
Rashid, M., Clarke, P. M., & O’Connor, R. V. (2017). Exploring Knowledge Loss in
Open Source Software (OSS) Projects. In A. Mas, A. Mesquida, R. V. O’Connor, T.
Rout, & A. Dorling (Eds.), Software Process Improvement and Capability
Determination: 17th International Conference, SPICE 2017, Palma de Mallorca,
Spain, October 4–5, 2017, Proceedings (pp. 481–495). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-319-67383-7_35

Exploring Knowledge Loss in Open Source Software
(OSS) Projects

Mehvish Rashid 1,2, Paul M. Clarke1, 2, Rory V. O’Connor1, 2

1Dublin City University, Dublin, Ireland
2Lero, the Irish Software Research Centre, Ireland

Mehvish.Rashid2@mail.dcu.ie, Paul.M.Clarke@dcu.ie, Rory.OConnor@dcu.ie

Abstract. Open Source Software is a term used to identify software developed
and released under an “open source” license, meaning that under certain
conditions; it is openly available for use, inspection, modification, and for
redistribution free of cost (or with cost based on the license agreement).
Incorporation of OSS while developing software can reduce time and cost of
development. The nature of the work force (volunteers and paid) in OSS
projects is transient and results in high turnover leading to knowledge loss. In
this work, we explore the phenomenon of knowledge loss in OSS projects.
Maintenance of OSS projects requires knowledge, typically shared
asynchronously using technology-mediated channels. Knowledge sought in this
manner is reactive in the sense that a developer will consult these channels
looking for possible solutions or supporting information. We follow the
backward snowballing to study the relevant literature on knowledge loss in
OSS. Our work suggests that proactive knowledge exchange mechanisms may
bring some benefits to OSS projects. Further integration of knowledge
management practices with the established OSS practices can minimise
knowledge loss.

Keywords: Software Development Process; Open Source Software;
Knowledge Loss; Knowledge Retention Process; Open Source Software
Contributor.

1 Introduction

Open Source Software (OSS) is a term used to identify software developed and
released under an “open source” license that complies with Open Source Definition
(OSD). The OSD uses either a short definition based on four criteria as in the Free
Software Foundation (FSF) or a longer version based on ten criteria as in the Open
Source Initiative (OSI). The difference between these two definitions is only of
language while underlying meaning and outcome is the same. “The freedom to use,
change, sell, or give away the software, the availability of source code, and the
protection of authors’ intellectual property rights are the central tenets of the OSD”

[1]. Users with technical inclination can use, freely access the code, inspect, modify
and redistribute the software [2]. However, the freedom to use source code from an
OSS project and its distribution varies based on which category of OSS license
agreement is applied. There are three main categories of OSS licenses based on their
degree of restrictiveness: Strong-copyleft, weak-copyleft and non-copyleft [3]. A
strong-copyleft or restrictive license requires that any derivatives of the original
software are also licensed in a similar manner. Weak-copyleft licenses allow the
derivatives of the software to be released under different license. Non-copyleft
licenses allow the software including derivatives to be redistributed under a different
license than the original one. While free software mostly identifies with GNU Public
License (GPL), OSS license agreements may vary based on the incorporation of the
software that can be either propriety or free. Another term to represent free software is
Free Open Source Software (FOSS). The term “free” in FOSS was not considered by
some to adequately express the notion of freedom and consequently, in 2001, the
European Commission (EC) introduced the term Free/Libre Open Source Software
(FLOSS), to avoid taking sides in the debate and to stay neutral on the distinction
between free software and open-source software. OSS projects are of varying sizes
and at times involve commercial firms who heavily depend on OSS system [4]. A
survey conducted in 2015 reported that almost 78% of companies run operations on
open source software and 66% of companies have incorporated open source software
to create products for customers [5].
In OSS projects, maintenance and development are not considered as two separate
phases of software development lifecycle [6]. Software maintenance is the field which
is concerned with the evolution of a software system after its initial release [6]. In
Closed Source Software (CSS) or traditional software development, the maintenance
phase starts after the software is complete, authorised and running [7]. Whereas in
OSS projects, the source code may be released before it is complete or in workable
form; and the maintenance activities in OSS start when system is still in the initial
stage of development [6]. The OSS system, already in phase-out stage, experience a
rebirth when other contributors start contributing with new enhancements [7].
Maintenance in an OSS system is the source of continuous evolution and requires
knowledge in various forms. In order to solve a problem, a software developer has to
understand existing source codes, design a solution, program the solution, and test it.
The nature of the OSS work force (volunteers and paid) is transient and results in high
turnover on projects. This turnover leads to knowledge loss on OSS projects [8]. As a
potential solution to the knowledge loss situation in OSS projects we introduce the
concept of Knowledge Management (KM).

1.1 Knowledge Management

It is important to clarify the distinction between the terms data, information, and
knowledge. Data represents observations and facts without any contextual meaning,
whereas information is the result of associating data with a meaningful context [9]. In
order to convert data into information, it must be contextualized, categorised,
calculated and condensed [9]. Knowledge is driven from information [9], it is the
product of an individual’s experience and accumulates as a result of communication
or inference [10]. In a general sense, knowledge may be categorised as either explicit

or tacit (or implicit) [11]. Tacit knowledge comprises of skills learned due to the
personal capabilities of contributors and if not documented, remains confined to an
individual, whereas explicit knowledge is available in documented form [11]. At an
organisational level, knowledge is created as a result of the interaction between the
tacit and explicit knowledge [11]. Accumulated tacit knowledge is lost when
contributors leave projects. Knowledge loss is a problem constantly faced due to
employees leaving an organisation [12-14] and it is reported in OSS projects [15-17],
where the majority of contributors are typically volunteers. The duration of volunteer
participation in OSS projects is considered to be unpredictable [18], with the
phenomenon of volunteers joining and leaving at their own discretion being more
common in OSS projects when compared with employee-based arrangements that are
typical in CSS [18].
In order to reduce the impact of knowledge loss on the organisation’s productivity and
on product’s quality, organisations invest in KM processes. KM is defined as the
approach adopted by an organisation to engage workers in relevant activities of
creating, managing, sharing and reusing knowledge [19].
The purpose of this work is to explore the problem of knowledge loss in OSS due to
the transient profile of contributors and to examine the affect this may have on
productivity and quality of the project. In section 2, we will explore the literature
related to OSS knowledge loss and further inspect KM activities in OSS projects. In
section 3, we interpret the findings from section. We conclude this work in section 4
by proposing directions for future research.

2 Related Literature

In this section, we explore the existing literature relevant to the problem of knowledge
loss. In order to identify the literature, the initial step was to find the key set of papers
related to the topic. Different search strings were used on Google Scholar such as
“knowledge loss in open source software”, “knowledge loss in free libre open source
software”, and “knowledge loss in free open source software”.

Figure 1: Mind map of related literature on OSS knowledge loss

Key papers of interest were identified using this approach and these formed the
initial review corpus. While evaluating the core area of interest, backward snowballing
was employed on the initial set of papers. Backward snowballing refers to the process
of extending the literature review on the basis of following the trail offered up by the
initial set of paper identified [20]. Accordingly, further works of interest were
selected from the reference list of initially selected papers. In combination with the
term “open source software”, other terms relating to knowledge management were
also searched on Google Scholar consisting of “knowledge sharing”, “knowledge
creation”, “knowledge reuse”, “knowledge retention”, “knowledge acquisition ”, and
“knowledge capture”. The themes consolidated from the collected papers are depicted
in Figure 1. Each rectangle represents the theme found in the papers and line
represents a connection between two themes.

Section 2.1 explains the problem of knowledge loss in OSS, followed by section
2.2 that describes the contributor profile as observed in OSS projects and its
implication for knowledge loss. Finally, section 2.3 elaborates on KM related
activities in OSS project.

2.1 Knowledge Loss in Open Source Software Projects

Evolution of OSS projects result in evolving teams of contributors who are constantly
joining, leaving, or changing their role in the project. The phenomenon of resources
joining and leaving in this fashion is referred as ‘turnover’ [21]. The contributor
turnover leads to knowledge loss in OSS projects. In many large OSS projects, a high
turnover has been observed leading to the formation of the new development teams
[8]. Knowledge loss impacts the productivity of the OSS projects in two ways: 1) The
effort required to acquire knowledge to perform the maintenance tasks; and 2) The
loss of effort when code is orphaned and removed from the project.

In order to write quality software code knowledgeable contributors are required.
Searching knowledge is argued to be time consuming and costly [22]. The search
efforts can vary depending on the source and the level of details. A post or a query on
the project mailing list require less efforts while searching through the results of
search engine or examining the clues into source code documentation is time
consuming [22]. A study on the GNOME1 project reported that 30 months’ time is
needed for the contributor to understand the software code and to make a contribution
[23]. Developers gradually become productive taking more than a year’s time on a
project to reach productivity plateau [24]. The time to complete distributed tasks is
estimated to be three times longer than for co-located tasks [25].

The time required by a new person to learn the inner workings of the project when
experienced contributors leave, causes considerable productivity loss [17]. In-depth
understanding of software code and interconnecting file structure is not required to
complete simple tasks. On the other hand, contributors may have difficulty
performing non-trivial tasks due to ‘information blocking’, unavailability of the
relevant information to complete a task [17]. The productivity of the contributor and
overall project suffers due to the information blocking and a lack of understanding of
the code base. According to estimates, information blocking consumes 60% of
developers efforts [26].

During the preparation of a release, contributors make changes to align their work
with the goals of the release [6]. As abandoned code increases on the project, the
numbers of reported defects increase as well [27]. The maintenance of abandoned
code is difficult because the team lacks knowledge of its creation and structure [15,
25]. The source code that remains unmaintained (unless a legacy system) has an
element of uncertainty for the development team since the contributors who wrote it
have left the project [17]. Removal of unmaintained code results in loss of existing
functionality and may impact users of the system [6].

2.2 Contributors in Open Source Software Projects

Contributors are the knowledge workers in OSS projects. The development style in
OSS projects is distinguished from CSS by the term: ‘cathedral and bazaar’ [28].
‘Cathedral’ refers to closed approach of software development with a smaller group
of developers having an access to the source code. On the contrary, ‘Bazaar’ refers to
an open approach of software development with a large number of volunteers having
an access to the source code to contribute on new requirements, bug fixes, and defect
reporting. It is argued that a typical OSS project starts with a cathedral development
and then transitions to bazaar development style [28]. In a large community of
contributors, “the bazaar”, the code is under review by many, which has an effect
similar to self-corrective mechanism as in peer-review process [28]. Even though the
OSS code is openly accessible, the code review is conducted by limited number of
contributors [29], who have earned their status by meritocracy and have proven their
skills, experience and expertise while working on the project.

1 GNOME is a well-known large libre project sponsored by several companies.

https://www.gnome.org/foundation/

In OSS, each project is an equivalent of an organization in traditional software
industry or CSS. The development in OSS is completed in independent, self-assigned,
and parallel streams without much coordination due to geographical dispersion [6].
There are two main roles of contributors in OSS projects, developers, and users.
Developers contribute in the open source community in a distributed virtual
environment and users in parallel provide their feedback. In OSS, developer and the
user can be the same person who may contribute the code and test the software in
user’s role.

The layered structure called an onion model represents contributors in the OSS
community [30]. The teams in OSS community consist of core, co-developer, active
users, and passive users. The core is a small group of highly skilled and experienced
members, responsible for most of the code development and ensures the design and
evolution of the project. Co-developers contribute by reviewing or modifying the
code or by bug fixes. Active users contribute bug reports or feature request but do not
contribute any code. Passive users are the users of the code and do not make any
contibution and their number is difficult to predict. However, in Linux developer
organise themselves into two groups core and periphery [31]. The core in Linux
project consists of project leader and hundreds of maintainers. Periphery is a large
group of developers further divided into two teams: development and bug reporting.
Based on the demonstration of skills and abilities on the project, the users transcend in
onion model towards becoming a core member. A contributor can simultaneously
perform more than one role in the OSS project. For example, a contributor can be a
core member responsible for code commits and at the same time tester of the code.

The onion model is used in the literature to assess the difference in the progress of
volunteers and commercially involved developers [23]. Volunteers joining the OSS
project follow the onion model and contribute based on the meritocracy, while hired
developers get integrated into the project faster [23]. The reason for the difference in
the progression level of volunteers and hired members on GNOME project is due to
variance in knowledge accessible to both kinds of contributors.

OSS project collaborations can be of three types: community-based, non-profit
organisation and commercially based. Community-based open source projects take
their organisational form from an Internet-based community, and the developers are
mostly the volunteers [31]. Volunteers collaborate in OSS projects in their free time
and do not directly profit economically in any way from their efforts [18]. The
intention of the volunteer to participate in OSS projects is to learn new skills,
contribute code and develop a reputation within the OSS community that may in the
future result in career opportunities [32]. Another motivation for the volunteers is
related to the feeling of satisfaction, competence, and fulfilment from code writing
called intrinsic motivation [33]. Managing volunteer contributors can cause certain
problems not evident in traditional software development [34]. Apache project is
managed by volunteers, who are otherwise full time developers. Debian is another
project with 100% volunteers who are responsible for tasks including maintaining
software packages, supporting the server infrastructure, developing Debian-specific
software.

In non-profit organisation OSS projects, developers are either paid workers or
volunteers. The project is mature enough and is funded similar to a formal
organisation. There is still some element of community projects maintained in such

projects, for example, Apache Software Foundation [35]. In commercially involved
OSS projects, a software company sponsors projects and employs majority of
contributors. A commercial company, Netscape, managed Mozilla project in the past.
Companies like IBM, HP, SUN (now acquired by Oracle), sponsor OSS projects in
which major contributors are paid developers [36].

Such a vast community of OSS project contributors and diverse collaborations
raise concerns on acquiring distributed knowledge on software development.
Software development knowledge is said to be distributed among developers [37]. In
OSS projects, a small subset of contributors called core members make major code
contributions (80%) [38]. Knowledge when distributed among a small group of
contributors in OSS projects, one person leaving can cause the loss of 80% files in the
system [15]. On the contrary, when knowledge distributes across a larger group of
contributors, one person leaving causes minimum loss of files, as seen in the case of
Linux project [15]. OSS projects require uniform distribution of knowledge with a
mechanism that resonates with its dynamic work structure.
2.3 Knowledge Management in Open Source Software

Knowledge Management is one of the social processes and a major area of
research in Open Source Software (OSS). OSS development is a knowledge-intensive
activity and managing knowledge is a challenging task [4]. In this section we identify
the knowledge related activities in OSS projects namely knowledge creation and
knowledge sharing. Further, we discuss the knowledge barriers faced in OSS projects
and details on knowledge retention process used in organisations.

2.3.1 Knowledge Creation in OSS Projects

Knowledge creation in OSS differs from the CSS [31]. A comparison of knowledge
creation in OSS and CSS is given based on the five organising principles: Intellectual
property ownership, membership restrictions, authority and incentives, knowledge
distribution across organisational and geographical boundaries, and dominant mode of
communication [31]. In case of CSS, the knowledge is owned by the organisation
with an access given to employees hired. The employees are paid for their work, and
the knowledge distribution is within the boundaries of the firm, mostly with face-to-
face communication. While in the case of community based model the knowledge and
membership is open to public and contribution is from members (mostly volunteers).
Distribution of knowledge in community based models extends outside the
community, and the dominant mode of communication is technology based (similar to
CSS distributed development).

In OSS, the knowledge creation follows community based model and involves
interaction of contributors on a larger scale than in CSS. Knowledge creation takes
place when individuals are collectively working and interacting on a task and are
constantly acquiring relevant information. Knowledge creation is through social
interaction among individuals and organisations, and it is dynamic in nature [11].

Nonaka et al. proposed knowledge creation process, they explain conversion of
tacit knowledge to explicit knowledge, which is then “crystalized.” Explicit
knowledge is retained by the relevant organisation and becomes the basis of new
knowledge [11]. The process of knowledge creation is based on four modes of

knowledge conversion: Socialisation, Externalisation, Internalisation, and
Combination are coined as SECI. Socialisation is the sharing of experience and results
in the creation of new tacit knowledge from the existing tacit knowledge.
Externalisation is the conversion of tacit knowledge to explicit knowledge.
Externalisation results into the articulated knowledge. Combination is the addition of
the new explicit knowledge to the existing explicit knowledge in the knowledge
system. Internalisation is the conversion of explicit knowledge to tacit knowledge. In
internalisation, knowledge is acquired from artifacts in explicit form, and new mental
models are created again resulting in tacit knowledge.

Nonaka’s knowledge assets are produced as the results of inputs and outputs of the
knowledge creation process SECI [11]. Knowledge created from socialisation among
project members, results in intangible knowledge based on skills and expertise.
Knowledge created from socialisation is made explicit through externalisation and
results in conceptual knowledge assets such as product’s concepts and design.
Knowledge integrated with the existing explicit knowledge through combination
results in systemic knowledge assets. Examples of systemic knowledge assets are
documentations, specifications, and manuals. The explicit knowledge, when acquired
by an individual converts to tacit knowledge by internalisation results in routine
knowledge assets. The examples of routine knowledge assets are know-how in daily
operations, organisation routines and operations.

The process of knowledge creation as detailed through SECI, can be used to
understand knowledge creation in OSS projects. In OSS projects, contributors acquire
knowledge from communication channels like Internet Relay Chat (IRC), mailing
lists, posting on blogs and online resources. As a result, the new tacit knowledge is
created similar to socialisation mode in SECI. The resulting communication is in
explicit form but not very well structured. A Conversion to externalisation mode will
apply to OSS projects, if the unstructured information is formally documented and
made available to OSS community. Even though tacit knowledge to some extent is
converted to explicit but it remains in unstructured form and is not readily available
for reuse. Further, it is also time consuming for the contributors to search for the
required information through unstructured communication archives. The combination
and internalisation mode of SECI are not traceable in OSS projects. Knowledge loss
occurs when during the process of knowledge creation tacit knowledge is not made
explicit and is not retained for future reuse [39].

2.3.2 Knowledge Sharing in OSS Projects

In OSS projects, knowledge sharing is an ongoing activity in an intensely people-
oriented and self-organised community [40]. As we shall demonstrate, this activity
might also be considered to be characterised as both reactive and somewhat
disorganised. In such a setup, knowledge is dispersed in the community of
contributors interacting on a project and is not limited within a small group [41].
Knowledge sharing is through asynchronous means of communication and with a
collection of artifacts, which are publicly available for reuse.

Knowledge is stored in repositories namely Concurrent Versions Systems (CVS),
Subversion (SVN), Frequently Asked Questions (FAQs), project websites, blogs, bug
reporting and bug tracking databases (e.g. Bug Tracking System BTS) . Knowledge is

also believed to be archived in the artefacts available to public such as mailing lists
and knowledge sharing can be quantified by analysing the mailing lists exchange
among the listed members in OSS projects [40]. The contributors in CSS share
software coding knowledge as a part of their job, while contributors in OSS share
knowledge voluntarily [42]. It is argued that contributors in OSS communities involve
in free advice and tacit knowledge sharing to a larger extent than formal CSS
organisations [42]. In OSS communities knowledge sharing can be associated to
social motivation [43]. Social motivation such as supportive behaviour influences the
behaviour of contributors and their performance. There is also intrinsic motivation for
the knowledge provider such as altruism or learning, by helping others solve
problems.

Connecting contributors in a social network also enhances mutual knowledge and
skills among them [32]. A strong social network and without any extrinsic reward
system may result in effective knowledge sharing [42]. A formal coordination
mechanism can provide better visibility of contributions from other team members.
Contributors can be more informed about the contributions made by others members
working in OSS projects.

Gamification is another emerging form of knowledge sharing in OSS communities
[44]. The community members vote upon the questions and answers posted on a site,
the numbers of votes reflect on the poster’s reputation and seen as a measure of their
expertise by the potential employer. Gamification element on sites is found to have
increased the engagement of the participants and popularity of the site. In OSS
community gamification element is argued to provide a better visibility of
contributors activities [44].

The social media sites also serve for contributors to learn, collaborate, share
knowledge and interact with users of software [44]. Contributors contribute on
software development social media sites such as GitHub for coding, Jira to track
issues, StackExchange network for question answer website, StackOverflow for
professional programmers, and CrossValidated for statisticians and data miners.
Although knowledge sharing activates are taking place in OSS projects, the
mechanisms to articulate tacit knowledge are non-existing.

2.3.3 Knowledge Barriers and Knowledge Retention in OSS

While knowledge barriers cause inhibition in the innovation and learning process of
organisations, knowledge retention (KR) is the ultimate goal of an organisation
striving to innovate and improve performance. The inaccessibility to a certain kind of
knowledge can delay the contributions on development activities by a contributor
[45]. We focus on two kinds of barriers namely contribution barriers and knowledge
sharing barriers. The limited knowledge of programming language, difficulty level of
algorithms, complexity of technologies and source code used in OSS, can cause
contribution barriers [46]. Computer languages are complex and difficult to learn with
intertwined modules, so an understanding of existing architecture is required to
contribute to an inter-dependent module [46]. The barriers for the newcomers to
contribute in a OSS project are the lack of knowledge on project practices, lack of
documentation, understanding information flow, unclear comments, and outdated
documentation [45].

 Knowledge sharing barriers are categorised into three levels: individual,
organisational and technological [47]. Individual level barriers that limit knowledge
sharing are a lack of time, lack of trust, a person who is unconsciously not aware of
the possessed knowledge and lack of social network. While discussing distributed
global communities to facilitate knowledge, language barriers, lack of common
terminology, and lack of trust all inhibit knowledge sharing [12]. On the
organisational level, barriers including non-supporting environment and culture lead
to unsuccessful knowledge sharing. On the technological level, barriers to knowledge
sharing are a lack of training, lack of communication on the benefits of technology,
unsuitable technology, and reluctance to use technology.

The removal of obstacles due to knowledge flow in projects has the potential for a
decrease in labour cost, improved schedule observance, and better final product
quality [48]. The top five problematic knowledge flows were divided into two
categories: difficulties with the online storage and retrieval of documents, and intra-
team communication. The first category relates to explicit knowledge flow problems,
while the second relates to tacit knowledge [48]. In addition to the identification of
knowledge barriers, KR processes are also required within an organisation for
knowledge to be accessible for the future reuse. In OSS projects, KR processes do not
exist as in CSS organisations. Knowledge retention relates to capturing knowledge in
an organisation and is an important aspect of KM. Knowledge retention mainly comes
into focus when an employee is leaving. Three things indicate the need of a KR
mechanism in an organisation: Lack of knowledge and an overly long time to acquire
it is due to steep learning curves; People repeating mistakes and performing rework
because they forget what they learned from previous projects; Chances of individuals
owning key knowledge becoming unavailable [49].

Knowledge retention can be seen as a way of embedding and enabling knowledge
within an organisation and a critical factor for sustainable performance [50]. It is an
effort-demanding task to identify potential knowledge for the organisation. The
structure of the organisation in the context of how well it supports knowledge
retention is of importance. Once the person who has the potential knowledge leaves
the organisation, it is hard to retain this knowledge.

Codification and personalisation are considered useful strategies for knowledge
bases to be further used in knowledge intensive activities like software development
[51]. In knowledge bases, codification captures electronic information and
personalisation deals with the ways humans’ use and process knowledge.
Organizations implement codification strategy to encourage the reuse of explicit
knowledge. The core techniques designed to retain knowledge in an organisation are
mainly dependent on its knowledge-sharing practices. The techniques that facilitate
knowledge capture, sharing, and reapplication are after-action reviews, communities
of practice, face-to-face meetings, mentoring programs, expert referral services, video
conferencing, interviews, written reports, use of training and technology-based
systems to transfer the knowledge [12].

3 Discussion

In a large, geographically dispersed and dynamic OSS community, contributors vary
in their skills and experiences. The quality of contributions (mostly the source code)

on the projects reflects a contributor’s expertise and skills [15]. Knowledge sharing in
OSS communities is mainly by asynchronous communication and typically involves
mailing lists, blogs, forums, and Internet Relay Chat (IRC). Researchers have utilised
OSS project mailing list data in various studies and it is thought to be one of the
primary communication mechanisms in OSS projects [52]. However, the knowledge
shared suffers from only partial coverage [17] and it can lack effective levels of
organisation. OSS project knowledge may be abruptly lost when volunteers cease to
contribute, and with knowledge not shared (existing in tacit form), the impact on the
overall health of the project can be very damaging [17]. In effect, the stability of OSS
projects and their success are dependent on contributor retention [53], or perhaps
more precisely on the retention of knowledge contributor [54] either through directly
sustaining contributors on the project or by co-opting individual knowledge into the
collective knowledge sphere.

The removal of knowledge flow obstacles in projects has the potential for a
decrease in labour cost, improved schedule observance, and better final product
quality [48]. We propose that certain proactive knowledge acquisition practices will
reduce the total cost of knowledge exchange in OSS projects, thereby improving the
project productivity. Techniques to identify the critical knowledge will be a necessary
first step to improving the current position, though we expect that there will be a
challenge in striking the appropriate balance between proactive and reactive
knowledge management, and this must somehow take account of the preference of
contributors for these two different styles of knowledge exchange.
 As we have demonstrated, OSS communities are mainly composed of volunteers
who cannot be constrained to work permanently on the project [18] or to share their
knowledge. The challenging task is how to orchestrate knowledge management in
such a dynamic and dispersed community as OSS, especially as open source projects
become larger and more widely adopted. This we suggest is not just a concern for the
custodians of OSS projects but also for the consumers of the OSS itself. A private
company may be motivated not just by the immediate cost saving in adopting an OSS
project, but they may also be concerned with the maintainability of the OSS into the
future as a strategic product development decision. In this respect, we envisage that a
set of OSS knowledge management principles may be a product of our research and
we have already undertaken some limited work in this direction.
 Having established the absence of research on knowledge loss in the OSS project
space, we propose to undertake a sustained investigation of this problem and to aid
this exercise; we have established the following two research questions. We expect
that further research questions will be identified as our research evolves.

• RQ1. Which knowledge management practices enable an effective
knowledge management strategy for OSS projects?

• RQ2. How can knowledge management practices be integrated with
established work practices in OSS projects?

4 Conclusion

From our review of the related literature, we conclude that knowledge management in
OSS projects has received only indirect or superficial treatment, and we have found

no single substantial examination of the reactive and proactive knowledge strategy for
OSS projects. In OSS projects, contributors are not obliged to notify the project
community when they leave. The general mechanism of knowledge retention in
software firms may sometimes be reactive in nature, triggered when an employee is
leaving but even then, the opportunity for knowledge repatriation into the
organisation will endure at least to the extent that the employee is cooperative and
within the notice period that is typical in contemporary employment contracts.
Conversely, in OSS projects a contributor may simply fall off the project radar –
without notice and perhaps also unnoticed by the project – thereby eliminating any
opportunity for reactive knowledge repatriation. Therefore, a proactive approach to
retain knowledge is instinctively appealing for OSS projects.
 In summary, we have investigated the published literature into knowledge loss in
OSS projects, finding that there has been insufficient treatment of this concern to date.
We also find that given the nature of OSS projects, proactive knowledge management
mechanisms may be especially important, for example, because of the highly
fragmented and transient nature of OSS project contributors. Given the popularity of
OSS and its widespread and growing adoption, we believe that there is benefit in
examining mechanisms to promote proactive knowledge management in OSS
projects, and that these benefits can be shared by both contributors to and consumers
of OSS.

Acknowledgments: This work was supported, in part, by Science Foundation Ireland
grant 13/RC/2094 to Lero, the Irish Software Research Centre (www.lero.ie).

References

1. Feller, J., Fitzgerald, B.: Understanding open source software development. Addison-

Wesley London (2002)
2. Crowston, K., Howison, J., Annabi, H.: Information systems success in free and open

source software development: theory and measures. Software Process: Improvement and
Practice 11, 123-148 (2006)

3. Subramaniam, C., Sen, R., Nelson, M.L.: Determinants of open source software project
success: A longitudinal study. Decision Support Systems 46, 576-585 (2009)

4. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/Libre Open-Source Software
Development: What We Know and What We Do Not Know. Acm Computing Surveys 44,
(2012)

5. 78% Of Companies Run On Open Source Yet Lack Formal Policies | Black Duck
Software. Black Duck Software. N.p., 2017. Web. 8 June 2017.

6. Michlmayr, M.: Quality Improvement in Volunteer Free and Open Source Software
Projects: Exploring the Impact of Release Management. . University of Cambridge (2007)

7. Capiluppi, A., Gonzalez-Barahona, J.M., Herraiz, I., Robles, G.: Adapting the "staged
model for software evolution" to free/libre/open source software. Ninth international
workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint
meeting, pp. 79-82. ACM, Dubrovnik, Croatia (2007)

8. Robles, G., Gonzalez-Barahona, J.M.: Contributor turnover in libre software projects.
IFIP International Federation for Information Processing, vol. 203, pp. 273-286 (2006)

9. Davenport, T.H., Prusak, L.: Working knowledge: How organizations manage what they
know. Harvard Business Press (1998)

10. Zack, M.H.: Managing Codified Knowledge. Sloan Management Review 40, 45-58 (1999)

11. Nonaka, I., Toyama, R., Konno, N.: SECI, Ba and Leadership: a Unified Model of
Dynamic Knowledge Creation. Long Range Planning 33, 5-34 (2000)

12. De Long, D.W., Davenport, T.: Better practices for retaining organizational knowledge:
Lessons from the leading edge. Employment Relations Today 30, 51-63 (2003)

13. Jennex, M.E., Durcikova, A.: Assessing knowledge loss risk. In: System Sciences
(HICSS), 2013 46th Hawaii International Conference on, pp. 3478-3487. IEEE, (2013)

14. Viana, D., Conte, T., Marczak, S., Ferreira, R., Souza, C.d.: Knowledge Creation and Loss
within a Software Organization: An Exploratory Case Study. In: System Sciences
(HICSS), 2015 48th Hawaii International Conference on, pp. 3980-3989. (2015)

15. Donadelli, S.M.: The impact of knowledge loss on software projects: turnover, customer
found defects, and dormant files. Software Engineering, pp. 85. Concordia University
(2015)

16. Rigby, P.C., Zhu, Y.C., Donadelli, S.M., Mockus, A.: Quantifying and Mitigating
Turnover-Induced Knowledge Loss: Case Studies of Chrome and a project at Avaya. In:
Proceedings of the 2016 International Conference on Software Engineering. (2016)

17. Izquierdo-Cortazar, D., Robles, G., Ortega, F., Gonzalez-Barahona, J.M.: Using software
archaeology to measure knowledge loss in software projects due to developer turnover. In:
System Sciences, 42nd Hawaii International Conference on, pp. 1-10. IEEE, (2009)

18. Robles, G., Gonzalez-Barahona, J.M., Michlmayr, M.: Evolution of volunteer
participation in libre software projects: evidence from Debian. In: Proceedings of the 1st
International Conference on Open Source Systems, pp. 100-107. (2005)

19. Dingsoyr, T., Bjornson, F.O., Shull, F.: What Do We Know about Knowledge
Management? Practical Implications for Software Engineering. Software, IEEE 26, 100-
103 (2009)

20. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings of the 18th international conference on evaluation
and assessment in software engineering, pp. 38. ACM, (2014)

21. Foucault, M., Palyart, M., Blanc, X., Murphy, G.C., Falleri, J.-R.: Impact of developer
turnover on quality in open-source software. Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pp. 829-841. ACM, Bergamo, Italy (2015)

22. von Krogh, G., Spaeth, S., Haefliger, S.: Knowledge reuse in open source software: An
exploratory study of 15 open source projects. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, pp. 198b-198b. IEEE, (2005)

23. Herraiz, I., Robles, G., Amor, J.J., Romera, T., González Barahona, J.M.: The processes of
joining in global distributed software projects. Proceedings of the 2006 international
workshop on Global software development for the practitioner, pp. 27-33. ACM,
Shanghai, China (2006)

24. Zhou, M., Mockus, A.: Developer fluency: achieving true mastery in software projects.
Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering, pp. 137-146. ACM, Santa Fe, New Mexico, USA (2010)

25. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in globally
distributed software development. IEEE Transactions onSoft. Eng. 29, 481-494 (2003)

26. Liu, W., Chen, C.L., Lakshminarayanan, V., Perry, D.E.: A design for evidence - based
soft research. SIGSOFT Softw. Eng. Notes 30, 1-7 (2005)

27. Otte, T., Moreton, R., Knoell, H.D.: Applied quality assurance methods under the open
source development model. In: Computer Software and Applications, 2008.
COMPSAC'08. 32nd Annual IEEE International, pp. 1247-1252. (2008)

28. Capiluppi, A., Michlmayr, M.: From the Cathedral to the Bazaar: An Empirical Study of
the Lifecycle of Volunteer Community Projects. In: Feller, J., Fitzgerald, B., Scacchi, W.,
Sillitti, A. (eds.) Open Source Development, Adoption and Innovation: IFIP Working
Group 2.13 on Open Source Software, June 11–14, 2007, Limerick, Ireland, pp. 31-44.
Springer US, Boston, MA (2007)

29. Rigby, P.C., German, D.M., Cowen, L., Storey, M.-A.: Peer Review on Open-Source
Software Projects: Parameters, Statistical Models, and Theory. ACM Trans. Softw. Eng.
Methodol. 23, 1-33 (2014)

30. Crowston, K., Howison, J.: The social structure of free and open source software
development. First Monday 2, (2005)

31. Lee, G.K., Cole, R.E.: From a Firm-Based to a Community-Based Model of Knowledge
Creation: The Case of the Linux Kernel Development. Organization Science 14, 633-649
(2003)

32. Crowston, K.: Lessons from volunteering and free/libre open source software development
for the future of work. Researching the Future in Information Systems, pp. 215-229.
Springer (2011)

33. Schilling, A., Laumer, S., Weitzel, T.: Is the source strong with you? A fit perspective to
predict sustained participation of FLOSS developers. In: International Conference on
Information Systems 2011, ICIS 2011, pp. 1620-1630. (2011)

34. Michlmayr, M., Robles, G., Gonzalez-Barahona, J.M.: Volunteers in large libre software
projects: A quantitative analysis over time. Emerging Free and Open Source Software
Practices 1-24 (2007)

35. Xu, B.: Volunteers’ Participative Behaviors in Open Source Software Development: The
Role of Extrinsic Incentive, Intrinsic Motivation and Relational Social Capital. Texas Tech
University (2006)

36. Fitzgerald, B.: The transformation of open source software. MIS Quarterly 587-598 (2006)
37. Yunwen, Y., Yamamoto, Y., Kishida, K.: Dynamic community: a new conceptual

framework for supporting knowledge collaboration in software development. In: Software
Engineering Conference, 2004. 11th Asia-Pacific, pp. 472-481. (2004)

38. Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software
development: the Apache server. Proceedings of the 22nd international conference on
Software engineering, pp. 263-272. ACM, Limerick, Ireland (2000)

39. Assimakopoulos, D., Yan, J.: Sources of knowledge acquisition for Chinese software
engineers. R&D Management 36, 97-106 (2006)

40. Sowe, S.K., Stamelos, I., Angelis, L.: Understanding knowledge sharing activities in
free/open source software projects: An empirical study. Journal of Systems and Software
81, 431-446 (2008)

41. Ye, Y., Kishida, K.: Toward an understanding of the motivation Open Source Software
developers. Proceedings of the 25th International Conference on Software Engineering,
pp. 419-429. IEEE Computer Society, Portland, Oregon (2003)

42. Endres, M.L., Endres, S.P., Chowdhury, S.K., Alam, I.: Tacit knowledge sharing, self-
efficacy theory, and application to the Open Source community. Journal of Knowledge
Management 11, 92-103 (2007)

43. Licorish, S.A., MacDonell, S.G.: Understanding the attitudes, knowledge sharing
behaviors and task performance of core developers: A longitudinal study. Information and
Software Technology 56, 1578-1596 (2014)

44. Vasilescu, B., Serebrenik, A., Devanbu, P., Filkov, V.: How social Q&A sites are
changing knowledge sharing in open source software communities. Proceedings of the
17th ACM conference on Computer supported cooperative work & social computing, pp.
342-354. ACM, Baltimore, Maryland, USA (2014)

45. Steinmacher, I., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F.: A systematic literature
review on the barriers faced by newcomers to open source software projects. Information
and Software Technology 59, 67-85 (2015)

46. von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization in open
source software innovation: a case study. Research Policy 32, 1217-1241 (2003)

47. Kukko, M., Helander, N.: Knowledge Sharing Barriers in Growing Software Companies.
In: System Science, 45th Hawaii International Conference on, pp. 3756-3765. (2012)

48. Mitchell, S.M., Seaman, C.B.: Software process improvement through the identification
and removal of project-level knowledge flow obstacles. Proceedings of the 34th
International Conference on Software Engineering, pp. 1265-1268. IEEE (2012)

49. Lindvall, M., Rus, I.: Knowledge Management for Software Organizations. In: Aurum, A.,
Jeffery, R., Wohlin, C., Handzic, M. (eds.) Managing Software Engineering Knowledge,
pp. 73-94. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

50. Doan, Q.M., Rosenthal-Sabroux, C., Grundstein, M.: A Reference Model for Knowledge
Retention within Small and Medium-sized Enterprises. In: KMIS, pp. 306-311. (2011)

51. Donnellan, B., Fitzgerald, B., Lake, B., Sturdy, J.: Implementing an open source
knowledge base. IEEE Software 22, 92-95 (2005)

52. Sharif, K.Y., English, M., Ali, N., Exton, C., Collins, J.J., Buckley, J.: An empirically-
based characterization and quantification of information seeking through mailing lists
during Open Source developers’ software evolution. Information and Software
Technology 57, 77-94 (2015)

53. Schilling, A., Laumer, S., Weitzel, T.: Who Will Remain? An Evaluation of Actual
Person-Job and Person-Team Fit to Predict Developer Retention in FLOSS Projects. In:
System Science, 45th Hawaii International Conference on, pp. 3446-3455. (2012)

54. Ayushi, R., Ashish, S.: What Community Contribution Pattern Says about Stability of
Software Project? In: Software Engineering Conference, 21st Asia-Pacific, pp. 31-34.
(2014)

