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Abstract In this paper we analyze the performance of dif-
ferent combinations of: (i) parameterization of the rotational
degrees of freedom (DOF) of multibody systems, and (ii)
choice of the integration scheme, in the context of direct op-
timal control discretized according to the direct multiple-
shooting method. The considered representations include
quaternions and Direction Cosine Matrices, both having the
peculiarity of being non-singular and requiring more than
three parameters to describe an element of the Special Or-
thogonal group SO(3). These representations yield invari-
ants in the dynamics of the system, i.e. algebraic condi-
tions which have to be satisfied in order for the model to
be representative of physical reality. The investigated inte-
gration schemes include the classical explicit Runge-Kutta
method, its stabilized version based on Baumgarte’s tech-
nique, which tends to reduce the drift from the underlying
manifold, and the structure-preserving alternative, namely
the Runge-Kutta Munthe-Kaas method, which preserves the
invariants by construction. The performances of the com-
bined choice of representation and integrator are assessed
by solving thousands of planning tasks for a nonholonomic,
underactuated cart-pendulum system, where the pendulum
can experience arbitrarily large 3D rotations. The aspects
analyzed include: success rate, average number of iterations
and CPU time to convergence, and quality of the solution.
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The results reveal how structure-preserving integrators are
the only choice for lower accuracies, whereas higher-order,
non-stabilized standard integrators seem to be the compu-
tationally most competitive solution when higher levels of
accuracy are pursued. Overall, the quaternion-based repre-
sentation is the most efficient in terms of both iterations and
CPU time to convergence, albeit at the cost of lower success
rates and increased probability of being trapped by higher
local minima.
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1 Introduction

Numerical integrators preserving the structure of the non-
linear manifold on which the differential equation to be in-
tegrated is naturally evolving are well known to the scien-
tific community [1]. These schemes have already been suc-
cessfully applied to the simulation of multibody systems
(MBS) [2, 3], to mention only a few.

The main reason why these integration techniques lend
themselves to the simulation of the dynamics of systems of
rigid bodies in a 3D space is proper handling of the rota-
tional degrees of freedom (DOF). In fact, the orientation of
a body in space is not a vectorial quantity: it rather belongs
to a manifold, namely the Special Orthogonal group SO(3),
which can be parameterized in several different ways [4].
Since this manifold is locally isomorphic to E3, the three-
dimensional Euclidean space, it can be only locally param-
eterized by, e.g., Euler angles, a chart of three independent
coordinates. However, this minimal representation is not tai-
lored to be employed in contexts where the orientation to
be described spans a wide range. Euler angles suffer indeed

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/147682529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Silvia Manara et al.

from the inevitable presence of representation singularities.
In order to avoid this problem, often referred to as gimbal
lock, non-minimal representations of SO(3) must be em-
ployed, see [5] for an exhaustive overview. Non-minimal
parameterizations overcome singularities by employing a
higher-dimensional set of coordinates in the representation,
such as the four parameters of a unit quaternion (Q), or the
nine parameters corresponding to the elements of a rotation
matrix. We will refer to the latter parameterization as Direc-
tion Cosine Matrix (DCM). The introduced redundant coor-
dinates must satisfy additional algebraic constraints in order
for the representation to consistently describe physical rigid-
body rotations. Specifically, a quaternion is required to have
unit length, whereas a DCM is required to be an orthogonal
matrix. Since non-singular parameterizations evolve on non-
linear manifolds themselves (respectively the Special Uni-
tary group SU(2) for the unit quaternion and SO(3) itself
for the DCM parameterization [6]), standard schemes are
not tailored to be employed in their numerical integration.
Because of numerical errors, in fact, these objects tend to
drift away from the manifold they belong to.

This issue is relevant also in the context of direct op-
timal control, as standard integrators may cause the solu-
tion of the optimal control problem to be inconsistent for
long simulation times. This problem has already been ad-
dressed in [7], where the authors proposed to apply numeri-
cal techniques, such as Baumgarte’s method [8], to stabilize
the numerical integration on the Lie group. Despite being
easy to implement, this method requires the choice of coef-
ficients whose a priori calibration is not straightforward and
whose values are not easy to relate to the size of the resulting
integration error. A suitable alternative seems to be repre-
sented by the application of structure-preserving integration
schemes [9] in the propagation of Lie group elements over
time. For an overview on the application of such integrators
to MBS, we refer to [10, 11, 12]. Different Lie group integra-
tion schemes are available in the literature [13, 14]. In partic-
ular, the Runge-Kutta Munthe-Kaas (RK-MK) scheme [15]
consists in numerically integrating the differential equation
on the Lie algebra, which is a linear space, through conven-
tional Runge-Kutta (RK) methods, and then updating the
element of the nonlinear manifold by means of the expo-
nential mapping, which relates the Lie algebra to its group.
This method has been widely exploited in the integration of
rotations on SO(3) [16]. In a recent contribution [17], an
original integration scheme has been proposed which oper-
ates directly on the nonlinear manifold of unit quaternions
by first integrating the dynamics of the rotational DOF on
the Lie algebra so(3), and then mapping the incremental ro-
tation vector on SU(2).

In this paper, we analyze the performance of such
kind of Lie group integrators, respectively acting on SU(2)
and on SO(3), in the numerical solution of an optimal

control problem, which we tackle by employing a direct
method [18]. In [19], the performance of non-conventional
energy-preserving integration schemes in the context of di-
rect optimal control was assessed. Here, instead, we are
interested in comparing classical and geometric integra-
tors that preserve, the former via stabilization, the latter
by construction, the Lie group structure of the underlying
singularity-free 3D rotation representation. To the best of
our knowledge, this is the first time that a comparison be-
tween structure-preserving and standard integrators has been
assessed in the context of numerical optimal control. To this
end, RK-MK integrators are exploited in the solution of a
trajectory optimization for a simple but challenging bench-
mark mechanical system. Namely, it is a two-wheeled spher-
ical pendulum, which is made up of a unicycle connected to
a pendulum by a passive spherical joint (Fig. 1).

The problem of controlling an inverted pendulum has
traditionally attracted significant interest in nonlinear con-
trol literature because of the nonlinearity and instability
of its dynamics. Several control strategies have been pro-
posed to deal with the stabilization of the spherical pen-
dulum around its unstable equilibrium position, such as
[20, 21]. Interesting contributions were also devoted to study
the swing-up problem. For instance, in [22] the problem of
steering the spherical joint to a given position while swing-
ing up the pendulum is addressed. Here, the pendulum is ac-
tuated by a manipulator capable of delivering any 3D accel-
eration to the spherical joint, within the limits of the control
torques. In [23] a controller is proposed that can bring the
pendulum to the upright position, starting from any orienta-
tion in the upper hemisphere. The spherical joint is actuated
by an external force, which can have any direction on the
plane the joint is enforced to belong to.

Our trajectory planning problem is made significantly
more difficult by the nonholonomic constraints due to the
presence of the unicycle on which the spherical pendulum is
installed. These constraints, in fact, limit the instantaneous
acceleration of the spherical joint to the longitudinal direc-
tion of the cart. Even the control of simpler nonholonomic
vehicles, where the inverted pendulum is connected to a two-
wheeled cart by a cylindrical joint, still seems to be an open
research issue: several recently published papers [24, 25, 26]
were devoted to tackle this problem with different nonlinear
control tools.

The system we consider in this paper has been studied
in a recent contribution [27]. However, our goal here is sig-
nificantly different: while in such paper the focus is on the
linearization-based design of a controller aimed at stabiliz-
ing the inverted pendulum in a neighborhood of its upright
position (by maneuvering the cart), our aim is to find op-
timal trajectories to steer the unicycle to a given (possibly
distant) position while swinging the pendulum from the low
to the upright position. Because of the wideness of the do-
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main of pendulum orientations to be spanned, the rotation
parameterization based on Euler angles is unsuitable for this
application, and a singularity-free representation needs to be
employed.

2 Dynamic model

The benchmark system of the present study is represented in
Fig. 1. It consists of a unicycle, whose two wheels are sepa-
rately actuated by two independent torques, and of a pendu-
lum connected to its axle through a passive spherical joint.
The values of geometric and inertial parameters are provided
in Table 1, whereas the system’s variables are defined in Ta-
ble 2.

Let us derive the dynamic equations of the system. Sup-
pose no sliding occurs between each wheel and the ground
at the contact point, and that points A and B coincide (d = 0).
Then, the kinematic relation between the yaw rate of the axle
and the angular velocities of the wheels can be expressed as:

θ̇ =
r

2a
(θ̇r− θ̇l) (1)

The absolute forward speed v of point B (and A) of the axle
can be expressed through the following nonholonomic rela-
tion:

v =
r
2
(θ̇r + θ̇l) (2)

Projecting Eq. (2) along the unit vectors is and js of the fixed
frame {S}, and differentiating with respect to time, we ob-
tain the following expressions for the linear acceleration of
point B of the axle in {S}:
{

ẍB = r
2 cosθ(θ̈r + θ̈l)− r

2 sinθ(θ̇r + θ̇l)θ̇

ÿB = r
2 sinθ(θ̈r + θ̈l)+

r
2 cosθ(θ̇r + θ̇l)θ̇

(3)

The equilibrium equations of the pendulum around the
spherical joint in B read:

Jp,Bω̇ +ω×Jp,Bω = BG×FB (4)

where Jp,B indicates the inertia tensor of the pendulum with
respect to joint B and ω its absolute angular velocity, both
expressed in the body-fixed frame {B}. BG is the vector
connecting point B to point G, where the center of mass of
the pendulum is located, whereas FB can be interpreted as a
virtual force acting on the center of mass of the pendulum,
caused by the acceleration of point B, and including also the
effect of gravity. In the body-fixed reference frame {B}, FB
and BG can be expressed as:

FB =−mpR>sb




ẍB
ÿB
g


 BG =




0
0
l


 (5)

In order to describe the orientation of the pendulum in
space, a singularity-free parameterization of SO(3) must be
employed. In this paper, two non-singular parameterizations
of the rotation matrix Rsb are considered: one is based on the
unit quaternion, the other on the DCM representation. In the
following, the kinematic equations for both representations
are presented.

2.1 Quaternion parameterization

Quaternions are a number system that extends complex
numbers to a four-dimensional space. A quaternion q may
be indicated as:

q = (q0,qv) (6)

q consists of a scalar part q0 and a three-dimensional vector
part qv, which can be written as qv = qiei, where ei repre-
sents each direction of the standard orthonormal basis in a
3D space for i ∈ {1,2,3}. The quaternion’s conjugate q∗ is
defined as:

q∗ = (q0,−qv) (7)

Let us define the product of two quaternions q and p as fol-
lows:

q ·p = (q0 p0−q>v pv,q0pv + p0qv +qv×pv) (8)

The square root of the product of a quaternion and its con-
jugate is called quaternion norm, indicated here as ‖q‖:
‖q‖2 = q ·q∗ = (q2

0 +q>v qv,0) (9)

Unit quaternions belong to the group SU(2) and therefore
satisfy the unit length condition:

‖q‖−1 =
√

q2
0 +q>v qv−1 = 0 (10)

A unit quaternion can parameterize the rotation matrix
Rsb in every point of SO(3) according to the following rela-
tion [28]:

Rsb(q) =
1
4

Gs(q)Gb(q)> (11)

with

Gs(q) = 2



−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0


 (12)

Gb(q) = 2



−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0


 (13)

The quaternion dynamics can be expressed as:

q̇ =
1
4

Gb(q)>ω (14)

Since Gb(q)q = 0 holds, it is straightforward to prove that
Eq. (14) preserves the norm ‖q‖ of the quaternion over time.
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Fig. 1 Schematic of the benchmark system employed in the optimal control problem.

Table 1 Geometric and inertial parameters.

Parameter Definition Value

r Wheel radius 0.05m
a Semi-length of the axle 0.10m
l Semi-length of the pendulum 0.25m
d Distance between point A in the middle of the axle and the spherical joint B 0
g Acceleration of gravity 9.81ms−2

mw Mass of the wheel 0.25kg
Jw Moment of inertia of the wheel wrt its axis 3.25 ·10−4 kgm2

Jd
w Moment of inertia of the wheel wrt its diameter 1.625 ·10−4 kgm2

ma Mass of the axle 0.5kg
Ja Moment of inertia of the axle wrt axis za 1.66 ·10−3 kgm2

mp Mass of the pendulum 1.0kg
Jp,G Inertia tensor of the pendulum wrt {G} reference frame Jp,Gx = Jp,Gy = 10Jp,Gz = 2.08 ·10−2 kgm2

2.2 DCM parameterization

Parameterizing the rotation Rsb via a DCM description con-
sists in describing such rotation by using all of the elements
of Rsb as parameters. Such elements represent the direction
cosines of each axis of the body-fixed reference frame {B}
with respect to the fixed reference frame {S}, see [29]. In or-
der for a matrix R∈R3×3 to be a valid DCM, it must belong
to SO(3), i.e. it must satisfy the orthonormality condition:

R>R− I = 0 (15)

Let us introduce the operator ·̂ : R3 → R3×3 that maps any
three-dimensional vector v into its skew-symmetric matrix

form v̂, defined as:

v̂ =




0 −vz vy
vz 0 −vx
−vy vx 0


 (16)

(vx,vy,vz) being the components of the representation of v
in a generic frame of reference.

It can be easily verified that orthonormality is preserved
over time through the dynamics of the DCM, which reads:

Ṙ = Rω̂ (17)

Here, ω̂ ∈ so(3) indicates the skew-symmetric matrix form
of the angular velocity ω , expressed in the body-fixed refer-
ence frame.



On the integration of singularity-free representations of SO(3) for direct optimal control 5

Table 2 Definition of the system’s variables.

Symbol Definition

θr Rotation angle of the right wheel
θl Rotation angle of the left wheel
θ Yaw angle of the axle
xB xs coordinate of point B (and A)
yB ys coordinate of point B (and A)
aB absolute acceleration of point B (and A)
xG xs coordinate of the center of mass G of the pendulum
yG ys coordinate of the center of mass G of the pendulum
zG zs coordinate of the center of mass G of the pendulum
aG absolute acceleration of the center of mass G of the pendulum
Fr Longitudinal component of the friction force acting on the right wheel
Fl Longitudinal component of the friction force acting on the left wheel
τr Internal torque acting on the right wheel
τl Internal torque acting on the left wheel
Rsb Rotation matrix describing the orientation of the body-fixed frame {B} wrt the fixed frame {S}
v Norm of the absolute velocity of point B (and A) of the axle
ω Body-fixed frame {B} components of the absolute angular velocity of the pendulum

2.3 Equations of Motion

Let us briefly summarize the Equations of Motion (EOM)
expressing the dynamics of the system. We consider two dif-
ferent formalizations of the same problem, differing only in
the parameterization of the 3D orientation of the spherical
pendulum. They are parameterized respectively by:

1. unit quaternion (Q)
2. DCM

2.3.1 Case 1: Unit quaternion (Q)

In case 1, the state vector z of the system consists of:

z = (q,xB,yB,θ ,ω,v)> (18)

For future reference, we conveniently partition the global
state into two subvectors, respectively defined as:

q, χ = (xB,yB,θ ,ω,v)> (19)

Given this state-space description, the EOM of the system
can be expressed as follows:

q̇ = fq(q,χ) =
1
4

Gb(q)>ω (20)

χ̇ = fχ(q,χ,u) (21)

The controls are chosen as

u =

(
uθ

uv

)
=

(
θ̇

v̇

)
. (22)

This implies full authority on the 2D kinematics of the
cart and allows to decouple the dynamics of the wheel/cart
subsystem from that of the pendulum, which enhances the
numerical tractability of the system. Were we interested
in computing the corresponding torques (τr,τl) acting on

the wheels, we would use the given controls (uθ ,uv), the
computed trajectory z and its time derivative ż, along with
Eqs. (1), (2) and their time derivatives, to compute, via in-
verse dynamics, the longitudinal forces (Fr,Fl) and then
(τr,τl). The procedure would trace the following steps.
From the translational equilibrium of the whole system
along ia, Eq. (23), and the rotational equilibrium of the
wheel/cart subsystem along ks through point B, Eq. (24),
one would obtain Fr and Fl by solving the following system

Fr +Fl = (ma +2mw)v̇+mpaG · ia (23)

(Fr−Fl)a = (Ja +2Jd
w +2mwa2)θ̈ (24)

where aG is readily computed as follows

aG = aB +Rsb( ˆ̇ω + ω̂
2)BG (25)

At this point, the dynamics of the right and left wheels
around their respective axes, which reads:
{

Jwθ̈r = τr−Frr

Jwθ̈l = τl−Flr
, (26)

would provide the sought input torques τr and τl . It is worth
mentioning that, despite limits on the kinematic controls uθ

and uv are taken into account to model actuator saturation (as
shall be stated in Eq. (32)), this does not ensure that possible
limits on torques are met, as this verification would be done
only a posteriori. A suitable way to circumvent this problem
is setting the limits on u as conservatively as possible.

However, given the current choice of states and controls
in Eqs. (19) and (22), the dynamics fχ reads:

χ̇ = fχ(q,χ,u) =




uv cosθ − vuθ sinθ

uv sinθ + vuθ cosθ

uθ

J−1
p,B

[
B̂GFB− ω̂(Jp,Bω)

]

uv




(27)
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2.3.2 Case 2: Direction Cosine Matrix (DCM)

In case 2, the state z is parameterized as:

z = (R,xB,yB,θ ,ω,v)> (28)

which can be partitioned into:

R, χ = (xB,yB,θ ,ω,v)> (29)

Taking into account all the previous considerations together
with Eq. (17), the EOM of the system are given in this case
by:

Ṙ = fR(R,χ) = Rω̂ (30)

χ̇ = fχ(R,χ,u) (31)

In the following, the dynamics of the system will be re-
ferred to as ż = f (z,u), i.e. Eqs. (20) and (21) together in
case 1, or Eqs. (30) and (31) together in case 2.

3 Trajectory optimization

In this section, the trajectory optimization problem is pre-
sented. Then, the main issues related to the presence of in-
variants in the dynamics, due to non-minimal parameteriza-
tions of SO(3), are addressed. Finally, the numerical method
employed to solve the problem is introduced.

3.1 Optimal Control Problem formulation

The Optimal Control Problem (OCP) whose solution con-
tains a sequence of control actions that steer the unicycle
from a given initial state to a predefined one, within a given
time horizon T , is expressed by:

min
z(·),u(·)

∫ T

0
L(z(t),u(t))dt

subject to z(0) = zin

z(T ) = zdes

ż(t) = f (z(t),u(t)), t ∈ [0,T ]

h(u(t))≤ 0, t ∈ [0,T ]

(32)

Here, the symbols z and u denote, respectively, states and
controls of the system. In the inequality constraints h(·),
limits on the controls are imposed, so as to model actuator
saturation.

Among all the possible trajectories that bring the system
from the initial state zin to the desired final state zdes while
satisfying the dynamics, we seek one which minimizes an
integral cost function. Specifically, the minimized objective
function consists of three terms, respectively aimed at:

– minimizing the difference between the current and the
desired position of the axle,

– maximizing the gravitational potential energy, so as to
penalize the deviation of the current orientation of the
pendulum from the desired (vertical) one,

– minimizing the time derivatives of the controls, so as to
smooth the optimal trajectory.

Therefore, the Lagrange-type objective function L(·) is de-
signed as

L(z,u) = k1∆(z)− k2mpzGg+ k3

∥∥∥∥
du
dt

∥∥∥∥
2

(33)

where the weighting coefficients (k1,k2,k3) > 0 are chosen
once for all, in such a way that the three terms are appropri-
ately scaled and thus their contributions to the cost function
have approximately the same order of magnitude in absolute
value. The function ∆(z) aims to minimize the difference
between the current and the final position of the axle, and it
is defined as:

∆(z)= cx‖xB−xdes‖2+cy‖yB−ydes‖2+cθ‖θ−θdes‖2 (34)

where (xdes,ydes) and θdes respectively identify the desired
final Cartesian position and orientation of the axle, and the
coefficients (cx,cy,cθ ) were selected to appropriately scale
the different measures.

3.2 Optimal control for equations with invariants

We aim to optimize a motion between two specified states
zin and zdes. Since in both formalizations (cases 1 and 2)
the parameterization of the rotational DOF of the pendulum
is non-minimal, the components of the state vector which
parameterize SO(3) belong to a nonlinear manifold. States
zin and zdes identify two points belonging to the same man-
ifold. Moreover, the equations describing the dynamics of
the SO(3) parameterization, namely fq in case 1 and fR in
case 2, respectively preserve the norm of the quaternion and
the orthonormality of the DCM. In fact, as already men-
tioned in Section 2, these quantities are invariant in the con-
sidered dynamics. As a result, the constraints of the nominal
OCP:




z(0) = zin
z(T ) = zdes
ż(t) = f (z(t),u(t))

(35)

turn out to be redundant in both formulations. Let us indi-
cate a generic invariant by the notation c(z) = 0. Recall that,
in our case, this condition identifies the manifold the con-
sidered parameterization of SO(3) belongs to. Since the dy-
namics f intrinsically preserves this invariant over time [30],
the condition c(z) = 0 needs to be imposed only at one point
of the trajectory z(t), and this condition will be sufficient to



On the integration of singularity-free representations of SO(3) for direct optimal control 7

guarantee that the whole trajectory z(t) evolves on the man-
ifold. Therefore, imposing both conditions
{

c(zin) = 0
c(zdes) = 0

(36)

is redundant, and the constraint equations (35) are linearly
dependent: this implies that the Linear Independence Con-
straint Qualification (LICQ) condition does not hold [31],
causing problems in the numerical solution.

To prevent the OCP from violating the LICQ, a null-
space approach, as proposed in [32], can be applied.
Namely, this approach consists in substituting the nominal
constraints (35) of the OCP with an equivalent set of con-
straints, where the redundant condition is eliminated by pro-
jection into the null-space of the Jacobian ∂c

∂z . Consequently,
the equivalent OCP reads:

min
z(·),u(·)

∫ T

0
L(z(t),u(t))dt

subject to z(0) = zin

W>(z(T )− zdes) = 0
ż(t) = f (z(t),u(t)), t ∈ [0,T ]

h(u(t))≤ 0, t ∈ [0,T ]

(37)

where W is an orthonormal basis of the null-space of the
Jacobian matrix J = ∂c

∂z (z(T )), which is assumed to have
full rank.

3.3 Numerical solution

There are several ways to obtain the numerical solution
of a trajectory optimization problem [33]. In this work a
direct multiple shooting method [34] is applied to solve
the OCP (37). This method consists in parameterizing the
continuous time OCP into a finite-dimensional nonlinear
program (NLP). The time horizon T is discretized into N
time intervals [tk, tk+1], such that t0 = 0, tN = T and k ∈
{0,1, . . . ,N− 1}. Accordingly, the trajectories of the states
z(t) and controls u(t) are parameterized respectively by the
sequences {zk} and {uk} of optimization variables. The con-
trols uk are assumed to be piecewise constant over each time
interval [tk, tk+1], whereas, in order to relate the current state
zk to the value zk+1 it assumes at the end of the subsequent
time interval, the Ordinary Differential Equation (ODE) de-
scribing the dynamics of the system is integrated numeri-
cally over the period [tk, tk+1], starting from the initial value
zk:
{

ż(t;zk,uk) = f (z(t;zk,uk),uk)

z(tk;zk,uk) = zk
(38)

The integral cost function is numerically approximated con-
sistently.

Thus, the original continuous time OCP results in the
following finite-dimensional NLP:

min
{zk},{uk}

N−1

∑
k=0

L(zk,uk)(tk+1− tk)

subject to z0 = zin

W>(zN− zdes) = 0
zk+1− z(tk+1;zk,uk) = 0, ∀k ∈ {0,N−1}
h(uk)≤ 0, ∀k ∈ {0,N−1}

(39)

This NLP is equivalently rewritten in the following form:

min
ν

F(ν)

subject to gi(ν) = 0, ∀i ∈ E

gi(ν)≤ 0, ∀i ∈I

(40)

in which ν indicates a vector collecting all the decision vari-
ables of the NLP (39). The vector function g(·) describes
all the constraints, E and I being the sets of indices corre-
sponding, respectively, to equalities and inequalities. Their
cardinalities are denoted, respectively, by the symbols me
and mi. Any local minimizer ν∗ of problem (40) must sat-
isfy the first-order necessary conditions of optimality. These
conditions involve the stationarity of the Lagrangian, de-
fined as follows:

L (ν ,λ ) = F(ν)+λ
>g(ν)

where λ ∈Rmi+me is a vector collecting the Lagrange multi-
pliers, or dual variables. If ν∗ is a local minimum satisfying
LICQ, then a unique vector λ ∗ exists such that the following
relations, often referred to as Karush-Kuhn-Tucker (KKT)
conditions [31], hold:

∇F(ν∗)+ ∑
i∈I∪E

λ
∗
i ∇gi(ν

∗) = 0, (41)

gi(ν
∗) = 0, ∀i ∈ E (42)

gi(ν
∗)≤ 0, ∀i ∈I (43)

λ
∗
i gi(ν

∗) = 0, λ
∗
i ≥ 0, ∀i ∈I (44)

Specifically, in Eq. (41) stationarity of the Lagrangian at
(ν∗,λ ∗) is required, Eqs. (42) and (43) imply that ν∗ must
belong to the feasible set, and in Eq. (44) a complemen-
tarity condition on the dual variables corresponding to in-
equality constraints is stated. The KKT conditions form a
system of nonlinear equations, which can be solved numeri-
cally via Newton-like methods [18]. In this paper, a primal-
dual interior-point solver is employed in order to compute
local minimizers (ν∗,λ ∗) of (39). Thus, the obtained op-
timal trajectory {z∗k} approximates a continuous-time state
trajectory z∗(t) that locally minimizes (37) with an accuracy
that depends on the accuracy of the integration scheme used
for the integration of (38). This approximation is consistent
with that to which the control sequence {u∗k} approximates
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the corresponding optimal control trajectory u∗(t). Among
the Lagrange multipliers λ ∗, those relative to the continuity
constraints zk+1− z(tk+1;zk,uk) = 0 constitute an approxi-
mation of the costates of the OCP (37), see e.g. [35]. In [36],
it was shown that this approximation has a lower order of
accuracy. It is worth emphasizing that, in the event that the
same order of accuracy were pursued for both the primal
and the dual variables, specific direct methods might be em-
ployed that, under certain assumptions [37], can avoid this
inconvenience.

4 Integration schemes

The need for numerically integrating the dynamics f of the
system over each time interval [tk, tk+1], i.e. solving the ini-
tial value problem (IVP) stated in (38), poses some issues
when f intrinsically preserves some invariant quantity. In
fact, in order to avoid redundancy in the constraints of the
OCP, the condition c(z) = 0, which in our case ensures
that the non-minimal parameterization of a rotation belongs
to the correct nonlinear manifold, must be imposed just at
one point of the state trajectory, which was chosen as z0
in (39). When the integration is carried out using standard
integrators for long simulation horizons, numerical errors
cause the state trajectory to drift away from the underlying
SO(3) manifold, which makes the computed solution inac-
curate. However, specific geometric integration techniques
exist which guarantee that the solution of the IVP preserves
the structural properties of the Lie group to numerical accu-
racy.

In this section, standard numerical integration schemes
are briefly recalled, mostly for setting the notation. Fur-
thermore, the most popular techniques used to handle the
drift due to numerical integration errors are addressed. Af-
terwards, two structure-preserving numerical integrators, re-
spectively acting on the Special Unitary group SU(2) and on
the Special Orthogonal group SO(3) are introduced. The ef-
ficiency of the application of these integration schemes for
the solution of our benchmark trajectory optimization prob-
lem will be analyzed in Section 5.

4.1 Standard RK integrators

Let us briefly describe the classical explicit RK integration
method [38]. Suppose that a differential equation ẏ(t) =
f (y(t), t) is given and that the state value yk at time t = tk
is known. Then, a numerical method can be employed in the
solution of the IVP

{
ẏ(t) = f (y(t), t)

y(tk) = yk
(45)

Specifically, the s-stage explicit RK method consists in ap-
proximating the solution yk+1 of the differential equation at
time tk+1 = tk +h by applying the following algorithm:

y(i)← yk
for i = 1,2, . . . ,s do

κ(i)← f (y(i), tk + cih)
y(i)← yk +h∑

i−1
j=1 ai jκ

( j)

end for
yk+1 = yk +h∑

s
i=1 biκ

(i)

where the coefficients ci, ai j, bi are defined by the respective
Butcher table.

As already mentioned, such integration schemes are not
tailored to be employed in the integration of quantities
evolving on a nonlinear manifold. In fact, in the event that
y(t) belongs to a Lie group, despite the structure of the group
is invariant through the dynamics ẏ(t) = f (y(t), t), a classi-
cal RK integrator does not guarantee its preservation.

In order to tackle this problem, stabilization techniques
[39] aimed at reducing the drift from the manifold due to nu-
merical integration errors may be employed. Among them,
the most popular is Baumgarte’s method, which consists in
adding a fictitious dynamics to the differential equations
evolving on a manifold. This correction term ensures the
damping of numerical integration errors, such that the so-
lution of the differential equation converges to the mani-
fold. The application of this method to the stabilization of
the dynamics of a unit quaternion or a DCM, i.e. Eqs. (20)
and (30), results respectively in:

q̇ =
1
4

Gb(q)>ω + γq
(
(‖q‖2)−1−1

)
q (46)

Ṙ = Rω̂ + γR(R>R− I)R (47)

where the coefficients γq and γR must be calibrated so as to
guarantee the stability of the above differential equations.
This calibration should consider the dynamics of the drift,
which should be made as fast as the numerical issues re-
lated to the stiffness of the resulting equations allow. In
the analysis presented in the following, Baumgarte’s coef-
ficients were calibrated by performing extensive numerical
tests aimed at assessing the sensitivity of the stabilized dy-
namics to their variation, in accordance with the guidelines
in [7]. As a result, γq = 2 and γR = 1 were chosen.

It is worth mentioning that Baumgarte’s stabilization has
been successfully applied to the stabilization of singularity-
free parameterizations of SO(3) in the context of direct op-
timal control in the recent contributions [40, 41].

4.2 Quaternion integrator

As a redundant parameterization, also quaternion integration
must be handled with care. In fact, since the unit length con-
dition stated in Eq. (10) must be satisfied in order for the
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quaternion to belong to SU(2), the integration of a Differen-
tial Algebraic Equation (DAE) has to be addressed. To cir-
cumvent this problem, Lie group methods, such as Crouch
Grossmann or Munthe-Kaas, were recently applied to the
integration of quaternions [17, 42]. In this paper we refer
to the integrator proposed in [17], which is briefly reviewed
here. For a more detailed explanation, the reader is referred
to [17] and the references therein.

Let the kinematic reconstruction equation of the consid-
ered rotation Rsb be:

Ṙsb(t) = Rsb(t)ω̂ (48)

where ω is the angular velocity expressed in the body-fixed
reference frame and ω̂ ∈ so(3) its skew-symmetric matrix
form. This ODE system evolves on the Lie group SO(3),
thus the solution is formally given by:

Rsb(t) = Rsb(t0)expSO(3)(ŵ) (49)

where ŵ ∈ so(3) is the instantaneous rotation vector and the
exponential mapping is defined in closed form by the Ro-
drigues’ formula [43]:

expSO(3)(ŵ) = I+
sin‖w‖
‖w‖ ŵ+

1− cos(‖w‖)
‖w‖ ŵ2 (50)

The instantaneous rotation vector w solves the following
ODE system [9, 15]:

ẇ = dexp−1
−w ω (51)

with the initial value w(t0) = 0.
The operator dexp−1

−w : so(3)× so(3) → so(3) is given in
closed form by the formula:

dexp−1
−w = I+

1
2

ŵ−
‖w‖cot

(
‖w‖

2

)
−2

2‖w‖2 ŵ2 (52)

It is worth noticing that Eq. (51) is a differential equation
evolving on the Lie algebra so(3), which is a linear space.
Therefore, in order to compute a solution for Eq. (14), the
Munthe-Kaas (MK) method prescribes to first integrate this
equation using a standard RK integrator, so as to obtain an
instantaneous rotation vector w. This vector is then mapped
onto the group SU(2) by means of the exponential mapping
expSU(2), which relates elements on the tangential space to
elements of the group SU(2) itself. This map is also avail-
able in closed form:

expSU(2)(w)= cos
(

1
2
‖w‖

)
(1,0)+

sin
( 1

2‖w‖
)

‖w‖ (0,w) (53)

The computed quantity can be used subsequently to update
the quaternion parameterization.

The implemented algorithm for the integration in the
time interval [tk, tk +h] is presented below:

q(i)← qk, χ(i)← χk
for i = 1,2, . . . ,s do

κ
(i)
q ← fq(q(i),χ(i))

κ
(i)
χ ← fχ(q(i),χ(i),uk)

χ(i)← χk +h∑
i−1
j=1 ai jκ

( j)
χ

w(i)← h∑
i−1
j=1 ai jκ

( j)
q

end for
χk+1 = χk +h∑

s
i=1 biχ

(i)

qk+1 = qk · expSU(2)(h∑
s
i=1 biw(i))

4.3 DCM integrator

Also the DCM presents some difficulties in its time integra-
tion due to the redundancy of the parameterization. In this
case, the condition to be satisfied for the DCM to belong
to the Lie group SO(3) is the orthonormality of the param-
eterization R, stated in Eq. (15). The MK method may be
applied to the integration of Eq. (17), which is an ODE di-
rectly evolving on the Lie group SO(3).

The solution of the kinematic reconstruction equation is
given by Eq. (49). In order to solve it, its differential form
can be first integrated numerically, namely Eq. (51), which
evolves on the Lie algebra so(3). Afterwards, the instanta-
neous rotation vector w can be mapped on the group SO(3)
through the corresponding exponential mapping expSO(3).

The integration algorithm in the time interval [tk, tk + h]
can be therefore implemented as follows:

R(i)← Rk, χ(i)← χk
for i = 1,2, . . . ,s do

κ
(i)
R ← fR(R(i),χ(i))

κ
(i)
χ ← fχ(R(i),χ(i),uk)

χ(i)← χk +h∑
i−1
j=1 ai jκ

( j)
χ

w(i)← h∑
i−1
j=1 ai jκ

( j)
R

end for
χk+1 = χk +h∑

s
i=1 biχ

(i)

Rk+1 = Rk expSO(3)(h∑
s
i=1 biw(i))

5 Numerical results

In order to assess the performance of structure-preserving
integrators in trajectory optimization problems via direct
multiple shooting, we compare the solutions obtained for
our benchmark problem using different schemes for inte-
grating the rotational DOF of the pendulum over the shoot-
ing segments. The OCP described in Section 3 was formu-
lated in the CasADi framework [44], and the resulting NLP
was solved using the interior-point solver IPOPT [45].

For the comparison, three different integration schemes
were employed in the integration of the EOM of each of the
dynamic models described in Section 2.3:
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Table 3 Number of nodes in the graph representation of each model (row), integration-scheme (column) pair.

Model Standard RK4
Standard RK4

with Baumgarte’s stabilization
Lie group integrator

(integration + exponential mapping)

Quaternion 639 712 903+49
DCM 521 810 900+112

Table 4 Average computational time (in ms) per exact Newton iteration for each model (row), integration-scheme (column) pair.

Model Standard RK4
Standard RK4

with Baumgarte’s stabilization Lie group integrator

Quaternion 67 68 102
DCM 91 113 148

(a) Standard one-step explicit 4th-order RK integrator, with-
out any stabilization for the singularity-free parameteri-
zation of SO(3) (hereafter RK)

(b) Standard one-step explicit 4th-order RK integrator,
where the singularity-free parameterization of SO(3)
is stabilized through Baumgarte’s method (hereafter
RK+BG)

(c) One-step 4th-order RK-MK Lie group integrator, il-
lustrated in Sections 4.2 and 4.3, respectively, for the
quaternion and the DCM parameterization (hereafter
RK-MK).

5.1 Model complexity

The software tool CasADi, employed for formulating and
solving each OCP, enables efficient calculation of the
derivatives required by Newton-based optimization solvers
through state-of-the-art methods for Algorithmic Differen-
tiation (AD) [46]. In order to perform AD, CasADi creates
symbolic expressions for the objective function and the con-
straints, which are represented in memory as computational
graphs. Since the number of nodes in the graph is related to
the symbolic complexity of the problem to be solved, a com-

Fig. 2 Initial (pendulum downwards) and final (pendulum upwards)
configurations prescribed to the system. Different scenarios were opti-
mized: the final Cartesian position (xdes,ydes) of the axle was chosen
on the uniform square grid having side 2m. For each position, different
final orientations θdes were tested (see red dashed lines).

parison of the number of nodes related to the representation
of the considered integrators in both dynamic models is pre-
sented. As evident from the results in Table 3, in both formu-
lations the use of structure-preserving integrators implies a
considerable increase in the symbolic complexity of the con-
straints of the OCP. This results in a corresponding increase
in computational time. As reported in Table 4, the character-
istic CPU time, i.e. the average time required to perform an
exact Newton iteration for each formulation, is in fact signif-
icantly higher for structure-preserving integrators. It is also
worth noting that stabilizing a non-minimal representation
of SO(3) with Baumgarte’s method implies a slightly higher
complexity in the model (cf. Table 3, 1st and 2nd columns).
This effect is particularly noticeable in the DCM parameter-
ized model (cf. Table 3, 2nd column, 2nd row). As a result,
the computational time required in the computation of each
Newton iteration is higher than the case in which the dy-
namics of the parameterization is not stabilized. The aver-
age CPU time per iteration of each formulation of the same
OCP is reported in Table 4. These results were obtained on
a desktop PC with 3.20 GHz Intel(R) Core(TM) i7-3930K
CPU and 32 GB of RAM.

5.2 Task description

The performance of each formulation was evaluated in tra-
jectory optimization of the nonholonomic spherical pendu-
lum model described in Section 2. The task to be optimized
consists in maneuvering the unicycle so as to steer the sys-
tem from a given initial state, with the pendulum oriented
downwards, to a target final state, with the pendulum in the
upright position, within a time horizon of 3 seconds, see
Fig. 2.

In order to gain insight into the effects of employing dif-
ferent parameterizations of SO(3) and different types of in-
tegrators in direct optimal control, optimizations were per-
formed on a (13x13)x12 lattice, for a total of 2028 different
nodes (tasks), corresponding to a 13x13 grid of target Carte-
sian positions (xdes,ydes) in the interval [−1,1]× [−1,1] m,
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Fig. 3 Average number of iterations to convergence for different numbers of tests. For each integration scheme, the value corresponding to the
selected number of tests to be performed (2028) is marked with a dashed line, and a confidence interval of ±4% around it is gray-shaded.

each one to be reached by the unicycle in 12 different yaw
orientations θdes in the interval [0,2π]. The number of tests
to be presented was chosen according to a convergence anal-
ysis, whose results in terms of average number of iterations
to convergence are shown in Fig. 3. The same analysis was
also carried out for the average minimum (optimal) value
of the cost function. In fact, performing the tests on a two
increasingly fine lattices with (15x15)x14=3150 points and
(18x18)x16=5184 points, the output did not vary more than
±4% with respect to the reference lattice. The obtained so-
lutions were compared in terms of value of the cost function
at the optimum, drift of the non-singular parameterization
of SO(3) from the manifold, and computational burden re-
quired by the solver to converge.

5.3 Discussion

Let us provide some comments on the obtained results. In
Fig. 4 the optimal values of the objective function for each
formulation are presented. It can be observed that, in those
cases where the solver found an optimal solution for the
OCP, those obtained by using a DCM parameterization are,
on average, characterized by a lower value of the objective
function. This might be due to the fact that the EOM are
more linear when a DCM representation is employed, com-
pared to the one corresponding to a quaternion parameteri-
zation. It is worth pointing out that these results are consis-
tent with those presented in [47], where different dynamic
models of the same system, differing in the rotation parame-
terization, were compared: the author observed a better qual-
ity of the obtained optimal solutions when a DCM parame-
terization was employed. Interestingly, we can observe that
the different minima of the cost function correspond to dif-
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Fig. 4 Optimal value of the cost function: mean value ± standard de-
viation for each formulation.

ferent local optima, each one encoding a different behaviour
of the physical model over the optimized trajectory. Specifi-
cally, when the dynamic model is formulated using a quater-
nion parameterization, in the optimized trajectories the pen-
dulum is usually swung up by initially accelerating the cart
and then exploiting the centrifugal force produced by a sharp
turn of the unicycle, as evident from Fig. 5. On the other
hand, when a DCM representation is employed, the com-
puted solution usually has a lower objective function value,
corresponding to a trajectory in which the unicycle swings
up the pendulum through heavy braking and then stabilizes
it in the upright position via oscillatory motions, as in Fig. 6.
Animations of frame sequences from the trajectories opti-
mized for different tasks using different SO(3) parameteri-
zations can be found in the video [48] accompanying this pa-



12 Silvia Manara et al.

Fig. 5 Quaternion representation: time lapse of the optimal trajectory
of the system with xdes = 0.5m, ydes = 0.5m, θdes = π . The red and
the green lines represent, respectively, the trajectories of the spherical
joint and of the tip of the pendulum.

Fig. 6 DCM representation: time lapse of the optimal trajectory of the
system with xdes = 0.5m, ydes = 0.5m, θdes = π . The red and the green
lines represent, respectively, the trajectories of the spherical joint and
of the tip of the pendulum.
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Fig. 7 Optimal trajectory obtained with xdes = 0.5m, ydes = 0.5m, θdes = π , when a quaternion representation is employed. (a), trajectory of
quaternion components. (b), corresponding applied controls.

per. In addition, plots of a subset of the state trajectories and
associated controls corresponding to the solution depicted in
Fig. 5 are reported in Fig. 7.

In Fig. 8 the ratios of successfully solved OCPs over the
total number of tests is presented. In both dynamic models,
the use of Baumgarte’s method and Lie group integrators
have the effect of reducing the rate of success compared to a
non-stabilized standard RK integration. However, success of
the latter comes at a cost: the accuracy of non-stabilized in-
tegration schemes in terms of drift from SO(3) is naturally
lower than that obtained with structure-preserving integra-
tors.

In Fig. 9, the amount of drift of solutions of the same
OCP obtained by employing the different formulations is
shown. The drift from the manifold might represent a prob-
lem in applications in which the time horizon to be con-
sidered is “rather long”. Even in the analyzed case, where
the time horizon is of 3 seconds only, the drift is perceiv-
able, since it exceeds the accuracy of the integrator. In fact,
a 4th-order RK method is employed, which means the com-
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Fig. 8 Rate of successfully solved OCPs for each formulation.

puted solution xk coincides with the exact solution x(tk) up
to O(hp), where p is the order of the integration method.
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Fig. 9 Deviation of each representation from the corresponding manifold. (a), deviation of the quaternion (Q) representation from SU(2) using
different integration schemes, i.e. standard RK integrators where the quaternion dynamics is respectively not stabilized (Q RK) and stabilized
with Baumgarte’s stabilization (Q RK+BG), and a structure-preserving integrator acting on the Lie group itself (Q RK-MK). (b), deviation of the
DCM representation from SO(3) using different integration schemes, i.e. standard RK integrators where the DCM dynamics is respectively not
stabilized (DCM RK) and stabilized with Baumgarte’s stabilization (DCM RK+BG), and a structure-preserving integrator acting on the Lie group
itself (DCM RK-MK).

Since the time horizon T = 3s is discretized into N = 100
time intervals (h = 0.03s), the accuracy of the computed so-
lution is on the order of hp = 10−7, i.e. lower by two orders
of magnitude than the drift from the manifold, in those cases
in which the dynamics of the SO(3) parameterization is not
stabilized, nor a structure-preserving integrator is employed
(see curves denoted as Q RK and DCM RK in Fig. 9).

There is a significant difference between the use of a
structure-preserving integration scheme and the stabilization
of a standard integrator with Baumgarte’s technique. In fact,
while on the one hand Lie group integrators ensure consis-
tency of the parameterization up to machine accuracy over
the whole time horizon (see Q RK-MK and DCM RK-MK
plots in Fig. 9), Baumgarte’s stabilization only guarantees
exponential convergence to the manifold in continuous time.
Even though an accurate calibration of the coefficients γ in
Eqs. (46) and (47) may result in a very fast convergent dy-
namics of the drift, there is no way of actively controlling the
size of the error over time (see Fig. 9, Q RK+BG and DCM
RK+BG). The error dynamics in discrete time is in fact in-
fluenced by the angular velocity ω which, in this case, is
determined by the dynamics of the unicycle and acts like an
exogenous signal. Moreover, it should be noted that setting
the coefficients γ to large values in an attempt to make the
error’s dynamics as fast as possible might cause the equa-
tions to become too stiff and lose stability in discrete time.

Finally, we compared the computational efficiency of the
different formulations in terms of average number of exact
Newton iterations required by the solver to converge to an
optimal solution. Fig. 10 shows that, in both dynamic mod-

els, the use of Baumgarte’s method for the standard RK in-
tegrator leads to a noticeable increase in the number of iter-
ations to convergence. Of course, larger values of the coef-
ficients γ — i.e. faster dynamics of the drift — would exac-
erbate numerical problems and lead to a marked increase in
the average number of iterations needed by the solver to con-
verge. The best performance obtained in terms of number of
iterations corresponds to the case of quaternion parameter-
ization and the RK-MK integrator on the Lie group SU(2)
(see Fig. 10, Q RK-MK): here, the mean value of the num-
ber of iterations to convergence is the lowest, and also its
standard deviation is considerably smaller compared to all
the other formulations.

Since the computational burden per iteration is not iden-
tical for all formulations, as the amount of calculations to
be performed is not the same (recall Table 3), a compari-
son between the average total CPU time required to con-
verge to a solution of the OCP for the different formula-
tions is presented in Fig. 11. The results show how the dy-
namic model based on quaternions (Q) is usually faster to
be optimized compared to the one where the rotation is pa-
rameterized via Direction Cosine Matrix (DCM). The non-
stabilized integration of both models shows the best perfor-
mance, but at the cost of a non controllable drift. On the
other hand, general conclusions cannot be drawn about the
comparison in terms of computational efficiency between
standard integrators stabilized through Baumgarte’s method
and structure-preserving integrators: the latter usually re-
quire a lower number of iterations to converge, albeit more
computationally demanding. In terms of drift control, how-
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ever, structure-preserving integrators are far superior as they
guarantee the conservation of the properties of the underly-
ing manifold up to numerical accuracy.

5.4 Analysis of the simulation accuracy

In order to analyze the effect of the simulation accuracy (de-
pendent on the order of the integrator and on the number
of steps) on the accuracy of the solution of the OCP, one
can compare the obtained control solution trajectories with
a very accurate reference solution. As a measure of the ac-
curacy of the solution of the OCP, we define ‖u− u∗‖2

2 as
solution accuracy, i.e. the squared L2-norm of the difference
between the computed optimal control trajectory u and u∗,
obtained in the reference case. In order to relate the solution
accuracy to the computational effort, it is enough to perform
the comparisons for one specific OCP with a fixed control
and multiple-shooting grid, but with different numbers of
integration steps on each interval. The task to be performed
was defined by setting xdes = 0.5m, ydes = 0.5m, θdes = π . A
very accurate reference solution for the corresponding OCP
was then computed by discretizing the time horizon T = 3s
into N = 25 time intervals. The OCP was formulated by em-
ploying a DCM parameterization for the dynamics of the
rotational DOF of the pendulum and a highly accurate inte-
gration scheme, i.e. a 25-step 4th-order RK-MK Lie group
integrator. Different solutions of the same OCP were subse-
quently computed by using integrators of lower accuracies.
Particularly, for each formulation of the dynamics (i.e. Q and
DCM), different integrators were employed:

– Standard 1st- (i.e. Euler, denoted as Eul), 2nd- (i.e. Heun,
denoted as RK2), 4th- (denoted as RK4) and 5th-order
(i.e. Fehlberg, denoted as RKF5) explicit RK integrators,
without any stabilization for the singularity-free param-
eterization of SO(3)

– Standard 1st-, 2nd-, 4th- and 5th-order explicit RK
integrators, with singularity-free parameterization of
SO(3) stabilized via Baumgarte’s method (respectively
Eul+BG, RK2+BG, RK4+BG and RKF5+BG)

– 1st-, 2nd-, 4th- and 5th-order RK-MK Lie group inte-
grators (respectively Eul-MK, RK2-MK, RK4-MK and
RKF5-MK).

The obtained results are reported in Fig. 12, where the
solution accuracy corresponding to different integrators is
represented as a function of the average CPU time required
to perform an exact Newton iteration: for each integration
scheme, the increase in simulation accuracy obtained with
an increased number of integration steps per time interval
obviously entails an increased computational burden. In or-
der to avoid convergence to different local minima, all of
the formulations were initialized at the reference solution.
It is worth mentioning that for very low integration accura-
cies, standard (i.e. non structure-preserving) integrators may
not enable the NLP solver to obtain a meaningful solution
due to considerable drift of the non-minimal parameteriza-
tion of SO(3) from the corresponding manifold. Particularly,
the drift of a singularity-free representation of a 3D rotation
from SO(3) due to a very inaccurate integration may result
in a significant deformation of the pendulum, which causes
the dynamic model to be poorly representative of the phys-
ical reality. In this case, the representation P of the actual
rotation matrix R ∈ SO(3) is not orthonormal and therefore
introduces some deformation. In order to exclude those non-
meaningful solutions from our analysis, a polar decomposi-
tion of the rotation representation P was performed, which
reads:

P = UΣV> = UV>VΣV> = RE (54)

Here, UΣV> is the singular value decomposition (SVD)
of the representation matrix P, whereas in its factorization
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Fig. 12 Difference between the OCP solutions computed by employing each integrator and the reference (most accurate) one, in terms of squared
L2-norm of the difference of the control trajectories as a function of the average computational time needed to perform an exact Newton iteration.
For both formulations — Q in (a), DCM in (b) —, the points marked by a cross at the value 104 of solution accuracy and connected by a dashed
line indicate that the simulation accuracy of the corresponding integrators is so poor that either the solver failed to converge or the obtained solution
was clearly not in the neighborhood of the reference solution anymore.

P = RE, R = UV> ∈ SO(3) is a unitary orthonormal ma-
trix and the symmetric positive-definite matrix E = VΣV>
is the deformation matrix. The elements of the main diago-
nal of matrix Σ are the singular values σi of P. In the event
that they are not unitary, the transformation P deforms the
geometry of the rotated object, the pendulum in this case.
We consider as acceptable only the solutions where such de-
formations are lower than a certain threshold value ε , fixed
at 5%. Namely, in order for a solution of the OCP to be
acceptable, the singular values of the deformations due to
numerical drift from the manifold must satisfy:

max
i∈{1,2,3}

σi ≤ 1+ ε (55)

The cases in which the solver either computed an unaccept-
able solution or was not able to converge to a solution at all
are represented by a cross in the plots of Fig. 12.

The results show how, in both formulations, standard
RK integrators most often fail to compute a physically
meaningful solution for very low simulation accuracies (see
curves denoted as Q Eul, DCM Eul): in such cases, the
drift from the manifold is so large that even Baumgarte’s
stabilization is not able to properly cope with it (see Q
Eul+BG, DCM Eul+BG). The only curves which seem to
make sense for very low accuracies are those correspond-
ing to the structure-preserving integrators (Q Eul-MK, DCM
Eul-MK). Here, despite the low simulation accuracy, the
validity of the dynamics is guaranteed by the fact that the
integration scheme intrinsically preserves the structure of
the singularity-free representation of SO(3). For accuracies
in the interval [10−8,10−2] the most efficient discretiza-

tion method turns out to be the non-stabilized standard
RK4 integrator with quaternion representation (Q RK4). At
higher accuracies, for the Q parameterization, standard in-
tegrators stabilized with Baumgarte’s method outperform
the non-stabilized ones, see e.g. the Q RKF5+BG curve. In
fact, when a quaternion parameterization is employed, stabi-
lized standard integrators perform better than the structure-
preserving ones, see Fig. 12 (a). Interestingly, the results re-
ported in Fig. 12 (b) show that the same does not hold when
a DCM representation is employed. In this case, in fact,
the use of standard integrators with Baumgarte’s stabiliza-
tion or of RK-MK integrators lead to a comparable compu-
tational performance. Structure-preserving integrators seem
to be slightly more competitive for higher accuracies (see
DCM RK4-MK, DCM RKF5-MK plots). Moreover, for the
DCM representation, standard RK methods without stabi-
lization are the most convenient for accuracies up to 10−10:
due to the lower complexity of the resulting dynamic model,
they are the least computationally demanding.

6 Conclusions

In this paper, the application of structure-preserving integra-
tion schemes to direct optimal control has been investigated.
Two Munthe-Kaas Lie group integrators have been imple-
mented and applied to the time integration of redundant pa-
rameterizations of a 3D rotation in the context of the nu-
merical solution of an optimal control problem. Their per-
formance has been compared to that of standard integrators
in terms of drift from the manifold, solution accuracy, qual-
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ity of the optimal trajectory, and computational efficiency to
convergence.

Overall, the quaternion-based representation turned out
to be the most efficient both in terms of iterations and CPU
time to convergence, but at the cost of lower success rates
and increased probability of being trapped by higher lo-
cal minima. When a quaternion parameterization is em-
ployed, stabilized standard integrators perform better than
the structure-preserving ones. On the other hand, when a
DCM representation is adopted, standard integrators with
Baumgarte’s stabilization exhibit a computational perfor-
mance comparable to that of RK-MK schemes. Structure-
preserving integrators are the only choice for lower simu-
lation accuracies, whereas higher-order, non-stabilized stan-
dard integrators seem to be most competitive when higher
levels of solution accuracy are pursued.
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