied this method in a seismological problem concerning 
the	inversion	of	receiver	functions	in	which	the	neighbourhood	algorithm	was	used	to	optimize	a	
limited number of unknowns (24). Successively, Aleardi and Mazzotti (2017) applied this hybrid 
method for uncertainty estimation to the 1D elastic FWI, with a larger number of unknown model 
parameters	 (tens	 of	 unknowns)	 and	 using	 a	 GAs-driven	 optimization.	 Here,	 this	 uncertainty	
estimation	procedure	is	extended	and	adapted	to	the	context	of	local	and	acoustic	2D	FWI.

The paper is organized as follows. We start with a brief description of the workflow of our 
approach	 to	 FWI	 which	 comprehends	 a	 global	 method	 (GA),	 a	 resampling	 method	 (Gibbs	
sampler), and a local method (steepest descent). Next, we shortly present the criteria to determine 
the	sparse	grid	points	for	the	global	method.	Finally,	we	discuss	the	application	of	the	complete	
workflow to two synthetic cases. The first example is the inversion of a simple inclusion model, 
which is a variation of the model studied in Mora (1989), whereas in the second example we apply 
our	method	to	the	more	complex	Marmousi	model.	A	detailed	mathematical	description	of	the	
method	is	given	in	Appendix.

2. The method

In this section, we give a schematic and qualitative description of the workflow we use to 
estimate uncertainty in FWI. Additional details are given in Appendix. Our method is schematically 
outlined	by	the	diagram	represented	in	Fig.	1. In the first step, given an a priori information on the 
model	parameters	(prior	model),	we	employ	a	real-valued	GA	to	perform	a	global	inversion	with	
the	aim	of	collecting	all	the	explored	low-resolution	models	(ensemble	of	GA	models),	from	which	
we also extract the best-fitting model. The GAs are a class of randomized search methods that 
can be applied to large-scale optimization problems. They treat models collectively, such that the 
ensemble of models (or population) evolves toward new generations with lower misfit by means of 
selection, recombination, and mutation (Goldberg, 1989; Mitchell, 1998; Sivanandam and Deepa, 
2008). Additional details about the GA implementation we use are given in Sajeva et al. (2016). 
After	 this	step,	by	exploiting	the	entire	ensemble	of	models	sampled	by	GAs,	we	can	obtain	a	
rough	and	biased	uncertainty	estimation.	We	name	this	probability	distribution	the	GA	PPD.

In	the	second	step,	the	entire	ensemble	of	GA	models	is	appraised	following	the	procedure	of	
Sambridge (1999), which consists in an importance sampling of the model space explored by GAs 



398

Boll. Geof. Teor. Appl., 58, 395-414 Sajeva et al.

using the GS. The model space is divided into Voronoi cells, each one associated with a single GA 
model and its likelihood. This creates a multi-dimensional interpolant which is resampled by the 
GS algorithm. This step yields a non-biased PPD (that we call the GA+GS PPD) which expresses 
the uncertainties affecting the best-fitting GA model. It is crucial to note that no additional forward 
modelling is needed in the GS step. This characteristic is important because it determines the 
low computational cost, and then the feasibility, of this model-space resampling. The third step 
consists in extracting a sufficiently large set of models from this estimated PPD, by means of 
a	MCMC	algorithm.	Each	one	of	 these	models	 is	used	as	starting	model	 for	a	 local	FWI	 that	
constitutes	the	fourth	step	of	our	procedure.	Finally,	the	last	step	applies	a	non-parametric	method	
(i.e.,	the	kernel	density	estimation)	to	the	ensemble	of	models	resulting	from	LFWI	to	derive	the	
final PPDs, e.g., the 1D marginal PPD for each model parameter. We name this final probability 
distribution	the	GA+GS+LFWI	PPD.

3. Model parameterization for the GA optimization

A	 peculiar	 aspect	 of	 the	 GA	 optimization	 we	 emphasize	 here,	 is	 the	 choice	 of	 the	 model	
parameterization.	As	said	before,	 in	a	global	optimization	procedure	 it	 is	crucial	 to	reduce	 the	
number of unknowns. To this end, we reduce the number of model parameters by resampling the 
prior	model	onto	an	irregular	grid	with	cell	sizes	chosen	according	to	seismic	resolution	criteria,	
that	is,	proportional	to	a	quarter	of	the	dominant	wavelength	for	the	vertical	resolution,	δv,	and	
proportional to the first Fresnel zone for the horizontal resolution, δh

(1)

(2)

where	λ	is	the	dominant	wavelength	of	the	seismic	wave,	V	is	the	interval	velocity	of	the	layer,	f	is	
the	dominant	frequency	of	the	seismic	wave,	and	z is the reflector depth. Let us focus on the case 
where	V changes only with depth (1D velocity profile). In this case both δh and	δv	are	functions	
of the sole depth. Hence, starting from the first depth, z0,	for	which	the	exact	velocity	is	unknown	
(e.g., the surface or the water bottom), we resample the prior model at depths:

Fig. 1 - Schematic representation of the procedure.
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(3)

where	a	is	a	real	scale	factor,	and	N	is	such	that	zN	is	less	than	the	maximum	depth	of	the	model.	
Analogously, we use the horizontal resolution to resample the horizontal coordinates. The 
horizontal	step	size,	ΔX, at	each	depth	zn is:

(4)

4. First synthetic example: the inclusion model

We first apply the method to an acoustic inclusion model similar to the one introduced by Mora 
(1989). This model is constituted by a spherical homogenous inclusion in a background velocity 
characterized by a constant gradient with depth and a deep reflection (Fig.	2a).	For	the	forward	
modelling, we use the finite-difference method, with accuracy of second order in time and fourth 
order in space, a vertical and horizontal space step of 48 m, a time step of 4 ms, and a Ricker 
wavelet as the source signature. The acquisition geometry consists of 31 sources and 127 receivers 
all equally spaced at the surface, and, for each shot, one source illuminates all the receivers. To 

Fig. 2 - a) The true model for the inclusion example; b) the centre of the ranges as a 2D colour image superimposed 
with	the	position	of	the	irregular	grid	nodes	at	which	the	Vp values are optimized during the GA inversion; c) ranges	
of	admissible	values	for	Vp during the GA inversions are between the min (blue) and max (red) curves; d) the final best-
fitting model after the GA optimization.
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evaluate the misfit, we use the L2 norm applied to a low-pass filtered (with a maximum frequency 
around 6 Hz) and a trace-by-trace normalized version of the data. As prior information, we use 
a simple 1D P-wave velocity (Vp) model with velocity linearly increasing with depth from 1500 
to 3000 m/s. This model is used to centre the GA inversion ranges and to build the irregular GA 
grid with the procedure described in the previous section. The resulting grid and the linear 1D 
model	are	shown	in	Fig.	2b. This grid has 24 nodes. These nodes are bilinearly interpolated to 
the finite-difference grid for the forward-modelling. The range of admissible values for the model 
parameters	investigated	during	the	GA	inversion	is	limited	by	the	min	and	max	curves	of	Fig.	2c.

In the GA inversion, we performed 16,000 model evaluations and the final best-fitting model 
is	 shown	 in	Fig.	2d. This result may be considered a good macro model, since it contains the 
long-wavelengths of the true model. The quality of the result can be assessed also by observing 
the	seismic	data	error.	Fig.	3 shows: a) the observed leftmost shot filtered below 6 Hz; b) the 
corresponding predicted shot, and c) the differences between (a) and (b). Note the fair match 
between the observed and predicted data. In fact, even though some reflections are unpredicted 
and	the	correct	amplitudes	of	the	events	are	sometimes	mispredicted,	the	overall	energy	of	the	
waveform	differences	is	small.	We	now	appraise	the	entire	ensemble	of	GA	models	to	quantify	the	
uncertainty	affecting	the	GA	solution	of	Fig.	2d.	Figs.	4	and	5	show	some	example	of	marginal	GA	
PPDs and GA+GS PPDs computed for six different positions (cells) in the model. Note that, moving 
from	the	centre	to	the	lateral	edges	of	the	model,	the	PPDs	become	broader	and	multimodal	(Fig.	
4).	Analogously,	moving	from	the	top	to	the	bottom	of	the	model,	the	PPDs	suffer	multimodality	
and	widening	(Fig.	5). These characteristics agree with the expected loss of information due to the 
poorer	illumination	at	the	lateral	and	deep	parts	of	the	model.	In	addition,	note	that	the	GA	PPDs	
usually	 tend	 to	 underestimate	 the	 true	 uncertainty,	 while	 the	 GA+GS	 probability	 distributions	
offer	a	more	reliable	estimate	of	the	errors	affecting	the	model	parameters.

Fig. 3 - a) The observed first shot, filtered below 6 Hz; b) the corresponding predicted shot after the GA optimization 
and low-pass filtering; c) the differences between (a) and (b).
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Next, we use a MCMC algorithm to extract 200 models from the GA+GS PPD and we employ 
them as starting models for LFWI, we use the time-domain steepest-descent method, with 5 
iterations at 4, 5, 6, 8, and 10 Hz. The mean value of all the resulting final models is displayed 
in	Fig.	6a and it can be directly compared with the true model of Fig. 1a, finding a satisfactory 

Fig. 4 - a) The true model in which the coloured dots indicate the spatial position of the cells whose uncertainty is 
analyzed in (b) and (c); b) GA PPDs for the three cells shown in (a); c) GA+GS probability distribution for the three 
cells shown in (a). In (b) and (c) the red dashed lines indicate the best GA model. Note that the uncertainty increases 
moving	from	the	centre	to	the	later	edges	of	the	model	and	that	the	GA	PPD	underestimates	the	uncertainties	affecting	
the	model	parameters.

Fig. 5 - a) The true model in which the coloured dots indicate the spatial position of the cells whose uncertainty is 
analyzed in (b) and (c); b) GA PPDs for the three cells shown in (a); c) GA+GS probability distribution for the three 
cells shown in (a). Note that the uncertainty increases moving from the shallow to the deeper part of the model and that 
the	GA	PPD	underestimates	the	uncertainties	affecting	the	model	parameters.
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match.	Fig.	6b shows the approximate 99% confidence interval of the set of final models that can 
be compared with the L1-norm model error shown in Fig.	6c. Note that the highest uncertainties 
are	mainly	localized	where	seismic	illumination	is	poorer.

Fig.	7 displays the observed first shot, the corresponding predicted shot after the GA+LFWI 
optimization	and	 their	differences.	Comparing	 this	 image	with	Fig.	3	 evidences	 the	 improved	
prediction. Note also that the higher frequencies have been incorporated in the fitting procedure. 
Figs.	8	and	9 show the 1D marginal PPDs computed after the LFWI step, at the same cell positions 

Fig. 6 - a) The mean model of the set of 
final models (after GA+GS+LFWI); b) the 
99% confidence interval of the set of final 
models; c) the L1-norm model error.

Fig. 7 - a) The observed first shot; b) the corresponding predicted shot after the GA+LFWI optimization; c) the 
differences	between	(a)	and	(b).
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indicated	in	Figs.	4	and	5.	Again,	note	the	loss	of	resolution	from	the	centre	to	the	lateral	edges,	
and	from	the	shallowest	to	the	deepest	parts	of	the	model.	Comparing	Figs.	8	with	4c	and	Figs.	9	
with	5c,	it	can	be	noted	that	the	marginal	GA+GS+LFWI	PPDs	do	not	display	multimodal	shapes,	
thus	demonstrating	that	the	whole	set	of	starting	models	converge	toward	the	same	model-space	
region, and that, where the model is sufficiently illuminated by the wave-fronts, the true Vp	values	
lie within the final PPDs.

Fig. 8 - Final GA+GS+LFWI uncertainties estimated for three different cells located in the shallow part of the model 
and whose positions are indicated by the coloured dots in Fig. 4a. The red dashed lines indicate the estimated model 
parameters	by	the	LFWI,	whereas	the	green	dashed	lines	show	the	true	values.

Fig. 9 - Final GA+GS+LFWI uncertainties estimated for three different cells located at the centre of the model and 
whose positions are indicated by the coloured dots in Fig. 5a. The red dashed lines indicate the estimated model 
parameters	by	the	LFWI,	whereas	the	green	dashed	lines	show	the	true	parameter	values.

We also show three velocity profiles (Fig. 10)	 from	 the	 far	 left	 to	 the	 centre	of	 the	model	
(at offsets 0, 2000, and 4500 m); the set of starting models is displayed by the grey beam, the 
set of final models is displayed by the cyan beam and the true model by the black line. These 
velocity profiles and the direct comparison between the GA+GS and GA+GS+LFWI probability 
distributions highlight several points: 1) the set of models (grey beam) resulting from GA FWI 
fairly reconstructs the low-frequency trend of the true velocity model; 2) the loss of resolution 
with depth and near the edges of both the GA and LFWI solutions; 3) the narrowing of the 
distributions after local FWI, and 4) the improvement in the estimation of the true model after 
local	FWI,	especially	for	the	central	part	of	the	model	where	the	seismic	illumination	is	higher.	
These results confirm the capability of the GA optimization in finding a good initial model for 
LFWI,	that	is,	a	model	not	affected	by	the	cycle-skipping	phenomenon.

5. Second synthetic example: the Marmousi model

For	a	second	and	more	challenging	test,	we	apply	the	proposed	method	to	the	acoustic	Marmousi	
model	(Fig. 11a). For the forward modelling, the acquisition geometry, and misfit function we use 
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the same implementation of the previous test. Recall that we low-pass filter (below 6 Hz) and 
trace-by-trace normalize the data prior to the misfit computation.

We use a simple 1D Vp	model	(Fig. 11b),	which	constitutes	our	prior	information,	to	build	the	
irregular GA grid according to seismic resolution criteria as outlined in a previous section. The 
resulting	coordinates	for	the	model	parameters	are	superimposed	over	the	model	and	are	depicted	
with	red	dots	(Fig. 11b). The total number of unknowns for this example is 143. The ranges for 
the	Vp	values	during	the	GA	inversion	are	shown	in	Fig. 11c.	As	in	the	previous	example,	we	
use ranges that become wider with depth. In the GA inversion, we performed 40,500 model 
evaluations and the final best-fitting model is shown in Fig. 11d.	Even	in	 this	challenging	test	
the	GA	optimization	has	been	able	to	estimate	a	subsurface	macro	model	that	contains	the	long-
wavelengths	of	the	Marmousi	model	(which	is	shown	in	Fig. 11a).

Fig. 12 provides us insights on the seismic data: (a) shows the observed leftmost shot low-
filtered at 6 Hz; (b) shows the corresponding predicted data, and (c) their differences. Note that (c) 
mainly contains unpredicted reflections and diffractions. As in the first synthetic example the next 
step	is	to	quantify	the	uncertainty	affecting	the	solution	of	Fig. 11d. To this end, we first estimate 
the GA PPD by exploiting the entire set of GA-sampled models. Then, we appraise this ensemble 
of	models	by	means	of	the	GS	in	order	to	obtain	more	reliable	uncertainty	estimations.	Figs. 13	
and	14 show some 1D marginal PPDs estimated in different cells (parts) of the model. In Fig.	

Fig. 10 - a) The true model 
in	 which	 the	 coloured	 lines	
indicate	the	spatial	position	of	
the	Vp profiles analysed in (b); 
b)	vertical	Vp profiles for three 
horizontal positions. The black 
lines	 indicate	 the	 true	 model,	
the	 grey	 beams	 show	 the	 set	
of 200 starting models, and 
the	cyan	beams	correspond	 to	
the set of 200 models resulting 
from local FWI. Note that 
in	 the	 leftmost	 plot	 of	 Fig.	
10b the ensembles of initial 
and final velocity models are 
overlapped	 due	 to	 the	 poor	
seismic	 illumination	 at	 the	
lateral	edges	of	the	model.
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Fig. 11 - a) The Marmousi model; b) the 1D model that is the centre of the GA ranges superimposed with the nodes of 
the coarse grid (red dots). Note that the coarse grid sampling gets wider at depth; c) the range of Vp	values	for	the	GA	
inversion; (d) the final best-fitting model after the GA inversion.  

Fig. 12 - a) The observed first shot filtered below 6 Hz; b) the corresponding predicted shot after the GA optimization 
and filtering; c) the differences between (a) and (b).
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13,	note	that	the	PPDs	become	broader	and	bimodal,	moving	from	the	centre	to	the	lateral	edges	
of	the	model.	Analogously,	in	Fig. 14,	moving	at	greater	depths	in	the	model,	the	PPDs	suffer	
multimodality	and	intense	widening	(note	the	different	horizontal	scales	in	the	three	plots	of	Figs.	

Fig. 13 - a) The true model in which the coloured dots indicate the spatial position of the cells whose uncertainty is 
analyzed in (b) and (c); b) GA PPDs for the three cells shown in (a); c) GA+GS probability distribution for the three 
cells shown in (a). In (b) and (c) the red dashed lines indicate the best GA model. Note that the uncertainty increases 
moving	from	the	centre	to	the	lateral	edges	of	the	model	and	that	the	GA	PPD	underestimates	the	uncertainties	affecting	
the	model	parameters.

Fig. 14 - a) The true model in which the coloured dots indicate the spatial position of the cells whose uncertainty is 
analysed in (b) and (c); b) GA PPDs for the three cells shown in (a); c) GA+GS probability distribution for the three 
cells shown in (a). In (b) and (c) the red dashed lines indicate the best GA model. Note that the uncertainty increases 
moving	from	the	shallow	to	the	deeper	part	of	the	model	and	that	the	GA	PPD	underestimates	the	uncertainties	affecting	
the	model	parameters.	In	(b)	and	(c)	note	the	different	horizontal	scale	in	each	plot.
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14b	and	14c). These characteristics are in agreement with the expected loss of information due to 
the	poorer	illumination	at	the	lateral	and	deep	parts	of	the	model.

Next, we extract 200 models from the PPD derived by the GA inversion and the Gibbs sampling 
and	each	of	them	becomes	a	starting	model	for	LFWI.	We	use	the	time-domain	steepest-descent	
method, with 5 iterations at 4, 5, 6, 8, and 10 Hz. The mean value of all the resulting final models 
is	displayed	in	Fig. 15a	and	it	can	be	directly	compared	with	the	true	model	of	Fig. 11a, finding 
a	satisfactory	match.	Fig. 15b shows the approximate 99% confidence interval of the set of final 
models that can be compared with the L1-norm model error shown in Fig. 15c. Note that the 
99% confidence interval gives an approximated representation of the true model error and that 
the	 highest	 uncertainties	 and	 model	 errors	 are	 mainly	 localized	 where	 seismic	 illumination	 is	
poorer.

Fig. 16 compares the observed first shot with the corresponding predicted shot after 
the GA+LFWI optimization. Note the improvement in the prediction with respect to the GA 
optimization	results	(Fig. 12)	and	the	exploitation	of	the	higher	seismic	frequencies.	Figs. 17	and	
18 show the final 1D marginal GA+GS+LFWI PPDs, at the same positions indicated in Figs. 13	
and	14.	Again,	note	the	loss	of	resolution	from	the	centre	to	the	lateral	edges,	and	from	the	shallow	
to	the	deeper	parts	of	the	model.	Comparing	Figs. 13	with	17	and	Figs. 14	with	18,	we	observe	that	
after	LFWI	the	multimodal	behaviour	in	the	estimated	PPDs	disappears	and	that	the	probability	
distributions	become	narrower,	thus	demonstrating	that	the	whole	set	of	starting	models	is	located	
in the same model-space region, and that, where the model is sufficiently illuminated by the wave-
fronts,	the	true	Vp values occur within the final PPDs. We also show three velocity profiles (Fig.	
19) at the three horizontal positions along the model. The set of starting models is displayed by the 
grey beam, the set of final models is displayed by the cyan beam, and the true model by the black 
line. Similarly to the first test, the analysis of Fig. 19	and	the	comparison	between	the	GA+GS	
and GA+GS+LFWI marginal distributions highlight some key points: 1) the set of models (grey 
beam)	 resulting	 from	 GA	 FWI	 well	 reconstructs	 the	 low	 frequency	 trend	 of	 the	 true	 velocity	
model; 2) there is a loss of resolution with depth and near the edges of both the GA and LFWI 

Fig. 15 - a) Mean model of the set of 200 
results of LFWI; b) approximate 99% 
confidence interval of the 200 LFWI models; 
c)	model	error,	that	is	the	absolute	difference	
between the true (Fig. 9a) and the mean (b) 
models. Note the correlation between (b) 
and	(c).
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solutions; 3) the distributions become narrower after local FWI, and 4) the estimation of the true 
model	is	improved	after	local	FWI,	especially	for	the	central	part	of	the	model	where	the	seismic	
illumination is higher. This second example constitutes a further confirmation of the ability of the 
GA method to find a good starting model for LFWI, and also demonstrates the reliability of the 
proposed	method	for	uncertainty	estimation.

Fig. 16 - a) The observed first shot; b) the corresponding predicted shot after the GA+GS+LFWI optimization; c) the 
differences	between	(a)	and	(b).

Fig. 17 - Final GA+GS+LFWI uncertainties estimated for three different cells located in the shallow part of the model 
and whose positions are indicated by the coloured dots in Fig. 13a. The red dashed lines indicate the model parameters 
estimated	by	the	LFWI,	whereas	the	green	dashed	lines	show	the	true	values.

Fig. 18 - Final GA+GS+LFWI uncertainties estimated for three different cells located at the centre of the model and 
whose positions are indicated by the coloured dots in Fig. 14a. The red dashed lines indicate the model parameters 
estimated by the LFWI, whereas the green dashed lines show the true values. Note the different horizontal scales in 
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Fig. 19 - a) The true model 
in	 which	 the	 coloured	 lines	
indicate	 the	 spatial	 position	 of	
the	 Vp profiles analyzed in (b); 
b)	 vertical	 Vp profiles for three 
horizontal positions. The black 
lines	indicate	the	true	model,	the	
grey beams show the set of 200 
starting	 models,	 and	 the	 cyan	
beams	 correspond	 to	 the	 set	 of	
200 models resulting from local 
FWI. Note that in the leftmost 
plot of Fig. 19b the ensembles of 
initial and final velocity models 
are	 overlapped	 due	 to	 the	 poor	
seismic	illumination	at	the	lateral	
edges	of	the	model.

6. Conclusions

We demonstrated the ability of a GA optimization in finding a velocity model suitable as input 
to local FWI. To this aim we cast the 2D local full-waveform inversion (LFWI) in a probabilistic 
framework by adopting a multi-step strategy. The first-step consisted in a global GA optimization 
aimed	at	 estimating	 a	 subsurface	macro	model	 that	 contains	 the	 long-wavelengths	of	 the	 true	
model. At the end of this step a rough uncertainty estimation can be derived (GA PPD). To refine 
this	uncertainty	estimation,	a	Gibbs	sampler	was	used	to	appraise	the	ensemble	of	GA-sampled	
models and their likelihood values. This step yields a reliable estimation of the uncertainties 
affecting the GA solution (GA+GS PPD). Then, the PPD estimated by GS was exploited to 
generate a set of initial models for LFWI. This last inversion step transforms the initial set of 
starting models in a new set of subsurface models that can be used to numerically derive the final 
uncertainty	estimation	(GA+GS+LFWI	PPD).

It	resulted	that,	differently	from	the	standard	local	approach	to	FWI,	GA	FWI	permits	to	determine	
not	only	a	single	velocity	macro-model	suitable	to	act	as	starting	model	for	LFWI,	but	also	permits	
to cast the FWI problem in a probabilistic framework. To make the GA inversion computationally 
feasible,	we	applied	a	 two-grid	approach	that	uses	a	coarse	grid	with	a	variable	grid	spacing	in	
the optimization phase, and a fine regular grid in the forward modelling phase. We validated the 
reliability	of	the	proposed	method	by	checking	the	uncertainty	propagation	from	the	starting	models	
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to the final LFWI models. This procedure has been tested on a simple inclusion model and on 
the	more	challenging	Marmousi	model.	We	showed	that	the	multimodal	and	wide	marginal	PPDs	
derived	from	the	global	optimization	(GA+GS	PPD)	become	unimodal	and	narrower	after	local	
FWI and, in the most illuminated part of the subsurface, contain the true model parameters. This 
indicates	that	the	set	of	models	derived	from	the	GA+GS	PPD	produces	an	ensemble	of	starting	
models	that	enable	local	FWI	to	converge	toward	the	same	model-space	region.
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Appendix: Mathematical details of the uncertainty-estimation procedure 

In	this	appendix,	we	give	a	detailed	description	of	the	method	we	use	to	estimate	uncertainty	
in	 FWI.	 We	 start	 with	 a	 brief	 recall	 of	 the	 Bayesian	 formulation	 of	 inverse	 problems	 before	
describing	the	approach	we	follow	for	unbiased	uncertainty	estimation	after	a	GA	optimization.	
Finally, the kernel density estimation approach is discussed. This is a non-parametric method that 
we use in the last step of our procedure in order to extract the final probability distribution from 
the	set	of	subsurface	models	resulting	from	local	FWI.

In	the	following	the	model	and	the	data	are	represented	by	vectors	m	and	d, respectively:
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m	=	[m1,m2,...,mM]T	 (A1)

d	=	[d1,d2,...,dN]T	 (A2)

that	consist	of	elements	mi and	di, respectively. The superscript T	represents	a	matrix	transpose,	
while	M	and	N	are	the	number	of	model	parameters	and	data	samples,	respectively.	Each	element	
in	the	vectors	m	and	d	is	considered	to	be	a	random	variable.	From	the	Bayesian	viewpoint,	the	
solution	to	the	inverse	problem	is	the	posterior	probability	distribution	(PPD)	that	represents	all	
information	available	on	the	model.	Its	calculation	depends	upon	the	data,	any	prior	information,	
and	on	the	noise	statistics	(which	is	assumed	known).	At	any	point	m,	in	the	M-dimensional	model	
space, the PPD is given by:

p(m	|	d)	∝	p(d	|	m)	ρ(m) (A3)

where	ρ(m)	 is	 the	prior	probability	distribution,	p(d|m)	 is	 the	 likelihood	 function	and	d	 is	 the	
observed data set. Assuming Gaussian errors, the likelihood function takes the following form:

p(d	|	m)	∝	exp	[–E(m)] (A4)

where	E(m)	 is	 the	error	function	that	expresses	the	difference	between	modelled	and	observed	
data. Inserting Eq. A4 into Eq. A3 leads to:

p(m	|	d)	∝	exp	[–E(m)]	p(m) (A5)

Eq. A5 represents the posterior probability distribution that is the final results of a Bayesian 
inversion.	 In	case	of	multidimensional	model	space	 the	PPD	cannot	be	easily	displayed	and	
for	this	reason,	several	measures	of	dispersion	and	marginal	density	functions	can	be	used	to	
describe	the	solution.	Among	these,	the	marginal	PPD	of	a	particular	model	parameter	is	given	
by:

p(mi	|	d)	=	�	dm1	�	dm2	...	�	dmi–1	�	dmi+1 ...	�	dmM  p(m	|	d) (A6)

Eq. A6 can be written in a more general form as:

I	=	�	dm	f (m)	P(m) (A7)

where	 the	 domain	 of	 integration	 spans	 the	 entire	 model	 space	 and	 f(m)	 represents	 a	 generic	
function used to define each integrand. In Eq. A6 to simplify the notation we substitute p(m|d)	
with	P(m)	dropping	the	|d term. We keep this simplified notation from here on. Eq. A6 is usually 
referred	 to	 as	 a	Bayesian	 integral,	 and	 it	 can	be	 analytically	 computed	 in	 case	of	 a	 linear	or	
linearized	 inverse	 problem	 or	 it	 can	 be	 numerically	 derived	 for	 a	 non-linear	 problem	 (Sen	
and Stoffa, 1996). A numerical approximation of Eq. A6 can be derived using a Monte Carlo 
integration technique:
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(A8)

where	I-	indicates	the	numerical	approximation	of	the	Bayesian	integrals,	N	is	the	number	of	Monte	
Carlo	integration	points	and	q(m) is their density distribution that is assumed to be normalized:

�	dm	q(m) = 1 (A9)

Eq. A8 can be reformulated as a weighted average over the ensemble of Monte Carlo points:

(A10)

where	wk is the “important ratio” equal to:

(A11)

After	deriving	the	numerical	approximation	of	the	Bayesian	integrals	we	discuss	the	approach	
we	follow	to	derive	the	uncertainty	estimation	after	a	full-waveform	inversion	solved	by	GAs.	In	
this	step	the	entire	ensemble	of	GA	models	is	appraised	following	the	procedure	of	Sambridge	
(1999), which performs an importance sampling of the model space using GS. More in detail, 
the GS algorithm is used to refine the PPD estimated by the GA method. This step exploits the 
entire	ensemble	of	models	sampled	by	GAs	together	with	their	associate	likelihood.	After	the	GA	
inversion,	we	can	derive	the	GA	approximation	of	the	PPD	approximation	(GA	PPD)	by	dividing	
the explored model space in Voronoi cells and by simply setting the known PPD of each model as 
a constant inside its Voronoi cell:

PGA(m)	=	P(mi
GA) (A12)

where	mi
GA	is	a	model	in	the	ensemble	of	GA-sampled	models	that	is	closest	to	m, that	is	a	generic	

point in the model space. Note that PGA(m) represents	all	information	contained	in	the	ensemble	
of GA models and constitutes the only information available in the GS step to compute the final 
PPD. By assuming that the GA optimization has performed an efficient exploration of the model 
space,	we	can	consider	PGA(m)	as	a	rough	approximation	of	the	target	PPD,	P(m):

PGA(m) � P(m) (A13)

This final PPD can be computed using a MCMC algorithm (such as the Gibbs sampler) 
that	generates	a	new	set	of	Monte	Carlo	samples	(the	resampled	ensemble)	whose	distribution	
asymptotically	 tends	 towards	 PGA(m).	 During	 the	 GS	 walks	 the	 density	 distribution	 of	 the	
resampled	ensemble	[indicated	by	q(m) in Eq. A8] satisfies the following relation:

q(m) � PGA(m) (A14)
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The assumption that the PGA(m)	 is	 a	 rough	 approximation	 of	 the	 target	 P(m) (Eq. A13) 
determines that the importance ratio can be approximated to 1:

(A15)

Finally, the Bayesian integral of Eq. A10 can	be	derived	as	a	simple	average	over	the	resampled	
ensemble:

(A16)

where	mk
GS is	a	model	sampled	during	the	GS	step,	N	is	the	total	number	of	resampled	points	and	

f is the generic function already introduced in Eq. A7.
The computational time (t)	of	the	GS	step	linearly	depends	on	the	number	of	GS	walks	(Ns),	on	

the	number	of	models	drawn	per	walk	(Nr)	and	on	the	dimension	of	the	model	space	(d)	according	
to the following expression:

t	∝ Nr Ns d (A17)

We refer the reader to Sambridge (1999) for more detailed information.
As	 illustrated	 in	 Fig.	 1	 the	 probability	 distribution	 estimated	 by	 the	 GS	 algorithm	 is	 used	

to draw a set of starting models that will constitute the input for gradient-based FWI (step 4 in 
Fig.	1). The ensemble of final models resulting from this inversion, are then exploited to derive 
the final uncertainties affecting the model parameters. To this end, we apply a non-parametric 
approach based on the kernel density estimation that is briefly described in the following. Let x 
=	[x1,	x2,	…,	xN]	be	independent	and	identically	distributed	samples	drawn	from	some	probability	
distribution	with	unknown	density	f. The kernel density estimation of this distribution is based on 
the	ensemble	of	samples	xi and it can be derived as follows:

(A18)

where	K	represents	the	kernel	function,	that	is	a	non	negative	and	symmetric	function,	and	h	is	a	
non	negative	smoothing	parameter	called	the	bandwidth.	In	this	work	the	Epanechnikov	kernel	
has been considered (Doyen, 2007):

(A19)
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