
Chapter 1
Invariant distances

Marco Abate

In this chapter we shall define the (invariant) distance we are going to use, and col-
lect some of its main properties we shall need later on. It will not be a comprehensive
treatise on the subject; much more informations can be found in, e.g., [3, 85, 105].

Before beginning, let us introduce a couple of notations we shall consistently use.

Definition 1.0.1. Let X and Y be two (finite dimensional) complex manifolds. We
shall denote by Hol(X ,Y ) the set of all holomorphic maps from X to Y , endowed
with the compact-open topology (which coincides with the topology of uniform
convergence on compact subsets), so that it becomes a metrizable topological space.
Furthermore, we shall denote by Aut(X)⇢Hol(X ,X) the set of automorphisms, that
is invertible holomorphic self-maps, of X . More generally, if X and Y are topological
spaces we shall denote by C0(X ,Y ) the space of continuous maps from X to Y , again
endowed with the compact-open topology.

Definition 1.0.2. We shall denote by D = {z 2 C | |z | < 1} the unit disc in the
complex plane C, by B

n = {z 2 C
n | kzk < 1} (where k · k is the Euclidean norm)

the unit ball in the n-dimensional space Cn, and by D n ⇢C
n the unit polydisc in C

n.
Furthermore, h· , ·i will denote the canonical Hermitian product on C

n.

1.1 The Poincaré distance

The model for all invariant distances in complex analysis is the Poincaré distance
on the unit disc of the complex plane; we shall then start recalling its definitions and
main properties (see also Appendix A).
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Definition 1.1.1. The Poincaré (or hyperbolic) metric on D is the Hermitian metric
whose associated norm is given by

kD (z ;v) =
1

1� |z |2 |v|

for all z 2 D and v 2 C ' Tz D . It is a complete Hermitian metric with constant
Gaussian curvature �4.

Definition 1.1.2. The Poincaré (or hyperbolic) distance kD on D is the integrated
form of the Poincaré metric. It is a complete distance, whose expression is

kD (z1,z2) =
1
2 log

1+
��� z1�z2

1�z1z2

���

1�
��� z1�z2

1�z1z2

���
.

In particular,

kD (0,z ) = 1
2 log

1+ |z |
1� |z | .

Remark 1.1.3. It is useful to keep in mind that the function

t 7! 1
2 log

1+ t
1� t

is the inverse of the hyperbolic tangent tanh t = (et � e�t)/(et + e�t).

Besides being a metric with constant negative Gaussian curvature, the Poincaré
metric strongly reflects the properties of the holomorphic self-maps of the unit disc.
For instance, the isometries of the Poincaré metric coincide with the holomorphic
or anti-holomorphic automorphisms of D (see, e.g., [3, Proposition 1.1.8]):

Proposition 1.1.4. The group of smooth isometries of the Poincaré metric consists
of all holomorphic and anti-holomorphic automorphisms of D .

More importantly, the famous Schwarz-Pick lemma says that any holomorphic
self-map of D is nonexpansive for the Poincaré metric and distance (see, e.g., [3,
Theorem 1.1.6]):

Theorem 1.1.5 (Schwarz-Pick lemma). Let f 2 Hol(D ,D) be a holomorphic self-
map of D . Then:

(i) we have
kD
�

f (z ); f 0(z )v
�
 kD (z ;v) (1.1)

for all z 2 D and v 2C. Furthermore, equality holds for some z 2 D and v 2C
⇤

if and only if equality holds for all z 2 D and all v 2C if and only if f 2 Aut(D);
(ii) we have

kD
�

f (z1), f (z2)
�
 kD (z1,z2) (1.2)
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for all z1, z2 2 D . Furthermore, equality holds for some z1 6= z2 if and only if
equality holds for all z1, z2 2 D if and only if f 2 Aut(D).

In other words, holomorphic self-maps of the unit disc are automatically 1-
Lipschitz, and hence equicontinuous, with respect to the Poincaré distance.

As an immediate corollary, we can compute the group of automorphisms of D ,
and thus, by Proposition 1.1.4, the group of isometries of the Poincaré metric (see,
e.g., [3, Proposition 1.1.2]):

Corollary 1.1.6. The group Aut(D) of holomorphic automorphisms of D consists in
all the functions g : D ! D of the form

g(z ) = eiq z �z0

1�z0z
(1.3)

with q 2 R and z0 2 D . In particular, for every pair z1, z2 2 D there exists g 2
Aut(D) such that g(z1) = 0 and g(z2) 2 [0,1).

Remark 1.1.7. More generally, given z1, z2 2 D and h 2 [0,1), it is not difficult to
see that there is g 2 Aut(D) such that g(z1) = h and g(z2) 2 [0,1) with g(z2)� h .

A consequence of (1.3) is that all automorphisms of D extends continuously to
the boundary. It is customary to classify the elements of Aut(D) according to the
number of fixed points in D :

Definition 1.1.8. An automorphism g 2 Aut(D) \ {idD} is called elliptic if it has a
unique fixed point in D , parabolic if it has a unique fixed point in ∂D , hyperbolic if
it has exactly two fixed points in ∂D . It is easy to check that these cases are mutually
exclusive and exhaustive.

We end this brief introduction to the Poincaré distance by recalling two facts re-
lating its geometry to the Euclidean geometry of the plane (see, e.g., [3, Lemma 1.1.5
and (1.1.11)]):

Proposition 1.1.9. Let z0 2 D and r > 0. Then the ball BD (z0,r) ⇢ D for the
Poincaré distance of center z0 and radius r is the Euclidean ball with center

1� (tanhr)2

1� (tanhr)2|z0|2
z0

and radius
(1� |z0|2) tanhr
1� (tanhr)2|z0|2

.

Proposition 1.1.10. Let z0 = reiq 2 D . Then the geodesic for the Poincaré metric
connecting 0 to z0 is the Euclidean radius s : [0,kD (0,z0)]! D given by

s(t) = (tanh t)eiq .

In particular, kD
�
0,(tanh t)eiq�= |t| for all t 2 R and q 2 R.
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1.2 The Kobayashi distance in complex manifolds

Our next aim is to build on any complex manifold a (pseudo)distance enjoying the
main properties of the Poincaré distance; in particular, we would like to preserve the
1-Lipschitz property of holomorphic maps, that is to generalize to several variables
Schwarz-Pick lemma. There are several ways for doing this; historically, the first
such generalization has been introduced by Carathéodory [45] in 1926, but the most
well-known and most useful has been proposed in 1967 by Kobayashi [102, 103].
Here we shall concentrate on the Kobayashi (pseudo)distance; but several other sim-
ilar metrics and distances have been introduced (see, e.g., [28, 74, 15, 51, 101, 140,
141, 151]; see also [77] for a general context explaining why in a very precise sense
the Carathéodory distance is the smallest and the Kobayashi distance is the largest
possible invariant distance, and [13] for a different differential geometric approach).
Furthermore, we shall discuss only the Kobayashi distance; it is possible to define
a Kobayashi metric, which is a complex Finsler metric whose integrated form is
exactly the Kobayashi distance, see Section 4.1. It is also possible to introduce a
Kobayashi pseudodistance in complex analytic spaces; again, see [3], [85] and [105]
for details and much more.

To define the Kobayashi pseudodistance we first introduce an auxiliary function.

Definition 1.2.1. Let X be a connected complex manifold. The Lempert function
dX : X ⇥X ! R

+[{+•} is defined by

dX (z,w) = inf
�

kD (z0,z1)
�� 9j 2 Hol(D ,X) : j(z0) = z,j(z1) = w

 

for every z, w 2 X .

Remark 1.2.2. Corollary 1.1.6 yields the following equivalent definition of the Lem-
pert function:

dX (z,w) = inf
�

kD (0,z )
�� 9j 2 Hol(D ,X) : j(0) = z,j(z ) = w

 
.

The Lempert function in general (but there are exceptions; see Theorem 1.4.7
below) does not satisfy the triangular inequality (see, e.g., [113] for an example),
and so it is not a distance. But this is a problem easily solved:

Definition 1.2.3. Let X be a connected complex manifold. The Kobayashi (pseudo)
distance kX : X ⇥ X ! R

+ is the largest (pseudo)distance bounded above by the
Lempert function, that is

kX (z,w) = inf
⇢ k

Â
j=1

dX (z j�1,z j)

���� k 2 N,z0 = z,zk = w,z1, . . . ,zk�1 2 X
�

for all z, w 2 X .

A few remarks are in order. First of all, it is easy to check that since X is con-
nected then kX is always finite. Furthermore, it is clearly symmetric, it satisfies the



1 Invariant distances 5

triangle inequality by definition, and kX (z,z) = 0 for all z 2 X . On the other hand, it
might well happen that kX (z0,z1) = 0 for two distinct points z0 6= z1 of X (it might
even happen that kX ⌘ 0; see Proposition 1.2.5 below); so kX in general is only a
pseudodistance. Anyway, the definition clearly implies the following generalization
of the Schwarz-Pick lemma:

Theorem 1.2.4. Let X, Y be two complex manifolds, and f 2 Hol(X ,Y ). Then

kY
�

f (z), f (w)
�
 kX (z,w)

for all z, w 2 X. In particular:

(i) if X is a submanifold of Y then kY |X⇥X  kX ;
(ii) biholomorphisms are isometries with respect to the Kobayashi pseudodistances.

A statement like this is the reason why the Kobayashi (pseudo)distance is said to
be an invariant distance: it is invariant under biholomorphisms.

Using the definition, it is easy to compute the Kobayashi pseudodistance of a few
of interesting manifolds (see, e.g., [3, Proposition 2.3.4, Corollaries 2.3.6, 2.3.7]):

Proposition 1.2.5. (i) The Poincaré distance is the Kobayashi distance of the unit
disc D .

(ii) The Kobayashi distances of Cn and of the complex projective space Pn(C) vanish
identically.

(iii) For every z = (z1, . . . ,zn), w = (w1, . . . ,wn) 2 D n we have

kD n(z,w) = max
j=1,...,n

{kD (z j,w j)} .

(iv) The Kobayashi distance of the unit ball Bn ⇢ C
n coincides with the classical

Bergman distance; in particular, if O 2 C
n is the origin and z 2 B

n then

kBn(O,z) = 1
2 log

1+kzk
1�kzk .

Remark 1.2.6. As often happens with objects introduced via a general definition, the
Kobayashi pseudodistance can seldom be explicitly computed. Besides the cases
listed in Proposition 1.2.5, as far as we know there are formulas only for some com-
plex ellipsoids [86], bounded symmetric domains [85], the symmetrized bidisc [12]
and a few other scattered examples. On the other hand, it is possible and important
to estimate the Kobayashi distance; see Subsection 1.5 below.

We shall be interested in manifolds where the Kobayashi pseudodistance is a true
distance, that is in complex manifolds X such that kX (z,w)> 0 as soon as z 6= w.

Definition 1.2.7. A connected complex manifold X is (Kobayashi) hyperbolic if kX
is a true distance. In this case, if z0 2 X and r > 0 we shall denote by BX (z0,r) the
ball for kX of center z0 and radius r; we shall call BX (z0,r) a Kobayashi ball. More
generally, if A ✓ X and r > 0 we shall put BX (A,r) =

S
z2A BX (z,r).
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In hyperbolic manifolds the Kobayashi distance induces the topology of the man-
ifold. More precisely (see, e.g., [3, Proposition 2.3.10]):

Proposition 1.2.8 (Barth, [17]). A connected complex manifold X is hyperbolic if
and only if kX induces the manifold topology on X.

To give a first idea of how one can work with the Kobayashi distance, we describe
two large classes of examples of hyperbolic manifolds:

Proposition 1.2.9 (Kobayashi, [102, 103]).

(i) A submanifold of a hyperbolic manifold is hyperbolic. In particular, bounded
domains in C

n are hyperbolic.
(ii) Let p : X̃ ! X be a holomorphic covering map. Then X is hyperbolic if and only

if X̃ is. In particular, a Riemann surface is hyperbolic if and only if it is Kobayashi
hyperbolic.

Proof. (i) The first assertion follows immediately from Theorem 1.2.4.(i). For the
second one, we remark that the unit ball Bn is hyperbolic by Proposition 1.2.5.(iv).
Then Theorem 1.2.4.(ii) implies that all balls are hyperbolic; since a bounded do-
main is contained in a ball, the assertion follows.

(ii) First of all we claim that

kX (z0,w0) = inf
�

kX̃ (z̃0, w̃)
�� w̃ 2 p�1(w0)

 
, (1.4)

for any z0, w0 2 X , where z̃0 is any element of p�1(z0). Indeed, first of all Theo-
rem 1.2.4 immediately implies that

kX (z0,w0) inf
�

kX̃ (z̃0, w̃)
�� w 2 p�1(w0)

 
.

Assume now, by contradiction, that there is e > 0 such that

kX (z0,w0)+ e  keX
�
z̃0, w̃

�

for all w̃ 2 p�1(w0). Choose z1, . . . ,zk 2 X with zk = w0 such that

k

Â
j=1

dX (z j�1,z j)< kX (z0,w0)+ e/2 .

By Remark 1.2.2, we can find j1, . . . ,jk 2 Hol(D ,X) and z1, . . . ,zk 2 D such that
j j(0) = z j�1, j j(z j) = z j for all j = 1, . . . ,k and

k

Â
j=1

kD (0,z j)< kX (z0,w0)+ e .

Let j̃1, . . . , j̃k 2 Hol(D , X̃) be the liftings of j1, . . . ,jk chosen so that j̃1(0) = z̃0
and j̃ j+1(0) = j̃ j(z j) for j = 1, . . . ,k�1, and set w̃0 = j̃k(zk) 2 p�1(w0). Then
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kX̃ (z̃0, w̃0)
k

Â
j=1

dX̃
�
j̃ j(0), j̃ j(z j)

�


k

Â
j=1

kD (0,z j)< kX (z0,w0)+ e  kX̃ (z̃0, w̃0) ,

contradiction.
Having proved (1.4), let us assume that X̃ is hyperbolic. If there are z0, w0 2 X

such that kX (z0,w0) = 0, then for any z̃0 2 p�1(z0) there is a sequence {w̃n} ⇢
p�1(w0) such that kX̃ (z̃0, w̃n) ! 0 as n ! +•. Then w̃n ! z̃0 (Proposition 1.2.8)
and so z̃0 2 p�1(w0), that is z0 = w0.

Conversely, assume X hyperbolic. Suppose z̃0, w̃0 2 X̃ are so that kX̃ (z̃0, w̃0) = 0;
then kX

�
p(z̃0),p(w̃0)

�
= 0 and so p(z̃0) = p(w̃0) = z0. Let eU be a connected

neighborhood of z̃0 such that p|eU is a biholomorphism between eU and the (con-
nected component containing z0 of the) Kobayashi ball BX (z0,e) of center z0
and radius e > 0 small enough; this can be done because of Proposition 1.2.8.
Since keX (z̃0, w̃0) = 0, we can find j1, . . . ,jk 2 Hol(D , X̃) and z1, . . . ,zk 2 D with
j1(0) = z̃0, j j(z j) = j j+1(0) for j = 1, . . . ,k�1 and jk(zk) = w̃0 such that

k

Â
j=1

kD (0,z j)< e .

Let s j be the radial segment in D joining 0 to z j; by Proposition 1.1.10 the s j are
geodesics for the Poincaré metric. The arcs j j �s j in eX connect to form a contin-
uous curve s from z̃0 to w̃0. Now the maps p �j j 2 Hol(D ,X) are non-expanding;
therefore every point of the curve p �s should belong to BX (z0,e). But then s is
contained in eU , and this implies z̃0 = w̃0.

The final assertion on Riemann surfaces follows immediately because hyperbolic
Riemann surfaces can be characterized as the only Riemann surfaces whose univer-
sal covering is the unit disc. ut

It is also possible to prove the following (see, e.g., [3, Proposition 2.3.13]):

Proposition 1.2.10. Let X1 and X2 be connected complex manifolds. Then X1 ⇥X2
is hyperbolic if and only if both X1 and X2 are hyperbolic.

Remark 1.2.11. The Kobayashi pseudodistance can be useful even when it is de-
generate. For instance, the classical Liouville theorem (a bounded entire function
is constant) is an immediate consequence, thanks to Theorem 1.2.4, of the vanish-
ing of the Kobayashi pseudodistance of Cn and the fact that bounded domains are
hyperbolic.

A technical fact we shall need later on is the following:

Lemma 1.2.12. Let X be a hyperbolic manifold, and choose z0 2 X and r1, r2 > 0.
Then

BX
�
BX (z0,r1),r2

�
= BX (z0,r1 + r2) .

Proof. The inclusion BD
�
BD(z0,r1),r2

�
✓BD(z0,r1+r2) follows immediately from

the triangular inequality. For the converse, let z 2 BD(z0,r1 + r2), and set 3e = r1 +
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r2 � kX (z0,z). Then there are j1, . . . ,jm 2 Hol(D ,X) and z1, . . . ,zm 2 D so that
j1(0) = z0, j j(z j) = j j+1(0) for j = 1, . . . ,m�1, jm(zm) = z and

m

Â
j=1

kD (0,z j)< r1 + r2 �2e .

Let µ  m be the largest integer such that

µ�1

Â
j=1

kD (0,z j)< r1 � e .

Let hµ be the point on the Euclidean radius in D passing through zµ+1 (which is a
geodesic for the Poincaré distance) such that

µ�1

Â
j=1

kD (0,z j)+ kD (0,hµ) = r1 � e .

If we set w = jµ(hµ), then kX (z0,w)< r1 and kX (w,z)< r2, so that

z 2 BD(w,r2)✓ BD
�
BD(z0,r1),r2

�
,

and we are done. ut

A condition slightly stronger than hyperbolicity is the following:

Definition 1.2.13. A hyperbolic complex manifold X is complete hyperbolic if the
Kobayashi distance kX is complete.

Complete hyperbolic manifolds have a topological characterization (see, e.g., [3,
Proposition 2.3.17]):

Proposition 1.2.14. Let X be a hyperbolic manifold. Then X is complete hyperbolic
if and only if every closed Kobayashi ball is compact. In particular, compact hyper-
bolic manifolds are automatically complete hyperbolic.

Examples of complete hyperbolic manifolds are contained in the following (see,
e.g., [3, Propositions 2.3.19 and 2.3.20]):

Proposition 1.2.15. (i) A homogeneous hyperbolic manifold is complete hyperbolic.
In particular, both B

n and D n are complete hyperbolic.
(ii) A closed submanifold of a complete hyperbolic manifold is complete hyperbolic.

(iii) The product of two hyperbolic manifolds is complete hyperbolic if and only if
both factors are complete hyperbolic.

(iv) If p : X̃ ! X is a holomorphic covering map, then X̃ is complete hyperbolic if
and only if X is complete hyperbolic.

We shall see more examples of complete hyperbolic manifolds later on (Propo-
sition 1.4.8 and Corollary 1.5.20). We end this subsection recalling the following
important fact (see, e.g., [105, Theorem 5.4.2]):
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Theorem 1.2.16. The automorphism group Aut(X) of a hyperbolic manifold X has
a natural structure of real Lie group.

1.3 Taut manifolds

For our dynamical applications we shall need a class of manifolds which is interme-
diate between complete hyperbolic and hyperbolic manifolds. To introduce it, we
first show that hyperbolicity can be characterized as a precompactness assumption
on the space Hol(D ,X).

If X is a topological space, we shall denote by X⇤ = X [ {•} its one-point (or
Alexandroff) compactification; see, e.g., [95, p. 150] for details.

Theorem 1.3.1 ([5]). Let X be a connected complex manifold. Then X is hyperbolic
if and only if Hol(D ,X) is relatively compact in the space C0(D ,X⇤) of continu-
ous functions from D into the one-point compactification of X. In particular, if X is
compact then it is hyperbolic if and only if Hol(D ,X) is compact. Finally, if X is
hyperbolic then Hol(Y,X) is relatively compact in C0(Y,X⇤) for any complex mani-
fold Y .

If X is hyperbolic and not compact, the closure of Hol(D ,X) in C0(D ,X⇤) might
contain continuous maps whose image might both contain • and intersect X , exiting
thus from the realm of holomorphic maps. Taut manifolds, introduced by Wu [150],
are a class of (not necessarily compact) hyperbolic manifolds where this problem
does not appear, and (as we shall see) this will be very useful when studying the
dynamics of holomorphic self-maps.

Definition 1.3.2. A complex manifold X is taut if it is hyperbolic and every map
in the closure of Hol(D ,X) in C0(D ,X⇤) either is in Hol(D ,X) or is the constant
map •.

This definition can be rephrased in another way not requiring the one-point com-
pactification.

Definition 1.3.3. Let X and Y be topological spaces. A sequence { fn} ⇢ C0(Y,X)
is compactly divergent if for every pair of compacts H ✓ Y and K ✓ X there exists
n0 2N such that fn(H)\K = /0 for every n � n0. A family F ✓C0(Y,X) is normal
if every sequence in F admits a subsequence which is either uniformly converging
on compact subsets or compactly divergent.

By the definition of one-point compactification, a sequence in C0(Y,X) converges
in C0(Y,X⇤) to the constant map • if and only if it is compactly divergent. When X
and Y are manifolds (more precisely, when they are Hausdorff, locally compact, con-
nected and second countable topological spaces), a subset in C0(Y,X⇤) is compact
if and only if it is sequentially compact; therefore we have obtained the following
alternative characterization of taut manifolds:
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Corollary 1.3.4. A connected complex manifold X is taut if and only if the family
Hol(D ,X) is normal.

Actually, it is not difficult to prove (see, e.g., [3, Theorem 2.1.2]) that the role of
D in the definition of taut manifolds is not essential:

Proposition 1.3.5. Let X be a taut manifold. Then Hol(Y,X) is a normal family for
every complex manifold Y .

It is easy to find examples of hyperbolic manifolds which are not taut:

Example 1.3.6. Let D = D 2 \ {(0,0)}. Since D is a bounded domain in C
2, it is

hyperbolic. For n � 1 let jn 2 Hol(D ,D) given by jn(z ) = (z ,1/n). Clearly {jn}
converges as n !+• to the map j(z ) = (z ,0), whose image is not contained either
in D or in ∂D. In particular, the sequence {jn} does not admit a subsequence which
is compactly divergent or converging to a map with image in D—and thus D is not
taut.

On the other hand, complete hyperbolic manifolds are taut. This is a consequence
of the famous Ascoli-Arzelà theorem (see, e.g., [95, p. 233]):

Theorem 1.3.7 (Ascoli-Arzelà theorem). Let X be a metric space, and Y a locally
compact metric space. Then a family F ✓C0(Y,X) is relatively compact in C0(Y,X)
if and only if the following two conditions are satisfied:

(i) F is equicontinuous;
(ii) the set F (y) = { f (y) | f 2 F} is relatively compact in X for every y 2 Y .

Then:

Proposition 1.3.8. Every complete hyperbolic manifold is taut.

Proof. Let X be a complete hyperbolic manifold, and {jn}⇢ Hol(D ,X) a sequence
which is not compactly divergent; we must prove that it admits a subsequence con-
verging in Hol(D ,X).

Up to passing to a subsequence, we can find a pair of compacts H ⇢ D and
K ✓ X such that jn(H)\K 6= /0 for all n 2 N. Fix z0 2 H and z0 2 K, and set
r = max{kX (z,z0) | z 2 K}. Then for every z 2 D and n 2 N we have

kX
�
jn(z ),z0

�
 kX

�
jn(z ),jn(z0)

�
+ kX

�
jn(z0),z0

�
 kD (z ,z0)+ r .

So {jn(z )} is contained in the closed Kobayashi ball of center z0 and radius
kD (z ,z0)+r, which is compact since X is complete hyperbolic (Proposition 1.2.14);
as a consequence, {jn(z )} is relatively compact in X . Furthernore, since X is hy-
perbolic, the whole family Hol(D ,X) is equicontinuous (it is 1-Lipschitz with re-
spect to the Kobayashi distances); therefore, by the Ascoli-Arzelà theorem, the se-
quence {jn} is relatively compact in C0(D ,X). In particular, it admits a subsequence
converging in C0(D ,X); but since, by Weierstrass theorem, Hol(D ,X) is closed in
C0(D ,X), the limit belongs to Hol(D ,X), and we are done. ut
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Thus complete hyperbolic manifolds provide examples of taut manifolds. How-
ever, there are taut manifolds which are not complete hyperbolic; an example has
been given by Rosay (see [135]). Finally, we have the following equivalent of Propo-
sition 1.2.15 (see, e.g., [3, Lemma 2.1.15]):

Proposition 1.3.9. (i) A closed submanifold of a taut manifold is taut.
(ii) The product of two complex manifolds is taut if and only if both factors are taut.

Just to give an idea of the usefulness of the taut condition in studying holo-
morphic self-maps we end this subsection by quoting Wu’s generalization of the
classical Cartan-Carathéodory and Cartan uniqueness theorems (see, e.g., [3, Theo-
rem 2.1.21 and Corollary 2.1.22]):

Theorem 1.3.10 (Wu, [150]). Let X be a taut manifold, and let f 2 Hol(X ,X) with
a fixed point z0 2 X. Then:

(i) the spectrum of d fz0 is contained in D ;
(ii) |detd fz0 | 1;

(iii) |detd fz0 |= 1 if and only if f 2 Aut(X);
(iv) d fz0 = id if and only if f is the identity map;
(v) Tz0X admits a d fz0 -invariant splitting Tz0X = LN �LU such that the spectrum of

d fz0 |LN is contained in D , the spectrum of d fz0 |LU is contained in ∂D , and d fz0 |LU
is diagonalizable.

Corollary 1.3.11 (Wu, [150]). Let X be a taut manifold, and z0 2 X. Then if f ,
g 2 Aut(X) are such that f (z0) = g(z0) and d fz0 = dgz0 then f ⌘ g.

Proof. Apply Theorem 1.3.10.(iv) to g�1 � f . ut

1.4 Convex domains

In the following we shall be particularly interested in two classes of bounded do-
mains in C

n: convex domains and strongly pseudoconvex domains. Consequently,
in this and the next section we shall collect some of the main properties of the
Kobayashi distance respectively in convex and strongly pseudoconvex domains.

We start with convex domains recalling a few definitions.

Definition 1.4.1. Given x, y 2 C
n let

[x,y] = {sx+(1� s)y 2 C
n | s 2 [0,1]} and (x,y) = {sx+(1� s)y 2C

n | s 2 (0,1)}

denote the closed, respectively open, segment connecting x and y. A set D ✓ C
n is

convex if [x,y]✓ D for all x, y 2 D; and strictly convex if (x,y)✓ D for all x, y 2 D.
A convex domain not strictly convex will sometimes be called weakly convex.

An easy but useful observation (whose proof is left to the reader) is:
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Lemma 1.4.2. Let D ⇢ C
n be a convex domain. Then:

(i) (z,w)⇢ D for all z 2 D and w 2 ∂D;
(ii) if x, y 2 ∂D then either (x,y)⇢ ∂D or (x,y)⇢ D.

This suggests the following

Definition 1.4.3. Let D ⇢ C
n be a convex domain. Given x 2 ∂D, we put

ch(x) = {y 2 ∂D | [x,y]⇢ ∂D} ;

we shall say that x is a strictly convex point if ch(x) = {x}. More generally, given
F ✓ ∂D we put

ch(F) =
[

x2F
ch(x) .

A similar construction having a more holomorphic character is the following:

Definition 1.4.4. Let D ⇢C
n be a convex domain. A complex supporting functional

at x 2 ∂D is a C-linear map L : Cn !C such that ReL(z)< ReL(x) for all z 2 D. A
complex supporting hyperplane at x 2 ∂D is an affine complex hyperplane H ⇢ C

n

of the form H = x+ kerL, where L is a complex supporting functional at x (the
existence of complex supporting functionals and hyperplanes is guaranteed by the
Hahn-Banach theorem). Given x 2 ∂D, we shall denote by Ch(x) the intersection
of D with of all complex supporting hyperplanes at x. Clearly, Ch(x) is a closed
convex set containing x; in particular, Ch(x) ✓ ch(x). If Ch(x) = {x} we say that x
is a strictly C-linearly convex point; and we say that D is strictly C-linearly convex
if all points of ∂D are strictly C-linearly convex. Finally, if F ⇢ ∂D we set

Ch(F) =
[

x2F
Ch(x) ;

clearly, Ch(F)✓ ch(F).

Definition 1.4.5. Let D⇢C
n be a convex domain, x2 ∂D and L : Cn !C a complex

supporting functional at x. The weak peak function associated to L is the function
y 2 Hol(D,D) given by

y(z) =
1

1�
�
L(z)�L(x)

� .

Then y extends continuously to D with y(D)✓ D , y(x) = 1, and |y(z)|< 1 for all
z 2 D; moreover y 2 ∂D is such that |y(y)|= 1 if and only if y(y) = y(x) = 1, and
hence if and only if L(y) = L(x).

Remark 1.4.6. If x 2 ∂D is a strictly convex point of a convex domain D ⇢ C
n then

it is possible to find a complex supporting functional L at x so that ReL(z)< ReL(x)
for all z 2 D\{x}. In particular, the associated weak peak function y : Cn ! C is a
true peak function (see Definition 1.5.17 below) in the sense that |y(z)| < 1 for all
z 2 D\{x}.
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We shall now present three propositions showing how the Kobayashi distance is
particularly well-behaved in convex domains. The first result, due to Lempert, shows
that in convex domains the definition of Kobayashi distance can be simplified:

Proposition 1.4.7 (Lempert, [113]). Let D ⇢ C
n be a convex domain. Then dD =

kD.

Proof. First of all, note that dD(z,w)<+• for all z, w 2 D. Indeed, let

W = {l 2 C | (1�l )z+lw 2 D} .

Since D is convex, W is a convex domain in C containing 0 and 1. Let f : D ! W
be a biholomorphism such that f(0) = 0; then the map j : D ! D given by

j(z ) =
�
1�f(z )

�
z+f(z )w

is such that z, w 2 j(D).
Now, by definition we have dD(z,w) � kD(z,w); to get the reverse inequality it

suffices to show that dD satisfies the triangular inequality. Take z1, z2, z3 2 D and
fix e > 0. Then there are j1, j2 2 Hol(D ,D) and z1, z2 2 D such that j1(0) = z1,
j1(z1) = j2(z1) = z2, j2(z2) = z3 and

kD (0,z1) < dD(z1,z2)+ e ,

kD (z1,z2) < dD(z2,z3)+ e .

Moreover, by Remark 1.1.7 we can assume that z1 and z2 are real, and that z2 >
z1 > 0. Furthermore, up to replacing j j by a map jr

j defined by jr
j (z ) = j j(rz ) for

r close enough to 1, we can also assume that j j is defined and continuous on D (and
this for j = 1, 2).

Let l : C\{z1,z�1
1 }! C be given by

l (z ) =
(z �z2)(z �z�1

2 )

(z �z1)(z �z�1
1 )

.

Then l is meromorphic in C, and in a neighborhood of D the only pole is the
simple pole at z1. Moreover, l (0) = 1, l (z2) = 0 and l (∂D)⇢ [0,1]. Then define
f : D ! C

n by
f(z ) = l (z )j1(z )+

�
1�l (z )

�
j2(z ) .

Since j1(z1) =j2(z1), it turns out that f is holomorphic on D ; moreover, f(0) = z1,
f(z2) = z3 and f(∂D) ⇢ D. We claim that this implies that f(D) ⇢ D. Indeed,
otherwise there would be z0 2 D such that f(z0) = x0 2 ∂D. Let L be a complex
supporting functional at x0, and y the associated weak peak function. Then we
would have |y �f | 1 on ∂D and |y �f(z0)|= 1; thus, by the maximum principle,
|y �f |⌘ 1, i.e., f(D)⇢ ∂D, whereas f(0) 2 D, contradiction.

So f 2 Hol(D ,D). In particular, then,
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dD(z1,z3) kD (0,z2) = kD (0,z1)+ kD (z1,z2) dD(z1,z2)+dD(z2,z3)+2e ,

and the assertion follows, since e is arbitrary. ut

Bounded convex domains, being bounded, are hyperbolic. But actually more is
true:

Proposition 1.4.8 (Harris, [77]). Let D ⇢⇢C
n be a bounded convex domain. Then

D is complete hyperbolic.

Proof. We can assume O 2 D. By Proposition 1.2.14, it suffices to show that all the
closed Kobayashi balls BD(O,r) of center O are compact. Let {zn}⇢ BD(O,r); we
must find a subsequence converging to a point of D. Clearly, we may suppose that
zn ! w0 2 D as n !+•, for D is bounded.

Assume, by contradiction, that w0 2 ∂D, and let L : Cn ! C be a complex sup-
porting functional at w0; in particular, L(w0) 6= 0 (because O 2 D). Set H = {z 2
C | ReL(z w0) < ReL(w0)}; clearly H is a half-plane of C, and the linear map
p : Cn ! C given by p(z) = L(z)/L(w0) sends D into H. In particular

r � kD(0,zn)� kH
�
0,p(zn)

�
.

Since H is complete hyperbolic, by Proposition 1.2.14 the closed Kobayashi balls
in H are compact; therefore, up to a subsequence {p(zn)} tends to a point of H. On
the other hand, p(zn)! p(w0) = 1 2 ∂H, and this is a contradiction. ut

Remark 1.4.9. There are unbounded convex domains which are not hyperbolic; for
instance, Cn itself. However, unbounded hyperbolic convex domains are automati-
cally complete hyperbolic, because Harris (see [77]) proved that a convex domain is
hyperbolic if and only if it is biholomorphic to a bounded convex domain. Further-
more, Barth (see [18]) has shown that an unbounded convex domain is hyperbolic
if and only if it contains no complex lines.

Finally, the convexity is reflected by the shape of Kobayashi balls. To prove this
(and also because they will be useful later) we shall need a couple of estimates:

Proposition 1.4.10 ([113], [109], [88]). Let D ⇢ C
n be a convex domain. Then:

(i) if z1, z2, w1, w2 2 D and s 2 [0,1] then

kD
�
sz1 +(1� s)z2,sw1 +(1� s)w2

�
 max{kD(z1,w1),kD(z2,w2)} ;

(ii) if z, w 2 D and s, t 2 [0,1] then

kD
�
sz+(1� s)w, tz+(1� t)w

�
 kD(z,w) .

Proof. Let us start by proving (i). Without loss of generality we can assume
that kD(z2,w2)  kD(z1,w1). Fix e > 0; by Proposition 1.4.7, there are j1, j2 2
Hol(D ,D) and z1, z2 2 D such that j j(0) = z j, j j(z j) = w j and kD (0,z j) <



1 Invariant distances 15

kD(z j,w j)+ e , for j = 1, 2; moreover, we may assume 0  z2  z1 < 1 and z1 > 0.
Define y : D ! D by

y(z ) = j2

✓
z2

z1
z
◆
,

so that y(0) = z2 and y(z1) = w2, and fs : D ! C
n by

fs(z ) = sj1(z )+(1� s)y(z ) .

Since D is convex, fs maps D into D; furthermore, fs(0) = sz1 + (1 � s)z2 and
fs(z1) = sw1 +(1� s)w2. Hence

kD
�
sz1 +(1� s)z2,sw1 +(1� s)w2

�
= kD

�
fs(0),fs(z1)

�

 kD (0,z1)< kD(z1,w1)+ e ,

and (i) follows because e is arbitrary.
Given z0 2 D, we obtain a particular case of (i) by setting z1 = z2 = z0:

kD
�
z0,sw1 +(1� s)w2

�
 max{kD(z0,w1),kD(z0,w2)} (1.5)

for all z0, w1, w2 2 D and s 2 [0,1].
To prove (ii), put z0 = sz+(1� s)w; then two applications of (1.5) yield

kD
�
sz+(1� s)w, tz+(1� t)w

�
 max

�
kD
�
sz+(1� s)w,z

�
,kD

�
sz+(1� s)w,w

� 

 kD(z,w) ,

and we are done. ut

Corollary 1.4.11. Closed Kobayashi balls in a hyperbolic convex domain are com-
pact and convex.

Proof. The compactness follows from Propositions 1.2.14 and 1.4.8 (and Remark 1.4.9
for unbounded hyperbolic convex domains); the convexity follows from (1.5). ut

1.5 Strongly pseudoconvex domains

Another important class of domains where the Kobayashi distance has been studied
in detail is given by strongly pseudoconvex domains. In particular, in strongly pseu-
doconvex domains it is possible to estimate the Kobayashi distance by means of the
Euclidean distance from the boundary.

To recall the definition of strongly pseudoconvex domains, and to fix notations
useful later, let us first introduce smoothly bounded domains. For simplicity we shall
state the following definitions in R

N , but they can be easily adapted to C
n by using

the standard identification C
n ' R

2n.
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Definition 1.5.1. A domain D ⇢ R
N has Cr boundary (or is a Cr domain), where

r 2 N[ {•,w} (and Cw means real analytic), if there is a Cr function r : RN ! R

such that:

(a) D = {x 2 R
N | r(x)< 0};

(b) ∂D = {x 2 R
N | r(x) = 0}; and

(c) gradr is never vanishing on ∂D.

The function r is a defining function for D. The outer unit normal vector nx at x is
the unit vector parallel to �gradr(x).

Remark 1.5.2. it is not difficult to check that if r1 is another defining function for a
domain D then there is a never vanishing Cr function y : RN ! R

+ such that

r1 = yr . (1.6)

If D ⇢ R
N is a Cr domain with defining function r , then ∂D is a Cr manifold

embedded in R
N . In particular, for every x 2 ∂D the tangent space of ∂D at x can

be identified with the kernel of drx (which by (1.6) is independent of the chosen
defining function). In particular, Tx(∂D) is just the hyperplane orthogonal to nx.

Using a defining function it is possible to check when a C2-domain is convex.

Definition 1.5.3. If r : RN !R is a C2 function, the Hessian Hr,x of r at x 2R
N is

the symmetric bilinear form given by

Hr,x(v,w) =
N

Â
h,k=1

∂ 2r
∂xh∂xk

(x)vhwk

for every v, w 2 R
N .

The following result is well-known (see, e.g, [107, p.102]):

Proposition 1.5.4. A C2 domain D ⇢ R
N is convex if and only if for every x 2 ∂D

the Hessian Hr,x is positive semidefinite on Tx(∂D), where r is any defining function
for D.

This suggests the following

Definition 1.5.5. A C2 domain D ⇢ R
N is strongly convex at x 2 ∂D if for some

(and hence any) C2 defining function r for D the Hessian Hr,x is positive definite
on Tx(∂D). We say that D is strongly convex if it is so at each point of ∂D.

Remark 1.5.6. It is easy to check that strongly convex C2 domains are strictly con-
vex. Furthermore, it is also possible to prove that every strongly convex domain D
has a C2 defining function r such that Hr,x is positive definite on the whole of RN

for every x 2 ∂D (see, e.g., [107, p. 101]).



1 Invariant distances 17

Remark 1.5.7. If D ⇢ C
n is a convex C1 domain and x 2 ∂D then the unique (up to

a positive multiple) complex supporting functional at x is given by L(z) = hz,nxi. In
particular, Ch(x) coincides with the intersection of the associated complex support-
ing hyperplane with ∂D. But non-smooth points can have more than one complex
supporting hyperplanes; this happens for instance in the polydisc.

Let us now move to a more complex setting.

Definition 1.5.8. Let D ⇢ C
n be a domain with C2 boundary and defining func-

tion r : Cn !R. The complex tangent space TC
x (∂D) of ∂D at x 2 ∂D is the kernel

of ∂rx, that is

TC

x (∂D) =

⇢
v 2 C

n
����

n

Â
j=1

∂r
∂ z j

(x)v j = 0
�
.

As usual, TC
x (∂D) does not depend on the particular defining function. The Levi

form Lr,x of r at x 2 C
n is the Hermitian form given by

Lr,x(v,w) =
n

Â
h,k=1

∂ 2r
∂ zh∂ z̄k

(x)vhwk

for every v, w 2 C
n.

Definition 1.5.9. A C2 domain D ⇢ C
n is called strongly pseudoconvex (respec-

tively, weakly pseudoconvex) at a point x 2 ∂D if for some (and hence all) C2 defin-
ing function r for D the Levi form Lr,x is positive definite (respectively, weakly
positive definite) on TC

x (∂D). The domain D is strongly pseudoconvex (respectively,
weakly pseudoconvex) if it is so at each point of ∂D.

Remark 1.5.10. If D is strongly pseudoconvex then there is a defining function r
for D such that the Levi form Lr,x is positive definite on C

n for every x 2 ∂D (see,
e.g., [107, p. 109]).

Roughly speaking, strongly pseudoconvex domains are locally strongly convex.
More precisely, one can prove (see, e.g., [3, Proposition 2.1.13]) the following:

Proposition 1.5.11. A bounded C2 domain D ⇢⇢ C
n is strongly pseudoconvex if

and only if for every x 2 ∂D there is a neighborhood Ux ⇢ C
n and a biholomor-

phism Fx : Ux ! Fx(Ux) such that Fx(Ux \D) is strongly convex.

From this one can prove that strongly pseudoconvex domains are taut; but we
shall directly prove that they are complete hyperbolic, as a consequence of the
boundary estimates we are now going to state.

Definition 1.5.12. If M ⇢C
n is any subset of Cn, we shall denote by d(·,M) : Cn !

R
+ the Euclidean distance from M, defined by

d(z,M) = inf{kz� xk | x 2 M} .
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To give an idea of the kind of estimates we are looking for, we shall prove an
easy lemma:

Lemma 1.5.13. Let Br ⇢C
n be the euclidean ball of radius r > 0 in C

n centered at
the origin. Then

1
2 logr� 1

2 logd(z,∂Br) kBr(O,z) 1
2 log(2r)� 1

2 logd(z,∂Br)

for every z 2 Br.

Proof. We have

kBr(O,z) = 1
2 log

1+kzk/r
1�kzk/r

,

and d(z,∂Br) = r�kzk. Then, setting t = kzk/r, we get

1
2 logr� 1

2 logd(z,∂Br) =
1
2 log

1
1� t

 1
2 log

1+ t
1� t

= kBr(O,z)

 1
2 log

2
1� t

= 1
2 log(2r)� 1

2 logd(z,∂Br) ,

as claimed. ut

Thus in the ball the Kobayashi distance from a reference point is comparable with
one-half of the logarithm of the Euclidean distance from the boundary. We would
like to prove similar estimates in strongly pseudoconvex domains. To do so we need
one more definition.

Definition 1.5.14. Let M be a compact C2-hypersurface of RN , and fix an unit nor-
mal vector field n on M. We shall say that M has a tubular neighborhood of ra-
dius e > 0 if the segments {x+ tnx | t 2 (�e,e)} are pairwise disjoint, and we set

Ue =
[

x2M
{x+ tnx | t 2 (�e,e)} .

Note that if M has a tubular neighborhood of radius e , then d(x+ tnx,M) = |t| for
every t 2 (�e,e) and x 2 M; in particular, Ue is the union of the Euclidean balls
B(x,e) of center x 2 M and radius e .

Remark 1.5.15. A proof of the existence of a tubular neighborhood of radius suffi-
ciently small for any compact C2-hypersurface of RN can be found, e.g., in [111,
Theorem 10.19].

And now, we begin proving the estimates. The upper estimate does not even
depend on the strong pseudoconvexity:

Theorem 1.5.16 ([147, 1]). Let D ⇢⇢ C
n be a bounded C2 domain, and z0 2 D.

Then there is a constant c1 2 R depending only on D and z0 such that

kD(z0,z) c1 � 1
2 logd(z,∂D) (1.7)



1 Invariant distances 19

for all z 2 D.

Proof. Since D is a bounded C2 domain, ∂D admits tubular neighborhoods Ue of
radius e < 1 small enough. Put

c1 = sup
�

kD(z0,w)
�� w 2 D\Ue/4

 
+max

�
0, 1

2 logdiam(D)
 
,

where diam(D) is the Euclidean diameter of D.
There are two cases:

(i) z 2Ue/4 \D. Let x 2 ∂D be such that kx� zk= d(z,∂D). Since Ue/2 is a tubular
neighborhood of ∂D, there exists l 2 R such that w = l (x� z) 2 ∂Ue/2 \D
and the Euclidean ball B of center w and radius e/2 is contained in Ue \D and
tangent to ∂D in x. Therefore Lemma 1.5.13 yields

kD(z0,z)  kD(z0,w)+ kD(w,z) kD(z0,w)+ kB(w,z)
 kD(z0,w)+ 1

2 loge � 1
2 logd(z,∂B)

 c1 � 1
2 logd(z,∂D) ,

because w /2Ue/4 (and e < 1).
(ii) z 2 D\Ue/4. Then

kD(z0,z) c1 � 1
2 logdiam(D) c1 � 1

2 logd(z,∂D) ,

because d(z,∂D) diam(D), and we are done. ut

To prove the more interesting lower estimate, we need to introduce the last defi-
nition of this subsection.

Definition 1.5.17. Let D ⇢ C
n be a domain in C

n, and x 2 ∂D. A peak function
for D at x is a holomorphic function y 2 Hol(D,D) continuous up to the boundary
of D such that y(x) = 1 and |y(z)|< 1 for all z 2 D\{x}.

If D⇢C
n is strongly convex and x2 ∂D then by Remark 1.4.6 there exists a peak

function for D at x. Since a strongly pseudoconvex domain D is locally strongly con-
vex, using Proposition 1.5.11 one can easily build peak functions defined in a neigh-
borhood of a point of the boundary of D. To prove the more interesting lower esti-
mate on the Kobayashi distance we shall need the non-trivial fact that in a strongly
pseudoconvex domain it is possible to build a family of global peak functions con-
tinuously dependent on the point in the boundary:

Theorem 1.5.18 (Graham, [71]). Let D ⇢⇢ C
n be a strongly pseudoconvex C2

domain. Then there exist a neighborhood D0 of D and a continuous function
Y : ∂D⇥D0 !C such that Yx0 =Y(x0, ·) is holomorphic in D0 and a peak function
for D at x0 for each x0 2 ∂D.

With this result we can prove
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Theorem 1.5.19 ([147, 1]). Let D ⇢⇢ C
n be a bounded strongly pseudoconvex C2

domain, and z0 2 D. Then there is a constant c2 2 R depending only on D and z0
such that

c2 � 1
2 logd(z,∂D) kD(z0,z) (1.8)

for all z 2 D.

Proof. Let D0 �� D and Y : ∂D⇥D0 !C be given by Theorem 1.5.18, and define
f : ∂D⇥D ! C by

f(x,z ) = 1�Y(x,z0)

1�Y(x,z0)
· z �Y(x,z0)

1�Y(x,z0)z
. (1.9)

Then the map F(x,z) = Fx(z) = f
�
x,Y(x,z)

�
is defined on a neighborhood ∂D⇥

D0 of ∂D⇥D (with D0 ⇢⇢ D0) and satisfies

(a) F is continuous, and Fx is a holomorphic peak function for D at x for any x2 ∂D;
(b) for every x 2 ∂D we have Fx(z0) = 0.

Now set Ue =
S

x2∂D P(x,e), where P(x,e) is the polydisc of center x and polyra-
dius (e, . . . ,e). The family {Ue} is a basis for the neighborhoods of ∂D; hence there
exists e > 0 such that Ue ⇢⇢ D0 and Ue is contained in a tubular neighborhood
of ∂D. Then for any x 2 ∂D and z 2 P(x,e/2) the Cauchy estimates yield

|1�Fx(z)|= |Fx(x)�Fx(z)| 
����

∂Fx

∂ z

����
P(x,e/2)

kz� xk

 2
p

n
e

kFk∂D⇥Uekz� xk= Mkz� xk ,

where M is independent of z and x; in these formulas kFkS denotes the supremum
of the Euclidean norm of the map F on the set S.

Put c2 =� 1
2 logM; note that c2  1

2 log(e/2), for kFk∂D⇥Ue � 1. Then we again
have two cases:

(i) z 2 D \Ue/2. Choose x 2 ∂D so that d(z,∂D) = kz � xk. Since Fx(D) ⇢ D
and Fx(z0) = 0, we have

kD(z0,z)� kD
�
Fx(z0),Fx(z)

�
� 1

2 log
1

1� |Fx(z)|
.

Now,
1� |Fx(z)| |1�Fx(z)| Mkz� xk= M d(z,∂D) ;

therefore

kD(z0,z)�� 1
2 logM� 1

2 logd(z,∂D) = c2 � 1
2 logd(z,∂D)

as desired.
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(ii) z 2 D\Ue/2. Then d(z,∂D)� e/2; hence

kD(z0,z)� 0 � 1
2 log(e/2)� 1

2 logd(z,∂D)� c2 � 1
2 logd(z,∂D) ,

and we are done. ut

A first consequence is the promised:

Corollary 1.5.20 (Graham, [71]). Every bounded strongly pseudoconvex C2 do-
main D is complete hyperbolic.

Proof. Take z0 2 D, r > 0 and let z 2 BD(z0,r). Then (1.8) yields

d(z,∂D)� exp
�
2(c2 � r)

�
,

where c2 depends only on z0. Then BD(z0,r) is relatively compact in D, and the
assertion follows from Proposition 1.2.14. ut

For dynamical applications we shall also need estimates on the Kobayashi dis-
tance kD(z1,z2) when both z1 and z2 are close to the boundary. The needed esti-
mates were proved by Forstnerič and Rosay (see [58], and [3, Corollary 2.3.55,
Theorem 2.3.56]):

Theorem 1.5.21 ([58]). Let D ⇢⇢ C
n be a bounded strongly pseudoconvex C2 do-

main, and choose two points x1, x2 2 ∂D with x1 6= x2. Then there exist e0 > 0
and K 2 R such that for any z1, z2 2 D with kz j � x jk< e0 for j = 1, 2 we have

kD(z1,z2)�� 1
2 logd(z1,∂D)� 1

2 logd(z2,∂D)+K . (1.10)

Theorem 1.5.22 ([58]). Let D ⇢⇢ C
n be a bounded C2 domain and x0 2 ∂D. Then

there exist e > 0 and C 2R such that for all z1, z2 2D with kz j�x0k< e for j = 1, 2
we have

kD(z1,z2) 1
2 log

✓
1+

kz1 � z2k
d(z1,∂D)

◆
+ 1

2 log
✓

1+
kz1 � z2k
d(z2,∂D)

◆
+C . (1.11)

We end this section by quoting a theorem, that we shall need in Chapter 6, giving
a different way of comparing the Kobayashi geometry and the Euclidean geometry
of strongly pseudoconvex domains:

Theorem 1.5.23 ([9]). Let D ⇢⇢ C
n be a strongly pseudoconvex C• domain, and

R > 0. Then there exist CR > 0 depending only on R and D such that

1
CR

d(z0,∂D)n+1  n
�
BD(z0,R)

�
CRd(z0,∂D)n+1

for all z0 2 D, where n
�
BD(z0,R)

�
denotes the Lebesgue volume of the Kobayashi

ball BD(z0,R).
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