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ABSTRACT
In order to provide content-based search on image media, in-
cluding images and video, they are typically accessed based
on manual or automatically assigned concepts or tags, or
sometimes based on image-image similarity depending on
the use case. While great progress has been made in very
recent years in automatic concept detection using machine
learning, we are still left with a mis-match between the se-
mantics of the concepts we can automatically detect, and the
semantics of the words used in a user’s query, for example.
In this paper we report on a large collection of images from
wearable cameras gathered as part of the Kids’Cam project,
which have been both manually annotated from a vocab-
ulary of 83 concepts, and automatically annotated from a
vocabulary of 1,000 concepts. This collection allows us to
explore issues around how language, in the form of two dis-
tinct concept vocabularies or spaces, one manually assigned
and thus forming a ground-truth, is used to represent im-
ages, in our case taken using wearable cameras. It also allows
us to discuss, in general terms, issues around mis-match of
concepts in visual media, which derive from language mis-
matches. We report the data processing we have completed
on this collection and some of our initial experimentation in
mapping across the two language vocabularies.

1. INTRODUCTION
Natural language, whether written or spoken, as a means

of communication is fraught with complexities because it
contains ambiguity at all levels of linguistic analysis. At the
lexical level, words cam be ambiguous and at the syntac-
tic level, sentence-phrase structure can also be ambiguous.
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Finding the correct semantic interpretation is challenging
while discourse level tasks such as pronoun resolution re-
main difficult. Vocabulary limitations may also apply when
we want to communicate something for which there is not a
word or phrase that exactly describes the message. All this
is of particular concern when we use computers to automate
an information seeking task, when we have to formulate an
information need as a query made up of a few keywords,
with no structure applied to the query.

When it comes to using computers to help us search for
image data, the problems of language, especially vocabulary
limitations, are exacerbated and the current default way to
represent images is as a series of tags or concepts, often as-
signed manually. Whilst this may be useful for smaller, niche
applications in restricted domains it is clearly not scalable.
This scalability concern can be addressed via automatic as-
signment of tags, or even image captions, and this is now
starting to become possible using computer vision and ma-
chine learning techniques, as we shall see later.

In this paper we examine some of the issues and limita-
tions of representing images through natural language. We
use a dataset of over 1.5M images taken by 169 subjects
using wearable cameras. We describe how these have been
manually annotated from a small, closed vocabulary of only
83 concepts. We then describe how we automatically pro-
cessed these images by running over 1,000 individual con-
cept detectors on each of the images. The resulting initial
assignment of concepts to images was then refined using a
training-free refinement method which availed of concept-
assignment patterns across the dataset to “smooth” the as-
signments by adding consistency, guided by co-occurrence
patterns of concept weights across the images, as well as
external information such as date/time and GPS location
of the image capture, and the ID of the subject who cap-
tured the image. This creates a sizeable dataset which has
manual annotation groundtruth in one 83-dimension con-
cept space, and automatic annotation in a 1,000-dimension
concept space, and with this we can now explore some im-
portant image-language mapping questions.

The paper is organised as follows. In the next section we
present a brief overview of vision media analytics, how con-
cepts and concept weights are automatically assigned to still
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images or video. Section 3 then introduces the Kids’Cam
project which created and supplied the dataset and in sec-
tion 4 we describe the data processing we carried out on
the dataset. In section 5 we then present some of our pre-
liminary work on mapping images into two very different
concept spaces

2. VISION MEDIA ANALYTICS
The idea of automatically assigning semantic concepts or

tags to an image or video has been the subject of research
for decades but more progress has been made within the last
few years than in those previous decades [1]. The incorpo-
ration of deep learning into the process, coupled with the
emergence of huge searchable image resources and training
data means that automatic tagging of images is now offered
by many websites like Aylien, IMAGGA, and others, as a
commodity tagging service. For example, Figure 1 shows a
picture of a London bus, visually quite distinctive with its
shape and colours, and Table 1 shows the top-ranked con-
cept tags assigned to the image by one of the cloud-based
tagging services, Aylien. Large web companies like Google
and Facebook are now incorporating such image tagging in
some of their services like Google Photos.

Figure 1: Image of a London Bus (courtesy of Wikipedia)

While these developments are welcome, one of the prob-
lems that remain is the restrictive nature of the tagging vo-
cabulary and how this maps to users as they try to formulate
queries in order to carry out an image search. An alterna-
tive approach is taken in [7] where semantic concepts are
detected in images on-the-fly, at the time of a user’s query,
but this is computationally expensive and so not scalable,
except to smaller scale collections.

Almost all the work on concept detection is based on con-
cept detectors not working together, but what about index-
ing by more than one concept at a time, something like
bus-road, or road-sky-tree in Figure 1? While independent
concept detection results are a valuable resource, many im-
age retrieval scenarios require something more complex and
beyond a single concept. Examples of concept pairs could be
computer-screen combined with telephone, or airplane com-
bined with clouds. Rather than combining the output of de-
tectors at the time of a query, there is an idea for detecting
the simultaneous occurrence of pairs of unrelated concepts

Tag Confidence

bus 0.880
trolleybus 0.667
conveyance 0.649

public transport 0.637
fire engine 0.564

truck 0.499
motor vehicle 0.338

wheeled vehicle 0.112
transportation 0.098

transport 0.097
car 0.091

travel 0.089
road 0.088

vehicle 0.086
automobile 0.082

Table 1: Tags automatically assigned to the image in Fig-
ure 1, tags courtesy of http://www.aylien.ie/

in an image, where both concepts have to be observed si-
multaneously. While in theory this is attractive, when tried
together in the 2012 and 2013 editions of TRECVid [15],
most concept pairs did not work [1] though some like Gov-
ernment Leader combined with Flag did perform OK, but
there is still a need to do something else.

In summary, what we can say is that the current trajec-
tory of work for concept development for images needs a
re-alignment or a course correction because it does not avail
of all of the information sources available when detecting
concepts. What makes search difficult is the multitude of
ways of phrasing something in natural language with our
language subtleties and this is especially so when we use
natural language to search for images as we have to describe
those images in an artificial language. So if all that computer
vision can offer us is indexing by some fixed, possibly closed
set of concepts, albeit rising to 000’s of them and refined in
some way, then we need some new thinking on this.

Our long-term approach is to index images by some closed
concept set, and then allow a user to search based on what-
ever way they want to phrase a query, which is what we are
accustomed to, and then map the vocabulary used in the
query text to the vocabulary used in the concept indexing.
This sounds feasible, and it even allows a fusion of concept-
based retrieval (query text mapped to concept vocabulary)
with image-based similarity (query text used to train a clas-
sifier based on a sample of positive images harvested from
an external sources).

Before we achieve that though, we need to examine how
a single set of images can be mapped to two different vo-
cabularies and the interactions between those vocabularies.
In this paper we look at images taken from wearable cam-
eras and in the next section we describe the dataset we have
used.

3. THE KIDS’CAM PROJECT
Child obesity is a significant public health concern inter-

nationally [19], including in New Zealand [9]. In 2014/15,
10.8% of New Zealand children aged 2-14 years were obese,
and a further 21.7% were overweight. This situation places
New Zealand children as the third most overweight or obese
in the OECD [10]. There is unequivocal evidence that mar-
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keting of energy-dense and nutrient-poor foods and non-
alcoholic beverages is a key causal factor of child obesity [19].
As such, the World Health Organisation Commission on
Ending Childhood Obesity recommends reducing children’s
exposure to, and the power of, such marketing [19]. To date,
the available evidence on children’s exposure to unhealthy
food marketing has focused on single media or settings. Chil-
dren’s total exposure to such marketing across the multiple
media and settings they encounter daily does not appear to
have been quantified. Methods to collect data on children’s
exposure to unhealthy food marketing have largely relied on
observation by researchers, or recall of parents. Wearable
cameras can now provide a means of collecting objective
data.

Kids’Cam was a cross-sectional observational study that
aimed to determine the frequency, nature and duration of
children’s exposure to food and non-alcoholic beverage mar-
keting. Ethical approval was obtained from the University of
Otago Human Ethics Committee (Health) (13/220) to study
any aspect of the world children live in and their interaction
with it that was of public health interest, including the food
available.

From July 2014 to June 2015, 169 randomly-selected chil-
dren (11-13 years) were recruited from 16 randomly-selected
schools in the Wellington region of New Zealand. The chil-
dren were asked to wear an Autographer wearable camera
and carry a GPS recorder all day for four days (two week
and two weekend). Images were automatically captured ev-
ery 7 seconds, and the children’s location recorded every 5
seconds. 1.5 million images and 2.5 million GPS coordinates
were recorded, and subsequently linked.

Bespoke software developed by ourselves was used to ap-
ply annotations to the images as illustrated in Figure 2.
Each image was manually examined for the presence of food
or non-alcoholic beverage marketing and food availability,
and annotated according in a three-level, tree-branch-leaf
configuration. An annotation schedule (with an 83 concept
vocabulary) developed by the Kids’Cam team was used to
guide image annotation for setting > marketing medium and
availability > food product category. Marketing images were
only annotated if 50% or more of a brand name or logo was
clearly identified by the annotators. Annotators were tested
for reliability before beginning annotation, requiring 90%
concurrence with a model dataset. The majority of the data
collected was usable and could be manually annotated.

Figure 2: Kids’Cam data capture and annotation

Figures 3, 4 and 5 show examples of Kids’Cam images
with accompanying manual annotations.

The problems we address in this paper about automati-
cally annotating images are even more difficult than working

Figure 3: Manual Annotation: Shop front > sign > sugary
drinks and juices

Figure 4: Manual Annotation: Convenience store indoors >
in-store marketing > convenience store

Figure 5: Manual Annotation: School > sign > fast food

with other forms of image data because lifelog image data is
notoriously difficult to process automatically [5] because of
its nature. Some of the images are blurred because the sub-
ject is moving at the time of capture, some feature the sub-
ject’s hands occluding what should be in the frame, there are
issues associated with lighting conditions, etc. all of which
make it a challenging application for computer vision. De-
spite this, we were able to annotate all the images manually
which means we should be able to get some way further down
the road of automatic annotation. As an additional impetus
to doing this we have found that the Kids’Cam dataset has
been used to investigate other aspects of children’s lives be-
yond food and non-alcoholic beverage marketing, including
exposure to alcohol marketing, food availability and after-
school screen time. This means that there is now a need
to develop more efficient and scalable methods of annotat-
ing these images for the presence of many different semantic
concepts in a scalable way, aiming at thousands of concepts.
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In the next section of the paper we describe how we have
processed this image collection to achieve such concept in-
dexing.

4. PROCESSING THE KIDS’CAM DATA
The data processing we carried out on the Kids’Cam dataset

is best described diagrammatically in Figure 6 which sum-
marises the process we followed. The numbers in that figure
are used as an index into the following description of the
processing:

1. As described in Section 3 of this paper, a group of
169 children from New Zealand each wore a wearable
camera for a period of 4 days and . . .

2. . . . as a result, each subject generated tens of thousands
of images which form the image dataset we use.

3. As well as the wearable camera, children also carried
an external GPS unit, so each image has the usual
meta-data of date and time, as well as GPS location.

4. A small group of manual annotators then tagged each
image with a set of tags . . .

5. . . . from a vocabulary of 83 concepts, each concept be-
ing related to the topic of food advertising and . . .

6. . . . this led to a set of manual tags for each of the 1.5M
images in the collection.

7. In a separate process, we analysed the content of each
image using a deep convolutional neural network (CNN)
to automatically apply semantic tagging to each of the
1.5 million Kids’Cam images. Specifically, we used
the VGG-16 network [14], a very deep CNN with 138
million parameters in 16 parameter layers (13 con-
volutional and 3 fully connected). The network was
trained on 1,000 object classes using 1.2 million im-
ages from the ImageNet large scale visual recognition
challenge [13].

8. The trained model was then used to predict object
class probabilities for each target image. The images
were warped to a resolution of 224 × 224 prior to pro-
cessing. For computational reasons, we did not use any
test time data augmentation (flips or crops). Images
were processed in batches of size 64, with the entire
collection taking approximately 4 days to process us-
ing a NVIDIA GTX Titan X GPU. The processing
pipeline was implemented in Python using the MXNet
deep learning library [3].

9. Once these concept tags had been assigned, in previous
work described elsewhere [17, 18], we had developed a
technique called training free refinement (TFR), de-
scribed later in this paper.

10. The new set of tag probabilities (aaaa’, bbbb’, etc.)
shown in Figure 6 generated from the TFR process,
are drawn from a vocabulary of 1,000 concepts. The
net result of all this processing is that . . .

11. . . . we have a collection of over 1.5M images, each of
which is assigned a set of terms from . . .

12. . . . a small vocabulary of only 83 concepts, but man-
ually assigned and thus we can assume to be at least
90% reliable, and . . .

13. . . . a larger vocabulary of 1,000 concepts, automatically
assigned and then refined, but still not likely to have
all of them correct.

Similar to a (natural) language, semantic concepts can pro-
vide a natural way to describe and index vision content
which is close to human expectations. In addition, a con-
cept can be represented as text tags, facilitating structural
management and linguistic organization in describing users’
searching intentions. For example, we can describe Figure 1
with concepts “Bus”, “Road”, “Sky”, etc. to approximate
the actual content, which is “a London bus running on the
road during daytime.” While our (natural) language usually
combines different concepts or tags in order to convey the
semantics of visual content, the automatic concept detec-
tions are not carried out taking such semantic correlation in
mind. Current typical concept detection requires a classifier
for each concept without considering inter-concept relation-
ships or dependencies. This is counter-intuitive as many
concept pairs are often semantically related and dependent
and thus will co-occur rather than occur independently.

It is not hard to imagine that the pairwise correlations
of concepts increases exponentially as the number of con-
cepts increases. The modelling of correlations between con-
cepts in the classification phase suffers from high compu-
tational complexity as experienced in multi-label training
[11, 20]. Besides how to measure the correlations seman-
tically and to flexibly adapt to the evolution of concept
lexicons, there are even more challenges. To alleviate such
challenges, we turn to detection refinement in our previ-
ous work [17, 18] to improve the one-per-class concept de-
tections by post-processing detection scores obtained from
individual detectors, allowing independent and specialised
classification techniques to be leveraged for each concept.
In training-free refinement (TFR), introduced by Wang et
al. in [17], the relationships between concepts including co-
occurrence and re-occurrence relationships, as well as local
neighbourhood information, are utilised to refine an initial
set of tag probabilities. The method has already been evalu-
ated on a dataset of wearable camera images which is similar
to the Kids’Cam data capture as used in this paper.

In the Kids’Cam project, external contextual data, in-
cluding GPS locations, have potential in further improv-
ing concept tagging performance. For example, two images
taken in approximately the same location should have simi-
lar tags, even if the date/time and the subject wearing the
camera are different. Such geographic distance between im-
ages can be leveraged as another source of similarity measure
in precisely localising the neighbourhoods in similarity-based
propagation as used by Wang et al. in [17]. However, in our
previous work we did not apply TFR to such a large col-
lection containing the kind of richer contextual information
provided by Kids’Cam.

At the end of this data processing, in addition to an au-
tomatic annotation from 1,000 concepts which are then re-
fined, we also have a manually-assigned ground truth, which
is almost like a second description of each image, or more
correctly it is a description in a second, smaller and more
restricted, vocabulary. This provides an invaluable resource

for exploring issues related to language and vision, which we
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Figure 6: Workflow of image data capture, annotation and analysis

will do in the next section.

5. LANGUAGE AND VISION OPPORTUNI-
TIES

One of the intriguing possibilities that the creation of
this dataset offers us, is to adjust the configuration of an
automatically-generated concept space, populated with im-
ages. In our case we have 1.5M images automatically mapped
into a concept space of 1,000 concepts, but we do not know
anything about the accuracy of the mapping into the concept
space unless we do some manual assessments of concepts to
images, and we are not going to do that on any real scale.
We also have our 1.5M images mapped to an 83-dimensional
concept space, manually, and correctly. This is summarised
in Figure 7 where 2 images (as a subset of the 1.5M) are
mapped into a 2-dimensional space with values (x1, y1) and
(x2, y2) respectively in Figure 7 (a), and the same images
are mapped into a 3-dimensional space with values (a1, b1,
c1) and (a2, b2, c2) in Figure 7 (b).

Given that the mapping in Figure 7 (a) is correct, because
it is manually assigned, and the mapping of the same images,
1.5M of them, in Figure 7 (b) is not fully correct, even after
our training-free refinement process is applied as described
in section 4, can we adjust the values of concept weights
in Figure 7 (b), anchored and pivoting around the 1.5M
images?

This would be a variant of latent semantic indexing as

Figure 7: Same images mapped into two different concept
spaces

used in information retrieval, where a document-term ma-
trix is mapped to a matric reduced in dimensionality through
a singular value decomposition, an idea first introduced in
1990 by [4]. In our case we want to create a mapping between
a weighted image-concept matrix of low dimensionality and
a weighted image-concept matrix of much higher dimension-
ality, and then to adjust that mapped matrix, in the context
of the original, automatically-assigned concept weights.

This is shown conceptually in Figure 8 where the same
images in Figure 8 (b) and Figure 8 (c), with green and
with red highlight circles respectively, exist but the original
concept weight assignment in Figure 8 (b), is adjusted as

for exploring issues related to language and vision, which we
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a result of the correct assignment of (different) concepts in
Figure 8 (a).

Figure 8: Images mapped into three concept spaces

By starting with a mapping of an image into two separate
vocabulary spaces, we are comparing where that image has
ended up in one concept space with where it has ended up
in another. For a single image that does not mean much,
but because we are able to do this for 1.5M we should have
statistical advantage here. Semantic similarity among con-
cepts has been previously done at an ontology level and is
static. In the approach above we are data-driven and we can
do this mapping 1.5M times.

Distributional semantics is a corpus driven approach to
computational semantics and it is used to understand how
meaning and relatedness arises in sentences. It is based on
the distributional hypothesis which claims that co-occurring
words in similar contexts tend to have similar meaning [6,
16]. We have developed a Distributional Semantics Infras-
tructure, DINFRA [2], which is a framework that offers a
suite of DSMs (distributional semantic models), including
Latent Semantic Analysis (LSA) mentioned earlier.

Distributional Semantics assumes that every word pair oc-
curring in the same context has a certain relatedness, which
can be enforced or diminished by its frequency, i.e., the more
frequently a pair of words appear in the same context, the
stronger the relatedness between them and vice-versa. Thus,
any relation type is valid when measuring how related a pair
is.

Another important concept in language processing, com-
monly mistaken with semantic relatedness, is semantic sim-
ilarity which is a more restricted “special case” of semantic
relatedness i.e. while cars and gasoline would seem to be
more closely related than, say, cars and bicycles, but the
latter pair are certainly more similar, in that cars and bi-
cycles can be captured as taxonomic IS A relations of vehi-
cle. [12, p. 1]

Using the word2vec [8] model contained in DINFRA, we
can map all the terms in a vocabulary to an n-dimensional
vector space. We can obtain a relatedness score among terms

Figure 9: Visual representation of a possible 3-dimensional
space with word tokens represented as vectors

by measuring the inversely proportional distance between
two terms (Figure 9 gives a visual example). For each of
the 1.5M images in the Kids’Cam collection, we can eval-
uate the relatedness score between the human annotated
label and the automatically assigned tags with higher confi-
dences. By doing so, we rely on the accuracy of the manual
labels in order to enhance the results of the automatic visual
recognition model.

Figure 10: Manual Annotation: School > availability >
drink bottle

From Figure 10, the top automatically-assigned tags and
their respective confidences are listed in Table 2. In the
rightmost two columns we can also see the relatedness score
between each automatically assigned tag and in this exam-
ple, the manual annotation ‘drink bottle’ as well as the new
confidence, obtained after the processing.

For instance, although the first tag, ‘sunscreen, sunblock,
sun blocker’, has obtained a higher confidence score assigned
by the visual recognition model, even after training-free re-
finement, because it is less related to the manual label the
post-processed confidence is lower than the one received by
the ‘water bottle’, which was closely related to the ‘drink
bottle’.

The methodology described above is a post-process ap-
plied to the outcome of the visual recognition model. In
current work we are incorporating the highly accurate se-
mantic information from the manual labels into the model
by using one of DINFRA’s DSMs to map words to a vector
space, which will be used as an input parameter.
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Tag
Confi-
dence

Related-
ness

New Conf.

‘sunscreen,
sunblock, sun

blocker’
0.077 0.1905 0.0147

‘water bottle’ 0.040 1.0 0.0401
‘beer glass’ 0.039 0.6367 0.0254

‘bathing cap,
swimming cap’

0.037 0.3461 0.0129

‘sunglass’ 0.032 0.3367 0.0109
‘restaurant,

eating house,
eating place,

eatery’

0.030 0.6445 0.0198

‘crossword
puzzle,

crossword’
0.029 0.1663 0.0050

‘goblet’ 0.025 0.3245 0.0083
‘lampshade, lamp

shade’
0.020 0.3508 0.0074

‘swimming
trunks, bathing

trunks’
0.017 0.3461 0.0061

Table 2: Tags assigned to image in Figure 10

6. CONCLUSIONS
Natural language is notoriously difficult as a medium for

tagging or describing image data, like photos or videos, and
it is even more difficult as a medium for formulating an
information need when we have to develop queries. Since
the automatic detection of semantic concepts in image data
based on using predefined models has made so much progress
in recent years we are now seeing the problem of vocabulary
or concept space mis-match, between the vocabulary used
in indexing images and the vocabulary used in formulating
queries.

To explore issues related to how language and vision in-
teract, we introduced a dataset of over 1.5M images taken
by children using wearable cameras. This has been anno-
tated manually and automatically using two different vo-
cabularies., one of 83 words and the other containing 1,000
concepts. By pivoting around the representations of images
in the two vocabularies we are able to map the vocabulary
spaces onto each other, and since one of these is manually
assigned and thus correct, we can compensate for errors in
automatic assignment of concept tags. To illustrate this we
included a worked example of the set of tags for one of the
images and we are presently applying this process to the re-
mainder, which will, in aggregate, allow us to compare the
two vocabulary concept spaces.

While this work reflects an advance being made in auto-
matic description of visual content it does have a limitation
in that it leverages co-occurrences across concepts to esti-
mate the confidence of a concept being present in an im-
age while in practice this will not work for instances where
we have concepts that unexpectedly occur together. So co-
occurrence may offer a silver bullet in the majority of in-
stances, it won’t always work.

Ultimately the impact of our work will be to exploit any
manual assignment of tags or descriptors to images, some-

thing which is currently not done and which is necessary as
we start to see automatic tagging of images becoming more
mainstream.

The KidsâĂŹCam methodology enables automated, ob-
jective observation of childrenâĂŹs lived experience. To our
knowledge, this is the first study to objectively research food
availability and marketing from a childâĂŹs perspective.
While manual image annotation was successful, as noted
earlier it was time consuming and will not scale to large
datasets. The option of crowdsourcing the annotation task
is not an option here because of the nuber of images and
because of data privacy restrictions and ethics issues. The
automated image recognition explored here has considerable
potential for efficient, scalable, comprehensive analysis. As
such, it will likely contribute to better knowledge and there-
fore more effective public health action.

In future work we plan to do some analysis of the reliabil-
ity and accuracy of our method by choosing a subset of the
1,000 concepts and manually annotating them with multiple
annotators in order to get high reliability. This will allow
us to investigate the most successful aspects of our method
as well as to carry out a failure analysis of when it does not
work.
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