
Parallelism in AGREE Transformations

?

A. Corradini1 and D. Duval2 and F. Prost3 and L. Ribeiro4

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 LJK - Université Grenoble Alpes and CNRS, Grenoble, France
Dominique.Duval@imag.fr

3 LIG - Université Grenoble Alpes and CNRS, Grenoble, France
Frederic.Prost@imag.fr

4 INF - Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
leila@inf.ufrgs.br

Abstract. The AGREE approach to graph transformation allows to
specify rules that clone items of the host graph, controlling in a fine-
grained way how to deal with the edges that are incident, but not
matched, to the rewritten part of the graph. Here, we investigate in which
ways cloning (with controlled embedding) may a↵ect the dependencies
between two rules applied to the same graph. We extend to AGREE
the classical notion of parallel independence between the matches of two
rules to the same graph, identifying su�cient conditions that guarantee
that two rules can be applied in any order leading to the same result.

1 Introduction

Graph Transformations (GT) are very much used to specify systems where con-
currency and non-determinism are present. For instance GT has been used to
model the evolution of biological systems [6], chemical reactions [15] and also
concurrent models of computations [8]. From this perspective a major concern is
to investigate how the application of di↵erent rules may a↵ect each other. There
are two classical questions:

1. (parallel independence) Given two rules with matches in the same graph
G, are they independent? That is, can they be applied in any order (or even
in parallel) with the same result?

2. (sequential independence) Given a sequence of two rewrite steps, is the
second step independent of the first? That is, could the second rule be applied
first, followed by the application of the first rule, leading to the same result?

In this paper we shall consider parallel independence only. In the classical setting,
where typically rules are injective, two rewrite steps are parallel independent if
their matches overlap only on items that are preserved by both. In other words,
they are not parallel independent if there is a conflict of the following types:

delete-delete: two rules try to delete the same item. In this case the conflict
is symmetric and it means that the rules are mutually exclusive.

? This work has been partly funded by projects CLIMT (ANR/(ANR-11-BS02-016),
VeriTeS (CNPq 485048/2012-4 and 309981/2014-0), PEPS égalité (CNRS).

Andrea Corradini
This final publication is available at Springer via https://doi.org/10.1007/978-3-319-40530-8_3

preserve-delete: a rule deletes an item that is preserved by the other. In this
situation the conflict is asymmetric because the application of the rule that
deletes the item prevents the other to occur, but not the other way around.

Parallel independence is usually formalized, in the algebraic approaches to
GT, making reference to the following diagram. The rewrite step using rule 2
at match m2 is said to be (parallel) independent from the rewrite step using
rule 1 at match m1 if there exists a morphism m2d such that m2 = g1 � m2d

(and symmetrically for rule 1). That is, it is still possible to apply rule 2 after
rule 1 has been applied, using the “same” match, and in this case the Local

Church-Rosser Theorem shows that the resulting graph is the same.

R1

p1

✏✏

K1
oo

r1oo //
l1 //

n1

✏✏

L1

m1

��

m1d

''

L2

m2

��

m2d

ww

K2
oo

l2oo //
r2 //

n2

✏✏

R2

p2

✏✏

H1 D1
h1

oo
g1

// G D2g2
oo

h2

// H2

(1)

Those problems have been studied in many GT approaches: double pushout
(DPO) [5], single pushout [12], sesqui-pushout (SqPO) [4], reversible sesqui-
pushout [7], with negative application conditions [13], borrowed contexts [1] and
nested application conditions [11]. To our knowledge, in all these approaches
(but for [7]) rules are required to be linear, i.e. both the left- and the right-hand
side have to be monomorphisms. In this paper we address the problem of par-
allel independence for the AGREE approach [3]. The main feature of AGREE
rewriting is the ability to clone matched items, like in the SqPO approach that
it extends, but with the possibility of specifying how edges incident to the image
of the match can be handled. Because of this feature the analysis of parallel
independence becomes quite more complex than in the other approaches, since
new kinds of conflicts between rewrite steps arise.

The paper is organized as follows. We start with an informal introduction to
AGREE in Section 2, showing how, from a programmer point of view, AGREE
rewrite rules can be specified by exploiting the ability both to clone items, and
to control the embedding of the preserved or cloned items in the context. In
Section 3 we recall from [3] the formal definition of AGREE rewriting. Then we
present in Section 4, through several canonical counter-examples, how new types
of conflicts may arise due to cloning. Those counter-examples will motivate the
assumptions needed for the main result that is stated and proved in Section 5.
Finally we conclude and sketch future developments in Section 6.

2 Controlling the Embedding in AGREE

AGREE is a GT approach: states are represented by graphs and transitions are
specified by rules. When specifying a transition between states using an AGREE
rule (see the left diagram of (2)), the designer describes with the left-hand side

L the items that must be present to trigger the application of the rule. The
morphism l from the gluing graph K to L describes which items of L will be
preserved, cloned or deleted. More precisely an item of L is deleted if it is not

2

in the image of l, it is preserved if it is the image of exactly one item of K
along l, and it is cloned if it is the image of more than one item along l. The
morphism r to the right-hand side R, that we assume to be mono in this paper,
defines the items that will be created, i.e. those not in the image of r. Finally
the embedding component TK , which is typical of AGREE, is used to describe
how the preserved or cloned items are embedded in the rest of the state graph.

To apply a rule to a graph G (see the right diagram of (2)), first an image of L
in G has to be found (a match).5 Then, basically, all items from G are removed,
preserved or cloned according to the rule (using L, K and TK), and new items
are added according to r. In the following, we explain intuitively how to specify
the embedding component of a rule, and how rule application is performed in
the case of typed graphs. The formal definitions will be given in Section 3.

L K
loo // r //

✏✏

t
✏✏

R

TK

L

deletion+cloning

✏✏

m

✏✏

K

creation

loo // r //
✏✏

n

✏✏

R
✏✏

p

✏✏

G D
g

oo // h // H

(2)

The embedding component describes how to handle the context, i.e. the part
of G that is not in the image of the match. To specify this component, we first
build a graph containing the gluing graph K and all possible ways in which it is
connected to the rest. This is done by a construction called partial map classifier

for K, denoted by T (K) [2]. This graph contains the following classes of items:

(i) preserved items: K (the gluing graph);
(ii) independent context items: a copy of the type graph (to describe the

part of the state graph that is not touched by the rule application);
(iii) gluing context edges one instance of each type of edge (from the type

graph) for each pair of nodes of K; and
(iv) embedding context edges: one instance of each type of edge (from the

type graph) for each pair made of a node in class (i) and a node in class (ii).

We call the items in classes (ii) to (iv) ?-items. They are used to represent the
context: given any graph X with a map to T (K), we can classifiy X’s items
into items that represent K’s items (whose images are in (i)) and items that are
context (whose images are in (ii)-(iv)). Now, to obtain the embedding component
of a rule, one can specify how the preserved or cloned items are embedded in the
rest of the graph by removing from T (K) all items that should not be maintained
when the rule is applied, or adding some items to obtain more copies of specific
elements of the state graph.

Fig. 1. Embedding Component Examples

5 In the AGREE approach matches have to be monic.

3

For example, consider the graphs in Figure 1. TG is a type graph having
two nodes and two di↵erent edges. The items to be preserved/cloned by a rule
are shown in graph K (here the left- and right-hand sides are not important
since we only want to illustrate the embedding component). To obtain T (K) we
follow the steps previously described. As a graphical notation, we use arrows
with tips at both sides to depict two edges, one in each direction, all ?-items
are marked with ? and there is a vertical bar dividing T (K) as follows: we put
to the right of the bar the items of (ii) (the copy of the type graph), to the
left the items of (i) (graph K) and (iii) (all possible kinds of edges among K’s
nodes), and connect the left and right sides with items of (iv) (all possible types
of edges between items of K and of the copy of the type graph). Choosing for
a rule any embedding component TK that does not include all the items of (ii)
(or adds some elements to (ii)) would result in a rule with non-local e↵ects. For
example, if TKa is the embedding component of a rule with gluing graph K, the
application of this rule would remove from a graph all square nodes and dashed
edges, even if not in the image of the match, because TKa specifies that the
context should not have those items. Instead the embedding component TKb

has a local e↵ect since the part to the right side of the bar is a copy of TG . The
application of this rule would remove dashed edges between node 1� and the rest
of the graph, and solid edges between node 2� and the rest of the graph (only
one edge between nodes 1� and 2� would remain, since this edge is in K).

In the rest of this section we consider local rules only, that is, the embed-
ding component must include a copy of the type graph.6 For simplicity we also
assume that the embedding component is included in T (K) (even if the formal
development does not require it), thus it is obtained from T (K) by deleting only
items belonging to (iii) and (iv). For a simpler graphical representation of the
embedding component, to the right of the vertical bar we draw only the nodes
of the type graph (considering the edges implicitly there), since only the nodes
of (ii) are needed to specify how the gluing graph is connected to the context.

To illustrate the AGREE approach and the e↵ect of the embedding compo-
nent, we will model the generation of Sierpinski triangles. A Sierpinski triangle
is a well-known fractal in which an equilateral triangle is divided into smaller
equilateral triangles in a controlled way, given by a rule like the one depicted
in Figure 2(a). Applying this rule repeatedly and fairly a convenient number of
times leads to shapes like the ones shown in Figure 2(b).

Fig. 2. (a) Sierpinski generation rule (b) Sierpinski triangles generation

In [16] the generation of Sierpinski triangles was used as a case study to
compare di↵erent graph transformation tools. There, a triangle was modeled as
a graph with three nodes and three edges, and each step of the generation deleted

6 We refer the interested reader to [3] for a formal definition of locality.

4

edges and created new nodes and edges. Here, instead, we consider a triangle as
a single node, and each step will split (or clone) the triangle into three other ones
and create suitable connections (edges) among them. To control how many times
the splitting process should occur, we use a special kind of edge: the number of
dashed loops on a node indicates how many times the splitting process can be
applied. To make the example more interesting, we will color the triangles: a gray
loop on a triangle indicates its color (b for black, g for green, r for red and w

for white). Moreover, there will be three di↵erent edges that are used to connect
triangles, called ur (up-right), ul (up-left) and lr (left-right). The corresponding
type graph is shown in Figure 3(a). Figure 3(b) depicts a Sierpinski triangle and
its corresponding graph representation, and 3(c) presents a possible start state
for the generation of Sierpinki triangles of order 3.

Fig. 3. (a) Type Graph (b) Graph Representation (c) Start Graph

To model the splitting of the triangle we use rule Split of Figure 4: whenever
there is a triangle that may be split (has a dashed loop) L1, it is split and new
connections between the copies are created. Also note that the new triangles are
colored with white in R1. The embedding component is graph TK1 . Remind
that we are using local rules, thus only the nodes of the type graph of Fig. 3(a)
are drawn to the right of the bar (the edges are implicitly there). Since TK1

does not contain gray loops on the left node, any possible color of the matched
node is deleted by the application of the rule. The same happens in all other
rules, but for TurnRed . The last three rules change the color of the triangle
to black, green or red in slightly di↵erent ways. Rule TurnBlack adds a black
color to the matched triangle after removing any colored or dashed loop, thus
preventing further splitting. Rule TurnGreen changes the color of a triangle
(of any color) to green and requires the presence of at least one dashed loop,

Fig. 4. Rules for generation and coloring of Sierpinski triangles.

5

and preserves all dashed loops. Finally rule TurnRed changes the color of a
triangle to red, if the triangle was white, and keeps all existing connections (the
embedding component of this rule is the partial maps classifier of K4).

When a match m : L ! G from an AGREE rule to a graph G is found, this
match induces a partition of G’s items into the following classes:

(i) preserved/cloned items: items in the image of K,
(ii) independent context items: the items that are neither in the image of

L nor are connections to items in the image of L,
(iii) gluing context edges: edges not in the image of L that connect nodes in

the image of K,
(iv) embedding context edges: edges not in the image of L that connect

nodes in the image of K to other nodes in G (not in the image of L),
(v) deleted items: items in the image of L and not in the image of K,
(vi) dangling edges: edges that connect nodes marked for deletion (in class

(v)) to other nodes (not in (v)).

The embedding component TK of a local rule is a subgraph of T (K) that
includes K, it specifies that items in classes (i) and (ii) remain untouched. The
control of the embedding is performed on items of classes (iii) and (iv): edges of
types that are in T (K) and not in TK must be removed/can not be cloned. An
AGREE rule application can be constructed by the following steps:

Deletion: delete from G all items that are in classes (v) and (vi); delete all
items that are in classes (iii) and (iv) of G and whose type is not in TK ;

Cloning/Preserving: clone or preserve all items of (i) according to l : K ! L,
and all edges from (iii) and (iv) according to TK (for every node that is
cloned, clone all edges connected to this node whose type is in TK);

Creation: add new items according to r : K ⇢ R.

Two examples of derivations using AGREE rules are shown in Figure 5.
Starting with graph G1 rule Split is applied (to the right), deleting one of the
dashed loops of the triangle and splitting the triangle in three (cloning also the
rest of the dashed loops and creating a white-loop in each of the resulting tri-
angles). To the left, rule TurnBlack is applied, removing all the dashed arrows
from the triangle. These extra deletion e↵ects are specified in the corresponding
embedding components (see TK2 in Figure 4).

Fig. 5. AGREE rewrite steps using rules TurnBlack (left) and Split (right)

6

3 The AGREE approach to graph transformation

In this section we recall basic definitions of the AGREE approach to rewriting
[3]. We assume the reader to be familiar with categorical notions used in the alge-
braic approaches to GT (including pushouts, pullbacks and their properties).The
following definition will be useful in the technical development in Section 5.

Definition 1 (reflection). Given arrows A // m // C Bfoo
, we

say that (the image of) A is reflected identically by f (to B)
if the square to the right is a pullback for some mono A ⇢ B or

equivalently if the pullback object of f and m is isomorphic to A.

A
✏✏

✏✏

id // A
✏✏

m

✏✏

B f // C
Intuitively, this means that f is an iso when restricted to the image of A. If
objects are concrete structures like graphs, then every item of the image of A in
C has exactly one inverse image along f in B.

We assume that the category in which GT is performed has partial maps

classifiers [2] (needed for the definition of AGREE rewriting [3]) and is adhesive,
the latter assumption being standard for the results about parallelism [14, 10].

Definition 2 (partial map classifier). Let C be a category with pullbacks

along monos. A partial map over C, denoted (i, f) : Z * Y , is a span (i : X ⇢
Z, f : X ! Y) in C with i mono, up to the equivalence relation (i0, f 0) ⇠ (i, f)
when there is an isomorphism h with i0 � h = i and f 0 � h = f . Category C has

a partial map classifier (T, ⌘) if T is a functor T : C ! C and ⌘ is a natural

transformation ⌘ : IdC
.! T , such that for each object Y and each partial map

(i, f) : Z * Y there is a unique arrow '(i, f) : Z ! T (Y) such that (i, f) is a

pullback of ('(i, f), ⌘Y) (see the left diagram of (3)).

7

Then ⌘Y is mono for each Y , T preserves pullbacks, and ⌘ is cartesian, which
means that for each f : X ! Y the span (⌘X , f) is a pullback of (T (f), ⌘Y). For
each mono i : X ⇢ Z let ı = '(i, idX); then ı is characterized by the fact that
(i, idX) is a pullback of (ı, ⌘X) (right diagram of (3)).

X

PB

✏✏

i
✏✏

f
// Y
✏✏

⌘Y

✏✏

Z
'(i,f)

// T (Y)

X

PB

✏✏

⌘X

✏✏

f
// Y
✏✏

⌘Y

✏✏

T (X)
T (f)

// T (Y)

X

PB

✏✏

i
✏✏

idX // X
✏✏

⌘X

✏✏

Z
ı
// T (X)

(3)

By composing the right and middle squares we get the left one, which proves
that for each partial map (i, f) : Z * Y :

'(i, f) = T (f) � ı (4)

For the definition of adhesivity, we stick to the seminal work [14]. Since then
adhesivity has been generalized in several variants and sometimes in subtly dif-
ferent ways: for a recollection of such notions the reader is referred to [10].

7 Intuitively, a partial map classifier provides a bijective correspondence between par-
tial maps over C from object Z to Y and arrows of C from Z to T (Y), given by
[(i, f)] () �(i, f), as described by the left diagram of (3).

7

Definition 3 (adhesive category). A category C is adhesive if it has all

pullbacks, pushouts along monos, and if each pushout along a mono, like the

square to the left below, is a Van Kampen square, i.e. if for any commutative

cube as below to the right, where the pushout is the bottom face and the back

faces are pullbacks, we have: the top face is a pushout if and only if the front

faces are pullbacks.

A // m //

f

✏✏

B

g

✏✏

C n // D

A0
f 0

rr

))
m0
))

a

✏✏

C 0
n0
))

c

✏✏

B0

g0
rr b

✏✏

D0

d

✏✏

A
f

rr

))
m))C

n))

B
g

rrD

(5)

We recall that in an adhesive category pushouts preserve monos, and pushouts
along monos are also pullbacks; pullbacks preserve monos in any category.

Definition 4 (AGREE rewriting). Let C be an adhesive category with a

partial map classifier (T, ⌘), An AGREE rule is a triple of arrows with the

same source ⇢ = (K l //L, K // r //R, K // t //TK), with r and t mono. Arrows l
and r are the left- and right-hand side, respectively, and t is the embedding.
A match of a rule ⇢ with left-hand side K l //L is a mono L // m //G . An

AGREE rewrite step G)⇢,m H is constructed as follows (see diagram (6)).

First G Dgoo n0 // TK is the pullback of G m //T (L) TKl0oo . It follows that there

is a unique n : K ! D such that n0 � n = t, g � n = m � l and (l, n) is a pull-

back of (m, g), and that n is mono. Then R // p //H Doohoo is the pushout of

D Koonoo // r //R .

T (L)

PB

TKl0='(t,l)oo

L

PB

✏✏

m

✏✏

OO

⌘L

OO

K

PO

loo // r //
✏✏

n

✏✏

OO

t

OO

R
✏✏

p

✏✏

G

XX

m

FF

Dgoo // h //

FF

n0

XX

H

(6)

The assumptions of Definition 4 are satisfied by the categories of graphs, of
typed graphs (defined as a slice category), and by toposes in general.

Notice that, di↵erently from [3], we stick to rules with monic right-hand side,
thus rules which possibly model the cloning of items, but not their merging.
This choice is supported by the observation that matches must be monic in
AGREE, and thus even if a monic morphism, say, m1d : L1 ⇢ D2 can be found
(see diagram (1)), its composition with a non-monic h2 : D2 ! H2 would not
necessarily result in a legal (i.e., monic) match of L1 in H2. The analysis of such
more complex situations is left as future work.

Finally it is worth recalling that as proved in [3], AGREE rewriting coincides
with SqPO rewriting [4] for rules where TK = T (K).

8

4 Analysis of Independence of Rewrite Steps

As stated in the Introduction, parallel independence is a condition on two rewrite
steps from the same graph that ensures that they can be applied sequentially in
both orders, leading to the same result. We formalize this last property with the
following notion of commutativity, also known as diamond property.

Definition 5 (Commutativity of rewrite steps). Let ⇢1 and ⇢2 be two

rules and for i 2 {1, 2} let mi be a match for ⇢i in G. We say that the rewrite

steps G)⇢1,m1 H1 and G)⇢2,m2 H2 commute if there exist an object H and

matches m12 of ⇢1 in H2 and m21 of ⇢2 in H1 such that H1)⇢2,m21 H and

H2)⇢1,m12 H.

We discussed two possible kinds of conflicts that could prevent commutativity
in classical approaches to GT: preserve-delete (one of the rules deletes some
item that is preserved by the other) and delete-delete (two rules delete the
same item). In AGREE we still have these kinds of conflicts. But we have to
investigate what is the impact of using the embedding component TK of the
rules, and of allowing the cloning of items.

Let us now consider some examples illustrating di↵erent kinds of situations
that may occur in AGREE derivations. These examples are meant to show that,
although cloning is a kind of preservation, the application of a rule that clones
may hinder the application of a rule that uses the cloned items, since the match
may become non-deterministic (leading to di↵erent results) and items that be-
long to the context of one rule application may be changed in a way that prevents
the other rule from being applied. Moreover, even if no cloning is used, rules may
get into conflict due to the treatment of context items specified in the TK com-
ponent of one of the rules.

Fig. 6. Rewrite steps with rules TurnGreen and Split : Clone-Use Confict

Cloning vs Use. Consider the derivations shown in Figure 6, where rulesTurn-
Green (left) and Split (right) are applied to graph G1 (indices indicate the
match). The application of rule TurnGreen just changes the color of the trian-
gle and, after applying this rule, it would still be possible to apply Split to the
same match (that is, it is possible to extend m1 to H3) and the result would be
a graph with 3 white triangles (and corresponding edges). However, if Split is
applied first, we would have three possibilities to match rule TurnGreen that
would be extensions of m1. By choosing any of them, the result would be a graph
with 3 triangles, two white and one green, i.e. the results would not be the same.

9

Fig. 7. Applying TurnBlack and TurnGreen : Context Deletion–Preservation Confict

Context Deletion vs Preservation. Now consider the derivations shown in
Figure 7, where rules TurnBlack (left) and TurnGreen (right) are applied
to graph G1. The application of rule TurnGreen just changes the color of
the triangle and, after applying this rule, it would still be possible to apply
TurnBlack to the same match (that is, it is possible to extend m2 to H3) and
the result would be a graph with only one black triangle. But if TurnBlack
is applied first, all dashed loops are removed (as specified by TK2) preventing
TurnGreen from being applied. None of these rules clones items, thus this
kind of conflict depends only on the embedding component of the rules: if the
embedding components were TK2 = T (K2) and TK3 = T (K3), no conflict
would arise because all context items would be preserved by both rules.

Fig. 8. AGREE Derivations using rule Split

Figure 5 shows a situation where both of the above cases occur: rule TurnBlack
removes the dashed loops, preventing Split from being applied, and Split clones
the triangle, creating three di↵erent matches for TurnBlack . Finally, Figure 8
shows an example involving cloning and using a non-trivial embedding compo-
nent (TK1 6= T (K1)), where the two steps commute. In fact the two matches
do not overlap, and thus are trivially parallel independent.

Summarizing, using AGREE rules, we have three new kinds of conflict:

clone-use (where use could be delete or preserve or clone): an item that is
preserved/deleted/cloned by one rule is cloned by the other; and

10

ctxdel-use (context deletion-use): an item used in one rule is specified for
context-deletion by the embedding component TK of the other rule.

ctxclone-use (context clone-use): an item used in one rule is specified for
context-cloning by the embedding component TK of the other rule8.

5 The Church-Rosser Property for AGREE

This section is devoted to the main result of the paper, that is the identification
of su�cient conditions for two AGREE rewrite steps to commute, according to
Definition 5. Such conditions are identified in the next definition.

Definition 6 (Parallel Independence in AGREE). Let C be an adhesive

category with a partial map classifier (T, ⌘). Let ⇢i = (Ki
li! Li,Ki

ri⇢ Ri,Ki

ti⇢
TK,i), for i 2 {1, 2}, be two AGREE rules and let L1

m1⇢ G and L2
m2⇢ G be two

matches for them to the same object G. Consider the corresponding AGREE
rewriting steps G)⇢1,m1 H1 and G)⇢2,m2 H2 depicted in the following dia-

gram.

9

TK,1
l01 // T (L1) T (L2) TK,2

l02oo

R1

2�
✏✏

p1

✏✏

K1

1�

oo
r1oo

l1 //

✏✏

n1

✏✏

OO

t1

OO

L1
!!

m1

!!

--

m1d

''

OO

⌘L1

OO

L2

3�
}}

m2

}}

qq

m2d

ww

OO

⌘L2

OO

K2

4�

l2oo //
r2 //

✏✏

n2

✏✏

OO

t2

OO

R2
✏✏

p2

✏✏

H1 D1
oo

h1

oo
g1

//

n0
1

GG

G

m2

<<

m1

cc

D2g2
oo //

h2

//

n0
2

WW

H2

Then G)⇢1,m1 H1 and G)⇢2,m2 H2 are parallel independent if the following

are satisfied:

1. In the left diagram of (7) where the inner and the outer squares are built as

pullbacks, the mediating morphism K1K2 ! L1L2 is an isomorphism.

2. The right diagram of (7) is a pullback for i 2 {1, 2}, that is the image of

T (L1L2) is reflected identically by l0i to TK,i

K1K2 ⇡K
2

//

⇡K
1

✏✏

dd

$$

K2

l2
✏✏

L1L2
//

⇡L
2 //

✏✏

⇡L
1

✏✏

L2
✏✏

m2

✏✏

K1 l1 // L1
// m1 // G

T (L1L2)
✏✏

id

✏✏

// // TK,i

l0i

✏✏

T (L1L2) //
T (⇡L

i)

// T (Li)

(7)

8 We did not present examples of this kind of conflict, which can be avoided by re-
quiring the embedding component to be included in T (K).

9 For future reference we also depict the dashed arrows m1d and m2d, which are not
mentioned in this definition.

11

The main result is formulated as follows.

Theorem 1 (Local Church-Rosser). If two AGREE rewrite steps are par-

allel independent, then they commute.

As a first observation note that, unlike most related results for other algebraic
approaches to GT, parallel independence does not require explicitly the existence
of arrows m1d and m2d, which will be inferred in the proof from the other con-
ditions. Nevertheless, note that the first condition can be seen as a direct trans-
lation in categorical terms of the classical set-theoretical definition of parallel
independence (see [9]) requiring m1(L1) \m2(L2) ✓ m1(l1(K1)) \m2(l2(K2)).

Since the conditions of Definition 6 are pretty technical, let us explain them
by making reference to the specific case of graphs. The first condition guarantees
that each item of G that is needed for the application of both rules (belongs to
the intersection of the images of L1 and L2) is preserved by both rules (is in
the image of both K1 and K2) and it is not cloned by any rule (it has only
one inverse image in K1K2). This forbids all delete-use and clone-use conflicts.
Equivalently, if a rule duplicates or deletes an item of G, that item cannot
be accessed by the other rule not even in a read-only way. For example, the
application of rules TurnGreen and Split shown in Figure 6 does not satisfy
this condition because the pullback of L3 ! G1 and L1 ! G1 contains a single
node, while the pullback of K3 ! L3 ! G1 and K1 ! L1 ! G1 contains three
nodes, and thus they are not isomorphic.

For the second condition, remember from Section 2 that for any graph X, the
partial map classifier T (X) is made of a copy of X plus the ?-elements which,
given any graph Y with a partial morphism to X, classify in a unique way the
items of the context, i.e. the items of Y on which the morphism is not defined.
Thus the second condition expresses a strong requirement on the embeddings
TK,i of the two rules: they cannot modify (i.e. delete or duplicate) any item in the
context of L1L2. For example, this condition is not satisfied by the application of
rules TurnBlack and TurnGreen to graph G1 in Figure 7. In fact, in this case
the pullback object of L2 ! G1 and L3 ! G1 is a single node (it is identical
to L2), but T (L2) is not reflected identically by TK2 ! T (L2), because the
embedding TK2 (see Figure 4) does not contain the ?-loop on the left node.

Proof (of Theorem 1). We present the overview of the proof, which is detailed
in the rest of the section. We focus on the application of ⇢2 and ⇢1 in this
order, since the reverse order is symmetric. Consider Diagram (8), where for
readability reasons we do not depict the embeddings of the rules and the partial
maps classifiers, even if they are necessary for the constructions. Objects in plain
math style exist by hypotheses, others (in bold) are introduced during the proof.

By Lemma 1, L1 is reflected identically by D2 g2 //G providing the mono
L1
// m1d //H2 , which composed with D2

// h2
//H2 becomes a match L1

// m12 //H2 .
By Construction 1 the AGREE rewrite step H2)⇢1,m12 H12 generates ob-
jects D12 and H12 in the bottom line. Symmetrically, the AGREE rewrite
step H1)⇢2,m21 H21 generates the objects D21 and H21 in the right col-
umn. By Lemma 2, defining D as the pullback of square 5�, K1 is reflected

12

identically by D d1
//D1 and R1 is reflected identically by D21 g21 //H1 , pro-

viding monos K1
// n1d //D and R1

// p1d //D21 . Lemma 3 shows that the only
arrow D // d21

//D21 that makes square 6� a pullback also makes the composed
square 2�+ 6� a pushout. It concludes by building H in 8� as the pushout ob-
ject of D21 � D ⇢ D12 (where the arrow D ⇢ D12 is built symmetrically to
D ⇢ D21, making square 7� a pullback) and showing, by compositionality of
pushouts, that H must be isomorphic to H12. The result follows by symmetry.

L1
✏✏

m1

✏✏

��

m1d

��

⌫⌫

m12

⌥⌥

1�

K1
✏✏

n1

✏✏

��

n1d

��

⌫⌫

n12

⌥⌥

l1oo // r1 //

2�

R1
✏✏

p1

✏✏

��

p1d

��

⌫⌫

p12

⌥⌥

L2
// m2

//

3�

G

5�

D1g1
oo // h1

//

6�

H1

K2
// n2

//

l2

OO

✏✏

r2

✏✏

4�

D2

g2

OO

✏✏

h2

✏✏

7�

Dd2
oo // d21

//

d1

OO

✏✏

d12

✏✏

8�

D21

g21

OO

✏✏

✏✏
H21

⌫⌫

h21

⌫⌫

R2
// p2

// H2 D12g12
oo // //

H12

++

h12
++

H

(8)

Lemma 1. Consider the left diagram of (9). There is a unique (monic) arrow

m1d : L1 ! D2 making the top and the back-left faces commuting, and the top

face a pullback. Thus L1 is reflected identically by g2.

L1ss
m1d

ss

))
id

))

✏✏

D2
g2
''

n0
2

✏✏

L1rr
m1

rr

⇡L
1

✏✏

G

m2

✏✏

T (L1L2)ss

ss

((id
((

TK,2

l02
&&

T (L1L2)rr
T (⇡L

2)
rr

T (L2)

L1L2
// ⇡L

2
//

✏✏

⇡L
1

✏✏

L2 id //
✏✏

m2

✏✏

L2
✏✏

⌘L2
✏✏

L1
// m1

// G m2
// T (L2)

(9)

Proof. In the left cube, the front-left face is a pullback by construction of step
G)⇢2,m2 H2, the bottom face is a pullback by hypothesis (see (7)), and the
back-right face is trivially a pullback. In addition the front-right face commutes:
in fact on one hand we have T (⇡L

2) � ⇡L
1 = '(⇡L

1 ,⇡
L
2) by property (4) of partial

maps classifiers, on the other hand the right diagram of (9) proves thatm2�m1 =
'(⇡L

1 ,⇡
L
2). The statement follows by the decomposition property of pullbacks.

13

T (L1) TK,1
l01oo

L1

m12

✏✏

OO

⌘L1

OO

K1
l1oo //

r1 //

✏✏

n12

✏✏

OO

t1

OO

R1
✏✏

p12

✏✏

H2

m12

GG

D12g12
oo //

h12

//

n0
12

WW

H12

T (L2) TK,2
l02oo

L2

m21

✏✏

OO

⌘L2

OO

K2
l2oo //

r2 //

✏✏

n21

✏✏

OO

t2

OO

R2
✏✏

p21

✏✏

H1

m21

GG

D21g21
oo //

h21

//

n0
21

WW

H21

(10)

Construction 1 Arrow m1d : L1 ! D2 of Lemma 1 composed with h2 : D2 !
H2 (see (8)) provides a match m12 = h2 � m1d : L1 ! H2: it is mono because

both m1d and h2 are, the latter because pushouts preserve monos in adhesive

categories. The left diagram of (10) represents the resulting AGREE rewrite

step H2)⇢1,m12 H12. The right diagram of (10) represents the symmetric rewrite

step H1)⇢2,m21 H21, where m21 = h1 �m2d.

The proofs of the next two lemmas are omitted for space constraints, and
will appear in the full version of the paper.

Lemma 2. Let D2 Dd2
oo d1

//D1 be the pullback of D2 g2 //G D1g1oo
(see

square

5� of (8)), and consider the diagrams (11).

1. In the left cube, there is a unique (monic) arrow n1d : K1 ! D making the

top and the back-left faces commuting, and the top face a pullback. Thus K1

is reflected identically by d1.
2. In the right cube, there is a unique (monic) arrow p1d : R1 ! D21 making

the top and the back-left faces commuting, and the top face a pullback. Thus

R1 is reflected identically by g21.

K1n1d

uu

id
$$

✏✏

D

d1
$$

d2

✏✏

K1
n1
uu

l1

✏✏

D1

g1

✏✏

L1
m1d

uu $$
D2

g2 $$

L1

m1ttG

R1p1d

ss

id

))

✏✏

D21

g21 &&

n0
21

✏✏

R1
p1

rr

r1�⇡K
1

✏✏

H1

m21

✏✏

T (K1K2)

ss

id
))

TK,2

l02
%%

T (K1K2)T (l2�⇡K
2)

rr
T (L2)

(11)

Lemma 3. In the left diagram of (12) there is a unique arrow d21 : D ! D21

making the top and the back-left faces commuting and the top face a pullback.

Symmetrically, we get an arrow d12 : D ! D12. Furthermore, the top face of

the central diagram is a pushout. Now define D21
//H D12
oo

as the pushout

of D21 Dd21
oo d12

//D12 (see square

8� of (8)). Then from the right diagram we

infer that H ⇠= H12.

14

Dd21

tt

d1
""

d2

✏✏

D21

g21 &&

n0
21

✏✏

D1
h1
uu

g1

✏✏

H1

m21

✏✏

D2

n0
2tt

g2
!!

TK,2

l02
%%

G

m2
uu

T (L2)

K1n1d

tt

r1
##

✏✏

D

d21
$$

d1

✏✏

R1
p1d
uu

id

✏✏

D21

g21

✏✏

K1
n1

tt

r1
##

D1

h1
$$

R1

p1uu
H1

K1

n12

⇠⇠

n1d

✏✏

r1 // R1

p1d

✏✏

p12

⌃⌃

D
d21 //

d12

✏✏

D21

✏✏

D12
// H ⇠= H12

(12)

6 Conclusion and Related Works

In this paper we proposed su�cient conditions to ensure that two rewrite steps
in the AGREE approach to GT commute. Unlike most of previous works on par-
allel independence [5, 12, 4, 13, 1, 11], we consider an approach in which cloning
is possible. Actually, general rules are considered also in the restricted version
of the SqPO approach proposed in [7]: the exact relationship with those results
is under investigation. The possibility of cloning makes the analysis of parallel
independence more complex. Moreover, the fact that the embedding of cloned
parts can be finely tuned in AGREE adds another layer of complexity: besides of
conflicts that may arise from overlapping matches (as for classical approaches),
new conflicts may arise from cloning or deletion of edges incident to the matched
parts of the transformed graph.

The conditions for commutativity proposed in this paper are su�cient, but
not necessary. It is easy to build a counterexample with two rules, that act as the
identity transformation on a given graph G (the left- and right-hand sides are
all identities on G), but di↵er in the embedding component in such a way that
the second condition of Definiton 6 is not satisfied. For example, the first rule
has the partial map classifier T (G) as embedding, while the second has a larger
embedding (e.g. duplicating some contextual arc). Since the first rule acts as the
identity (both G and the context are preserved), the two rules clearly commute
when applied to G, even if they are not “parallel independent” according to
Definition 6. We are currently working on the identification of refined conditions
which could enjoy completeness. A first analysis suggests that such conditions,
if they exist, should also depend on the right-hand sides of the rules, di↵erently
from those identified in Section 5.

Following the classical outline of the theory of parallelism for the algebraic
approaches to GT, other interesting topics worthy of study are the analysis
of conditions for sequential independence for AGREE rewrite steps, and the
definition of parallel rules allowing to model the simultaneous application of two
rules to a state. Both topics look not obvious: the first one because AGREE
rewrite steps are intrinsically non-symmetric (unlike, e.g., DPO or Reversible

15

SqPO rewrite steps); the second because of the need of merging in some way the
embedding components of the two rules.

References

1. Bonchi, F., Gadducci, F., Heindel, T.: Parallel and sequential independence for
borrowed contexts. In: ICGT 2008. LNCS, vol. 5214, pp. 226–241. Springer (2008)

2. Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theoret-
ical Computer Science 294(1–2), 61–102 (2003)

3. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE - Algebraic
Graph Rewriting with Controlled Embedding. In: ICGT 2015. LNCS, vol. 9151,
pp. 35–51. Springer (2015)

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)

5. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. pp. 163–246 (1997)

6. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: FSTTCS 2012. LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

7. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout
rewriting. In: ICGT 2014. LNCS, vol. 8571, pp. 161–176. Springer (2014)

8. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 3: Concurrency,
Parallelism and Distribution. World Scientific (1999)

9. Ehrig, H.: Introduction to the algebraic theory of graph grammars (A survey). In:
Graph-Grammars and Their Application to Computer Science and Biology. LNCS,
vol. 73, pp. 1–69. Springer (1979)

10. Ehrig, H., Golas, U., Hermann, F.: Categorical Frameworks for Graph Transfor-
mation and HLR Systems based on the DPO Approach. Bulletin of the EATCS
102, 111–121 (2010)

11. Ehrig, H., Habel, A., Lambers, L.: Parallelism and concurrency theorems for rules
with nested application conditions. ECEASST 26 (2010)

12. Ehrig, H., Löwe, M.: Parallel and distributed derivations in the single-pushout
approach. Theor. Comput. Sci. 109(1&2), 123–143 (1993)

13. Hermann, F., Corradini, A., Ehrig, H.: Analysis of permutation equivalence in -
adhesive transformation systems with negative application conditions. Mathemat-
ical Structures in Computer Science 24(4) (2014)

14. Lack, S., Sobociński, P.: Adhesive Categories. In: Proc. FOSSACS’04. LNCS, vol.
2987, pp. 273–288. Springer (2004)

15. Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical
graph transformation. Electr. Notes Theor. Comput. Sci. 127(1), 157–166 (2005)

16. Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B., Boneva, I., Boronat, A.,
Geiger, L., Geiß, R., Horváth, Á., Kniemeyer, O., Mens, T., Ness, B., Plump, D.,
Vajk, T.: Generation of Sierpinski triangles: A case study for graph transformation
tools. In: AGTIVE 2007. LNCS, vol. 5088, pp. 514–539. Springer (2007)

16

