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Abstract: The paper addresses the computation of Lipschitz constants for model predictive
control (MPC) laws. Such Lipschitz constants are useful to assess the inherent robustness of
nominal MPC for disturbed systems. It is shown that a Lipschitz constant can be computed by
identifying the maximal controller gain of the MPC. Clearly, given the explicit description of the
MPC, this gain can be easily identified. The computation of the explicit MPC may, however, be
numerically demanding. The goal of the paper thus is to overestimate the maximal controller
gain without using the explicit control law.
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1. INTRODUCTION AND PROBLEM STATEMENT

Model predictive control (MPC) has become a standard
tool for the regulation of linear discrete-time systems

x(k + 1) = Ax(k) +B u(k), x(0) := x0 (1)

with state and input constraints of the form

x(k) ∈ X ⊂ Rn and u(k) ∈ U ⊂ Rm for every k ∈ N. (2)

Compared to other control schemes, it stands out for
its ability to consider both constraint satisfaction and
performance demands. From a technical point of view,
given the current state x0, MPC relies on the solution of
the optimal control problem (OCP)

V (x0) = min
X,U
‖x(N)‖2P +

N−1∑
k=0

‖x(k)‖2Q + ‖u(k)‖2R (3)

s.t. x(0) = x0,

x(k + 1) = Ax(k) +B u(k) ∀k ∈ N[0,N−1],

x(k) ∈ X ∀k ∈ N[0,N−1],

u(k) ∈ U ∀k ∈ N[0,N−1],

x(N) ∈ T ,
where V is the performance index,

X :=

 x(0)
...

x(N)

∈ R(N+1)n and U :=

 u(0)
...

u(N − 1)

∈ RNm

denote the decision variables, N ∈ N refers to the predic-
tion horizon, P,Q ∈ Rn×n and R ∈ Rm×m are weighting
matrices, and T ⊆ X is a terminal set. Solving (3) for any
feasible initial state x0 yields an optimal input sequence
U∗(x0). Usually, only the optimal control action for the
first time step (i.e., u∗(0)) is applied to the system and

? This work was partially funded by the German Research Founda-
tion (DFG) under the grants SCHU 2094/2-1 and MO 1086/11-1.

the OCP is solved again at the next sampling instance.
We thus obtain the control law % : FTN → Rm with

%(x) := U∗N[1,m]
(x), (4)

where FTN ⊂ Rn denotes the set of feasible initial states x0
for (3) (depending on the choices ofN and T ). Now, in case
system (1) is subject to additive disturbances, the OCP (3)
can be extended to take these disturbances explicitly into
account. The resulting robust MPC schemes are well-
known in theory (see, e.g., Mayne et al. (2005), Mayne
et al. (2006), or Raković et al. (2012)) but rarely used in
practice. In fact, even for disturbed systems, nominal MPC
(which neglects the disturbances in the OCP) is often
preferred for its simplicity. This procedure is justifiable to
a certain extent since nominal MPC implicitly offers some
robustness guarantees (see, e.g., Scokaert et al. (1997),
Kerrigan (2000), Limón et al. (2002), Pannocchia et al.
(1911), Picasso et al. (2012), or Yu et al. (2014)). In fact,
several methods for certifying intrinsic robustness exist.
The approaches in Scokaert et al. (1997) and Limón et al.
(2002) build on Lipschitz continuity of the performance
index V and the control law %. Clearly, Lipschitz continuity
allows to bound the effect of disturbances and promotes
the identification of robust positively invariant (RPI) sets,
which are necessary for guaranteeing robust stability.

In this paper, against the background of intrinsic robust-
ness, we quantify the Lipschitz continuity of the nominal
MPC law (4). In particular, we address the computation
of Lipschitz constants κ such that

‖%(ξ)− %(x)‖2 ≤ κ ‖ξ − x‖2 (5)

for every ξ, x ∈ FTN . Knowing a suitable κ may allow to
specify intrinsic robustness guarantees as in (Limón et al.,
2002, Cor. 4) for linear MPC. Computing a suitable κ can,
in principle, be realized by taking into account the well-
known structure of the control law % for linear MPC. In
fact, as shown in Bemporad et al. (2002), % is continuous
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and piecewise affine. More precisely, it can be written as

%(x) =


K1 x+ b1 if x ∈ P1,
...
Kp x+ bp if x ∈ Pp

(6)

based on a finite number p of affine control laws Ki x+ bi
and convex polytopes Pi. As detailed in Sect. 2.1,

κ∗ := max
i∈N[1,p]

‖Ki‖2 (7)

satisfies (5). In other words, a Lipschitz constant for % on
FTN is given by the maximal spectral norm of all controller
gains Ki. Clearly, (7) can be easily computed if the explicit
control law (6) is at hand. However, it is well-known that
the numerical effort for computing (6) can be high even
for small-scale systems. In this paper, we thus propose a
method for the overestimation of κ∗ without computing
the explicit MPC law (6). We stress, however, that the
method in its current form is not yet capable of reducing
the numerical effort compared to the computation of (6).

The paper is organized as follows. We collect notation and
preliminaries in the remainder of this section. In Sec. 2,
we address the computation of Lipschitz constants for
the predictive controller without investigating the explicit
description of the control law. In particular, we present a
conjecture that allows to overestimate (7) without know-
ing (6). Since a complete proof for the conjecture is cur-
rently missing, we verify our statement for a number of
examples in Sect. 3. Finally, we state conclusions in Sect. 4.

1.1 Notation and Preliminaries

We denote real and natural numbers (excluding 0) by R
and N, respectively. The set N[1,l] refers to {i ∈ N | i ≤ l}
for some l ∈ N. For a matrix E ∈ Rp×q with p, q ∈ N,
‖E‖2 denotes the matrix 2-norm, which is equivalent to
σmax(E), i.e., the largest singular value of E. We further
define ‖x‖2P = xTPx for symmetric matrices P ∈ Rn×n
and vectors x ∈ Rn. For index sets I ∈ N[1,p] and
J ∈ N[1,q], EI,J refers to the submatrix of E resulting
from selecting all rows in I and columns in J . More
precisely, let i1 < · · · < ip and j1 < · · · < jq be the
ordered indices in I and J , respectively. Then,

EI,J :=

Ei1,j1 . . . Ei1,jq...
...

Eip,j1 . . . Eip,jq

 .

Analogously, EI results from selecting all lines in I and
keeping all original columns. The cardinality of a set I is
given by |I|. The matrix Ip describes the identity matrix in
Rp×p. Finally, throughout the paper we make the following
assumption.
Assumption 1. The pair (A,B) is stabilizable. The weight-
ing matrices P and R are positive definite; the matrix Q
is positive semi-definite. The pair (Q

1
2 , A) is detectable.

The sets X , U , and T are convex and compact polytopes
containing the origin as an interior point.

2. COMPUTING A LIPSCHITZ CONSTANT

In this section, we propose a method for the computation
of a Lipschitz constant κ that satisfies (5). To this end,
we first show that κ∗ as in (7) is indeed a valid Lipschitz
constant for ρ on FTN . Afterwards, we introduce an algo-
rithm for the overestimation of κ∗ without evaluating the
explicit control law (6).

2.1 The maximal controller gain

To show that κ∗ satisfies (5), consider two arbitrary states
ξ, x ∈ FTN and define ∆x := ξ − x. Clearly, since % is
continuous and since FTN is convex, %(ξ) = %(x+ ∆x) can
be expressed as

%(x+ ∆x) = %(x) +

∫ 1

0

J(x+ τ∆x) ∆xdτ,

where J(ξ) denotes the Jacobian of % at ξ. The expression
on the l.h.s. in (5) can thus be written as

‖%(x+ ∆x)− %(x)‖2 =

∥∥∥∥∫ 1

0

J(x+ τ∆x) ∆x dτ

∥∥∥∥
2

,

which can be overestimated by∥∥∥∥∫ 1

0

J(x+ τ∆x)∆xdτ

∥∥∥∥
2

≤
∫ 1

0

‖J(x+ τ∆x)∆x ‖2 dτ

≤ ‖∆x‖2
∫ 1

0

‖J(x+ τ∆x)‖2 dτ

≤ ‖∆x‖2 max
ξ∈FT

N

‖J(ξ)‖2.

It remains to compute the maximal spectral norm of the
Jacobian J on the feasible set FTN . Taking (6) into account,
we obviously have

J(ξ) =


K1 if ξ ∈ P1,
...
Kp if ξ ∈ Pp.

for every ξ ∈ FTN . We thus obtain

max
ξ∈FT

N

‖J(ξ)‖2 = max
i∈N[1,p]

‖Ki‖2,

which shows that κ∗ is a Lipschitz constant for ρ on FTN .

2.2 Control law definition based on active constraints

Our goal is to overestimate (7) without computing (6).
Nevertheless, we can use techniques for the explicit com-
putation of (6) to identify procedures for the direct over-
estimation of (7). To this end, first note that not only
the control law % is known to be continuous and piecewise
affine. In fact, as established in Bemporad et al. (2002),
the same holds for the whole optimal input sequence
U∗ : FTN → RNm, which can be written as

U∗(x) =


L1 x+ c1 if x ∈ P1,
...
Lp x+ cp if x ∈ Pp.

(8)

Comparing (4), (6) and (8), we obviously find Ki =
(Li)N[1,m]

(and bi = (ci)N[1,m]
) for every i ∈ N[1,p]. In

order to overestimate (7), we require a basic understanding
of the explicit computation of the matrices Li. In this
context, Assum. 1 guarantees that the OCP (3) can be
rewritten as the quadratic program (QP)

V (x0) = min
U

1

2
UTHU + xT0G

TU +
1

2
xT0 Fx0 (9)

s.t. E U ≤ Dx0 + d

with a positive definite matrix H ∈ RNm×Nm and q ∈ N
constraints, i.e., d ∈ Rq (see Bemporad et al. (2002);
Pappas et al. (1980)). We refer to (Maciejowski, 2001,
Chap. 3) for details on the construction of H, G, F , E, D,
and d based on the system matrices A and B, the horizon
N , and the constraints X , U , and T . We further stress
that the assumed compactness of the polytopes X , U , and



T (see Assum. 1) implies q > Nm. In other words, the
number of constraints in (9) is larger than the number
of decision variables. Finally, we assume that the matrix
E ∈ Rq×Nm has full rank, i.e., rank(E) = Nm. Now, for
a given x0 ∈ FTN , it is well-known that the solution of (9)
can be characterized based on the set of active constraints

A(x0) :=
{
i ∈ N[1,q] |E{i} U∗(x0) = D{i} x0 + d{i}

}
.

In fact, under the assumption that EA(x0) has rank
|A(x0)|, U∗(x0) can be expressed as

U∗(x0) = L(A(x0))x0 + c(A(x0)) (10)

with

L(A) := H−1ETA(SA,A)−1(DA+EAH
−1G)−H−1G (11)

and
c(A) := H−1ETA(SA,A)−1dA,

where S := EH−1ET (see (Bemporad et al., 2002,
Sect. 4.1)). Clearly, the condition rank(EA(x0)) = |A(x0)|
guarantees invertibility of SA(x0),A(x0). However, a relation
similar to (10) even holds in the (degenerated) case that
rank(EA(x0)) < |A(x0)|. In fact, in this case,

U∗(x0) = L(A)x0 + c(A)

for some subset A ⊂ A(x0) that satisfies rank(EA) = |A|
(see (Bemporad et al., 2002, Section 4.1.1) or (Tøndel
et al., 2003, Section II.C)). In summary, we make the
following observation.

Lemma 2. Assume the piecewise affine description (8) of
the optimizer U∗ is known and consider any i ∈ N[1,p].
Then, there exists a set A ⊂ N[1,q] such that (i)

rank(EA) = |A| ≤ Nm (12)

and (ii) Li = L(A).

Regarding condition (12), it is interesting to note that
|A| ≤ Nm is necessary for rank(EA) = |A| since EA ∈
R|A|×Nm (i.e., rank(EA) ≤ min{|A|, Nm}). Finally, we
know from (8) that the affine relation (10) will, in gen-
eral, not only hold for a single x0. In this context, it is
interesting to note that the active set A(x0) also deter-
mines the polytopic region P(A(x0)) for which we have
A(ξ) = A(x0) for every ξ ∈ P(A(x0)). In fact, we obtain
P(A) := {x ∈ Rn |Φ(A)x ≤ β(A)} with

Φ(A) :=

(
EIH

−1ETA(SA,A)−1 −I|I|
(SA,A)−1 0

)(
DA + EAH

−1G
DI + EIH

−1G

)
and

β(A) :=

(
−EIH−1ETA(SA,A)−1 I|I|

−(SA,A)−1 0

)(
dA
dI

)
where (the set of inactive constraints) I is defined as
I := N[1,q] \ A.

2.3 Overestimating the maximal controller gain

Lemma 2 contains the central observation for the overes-
timation of κ∗. In fact, it is easy to see that the following
statements holds.

Lemma 3. Assume the piecewise affine description (6) of
the control law % is known and let κ∗ be defined as in (7).
Then, κ∗ ≤ `∗, where

`∗ := max
A
‖LN[1,m]

(A)‖2 s.t. (12) and A ⊂ N[1,q]. (13)

In other words, an overestimation of κ∗ can be identified
by analyzing the controller gains for all sets A that satisfy
the rank condition (12). Note that the overestimation is,

in general, not tight (i.e., κ∗ < `∗) since some sets A
satisfying (12) lead to empty regions P(A) that do not
appear in (6) (and (8)).

Now, while Lemmalinear MPC 3 is a useful starting point
for an overestimation of κ∗, the exhaustive analysis of all
sets A satisfying (12) is computationally demanding - also
when compared to the effort for the computation of the
explicit control law (6). We thus have to identify rules for
reducing the size of the feasible set of (13). To this end,
we first introduce a modified version of the optimization
problem (OP) in (13). As apparent from (11), the matrix
L(A) contains the constant term −H−1G, which obviously
corresponds to the optimizer U∗(x0) = −H−1Gx0 of the
OCP (9) without constraints (or for A(x0) = ∅). Focusing
on the term varying with A, we thus consider

∆L(A) := L(A) +H−1G (14)

which is given by

∆L(A) = H−1ETA(SA,A)−1(DA + EAH
−1G). (15)

In analogy to (13), we then introduce the OP

∆`∗ := max
A
‖∆LN[1,m]

(A)‖2 s.t. (12) and A ⊂ N[1,q].(16)

Since we obviously have

‖LN[1,m]
(A)‖2 ≤ ‖∆LN[1,m]

(A)‖2 + ‖H−1N[1,m]
G‖2,

we obtain
κ∗ ≤ `∗ ≤ ∆`∗ + κ0, (17)

where κ0 := ‖H−1N[1,m]
G‖2. Based on the following conjec-

ture, we now claim that it is sufficient to only consider sets
with |A| = Nm, when solving (16).

Conjecture 4. Let A∗ be the optimizer of (16). Then
|A∗| = Nm.

We present a simple algorithm for the computation of ∆`∗

that makes use of this conjecture in Sect. 2.4. Observations
that may be useful to prove Conj. 4 are discussed in
Sect. 2.5. We stress, however, that we currently do not
have a complete proof for the conjecture. To substantiate
our claim, we thus carry out a numerical verification of
Conj. 4 for some examples in Sect. 3.

2.4 Computation of ∆`∗ based on Conjecture 4

We can obviously reduce the complexity of OP (16) under
the assumption that Conj. 4 holds. In fact, in this case,
we have to consider only those sets A ⊂ N[1,q] in (16) for
which

rank(EA) = |A| = Nm (18)
In addition, the cardinality of the universe N[1,q] can be
reduced. In fact, it is easy to see that any i ∈ N[1,q], which
is not contained in

Q := {i ∈ N[1,q] | rank(E{i}) = 1}, (19)

cannot be part of a set A satisfying (12) or (18). The
computation of ∆`∗ as in (16) can thus be equivalently
formulated as

∆`∗ = max
A
‖∆LN[1,m]

(A)‖2 s.t. (18) and A ⊆ Q. (20)

A solution to (20) can be computed based on simple combi-
natorial optimization using the following algorithm. Note,
however, that the numerical complexity of the algorithm
can be high. In fact, we obviously have to consider

s :=

(
|Q|
Nm

)
=

|Q|!
(Nm)! (|Q| −Nm)!

(21)



sets A in line 2 of Alg. 1. More interestingly is, however,
the number of sets A satisfying the condition in line 3, i.e.,

ŝ := |{A ⊆ Q | (18) holds}| . (22)

We will analyze the numbers s and s∗ for some examples
in Sect. 3.

Algorithm 1. Numerical solution of (20).

1 Define Q as in (19) and set ∆`∗ ← 0.
2 for every A ⊆ Q with |A| = Nm
3 if rank(EA) = Nm
4 if ∆`∗ < ‖∆LN[1,m]

(A)‖2
5 set ∆`∗ ← ‖∆LN[1,m]

(A)‖2.
6 return ∆`∗ and terminate.

2.5 Towards a proof of Conjecture 4

Roughly speaking, Conj. 4 states that sets A ⊂ N[1,q]

with small cardinality can be neglected in (16) since the
optimizer satisfies (18). In order to prove Conj. 4, it is
thus useful to study relations between the matrices ∆L(A)
and ∆L(A) for “small” sets A and “large” sets A. The
following lemma provides a relation for the case that A is
a subset of A.

Lemma 5. Let the sets A,A ⊂ N[1,q] be such that the rank
conditions rank(EA) = |A| and (12) hold and let A ⊆ A.
Then

∆L(A) = W (A) ∆L(A), (23)
where

W (A) := H−1ETA(SA,A)−1EA. (24)

Proof. Clearly, evaluating ∆L(A) according to (15) yields

∆L(A) = H−1ETA(SA,A)−1(DA + EAH
−1G). (25)

Now, multiplying (15) with EA and taking SA,A =
EAH

−1ETA into account, leads to

EA∆L(A) = DA + EAH
−1G. (26)

Since A is a subset of A, there exists an index set J ⊆
N[1,|A|] with |J | = |A| such that

EA = (EA)J and DA = (DA)J . (27)

From (26) and (27), we infer

EA∆L(A) = DA + EAH
−1G.

Using this result in (15) proves (23). �

It is interesting to note that W only depends on the set A.
The matrix W (A) is thus identical for any superset A of
A. It is further interesting to study the structure of W (A).

Lemma 6. Let the sets A and A be as in Lem. 5 and let
W (A) be defined as in (24). Then, there exists a unitary
matrix Γ ∈ RNm×Nm and some matrix Ω ∈ R(Nm−|A|)×|A|

such that

ΓW (A) ΓT =

(
I|A| 0

Ω 0

)
. (28)

Proof. Assume that the matrix EA can be written as

EA = Y ΣZ, (29)

where Y ∈ R|A|×|A| and Z ∈ RNm×Nm are unitary
matrices and where Σ ∈ R|A|×Nm offers the structure

Σ =

σ1 0 0 0
. . .

. . .
0 σ|A| 0 0


with σ1 ≥ . . . σ|A| > 0. We then obtain Y Y T = I|A| and

Z ZT = INm. Moreover, with J1 := N[1,|A|] and J2 :=

N[|A|+1,Nm], we find Σ = (ΣJ1,J1 0), det(ΣJ1,J1) > 0, and

(ΣJ1,J1
)−1Σ =

(
I|A| 0

)
. We thus have(

(ΣJ1,J1)−1Y TY Σ
(INm)J2

)
= INm

and consequently

Z =

(
(ΣJ1,J1

)−1Y TY Σ
(INm)J2

)
Z =

(
(ΣJ1,J1)−1Y TEA

ZJ2

)
. (30)

Now, evaluating ZW (A)ZT yields

ZW (A)ZT = ZH−1ETA(SA,A)−1EAZ
T

=

(
(ΣJ1,J1

)−1Y TEA
ZJ2

)
H−1ETA(SA,A)−1Y Σ

=

(
I|A| 0

ZJ2
H−1ETA(SA,A)−1Y ΣJ1,J1

0

)
, (31)

where we used (24), (30), and EAZ
T = Y Σ. At this

point, we note that the decomposition in (29) can always
be achieved by evaluating a singular value decomposition
(SVD) of EA. In fact, σ1 through σ|A| refer to the |A|
non-zero singular values of EA. This completes the proof,
since the r.h.s. in (28) and (31) have the same structure.
As a consequence, (28) holds with Γ = Z and Ω =
ZJ2

H−1ETA(SA,A)−1Y ΣJ1,J1
. �

Clearly, since Γ in Lem. 6 is unitary, (28) describes a simi-
larity transformation. As apparent from the r.h.s. in (28),
the matrix W (A) thus has |A| eigenvalues of value 1 and
Nm− |A| eigenvalues of value 0. While this observation is
interesting, it is of minor relevance for proving Conj. 4. In
fact, having information on the singular values of W (A)
would be more constructive. To see this, note that (23)
implies

‖∆L(A)‖2 ≤ ‖W (A)‖2‖∆L(A)‖2
= σmax (W (A)) ‖∆L(A)‖2

Thus, having
σmax (W (A)) ≤ 1 (32)

would immediately allow to prove Conj. 4 for the special
case N = 1, in which ∆LN[1,m]

(A) = ∆L(A). Unfortu-

nately, the observation that W (A) has only eigenvalues in
the set {0, 1} does not imply (32). Actually, based on the
structure in (28), it is straightforward to prove

σmax (W (A)) ≥ 1.

Studying some sets A ⊂ N[1,q] for the examples dis-
cussed in the next sections shows that the special case
σmax (W (A)) = 1 occurs, but not always.

3. NUMERICAL BENCHMARK

3.1 Setup

Section 2.5 provides some observations that might be
useful to prove Conj. 4 but a complete proof is missing.
In order to substantiate our claim, we use the following
algorithm to verify Conj. 4 for the five numerical examples
in Tab. 1.

Algorithm 2. Numerical verification of Conj. 4.
1 Define Q as in (19) and set foundCE←false.
2 Compute ∆`∗ using Alg. 1.
3 for every A ⊆ Q with 1 ≤ |A| < Nm
4 if rank(EA) = |A|
5 if ‖∆LN[1,m]

(A)‖2 > ∆`∗

6 set foundCE←true and break.
7 return foundCE and terminate.



Table 1. Numerical examples from the literature.

Exmp. A B X U Q R N Reference

1

(
1 1
0 1

) (
0.5
1.0

)
|x1| ≤ 25
|x2| ≤ 5

|u| ≤ 1 I2 0.1 4 (Gutman and Cwikel, 1987, Eqs. (2.8)–(2.9))

2

(
1 1/2 1/8
0 1 1/2
0 0 1

) (
1/48
1/8
1/2

)
|x1| ≤ 20
|x2| ≤ 3
|x3| ≤ 1

|u| ≤ 0.5 I3 1 3 (Gutman and Cwikel, 1987, Rem. 4.8)

3

(
0 1
1 0

) (
2
4

)
|x1| ≤ 5
|x2| ≤ 5

|u| ≤ 1 I2 4.5 3 (Schulze Darup and Cannon, 2016, Exmp. 3)

4

(
+1.1 0.2
−0.2 1.1

) (
0.5 0
0 0.2

)
|x1| ≤ 5
|x2| ≤ 5

|u1| ≤ 1
|u2| ≤ 1

I2 10 I2 2 (Schulze Darup, 2014, Exmp. 2.26)

5

(
0.7969 −0.2247
0.1798 +0.9767

) (
0.1271
0.0132

)
|x1| ≤ 4
|x2| ≤ 4

|u| ≤ 1 I2 0.1 4 (Bemporad and Filippi, 2003, Exmp. 6.1)

Obviously, in Alg. 2, we again use the set Q from (19)
as the universe for the sets A. This is admissible since
condition (12) can only be satisfied if A ⊆ Q. Moreover,
we can neglect the choice A = ∅ for which we obtain
‖∆LN[1,m]

(A)‖2 = 0.

In order to apply Alg. 2 (and Alg. 1) to the examples
in Tab. 1, we need to specify the terminal weighting
P and the terminal set T in the OCP (3). In fact, in
Tab. 1, we only list the system matrices A and B, the
constraints X and U , the weighting matrices Q and R,
the prediction horizon N , and the origin of the example.
Now, for every example, P is chosen as the solution of
the discrete-time algebraic Riccati equation. Regarding the
set T , we consider two different choices. First, we simply
set T = X . Second, we use a stabilizing terminal set as
specified in Mayne et al. (2000). For the computation of
such a terminal set, we exploit the construction rules from
Gilbert and Tan (1991). More precisely, we evaluate the
linear quadratic regulator (LQR) gain K∗ (based on P ),
define

X ∗ := {x ∈ X |K∗ x ∈ U},
and compute

S = {x ∈ Rn | (A+BK∗)kx ∈ X ∗, ∀k ∈ N}.
The second choice for the terminal set then results in
T = S. We stress that S is a polytope for polytopic sets X
and U as in Assum. 1. We further stress that the resulting
control laws for T = X and T = S differ in terms of
the domain FTN and the specified control actions. Both
control laws are, however, guaranteed to be identical in
S ⊆ FSN ⊆ FXN .

3.2 Analysis

We applied Alg. 2 to the five examples in Tab. 1 (with
T = X as well as T = S in each case) without finding
a counterexample for Conj. 4. Thus, for these examples,
Alg. 1 can be used to solve (16). Numerical results for ∆`?

are listed in Tab. 2. In addition, we provide information on
the number q of constraints of the condensed QP (9), the
number q̂ of constraints that are required to describe the
terminal set T , the cardinality of the set Q as in (19),
the numbers s and ŝ as defined in (21) and (22), and
the values κ0 = ‖H−1N[1,m]

G‖2 and ∆`∗ + κ0. To allow a

comparison with the straightforward approach via explicit
MPC (EMPC), we also list the number of polytopes p
in (6) and κ∗ as in (7). We obviously have κ∗ ≤ ∆`∗ + κ0

for every example as predicted by (17). However, the trans-
formation (14) obviously introduces some (additional) con-
servatism to the overestimation. For analysis purpose, it
thus makes sense to compare ∆`∗ with

∆κ∗ := max
i∈N[1,p]

‖Ki −K∗‖2, (33)

where K∗ is the LQR gain from Sect. 3.1. Finally, let ξi be
the Chebyshev center of the polytope Pi. Then, it is also
interesting to study the number

p̂ :=
∣∣{i ∈ N[1,p] | |A(ξi)| = Nm}

∣∣ ,
i.e., the number of polytopes (in the domain of the control
law) in which Nm constraints are active.

The numerical results in Tab. 2 offer some interesting
observations. First note that, due to the box constraints
in Tab. 1, the numbers q and q̂ are linked via

q = 2N (n+m) + q̂.

Thereby, the number q̂ evaluates to 2n for T = X .
For the choice T = S, q̂ depends on the number of
hyperplanes required to describe S. It can further be seen
from Tab. 2 that the numerical effort for running Alg. 1 is
indeed significant (even for the short prediction horizons
considered in Tab. 1). In fact, we find

s > ŝ� p > p̂

for every example. In other words, the number s of
sets with cardinality Nm is, as expected, high. More
interestingly, the number ŝ of sets that additionally satisfy
the rank condition in (18) is also high, especially compared
to the number p of polytopes describing the explicit control
law (6).

When comparing the the computed Lipschitz constants
∆`∗ with the maximal gain ∆κ∗ of the transformed con-
troller, we can distinguish different cases. In fact, we have
∆`∗ = ∆κ∗ for the third and fourth example, ∆`∗ > ∆κ∗

for the first example, and ∆`∗ � ∆κ∗ for the second and
fifth example. It is further interesting that ∆`∗ and ∆κ∗

do not change with the terminal set T for the first three
examples, while they do change for the last two examples.
Finally, it is remarkable that the relation between κ0, ∆κ∗,
and κ∗ is also different for most examples. We find, for
example, κ0 = ∆κ∗ = κ∗ for the first example, κ0 <
∆κ∗ < κ∗ for the second example, and ∆κ∗ > κ∗ > κ0
for the third example. In fact, the examples were selected
in order to show that Conj. 4 holds independently of the
relationship between κ0, ∆κ∗, and κ∗.



Table 2. Analysis of the proposed method for computing Lipschitz constants.

Analysis of proposed method Comparison with EMPC

Exmp. T q q̂ |Q| s ŝ ∆`∗ κ0 ∆`∗ + κ0 p p̂ ∆κ∗ κ∗

1 X 28 4 24 10626 4112 1.5640 1.4121 2.9761 65 28 1.4121 1.4121
1 S 28 4 24 10626 4240 1.5640 1.4121 2.9761 43 18 1.4121 1.4121

2 X 30 6 24 2024 1104 51.8065 3.5420 55.3485 111 62 5.8930 8.9443
2 S 38 14 32 4960 3616 51.8065 3.5420 55.3485 89 50 5.8930 8.9443

3 X 22 4 18 816 416 0.5472 0.2222 0.7694 15 6 0.5472 0.5000
3 S 24 6 20 1140 656 0.5472 0.2222 0.7694 15 6 0.5472 0.5000

4 X 20 4 16 1820 528 31.2767 0.9246 32.2013 33 6 31.2767 31.2500
4 S 26 10 22 7315 3104 212.5562 0.9246 213.4808 73 22 212.5562 212.6942

5 X 28 4 24 10626 4288 73.6632 2.4871 76.1503 29 4 2.4871 3.1401
5 S 34 10 30 27405 14080 73.6632 2.4871 76.1503 89 35 37.0267 38.7305

4. CONCLUSION

We proposed a method for computing Lipschitz constants
for linear MPC without evaluating the explicit control law.
The approach is based on a reformulation of the problem
of interest and a conjecture characterizing the solution of
the transformed problem. A procedure implementing the
conjecture was successfully applied to compute Lipschitz
constants for five numerical examples.

Although we provided some observations that may allow to
prove the conjecture, a complete proof is currently missing.
To compensate this gap, we numerically verified the state-
ment for the five analyzed examples. While the conjec-
ture withstand this verification, the analysis showed that
the numerical effort for computing a Lipschitz constant
based on the proposed procedure is high. In particular, the
method (in its current form) does not provide the desired
alternative to the explicit computation of the control law.
Future research thus has to address novel strategies for
solving the formulated task. Abstractly speaking, we tried
to identify Lipschitz constants by analyzing sets of ac-
tive constraints with large cardinalities. It could, however,
make sense to address the problem starting from active
sets with small cardinalities. In this context, we might
be able to combine our results from Sect. 2.5 with the
techniques proposed in Gupta et al. (2011).
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