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Abstract

We propose in this paper novel cooperative distributed MPC algorithms for tracking of piecewise constant setpoints in linear
discrete-time systems. The available literature for cooperative tracking requires that each local controller uses the centralized state
dynamics while optimizing over its local input sequence. Furthermore, each local controller must consider a centralized target
model. The proposed algorithms instead use a suitably augmented local system, which in general has lower dimension compared
to the centralized system. The same parsimonious parameterization is exploited to define a target model in which only a subset of
the overall steady-state input is the decision variable. Consequently the optimization problems to be solved by each local controller
are made simpler. We also present a distributed offset-free MPC algorithm for tracking in the presence of modeling errors and
disturbances, and we illustrate the main features and advantages of the proposed methods by means of a multiple evaporator
process case study.
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1. Introduction

Model predictive control (MPC) is a class of advanced con-
trol techniques, widely used especially in the process indus-
tries, able to ensure closed-loop stability, constraint satisfac-
tion and robustness for multivariable linear and nonlinear sys-
tems [2, 3, 4]. Typical theoretical results on MPC consider
the regulation problem, i.e. steering the system state to the
origin. In general, we can take into account a non-zero set-
point by shifting the origin of the system. Depending on the
extent of the required setpoint change, feasibility issues may
arise. This problem can be avoided, as explained in [5] where
a centralized MPC for tracking a constrained linear systems is
proposed, which ensures nominal recursive feasibility and sta-
bility of the closed-loop system under any change of the set-
point and tractable computation for linear and non-linear sys-
tems [2, 6, 7].

Large-scale systems with several interconnected units may
exchange material, energy and information streams. The global
performance of these systems (e.g. industrial processing plants,
power generation networks, etc.) depends on local profitabil-
ity and on the level of interaction among subsystems. Optimal
global performance could be obtained using a single central-
ized MPC algorithm for all interconnected units. However, this
choice is often avoided for several reasons. When the overall
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number of inputs and states is very large, a single optimiza-
tion problem may require computational resources (CPU time,
memory, etc.) that are not available and/or compatible with
system’s dynamics. We may say that problem is not scalable.
Even if this limitation does not hold, it is often the case that or-
ganizational reasons impose the use of smaller local controllers,
which are easier to maintain and operate. For instance, the pro-
cess to be controlled may be spread geographically. By using a
centralized approach, when a partial shutdown on the network
happens, the rest of the units would stop working.

Thus, industrial control systems are often decentralized,
i.e. the overall system is divided into subsystems and a local
controller is designed for each unit disregarding interactions
from/to other subsystems. Due to dynamic coupling it is well
known that performance of such decentralized systems may be
poor, and stability properties may be even lost unless suitable
precautions are employed [8, 9]. Between centralized and de-
centralized strategies [8, 9], distributed control algorithms pre-
serve topology and flexibility of decentralized controllers and
may offer nominal closed-loop stability guarantees. This is
achieved by two features: the interactions among subsystems
are explicitly modeled and open-loop information, usually input
trajectories, is exchanged among subsystem controllers [10]. In
[11] a framework to avoid the loss of feasibility, guarantee sta-
bility, constraint satisfaction as well as convergence to admissi-
ble set-points is proposed in a cooperative fashion. Moreover, in
distributed control there are two main strategies for utilization
of the open-loop information. In non-cooperative distributed
control, each subsystem controller anticipates the effect of in-
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teractions only locally, i.e. to optimize a local objective func-
tion [12, 13]. However, if these interactions are strong, non-
cooperative control can destabilize the plant and performance
can be poorer than decentralized control. Alternatively, coop-
erative distributed model predictive control [3, 14] guarantees
nominal closed-loop stability and convergence to the central-
ized optimal performance by requiring each subsystem to con-
sider the effect of local control actions on all other subsystems.
So, each local controller optimizes the same plant-wide objec-
tive function over its local inputs. In [15] a Cooperative Dis-
tributed linear Model Predictive Control (CD-MPC) strategy to
track changing set-points, applicable to any finite number of
subsystems, is presented. This paper extends the formulation in
[15] to develop novel cooperative distributed MPC approaches
for tracking that rely on information that is “as local as pos-
sible”, and to include offset-free action in spite of modeling
errors.

The rest of this paper is organized as follows. In Section 2
preliminaries on centralized and distributed MPC, for regula-
tion and tracking, are described. In Section 3 we present and
discuss new distributed MPC formulations for tracking. In Sec-
tion 4 we extend the proposed methods to achieve offset-free
tracking in the presence of disturbances or plant/model mis-
match. In Section 5 we present a numerical example to show
the benefits of the proposed methods. Then, in Section 6 the
main conclusions of this work are summarized and open prob-
lems are sketched.

Notation. The field of reals is denoted by R. The identity ma-
trix is denoted by I, and the zero matrix is denoted by 0. Dimen-
sions of matrices are omitted when they can be easily inferred
from the context or indicated as subscripts. For any x ∈ Rn, the
symbol ‖x‖ denotes the 2-norm. Given a positive semi-definite
matrix Q ∈ Rn×n, we denote ‖x‖2

Q = xT Qx. The superscript 0

denotes an optimal cost or vector. Operators diag{T1, . . . ,TM}
and hor{T1, . . . ,TM} represent block diagonal and block hor-
izontal concatenation, respectively, of the supplied matrices
{T1, . . . ,TM}, assumed to have suitable dimensions.

2. Preliminary definitions and related work

2.1. Centralized system and local subsystems
We focus in this paper on discrete-time, linear, time-invariant

systems (DLTI) in the form:

x+ = Ax+Bu

y =C x
(1)

in which x∈Rn and x+ ∈Rn are the current and successor state,
u∈Rm is the manipulated input, y∈Rp is the controlled output.
We assume that the overall system (1) can be represented as
the union of M DLTI subsystems. Each subsystem i, with i ∈
{1, . . . ,M}, has local input ui ∈ Rmi and local output yi ∈ Rpi ,
and its evolution is given by:

x+i = Ai xi +Bi ui + ∑
j∈Ni

Bi j u j

yi =Ci xi

(2)

where Ni is the set of neighbors of subsystem i, and xi ∈ Rni ,
x+i ∈ Rni are the local state and successor state.

We remark that, without loss of generality, in (2) it is not
necessary to consider state interactions among subsystems, be-
cause the “local” state xi may be augmented (if necessary) to
include other required state interaction terms.

We make the following assumption throughout the paper, ex-
cept in Section 4 where the state measurement requirement is
relaxed.

Assumption 1. For each subsystem i: the state is measurable
at each decision time, the pair (Ai, Bi) is controllable, and the
following condition holds true:

rank
[

Ai− I Bi
Ci 0

]
= ni + pi (3)

We remark that Assumption 1 implies that (A,B) is control-
lable and the condition

rank
[

A− I B
C 0

]
= n+ p (4)

holds true.

2.2. Useful graph theory reminders

We recall a few concepts from graph theory, in order to rep-
resent and analyze the different subsystems.

A graph G = (V , E ) is composed by a finite set of vertices
(or nodes) V and a set of edges (or lines) E ⊂ V × V that
connect pairs of vertices. When edges are not oriented, we call
this type of graph undirected. A graph G =(V , E ) is directed if
E is composed by oriented edges between the two nodes. Edge
(vi,v j) is an edge from vi to v j, i.e. v j is the edge head and vi is
the edge tail. Given a directed graph G = (V , E ), the inlet star
and the outlet star of node vi are, respectively, the following
sets:

SIN
i = {v j ∈ V |(v j,vi) ∈ E }, SOUT

i = {v j ∈ V |(vi,v j) ∈ E }

We can simplify the notation, by indicating with i the generic
node vi, and with j the generic node v j belonging to inlet star
of i,

(
j ∈ SIN

i
)
, or to outlet star of i, i.e.

(
j ∈ SOUT

i
)
. Then,

each subsystem i in (2) can be seen as a node of a graph: the
set of its neighbors Ni coincides with its inlet star

(
j ∈ SIN

i
)
,

whereas SOUT
i is the set of subsystems of which subsystem i is

neighbor.
As an illustrative example, consider the following DLTI sys-

tem:
x+1 = A1 x1 +B1 u1

x+2 = A2 x2 +B2 u2 +B21 u1

x+3 = A3 x3 +B3 u3 +B31 u1 +B32 u2

(5)

Node 1 has an empty inlet star set, so N1 = /0. Node 2 is influ-
enced by node 1, i.e. N2 = {1}, while node 3 is influenced by
node 1 and node 2. i.e. N3 = {1, 2}. The system (5) is asso-
ciated with the directed graph shown in Fig. 1. Moreover, the
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Figure 1: Directed graph corresponding to system (5).

corresponding overall system in form (1) is given by: x1
x2
x3

+

=

 A1 0 0
0 A2 0
0 0 A3

 x1
x2
x3

+
 B1 0 0

B21 B2 0
B31 B32 B3

 u1
u2
u3


2.3. Brief review of centralized MPC

In order to set the bases of the proposed methods, we first
recall the standard formulation of centralized MPC.

2.3.1. Centralized regulation
Consider the centralized DLTI system (1), note that (x, u) =

(0, 0) is an equilibrium point, and let N be a positive horizon
length. We consider the problem of steering a given initial state
to the equilibrium while respecting input and state constraints:

x ∈ X, u ∈ U

in which X ⊂ Rn and U ⊂ Rm are compact polyhedral sets
containing the origin. Given the current state, x, and a finite-
horizon input sequence u = {u(0), . . . ,u(N−1)} we define the
cost function over the finite horizon as follows:

V (x, u) =
N−1

∑
k=0

` (x(k) , u(k))+Vf (x(N)) s.t.

x(0) = x

x(k+1) = Ax(k)+Bu(k) k = 0, . . . , N−1

(6)

in which `(·) is the stage cost function given by:

`(x, u) =
1
2
(
xT Qx+uT Ru

)
with Q, R positive definite matrices, and Vf (·) is the terminal
cost function given by:

Vf (x) =
1
2

xT Px (7)

in which P is also positive definite.
We can now define the finite horizon optimal control problem

(FHOCP) to be solved given the current state x as follows:

P(x) : min
u
{V (x , u) | u ∈UN (x)} (8)

where:

UN (x) =
{

u | u(k) ∈ U, x(k) ∈ X, x(N) ∈ X f ⊆ X
}

Solving problem P(x) in (8) provides u0(x) as optimal in-
put sequence, associated with a corresponding optimal state se-
quence x0(x) =

{
x0(0) = x,x0(1), . . . ,x0(N)

}
. Then, only the

first element of the optimal input sequence is sent to the con-
trolled system, i.e. u = u0(0). Finally, we recall that P(x) can
be posed as a Quadratic Program (QP) and effectively solved
numerically.

2.3.2. Centralized tracking
In general, it is a common objective to drive the output of a

system (or a subset of them) to a desired target (yt ) other than
the origin. Clearly, this also means that input and state vec-
tors have to reach an equilibrium, in general, different from the
origin.

Let (xs, us, ys) denote the steady-state equilibrium triple of
state, input and output. From (1), the following equilibrium
relation must hold:[

A− I B 0
C 0 −I

]xs
us
ys

=

[
0
0

]
(9)

Notice that for any ys ∈ Rp, condition (4) implies that there
exists a (non necessarily unique) pair (xs,us) such that (9) holds
true. We can now define the output target offset cost as:

Vss(ys,yt) = ‖ys− yt‖2
T (10)

with T positive definite diagonal matrix. Then, we obtain an
equilibrium triple in which the output is as close as possible to
the desired target, while state and input constraints are fulfilled,
by solving the following problem:

min
xs,us,ys

Vss(ys,yt) s.t. (9) and xs ∈ X, us ∈ U (11)

The above is often referred to as a steady-state target optimizer
(SSTO) problem, and we remark that (11) is also a QP.

Given
(
x0

s , u0
s , y0

s
)
, solution to problem (11), we can define

the deviation variables as x̃ = x− x0
s and ũ = u−u0

s . Then, we
solve the FHOCP in deviation variables:

P(x̃) : min
ũ

{
V (x̃(0) , ũ)

∣∣ ũ ∈ ŨN (x̃)
}

(12)

where:

ŨN (x̃) = {ũ | ũ(k)+u0
s ∈ U, x̃(k)+ x0

s ∈ X, x̃(N) ∈ X f }

The receding horizon control law uses only the first element of
the optimal sequence ũ0(x)solution to (12), so the input will be
u = ũ0 (0)+ u0

s . Notice that in some tracking formulations [5]
the steady-state problem (11) can be embedded into problem
P(x̃), resulting in a single-layer MPC structure. The reason be-
hind this approach is that an external steady-state optimization
problem could generate a state target xs such that the corre-
sponding terminal region may be not reachable by N steps from
the the current initial state x(0) while respecting input and state
constraints [5].
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2.4. Brief review of distributed MPC

We now review the basic cooperative distributed MPC algo-
rithms, for regulation first and then for tracking.

2.4.1. Cooperative distributed regulation
As in centralized MPC, for each subsystem we consider the

following cost function:

Vi

(
xi, ui,

{
u j
}

j∈Ni

)
=

N−1

∑
k=0

`i (xi (k) , ui (k))+Vf i (xi (N))

s.t. xi(0) = xi (13)

xi(k+1) = Ai xi(k)+Bi ui(k)+ ∑
j∈Ni

Bi j u j(k)

in which

`i(xi,ui) =
1
2 (x

T
i Qixi +uT

i Riui), Vf i(xi) =
1
2

xT
i Pixi

with Qi ∈ Rni , Ri ∈ Rmi and Pi ∈ Rni , positive definite matri-
ces. We remark that Vi(·) depends also on neighbors’ input se-
quences, u j for j ∈Ni, due to interactions among subsystems,
as given in (2).

In cooperative distributed MPC [3, 10, 16], each subsystem
optimizes the same global objective function, defined as

V (x, u) =
M

∑
i=1

Vi

(
xi, ui,

{
u j
}

j 6=i

)
(14)

We notice that the global cost function (14) is equivalent to that
of the centralized problem (6) with the following weight matri-
ces

Q = diag{Q1, . . . ,QM}, R = diag{R1, . . . ,RM},
P = diag{P1, . . . ,PM}

Hence, the FHOCP to be solved by each subsystem i reads:

Pi

(
x,
{

u j
}

j 6=i

)
: min

ui
V (x, u) s.t.

ui ∈Ui

(
x,
{

u j
}

j 6=i

)
(15)

x(N) ∈ X f ⊆ X

in which

Ui

(
x,
{

u j
}

j 6=i

)
= {ui | ui (k) ∈ Ui , x(k) ∈ X}

We remark that each subsystem solves problem (15) for a
known and fixed value of all other subsystem input sequences.
If time allows it, this process can be repeated performing coop-
erative iterations as detailed next.

At the q-th cooperative iteration (q = 1, at the beginning of
this iterative process), let u[q−1]

i be the known value of subsys-

tem i input sequence. We solve problem Pi

(
x,
{

u[q−1]
j

}
j 6=i

)
in

(15) to obtain u0
i . Then, the input sequence of subsystem i for

the next cooperative iteration is defined as a convex combina-
tion of the new and old values, i.e.:

u[q]
i = wiu0

i +(1−wi)u
[q−1]
i (16)

in which wi > 0 such that ∑
M
i=1 wi = 1. Cooperative itera-

tions are typically performed until convergence, i.e. when∥∥∥u[q]
i −u[q−1]

i

∥∥∥ is less than a given tolerance, or until a maxi-
mum number of iterations is reached. Then, the first component
of computed input is sent to each subsystem in the usual reced-
ing horizon fashion. We remark that nominal stability is guar-
anteed for any finite number of cooperative iterations [3, 16].

2.4.2. Cooperative distributed tracking
Problem (15) described above can be applied to tracking or

can be integrated with dynamic optimization layer as in [15].
Specifically, an artificial equilibrium triple (xs, us, ys) of the
overall centralized system (1), i.e. satisfying (9), is added as de-
cision variable. Consequently, the global cost function is modi-
fied by adding a target offset term as in (57a) that penalizes the
deviation of ys from yt , to obtain:

Vt (x, u, xs, us, ys) =Vss (ys, yt)+
N−1

∑
k=0

`(x(k)− xs,u(k)−us)+

Vf (x(N)− xs)

s.t. x(0) = x

x(k+1) = Ax(k)+Bu(k)
(17)

Then, the FHOCP to be solved by each subsystem i reads:

Pi

(
x,
{

u j
}

j 6=i

)
: min

ui,xs,us,ys
Vt (x, u, xs, us, ys) (18a)

s.t. (9) and

ui ∈Ui

(
x,
{

u j
}

j 6=i

)
(18a)

(x(N),ys) ∈Ω (18a)

where Ω is an admissible polyhedral invariant set for tracking
for system (1), as explained in [15]. We also point out that
in problem (18) solved by [15], the centralized target triple
(xs,us,ys) is parameterized by ys only, which represents to-
gether with ui the actual decision variable of each local con-
troller.

3. Proposed methods for nominal tracking

In this section we propose a new cooperative distributed
MPC algorithm for nominal tracking, and then we present sev-
eral variants. Differently from the available approaches used in
cooperative MPC algorithms [3, 15, 16], in the proposed meth-
ods each local controller does not have to keep track the central-
ized system state but only of a subset of this one that is strictly
necessary to achieve the desired global tracking goal. In this
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way two main results can be accomplished. Firstly, the com-
munication among subsystems is reduced, and secondly the op-
timization problem solved by each local controller is made sim-
pler (reduced in dimension), and hence computation time may
be reduced.

The first proposed method is based on a single optimization
layer as described in § 2.4, and then, we present a two step vari-
ant algorithm. In these two methods, the equilibrium target is
still in centralized form, but a further variant is then described,
which uses an augmented target model.

3.1. Defining the augmented system
We analyze each subsystem i, and observe that:

• this subsystem is influenced by the inputs of its inlet star,
as described in (2);

• the input of this subsystem influences the subsystems of
its outlet star, along with the inputs of their inlet stars.

The evolution of its own state xi and of the states of subsystems
belonging to its outlet star are given by:

x+i = Ai xi +Bi ui + ∑
k∈SIN

i

Bikuk (19)

x+j = A j x j +B jiui +

B ju j + ∑
k∈SIN

j \{i}
B jk uk

 , j ∈ SOUT
i

The evolution of the states of the remaining subsystems can be
written as:

x+j = A j x j +

B ju j + ∑
k∈SIN

j

B jk uk

 , j /∈ SOUT
i (20)

It is therefore clear that each subsystem i should only consider
the evolution of subsystems reported in (19), because those re-
ported in (20) are independent of ui.

We now refer to (19) as the “augmented system”. In order
to write it in a more convenient way, we can define a new set
representing its inlet star:

SIN
i = SIN

i ∪SOUT
i ∪

 ⋃
j∈SOUT

i

SIN
j \{i}

 (21)

Note that by definition, i /∈ SIN
i . Then, defining the following

stacked vectors:

x̄i =

[
xi[

x j
]

j∈SOUT
i

]
, ūi =

[
uk
]

k∈SIN
i
, ȳi =

[
yi[

y j
]

j∈SOUT
i

]
(22)

and the following matrices:

Āi = diag
{

Ai, {A j} j∈SOUT
i

}
, B̄i =

[
Bi[

B ji
]

j∈SOUT
i

]

B̄IN
i =

[
hor{Bik}k∈SIN

i
hor{B jk} j∈SOUT

i , k∈SIN
i

]
(23)

Based on these definitions we can rewrite the augmented system
(19) in a more compact form:

x̄+i = Āi x̄i + B̄i ui + B̄IN
i ūi

ȳi = C̄i x̄i
(24)

3.2. A single step MPC algorithm based on the augmented sys-
tem

We now analyze the global cost function for tracking given
in (17), and rewrite it in a way that the specific contribution of
each subsystem is highlighted:

Vt(·) =Vss(ys,yt)+
N−1

∑
k=0

M

∑
j=1

` j(x j(k)− xs j,u j(k)−us j)+

M

∑
j=1

Vf j(x j(N)− xs j) (25)

where (xs j,us j) represent state and input equilibrium values of
each subsystem j. We observe that the input of subsystem i
only affects the terms associated to the augmented system (19),
and hence all terms associated to the other subsystems, i.e. for
j /∈ SOUT

i , can be dropped. More specifically let x̄i be the current
value of the state of the augmented system (24), define x̄si as
the appropriate selection of components of the centralized state
target xs, and let

{
u j
}

j∈SIN
i

be a finite horizon input sequence
of neighbors of the augmented system i. Then, the cost function
to be minimized by subsystem i reads:

Vti(·) =
N−1

∑
k=0

¯̀i(x̄i(k)− x̄si,ui(k)−usi)

+V̄f i(x̄i(k)− x̄si)+Vss(ys,yt) s.t.
x̄i(0) = x̄i

x̄i(k+1) = Āi x̄i(k)+ B̄i ui(k)+ B̄IN
i ūi(k)

(26)

in which

¯̀i(x̄i,ui) =
1
2
(
x̄T

i Q̄ix̄i +uT
i Riui

)
, V̄f i(x̄i) =

1
2

x̄T
i P̄ix̄i (27)

with

Q̄i = diag
{

Qi, {Q j} j∈SOUT
i

}
, P̄i = diag

{
Pi, {Pj} j∈SOUT

i

}
(28)

Likewise, it is not necessary to include the state constraints of
all subsystems, as only those of the augmented system (19) will
be affected by the input ui. Thus, the proposed method consid-
ers the following FHOCP to be solved by each subsystem i:

Pi

(
x̄i,
{

u j
}

j∈SIN
i

)
: min

ui,xs,us,ys
Vti(ui,xs,us,ys) (29a)

s.t. (9) and

ui ∈ Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
(29b)

(x̄i(N), ȳsi) ∈ Ω̄i (29c)
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in which

Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
= {ui | ui (k) ∈ Ui , x̄i(k) ∈ X̄i}

where X̄i is the state constraint set for the augmented system
(24), ȳsi is the appropriate selection of components of the cen-
tralized output target ys, and Ω̄i is an admissible polyhedral in-
variant set for tracking for system (24), as explained in [15].
Once we solve problem (29), we obtain an optimal input se-
quence u0

i . Then, we can perform cooperative iterations until a
relative error tolerance between the input vector at two consec-
utive iterations or a maximum number of cooperative iterations
are achieved. The detailed calculations are reported formally in
Algorithm 1.

Algorithm 1 (Cooperative MPC - Single step). Require:
Systems (24), SIN

i ∀i = 1 . . .M, tolerance ε , max. no. coop. itera-
tions qmax, convex combination weights wi > 0, s.t. ∑

M
i=1 wi = 1.

1: Set q← 0 and ei← 2ε .
2: while q < qmax and ∃ i such that ei > ε do
3: q← q+1
4: for i = 1 to M do
5: Solve problem Pi in (29) to obtain the optimal input

sequence u0
i (x) and the centralized state-steady triple

(xs, us, ys).
6: if q = 1 then
7: u[q−1]

i =
[
uT

si
· · · uT

si

]T
8: end if
9: Define new iterate: u[q]

i = wiu0
i +(1−wi)u

[q−1]
i .

10: Compute convergence error: ei =
||u[q]

i −u[q−1]
i ||

1+||u[q]
i ||

11: end for
12: end while
13: return Overall solution u =

(
u[q]

1 , u[q]
2 , . . . , u[q]

M

)
.

We remark that lines 5-10 of Algorithm 1 are executed in par-
allel by each subsystem. Problem (29) finds, in a single step, the
optimal input sequence for subsystem i, u0

i and the centralized
steady-state triple (us, xs, ys). It is important to note that sub-
systems solve their optimization problem independently of each
other since there is no communication at this point. Communi-
cation takes place after line 10, when each subsystem commu-
nicates its local input u[q]

i and its convergence error ei.

Remark 2. Line 5 of Algorithm 1 shows that FHOCP (29)
computes an optimal input control sequence u0

i . This vector
must belong to a set Ūi given by:

Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
= {ui | ui (k) ∈ Ui , x̄i(k) ∈ X̄i}

This means that equation (19), implicitly recalled in Ūi, con-
tains all the state dynamics required to solve the optimal control
problem. On the other hand, all those state dynamics in (20) are
independent from ui so they do appear in Ūi. The optimal con-
trol problem solved in [15] differs from our approach because

plant-wide state dynamics are considered in the FHOCP, i.e.
using both equations (19) and (20). This means that FHOCP
(29) and the one given in [15], i.e. FHOCP (18), obtain the
same solution u0

i .

Proposition 3. For any initial condition x(0) and any given
setpoint yt , the closed-loop system (1) under the receding hori-
zon control law obtained by Algorithm 1 is asymptotically sta-
ble and converges to an equilibrium (x∗s ,u

∗
s ,y
∗
s ) that is solution

to:

Pss (yt) : min
(xs,us,ys)

Vss(ys,yt) s.t. (30a)

xs = Axs +Bus (30b)
ys =Cxs (30c)

xs ∈ X, us ∈ U (30d)

PROOF. The proof follows from Th. 1 in [15] and Remark 2.

Remark 4. The equilibrium computed in (30) is the best
achievable target, i.e. the target in which the weighted distance
between the actual target y∗s and the setpoint yt is minimized.
If the setpoint is actually reachable while respecting input and
state constraints, then y∗s = yt and Vss(y∗s ,yt) = 0.

To better understand our method we introduce a block dia-
gram in Figure 2 representing step by step Algorithm 1, as well
as covering Algorithm 2 discussed in the next paragraph.

3.3. A two step variant
A variant of the proposed algorithm is presented, in which

the steady target problem is executed by each subsystem sepa-
rately from the optimal control problem. In the first step each
subsystem finds the equilibrium triple (x∗s ,u

∗
s ,y
∗
s ) of the overall

centralized system from (30). Then, each subsystem solves an
FHOCP that is similar to Pi in (29) with (xs,us,ys) = (x∗s ,u

∗
s ,y
∗
s )

being known parameters instead of decision variables. At the
end of each cooperative iteration, communication takes place;
each subsystem communicates its local input u[q]

i and its conver-
gence error ei. The detailed calculations are reported formally
in Algorithm 2.

Algorithm 2 (Cooperative MPC - Two steps). Require:
Systems (24), SIN

i ∀i = 1 . . .M, tolerance ε , max. no. coop. itera-
tions qmax, convex combination weights wi > 0, s.t. ∑

M
i=1 wi = 1.

1: Solve (30) to obtain the centralized steady-state triple (x∗s , u∗s , y∗s ).

2: Set q← 1 and ei← 2ε .
3: while q < qmax and ∃ i such that ei > ε do
4: q← q+1
5: for i = 1 to M do
6: if q = 1 then
7: u[q−1]

i =
[
uT

si
· · · uT

si

]T
6
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Figure 2: Block diagram of Algorithm 1 and Algorithm 2.

8: end if
9: Solve problem Pi in (29) with (xs, us, ys) = (x∗s , u∗s , y∗s )

to obtain the optimal input sequence u0
i (x).

10: Define new iterate: u[q]
i = wiu0

i +(1−wi)u
[q−1]
i .

11: Compute convergence error: ei =
||u[q]

i −u[q−1]
i ||

1+||u[q]
i ||

12: end for
13: end while
14: return Overall solution u =

(
u[q]

1 , u[q]
2 , . . . , u[q]

M

)
.

It is important to observe that in Algorithm 2, line 1 is solved
by each subsystem. Alternatively, it could be solved by a co-
ordinator, but this would diminish the distributed architecture.
Moreover, similarly to Algorithm 1, lines 5-11 of Algorithm 2
are executed in parallel by each subsystem, and communication
takes place after line 11, when each subsystem communicates
its local input u[q]

i and its convergence error ei.

Remark 5. Note that the equilibrium triple (us, xs, ys) in Algo-
rithm 2 is computed externally of the cooperative loop and of
the FHOCP as described at Line 9. Hence, the final solution u
computed at Line 14 of Algorithm 2 may differ from the other
one computed in the Algorithm 1 at Line 13.

3.4. Using an augmented target model
From (29) we observe again that the equilibrium triple is still

in centralized form, so the distributed architecture is still not
exploited at maximum. In order to distribute the target equilib-
rium computation, we would like to make use of the augmented
system (24). However, we cannot use only usi as decision vari-
able to minimize the offset cost of all outputs ȳsi in the aug-
mented system (24). To overcome this limitation, we rewrite
the augmented system (24) in an equivalent form that considers
as target decision variables the local inputs of all subsystems
that form the augmented system (24).

Specifically, the following set defines the “local input” of the
augmented subsystem that is used in the target calculation:

Ii = {i}∪SOUT
i (31)

whereas the following set defines its inlet star :

S̄IN
i = SIN

i \SOUT
i

=

SIN
i ∪SOUT

i ∪

 ⋃
j∈SOUT

i

SIN
j

\{i}
\SOUT

i

= SIN
i ∪

 ⋃
j∈SOUT

i

SIN
j

\ Ii (32)

Having defined the following target variables:

x̄si =
[
xs j
]

j∈Ii
, ȳsi =

[
ys j
]

j∈Ii
, ūsi =

[
us j
]

j∈Ii
(33)

and matrices:

B̂i =
[
hor
{

B jk
}

k∈Ii

]
j∈Ii

, B̄ik =
[
B jk
]

j∈Ii
∀k ∈ S̄IN

i (34)
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we can write the equilibrium relation of (24) as:

[
Āi− I B̂i 0

C̄i 0 −I

]x̄si
ūsi
ȳsi

=

[
−∑k∈S̄IN

i
B̄ik ·usk

0

]
(35)

Notice that the right hand side in (35) contains the input targets
for the subsystems belonging to S̄IN

i , which are assumed known
from previous cooperative iterations. Let the target offset cost
of the augmented system be:

Vssi(ȳsi, ȳti) = ‖ȳsi− ȳti‖2
T̄i

(36)

and consider the following cost to be minimized by the subsys-
tem i:

V̄ti(·) =
N−1

∑
k=0

¯̀i(x̄i(k)− x̄si,ui(k)−usi)

+V̄f i(x̄i(k)− x̄si)+Vssi(ȳsi, ȳti) s.t.
x̄i(0) = x̄i

x̄i(k+1) = Āi x̄i(k)+ B̄i ui(k)+ B̄IN
i ūi(k)

(37)

Then, the FHOCP in (29) is replaced by

Pi

(
x̄i,
{

u j
}

j∈SIN
i
,
{

us j
}

j∈S̄IN
i

)
:

min
ui,x̄si,ūsi,ȳsi

V̄ti(ui, x̄si, ūsi, ȳsi) (38a)

s.t. (35) and

ui ∈ Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
(38b)

(x̄i(N), ȳsi) ∈ Ω̄i (38c)

Once problem (38) is solved to obtain the optimal input se-
quence u0

i and the optimal augmented input target ū0
si, for each

subsystem i we can define the overall input target u0
s,i calcu-

lated by subsystem i by appending the input targets of all other
inputs, i.e. those belonging to u[p−1]

s . Then, the cooperative
update of the centralized target is defined as:

u[p]s =
M

∑
i=1

wiu0
s,i (39)

A similar update occurs for state and output target (x[p]s ,y[p]s ).
Likewise, the cooperative update of the local input trajectories
is still defined in (16). Furthermore, for the augmented target
problem a new tolerance variable εss is defined to check con-
vergence of the overall input target ‖u[p]s − u[p−1]

s ‖ ≤ εss(1 +

‖u[p]s ‖).
Finally, we can also consider a two step variant algorithm in

which the augmented target is optimized instead of the central-
ized one.

Theorem 6. For any initial condition x(0) and any given set-
point yt , the closed-loop system (1) under the receding hori-
zon control law obtained by Algorithm 1, in which problems Pi
in (38) are solved by each subsystem in place of Pi in (29), is
asymptotically stable and converges to the equilibrium given in
(30).

PROOF. Let us define

z[p] =
(

u[p]
1 , . . . ,u[p]

M ,x[p]s ,u[p]s ,y[p]s

)
(40)

as the solution of p-th cooperative iteration. If for each i, we
solve (38) with u[p]

j , j ∈ Si, and
(

x[p]s ,u[p]s ,y[p]s

)
fixed, we obtain

a solution:

z∗i =
(

u[p]
1 , . . . ,u∗i , . . . ,u

[p]
M ,x[p]s ,u[p]s ,y[p]s

)
(41)

By definition, for each i, it is feasible and it provides a lower
cost than z[p]. From convexity of the optimal cost function and
the fact that z0

i is obtained from the optimal solution of (38)
with u[p]

j fixed but with (x̄si, ūsi, ȳsi) as decision variables, we
can write:

VN

(
z[p+1]

)
=VN

(
M

∑
i=1

wiz0
i

)

≤
M

∑
i=1

wiVN
(
z0

i
)

≤
M

∑
i=1

wiVN (z∗i )

≤
M

∑
i=1

wiVN

(
z[p]
)
=VN

(
z[p]
)

(42)

This shows that:

VN

(
z[p+1]

)
≤VN

(
z[p]
)
, ∀p ∈ N (43)

The rest of the proof follows closely that of Th. 1 in [15].

3.5. Complexity analysis

It is important to remark that in problem (29), each subsys-
tem i computes the evolution trajectory of its augmented sys-
tem. This is sufficient to minimize the global objective func-
tion and enforce state (or output) constraints because the states
that are discarded are those that are not affected by the input of
subsystem i. On the contrary, general cooperative algorithms
keep track of the evolution of the overall state to achieve the
same goals. It is well known that Quadratic Programs arising in
MPC problems, like (8) or (29), are more effectively solved for
large scale systems using Interior Point algorithms with both
state and input sequences as decision variables [17]. Since
the augmented system comprises a subset of the overall system
state, it follows that proposed single step method has lower (no
higher) complexity than the method in [15]. However, in the
steady-state problem there is still the centralized target triple
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Table 1: Comparison of computational complexity of the three algorithms.

DMPC0 DMPC1-CT DMPC2-CT DMPC1-AT DMPC2-AT

Prediction model Centralized Augmented Augmented Augmented Augmented
Steady-state model Centralized Centralized Centralized Augmented Augmented
Target calc. (TC) Embedded Embedded Separate Embedded Separate
TC decision var. – – (xs,us,ys) – (x̄si, ūsi, ȳsi)
OCP decision var. (ui,x,xs,us,ys) (ui, x̄i,xs,us,ys) (ui, x̄i) (ui, x̄i, x̄si, ūsi, ȳsi) (ui, x̄i)

(xs,us,ys). As discussed in §3.4, thanks to the augmented tar-
get model formulation, also the complexity of computation for
steady steady targets can be reduced.

A summary of the complexity of both methods, as well as of
the two step variant discussed in §3.3, is reported in Table 1,
in which DMPC0 refers to the standard method discussed in
§2.4, DMPC1-CT is the proposed single step method discussed
in §3.2, DMPC2-CT is the proposed two step method discussed
in §3.3. DMPC1-AT and DMPC2-AT are the proposed one or
two step methods exposed in §3.4.

4. Distributed offset-free tracking

In the previous sections, we assumed that the current state of
each subsystem xi was measurable and that the true controlled
process followed the nominal DLTI dynamics given in (1). In
this section, both requirements are relaxed assuming that each
subsystem i− measures only the local output yi at each sam-
pling time, and that the true controlled process may not fol-
low (1) precisely. Nonetheless, we still aim to achieve setpoint
tracking, i.e.

lim
k→∞

yi(k) = yti, ∀i ∈ {1, . . . ,M} (44)

For the scope of this section, Assumption 1 is replaced by the
following one.

Assumption 7. For each subsystem i: the output yi is measur-
able at each decision time, the pair (Ai, Bi) is controllable, the
pair (Ci, Ai) is observable, and the following condition holds
true:

rank
[

Ai− I Bi
Ci 0

]
= ni + pi (45)

4.1. Distributed offset-free estimation

Following the well established theory of (centralized) offset-
free MPC [18, 19, 20, 21], for each subsystem i we use an ob-
server to estimate the augmented state of the following system:

x+i = Ai xi +Bi ui + ∑
j∈Ni

Bi j u j +Bdidi

d+
i = di

yi =Ci xi +Cdidi

(46)

in which di ∈Rpi is the so-called “integral” disturbance, and the
matrices Bdi ∈ Rni×pi and Cdi ∈ Rpi×pi define the disturbance

model, i.e the way in which the disturbance affects the state-
transition map and the output map. In addition to Assumption 7,
the following further assumption is made.

Assumption 8. For each subsystem i, the disturbance model
matrices (Bdi,Cdi) are such that the following condition holds
true:

rank
[

Ai− I Bdi
Ci Cdi

]
= ni + pi (47)

Notice that there always exist pairs (Bdi,Cdi) satisfying the
above requirement if and only if (Ci, Ai) is observable.

Any (linear) observer can be used, and for the sake of sim-
plicity we here focus on the use of a static gain matrix Ki ∈
R(ni+pi)×pi , partitioned as:

Ki =

[
Kxi
Kdi

]
(48)

which is used to update the prediction of the local state and
disturbance, denoted by (x̂i(k|k−1), d̂i(k|k−1)), as follows:[

x̂i(k|k)
d̂i(k|k)

]
=

[
x̂i(k|k−1)
d̂i(k|k−1)

]
+[

Kxi
Kdi

](
yi(k)−

[
Ci Cdi

][x̂i(k|k−1)
d̂i(k|k−1)

])
(49)

The filter gain matrix must satisfy the stability condition that
the following matrix:[

Ai Bdi
0 I

]
−
[

Ai Bdi
0 I

][
Kxi
Kdi

][
Ci Cdi

]
(50)

is Hurwitz. Under Assumptions 7 and 8, the existence of such[
Kxi
Kdi

]
is guaranteed, e.g. by designing a steady-state Kalman

filter for (46) or via pole-placement.

4.2. Optimal control problem for offset-free tracking
Given the current state and disturbance estimate of each sub-

system (x̂i(k|k), d̂i(k|k)), we build the augmented system used
for the local MPC problem according to the procedure de-
scribed in §3.1, i.e. defining the local augmented system state,
input and output as in (22). Consequently the augmented dis-
turbance vector is defined as:

d̄i =

[
d̂i(k|k)[

d̂ j(k|k)
]

j∈SOUT
i

]
, (51)
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and the augmented disturbance model matrices are defined as:

B̄di = diag
{

Bdi, {Bd j} j∈SOUT
i

}
,

C̄di = diag
{

Cdi, {Cd j} j∈SOUT
i

}
(52)

With these definitions, the prediction model used by each local
MPC is given by:

x̄+i = Āi x̄i + B̄i ui + B̄IN
i ūi + B̄di d̄i

ȳi = C̄i x̄i +C̄di d̄i
(53)

In order to define the centralized target model, we stack to-
gether the disturbance model matrices (Bdi,Cdi) and the distur-
bance estimate d̂i(k|k) each subsystem (46):

Bd = diag{Bdi}M
i=1 , Cd = diag{Cdi}M

i=1 ,

d̂(k|k) =
[
d̂i(k|k)

]M
i=1 (54)

Thus, we can write the steady-state centralized offset-free
model as: [

A− I B 0
C 0 −I

]xs
us
ys

=−
[

Bd
Cd

]
d̂(k|k) (55)

Then, the FHOCP that is solved at each sampling time reads:

Pi

(
x̄i,
{

u j
}

j∈SIN
i

)
: min

ui,xs,us,ys
Vti(ui,xs,us,ys) (56a)

s.t. (55) and

ui ∈ Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
(56b)

(x̄i(N), ȳsi) ∈ Ω̄i (56c)

in which, recalling the prediction model (53), we have:

Ūi

(
x̄i,
{

u j
}

j∈SIN
i

)
= {ui | ui (k) ∈ Ui , x̄i(k) ∈ X̄i}

Once we solve problem (56) and we obtain an optimal input
sequence u0

i , the usual cooperative iterations are performed.
Obviously, we can consider a two step variant, as well as the

augmented target model approach instead of the centralized one
in (55).

Theorem 9. Assume that the closed-loop system reaches an
equilibrium with input u∞ and output y∞, and that state and
input constraints are inactive at this equilibrium. Let d̂∞ be
the corresponding steady value reached by the disturbance es-
timate. It follows that the output of the controlled system y∞

is equal to the best reachable target ys,∞ corresponding to the
solution of:

min
(xs,us,ys)

Vss(ys,yt) s.t. (57a)

xs = Axs +Bus +Bd d̂∞ (57b)

ys =Cxs +Cd d̂∞ (57c)

PROOF. Consider the centralized offset-free model

x+ = Ax+Bu+Bdd
d+ = d
y =C x+Cdd

(58)

which is obtained by combining together the local offset-free
models (46) for all i. The overall disturbance predictor is:

d̂k+1|k = d̂k|k−1 +Kd
(
yk−C x̂k|k−1−Cd d̂k|k−1

)
(59)

in which Kd = diag{Kdi}M
i=1. From (59) and the results in [19],

each Kdi is invertible, and therefore Kd is also invertible. Since
the system has reached an equilibrium, from (59) it follows that:

lim
k→∞

(
yk−C x̂k|k−1−Cd d̂k|k−1

)
= 0 (60)

or equivalently:
y∞ =C x̂∞ +Cd d̂∞ (61)

in which:

d̂∞ = lim
k→∞

d̂(k|k−1) = lim
k→∞

d̂(k|k),

x̂∞ = lim
k→∞

x̂(k|k−1) = lim
k→∞

x̂(k|k)
(62)

Given that the disturbance reached the constant value d̂∞,
for each subsystem the centralized equilibrium target triple
(xs,us,ys) is also constant. We now show that x̂∞ = xs,∞ so-
lution to (57). Assume, by contradiction that x̂∞ 6= xs,∞, and
recall that state and input constraints are inactive at the reached
equilibrium. It would follow that ui,∞ = u0

i (0) 6= usi,∞. Each
subsystem solves (56) using (virtually) the centralized dynam-
ics, and hence we would have:

x̂∞ = Ax̂∞ +Bu∞ +Bd d̂∞ (63)

along the prediction horizon. However, the stage cost `(·) is
strictly convex in its arguments and constraints are inactive.
This means that cost function returns, due to (63), a value dif-
ferent from the minimum, which is a contradiction. Hence, the
solution computed by each subsystem is

u∞ = us,∞

x̂∞ = xs,∞
(64)

From (64) the following holds:

ys,∞ =Cxs,∞ +Cd d̂∞ = y∞ (65)

5. Application examples

5.1. Multi-stage evaporator model and subsystems

As an illustrative example, we consider a “forward feed”,
triple effect, evaporator process. A simplified process flow di-
agram is shown in Figure 3. The mass and energy balance
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Figure 3: Simplified process flow diagram (PFD) of the ”forward feed”, triple
effect, evaporator process.

equations are different in the first or in subsequent (i = 2,3)
evaporators. For the first one we have:

dM1
dt = F−L1−V1

cpM1
dT1
dt = Fcp (TF −T1)−V1λ1 +Q1

M1
dχ1
dt = FχF +(V1−F)χ1

(66)

in which the outputs are the liquid mass M1, the evaporator tem-
perature T1, the solute mass fraction χ1, whereas the inputs are
the liquid outlet rate L1, the external duty Q1, the vapor outlet
rate V1. The other parameters are the feed rate F and tempera-
ture TF , the liquid specific heat cp, the heat of evaporation λ1.
The balance equations for subsequent evaporators (i = 2,3), in-
stead, read:

dMi
dt = Li−1−Li−Vi

cpMi
dTi
dt = Li−1cp (Ti−1−Ti)−Viλi +Vi−1λi−1

Mi
dχi
dt = Li−1χi−1 +(Vi−Li−1)χi

(67)

in which the states/outputs are: the liquid mass Mi, the evapo-
rator temperature Ti, the solute mass fraction χi; the inputs are:
the liquid outlet rate Li, the vapor outlet rate Vi. The heat of
evaporation is λi. Model parameters are taken from [22, p.632-
633].

To obtain a linear model, the nonlinear system (66)-(67) is
tested for 72 hours in which each input has 2% of maximum
amplitude variation. Generalized Binary Noise (GBN) input
signals are produced [23] with a sampling time of 1 min and a
a switch probability of 2%. Then, both inputs and outputs are
mean centered, and normalized in the range [−1, 1]. A MISO
approach is considered to identify a linear model for each out-
put, using the N4SID algorithm available in the Systems Iden-
tification toolbox in Matlab [24]. A transfer function model for
each (nonzero) input-output pair is reported in Table 2, which
highlights the sparsity of the identified model.

We assume that the process is split into three subsystems:
Subsystem 1 has (L1,Q1,V1) as inputs and (M1,T1,χ1) as out-
puts; Subsystem 2 has (L2,V2) as inputs and (M2,T2,χ2) as out-
puts; Subsystem 3 has (L3,V3) as inputs and (M3,T3,χ3) as out-
puts.
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Figure 4: Cumulative distribution function of normalized computation time of
DMPC1-CT (one step, centralized target model) and DMPC2-CT (two steps,
centralized target model).

5.2. Comparison of different controllers in nominal case
The purpose of this simulation is to steer the outputs of the

three subsystems as close as possible to given piece-wise con-
stant set-points. In particular we have the following desired
targets on the three solute mass fraction:

• k = 5, . . . ,239: χt = [13.4, 23.2, 52]%;

• k = 240, . . . ,480: χt = [13.2, 22.2, 47]%.

Three controllers are compared: the first one is DMPC0, as-
sociated with the single step algorithm by [15] as discussed in
(§2.4); the second one is the proposed DMPC1-CT(§3.2); the
third is the proposed two steps algorithm DMPC2-CT(§3.3).
All controllers are tuned with the same parameters:

• N = 100, ‖u‖∞ ≤ 1;

• Qi =CT
i diag([0.1, 0.1, 1])Ci, for i = 1, 2, 3;

• R1 = 0.01I3, Ri = 0.01I2 for i = 2, 3;

• T1 = 106 · I3, Ti = diag
([

106, 10−3, 106
])

for i = 2, 3;

• Pi for i = 1, 2, 3 is the solution of the discrete algebraic
Riccati equation for each subsystem;

• Cooperative loop is iterated till the maximum number of
cooperative iteration (qmax = 100) are reached or conver-
gence error is less than ε = 0.01;

• εss = 0.0001.

Simulations are performed on a code written in Python 2.7, with
the use of symbolic framework offered by CasADi 3.1. All
optimization modules implement IPOPT.

Figure 4 shows the cumulative distribution function (CDF) of
computation times, normalized by the maximum computation
time occurred among all controllers. For each time t, the CDF is
defined as the fraction of distributed MPC algorithm executions
that are solved in time t or less. We notice that DMPC2-CT
completed about 90% of its executions in less than 5% of the
maximum computation time, while DMPC1-CT completed the
same percentage of executions in about 10% of the maximum
computation time. On the other hand, DMPC0 completed no
executions in 10% of the maximum computation time; at least
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Table 2: Triple effect evaporator model in transfer functions (normalized inputs and outputs)

L1 Q1 V1 L2 V2 L3 V3

M1 − 0.04797
z−2.717 - − 0.0339

z−2.717 - - - -

T1 - 0.564
z−2.509 − 0.1745

z−2.509 - - - -

χ1 - - 0.009394
z−2.549 - - - -

M2
0.05726
z−2.716 - - − 0.07207

z−2.716 − 0.09465
z−2.716 - -

T2
0.008029z−0.01856
z2−4.913z+6.029

0.089z−0.02579
z2−4.913z+6.029

0.2431z−0.6396
z2−4.913z+6.029 - −0.6057z+1.451

z2−4.913z+6.029 - -

χ2 − 0.01418
z−2.604 - 0.01038

z−2.604 - 0.02976
z−2.604 - -

M3 - - - 0.07503
z−2.712 - - 0.08504

z−2.712 − 0.1255
z−2.712

T3
0.001138z+0.03875
z2−4.898z+5.986

−0.02526z+0.3423
z2−4.898z+5.986

0.06671z−0.127
z2−4.898z+5.986

0.09903z−0.2557
z2−4.898z+5.986

2.472z−6.521
z2−4.898z+5.986 - −2.895z+7.385

z2−4.898z+5.986

χ3
−0.01013z+0.01865

z2−5.241z+6.864 - 0.004064z−0.005355
z2−5.241z+6.864

−0.2224z+0.6029
z2−5.241z+6.864

0.01244z−0.02893
z2−5.241z+6.864 - 0.464z−1.249

z2−5.241z+6.864
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Figure 5: Cumulative distribution function of normalized computation time of
DMPC1-CT (one step, centralized target model), DMPC2-CT (two steps, cen-
tralized target model), DMPC1-AT (one step, augmented target model), and
DMPC2-AT (two steps, augmented target model).

it needs about 20% of the maximum time to complete 90% of its
executions. From this plot we can appreciate how DMPC1-CT
and DMPC2-CT are parsimonious with respect to DMPC0.

Figure 5 shows CDF comparison between centralized track-
ing as computed in DMPC1-CT and DMPC2-CT with respect
to DMPC1-AT and DMPC2-AT, which implement an aug-
mented target model as described in §3.4, respectively in single
step and two steps. We observe that DMPC1-AT is able to com-
plete about 85% of executions faster than DMPC1-CT, while in
the remaining 15% of executions DMPC1-AT is slower than
DMPC1-CT. A similar outcome can be noticed in the compari-
son between DMPC2-AT and DMP2-CT. This behavior can be
explained by noticing that in those cases, more cooperative it-
erations may be required to meet the given tolerance when an
augmented target model is used in a tracking MPC algorithm.
Thus, despite the fact that at each iteration a smaller problem
is solved, the overall computation time may increase. Thus,
a fully distributed tracking MPC algorithm appears more effec-
tive if one poses a limit on the maximum number of cooperative
iterations, hence with a possible loss of optimality.

Figures 6 and 7 show the closed-loop evolution of inputs
(with constraints) and outputs with relative targets. Results are
similar for all controllers, and DMPC0 and DMPC1 are (as

expected) identical in closed-loop performance. By using the
augmented state rather than the centralized one in the predic-
tion model, we have not taken out useful information from the
overall dynamics.

5.3. Offset-free performance comparison in the presence of dis-
turbances

In this case, we keep the desired setpoint constant, but the
system is affected by two input step disturbances, one entering
at time 5 min, and the other one at time 4 hr. Two controllers are
here compared: DMPC1-AT (single-step, augmented dynamic
model, augmented target model), DMPC1-AT-OF (single-step,
offset-free augmented dynamic model, offset-free augmented
target model). All tuning parameters are the same as those used
in the nominal case. We use a mixed input/output disturbance
model as discussed in [21]. So we define Bdi, as a discrete time
steady-state Kalman filter gain computed for the given discrete
time invariant system in state space form (numerically solved
by a Riccati equation) with appropriate process and measure-
ments noise covariance matrices Qx = 0.001I and Ry = 0.01I.
Then we define Cdi as

Cdi = I−CiBdi

Disturbance observer is then computed as Kalman filter for the
given linear system in state space form (Luenberger observer).

Figures 8 and 9 show the closed-loop evolution of inputs
(with constraints) and outputs with relative desired setpoint. As
expected, the offset-free distributed MPC is able to reject the
unknown disturbances and achieve asymptotic setpoint track-
ing.

6. Conclusions

We presented in this paper several cooperative distributed
MPC algorithms for tracking piece-wise constant references, in
linear systems divided into a finite number of interacting sub-
systems. The main contribution of this work is to reduce the
dimension of the dynamic prediction and steady-state models
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Figure 6: Closed-loop evolution of inputs in the nominal case. Red dashed lines are used for input bounds.
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Figure 7: Closed-loop evolution outputs in the nominal case. Red dashed lines are used for output setpoints.
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Figure 8: Closed-loop evolution of inputs in the presence of disturbances. Red dashed lines are used for input bounds.
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Figure 9: Closed-loop evolution outputs in the presence of disturbances. Red dashed lines are used for output setpoints.
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used by each subsystem, by exploiting concepts of graph the-
ory, while retaining the global optimality of the cooperative al-
gorithm. This approach reduces the computational and commu-
nication requirements of the proposed algorithms with respect
to the currently available ones. Two basic variants were consid-
ered, one with target calculation embedded in the optimal con-
trol problem and one with separate target calculation. Then, we
showed that the target model can be centralized or in augmented
version. Furthermore, we presented the extension of the pro-
posed algorithms to account for incomplete state-measurement
and presence of plant/model mismatch, designing for each sub-
system a local offset-free observer.

A multiple effect evaporator process composed by three sub-
systems (overall with 12 states, 7 inputs, and 9 outputs) has
been presented, and the proposed algorithms were shown to be
more computationally efficient than available methods, as well
as they are able to eliminate steady-state offset in the presence
of unknown persistent disturbances.

The proposed algorithms will be further analyzed to provide
the main theoretical guarantees, especially their inherent ro-
bustness [4], and explore if/how it is possible to derive non-
linear distributed MPC algorithms for tracking.
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