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Abstract: This paper presents three different formulations of MPC to face static friction in control
valves for industrial processes. A pure linear formulation, a stiction embedding structure, and a
stiction inversion controller are designed. The controllers are derived for SISO systems with linear
process dynamics, where valve stiction is the only nonlinearity present in the control loop. A novel
smoothed stiction model is introduced to improve and fasten the dynamic optimization module of stiction
embedding MPC. A stiction compensation method is revised and used as a warm-start to build a suitable
trajectory for the predictive controller. The different MPC formulations are tested and compared on some
simulation examples.
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1. INTRODUCTION

Control valves are the most commonly used actuators in the
process industries. Unfortunately, in many cases valves not only
contain static nonlinearity (e.g. saturation), but also dynamic
nonlinearity including backlash, friction, and hysteresis. Dead-
band due to backlash and mostly static friction (stiction) is a
root source of the valve problems. As a consequence, these mal-
functions would produce a sustained oscillation in the process
variables, decrease the life of control valves, and generally, lead
to inferior quality end products by causing reduced profitability
(Jelali and Huang, 2010). Therefore, it seems that the potential
benefit of advanced control algorithms, as model predictive
control (MPC), could be reduced because of poor valves, if their
faults and malfunctions are not expressly considered.

MPC has in fact been also used as a compensation strategy
for several types of valve malfunctions. The first MPC-based
formulation was developed by Zabiri and Samyudia (2006),
by using a mixed-integer quadratic programming (MIQP) on
constraints of the input. An inverse backlash model and valve
saturation are incorporated in the controller to overcome the
deadband associated with backlash. Later, this structure is ap-
plied to a system with stiction in Zabiri and Samyudia (2009).
In Rodrı́guez and Heath (2012) a formulation which reduces
the bounds on optimization variables computed by the MPC,
by trying to delete different types of valve nonlinearity, and
by reducing the problem to a purely linear structure has been
proposed. Recently, Durand and Christofides (2016) have pre-
sented an economic MPC structure which includes a detailed
physical stiction model, constraints on the magnitude and rate
of change of the input, and is combined with a slave controller
of PI-type that regulates the valve output to its MPC set-point.

When stiction is present, the valve is not successful in following
the input signals imposed by the controller. Consequently,
a limit cycle is typically generated around the steady-state
operating points. As suggested by previous works, one way of
reducing stiction effects is to explicitly take this malfunction

into account in MPC design so that an improved performance
could be obtained. As many other fault tolerant approaches,
an estimate of stiction amount is needed, and the sticky valve
must be identified within the closed loop, especially when the
system is multidimensional. For this purpose, well-established
techniques of stiction detection and quantification could be
used and adapted as necessary (Jelali and Huang, 2010).

This paper is focused on designing an MPC formulation that
considers valve stiction explicitly, in order to compensate for
its undesired effects on control systems. The controller will
be derived for single-input single-output (SISO) systems with
linear process dynamics, as the nonlinearity comes only from
the valve. In order to improve the numerical optimization per-
formance, a suitable smoothing of the discontinuous valve stic-
tion model and an appropriate input sequence, derived from a
stiction compensation method and used as warm-start for MPC,
will be necessary. This novel methodology will be compared
against standard and advanced MPC formulations using as test
bench several simplified numerical examples.

The remainder of the paper is organized as follows. Different
MPC approaches and valve stiction models are presented in
Section 2. The proposed stiction-tolerant MPC formulation is
detailed in Section 3. Some simulation examples as basis of
comparison are then presented in Section 4. Finally, conclu-
sions are drawn in Section 5.

2. PROBLEM DEFINITION

The whole plant is formed by the control valve followed by the
process dynamics as depicted in Figure 1. In detail, χ is the
process input, that is, the valve output; y is the process output;
u is the MPC output, while w and v are two sequences of white
Gaussian noise. For the sake of simplicity, the case of SISO
system is studied: a nonlinearity for the valve followed by a
linear dynamics for the process, thus forming a Hammerstein
structure for the whole plant. Extensions to MIMO systems and
nonlinear processes will be investigated in future research.
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Fig. 1. The closed-loop system with the (sticky) control valve
followed by the process.

Valve dynamics is described by a data-driven stiction model,
while the linear process dynamics is expressed by a state-
space model. The whole plant dynamics in standard state-space
formulation can be written as:

zk+1 = f (zk,uk)+wk

yk = h(zk)+ vk
(1)

The valve output χ represents the first component of the state
vector of whole plant zk = [χk−1,ξk]

T , so that:

zk+1 =

[
χk

ξk+1

]
=

[
ϕ(χk−1,uk)

Aξk +Bϕ(χk−1,uk)+wk

]
yk = Cξk + vk

(2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, n is the process model
dimension, and m = p = 1, respectively. Note that the first com-
ponent of state equation is given by the stiction nonlinearity,
expressed by the discontinuous function ϕ(·): Rm×Rm→ Rm,
later discussed.

2.1 Possible MPC approaches

Three different approaches of MPC are presented and compared
in this work. The first formulation is a stiction unaware con-
troller, with a pure linear MPC formulation since it completely
disregards the valve dynamics and uses only a linear process
model for the whole plant (see Figure 2). Secondly, a stiction
embedding MPC is considered, as shown in Figure 3. This
controller is aware of the stiction presence, as it employs an
extended model – both of valve and process dynamics – thus
forming a nonlinear formulation (NMPC). Finally, the third
approach is also aware of stiction, but it has an explicit model
for the inverse dynamics of stiction (ϕ̃−1), where ũ is the MPC
output, subject to optimization, which forms input to stiction
inverse model, and u = ϕ̃−1(ũ) is the output of the whole
controller. Note that, in the case of perfect stiction inversion,
one should get ϕ(ϕ̃−1(ũ)) = ũ, and then ũ ≡ χ . This type of
formulation, introduced by Rodrı́guez and Heath (2012), has
the advantage of not only considering expressly stiction dynam-
ics, but also reducing the controller to a linear structure, which
is simply based on the process model, as in Figure 4.

Fig. 2. Closed-loop system with stiction unaware MPC.

2.2 Valve stiction modeling

Stiction in pneumatic sliding stem control valves can be de-
scribed both by detailed physical models and by empirical

Fig. 3. Closed-loop system with stiction embedding MPC.

Fig. 4. Closed-loop system with stiction inversion MPC.

(data-driven) models. If fast response from the valve is as-
sumed, the transient response can be ignored and a static – but
with memory – nonlinear function can be used to approximate
the valve’s dynamic response, that is, only the stationary-state
values of stem position are considered. Therefore, the standard
empirical (He et al., 2007) or the semi-physical model (He and
Wang, 2010) by He and coworkers are suitable to reproduce the
valve response generated by physical stiction models without
involving computationally intensive numerical integration.

In this paper, we choose to use the He’s standard model (He
et al., 2007), thus including stiction in every valve move.
The sticky valve has a nonlinear dynamics χk = ϕ(χk−1,uk)
expressed by the following two relations:

χk =

{
χk−1 +[ek− sign(ek) fD] if |ek|> fS

χk−1 if |ek| ≤ fS
(3)

where fS and fD are static and dynamic friction parameters,
respectively, and ek = uk− χk−1. Note that ek is a sort of valve
position error, and fS ≥ fD by definition. By substituting ek and
then by separating the nonlinear sign function, three different
input-output relations are possible:

χk =


uk− fD if |uk−χk−1|> fS, uk−χk−1 > 0
uk + fD if |uk−χk−1|> fS, uk−χk−1 < 0
χk−1 if |uk−χk−1| ≤ fS

(4)

Then, by solving the first two inequalities, one gets:

χk =


uk− fD if uk−χk−1 > fS

uk + fD if uk−χk−1 <− fS

χk−1 if |uk−χk−1| ≤ fS

(5)

Therefore, the stiction nonlinearity ϕ(·) is formed by a set
of three, relatively simple, linear and parallel relations, thus
constituting a sort of switching “multi-mode” model to be
integrated along with the dynamics of the process, to form a
discontinuous model. Note that the proposed methodology and
formulations of MPC are valid also for other types of stiction
models.

3. MPC DESIGN

In this section the considered formulations of MPC are detailed,
by introducing an empirical stiction inverse model, a novel
smoothed stiction model, some specific choices for modules
and tuning parameters, and a suitable warm-start based on a
stiction compensation method.



Fig. 5. Inverse function ϕ̃−1 for He’s stiction model.

Fig. 6. Approximated inverse stiction function ϕ̂−1.

3.1 Stiction inverse model

The stiction inverse MPC formulation presented in Figure 4
requires to invert the stiction nonlinearity to obtain the control
sequence, that is, u = ϕ̃−1(ũ). Starting from He’s model in (5),
by assuming ũ = χ and knowing at each sampling ũk and ũk−1,
which compose inputs to stiction inverse model, one can write:

• if ũk 6= ũk−1 then:
· uk = ũk + fD if and only if uk− ũk−1 > fS;
· uk = ũk− fD if and only if uk− ũk−1 <− fS;

• if ũk = ũk−1 then uk ∈ [ũk−1− fS, ũk−1 + fS]

Then, by substituting uk for the two inequalities, one gets:

uk


= ũk + fD if ũk− ũk−1 > fS− fD

= ũk− fD if ũk− ũk−1 < fD− fS

∈ [ũk−1− fS, ũk−1 + fS] if ũk− ũk−1 = 0
is undefined otherwise

(6)

where fS− fD ≥ 0 and fD− fS ≤ 0. Figure 5 shows a schematic
representation of the function ϕ̃−1. This stiction inverse model
has an incomplete domain in R, admits unique values for ũk−
ũk−1 > fS− fD and for ũk− ũk−1 < fD− fS, is multivalued for
ũk − ũk−1 = 0, while otherwise is not defined. Note that, by
implementing this exact model of stiction inverse in the MPC
formulation, one should theoretically impose the following non
connected domain Ũ for values of ũk:

Ũ= {ũk : ũk > ũk−1 +( fS− fD) ∪
ũk < ũk−1− ( fS− fD) ∪ ũk = ũk−1} (7)

which is not actually implementable, since it implies a non
connected set of constraints on ũk, apart from the special case
of pure dead-band, that is, fS = fD.

Therefore, an approximated inverse model (ϕ̂−1 ≈ ϕ̃−1) is
needed to get an implementable MPC. A possible simple solu-
tion is to turn the model into a continuous function with linear
junctions, as the following:

uk =


ũk + fD if ũk− ũk−1 > fS− fD

ũk− fD if ũk− ũk−1 <−( fS− fD)

ũk +
fD

fS− fD
(ũk− ũk−1) if |ũk− ũk−1| ≤ fS− fD

(8)

Figure 6 shows a schematic representation of this approxi-
mated stiction inverse. Note that for fS = fD the third condition,
that is, when ũk− ũk−1 = 0, has to be reduced to uk = ũk.

Extensive simulations have verified that approximated model
(8) equals the exact one (6), that is, ϕ̂−1 ≡ ϕ̃−1, only when the
difference ũk− ũk−1 is always within the domain of the exact

Fig. 7. Test signal: behavior of stiction inverse ( fS = 5, fD = 2).

Fig. 8. Hyperbolic functions for the smoothed stiction model
with fS = 5 and τ = 10.

inverse, and then one gets ũ ≡ χ . Otherwise, this MPC formu-
lation has a structural mismatch and its performance tends to
degrade. Figure 7 shows the output ũk of an ideal MPC. This
signal respects constraints in (7) until 1500 s and thus allows
a perfect stiction inversion; then, once the signal assumes the
shape of a sine curve, the stiction inversion becomes incomplete
and the process input differs from the MPC output.

3.2 A smoothed stiction model

It is worth noting that (5) are stiff equations, thus the optimiza-
tion problem of MPC might be a difficult task, due to the pres-
ence of if-else statements which imply two hard discontinuities
in the input-output relation of the valve. A different stiction
model is thus used in the optimizer of the dynamic module of
NMPC in order to get a smoother problem. Equations (5) are
expressly approximated by using a single smoothing function:

χk = η1(ek)χk−1 +(1−η1(ek))uk +η2(ek) fD (9)
where η1(ek) and η2(ek) are the sum of two hyperbolic func-
tions, defined as below:

η1(ek) =
1
2

tanh(τ(ek + fS))+
1
2

tanh(τ(−ek + fS))

η2(ek) =
1
2

tanh(−τ(ek + fS))+
1
2

tanh(τ(−ek + fS))
(10)

where τ is a smoothing parameter, such that the higher is
its value, the larger is the sharpness of the functions (see
Figure 8). Extensive simulations have verified that for τ ≥ 104

the valve signature given by the proposed smoothed model (9)
reproduces exactly the results of He’s model.

3.3 Other features of compared formulations of MPC

In this section the main features common to all formulations
of MPC presented in Section 2.1 are detailed. The canonical
offset-free MPC is used for all three formulation (Pannocchia
et al., 2015). A linear disturbance model is used, so that the
whole plant model becomes:



ẑk+1|k = f (ẑk,uk)+Bd d̂k|k

d̂k+1|k = d̂k|k

ŷk = h(ẑk)+Cd d̂k|k

(11)

where Bd is the state disturbance matrix (∈ Rn×nd ), and Cd is
the output disturbance matrix (∈Rp×nd ), where nd = p= 1. The
three modules (Estimator, Steady-State Optimizer, Dynamic
Optimizer) implemented in the proposed MPC formulations are
briefly described below. Note that all modules are executed
at the same frequency as it typically happens in the process
industry (Qin and Badgwell, 2003).

State estimation. The state estimator receives current output
measurement (yk), and updates state (ẑk|k−1) and disturbance
(d̂k|k−1) predictions. The Luenberger observer is used, so that
prediction update is made by:[

ẑk|k
d̂k|k

]
=

[
ẑk|k−1
d̂k|k−1

]
+K ek (12)

where ek = yk− ŷk is the prediction error, and K = [KT
z ,K

T
d ]

T

is the observer matrix ∈ R(n+nd)×p.

Steady-state optimization. The steady-state optimizer com-
putes the state (zss), input (uss), and output (yss) targets to match
the desired external set-points (usp, ysp) while respecting the
imposed constraints. The optimization problem is as follows:

[zss,uss,yss] = argmin
u,y

`ss(u,y)

subject to
(13a)

zmin ≤ z≤ zmax

ymin ≤ y≤ ymax (13b)
umin ≤ u≤ umax

css(z,u,y) = 0
The objective function is quadratic:
`ss(u,y) = (y− ysp)

T Qss(y− ysp)+(u−usp)
T Rss(u−usp)

(14)
where Qss is the output penalty matrix (∈ Rp×p), and Rss is the
control penalty matrix (∈ Rm×m). The considered constraints
are:

• Bounds: on state, input, and output vectors;
• Equilibrium point css(z,u,y): on the state map⇒

zss− f (zss,uss)−Bd d̂k|k = 0, and on the output map⇒
yss−h(zss)−Cd d̂k|k = 0.

Dynamic optimization. The dynamic optimizer finds optimal
trajectory (z,u) from current state and input to targets and
computes uk = uk(0). The problem is formulated as follows:

[zk,uk] = argmin
z,u

`dyn(z,u) =
N−1

∑
i=0

`(zi,ui)+Vf (zN)

subject to

(15a)

zmin ≤ zi ≤ zmax

ymin ≤ yi ≤ ymax (15b)
umin ≤ ui ≤ umax

∆umin ≤ ∆u≤ ∆umax

ceq(zi,ui) = 0
where N is the prediction horizon length, and Vf (zN) = (zN −
zss)

T QN(zN − zss) is the terminal weight. Also this objective
function is quadratic:

`(zi,ui) = (zi− zss)
T Q(zi− zss)+∆uT

i S∆ui (16)

where ∆ui = ui−ui−1 is the input rate of change, Q is the state
penalty matrix (∈ Rn×n), S is the control difference penalty
matrix (∈ Rm×m). The considered constraints are:

• Bounds: on the state, input, input rate of change, and on
output;

• Dynamic map ceq(z,u,y): on the state map⇒
zi+1− f (zi,ui)−Bd d̂k|k = 0, and on the output map⇒
yi−h(zi)−Cd d̂k|k = 0.

Controller tuning. Some details about tuning parameters are
given. The state penalty matrix is chosen as follows:

Q = α

maxcij2
CT C+ I (17)

where maxcij is the maximum element of matrix C, α is the
actual tuning parameter. The steady-state matrices are chosen as
Qss = 1 and Rss = 0, while the ratio Q/S is around 1/10, with
α = 1 and QN = 103. The standard output disturbance model
and the standard observer are here adopted: Bd = 0, Cd = I, and
Kz = 0, Kd = I.

3.4 2-move compensation: a warm-start for NMPC

In order to get good tracking performance and move variables to
their targets by avoiding oscillations induced by valve stiction,
a suitable warm-start should be given to the dynamic optimizer
of MPC. This first-guess trajectory is inspired by a novel 2-
move stiction compensation method.

Introduced by Srinivasan and Rengaswamy (2008), the “two-
move compensator” ought to remove oscillations on control
variable, and keep the valve output at its steady-state value,
by performing at least two moves in opposite directions. The
proposed sequence of valve input signal is as follows:

uk =

{
uk−1 +a fS if uk−1 ≥ χss

uk−1−a fS if uk−1 < χss

uk+1 =

{
χss− fD if uk−1 ≥ χss

χss + fD if uk−1 < χss

uk+ j = uk+1(= uss) if j > 1

(18)

The first input uk (for j = 0) moves the valve stem away from its
stuck position, if a> 2. Note that, according to (5), at maximum
|uk−1−χk−1|= fS, therefore, if a > 2, one gets |uk−χk−1|> fS
and can move the valve: χk 6= χk−1 (see Figure 9). Then, the
second signal uk+1 (for j = 1) brings the stem position to its
steady-state value (χss) in order to eliminate error on control
variable. After this second movement ( j > 1), the stem cannot
move from steady-state position since the input signal is kept
constant.

It is worth reminding that the first version of two-move stiction
compensation presents several drawbacks, which heavily hin-
der its on-line implementation (Bacci di Capaci et al., 2016).
Among others issues, the steady-state value of valve position
(χss) is assumed to be known, while this variable is not usually
measurable in process plants.

In the proposed formulation (1), the valve output represents
the first component of the state vector of whole plant model.
Therefore, at each sampling time, the steady-state optimization
module of NMPC can compute a suitable steady-state target
(χss) also for the valve output:

ξss = Aξss +Bϕ(χss,uss)

yss = Cξss = ysp
(19)



Fig. 9. Sequence of two moves for stiction compensation.

Therefore, the proposed compensation method (18) represents
a valid warm-start for the NMPC, which improves significantly
performance of dynamic optimization module:

u0
1:N = [u0

1, u0
2, u0

3, ... , u0
N−1, u0

N ]

= [u−1±a · fS,χss∓ fD,χss∓ fD, ... ,χss∓ fD,χss∓ fD]
(20)

Note that (18) represents just a particular input sequence. A
general formulation of warm-start can be obtained by imposing
the following dynamic optimization problem:

min
χ̂k,uk,uk+1

(χ̂k−1− χ̂k)
2 +(χ̂k− χ̂ss)

2 (21)

subject to
χ̂k = ϕ(χ̂k−1,uk) (22)
χ̂ss = ϕ(χ̂k,uk+1)

which computes two moves (uk,uk+1) by optimizing on χ̂k, and
by assuming χ̂k+1 = χ̂ss.

4. SIMULATION ANALYSIS

The objective of this section is to investigate and compare the
performance of the three considered formulations of MPC. A
third order transfer function for the process model is used:

P(s) =
1

(10s+1)(5s+1)(s+1)
which corresponds to the following state-space model in dis-
crete time domain with sampling period Ts = 1:

A =

[2.0914 −0.6874 0.2725
2.0000 0 0

0 0.5000 0

]
, B =

[0.0625
0
0

]
,

C = [0.0391 0.0575 0.0204]
The three formulations of MPC are compared under equivalent
conditions in terms of tuning parameters, state observer, distur-
bance model as discussed in Section 3.3. The only differences
lay in the smoothed stiction model of (9) and in the stiction
compensation sequence of (20), which are respectively used
within dynamic optimization module of the NMPC formulation
as valve model and as warm-start. In the sequel, stiction un-
aware MPC and stiction inversion MPC are labeled as LMPC-
0 and LMPC-1, respectively. Simulations are performed on a
code (Vaccari and Pannocchia, 2016), written in Python 2.7
with the use of symbolic framework offered by CasADi 3.1.
Both optimization modules of MPC implement IPOPT, the
standard in the class of nonlinear programming solvers.

Fig. 10. Output and input response for different MPC formula-
tions (with N = 50).

4.1 Nominal comparison

In this first simulation, nominal performance is evaluated, since
no error in process and valve dynamics is present, and no noise
is added. Stiction is described by He’s model with fS = 5 and
fD = 2. Output and input responses for the same set-point trend
– a series of two step changes – are shown in Figure 10. It can
be observed that stiction embedding formulation (NMPC) is
the only controller which guarantees very good tracking per-
formance and also an effective stiction compensation. On the
opposite, the other two formulations show lower performance
and do not remove oscillations induced by stiction. Note that
not even stiction inversion MPC, despite being aware of the
valve malfunction, can yield good control, since the conditions
on input sequence, shown in (7), are not verified.

4.2 Effect of noise

The noise effect is here presented by considering all the same
parameters used in previous analysis. Ten simulations in re-
sponse to a single step change are performed with different
magnitude of the output white noise covariance matrix Rwn,
where v=R1/2

wn vrnd, and vrnd is a random sequence with uniform
distribution over [0,1). The performance is evaluated by using
the following closed-loop objective function:

JCL = ∑
k

(yk− ysp)
2

maxcij2
+S∆uk

2

Table 1 summarizes the complete results. It can be observed
that for NMPC rather constant values of JCL are obtained until
Rwn = 10−2, that is, an acceptable tracking performance and a
good stiction compensation is still possible for significant levels



Table 1. Effect of noise for three MPC formulations. Values of the objective function JCL [×103].

Noise Level (Rwn) 0 10−10 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

LMPC-0 69.6 72.0 70.8 67.6 69.9 71.1 70.6 48.8 41.8 154.6
LMPC-1 45.9 42.8 40.8 12.2 41.6 64.6 59.2 44.1 19.6 140.3
NMPC 0.055 0.055 0.056 0.063 0.041 0.034 0.418 2.20 16.8 143.0

Fig. 11. Effect of mismatch on stiction parameters: left) fS,
right) fD.

of noise. The other two formulations produce larger values of
JCL and a lower robustness to noise.

4.3 Effect of mismatch on stiction parameters

Finally, the effect of the wrong values of stiction parameters ( f̂S,
f̂D) in the valve model of two stiction aware MPC formulations
is studied. Mismatched values on static and dynamic friction are
considered separately. In the first case, actual values are fS = 6,
fD = 2 and f̂S is varied; in the second case, process values
are fS = 8, fD = 4 and f̂D is changed. Figure 11 summarizes
the whole results, by showing values of JCL with respect to
single errors: eS = fS − f̂S and eD = fD− f̂D. For NMPC, as
awaited, minimum values of the objective function are obtained
for null errors; acceptable performance are also possible when
the estimated parameter of static friction ( f̂S) is bigger than
the actual value, that is, when eS < 0. On the opposite, per-
formance can significantly degrade when stiction parameters
are underrated. Therefore, a robust stiction embedding MPC
can be designed conservatively by considering a large amount
of stiction in the plant model. Stiction inversion MPC shows
overall a lower robustness to errors on stiction parameters apart
from the case of large underestimation and for the specific case
of overestimation into deadband, that is, f̂d = f̂S = fS(= 8), for
which a fair stiction inversion is possible.

5. CONCLUSIONS

This paper has presented three different formulations of MPC
to face static friction in control valves for industrial processes.
A pure linear formulation, a stiction embedding structure, and a
stiction inversion controller are designed. It has been observed
that stiction embedding MPC is the only formulation which
guarantees very good tracking performance and also stiction
compensation. A robust behavior is verified also in the presence
of significant amount of white noise on the output, and even for

conservative errors in the nonlinear part of plant model, that is,
mismatches on valve dynamics parameters. Anyway, the better
performance of stiction embedding MPC is possible at the
expense of using a nonlinear formulation which solves a more
complex and heavy optimization problem. On the opposite,
the other two formulations show globally lower performance
and do not remove oscillations induced by valve stiction. Note
that stiction inversion MPC, despite being aware of the valve
fault, cannot generally yield a good control, since conditions of
discontinuity on input sequence are hardly verified when this
controller is implemented in closed-loop.
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