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ABSTRACT 
 

PROTEOMIC TECHNIQUES FOR THE DISCOVERY OF BIOMARKERS 

ASSOCIATED WITH UVEAL MELANOMA AND CUTANEOUS MELANOMA 

DISEASE PROGRESSION 

Deirdre O’Flynn 

 

Uveal melanoma is the most common primary intraocular cancer. Cutaneous 

melanoma accounts for the highest number of deaths of any skin cancer. This 

research outlines the discovery of proteins potentially associated with disease 

progression in uveal and cutaneous melanomas. 

 

It was hypothesised that patterns of differential protein expression would be 

observed between primary uveal melanoma tumour tissues of patients who 

subsequently developed metastasis versus those who did not and that such proteins 

could be used as potential biomarkers of disease progression. Using 2-D DIGE and 

quantitative LC-MS/MS, and functional validation by siRNA knockdown, five 

proteins were identified; EEF1G, SELENBP1, KPNB1, TPI1, and FABP3, which 

were found to play a role in invasion and migration in uveal melanoma cell lines.  

 

Vitreous fluid from patients with uveal melanoma was subjected to various sample 

pre-treatments and analyses in order to determine an optimal method for studying 

this biofluid. Fractionation by copper-activated IMAC resin and subsequent LC-MS 

analysis was carried out which resulted in the identification of 62 differentially 

expressed proteins between patients with monosomy 3 tumours (associated with 

poor prognosis) and patients with disomy 3 tumours (good prognosis).  

 

It was hypothesised that protein expression differences would be present throughout 

the process of cutaneous melanoma disease progression. Using quantitative label-

free LC-MS/MS, 57 proteins differentially expressed between the control and 

disease groups were identified. Four of these proteins, and three targets from a 

previous transcriptomic microarray analysis, were analysed across a panel of control, 

cutaneous melanoma (benign, early stage, advanced), and uveal melanoma sera 

using ELISA. This identified two potential markers of melanoma progression; 

lactotransferrin and BACE-2. 

 

Cutaneous melanoma serum and healthy, control serum were profiled and compared 

by SELDI TOF MS. This analysis revealed an 8.9 kDa candidate which was 

overexpressed in the disease samples in comparison to the control samples. In an 

attempt to identify the potential marker, IMAC purification with 1-D gel 

electrophoresis and quantitative LC-MS was used. 34 proteins were found to be 

differentially expressed between control and advanced cutaneous melanoma sera.  

 



2 

 

 

 

CHAPTER ONE 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

1.1 General Introduction 

Cancer is defined as the unregulated growth of cells. Cells which grow 

uncontrollably can eventually form a large cell mass; a neoplasm, more commonly 

known as a tumour. These tumours grow exponentially as each cell divides to 

produce two daughter cells, with cells in rapidly-growing tumours replicating every 

one to four weeks, while the cells of a slow-growing tumour may double every six 

months. Benign tumours are those which remain in one location and are often 

removed from the area to which they are confined through the use of surgery; 

however metastatic tumours are those which contain more aggressive cells. The cells 

of malignant tumours have a higher invasive potential than those of benign tumours 

and so, are capable of spreading from the primary location to distant organs.  

Although there are more than 100 cancer types, it has been suggested that virtually 

all show the same hallmarks which are required to breach any physiological barriers 

and to thus achieve a state of malignancy (Figure 1.1). For example, neoplastic cells 

must increase and sustain a level of angiogenesis which is conducive to providing 

the tumour with the oxygen and nutrients it needs for growth, while growth signals 

must successfully be produced or mimicked, and anti-growth signals supressed, in 

order to promote proliferation. If a neoplasm achieves such hallmarks, it can 

eventually reach a point where it will spread and form secondary neoplasms in 

regions of the body where space and nutrients are more plentiful (Hanahan and 

Weinberg 2011). 
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Figure 1.1 The hallmarks of cancer which ultimately contribute to the development 

of metastases. As adapted from (Hanahan and Weinberg 2011). 

Melanomas are malignancies which derive from dendritic melanocytes, i.e. pigment-

producing cells, found in the skin, eye, mucosal epithelia, and leptomeniges. 

However, the skin is the most common site of melanoma development; this type of 

neoplasm is referred to as a cutaneous melanoma (Hurst, Harbour et al. 2003). 

Cutaneous melanoma is currently regarded as being a life-threatening malignancy, 

and a steady increase in incidence has been observed over the past few decades (van 

den Bosch, Kilic et al. 2010). Cutaneous melanoma accounts for more than 90% of 

all melanomas. However, melanoma is recognised as being difficult to treat, mainly 

due to the large number of patients who are resistant to immune therapy as well as 

chemotherapy (Mehnert and Kluger 2012). Moreover, malignant melanoma often 

exhibits unpredictable behaviour. For example, many patients with significant 

vertical growth remain metastasis-free while some with thin lesions subsequently 

perish as a result of their disease (Torabian and Kashani-Sabet 2005). A better 
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understanding of the mechanisms of disease initiation and progression involved in 

cutaneous melanoma is critical for the development of predictive biomarkers which, 

to-date, have been elusive.  

Uveal melanoma only accounts for 5% of all melanomas, albeit, it is the most 

common intraocular malignancy, accounting for 85% of all cases in the western 

world. The incidence of uveal melanoma remains reasonably steady at 

approximately 7 people per million per year, a figure which increases with age (van 

den Bosch, Kilic et al. 2010). The disease is rarely caused by inherited mutations 

and develops from melanocytoma (tumour of melanocytes of the ophthalmic disc) 

(Damato 2004). The uvea consists of the iris, the choroid and the ciliary body, with 

the disease arising in the choroid of 90% of cases, the ciliary body in 5-10% of 

patients, and in the iris of 3% of patients, which is associated with the best outcome  

(Damato 2004, Pardo, Dwek et al. 2007). The 5-year survival rate of uveal 

melanoma is 72%, however, the median survival rate following metastasis is 

approximately six months (Triozzi, Eng et al. 2008). This is due to the highly 

aggressive nature of the metastatic disease which spreads to vital organs such as the 

kidneys, bone, lungs, and in 95% of metastatic cases, the liver (Damato 2004). As 

there are no current protein biomarkers available for the detection of uveal 

melanoma, a prognostic marker would greatly help in the detection and possible 

treatment of the metastatic disease. 

Although uveal and cutaneous melanomas both derive from melanocytes, they are 

distinct in their mechanisms of tumorigenesis and metastasis, as well as in their 

therapeutic response and genetic aberrations (van den Bosch, Kilic et al. 2010). The 

differences between both melanomas are poorly understood, but it is hoped that 

genetic and proteomic analyses of the nature of melanoma as a disease will aid us in 

understanding variations between both melanomas. 

Proteomic analysis is used for the characterisation of the proteins, and associated 

protein and peptide modifications which compose signalling networks. Hence, it can 

be useful, particularly when used in conjunction with genomic markers, in 

determining deregulated pathways in cancer, thus furthering our understanding of 

the disease and potentially identifying new drug targets. In addition to this, 

proteomic analysis can be used for the detection of biomarkers, i.e. features which 
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are measured and evaluated as indicators of normal or disease state, disease 

progression or response to therapy. Biomarkers can often be used in the clinic for 

diagnostic or prognostic tests. Ideally, if a biomarker is intended for use in the clinic, 

it should illustrate an unbiased diagnosis result, whether or not the patient is 

symptomatic. The marker should also demonstrate high specificity, high sensitivity, 

ease of use, regularity, and clarity in results. Proteomic studies for the identification 

of biomarkers are typically carried out in clinical specimens such as blood (which 

may be separated into serum and plasma), urine, cerebrospinal fluid (CBS), saliva, 

and sputum. Techniques such as mass spectrometry (MS), and matrix-assisted laser 

desorption and ionisation with time-of-flight (MALDI-TOF) have been key methods 

in the search for differential protein expression patterns in both clinical and cell 

culture specimens (Lee and Kohn 2010, Boja, Hiltke et al. 2011). 

 

1.2 Uveal Melanoma 

Uveal melanoma is the most common primary intraocular malignancy affecting 

approximately 5 people per million in the Western world each year, however this 

incidence increases with age (Pardo, Dwek et al. 2007). Uveal melanoma is rarely 

caused by inherited mutations but can develop from melanocytoma (Damato 2004).  

The uvea consists of the iris, the choroid and the ciliary body (Pardo, Dwek et al. 

2007). The malignancy arises in the iris of 3% of patients and has the best prognosis 

in comparison to uveal melanoma of the choroid (90% of patients) or of the ciliary 

body (5-10% of cases) (Damato 2004). It is unclear why this is but may be due to the 

fact that iris melanoma is generally smaller than either of the posterior ciliary or 

choroid tumours at the time of diagnosis. Most iris melanomas consist of spindle 

cells, according to the Callender classification (Henderson and Margo 2008). 

Choroidal melanoma tumours have been classified by spindle, epithelioid and mixed 

cell populations. Spindle cell tumours are associated with a much more promising 

prognosis than epithelioid cell tumours (Albert 1998).  

The 5-year survival rate of uveal melanoma is 72%, however in a 15-year follow up, 

53% have been shown to die of metastatic disease. The median survival rate 

following metastasis is approximately six months (Triozzi, Eng et al. 2008). In 95% 

of metastatic cases, uveal melanoma spreads to the liver, but it can also spread to 



7 

 

regions such as the kidneys, the bone and the lungs (Damato 2004). Clinical features 

which are associated with metastatic death include large tumour size, ciliary body 

involvement and higher patient age. Epithelioid cytology, tumour infiltration by 

macrophages and/or lymphocytes, and nucleolar size are all histopathologic features 

which can indicate poor prognosis (Landreville, Agapova et al. 2008).  

 

1.2.1 Pathogenesis of Uveal Melanoma 

Uveal melanoma is characterised by a number of disrupted molecular signalling 

pathways including the retinoblastoma pathway, p53 signalling, Phosphoinositide 3-

kinase/Protein Kinase B (P13K/AKT) and mitogen-activated protein 

kinase/extracellular signal-related kinase pathways (MAPK/ERK) (Coupland, Lake 

et al. 2013).  

The retinoblastoma pathway is mediated by the interaction between the anti-growth 

protein retinoblastoma tumour suppressor (Rb) and the E2F transcription factor. Rb 

function is regulated through phosphorylation by the D-type cyclin-dependent 

kinases. Growth stimulation is induced by D-cyclin/cyclin-dependent kinase 4 

(cdk4) activity which induces a cascade of events leading to E2F accumulation and 

the transition from G1 to S-phase. Overexpression of cyclin D1 causes a disruption 

of the Rb pathway in uveal melanoma through the hyperphosphorylation and 

inactivation of Rb, hence disrupting signalling and causing uncontrolled cell 

proliferation (Nevins 2001, Onken, Worley et al. 2008). Previous research has 

shown that overexpression of cyclin D1 may be driven by the BRAF
V599E

/MEK/ERK 

pathway, as one group illustrated when MEK/ERK inhibition significantly decreased 

the proliferation rate of uveal melanoma cells in culture (Calipel, Lefevre et al. 

2003). Significant cyclin D1 over-expression has been associated in the literature 

with unfavourable outcome when tumour tissue was examined using 

immunohistochemistry and has been associated with the presence of extraocular 

extension of the tumour (Coupland, Anastassiou et al. 2000).  High levels of cyclin 

D1 are found in choroidal melanomas which are the more aggressive tumours and 

have poorer prognosis in comparison to their iris and ciliary body counterparts 

(Calipel, Lefevre et al. 2003). 
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Mutations of the p53 tumour suppressor gene, TP53, are present in over half of 

human neoplasia, making it one of the most frequent molecular events in human 

cancer (Davies, Spiller et al. 2011). p53 initiates growth arrest, thus antagonising 

cyclin D1, or apoptosis due to stressful conditions. Murine double minute 2 

(MDM2) is necessary for the regulation of p53, however it is a proto-oncogene, 

independent of p53, which is often overexpressed in human cancers. Previous 

research has illustrated a potential link between MDM2 over-expression and the 

development of metastases (Coupland, Anastassiou et al. 2000). In uveal melanoma, 

high expression of the MDM2 gene, located on chromosome 12q15, occurs in 97% 

of cases, resulting in the inhibition of p53 (van den Bosch, Kilic et al. 2010). 

PI3K signalling is activated by receptor tyrosine kinases and G-coupled receptors. 

Once activated, PI3K triggers a series of events which allows for the activation of 

AKT (essential for several proliferation and survival pathways). This process is 

regulated by phosphatase and tensin homolog (PTEN), a protein which antagonises 

PI3K signalling through the conversion of Phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3) to Phosphatidylinositol 4,5-bisphosphate (PIP2). A total loss of PTEN is 

associated with a more aggressive uveal melanoma; patients have a median survival 

of 60 months in comparison to those with normal or close to normal expression. A 

decrease in PTEN relative to another primary uveal melanoma is correlated with a 

more aggressive tumour (Patel, Smyth et al. 2011). 

During the screening of potential oncogenes which could potentially activate the 

Mitogen-activated protein kinase (MAPK) pathways, mutations were discovered in 

Guanine nucleotide-binding protein G(q) subunit alpha (GNAQ), a stimulatory 

heterotrimeric G protein α-subunit, and Guanine nucleotide-binding protein G(q) 

subunit alpha-11 (GNA11), its paralogue (Gaudi and Messina 2011). GNAQ 

mediates signalling between G protein-coupled receptors (GPCRs) and catalyses the 

hydrolysis of PIP2 through the stimulation of all isoforms of β phospholipase C 

(PLCβ). Mutations of GNAQ and GNA11 have been detected in 83% of uveal 

melanomas, both primary and metastatic, and exclusively affect exon 5 (Q209) and 

exon 4 (R183). This causes constitutive activation of the MAPK pathway in the 

absence of Neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS) and BRAF 

mutations, thus GNAQ acts as a dominant oncogene (Lamba, Felicioni et al. 2009, 

Van Raamsdonk, Griewank et al. 2010, Metz, Scheulen et al. 2013). It is possible 
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that GNAQ and GNA11 mutations represent an early stage in tumour development 

and that these mutations may contribute directly to the risk of hereditary melanoma 

in families with an increased incidence of uveal melanoma. However, previous 

research has suggested an absence of germ-line mutations in exon 5 of GNAQ and 

GNA11 in familial melanoma patients (Hawkes, Campbell et al. 2013). 

The Insulin-like growth factor (IGF) signalling pathway plays a role in both cell-cell 

adhesion and tumour invasiveness through the binding of Insulin-like growth factor 

1 (IGF-1) to Insulin-like growth factor 1 receptor (IGF-1R) for the activation of the 

intrinsic receptor tyrosine kinase activity and phosphorylation of insulin receptor 

substrate. IGF-1R is expressed on primary uveal melanoma tumours; however, IGF-

1 is neither secreted nor expressed by melanoma cells. Despite this, it is produced by 

the liver which is the main site of metastasis for uveal melanoma. A decrease in 

IGF-1R has been shown to affect uveal melanoma cell line proliferation as well as 

metastatic potential (All-Ericsson, Girnita et al. 2002). Recent research has 

illustrated that a decrease in IGF-1 levels in serum can be directly correlated to 

prognosis. In one such study, IGF-1 serum levels of 10-years disease-free patients 

were lower than those of their healthy counterparts, and lower again were those of 

metastatic patients (Frenkel, Zloto et al. 2013). Indications which illustrate the 

potential role of IGF-1 in follow-up care have been noted, such as an increased IGF-

1 6-month post-operative serum level in relation to pre-operative specimens (Topcu-

Yilmaz, Kiratli et al. 2010). 

BRCA1-associated protein-1 (BAP1) is a tumour suppressor which can mediate its 

effects through transcriptional regulation and chromatin modulation. It is also 

possible that it acts through the ubiquitin-proteasome system and the DNA damage 

response pathway. BAP1 mutations can occur in the germline, thus leading to a 

familial cancer syndrome in malignancies such as mesothelioma, renal cell 

carcinoma, and cutaneous melanoma (Murali, Wiesner et al. 2013). An increased 

susceptibility is associated with a number of cancers such as cutaneous melanoma, 

epithelioid atypical Spitz tumours and uveal melanoma. Mutations of BAP1 appear 

to occur later in tumour progression in comparison to other uveal melanoma-

associated molecular defects and are associated with metastasis (Harbour 2013, 

Murali, Wiesner et al. 2013). Somatic mutations of BAP1 are found to occur in 84% 

of metastatic uveal melanoma cases but also in 3-4% of sporadic uveal melanoma 
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cases where there is a BAP1 germline mutation (Njauw, Kim et al. 2012, Aoude, 

Vajdic et al. 2013).  

Perhaps the most recently identified recurrent mutation, associated with 18.6% of 

uveal melanoma cases, is in splicing factor 3B subunit 1 (SF3B1), which affects 

codon 625. SF3B1 is a splice factor; hence, mutations in this gene result in altered 

pre-mRNA splicing. However, the target of the altered splicing is unknown and 

might be cell dependent. In terms of melanoma, SF3B1 mutations are uveal 

melanoma-specific as they do not appear to occur in cutaneous melanoma (Schilling, 

Bielefeld et al. 2013). Mutations in SF3B1 have previously been identified in 

myeloid malignancies as well as in breast cancer (Papaemmanuil, Cazzola et al. 

2011, Ellis, Ding et al. 2012). Such mutations have been associated with good 

prognostic features in uveal melanoma, such as a younger patient age, and fewer 

undifferentiated epithelioid cells. In addition to this, they were found to be inversely 

linked with features of poor prognosis such as monosomy three and BAP1 mutations 

(Harbour, Roberson et al. 2013). 

c-KIT, a receptor protein tyrosine kinase involved in numerous processes including 

the development of uveal melanocytes, has been shown to be expressed  in 63-78% 

of primary uveal melanoma cases as well as being expressed in the majority of 

metastatic cases (Daniels and Abramson 2009, Mahipal, Tijani et al. 2012).  

 

1.2.2 Chromosomal Status and Classification of Uveal Melanoma 

Cytogenetic aberrations occur as part of uveal melanoma disease progression. 

Typically, regions of chromosome gain are thought to harbour oncogenes while 

regions of chromosome loss may contain tumour suppressors. Along with features 

such as tumour size and histology, chromosome status, particularly that of 

chromosomes 1, 3, 6, and 8, is now recognised in contributing to the risk of 

metastasis in uveal melanoma.  

Loss of chromosome 1p occurs frequently in many other cancers, such as 

neuroblastoma where it is an indicator of poor prognosis. In uveal melanoma, it has 

been found to be indicative of metastasising tumours and its loss has also been 

identified as concurrent with monosomy three; an indicator of poor prognosis (Kilic, 
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Naus et al. 2005). Loss of 1p has been associated with large ciliary body tumours 

and also with secondary tumours, i.e. those which have metastasised (Sisley, Parsons 

et al. 2000, Aalto, Eriksson et al. 2001).  

An imbalance of chromosome six has been described as a recurrent aberration 

associated with uveal melanoma. Typically, a gain of 6p and/or a loss of 6q are 

observed, albeit not as frequently as other abnormalities. Gain of 6p has been 

reported in 18% of cases while loss of 6q has been shown to occur in 28% (Kilic, 

van Gils et al. 2006). Gain of 6p has been associated with a good prognosis, while 

the loss of 6q implies the presence of tumour suppressors in this region (Damato and 

Coupland 2009). However, the deletion and amplification of these regions has been 

shown to occur independently of other abnormalities on chromosomes 1p, 3, and 8 

(van Gils, Kilic et al. 2008). 

Abnormalities of chromosome eight, namely trisomy eight and isochromosome 8q, 

have been reported in uveal melanoma  (Damato and Coupland 2009). Trisomy eight 

is often associated with monosomy three, for an overall risk of metastasis. However, 

when trisomy eight occurs in conjunction with disomy three, it is not linked with the 

spread of disease (Thomas, Putter et al. 2012). In addition to this, monosomy three 

and aneusomy eight have been shown to be present in liver metastases (Singh, Tubbs 

et al. 2009). 

In 1996, Prescher et al. unearthed a link between monosomy of chromosome three 

and metastasis-associated death in uveal melanoma (Prescher, Bornfeld et al. 1996). 

Through the years, this finding has been proven by multiple studies (Sisley, Rennie 

et al. 1997, White, Chambers et al. 1998, Scholes, Damato et al. 2003). Monosomy 

three is thought to occur as an early event, with the loss of 1p, 8p, and gain of 8q 

occurring later on in disease progression as secondary events (Kilic, van Gils et al. 

2006). As mentioned above, the combination of chromosome 8q gain and 

chromosome three loss further modulates the metastatic progression of monosomy 

three tumours and has been associated with hepatic metastases (Singh, Tubbs et al. 

2009). It is clear that chromosome three loss provides valuable prognostic 

information, however, not all tumours can be classified as high or low risk based on 

chromosome three status alone as some tumours have been shown to undergo a 

partial loss of chromosome three. This has been illustrated to provide inconsistent 
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prognostic information, although Thomas et al. recently found that patients with 

“equivocal abnormality” of chromosome three are more likely to develop and die 

from metastases (Thomas, Putter et al. 2012).  

  Harbour et al., using cytogenetic analysis and genome-wide profiling, have 

developed a gene expression profile which distinguishes uveal melanoma tumours 

into two genomic groups; class 1 and class 2, based on the expression of 15 genes 

(Harbour 2014). Each class is used as a determinant of outcome due to the 

correlation between gene expression and prognosis. Class 1 tumours are deemed to 

have a low risk of metastasis, typically associated with gain of chromosome 6p or 

disomy three. In contrast, class 2 tumours carry a high risk of metastasis, often 

characterised by loss of chromosome three or gain of 8q (Onken, Worley et al. 2004, 

Couturier and Saule 2012).This method has been shown to superior in its prognostic 

accuracy in comparison to other prognostic biomarkers available, including 

monosomy three status alone (Onken, Worley et al. 2010, Harbour 2014). The gene 

expression profile is available as a quantitative polymerase chain reaction (qPCR)-

based assay, known commercially as DecisionDX-UM, which is used on a routine 

basis on very small samples acquired through fine needle aspiration and on archival 

formalin-fixed samples, as well as on samples acquired in a multi-centre study 

(Harbour and Chen 2013, Harbour 2014). For the prognostic characterisation of 

uveal melanomas, DecisionDX-UM illustrated sensitivity and specificity values of 

84.6% and 92.9% respectively. Monosomy three detected by array comparative 

genomic hybridisation illustrated sensitivity and specificity values of only 58.3% 

and 85.7%, respectively. Monosomy three detected by FISH illustrated even lower 

sensitivity and specificity values of 50% and 72.7%, respectively (Worley, Onken et 

al. 2007). 

Class 1 tumours can be divided into two groups; 1A and 1B. Class 1A shows a 2% 

5-year tumour-survival rate while 1B has a rate of 21%. In contrast to class 2 

lesions, class 1 cells are well-differentiated and typically maintain disomy three, 

generally a more promising indication in terms of prognosis. The metastatic rate is 

low as is the rate of chromosomal aneuploidy, despite chromosome 6p gain (Gill and 

Char 2012).  
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Typically, class 2 uveal melanoma lesions demonstrate high levels of aneuploidy, 

particularly monosomy three, i.e. loss of heterozygosity (LOH) for chromosome 

three (Ehlers, Worley et al. 2008, Gill and Char 2012). Approximately 25% of class 

2 tumours, class 2B, have a deletion mutation of the chromosome fragment 8p which 

increases the aggressiveness of the malignancy. Class 2 tumours often exhibit stem-

cell like ectodermal differentiation, a high rate of metastasis and a tumour-related 

mortality rate of 40-60% (Gill and Char 2012).  Clinical and histological features 

such as a large basal tumour diameter, high mitotic rate, epithelioid morphology and 

ciliary body involvement are also associated with such tumours (Scholes, Damato et 

al. 2003, Kilic, van Gils et al. 2006, Damato, Duke et al. 2007).  

Among the deregulated pathways in uveal melanoma, exome sequencing has 

identified mutations associated with class 2 tumours; overexpression of PTP4A3, 

which maps to chromosome 8q and a high rate of inactivating mutations in BAP1, 

which maps to chromosome 3p (Couturier and Saule 2012). Harbour et al. 

implicated loss of BAP1 in the onset of uveal melanoma metastasis. They also noted 

that this occurred independently of the presence or absence of GNAQ activating 

mutations at codon 209. It is important to note that mutations in GNAQ occur early 

in uveal melanoma and are not sufficient for malignant transformation however they 

may create a reliance of the tumour cells on GNAQ activity. Mutations of BAP1 

occur at a later stage of disease progression and, as illustrated above, coincide with 

the development of metastatic disease. The dual targeting of both BAP1 and GNAQ 

mutations could therefore act as a synergistic therapy for uveal melanoma (Onken, 

Worley et al. 2008, Harbour, Onken et al. 2010). Somatic mutations in exon five at 

position 209 in GNA11 were found to be present in 57% of uveal melanoma 

metastases, in contrast to GNAQ, where the Q209 mutation was identified in 22% of 

metastases. This mutation affects the production of glutamine, thus blocking 

intrinsic GTPase activity. Overall, 83% of uveal melanomas have been shown to 

have a constitutive mutation in either GNAQ or GNA11 (Van Raamsdonk, Griewank 

et al. 2010). However, it has recently been reported that mutations in either GNAQ 

or GNA11 are not associated with patient outcome (Koopmans, Vaarwater et al. 

2013). A mutation at Arg625 in SF3B1 in disomy three uveal melanomas has been 

shown to correlate with a good prognosis. An absence of the mutation appears to be 
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associated with metastasis, regardless of the chromosome status of the tumour 

(Martin, Masshofer et al. 2013). 

It is unclear if class 1 tumours can evolve into class 2 tumours or if they simply 

develop along different pathways. Harbour et al. suggested that the presence of a 

class 1 tumour with a BAP1 mutation may represent a transition state which suggests 

that BAP1 mutations develop prior to the emergence of the class 2 signature. Fully 

understanding this would impact on primary tumour therapy; if the tumour can 

change from class 1 to 2 then the treatment of the primary tumour could potentially 

be entirely curative and early treatment would be critical, if it cannot evolve between 

stages then it is possible that primary tumour treatment would have no impact on 

survival (Harbour 2006, Harbour, Onken et al. 2010). 

 

1.2.3 Clinical Treatment Options for Uveal Melanoma  

Enucleation, or removal of the eye, has traditionally been the method of choice for 

uveal melanoma treatment. Nowadays, primary ocular tumours can be treated by a 

variety of methods tailored to factors such as size, extent and location (Damato 

2012).  

Unfortunately, there are very few systemic treatments available for metastatic uveal 

melanoma, all with doubtful efficacy. However, as our molecular knowledge 

improves, so does the potential for the development of better treatment options 

(Velho, Kapiteijn et al. 2012). 

 

1.2.3.1 Enucleation 

Historically, enucleation has been the definitive treatment for uveal melanoma. 

Today more than a third of patients still require enucleation; occasionally due to 

pain, such as in the case of intraocular pressure elevation; and due also to the 

excessive size of the tumour when there is no hope for useful vision (De Potter 2003, 

Damato 2012). However, the cosmetic trauma of losing an eye can often be difficult 

for the patient psychologically. The possibility of sparing vision is also destroyed by 

enucleation. Therefore a number of alternative treatments have been developed 

including; plaque or proton beam radiotherapy; stereotactic radiosurgery; trans-
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scleral or trans-retinal local resection; and transpupillary thermotherapy (Damato 

2012). 

 

1.2.3.2 Radiotherapy and Radiosurgery 

Plaque brachytherapy and proton beam radiotherapy are some of the more common 

forms of radiotherapy used in the treatment of uveal melanoma, particularly in the 

case of small and medium sized tumours. The possibility of either method 

preserving the eye and/or retaining vision is dependent on the tumour size and 

location. The type of radiotherapy used can depend on factors such as; tumour 

location, tumour size, and adjacent radiation-sensitive ocular structures (Finger 

1997, Munzenrider 2001, De Potter 2003).  

Ophthalmic plaque brachytherapy involves the use of a thin implant composing of a 

radioactive element such as iodine, ruthenium, or cobalt which can vary in its 

dimensions, depending on the tumour size and shape (Giblin, Shields et al. 1989). 

The purpose of the plaque is to deliver a highly concentrated dose of radiation 

therapy to a specific region of the eye where the tumour is located. Plaque 

brachytherapy has been shown to be effective in terms of local control with 

recurrence following treatment at only 15%, however this rate may be as high as 

37% at 15 years in the case of metastatic disease (Freire, De Potter et al. 1997, 

Munzenrider 2001).   

Proton beam radiotherapy is a much more effective method than conventional 

radiotherapy as it provides a superior distribution of the dose due to the physical 

nature of protons (Weber, Mirimanoff et al. 2007). If vision is reduced in the 

affected eye, tumours of all sizes, including some large tumours, can be treated with 

the proton beam, with a 75-80% probability of preservation of the eye and of some 

visual function (Munzenrider 2001).  

Gamma knife surgery is a form of stereotactic radiosurgery which has been used as 

an alternative to enucleation for the reduction of the tumour while maintaining the 

structure of the eyeball and its function. In one study, tumour regression was 

observed in 90.9% of the sample set (Kang, Lee et al. 2012). The growth control 

rates and long-term outcome of the method compare well with enucleation and 
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brachytherapy and so it has been suggested as an alternative treatment for uveal 

melanoma (Toktas, Bicer et al. 2010). However, retinal detachment, cataract and 

radiation-induced retinopathy are most commonly reported as side-effects of the 

procedure (Toktas, Bicer et al. 2010, Kang, Lee et al. 2012). 

 

1.2.3.3 Local Tumour Resection 

Trans-scleral resection is generally suitable for certain iris, ciliary body, or anterior 

choroidal melanoma, especially in those with smaller basal dimensions and greater 

thickness (De Potter 2003). 

 

1.2.3.4 Transpupillary Thermotherapy 

Transpupillary thermotherapy with an infrared diode laser is used as a primary 

treatment or as a complement to radiotherapy or surgical resection in selected cases 

of choroidal melanoma. Using thermotherapy as part of a combined therapy appears 

to be more effective in reducing the intraocular tumour recurrence rate (De Potter 

2003). 

 

1.2.3.5 Systemic Treatment 

Although the above methods are successful in the eradication of the primary tumour, 

there is currently no standard systemic therapy available for metastatic uveal 

melanoma treatment, with typical options, such as immunotherapy, rarely 

prolonging life. Chemotherapeutic agents, used both in combination and alone, have 

also been tested, albeit showing poor anti-tumour activity with the response rate 

ranging from 0 to 15% and a median overall survival time of 6 to 12 months (Pons, 

Plana et al. 2011).  

Currently, the most promising therapies appear to be mitogen-activated protein 

kinase kinase (MEK) and Histone deacetylase (HDAC) inhibitors. HDAC inhibitors 

are capable of blocking the Bmi1/Ring1 complex which is responsible for the 

monoubiquitinylation of histone H2A. This in turn may be able to replace 

deubiquitinating activity to the cells which is absent following the loss of BAP1. 
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Hence, HDAC inhibitors such as valproic acid, LBH-589, and trichostatin A may be 

able to reverse the hyperubiquitinylation of histone H2A resulting from BAP1 loss 

(Harbour 2012). Cell culture and animal studies have illustrated the therapeutic 

potential of this approach in uveal melanoma metastasis treatment (Landreville, 

Agapova et al. 2012). GNAQ/11 mutations are also currently being investigated as 

potential therapeutic targets. As the direct inhibition of either gene would not be 

possible due to the role of the mutations in abrogating intrinsic GTPase activity, the 

goal of this approach would be to inhibit oncogenic signalling downstream as a 

result of the mutations. MEK would be a suitable target in this regard as it is a 

member of the MAPK pathway which is activated by GNAQ/11 mutations. 

Recently, selumetinib was shown to induce tumour shrinkage in 50% of metastatic 

uveal melanoma patients with 15.9 weeks progression-free survival, in comparison 

to seven weeks in those treated with temozolomide, a chemotherapy drug (AACR 

2013). The combined use of selumetinib with a target of rapamycin (mTOR) 

inhibitor, AZD8055, has also been described. mTOR inhibitors target the 

PI3K/AKT/mTOR pathway, which has been thought to cooperate with MAPK 

activation to generate and preserve the malignant phenotype in uveal melanoma. The 

results from this cell line-based study indicated that the dual-inhibition approach 

appeared to be effective in certain genotypes; the viability of BRAF and GNAQ 

mutant cells was suppressed with the treatment but apoptosis was only induced in 

BRAF mutant cells. In addition to this, tumour regression was only observed in the 

BRAF mutant xenograft model (Ho, Musi et al. 2012). Temozolomide and the MEK 

inhibitor AZD6244 are currently being tested in a randomized phase II trial; clinical 

trial identifier NCT01143402. This two-pronged approach uses a chemotherapeutic 

agent, temozolomide, to kill tumour cells and targeted therapy, AZD6244, to prevent 

tumour cell growth (Lima, Schoenfield et al. 2011, www.clinicaltrials.gov 2013).  

There are some ongoing phase II clinical trials which are testing the use of targeted 

therapies for the treatment of metastatic uveal melanoma. The anti-angiogenic 

monoclonal antibody, Bevacizumab, which targets vascular endothelial growth 

factor (VEGF), has been tested as a treatment for choroidal melanoma as VEGF 

levels have been noted to be elevated in choroidal melanoma; however it was found 

that the drug did not halt tumour progression but in fact masked its presence thus 

delaying appropriate diagnosis (Lima, Schoenfield et al. 2011). Bevacizumab was 
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found to be useful in the management of complications due to current therapies, such 

as in the case of retinopathy following plaque brachytherapy treatment through the 

reduction of macular oedema. Bevacizumab is currently undergoing clinical trials 

for intravitreal use in the treatment of large uveal melanoma in the hope that it will 

significantly reduce tumour size in patients scheduled to undergo enucleation. It is 

also being used as a combination therapy with temozolomide in the treatment of 

metastatic ocular melanoma. Ranibizumab, another monoclonal antibody treatment 

derived from the same mouse monoclonal antibody fragment as bevacizumab, is also 

being tested in clinical trials in combination with proton beam radiotherapy for its 

safety and tolerability in the treatment of choroidal melanoma (Lima, Schoenfield et 

al. 2011).  

Various drugs known to be effective in the treatment of cutaneous melanoma have 

been tested on uveal melanoma with little or no success. Ipilimumab, the 

monoclonal antibody therapy which targets cytotoxic T-lymphocyte associated-

antigen 4 (CTLA-4) in order to block its downregulation of the pathways of T-cell 

activation and hence induce antitumour effects, has been approved for use in the 

treatment of advanced cutaneous melanoma as it shows a survival benefit in 

randomised trials.  A limited number of initial trials have been conducted in relation 

to its use as a therapy for uveal melanoma patients where it was reported to be a 

well-tolerated treatment with no objective responses (Danielli, Ridolfi et al. 2012). 

In one study, two out of five patients maintained stable disease following 

ipilimumab administration. One of these patients was found to have maintained 

disease control at 11 months following treatment and showed a 10% reduction in 

tumour mass. The other individual developed progressive disease after 15 months. 

The response patterns of the patients and tumour kinetics resembled those of 

cutaneous melanoma following ipilimumab therapy. The other three patients 

developed progressive disease despite treatment. This early clinical trial indicates 

that ipilimumab may be used in the future as a therapy for uveal melanoma, 

however, further tests are now required (Khattak, Fisher et al. 2013).  

As shown above, many of the therapies being developed target genetic anomalies as 

there are currently no protein biomarkers for uveal melanoma. The identification of 

such proteins could provide a therapeutic target for the treatment of the disease. 
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1.2.4 Proteomic Analysis of Uveal Melanoma  

A limited number of proteomic studies have been performed in relation to uveal 

melanoma to date. A summary of these studies is illustrated in Table 1.1. 

Many studies which have been carried out involve differential protein expression 

analysis of cell lysates using two-dimensional (2-D) based methods in combination 

with mass spectrometry (MS). Zuidervaart et al. isolated and compared cell lines 

derived from a primary tumour and from two liver metastases of a patient, 

identifying twenty-four differentially expressed proteins using two-dimensional 

differential gel electrophoresis (2-D DIGE) and MS, most of which were previously 

correlated with metastasis (Zuidervaart, Hensbergen et al. 2006). Using 2-D gel 

electrophoresis (2-DE) and MS, Pardo et al. identified MUC18 and HMG-1 in uveal 

melanoma cell lines and using functional assays, correlated their expression levels 

with invasion. They also found DJ-1 oncoprotein to be both expressed and secreted 

by uveal melanoma cell lines as well as being detected in uveal malignant melanoma 

patient serum and therefore could be used as a potential, non-invasive biomarker 

(Pardo, Garcia et al. 2006). Wang et al. recently used a combination of stable isotope 

labelling with amino acids in culture (SILAC) and two-dimensional liquid 

chromatography tandem mass spectrometry (2-D LC-MS/MS) to assess proteomic 

changes in 92.1 uveal melanoma cell lines following exposure to radiation. The 

study illustrated a number of proteins which were associated with cell suspension 

induced by irradiation, such as those associated with cell cycle regulation, DNA 

replication, cell growth and senescence. From this they identified the 

downregulation of S100A11, PHB1, PHB2, and TPI1, and upregulation of HSP-27. 

However the combination of SILAC and 2-D LC-MS/MS was not conducive to 

smaller, lower abundant proteins as they were often masked by more numerous, high 

abundant proteins (Wang, Bing et al. 2013). Yan et al. also combined SILAC and 

MS/MS for the analysis of irradiated uveal melanoma cell lines and identified 29 

proteins which correlated with cell survival, cell cycle arrest and growth inhibition 

(Yan, Shi et al. 2013).  

Although cell culture-based studies are a useful method for initial proteomic analysis 

and may identify markers of disease, these markers may not always occur in the 

same pattern as they would in their natural biological setting. Therefore, pure cell 

culture-based studies do not consistently bear an accurate representation of the 
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disease. Using uveal melanoma cell lines; UM-A, SP6.5, UW-1, 92.1, OCM-1, and 

one-dimensional (1-D) electrophoresis combined with MS, Pardo et al. identified a 

number of secreted proteins. From this, they used autoantibodies to verify 15 

secreted proteins which induced a humoral response in the serum of cancer patients. 

Using 2-D DIGE, 61 differentially-expressed proteins were found between control 

and uveal melanoma sample sets, with 38 of these being identified. However, none 

of the secreted proteins were found in this analysis (Pardo, Garcia et al. 2006). It 

may be useful to follow-up clinical specimen research, such as in serum, tissue or 

vitreous fluid, with cell culture studies, thereby identifying a potential target by one 

method and validating it by the other.  

Therefore, a number of studies have used clinical specimens for the discovery of 

biomarker in uveal melanoma. Coupland et al. examined primary uveal melanoma 

tumour tissue from monosomy three and disomy three specimens using 2-D gel 

electrophoresis and western blot validation for the identification of heat shock 

protein 27 (HSP-27), vimentin, and pyruvate dehydrogenase beta (PDHB) as being 

differentially expressed between the sample sets. They correlated the 

downregulation of HSP-27 expression with monosomy three status and hence, 

metastatic mortality (Coupland, Vorum et al. 2010). Our group also conducted a 

proteomic analysis of primary tumour tissue looking at the differential expression of 

proteins between primary tumours which subsequently metastasised and those which 

did not. From this study, we identified triosephosphate isomerase (TPI1) and fatty 

acid binding protein 3 (FABP3) to be upregulated in those which metastasised, and 

showed that they played a vital role in the invasion and migration of uveal 

melanoma cells (Linge, Kennedy et al. 2012). The results of this work are outlined 

in chapter three. 

A small number of proteins have been suggested as potential biomarkers for uveal 

melanoma but to-date none have been followed-up in a clinical setting or as a 

potential target VEGF has been identified as a potential marker of disease 

progression and metastasis in uveal melanoma as it was found to be significantly 

overexpressed in primary tumour tissue, and in serum following the development of 

secondary neoplasms, in both murine models and patient samples (Notting, 

Missotten et al. 2006, Barak, Pe'er et al. 2011, Crosby, Yang et al. 2011). 

Correlations between VEGF, C-X-C motif chemokine receptor 4 (CXCR4) and its 
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ligand, C-X-C chemokine ligand 12 (CXCL12) have also been noted. The cross-talk 

between these three proteins insinuates a role in uveal melanoma metastasis (Franco, 

Botti et al. 2010). As malignant cells are CXCR4-positive and solely bind to 

CXCL12, this mono-axis has been implicated in guiding cells to specific CXCL12-

producing organs, such as the liver. In addition to this, inhibition of the axis has been 

shown to repress the metastatic process (Bakalian, Marshall et al. 2008). Coupland 

et al. illustrated that cyclin D1, as determined by immunohistochemical analysis of 

95 enucleated eyes, is a marker for aggressive uveal melanoma (Coupland, 

Anastassiou et al. 2000). Lack of IGF-1 expression has been associated with uveal 

melanoma metastasis and was examined by Frenkel et al. when serum from healthy, 

disease-free subjects, and metastatic uveal melanoma patients serum was compared 

using enzyme-linked immunosorbent assays (ELISA). The study illustrated that 

IGF-1 levels decrease along the progression to metastasis with the highest 

expression of IGF-1 being associated with healthy serum and the lowest with 

metastatic melanoma (Frenkel, Zloto et al. 2013). They postulated that this may be 

due to the fact that IGF-1R has been reported to be highly overexpressed in liver 

metastases and as the secondary tumour grows, more IGF-1, which is produced in 

the liver, binds. Therefore, once IGF-1 binds to its receptor, less circulating ligand is 

available. It has also been suggested that IGF-1R may have a chemoattractant role in 

establishing liver metastases. This implies that IGF-1 could be used as a predictive 

biomarker for liver metastases in uveal melanoma, when continuously measured 

(Economou, Andersson et al. 2008, Frenkel, Zloto et al. 2013). Other protein 

expression patterns have been implicated with preferential spread of uveal 

melanoma to the liver such as the down-regulation of hepatocyte growth factor 

(HGF) and up-regulation of c-MET, its receptor. This may be a similar scenario to 

IGF-1/IGF-1R but research suggests that IGF-1R has a more significant prognostic 

value than that of c-MET (Mallikarjuna, Pushparaj et al. 2007, Bakalian, Marshall et 

al. 2008, Abdel-Rahman, Boru et al. 2010).  

The identification of proteins which indicate the prognosis of a tumour could 

improve our understanding of the biology of the metastatic disease, and could 

possibly lead to the discovery of a therapeutic target against which a rational therapy 

may be designed. Biomarkers, in conjunction with genetic information, may also 

help in a clinical setting when monitoring patients who are at risk of metastasis. 
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However, the search for potential targets is hindered by the relatively small sample 

numbers available for study, due to the rarity of the disease. Larger studies are 

needed to improve the statistical power of biomarker identification and validation in 

uveal melanoma. The uveal melanoma tumour tissue acquired is often a very small 

specimen, which also limits proteomic research. 

 

Table 1.1 Summary of all uveal melanoma proteomic studies carried out to-date.  

 

1.3 Vitreous Fluid 

Vitreous humour is a hydrogel-like substance which makes up approximately 80% 

of the eyeball volume (Grus, Joachim et al. 2007). The vitreous can be a useful tool 

for analysing pathophysiological events which take place within the orbit of the eye, 

such as in the case of diabetic retinopathy, and may contain valuable proteomic 

information (Simo-Servat, Hernandez et al. 2012). In recent years, ocular fluids have 

been more frequently examined on a proteomic-level. This is mainly due to 
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advances in protein analysis in areas such as MS, which measures the mass to charge 

ratio of a molecule, and multiplexing methods. Such advances allow us to better 

understand major ocular diseases, such as diabetic retinopathy, as they can be 

associated with pathological concentrations of many proteins within the aqueous and 

vitreous humour (Pollreisz, Funk et al. 2013).  

 

1.3.1 Vitreous Fluid  Sample Preparation 

There are many challenges in using vitreous fluid for proteomic analysis, such as 

contaminating the specimen by rupturing of the blood retina barrier (BRB) or 

varying protein concentration of samples. The BRB can easily be damaged during 

sample collection or rupture as a side-effect of the disease and would result in an 

influx of serum proteins such as serum albumin, therefore contaminating the 

specimen with other biological fluids (Simo-Servat, Hernandez et al. 2012). Vitreous 

humour can vary in its protein concentration between control and disease specimens, 

see Figure 1.2, but also within groups of samples from the same condition (Shitama, 

Hayashi et al. 2008).  In addition to the above, the volume of sample acquired can 

often also be low, which can hinder experiments requiring a significant protein 

concentration.  

 

 

Figure 1.2 Illustration of the variation in protein concentration between control 

(collected from patients with benign disease or from a healthy post-mortem donor) 

vitreous and vitreous samples taken from patients with various forms of retinopathy; 

Non-proliferative diabetic retinopathy (NPDR), Proliferative diabetic retinopathy 



24 

 

(PDR), Rhegmatogenous retinal detachment (RRD), Proliferative vitreoretinopathy 

(PVR) (Shitama, Hayashi et al. 2008). 

Typically, the proteomics workflow of vitreous humour analysis is a multi-step 

process. It begins with appropriate collection of approximately 1-3 mL of fluid, 

depending on the underlying condition. Any haemorrhaging must be taken into 

account during collection as this can affect later analysis. The preservation of the 

biological nature of the specimen is of paramount importance and hence it must be 

protected against proteolytic degradation, preferably by snap freezing and storage at 

-80°C. The high viscosity of vitreous samples can hinder sample manipulation, for 

example during pipetting, hence it is necessary to centrifuge the samples at high-

speed prior to experimental use (Angi, Kalirai et al. 2012).  

Vitreous from patients with macular hole or macular epiretinal membrane are often 

used as controls as vitreous fluid cannot be collected from healthy eyes. Ocular fluid 

can only be collected during surgery, such as vitrectomy, or enucleation (Grus, 

Joachim et al. 2007, Wang, Feng et al. 2012).  

The gel-like consistency of the fluid is mainly due to the hydrated network of fibular 

macro-molecules, such as proteoglycans and collagen fibrils, however the majority 

of vitreous fluid is composed of high abundance proteins such as albumin, 

immunoglobulin G (IgG) and apolipoproteins. Hence, it is similar to serum in 

composition (Feener 2012). Therefore, the viscosity and proteomic nature of 

vitreous make sample pre-treatment a necessary step (Thierauf, Musshoff et al. 

2009).  

Pre-treatment, such as immunoaffinity subtraction (Section 1.6.1) can be used in 

order to promote the detection of less abundant proteins in later experiments 

(Pollreisz, Funk et al. 2013). Immunodepletion may involve removing one or more 

prominent high molecular weight proteins and is compatible with all downstream 

applications, but it has been shown to produce the best spectrum of results when 

used with LC-MS/MS (Smith, Wood et al. 2011). However, it is also possible that 

by removing many of the high abundance proteins, the protein concentration will be 

severely decreased and thus inadequate for research. Kim et al. speculated that this 

could be due to the fact that the majority of the vitreous fluid proteome is composed 

of high abundance proteins, to which low abundance proteins may be bound. Hence, 
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some low abundance proteins can be removed along with the depleted proteins 

(Kim, Kim et al. 2007). ProteoMiner, a protein equalising technology, allows for the 

simultaneous depletion of high abundance proteins and concentration of low 

abundance proteins may be a better option (Section 1.6.1). 

 

1.3.2 Proteomic Fractionation and Analysis of Vitreous Fluid 

Despite pre-treating vitreous specimens, due to the complexity of the proteome, 

further fractionation is often required in order to gain a comprehensive view of all 

proteins in the specimen, particularly low abundant proteins. This may be done using 

protein fractionation methods which separate all proteins present and hence allow 

access to the entire proteome. Following this, the entire proteome would be digested 

into peptides, which are then fractionated and identified by MS. This is known as 

“shotgun proteomics” and is useful for gaining quantitative information (Angi, 

Kalirai et al. 2012).   

1-D electrophoresis can be used as a basic fractionation method whereby proteins 

are separated based on their size. 2-D electrophoresis is a useful gel-based method 

for separating proteins based on both their mass and charge through the combination 

of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

isoelectric focusing to generate a “spot map” of proteins of interest. This technique 

is described in more detail in section 1.6.3. Protein gels are visualised using staining 

methods such as fluorescent dyes which have high a dynamic range and sensitivity, 

e.g. SYPRO Ruby, or a global protein stain such as colloidal silver stain or 

Coomassie Brilliant Blue. Stained protein spots can then be excised from the gel and 

directly compared to those of another gel in the same region for their protein content 

following peptide fractionation and identification. Using vitreous fluid, Ouchi et al. 

identified 6 proteins as being differentially regulated between patients with and 

without diabetic macular oedema (DMO) using 2-D electrophoresis and optical 

density analysis of protein spots (Ouchi, West et al. 2005). 2-D DIGE (2-

Dimensional Difference Gel Electrophoresis), is one of the most sensitive staining 

methods available for 2-D electrophoresis, and continues to be the method of choice 

for differential protein expression analysis in vitreous fluid (Kim, Kim et al. 2007, 

Wang, Feng et al. 2012, Hernandez, Garcia-Ramirez et al. 2013). Using DIGE, 
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Hernandez et al. identified four proteins as being exclusively associated with DMO, 

when 8 control vitreous were compared to 8 DMO vitreous; four with proliferative 

diabetic retinopathy (PDR) and four without. All targets were subsequently validated 

using ELISA. They concluded that DIGE proved to be an accurate method for 

making quantitative comparisons and allowed for the identification of new 

candidates in DMO pathogenesis (Hernandez, Garcia-Ramirez et al. 2013). 

Proteins of interest are ultimately identified using MS. This process is described in 

more detail in section 1.6.4. In terms of vitreous fluid analysis, Kim et al. utilised 

both 2-D electrophoresis and LC-MS/MS for the analysis of the same vitreous fluid 

sample set and identified 49 and 531 proteins, respectively. This illustrates the 

power of new proteomics technologies and how the quality of results generated from 

a sample may be dependent in the technology used (Kim, Kim et al. 2007, Angi, 

Kalirai et al. 2012). Quantitative label-free proteomics is also being more commonly 

used for vitreous fluid analysis. Hauck et al. used quantitative LC-MS/MS in 

combination with pathway analysis for the identification of two proteins which led 

to the discovery of retinal Müeller glial cells involved in autoimmune triggers of 

uveitis (Hauck, Hofmaier et al. 2012). 1-D SDS-PAGE has also proved useful when 

utilised in conjunction with reverse-phase LC-MS/MS. Yu et al. used both 

techniques for the characterisation of the vitreous proteome in rhegmatogenous 

retinal detatchment (RRD) patients with Proliferative vitreoretinopathy (PVR) and 

identified 516 proteins. (Yu, Peng et al. 2012).  

 

1.3.3 Clinical Significance of Analysis of the Vitreous Fluid Proteome 

Variations in protein composition occur within the vitreous. For example, in the 

proximity of the cortex, collagen isoforms are significantly more concentrated than 

in the central vitreous. Such extracellular matrix proteins provide a framework for 

the binding of molecules and soluble proteins, hence influencing biochemical 

transport within the eye. This compartmentalisation of proteins also suggests that 

soluble proteins are heterogeneously distributed within the fluid. This extracellular 

network allows for the diffusion of proteins between the vitreous and its surrounding 

tissues, such as the retina and it is in this regard that the vitreous can be seen as a 

hub of biochemical indicators representative of the surrounding environment since it 
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is directly impacted by ongoing disease related events (Feener 2012). Therefore, the 

vitreous is most interesting to analyse when it is close to the site of damage or 

disease, for example in the case of uveal melanoma or DMO (Grus, Joachim et al. 

2007). 

Proteins relating to both proliferative and non-proliferative diabetic retinopathy have 

been studied in the vitreous. Diabetic retinopathy is a progressive disease caused by 

chronic exposure to hyperglycaemia and is the main cause of vision loss in adults in 

the developed world. Many proteomic studies have been carried out in the vitreous 

for the development of a therapeutic target. The disease can be divided into 

proliferative and non-proliferative retinopathy, depending on the stage of disease. In 

addition to this, DMO can occur which involves the breakdown of the BRB, hence 

leading to visual impairment (Ouchi, West et al. 2005, Wang, Feng et al. 2013). 

Wang et al. used reverse-phase HPLC coupled to ESI-MS/MS for the quantitative 

analysis of the vitreous proteome in PDR patients. They identified 96 proteins which 

were differentially expressed between PDR and control vitreous, with many of these 

proteins being correlated to pathways such as glycolysis/gluconeogenesis and 

complement and coagulation cascades. Using label-free quantification proteomics 

methods, they identified a total of 62 proteins which were not yet associated with 

PDR (Wang, Feng et al. 2013). Other studies attempting to understand the basis of 

PDR and DMO through the proteomic analysis of the vitreous have also recently 

been carried out; with MS-based methods being used more frequently (Gao, Chen et 

al. 2008, Hernandez, Garcia-Ramirez et al. 2010). In spite of this, 2-D 

electrophoresis methods are still relevant and are commonly used (Garcia-Ramirez, 

Canals et al. 2007, Wang, Feng et al. 2012).  

Uveitis is an inflammatory disease of the uveal tract which is poorly understood and, 

as there is no therapy available, can lead to loss of vision (Turgut, Gul et al. 2013). 

Proteomic analysis of the vitreous fluid has been carried out in equine models in 

order to better understand the disease in both horses and humans. Using label-free 

LC-MS/MS quantification followed by pathway analysis, they identified a number 

of human and equine shared auto-antigens, including cellular retinaldehyde-binding 

protein (CRALBP), involved in autoimmune uveitis and found that the Wnt signal 

transduction pathway was highly involved in pathogenesis of uveitis (Hauck, 

Hofmaier et al. 2012). Turgut et al. used ELISA for the analysis of potential uveitis 
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treatments using vitreous fluid, identifying IL-1, IL-6 and TNF-α as all being 

upregulated in murine uveitis models despite treatment with gherlin (Turgut, Gul et 

al. 2013). 

 

1.4 Cutaneous Melanoma 

Cutaneous melanoma is a cancer which affects skin melanocytes. Despite 

accounting for only 4% of all skin cancer cases, it is the form of skin cancer which 

has the highest death toll in the USA and Europe (Ugurel, Utikal et al. 2009). The 

rate of incidence of melanoma is rising; in stark contrast to many other cancers. In 

the USA in 1935, the lifetime risk of developing the cancer was 1 in 1,500. It has 

now risen to 1 in 68, despite improved patient awareness and better surveillance 

(Balch, Buzaid et al. 2001, Siegel, Naishadham et al. 2013). However,  melanoma 

has been traditionally known as being difficult to treat, mainly due to the large 

number of patients who are resistant to immune therapy as well as chemotherapy 

(Mehnert and Kluger 2012). In addition to this, malignant melanoma often exhibits 

unpredictable behaviour. For example, many patients with significant vertical 

growth remain metastasis-free while some patients with thin die as a result of their 

disease (Torabian and Kashani-Sabet 2005). Therefore, a more thorough 

understanding of the pathways of cutaneous melanoma is critical for the 

development of predictive biomarkers.  

 

1.4.1 Cutaneous Melanoma Staging 

Primary cutaneous melanomas are characterised by horizontal growth within the 

epidermis only. However, the malignancies can become more aggressive which 

leads to rapid growth and invasion of the dermis. Later stages of the disease are 

associated with rapid invasion and metastasis of tissues other than the dermis. When 

melanoma is detected and treated prior to the development of lymph node 

metastasis, the five-year survival rate is 99%, however, the five-year survival rate 

for distant stage melanoma patients is approximately 15% (Al-Ghoul, Bruck et al. 

2008).  
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Cutaneous melanoma is staged by the TNM system devised by the American Joint 

Committee on Cancer (AJCC). This determines how widespread the cancer is by 

taking into account the status of three main criteria; tumour, lymph nodes, and 

metastasis (TNM) using both clinical staging and pathologic staining.  

The tumour category (T) is defined by thickness, ulceration and mitotic rate. Using 

Breslow measurement, the thickness of a melanoma is determined. The 

extensiveness of tumour infiltration is defined by a number ranging from 0 to 4 and 

ulceration and mitotic rate, i.e. the rate of cell proliferation, defined by a letter; a or 

b. Melanomas which have a higher mitotic rate and are ulcerated tend to have a 

poorer prognosis. (Balch, Gershenwald et al. 2009, http://www.cancer.org/ 2013).  

Lymph node (N) involvement is decided by spread of the malignancy to nearby 

nodes or lymphatic channels attached and is designated a number from 0 to 3, 

depending on the degree of melanoma spread in the lymphatic system. As sentinal 

lymph node biopsies are now considered to be necessary for the staging of 

microscopic nodal metastases, a letter, a, b, or c, which is based on pathological 

staining of lymph node tissue can also be assigned. This spread may also be 

macroscopic or simply composed of satellite tumours which are close to but have 

not yet reached the lymph nodes (Balch, Gershenwald et al. 2009).  

Finally, the M category is defined by spread, or metastasis, of the cancer to distant 

organs and blood levels of lactate dehydrogenase (LDH) found in such organs. 

Levels of LDH are now taken into account as a prognostic value for stage IV 

patients. Indeed, LDH measurements now appear to act as an independent and 

significant indicator of survival outcome in advanced stage patients. This is further 

discussed in section 1.4.3. Unfortunately, melanoma can spread to virtually any site 

in the body which can make detection and diagnosis of metastases both time-

consuming and challenging. It most commonly spreads to regions such as the lungs, 

abdomen, pelvis and the brain (Davies, Liu et al. 2011, Kedinger, Meulle et al. 2013, 

Trout, Rabinowitz et al. 2013). The spread of melanoma to the brain is often most 

indicative of poor outcome as 54% of all melanoma deaths are due to the presence of 

brain metastases (Davies, Liu et al. 2011).  

The result from each category is then combined to give an overall TNM stage (Table 

1.2). 
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Table 1. Anatomic Stage Groupings for Cutaneous Melanoma 

 Clinical Staging  Pathological Staging 

 T N M  T N M 

0 Tis N0 M0 0 Tis N0 M0 

IA T1a N0 M0 IA T1a N0 M0 

IB T1b N0 M0 IB T1b N0 M0 

 T2a N0 M0  T2a N0 M0 

IIA T2b N0 M0 IIA T2b N0 M0 

 T3a N0 M0  T3a N0 M0 

IIB T3b N0 M0 IIB T3b N0 M0 

 T4a N0 M0  T4a N0 M0 

IIC T4b N0 M0 IIC T4b N0 M0 

III Any T N > N0 M0 IIIA T1-4a N1a M0 

     T1-4a N2a M0 

    IIIB T1-4b N1a M0 

     T1-4b N2a M0 

     T1-4a N1b M0 

     T1-4a N2b M0 

     T1-4a N2c M0 

    IIIC T1-4b N1b M0 

     T1-4b N2b M0 

     T1-4b N2c M0 

     Any T N3 M0 

IV Any T Any N M1 IV Any T Any N M1 
 

 

 

1.4.2 Pathogenesis of Cutaneous Melanoma 

Many genetic studies have been carried out on malignant melanoma. Some of the 

best characterised mutations and epigenetic changes have involved the receptor 

tyrosine kinase (RTK) pathway.   

V-raf murine sarcoma viral oncogene homolog B1 (BRAF) was the first commonly 

occurring somatic mutation identified in cutaneous melanoma (Davies, Bignell et al. 

2002). BRAF is a cytoplasmic serine/threonine kinase of the RAS-RAF-MEK-ERK-

Table 1.2 Anatomic Stage Groupings for Cutaneous Melanoma. As adapted 

from Balch, Gershenwald et al. 2009. 
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MAP kinase pathway, a cascade which is responsible for cellular responses to 

growth signalling. RAS is responsible for the regulation of BRAF however, in 

approximately 15% of cancers RAS is mutated into an oncogenic form. 66% of 

melanomas contain a single mutation, valine is substituted for glutamic acid at 

position 600, associated with BRAF. When BRAF
V600E

 is expressed in melanoma cell 

lines, the MAPK pathway is hyperstimulated which leads to malignant cellular 

transformation (Davies, Bignell et al. 2002, Jakob, Bassett et al. 2012, Mehnert and 

Kluger 2012). It has been illustrated that BRAF mutations more commonly develop 

in skin which is intermittently exposed to sun exposure than in unexposed regions 

such as palms, soles and mucosal membranes. It has also been found that such 

mutations do not occur in melanomas on chronically sun-damaged skin (Maldonado, 

Fridlyand et al. 2003). BRAF mutations appear to occur early on in the development 

of melanoma as benign nevi contain a high number of such mutations. Both early 

stage melanocytic lesions and metastatic lesions also seem to harbour a similar 

number of BRAF mutations (Mehnert and Kluger 2012). It is also notable that 

patients treated with BRAF inhibitors had a better prognosis than those who were 

not, indicating the significance of BRAF activation throughout the disease, despite 

its mutation being an early event (Davies, Liu et al. 2011).  

Neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS) is a member of the 

RAS family which includes HRAS and KRAS, and is central to the development of 

the malignant phenotype. NRAS codes for a guanine triphosphate (GTP)-binding 

protein and once mutated can constitutively activate the downstream RAS-RAF-

MEK-MAPK pathway via exclusive point mutations found primarily on codon 61, 

but also on codon 12 and 13. NRAS is mutated in 15-20% of melanomas, making it 

the second most commonly mutated gene in cutaneous melanoma (Aguissa-Toure 

and Li 2012, Jakob, Bassett et al. 2012, Posch and Ortiz-Urda 2013). Interestingly, 

most melanomas have either a BRAF
V600E

 or an NRAS mutation but not both 

(Banerji, Affolter et al. 2008, Jakob, Bassett et al. 2012). It has been found that the 

incidence of either BRAF or NRAS may be due to differences in histological type and 

tumour site, based on the extent of sun exposure. BRAF mutations typically occur in 

patients with superficial spreading melanoma, in skin which has not been chronically 

sun damaged. In contrast, NRAS mutations are found in patients with nodular 

melanoma and have been correlated to continuous ultraviolet (UV) light exposure as 
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it is suggested that sunlight acts as a mutagenic agent in the development of NRAS 

anomalies (van 't Veer, Burgering et al. 1989, Lee, Choi et al. 2011). NRAS 

mutations are associated with a higher rate of metastasis to the central nervous 

system (CNS) in comparison to the wild type counterpart and have been identified as 

a potential, independent indicator of poor prognosis following diagnosis of advanced 

melanoma (Jakob, Bassett et al. 2012). 

PTEN is one of the most commonly inactivated tumour suppressor genes in sporadic 

cancers and has been detected in a wide spectrum of cancers including, breast, 

thyroid and prostate. It occurs at a frequency of 30-40% in melanoma cell lines and 

at 10% in primary melanomas. PTEN protein has both lipid and protein phosphatase 

activity and is necessary for cell-cycle regulation (Aguissa-Toure and Li 2012). It 

has also been suggested that it may inhibit tumorgenicity and metastasis through the 

regulation of matrix metalloproteases (MMP), insulin-like growth factor (IGF) and 

VEGF expression (Hwang, Yi et al. 2001). Loss of PTEN function results in 

aberrant cell growth, uncontrolled migration and lack of apoptosis. It appears to 

explain many phenotypic hallmarks of melanoma, although, PTEN mutation is also 

associated with other genetic changes which clouds our understanding of its role. 

Loss of function of PTEN occurs later on in melanoma progression but may be 

implicated in early-stage tumorigenesis (Palmieri, Capone et al. 2009, Aguissa-

Toure and Li 2012). In addition to this, mutations of PTEN are often linked with 

other melanoma-associated mutated genes, such as Cyclin-Dependent Kinase 

Inhibitor 2A (CDKN2A) and BRAF; loss of CDKN2A may work in cooperation with 

PTEN in relation to tumorigenesis, and PTEN is involved in the inhibition of 

growth-factor stimulated MAPK signalling which can cause a knock-on effect on the 

BRAF-MAPK pathway (Palmieri, Capone et al. 2009). 

CDKN2A has been found to be mutated in a variety of cancers, including familial 

melanoma where germline mutations occur. The gene, which is located on 

chromosome 9p21, encodes for p14 and p16. p14 has an anti-proliferative function 

through the regulation of the cell cycle at G1/G2 transition stage. p16 is a cyclin-

dependent kinase inhibitor necessary in the regulation of G1/S phase through the 

inhibition of cyclin-dependent kinase D (CDK). Mutated p16 is unable to interact 

with CDK4, thus preventing the regulation of cell cycle arrest, allowing for the 

uncontrolled progression through the cell cycle and aiding in the development of 
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neoplastic transformation. CDKN2A is frequently mutated or deleted in tumour cells, 

which suggests the role of p16 as a tumour suppressor (Mehnert and Kluger 2012, 

Szponar-Bojda, Pietrzak et al. 2012). Familial melanoma as a result of CDK4 

germline mutations has been observed, which is associated with the subsequent 

development of additional malignancies such as pancreatic cancer (Goldstein, 

Struewing et al. 2000). Sporadic melanoma has also occurred as a result of somatic 

mutations in p16 and CDK4 (Gast, Scherer et al. 2010). 

Chromosomal aberrations are found throughout melanoma, each of which are often 

correlated with a particular outcome due to the associated genes present on each 

chromosome. LOH has been reported at frequency of 47% in chromosome arm 9p 

and is known to occur prior to the loss of other chromosome arms. LOH of 

chromosome regions 3p, 6q, 10q, 11q, and 17p have also been described as regularly 

occurring. Of these LOH of 6q, 11q and 17 p are associated with invasiveness 

(Healy, Rehman et al. 1995). 

Fountain et al. were the first to convincingly associate aberrations of chromosome 

10 with melanoma (Fountain, Bale et al. 1990). Both chromosomes 9 and 10 have 

been found to be most interesting, despite other chromosomes being more regularly 

altered, due to their singularity in early irregularities and dysplastic lesions. LOH of 

chromosome 10q in particular has been commonly identified as a feature of 

melanoma as it is found to occur at a frequency of 30-50%. Due to the presence of a 

number of tumour suppressor genes on chromosome 10q, such as PTEN, its loss is 

associated with tumour progression (Herbst, Weiss et al. 1994, Aguissa-Toure and 

Li 2012). 

 

1.4.3 Current Protein Biomarkers for Cutaneous Melanoma 

To date, few protein biomarkers have been identified as prognostic indicators of 

cutaneous melanoma and even less are used in the clinic as tools for diagnosis or 

prognosis.  

LDH has been extensively studied in melanoma patient serum for nearly 60 years. It 

has been identified as an initial marker of disease recurrence in 12.5% of stage II 

patients, and has shown sensitivity and specificity values of 72% and 97%. In 
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relation to liver metastases, it was found to have sensitivity and specificity of 95% 

and 82% in the stage II group and 86% and 57% in the stage III group (Finck, 

Giuliano et al. 1983). Serum LDH has also been associated with the presence of 

extra- and intracranial metastases and the overall survival as a result of such (Partl, 

Richtig et al. 2013). In addition to this, elevated LDH has been reported to be 

associated with decreased survival, regardless of the presence or absence of liver 

metastases (Finck, Giuliano et al. 1983). Due to the strong correlation between 

increased serum LDH concentration and diminished survival following multivariate 

analysis, the AJCC has decided to include LDH in its cutaneous melanoma staging 

system as a factor used to delineate the M categories into three groups (Balch, 

Buzaid et al. 2001). 

S100 calcium binding protein B (S100B) is a calcium-binding protein, which was 

first described in melanoma cell cultures and is now a well-used marker for 

pigmented lesions of the skin (Gogas, Eggermont et al. 2009). Despite extensive 

research, the function of S100B is not yet fully understood. As it is known to interact 

with the p53 tumour suppressor gene, it is thought that it may have a prominent role 

in cutaneous melanoma pathogenesis (Vereecken, Cornelis et al. 2012). It is highly 

abundant in neuronal tissue and can be measured in the cerebrospinal fluid (CSF) or 

the blood; for example, it is found to be elevated in the blood following brain trauma 

(Astrand, Unden et al. 2013). S100B is also significantly overexpressed in malignant 

melanoma serum (Astrand, Unden et al. 2013). The clinical significance of S100B in 

monitoring and staging was first identified when its levels in serum were directly 

proportional to disease progression. As well as this, a decline in S100B expression 

correlated with response to treatment (Guo, Stoffel-Wagner et al. 1995). Other such 

studies have reaffirmed this observation, describing S100B as an indicator of poor 

prognosis and in some cases, as an indicator of metastasis (Zissimopoulos, 

Karpouzis et al. 2006, Mocellin, Zavagno et al. 2008). Serum S100B protein has 

been shown to be more effective than LDH in predicting prognosis and response to 

treatment for patients with advanced melanoma and it has been suggested that it 

should be used as part of the AJCC staging system (Torabian and Kashani-Sabet 

2005, Egberts, Pollex et al. 2008). In fact, Switzerland and Germany both 

recommend measuring serum S100B every 3-6 months in patients with a tumour 

thickness of less than 1 mm (Gogas, Eggermont et al. 2009). Despite its 
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effectiveness as an advanced stage marker of prognosis, S100B has been found to be 

limited in its determination of prognosis in early stages, i.e. stages I and II. Also, 

S100B is not melanoma specific and can be over-expressed in other disorders such 

as AIDS, non-melanoma skin cancer, liver and renal injury, central nervous system 

cancers and various inflammatory conditions (Peric, Zagar et al. 2011, Vereecken, 

Cornelis et al. 2012). 

Melanoma inhibitory activity (MIA) is a low-molecular weight autocrine growth 

inhibitor which has multiple roles including regulation of cell growth and cell 

adhesion (Vereecken, Cornelis et al. 2012). It was initially found to be over-

expressed in malignant melanoma cells in vitro but not in benign skin melanocytes 

or benign melanocytic nevi. In malignant tumour tissue, MIA messenger RNA 

(mRNA) was detected at elevated levels in 100% of malignant melanoma samples, 

and when compared to normal skin, benign human skin melanocytes, benign 

melanocytic nevi, and malignant melanomas, MIA mRNA levels mirrored the 

progressive malignancy of the lesions (Bosserhoff, Kaufmann et al. 1997). The 

comparison of early stage patient sera to advanced stage sera, illustrated that MIA 

was up-regulated in 13% and 23% of stage I and II patients, respectively, in 

comparison to 100% of those with stage III and IV disease. Any patients who 

expressed MIA at a normal level did not develop metastases in the follow-up period 

of 6-12 months (Bosserhoff, Kaufmann et al. 1997). Other studies have correlated 

MIA with the development of metastases and suggest that it could be useful as a 

serum marker for the detection of secondary malignancies (Stahlecker, Gauger et al. 

2000). Despite this, MIA has been described as a less reliable tumour marker in 

comparison to S100B or S100B in combination with LDH (Krahn, Kaskel et al. 

2001). It has also been suggested that MIA, when added to combinations of other 

markers, does not improve the overall efficacy of stage III – IV detection (Garnier, 

Letellier et al. 2007).  

Better prognostic and predictive markers in cutaneous melanoma are sorely needed, 

but to date have been elusive. The experimental work detailed here was intended to 

further understand the cutaneous melanoma serum proteome over the course of 

disease progression. Therefore, this work could lead to the development of a 

prognostic test which could easily be used in a clinical setting and could also 

potentially lead to the discovery of a therapeutic target in cutaneous melanoma.  
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1.4.4 Clinical Treatment Options for Cutaneous Melanoma 

Prior to 2011, the treatment options for metastatic melanoma were limited; 

chemotherapy and high-dose interleukin-2 (HDIL-2) were the only approved options 

(Burgeiro, Mollinedo et al. 2013). Due to the high rate of resistance to such 

treatment, the efficacy of chemotherapy was poor. HDIL-2 was also a limited 

therapy as most patients were ineligible for treatment due to a high, associated 

toxicity. As well as this, patient response rates are low. Treatment using other 

conventional methods, such as radiotherapy and immunotherapy, failed due to 

significant resistance (Burgeiro, Mollinedo et al. 2013, Salama 2013). In recent 

years, a number of advances have been made in better understanding immune 

regulation and driver mutations in melanoma which have driven the development of 

new therapies which, according to stage III clinical trials, demonstrate an overall 

survival benefit in metastatic melanoma patients (Salama 2013). 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a modulator of the 

immune system whose protein expression is induced through the interaction between 

a T-cell receptor (TCR) and an antigen. CTLA-4 suppresses T-cell activation by 

recruiting tyrosine and serine or threonine phosphatases and outcompeting CD28; a 

co-stimulatory receptor which binds the same ligands in order to induce signalling 

cascades related to proliferation, cytokine secretion, metabolism and apoptosis 

(Melero, Hervas-Stubbs et al. 2007). Ipilimumab is a humanised, IgG1 monoclonal 

antibody which blocks CTLA-4 in order to induce an anti-tumour immune response 

and reduce tolerance to tumour-associated antigens (Burgeiro, Mollinedo et al. 

2013). It has successfully been used in the treatment of other cancers such as ovarian 

carcinoma and metastatic renal cell cancer (Hodi, Mihm et al. 2003, Yang, Hughes 

et al. 2007). Ipilimumab was the first therapy to improve overall survival in phase III 

randomised controlled trials in previously treated metastatic melanoma patients both 

in combination with experimental vaccine glycoprotein 100 (gp100) and without. It 

was found that ipilimumab decreased the risk of death by 32-34%, leading to FDA 

approval in 2011 for unresectable or metastatic melanoma (Hodi, O'Day et al. 2010, 

Salama 2013). These findings have also been confirmed in untreated patients, 

regardless of the presence of other prognostic factors such as serum LDH level. In 

addition to this, the inclusion of dacarbazine in ipilimumab treatment decreased the 

chance of death by 28% in comparison to chemotherapy alone and improved the 
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median overall survival by 2.1 months (Robert, Thomas et al. 2011). Recently, 

chemotherapy in combination with ipilimumab has been tested illustrating that no 

pharmacokinetic or pharmacodynamic interactions occur between the monoclonal 

antibody and paclitaxel, dacarbazine, or its metabolite, 5-aminoimidazole-4-

carboxamide (Weber, Hamid et al. 2013). As ipilimumab is an antibody, it is unable 

to cross the blood-brain barrier; however this may not be essential for it to exert anti-

tumour effects as it activates T-cells which can migrate into the CNS. A phase II 

trial has shown that 16.67% and 25% of patients with stable brain metastases who 

were treated with the agent showed a partial response or stable disease, respectively. 

The median overall survival of all ipilimumab-treated patients in the study was 14 

months. Further to this, a separate trial has taken place which illustrated the efficacy 

of combining ipilimumab and foretmustine, a chemotherapeutic drug which can 

penetrate the blood-brain barrier (Murrell and Board 2013). 

Programmed death-1 (PD-1), a member of the CD28 family, is an inhibitory co-

receptor expressed on antigen-activated T-lymphocytes, on antigen-specific T-

lymphocytes chronically exposed to antigen, and on B-lymphocytes. One of its 

ligands is B7-H1/PD-L1, the predominant mediator of PD-1 immunosuppression. 

Hence, tumours express PD-L1 as part of a mechanism to evade the immune system 

(Simeone and Ascierto 2012). The suppression of effector T-cell function through 

PD-1 interaction has been shown to prevent deletion/apoptosis, inhibition of 

proliferation, and production of cytokines. In conjunction with chronic antigen 

exposure, this results in T-cell exhaustion, hence, deeming PD-1 to be a potential 

target for the augmentation of the immune response (Fong and Small 2008). The 

anti-PD1 monoclonal antibody, nivolumab, is actively being examined for use as an 

immune activator; both on its own and in combination with Ipilimumab for 

enhancing its effectiveness (Gogas, Polyzos et al. 2013). 

Vemurafenib is an orally-administered, small molecule inhibitor of the BRAF
V600E 

mutation which has been shown to be highly effective in the treatment of cutaneous 

melanoma through the inhibition of unregulated cell growth. A phase III randomised 

clinical trial comparing vemurafenib to dacarbazine illustrated that metastatic 

melanoma patients treated with vemurafenib alone showed a reduction in the risk of 

death by 63% and a 74% reduction in the risk of disease progression. Response rates 

were 48% and 5% for vemurafenib and dacarbazine, respectively (Chapman, 
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Hauschild et al. 2011).  A study is currently ongoing to determine the efficacy of 

vemurafenib in treating melanoma patients who developed brain metastases 

(NCT01378975), however preliminary studies suggest that a synergistic 

combination of vemurafenib with radiation therapy appears to be a favourable 

method of treatment for  brain metastases with a median survival time of 13.7 

months observed (Narayana, Mathew et al. 2013, www.clinicaltrials.gov 2013). Up 

to 50% of patients respond to vemurafenib; however this response generally lasts 

only 6 months due to the emergence of resistance mechanisms (Coit and Olszanski 

2013). Despite the significant success of BRAF inhibitor treatment, a subset of 

patients has been found to develop resistance to the therapy following chronic 

treatment, despite an initial response. This is likely due to BRAF reactivation or 

number of mutations along the MAPK pathway, which is essential for tumour 

survival, thus inducing a bypass to BRAF inhibition. Villanueva et al. illustrated that 

upon chronic BRAF inhibition, melanoma cells can overcome the therapy by flexibly 

altering their signalling in order to exploit another RAF isoform, such as CRAF or 

ARAF, by an unknown mechanism. It has also been found that persistent BRAF 

inhibition in resistant cells is associated with enhanced IGF-1R and PI3K/AKT 

activity. Therefore, the targeting of both MEK and IGF-1R/PI3K using drug 

combinations may be a solution to overcome BRAF inhibitor resistance (Villanueva, 

Vultur et al. 2010).  

Dabrafenib is a small molecule inhibitor which also targets the V600E mutation of 

melanoma, although it works on a more general scale to vemurafenib, targeting both 

wild-type and mutant CRAF and BRAF. Data has also suggested that it is effective 

against the non-V600E BRAF mutation; V600 (Denton, Minthorn et al. 2013, 

Medina, Amaria et al. 2013).  In a recent stage III clinical trial, dabrafenib-treated 

patients reached a median progression-free survival of 5.1 months with an overall 

response rate of 50%, in comparison to dacarbazine-treated patients who reached 2.7 

months with an overall response rate of 6% (Huang, Karsy et al. 2013). However, 

the therapeutic use of dabrafenib has been associated with the development of 

squamous cell carcinoma (SCC) due to an upregulation of the MAPK pathway as a 

consequence of increased phosphorylated ERK in wild-type BRAF cells. Therefore, 

the use of dabrafenib in combination with a MEK inhibitor, such as trametinib, has 

been tested by King at al. They found that the two-pronged approach reduced the 
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occurrence of skin lesions in rats and enhanced the inhibition of tumour growth in 

human melanoma xenograft studies in mice. Clinical trials to test the combination 

therapy in melanoma patients are currently ongoing, however, data from a phase 1/2 

trial have illustrated an improvement in progression-free survival and a non-

significant reduction in the occurrence of skin lesions (King, Arnone et al. 2013). 

A summary of the targeted therapies for cutaneous melanoma mentioned above are 

shown in Table 1.3. 

 

Table 1.3 Summary of the most promising targeted therapies used in the systemic 

treatment of cutaneous melanoma.  

 

1.5 Comparing the Molecular Basis of Uveal and Cutaneous Melanomas 

Although cutaneous and uveal melanomas are of a similar embryonic origin, they 

notably differ in behaviour such as tumorigenesis, metastatic spread and therapeutic 

response. The differences between both melanomas are poorly understood, albeit, it 

is hoped that genetic and proteomic analyses of the nature of melanoma as a disease 

will aid us in understanding variations between both melanomas. 

Chromosomal aberrations transpire differently in both melanomas. Most frequently 

in uveal melanoma, loss of one or two copies of chromosome three occurs or the 

gain of chromosome 8q, however both anomalies can arise together. Monosomy 

three also occurs at a rate of 50% in uveal melanoma, but is rarely found in 

cutaneous melanoma (Hoglund, Gisselsson et al. 2004). Other modifications have 

been reported in uveal melanoma in relation to chromosome 1p36 where loss can 

occur in combination with monosomy three. This appears to indicate a poorer 
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prognosis than either factor occurring alone (Kilic, Naus et al. 2005). Loss of 

chromosome 1p is reported in 28% of uveal melanoma cases; however gain occurs 

more frequently at a rate of 33%. Gain of chromosome 6p occurs in both uveal and 

cutaneous melanoma. It is an indicator of low risk of metastasis in uveal melanoma 

and rarely occurs with monosomy three (van den Bosch, Kilic et al. 2010). 

Monosomy ten is the most frequent chromosomal aberration seen in cutaneous 

melanoma, at a rate of 60% of all cases. It also occurs in uveal melanoma, however 

at a less significant rate of 27% (van den Bosch, Kilic et al. 2010). 

There are a number of genetic mutations which mutually occur in both melanomas. 

Genetic mutations associated with either cutaneous or uveal melanoma and their 

relative frequencies are outlined in Table 1.4.  
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Proteomic similarities have been identified between the melanomas, such as CXCR4 

and its ligand, CXCL12. CXCR4 is known to activate processes such as chemotaxis, 

angiogenesis, and proliferation. In addition to this, its inhibition has been shown to 

inhibit metastasis. 41.4% and 43.4% of uveal melanoma cases illustrate an 

overexpression of CXCR4 and CXCL12, respectively, which are shown to correlate 

with disease progression (Franco, Botti et al. 2010). Similarly, an over-expression of 

CXCR4 and CXCL12 has been associated with high clinical risk in cutaneous 

melanoma, while their under-expression is associated with a better prognosis. 

However, both proteins have been found to be overexpressed in a number of 

neoplasms which suggests that they may be considered to be general biomarkers for 

Table 1.4 Frequency of Genetic Changes in uveal and cutaneous melanoma. 

Table 1.4 Frequency of Genetic Changes in uveal and cutaneous melanoma. 

*Rarely observed or sporadic reports in literature. *
1
 Observed in 83% of blue 

naevi. *
2
 Observed in 48% of iris melanomas. *

3
 Only melanomas arising in 

chronically sun-damaged skin, or acral and mucosal melanomas 



42 

 

cancer (Toyozawa, Kaminaka et al. 2012). Melanoma cell adhesion molecule 

(MCAM) has been correlated with poor outcome in uveal melanoma according to 

immunohistochemical analysis of primary uveal melanoma paraffin sections (Beutel, 

Wegner et al. 2009). In addition to this it has been identified as a significant 

independent variable within advanced stage cutaneous melanoma patients and as a 

marker of negative treatment outcome in 43% of non-surgically treated individuals 

with stage IV melanoma (Rapanotti, Ricozzi et al. 2013, Reid, Millward et al. 2013). 

IGF-1R is closely associated with cutaneous melanoma as an increase in its 

expression is related to the transition from benign to malignant nevi (Ucar, 

Kurenova et al. 2012). Topu-Yilmaz et al. found that IGF-1R expression was found 

to be directly proportional to the degree of pigmentation, necrosis and lymphocyte 

infiltration in uveal melanoma tissue studies. Vitreal and serum specimens studied 

using ELISA confirmed that IGF-1 was increased in patients with scleral invasion. 

This suggests that IGF-1R is related to clincopathological features of uveal 

melanoma while IGF-1 has a role in disease progression and development (Topcu-

Yilmaz, Kiratli et al. 2010). Arrays of mutual proteins which exhibit similar 

expression patterns have been identified in both cutaneous and uveal melanoma. 

These include induced nitric oxide synthases (iNOS) which are necessary for tumour 

growth, and Hepatocyte growth factor (HGF), a protein known to be involved in 

processes such as angiogenesis and epithelial morphogenesis (Massi, Franchi et al. 

2001, Johansson, Mougiakakos et al. 2010, Topcu-Yilmaz, Kiratli et al. 2010, Lee, 

Kim et al. 2011). This illustrates that both uveal and cutaneous melanoma are linked 

through common paths of protein expression for establishing tumorigenesis, disease 

progression, and melanoma development. 

It has been reported that patients with uveal melanoma are approximately 4.6 times 

more likely to develop cutaneous melanoma than “healthy” individuals; however the 

same cannot be said for cutaneous melanoma patients developing uveal melanoma. 

This may be due to the fact that those who have developed uveal melanoma have 

been sufficiently exposed to enough UV radiation to develop cutaneous melanoma 

also (Shors and Weiss 2004). Of course, this may also be related to genetic factors 

but there is currently no evidence to support this. 
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1.6 Clinical Proteomics Methods 

The search for biomarkers is currently carried out, for the most part, using MS-based 

methods in combination with chromatography or gel electrophoresis techniques. 

Biomarker validation methods include immunohistochemistry (IHC), multiple 

reaction monitoring (MRM) and ELISA.  

Commonly analysed clinical specimens include serum and plasma, which are blood 

extracts. Serum is prepared when the blood sample is allowed to clot, centrifuged, 

and the blood clot is removed. Plasma on the other hand is prepared through the 

centrifugation of blood in order to remove red and white blood cells. Anti-

coagulants, such as ethylenediaminetetraacetic acid (EDTA) and heparin, are used 

during this procedure in order to prevent blood clots from forming (Lam, Rainer et 

al. 2004).  

However, prior to proteomic investigation, many samples, particularly serum and 

plasma, require a pre-treatment step. This is due to the fact that complex protein 

mixtures, such as blood, contain an abundance of 20 of the most common proteins 

which can interfere with the detection of potentially more interesting and less 

abundant proteins (Fernandez-Costa, Calamia et al. 2012). 

 

1.6.1 Sample Pre-Fractionation 

Clinical specimens are clearly a valid source of potential biomarkers, however, as 

explained, many can contain a large proportion of high abundant proteins, hence 

fractionation is required to remove these proteins (Kim and Kim 2007).  

Using biological fluids such as serum and plasma can be very useful in the 

biomarker discovery process as they most likely contain proteins and peptides from 

the site of disease and are minimally invasive during collection. Despite this, 99% of 

the total protein mass of plasma or serum is composed of 22 proteins; see Figure 1.3, 

which is the primary disadvantage of using such specimens. Immunodepletion 

involves the removal of any number of the most abundant proteins through an 

immunocapture-based technique. An example of an immunodepletion method 

includes the range of Multiple Affinity Removal System (MARS) columns (Agilent, 

CA, USA), which can variably remove 6, 7 or 14 abundant proteins, or the 
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ProteoPrep20 (Sigma-Aldrich, UK), which removes 20 proteins (Smith, Wood et al. 

2011). There have been questions over the benefit of depleting increased numbers of 

proteins in comparison to fewer proteins. Roche et al. immunodepleted one, six, 12 

or 20 high abundance proteins and subsequently analysed the treated sera using 

proteomic approaches such as SELDI-TOF and 2-D electrophoresis. An overall 

evaluation of results clearly demonstrated the benefit of immunodepletion in the 

detection of lower abundant and potentially more interesting proteins. However, they 

noticed that there was a limited advantage in increasing the number of depleted 

proteins from 12 to 20. By removing 20 proteins, this may also allow for the 

depletion of associated peptides and proteins, which could negatively impact on the 

discovery of biomarkers (Roche, Tiers et al. 2009). Other studies have shown that 

the “depletome” can often contain associated potential disease markers of interest 

and that more attention should be paid to such proteins and peptides (Koutroukides, 

Guest et al. 2011). 

 

 

Figure 1.3 The majority of the serum proteome is composed of highly abundant 

proteins, thus masking lower abundant proteins which may indicate the disease state 

of a patient (Tirumalai, Chan et al. 2003). 

 

Newer technologies, such as ProteoMiner, can also be employed for sample pre-

treatment in order to analyse the “hidden proteome” (Boschetti and Righetti 2008). 

This involves using a vastly heterogeneous library of hexapeptides bound to 

poly(hydromethacrylate) beads which allows for the compression of the dynamic 
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range of protein concentrations. Each hexapeptide binds to an exclusive protein 

sequence and as there are a finite number of ligands available for each molecule to 

bind, highly abundant proteins will quickly saturate theirs, with any excess being 

washed away. Simultaneously, any low abundance proteins are concentrated on their 

ligands (Figure 1.4). When bound proteins are eluted from the column, the dynamic 

range of proteins available is decreased, allowing for a greater range of proteins to 

be analysed in downstream analysis. It is therefore a useful method for quantitative 

analysis of low abundance proteins in complex clinical samples (Sennels, Salek et al. 

2007, Hartwig, Czibere et al. 2009). ProteoMiner equalises the protein in a sample 

without immunodepletion, which as mentioned above can lead to the loss of small 

proteins bound to highly abundant ones. ProteoMiner can also be used on many 

biological samples or a cell or tissue lysate and is compatible with many 

downstream protein analysis techniques. Sennels et al. used the protein equalising 

technology for the enrichment of human blood serum proteins, identifying 1559 

proteins in the resulting elution, of which 58% had not previously been reported in 

the literature (Sennels, Salek et al. 2007).  ProteoMiner has also been used on a 

variety of other biological samples including urine, saliva, and colostrum (Castagna, 

Cecconi et al. 2005, Coscia, Orru et al. 2012, Jagtap, Bandhakavi et al. 2012).  
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Figure 1.4 ProteoMiner allows for the simultaneous enrichment of low abundance 

proteins and depletion of high abundance proteins (http://www.genengnews.com/ 

2010) 

 

Hydrogel nanoparticles are another method used in the separation of highly 

abundant and low abundant proteins. These “smart” nanoparticles allow the 

enrichment and encapsulation of selected classes of proteins from complex mixtures, 

such as a clinical specimen, while protecting the analytes from degradation 

following separation (Figure 1.5). The captured proteins can then be extracted from 

the particles by electrophoresis and quantified (Luchini, Geho et al. 2008). As the 

fractionation method combines size exclusion, affinity separation, concentration, and 

stabilisation of proteins from a complex mix, it provides an ideal environment for 

biomarker discovery in complex biological specimens. 
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Figure 1.5 Animated representation of the molecular sieving property of hydrogel 

nanoparticles. Using an affinity bait and defined porosity, low molecular weight 

proteins (pink) are harvested while high molecular weight proteins are excluded 

(grey) (Luchini, Geho et al. 2008). 

 

1.6.2 Protein Fractionation  

The aim of proteomics is to have a global view of all of the proteins produced in a 

biological system, usually in order to understand a differential protein expression 

pattern (Berth, Moser et al. 2007). It is essentially used for the analysis of the final 

level of gene expression, and is widely utilised in the search for biomarkers of 

disease. In order to do this, it is first necessary to separate all of the proteins in the 

sample for analysis, such as by electrophoresis, as there are approximately 100,000 

proteins produced in humans and 2-D gels may separate up to 10,000 protein spots 

on one gel (Wang, Li et al. 2006, Berth, Moser et al. 2007). The subsequent 

identification of proteins is carried out using MS methods, such as MALDI-TOF and 

LC-MS/MS.  
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1.6.3 Two-Dimensional Polyacrylamide Gel Electrophoresis (2-D                                  

PAGE) 

One of the oldest and most useful methods for protein separation is two-dimensional 

polyacrylamide gel electrophoresis (2-D PAGE). This initially involves separating a 

fixed quantity of protein, as determined by protein assay, based on the isoelectric 

point (pI) of the proteins using immobilised pH gradient (IPG) strips, in the first 

dimension. The pI of a protein is described as the pH at which its net charge is zero, 

hence the protein cannot move freely in an electrical field. The strips are attached to 

the top of a polyacrylamide gel slab and once charge is applied, proteins migrate 

from the strip into the gel and are separated based on their size, using sodium 

dodecyl sulphate electrophoresis, in the second dimension. The result of this process 

is a 2-D gel which, when stained produces a series of spots, with each spot 

corresponding to a protein. Commonly used protein stains include Coomassie 

Brilliant Blue and silver nitrate colloidal stain, both of which are global protein 

stains.  

Although 2-D PAGE has been useful for the separation of complex protein mixtures, 

it was a very limited technique until the advent of micro-analytical techniques, such 

as quantitative LC-MS (O'Farrell 1975, Rabilloud 2002).  

 

1.6.3.1 Two-Dimensional Differential Gel Electrophoresis (2-D DIGE) 

2-D DIGE (Two-Dimensional Differential Gel Electrophoresis) is a highly sensitive 

method of minimal protein labelling of up to three different conditions using 

separate fluorescent dyes and their subsequent co-electrophoresis in order to 

examine the quantitative differential expression of proteins between the conditions 

(Alban, David et al. 2003).  

This technique uses three covalently-bound dyes: Cy2, Cy3 and Cy5, of which the 

NHS-ester reactive group of one molecule of each binds to the epsilon amino group 

of lysines in one protein through an amide linkage. The Cy3 dye is used to stain one 

sample group and Cy5 to stain the other. A pool of all samples can then be created 

and labelled with Cy2 which acts as an internal standard and is used on all gels. All 

gels can be normalised against the Cy2 standard which results in accurate 

reproducibility and protein abundance comparisons between gels. All three of the 
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dyes are size and charge matched, pH insensitive, photostable, sensitive, and 

spectrally resolvable (https://www.gelifesciences.com/ , Alban, David et al. 2003) .  

The gels are scanned at the appropriate excitation and emission wavelengths and the 

acquired images are imported onto a computer for analysis by software such as 

Progenesis SameSpots (Non-Linear Dynamics) or DeCyder (GE Life Sciences). 

These programmes accurately detect statistically significant protein abundance 

changes between the gels and effectively minimise gel-to-gel variation 

(https://www.gelifesciences.com/). The analysis of spot maps is divided into two 

categories, depending on the work flow; spot detection first, including aligning spots 

between gels, calculating spot volumes and subsequent expression profile 

generation, or image modification first, with a separate spot detection step, for 

removing running differences between gels using whole image information and 

generating expression profiles based on differences between spot maps. Newer 

programmes such as Z3, Decyder, Delta2D and Progenesis SameSpots all depend on 

the latter method (Berth, Moser et al. 2007). An overview of the process is shown in 

Figure 1.6. 
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Figure 1.6 A 2-D DIGE workflow from protein labelling with Cy3, Cy5 and Cy2 

(internal standard) to image acquisition using a fluorescent imager 

(https://www.gelifesciences.com/). 

 

As described above, 2D-DIGE has been used for many clinical studies in the past in 

the hunt for biomarkers and it is still relevant today, primarily due to its high 

sensitivity. However, there are a number of problems with gel-based methods; single 

protein spots can often contain more than one protein as molecules of similar charge 

and size would migrate together, and also, resolution can vary depending on the 

properties of the protein such as very high molecular weight and hydrophobicity.  

 

1.6.4 Mass Spectrometry 

MS is a method of protein fragmentation and identification. Traditionally, this 

involves digesting the protein at specific sites and fragmenting the peptides in the 

gas phase.  
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1.6.4.1 Ionisation 

In order to separate neutral molecules through an electromagnetic field, they must 

first be converted to ions and may be changed to a gas, i.e. desorption. Both 

processes are carried out using an ionisation source. A number of methods are 

available for the procedure although, ESI and MALDI are the most efficient ways in 

which to ionise peptides (Canas, Lopez-Ferrer et al. 2006). 

MALDI relies on the saturation and co-crystallisation of matrix with analyte in a low 

vacuum. When the sample combined with the matrix is bombarded with UV light, 

the matrix absorbs the energy which causes it to become vaporised along with the 

sample peptides. This produces a “plume” within which a transfer of protons occurs 

between the analyte and the matrix, thus producing analyte ions (Canas, Lopez-

Ferrer et al. 2006).  

The principle of ESI is based on the fact that if a high voltage is applied to a stream 

of liquid flowing through a narrow capillary, an electrical spray is created. ESI 

allows for ions to gain multiple charges, such as in the case of peptide ions which 

are often doubly or triply charged, thereby requiring less activation energy for 

fragmentation and giving information-rich results for database searches (Canas, 

Lopez-Ferrer et al. 2006). 

 

1.6.4.2 Mass Analysis 

A mass analysis step is used in order to examine ions based on their mass. ESI and 

MALDI mass spectrometers are combined with various mass analysers, depending 

on the sample and the research question. Mass analysers can be based on electric 

and/or magnetic fields for the separation of ions in the gaseous phase and can be 

used alone or in tandem (Aebersold and Mann 2003).  

TOF, the most basic mass analyser, accelerates ions with equal energies in a strong 

electric field through a high vacuum flight tube. Peptides are measured based on 

their velocity, as the velocity of each particle is inversely proportional to its mass, 

i.e. the heavier the peptides, the slower are in reaching the detector. (Canas, Lopez-

Ferrer et al. 2006). 
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In ion trap MS, ions are stored until the trap is full. Using radio frequency voltage, 

ions are ejected out and are detected by the electron multiplier. The orbitrap is a 

highly sensitive form of ion trap (Fitzgerald, O'Neal et al. 1997). 

 

1.6.4.3 Protein Identification 

The acquired data is then searched against a database in order to generate a set of 

identifications. For determining the mass of a peptide, peptide mass fingerprinting, 

which compares mass spectra to a protein database for matching molecular weights, 

or tandem mass spectrometry (MS/MS), which determines the mass and generates a 

partial amino acid sequence for further fragmentation, can be used. Software 

packages which can interpret proteomic data are available, such as MASCOT and 

Phenyx (Wright, Noirel et al. 2012). 

 

1.6.5 Surface enhanced laser desorption/ionisation (SELDI) 

Surface enhanced laser desorption/ionisation (SELDI) is an ionization method in MS 

that is used for the analysis of protein mixtures. It is a variation of MALDI that uses 

a target modified to achieve biochemical affinity with the analyte and is useful for 

the comparison of protein levels between patients and so, can be used for biomarker 

discovery.  

Initially, a chip-based target is charged and activated to bind a specific subset of 

proteins. The surface may consist of various materials of different affinity 

characteristics such as hydrophobic or hydrophilic properties, containing metal ions 

(such as immobilised metal affinity capture: IMAC) or anion and cation exchangers 

(Kiehntopf, Siegmund et al. 2007), or it can be pre-activated for the coupling of 

capture molecules such as protein, DNA, or RNA prior to sample loading. Any 

unbound proteins can be washed away, thus acting as a separation step. The sample 

is mixed with a matrix, such as sinapinic acid, which is allowed to dry and co-

crystallise with the analyte on a chip surface. A laser then strikes the mixture, 

causing ionisation of any bound proteins present. TOF is used to measure the m/z of 

each molecule which generates a spectrum where each peak corresponds to a 

protein.  
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A wide variety of biofluids can be used on a SELDI chip such as, serum, plasma, 

vitreous fluid and saliva. Although SELDI-TOF is a rapid method of protein 

profiling which requires little sample, it does not produce protein identifications; 

only the m/z ratio and the intensity of the peak (Peng, Stanley et al. 2009, De Bock, 

de Seny et al. 2010).   

 

1.6.6 Quantitative Label-Free LC-MS/MS 

LC-MS/MS is quickly becoming the method of choice for the analysis of complex 

samples due to its high sensitivity and exceptional dynamic range. This involves the 

use of nano-high performance liquid chromatography (HPLC) with reverse phase 

chromatography prior to MS/MS.  

Label-free proteomics identifies proteins through both bioinformatics and MS. The 

label-free approach is based on the separate LC-MS/MS analysis of all samples, 

followed by retention time control and normalisation between generated MS/MS 

spectra using a programme such as Progenesis LC-MS (Non-Linear Dynamics). 

Quantitative LC-MS/MS can be broken into two groups; area under the curve (AUC) 

or signal intensity measurement based on precursor ion spectra, and spectral 

counting, which is based on counting the number of peptides assigned to a protein in 

an MS/MS experiment. (Figure 1.7) (Neilson, Ali et al. , Zhu, Smith et al.).  

Measurement by ion intensity infers quantification through precursor ion signals at 

specific retention times without the use of a stable isotope standard. As ionised 

peptides elute from a reverse-phase column into the mass spectrometer, their ion 

intensities can be measured within the chosen detection limits, and differentially 

expressed peptides can be subsequently compared with those from other samples 

(Neilson, Ali et al.). This method requires that all data is collected in data-dependent 

„Triple Play‟ mode (allowing MS scan, Zoom scan, and MS/MS scan) and these 

together with chromatographic retention time determine the analytical accuracy of 

protein identification and quantification by ion intensity (Higgs, Knierman et al. 

2005).  

Spectral counting relies on the principal that the more of a specific protein present in 

a sample, the more MS/MS spectra collected for peptides of that protein. Hence, the 
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relative abundance of that protein can be obtained by comparing the number of 

MS/MS spectra between sample sets. Although this method has the advantage of 

simultaneous quantification and identification, it depends on the quality of MS/MS 

generated (Bantscheff, Schirle et al. 2007, Wang, You et al. 2008). 

As the quantitative label-free LC-MS/MS method does not require sample labelling, 

bias is limited while throughput is significantly increased; a highly reproducible LC 

profile must be generated to maximise mass resolution, accuracy, and proteome 

coverage.  

 

 

Figure 1.7 Label-free quantitative proteomics. Control and sample are subjected to 

individual LC-MS/MS analysis. Quantification is based on the comparison of peak 

intensity of the same peptide or the spectral count of the same protein (Zhu, Smith et 

al. 2010). 
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AIMS OF THESIS 

 

The goal of this thesis was to identify differential protein expression patterns 

between metastatic uveal melanoma in comparison to the non-metastatic disease and 

also, to determine potential biomarkers in the progression of cutaneous melanoma. It 

was intended that the analysis of both melanoma types would allow for a better 

understanding of the molecular mechanisms of the metastatic phenotype. It was also 

a possibility that this research could the lead to the discovery of biomarkers for the 

development of targeted therapies for disease treatment and the early detection of 

disease using proteomics tests. Specifically, the aims of this thesis were the 

following: 

 

 To identify protein expression differences in primary tumour tissue between 

two sets of uveal melanoma sample groups; those who subsequently developed 

metastasis in comparison to those who did not, using 2D-DIGE and quantitative 

label-free LC-MS, and to elucidate the role of such proteins in metastasis using 

functional analysis which may improve our understanding of the metastatic 

phenotype of the disease. 

 

 To compare control serum from disease-free patients to that of late stage 

cutaneous melanoma patients using fractionation methods in order to identify highly 

significant protein expression differences and to subsequently examine such 

differences across an array of control, benign, early stage melanoma, and advanced 

melanoma sera using ELISA in order to further understand the progression of the 

disease. 

 

 To optimise a protocol for the use of vitreous fluid from uveal melanoma 

patients in proteomic experiments by minimising the quantity of highly abundant 

proteins, while enhancing the presence of low abundance proteins. 

 

 To determine potential, differentially expressed biomarkers for uveal 

melanoma in the vitreous fluid between patients with monosomy of chromosome 

three status and those with disomy of chromosome three. It also intended to identify 
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proteins which were differentially expressed between control vitreous, which was 

collected from macular degeneration patients, and that of uveal melanoma patients. 

 

 To use surface-enhanced laser desorption-ionisation time-of-flight (SELDI-

TOF MS) for the proteomic profiling of advanced cutaneous melanoma serum, the 

vitreous fluid of uveal melanoma patients and the conditioned media of cutaneous 

melanoma cultured cells, in comparison to relevant controls for the direct analysis of 

potential biomarker expression between the sample sets.  
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CHAPTER TWO 

Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

2.1 Cell Culture 

2.1.1 Preparation of Cell Culture Media 

Ultrapure water (UHP) was purified to a standard of 12-18 M/cm resistance by a 

reverse osmosis system (Millipore MillI-RO 10 Plus, Elgastat UHP). Glassware 

required for cell culture related applications were soaked in a 2% RBS-25 (Chemical 

Products R. Borghgraef S.A.) for 1 hour, washed in an industrial dishwasher, using 

Neodisher detergent and rinsed twice with UHP. All thermostable solutions, water 

and glassware were sterilised by autoclaving at 121C for 20 minutes at 15 bar 

(Thermolabile solutions were filtered through 0.22 m sterile filters (Millipore, 

Millex-GV SLGV025BS)). Complete media was prepared by adding serum as 

required (Table 2.1). An aliquot of complete medium was kept in a T-25cm
2
 flask in 

an incubator over 5-7 days to ensure that the complete medium is free of 

contamination at the time of use. Complete media was also stored at 4C for a 

maximum of one month in the dark. 

 

Table 2.1 Details of cell lines and complete growth media components 

 

2.1.2 Cell Lines and Cell Culture 

All cell culture work was carried out in a class II laminar air-flow cabinet (Nuaire). 

Before and after use the laminar air-flow cabinet was cleaned with 70% industrial 

methylated spirits (IMS). Any items brought into the cabinet were also swabbed 

down with IMS. At any time only one cell line was used in the laminar air-flow 

cabinet and upon completion of work with any given cell line, 15 minutes clearance 

was given to eliminate any possibilities of cross-contamination between the various 

cell lines. The cabinet was cleaned weekly with Virkon (Antech International, 

P0550) and IMS. Details pertaining to the cell lines used for the experiments are 
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provided in Table 2.2. All cells were incubated at 37°C and where required, in an 

atmosphere of 5% CO2. Cells were fed with fresh media or subcultured (see section 

2.1.1) every 2-3 days or as required in order to maintain active cell growth. 

 

2.1.3 Subculturing of Adherent Cell Lines 

The cell lines used during the course of this study, their sources, and detailed 

information are listed in Table 2.2. Exhausted cell culture medium was removed 

from the tissue culture flask and discarded into a sterile bottle. The flask was then 

rinsed out with 2 mL of PBS solution to ensure the removal of any residual media. 

Depending on the size of the flask, 2-5 mL of trypsin solution (0.25% (v/v) of trypsin 

(Gibco, 043-05090) and 0.01% (v/v) of EDTA (Sigma, E9884) solution in PBS 

(Oxoid, BRI4a)) was then added. Cells were incubated at 37C for approximately 2-5 

minutes until all of the cells detached from the inside surface of the flask. This was 

monitored by microscopic observation. An equal volume of complete media was 

added to the flask to deactivate the trypsin. The cell suspension was removed from 

the flask and placed in a sterile universal container (Sterilin, 128a) and centrifuged at 

1000 rpm for 5 minutes. The supernatant was then discarded from the universal and 

the pellet was suspended gently in fresh complete medium. A cell count was 

performed as described in section 2.1.4 and an aliquot of cells was used to seed a 

flask at the required density. All cell waste or media exposed to cells was autoclaved 

before disposal.  

Cell Lines 
Established 

by 
Source Cell Line Code 

Detailed 

Information 

SK-MEL 5 
Old, Lloyd J. 
Takahashi, T. 

ATCC HTB-70 
Malignant 

Melanoma 

MEL202 
(Ksander, 

Rubsamen et 
al. 1991) 

ESTDAB, University of Tubingen, 

Center for Medical Research, 

Germany 
ESTDAB-128 

Primary Uveal 

Melanoma 

Tumour 

92.1 

(De Waard-
Siebinga, 

Blom et al. 
1995) 

ESTDAB, University of Tubingen, 

Center for Medical Research, 

Germany 
ESTDAB-127 

Primary Uveal 

Melanoma 

Tumour 
 

Table 2.2 Details of cell lines used in this investigation. 
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2.1.4 Assessment of Cell Number and Viability 

Prior to cell counts, cells were prepared by subculturing as detailed in section 2.1.3 

An aliquot of the cell suspension was then added to trypan blue (Gibco, 525) at a 

ratio of 1:1 (v/v). The mixture was incubated for 2-3 minutes at room temperature. 

An aliquot (10 L) was then applied to the chamber of a glass coverslip-enclosed 

haemocytometer. For each of the four grids, cells in the 16 squares were counted. 

Non-viable cells stained blue, while viable cells excluded the trypan blue dye as their 

membrane remained intact, and remained unstained. The average number of viable 

and dead cells per 16 squares was multiplied by a factor of 5X10
3
 (volume of the 

grid) and the relevant dilution factor to determine the average cell number per mL in 

the original cell suspension. Using the data for viable and non-viable cells, 

percentage viability was calculated.  

The Cedex Automated Cell Counter (Roche), an automated cell counting system 

based on the Trypan Blue exclusion method, was also used for accurate 

determination of cell number. Cells were trypsinised and incubated with trypan blue 

in the same manner as above, prior to assessment of cell number through Cedex 

analysis. This involved pipetting 10 μL of Trypan Blue/cell suspension mix onto a 

Cedex Smart Slide (05650801001, Roche) and measuring the cell number using the 

automated system. 

 

2.1.5 Cryopreservation of Cells 

Cells for cryopreservation were harvested in the mid-log phase of growth and 

counted as described in section 2.1.4. Cell pellets were resuspended in a suitable 

volume of serum. An equal volume of filter sterilized solution of 10% (v/v) DMSO 

in serum was added dropwise with mixing into the cell suspension. 1 mL of cell 

suspension was then aliqoted into the cryovials (Greiner, 122278) and immediately 

placed in the -20 C freezer for 1 hour and then placed in a -80 C freezer for four 

hours or overnight. The cryovials were then transferred to liquid nitrogen tank for 

long term storage (-196 C). 
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2.1.6 Thawing of Cryopreserved Cells  

A volume of 5 mL of fresh complete culture medium was added to a sterile universal 

and into a T-25 cm
2
 flask and incubated at 37 °C for ~1 hour. The cryopreserved 

cells were removed from the liquid nitrogen and thawed at 37 C as quickly as 

possible. The cells were removed from the vials and transferred into the pre-warmed 

aliquoted media in the universal. The resulting cell suspension was centrifuged at 

250 g for 5 minutes. The supernatant was removed and the pellet was resuspended in 

the pre-warmed culture medium from T-25 cm
2
 flask. This cell suspension was then 

transferred to T-25 cm
2
 flask and allowed to attach and grow overnight in incubator. 

The following day, the culture media was replaced with fresh complete culture 

medium to remove any non-viable cells and floating cells. 

 

2.1.7 Mycoplasma Analysis of Cell Lines 

Mycoplasma testing was carried out for all cell lines for possible Mycoplasma 

contamination in house by Mr. Michael Henry at the NICB. All cell lines are found 

to be Mycoplasma free. 

 

2.1.7.1 Indirect Staining Procedure for Mycoplasma Analysis 

Normal rat kidney fibroblast (NRK) cells were seeded onto sterile coverslips in 

sterile Petri dishes (Greiner, 633 185) at a cell density of 2x10
3
 cells/ml and were 

allowed to attach overnight at 37°C in a 5% CO2 humidified incubator. 1 mL of cell-

free supernatant from each test cell line was inoculated onto an NRK petri dish and 

incubated as before until the cells reached 20-50% confluency. After this time, the 

waste medium was removed from the dishes, the coverslips (Chance Propper, 22 x 

22 mm) washed twice with sterile PBS, once with a cold PBS/Carnoys (50/50) 

solution and fixed with 2ml of Carnoys solution (acetic acid:methanol, 1:3) for 10 

minutes. The fixative was removed and dried coverslips were washed twice in 

deionised water and stained with 2ml of Hoechst stain (BDH) (50ng/ml) for 10 

minutes. From this point on, work proceeded without direct light to limit quenching 

of the fluorescent stain. The coverslips were rinsed three times in PBS. They were 

then mounted in 50% (v/v) glycerol in 0.05 M citric acid and 0.1 M disodium 
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phosphate and examined using a fluorescent microscope with a UV filter. A  

Mycoplasma infection would be seen as small fluorescent bodies in and sometimes 

outside the cells.  

 

2.2 Tumour Tissue Sample Preparation for 2-D DIGE Analysis 

Uveal melanoma tissue specimens were homogenised using a sample grinding kit 

(GE Healthcare, 80-6483-37) by placing the tissue specimen in a 1.5 mL eppindorf 

tube containing grinding resin. 2-D lysis buffer containing 7 M urea (Sigma Aldrich, 

208884), 2 M thiourea, 4% (w/v) (Sigma Aldrich, T8656), CHAPS (Sigma Aldrich, 

C3023), 40 mM DTT (Sigma Aldrich, D9163) and 0.5% IPG buffer pH 3-11 (GE, 

17-6000-86) was added to the tube and the tissue was degraded using a pestle. 

Insoluble material was removed by centrifugation at 14,000 rpm for 5 min at room 

temperature and supernatants were stored at -80 °C until required.  

 

2.3 Protein Quantification  

Protein concentration was determined using the thiourea-compatible Quick Start 

Bradford Protein Assay Kit (Bio-Rad, 500-0201), containing 2 mg/mL of bovine 

serum albumin (BSA) solution as a known standard. Dilutions of BSA stock for 

0.125, 0.25, 0.5 and 1.0 mg/mL was prepared and used for generating a protein 

standard curve. 5L of protein standard dilution or sample (diluted 1:10) was added 

to a 96-well plate. 245 L/well of thiourea-compatible Bradford protein assay 

reagent (Bio-Rad, 500-0205) was then added to the plate. All samples were assayed 

in triplicate. After 5 minutes incubation, the absorbance was assessed at 595nm. The 

concentration of the protein samples was determined from the plot of the absorbance 

at 595nm versus the concentration of the protein standard.  

 

2.4 2D-DIGE Sample Preparation 

2.4.1 Preparation of CyDye DIGE Fluor Minimal Dye Stock Solution 

The three CyDye DIGE Fluor Minimal dyes (Cy3, Cy5 and Cy2) (GE Life Sciences, 

25-8010-65) were thawed from –20 
o
C to room temperature for 5 minutes. To each 

microfuge tube dimethylformamide (DMF) (Sigma Aldrich, 22,705-6) was added to 
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a concentration of 1 nmol/μL. Each microfuge tube was vortexed vigorously for 30 

seconds to dissolve the dye. The tubes were then centrifuged for 30 seconds at 

14,000 rpm in a microcentrifuge. The reconstituted dyes can be stored at –20 
o
C for 

up to two months. 

 

2.4.2 Preparation of 10 μl working dye solution (200 pmol/μL) 

On thawing, the dye stock solutions were centrifuged in a microcentrifuge for 30 

seconds. To make 10 μL of the three working dye solutions, 8 μL of DMF was added 

to three fresh eppendorfs labelled Cy2, Cy3 and Cy5. A 0.2 nmol/μL volume of each 

of the reconstituted dye stock solutions was added to their respective tubes. The dyes 

can be stored at -20 
o
C in tinfoil in the dark for 3 months. 

 

2.4.3 Protein sample labelling  

A volume of the protein samples equivalent to 50 μg was placed into eppendorf 

tubes. An eppendorf tube for the Cy2 pool made up from aliquots from all the protein 

samples contained enough protein for 50ug for each gel. Each tube was mixed by 

vortexing, centrifuged and then left on ice for 30 minutes in the dark. To stop the 

reaction, 1 μL of 10 mM lysine (Sigma Aldrich, L5501) was added, the tubes were 

vortexed, centrifuged briefly, and left on ice for 10 minutes in the dark. The labelled 

samples were stored at –80 
o
C. To this tube 1 μl of working dye solution was added. 

 

2.4.4 Preparing the labelled samples for the first dimension 

The protein samples labelled with Cy2 (pooled internal standard), Cy3 and Cy5 were 

thawed on ice (in the dark), combined by placing into a single eppendorf tube and 

mixed. An equal volume of 2X sample buffer (2.5 mL rehydration buffer stock 

solution (8M urea, 4% CHAPS), pharmalyte broad range pH 4-7 (2%) (GE Life 

Sciences, 17-6000-86), DTT (2%) (Sigma, D9163)) was added to the labelled protein 

samples. The mixture was left on ice for at least 10 minutes then applied to 

Immobiline DryStrips for isoelectric focussing. 

 

 

 



64 

 

2.4.5 First dimension separation - isoelectric focussing methodologies 

Isoelectric focussing of all samples was carried out using pH 3-11, 24 cm immobiline 

pH gradient (IPG) strips (GE Life Sciences, 17-6003-77).  

 

2.4.5.1 Strip rehydration using Immobiline DryStrip reswelling tray  

A Immobiline Dry Strip Reswelling tray (GE Life Sciences, 17-1233-01) was 

levelled using the spirit level. A 350μl volume of rehydration buffer solution 

containing 7 M urea, 2 M thiourea, 4% CHAPS, 0.5% IPG buffer pH 3-11, 50 mM 

DTT was slowly pipetted into the centre of each slot, all air bubbles generated were 

removed. The cover film from the IPG strip was removed and positioned with the gel 

side down and lowered, ensuring that the entire strip was evenly coated buffer and 

that no air bubbles were present. 

Each strip was overlaid with about 3 mL IPG Cover Fluid (GE Life Sciences, 17-

1335-01) starting on both ends of the strip, moving to the centre. The protective lid 

was then replaced and the strips were left at room temperature to rehydrate overnight 

(or at least 12 hours). 

 

2.4.5.2 Isoelectric focussing using the IPGphor manifold 

Following the rehydration procedure, the Manifold (GE Life Sciences) was placed 

onto the IPGphor unit by inserting the “T” shape into the hollow provided. A 9 mL 

volume of Cover Fluid was placed into each of the twelve lanes in the tray in order to 

cover the surface. Two wicks (GE Life Sciences, 80-6499-14) per strip were 

rehydrated with 150 μl of UHP water. The rehydrated strips were placed in the 

correct orientation (+ to anode) and aligned just below the indented mark, to allow 

for the wicks to overlap the strip. The rehydrated wicks were then placed over both 

ends of all the strips, ensuring that they were positioned over the gel portion of the 

strip and avoiding the indent in the lane so as to guarantee a good contact with the 

electrodes. The sample cups (GE Life Sciences, 80-6498-95) were then positioned 

approximately 1 cm from the cathodic end of the strip and an insertion tool was used 

to securely “click” the cups into place. The electrodes were then fitted, in direct 

contact with the wicks. 
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The amount of protein loaded per strip was 150 μg for DIGE or 400 μg for spot 

picking and identification. The protein samples were prepared by centrifuging to 

remove any insoluble material and the appropriate volume was loaded with a pipette 

tip placed just beneath the surface of the cover fluid. The cover of the IPGphor unit 

was closed and the desired programme selected. The temperature was set for 20
o
C 

with 50A/strip. The IEF parameters are as follows: step 1: 300 volts for 3 hours 

(step-and-hold), step 2: 600 volts for 3 hours (gradient), step 3 1000 volts for 3 hours 

(gradient), step 4: 8000 volts for 3 hours (gradient). The IEF was left at 8000 volts 

(step-and –hold) until ready for SDS-PAGE step. On completion of the IEF run, the 

strips were drained of the cover fluid and stored in glass tubes at –80 
o
C or used 

directly in the second dimension.  

 

2.4.6 Second Dimension – SDS polyacrylamide gel electrophoresis 

2.4.6.1 Casting gels in the ETTAN Dalt-12 gel caster 

For all 2-D gels, a 12.5% acrylamide gel solution was prepared in a glass beaker 

(acrylamide/bis 40%, 1.5 M Tris pH 8.8, 10% SDS). Prior to pouring, 10% 

ammonium persulfate (Sigma Aldrich, A3678) and neat TEMED (Sigma Aldrich, T-

9281) were added.  

Gels for use in DIGE experiments were poured into a sandwich of low fluorescent 

plates while those used for preparative gels were poured into hinged plates. 

Following pouring the acrylamide solution into the appropriate glass plate mould, a 

displacement solution (0.375M Tris-Cl 1.5M pH 8.8, 30% glycerol, UHP and 

bromophenol blue) was added to the reservoir, forcing the remaining gel solution 

into the gel caster. The gels were then overlaid with 1 mL of saturated butanol or 

sprayed with 0.1 % SDS solution and left to set for at least three hours at room 

temperature. The set gels were rinsed with distilled water and stored for up to four 

days in 1X running buffer at 4 
o
C, if they were not for immediate use. 

If gels were to be used for “spot picking” the plates were silanised to stick the 

acrylamide mixture to the plates. 2 mL of the following solution; 8 mL ethanol, 200 

L glacial acetic acid, 10 L bind-silane (GE Life Sciences, 17-1330-01) and 1.8 mL 

UHP was pipetted over the glass plate and wiped over with a lint free cloth. This was 

left to air dry for 15 minutes, after which 2 mL ethanol and 2 mL UHP were each 
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pipetted over the plate and wiped off respectively. The plate was left to air dry for 

approximately 1 hour 30 minutes.  

 

2.4.6.2 Preparing the ETTAN DALT 12 electrophoresis unit 

The electrophoresis chamber was prepared by adding 6.48 litres of UHP and 720 mL 

of 10X SDS running buffer. The pump was then turned on to cool the system to 10 

o
C.  

 

2.4.6.3 Equilibration and loading of focussed Immobiline DryStrips 

SDS equilibration buffer (30% glycerol, 6 M urea, 50 nM 1.5M Tris-Cl pH 8.8, 2% 

SDS, bromophenol blue and UHP) with either dithiothreitol (DTT) (65 mM) (Sigma 

Aldrich, D9163) or iodoacetamide (240 mM) (Sigma Aldrich, I1149) were prepared. 

Using a forceps, the rehydrated strips were removed from the IPGphor unit, and the 

cover fluid was drained off. Equilibration buffer (10 mL containing DTT) was added 

to each tube and incubated for 15 minutes with gentle agitation using an orbital 

shaker. The DTT containing equilibration solution was the removed and 5 mL of 

iodoacetamide containing equilibration buffer added. The strips were incubated for 

10 minutes with gentle agitation.  

The IPG strips were rinsed in 1X SDS electrophoresis running buffer and placed 

between the two glass plates of the gel. The strip was pushed down gently using a 

thin plastic spacer until it came in contact with the surface of the gel, gently 

removing any air bubbles trapped between the gel surface and the strip. 

Approximately 1 mL of the 0.5% agarose overlay solution was applied over the IPG 

strip to seal it in place. 

 

2.4.6.4 Inserting the gels into the Ettan DALT 12 electrophoresis buffer 

tank 

When the running buffer reached the desired temperature (10 
o
C) the loaded gel 

cassettes were inserted into the tank, filling any empty spaces with dummy plates if 

required. The upper chamber was filled with 2X running buffer. The cover of the unit 

was replaced and the required running conditions selected. The unit was run for 18–

24 hours at 1.5 Watts per gel at 10 °C or until the bromophenol blue dye front 
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reached the bottom of the gel. When the run was completed, the gel cassettes were 

removed from the tank one at a time using the DALT cassette removal tool and 

rinsed with UHP to remove the running buffer.  

 

2.4.6.5 Method for scanning DIGE labelled samples 

The Typhoon Variable Mode Imager (GE Healthcare) was turned on and left to 

warm up for 30 minutes prior to scanning. The scanning control software was opened 

and the fluorescence mode was selected. The appropriate emission filters and lasers 

were then selected for the separate dyes (Cy2 520 BP40 Blue (488), Cy3 580 BP30 

Green (532) and Cy5 670 BP 30 Red (633)). The first gel was placed in the scanner 

and pre-scanned at a 1000 pixel resolution in order to obtain the correct photo 

multiplier tube (PMT) value (to prevent saturation of the signal from high abundant 

spots). Once the correct PMT value was identified (a value ranging between 40,000 

and 60,000) the gel was scanned at 100 pixel resolution, resulting in the generation 

of three images, one each for Cy2, Cy3 and Cy5. Once the scanning was completed, 

the gel images were imported into the Progenesis SameSpots version 4.0 (NonLinear 

Dynamics) software. 

 

2.4.7 Differential Analysis of Gel Images 

Scanned fluorescent gel images were analysed using Progenesis SameSpots 

software. Images were loaded into the software and went through a process of 

quality assessment to optimise image capture. This highlights any positional errors 

which were introduced during scanning and allows for their correction using image 

cropping, flipping, or rotating. This also illustrates any gels or regions of the gel 

which may have been scanned at the incorrect wavelength and resulted in 

overexposed areas. Protein spots were detected and normalisation between gels was 

carried out. The spots on the gels were aligned against all gels in the experiment 

which allows for 100% matching.  

The software calculates the degree of difference in the standardized protein 

abundance between two spots from different groups and expressed these differences 

as average ratio. The values by the software are displayed in the range of -∞ to -1 for 

a decrease in expression and +1 to +∞ for an increase in expression. For example, a 

two-fold increase and decrease is represented by +2 and -2, respectively. The 
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„average ratio‟ has also been termed as „fold change‟ in this thesis. The software also 

calculates the consistency of the differences between samples across all the gels and 

applies statistics to associate a level of confidence (p-value) for each of the 

differences. Progenesis SameSpots also details t-test scores between sample sets to 

determine the expected proportion of false positives if the features p-value is chosen 

as the significant threshold.  

The spots with statistically significant changes in protein expression (±1.2 fold with 

p-value <0.05) were considered as differentially expressed proteins. These 

differentially expressed proteins observed using Progenesis SameSpots were 

designated “proteins of interest” and placed in a pick-list to pick from a preparative 

gel with the ETTAN Spot Picker (GE Healthcare) for identification using LC-

MS/MS.  

Preparative gels for spot picking with 300 μg of protein/gel were focussed and run 

out on SDS-PAGE gels. The gels were then stained with colloidal Coomassie 

(section 2.4.8). Spots that showed differential protein expression were picked with 

the ETTAN Spot Picker (section 2.4.10). 

 

2.4.8 Brilliant Blue G Colloidal Coomassie Staining 

After electrophoresis, plates attached to the preparative gels were placed in boxes 

containing fixing solution (7% glacial acetic acid in 40% (v/v) methanol) for at least 

one hour. During this step, a 1X working solution of Brilliant Blue G colloidal 

coomassie (Sigma, B2025) was prepared by adding 800 mL UHP to the stock bottle. 

Following the fixing step, a solution containing 4 parts of 1X working colloidal 

coomassie solution and 1 part methanol was made, mixed by vortexing for 30 

seconds and then placed on top of the gels. The gels were left to stain for 2 hours. To 

destain, a solution containing 10% acetic acid in 25% methanol was poured over the 

shaking gels for 60 seconds. The gels were then rinsed with 25% methanol for 30 

seconds and then destained with 25% methanol for 24 hours.  

 

2.4.9 Other Staining Methods 

2.4.9.1 Silver staining  

After 2-DE, plates attached to the preparative gels were placed into a box containing 

fixing solution (50 mL ethanol, 12.5 mL acetic acid (Lennox) and 62.5 mL UHP). 
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The gel boxes were placed on an orbital shaker and fixed for at least 1 hour (usually 

overnight). After fixing, the solution was drained from the gels. The gels were then 

washed three times with 150 mL of UHP for 5 minutes each time and drained. The 

gels were next sensitised (60 mL ethanol, 13.6 g sodium acetate, 0.4 g sodium 

thiosulfate and UHP in 200 mL) for 30 minutes on the orbital shaker. 

Following this, the gels were washed three times, for 10 minutes each. Following the 

washes, 200 mL of silver staining solution (0.5 g silver nitrate, 80 µL formaldehyde 

and 200 mL UHP) was added and the boxes returned to the orbital shaker. After 20 

minutes the silver solution was drained and the gels were washed twice for 5 

minutes each with UHP water. After the last wash, 200 mL of developer (5 g sodium 

carbonate, 40 µL formaldehyde and 200 mL UHP) was added to each of the boxes. 

The gels were placed on the orbital shaker and allowed to develop. When the desired 

amount of spots appeared, the developer was drained into the silver-containing 5 L 

drum (this precipitated out the silver) and 200 mL of stopping solution (2.92 g 

EDTA and 200 mL UHP) was added. The gels were left on the orbital shaker for at 

least 10 minutes. The gels could then be stored in UHP water. 

 

2.4.10 Spot picking 

The glass surface of the gel plate was dried and two reference markers (GE 

Healthcare, 18-1143-34) were attached to the underside of the glass plate before 

scanning at 300 dpi resolution using a flatbed image scanner (GE Life Sciences). The 

resulting image was imported into the ImageMaster software (GE Healthcare) and 

the spots were detected, normalised and the reference markers selected. While 

keeping the shift key depressed, all spots of interest were manually selected. The 

resulting image was saved and exported into the Ettan Spot Picker software (GE 

Healthcare). The stained gel was placed in the tray of the Ettan Spot Picker (GE Life 

Sciences, 18-1145-28) with reference markers aligned appropriately and covered 

with UHP. The imported pick list was opened, the syringe primed and the system 

was set up for picking the spots from the pick list. The spots were robotically picked 

and placed in 50 μL of LC-MS grade water (Fluka, 14263) in polypropylene 96-well 

plates (Greiner Bio One, 651201) and covered in parafilm, and stored at 4 °C until 

gel destaining which is outlined in section 2.6.1. 
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2.5 Excision of Protein Bands from 1-D Gels  

The gel was placed on a piece of parafilm which had been swabbed with 70% 

methanol. The work surface had also been cleaned with 70% methanol. Each lane of 

the gel was sliced into thin sections, across the width of the lane, using a scalpel and 

cut into six smaller pieces. The pieces from each band were placed into individual 

wells of a polypropylene 96-well plate (Greiner Bio One, 651201) with 50 μL of LC-

MS grade water in each. The plate can then be stored at 4 °C, covered in parafilm, or 

the proteins can be destained as described in section 2.6.1.  

 

2.6 Identification of proteins with LC–MS/MS 

2.6.1 Destaining Gel Plugs 

2.6.1.1 Coomassie-Stained Gel Pieces 

Gel pieces were washed three times in a 96-well polypropylene plate using 100mM 

ammonium bicarbonate/acetonitrile (1:1, vol/vol) for 10 minutes each until the 

pieces were fully destained.  

 

2.6.1.2 Silver-Stained Gel Pieces 

Gel pieces were destained in a 96-well polypropylene plate using 100 mM sodium 

thiosulfate/30 mM potassium ferricyanide (1:1, vol/vol) and incubated for 30 

minutes until the pieces are fully destained. 

 

2.6.2 In-Gel Digestion of Proteins 

50 µL of neat acetonitrile was then added to each well at room temperature until the 

plug becomes dehydrated, i.e. white and shrunken. The acetonitrile was removed and 

the gel pieces were dried. 50 µl of 10 mM DTT in 100 mM ammonium bicarbonate 

was added to cover the gel piece and incubated for 30 minutes at 56 °C. The DTT 

solution was removed and the gel pieces were cooled to room temperature. Once 

cooled, 50 µL of neat acetonitrile was added to each gel piece until they became 

dehydrated again. The acetonitrile was removed and 50 µL of 55 mM iodoacetamide 

in 100 mM ammonium bicarbonate was added.  The gel pieces were then incubated 

for 20 minutes in the dark at room temperature. 50 µL of neat acetonitrile was added 

to each gel piece at room temperature to dehydrate them. After drying, the individual 
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gel pieces were rehydrated in 10 µL digestion buffer. The digestion buffer was made 

fresh and consisted of 12.5 ng sequence-grade trypsin (Promega, V5111) (a 100 µg 

vial of trypsin was dissolved in 100 μL of 50 mM acetic acid and stored in 10 µl 

aliquots at -20 °C)  per µL of 10% acetonitrile, 40 mM ammonium bicarbonate. 

Sufficient buffer was added to cover the dried gel pieces and the plate was stored at 

37 °C for 30 minutes. After this time, the pieces were checked to ensure that the 

buffer was absorbed and if more needed to be added. The gel pieces were left for 

another 90 minutes to saturate them with trypsin and then an additional 10-20 µL of 

ammonium bicarbonate buffer was added to cover the gel pieces and maintain 

moisture for the digestion.  

Exhaustive digestion was carried out overnight at 37 °C. Peptides were extracted 

from the gel pieces twice using 50 µL of 1:2 (vol/vol) 5% TFA in acetonitrile (made 

fresh daily) for 15 minutes each time at 37 °C with gentle agitation. The extracted 

peptides were transferred to a new 96 well plate and lyophilised using a Maxi Dry 

Plus vacuum (MSC). The plate were then stored at -20 °C, wrapped in parafilm, or 

the proteins were resuspended in 20 µL of 0.1% TFA containing 0.1% acetonitrile 

and analysed using mass spectrometry. 

 

2.6.3 Digestion of Proteins for Quantitative Label-Free LC-MS/MS Analysis 

100 μg of protein from the sample of interest (determined by Quick Start Bradford 

assay) was placed into an eppendorf and the protein was precipitated using a 2-D-

clean-up kit (Bio-Rad, 163-2130), overnight in acetone. The protein pellet was 

resuspended in 6M Urea, 2M Thiourea, 10mM Tris, pH 8. 0.4% ProteaseMAX 

(Promega, V2071), a surfactant and trypsin enhancer added to improve protein 

solubility. The sample was sonicated and vortexed to ensure complete suspension.  

A Quick Start Bradford assay was performed and 5 μg of protein was transferred into 

a new eppendorf. 1 μL of reduction buffer was added to the sample (100 mM DTT in 

50mM ammonium bicarbonate), vortexed and incubated at 56 ºC for 30 minutes. 1 

μL of alkylation buffer was added to the sample (300 mM iodoacetamide in 50 mM 

ammonium bicarbonate), vortexed and incubated for 20 minutes at room temperature 

in the dark. 0.5 μL of 1% ProteaseMAX and Lys-C (Promega, V1071), added at a 

ratio of 1:50 (enzyme:protein), were added and the mixture was incubated for 1 hour 

at 37 ºC. Samples were diluted with four volumes of 50 mM ammonium bicarbonate 
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to dilute the urea concentration to below 1 M and sequence grade trypsin (Promega, 

V5111) was added at a ratio of 1:25 (enzyme:protein) and incubated overnight at 37 

ºC, after which the reaction was stopped by adding 50% TFA in LC-MS grade water  

at a ratio of 1:25. 

Samples were then cleaned up using PepClean C18 spin columns (Thermo, 89870), 

dried under a vacuum and stored at −20 °C until use.  

The resulting lyophilised peptides were re-suspended in 0.1% TFA in 2% acetonitrile 

with agitation and sonication. 1 µg of sample was then analysed by LC-MS/MS.  

 

2.6.4 Mass Spectrometry using LC/MS Analysis 

Nano LC–MS/MS analysis was carried out using either an Ultimate 3000 nanoLC 

system (Dionex) coupled to either a hybrid linear ion trap/Orbitrap mass 

spectrometer (LTQ Orbitrap XL; Thermo Fisher Scientific) for quantitative analyses 

or Hybrid linear ion trap mass spectrometer (LTQ XL; Thermo Fisher Scientific) for 

qualitative analyses.  

A 5 μL injection of digested sample were picked up using an Ultimate 3000 nanoLC 

system (Dionex) autosampler using direct injection pickup onto a 20 μL injection 

loop.  The sample was loaded onto a C18 trap column (C18 PepMap, 300 μm 

ID × 5 mm, 5 μm particle size, 100 Å pore size; Dionex) and desalted for 10 min 

using a flow rate of 25 μL/min in loading buffer (0.1% TFA, 2% acetonitrile). The 

trap column was then switched online with the analytical column (PepMap C18, 

75 μm ID × 250 mm, 3 μm particle and 100 Å pore size; (Dionex)) using a column 

oven at 35 °C and peptides were eluted with the following binary gradients of: 

 

30 minute reverse phase gradient 

Mobile phase buffer A (0.1% formic acid in 2% acetonitrile) and Mobile phase 

buffer B (0.08% formic acid in 80% acetonitrile): 0–100% solvent B in 30 minutes 

where solvent A consisted of 2% acetonitrile (ACN) and 0.1% formic acid in water 

and solvent B consisted of 80% ACN and 0.08% formic acid in water. Column flow 

rate was set to 350 nL/min. This method was used for all qualitative analysis of 

proteins extracted from gel pieces. 
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60 minute reverse phase gradient 

Mobile phase buffer A (0.1% formic acid in 2% acetonitrile) and Mobile phase 

buffer B (0.08% formic acid in 80% acetonitrile): 0–50% solvent B in 50 min and 

50–100% solvent B in a further 10 min, where solvent A consisted of 2% acetonitrile 

(ACN) and 0.1% formic acid in water and solvent B consisted of 80% ACN and 

0.08% formic acid in water. Column flow rate was set to 350 nL/min. This method 

was used for the quantitative label-free LC-MS analysis of proteins differentially 

expressed between monosomy three and disomy three fractionated vitreous fluid, 

section 4.9. 

 

180 minute reverse phase gradient 

Mobile phase buffer A (0.1% formic acid in 2% acetonitrile) and Mobile phase 

buffer B (0.08% formic acid in 80% acetonitrile): 0–25% solvent B in 120 min and 

25–50% solvent B in a further 60 min, where solvent A consisted of 2% acetonitrile 

(ACN) and 0.1% formic acid in water and solvent B consisted of 80% ACN and 

0.08% formic acid in water. Column flow rate was set to 350 nL/min. This method 

was used for the quantitative label-free LC-MS analysis of proteins differentially 

expressed between healthy and advanced melanoma fractionated sera, section 5.4. 

 

Data were acquired with Xcalibur software, version 2.0.7 (Thermo Fisher Scientific).  

The Hybrid linear ion trap/Orbitrap mass spectrometer (LTQ Orbitrap XL; Thermo 

Fisher Scientific) was operated in data-dependent mode and externally calibrated.  

 

Survey MS scans were acquired in the Orbitrap in the 400–1800 m/z range with the 

resolution set to a value of 30,000 at m/z 400. Up to three of the most intense ions 

(1+, 2+ and 3+) per scan were CID fragmented in the linear ion trap. A dynamic 

exclusion was enabled with a repeat count of 1, repeat duration of 30 seconds, 

exclusion list size of 500 and exclusion duration of 40 seconds. The minimum signal 

was set to 500.  All tandem mass spectra were collected using a normalised collision 

energy of 35%, an isolation window of 2 m/z, activation Q was set to 0.250 with an 

activation time of 30. 

 

The Hybrid linear ion trap mass spectrometer (LTQ XL; Thermo Fisher Scientific) 

was operated in data-dependent mode. Survey MS scans were acquired in profile 
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mode at 400–1800 m/z range. Up to sixteen of the most intense ions (1+, 2+ and 3+) 

per scan were CID fragmented in the linear ion trap. A dynamic exclusion was 

enabled with a repeat count of 2, repeat duration of 30 seconds, exclusion list size of 

500 and exclusion duration of 40 seconds. The minimum signal was set to 500.  All 

tandem mass spectra were collected using a normalised collision energy of 30%, an 

isolation window of 2 m/z, activation Q was set to 0.250 with an activation time of 

30. 

 

2.6.5 Identification of Proteins from Mass Spectrometry Data 

Mass spectrometry data, generated as *.RAW files from LTQ XL and Orbitrap 

instruments, was analysed using the search algorithm TurboSequest (Thermo Fisher 

Scientific) through Bioworks Browser version 3.3.1 (Thermo Fisher Scientific) for 

qualitative analyses and the MASCOT (v2.3.01, Matrix Science, London, UK) 

search algorithm for quantitative analyses. In both cases, the human fasta database 

was downloaded from UniProKB/SwissProt (January 2013)  

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete 

 

The MASCOT search parameters that were used allowed two missed cleavages, 

fixed modification of cysteine (carbamidomethyl-cysteine) and variable 

modification of methionine (oxidised). Peptide tolerance depended on the instrument 

used to acquire the mass spectrometry data, in this case the Hybrid linear ion 

trap/Orbitrap mass spectrometer used a peptide tolerance of 20 ppm. The MS/MS 

tolerance was set at 0.6 Da. On completion of the database search the peptide results 

were filtered using MASCOT criteria of 95% confidence interval (C.I.) threshold 

(p<0.05), with a minimum ion score of ≥40. Protein identifications were accepted if 

they had one matched peptide. 

 

The following TurboSequest filters were applied following database searches: for 

charge state 1, XCorr > 1.8; for charge state 2, XCorr > 2.0; for charge state 3, XCorr > 

2.5, a peptide probability of 0.05 and a delta CN of 0.1. Protein identifications were 

accepted if they had at least two matched identified peptides. 
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2.6.5.1 Bioworks Browser 

Bioworks Browser was used in the analysis of all qualitative identifications. Outputs 

from the analytical software illustrated the protein accession code, number of 

matched peptides, and per cent coverage. The protein accession number represents 

the UniProtKB/Swiss-Prot protein code. Number of peptides matched refers to the 

number of identified peptides which correspond to the protein. The per cent 

coverage represents the percentage of the protein‟s sequence represented by the 

peptides identified. The Xcorr score (XC) represents the cross correlation value from 

the search; that is the degree of how well theoretical spectra match to observed 

spectra. XC values are higher for well-matched, large peptides. 

 

2.6.5.2 Progenesis LCMS 

The resulting total ion chromatograms (TIC) of quantitative label-free LC-MS data 

were subjected to statistical analysis using Progenesis LC-MS software (NonLinear 

Dynamics). This programme imports all runs in an “ion intensity map” format which 

maps the ions discovered in the run, by plotting retention time against the 

mass/charge ratio. All ion maps may be aligned against one reference run which 

allows for any shift in retention time between runs. The intensity of each ion may 

then be compared against that of all other runs, thus generating quantitative data on 

patterns of differential expression between sample sets which may be analysed with 

statistical analysis tools such as ANOVA, and principal component analysis.  

For all experiments, unless stated otherwise, all peptides, and all proteins 

demonstrated ANOVA scores of ≤0.05 for differential analysis between sample sets.  

For all quantitative LC-MS/MS data, Progenesis provides the following information; 

protein accession number, peptide count, number of peptides matched, confidence 

score, an ANOVA value, the maximum fold change, and the average normalised 

abundance. The protein accession number represents the code corresponding to the 

protein in the UniProtKB/Swiss-Prot protein database. “Peptide count” refers to the 

number of peptides identified and “number of peptides matched” refers to the 

number of peptides which were matched to the protein. The MASCOT score (or ion 

score) is calculated from the combined scores of how well each peptide matches to 

the protein sequence. The significance of the differential expression between the two 
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groups is represented by an ANOVA score (p-value). The fold change, or average 

ratio, illustrates the greatest fold different in protein ion abundance between the two 

groups. The average normalised abundance is calculated from the sum of all peptide 

abundances from every run for each protein.  

 

2.7 Western blot Analysis 

2.7.1 1-D Gel electrophoresis 

Proteins for analysis by Western blotting were resolved using 4-12% NuPAGE Bis-

Tris Gels (Life Technologies, NP0322PK2) in XCell SureLock™ Mini-Cell (Life 

technologies, EI0001) running instrument. Western blotting protein samples (2 

μg/μL) were prepared by diluting samples with PBS and then an equal volume of 2X 

loading buffer (Sigma, S3401). The samples were heated at 95 °C for 5 minutes and 

placed on ice prior to being centrifuged. 10-40 µg of protein and 5μL of molecular 

weight marker (Thermo, 26634) were loaded onto gels. The samples were 

electrophoretically separated at 200 V and 45 mA using a 1X MOPS/SDS running 

buffer (Life Technologies, NP001) until the bromophenol blue dye reached the 

bottom of the gel. 

 

2.7.2 Western blotting 

Once electrophoresis had been completed, the gel was equilibrated in a 1X tris-

glycine transfer buffer (Bio-Rad, 161-0734) containing 20% methanol for 

approximately 10 minutes. Five sheets of Whatman 3 mm filter paper (Whatman, 

1001824) were soaked in freshly prepared transfer buffer. These were then placed on 

the cathode plate of a semi-dry blotting apparatus (Bio-Rad). Air pockets were then 

removed from between the filter paper. PVDF membrane (GE Healthcare, 

10600021), which had been equilibrated in the same transfer buffer, was placed over 

the filter paper on the cathode plate. Air pockets were once again removed. The gels 

were then aligned onto the membrane. Five additional sheets of transfer buffer-

soaked filter paper were placed on top of the gel, all air pockets removed and excess 

transfer buffer removed from the cathode plate. All proteins were transferred from 

the gel to the membrane at a current of 340 mA at 15 V for 23 minutes (FABP3 was 
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transferred under the same conditions for 20 minutes), until all colour markers had 

transferred.  

Following protein transfer, membranes were stained using Ponceau (Sigma, P7170) 

to ensure efficient protein transfer. The membranes were then blocked for two hours 

using 5% Marvel (Cadburys; Marvel skimmed milk) in TBS-T (a mixture of 1X tris-

buffered saline (TBS) (Sigma, t5912) containing 0.05% Tween 20 (Sigma, P5927)).  

The membranes were washed with TBS-T prior to the addition of the primary 

antibody, prepared in 5% Marvel in TBS-T at recommended dilutions, and then 

incubated overnight at 4 °C. The membranes were then rinsed 3 times with TBS-T 

for a total of 30 minutes. Relevant secondary antibody (1/2000 dilution of anti-

mouse (Dako Cytomation, P0260) or anti-rabbit (Dako Cytomation, P0448) or anti-

goat (Santa Cruz Biotechnology, Sc2098) IgG peroxidase conjugate in 5% 

Marvel/TBS-T) was added for 2 hours at room temperature. The membranes were 

again washed three times thoroughly in TBS-T for 30 minutes.  

All primary and secondary antibodies used are shown in Tables 2.3 and 2.4. 

 

 

Table 2.3 Primary antibodies and dilutions 
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Table 2.4 Secondary antibodies and dilutions 

 

2.7.3 Enhanced chemiluminescence detection using autoradiographic films 

Immunoblots were developed using an enhanced chemiluminescence (ECL) kit (GE 

Life Sciences, RPN2106), which facilitated the detection of bound peroxidase-

conjugated secondary antibody. Following the final washing, membranes were 

subjected to ECL. The membrane was placed on a sheet of transparent plastic and 3 

mL of a freshly prepared 1:1 (v/v) mixture of ECL reagent A and B was used to 

cover the membrane. The ECL reagent mixture was completely removed after a 

period of five minutes and the membrane was covered in a layer of transparent 

plastic. All excess air bubbles were removed. The membrane was then exposed to 

autoradiographic film (GE Life Sciences, 95017-681) for various times (from 10 

seconds to 15 minutes depending on the intensity of the signal). The exposed 

autoradiographic film was developed for 3 minutes in developer solution (Kodak, 

LX24, diluted 1:5 in water). The film was then washed in water for 15 seconds and 

transferred to a fixative solution (Kodak, FX-40, diluted 1:5 in water) for 5 minutes. 

The film was washed with water for 5-10 minutes and left to dry at room 

temperature. 

 

2.8 RNA Interference 

RNAi using small interfering RNAs (siRNAs) was carried out to silence the FABP3, 

TPI1, EEF1G, SELENBP1, and KPNB1 genes. Two independent siRNA molecules 

were used for each protein (Applied Biosystems). These siRNAs were 21-23 bps in 

length and were introduced to the cells via reverse transfection with Lipofectamine 

RNAiMAX Transfection Reagent (Life Technologies, 13778150).  
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2.8.1 Transfection optimisation 

In order to determine the optimal conditions for siRNA transfection, optimisation 

with kinesin siRNA (Life Technologies, 16704) was carried out for the 92.1 and 

MEL202 cell lines. 

Cell suspensions were prepared at 5X10
4
, 7.5 X 10

4
, 1X 10

5
, 2.5 X 10

5
, and 5 X 10

5
 

cells per well. Solutions of negative control and kinesin siRNA at a final 

concentration of 50 nM were prepared in optiMEM (GibcoTM, 31985047). 

Lipofectamine RNAiMAX solutions at a range of concentrations were added the 

solutions and was mixed well and incubated for 12 minutes at room temperature. 100 

μL of the siRNA/lipofectamine solutions were added in a dropwise fashion to each 

well of a 6-well plate, of which each well contained 1 mL of a cell suspension. The 

plates were mixed gently and incubated at 37 °C for either 6 hours or overnight 

(depending on the cell line). After this time, the transfection mixture was removed 

from the cells and the plates were fed with fresh serum-containing medium. The 

plates were assayed for changes in proliferation at 72 hours using the acid 

phosphatase assay (Section 2.9). Optimal conditions for siRNA transfection were 

determined as the combination of conditions, which gave the greatest reduction in 

cell number after kinesin siRNA transfection and also the least cell kill in the 

presence of transfection reagent. Western blot analysis was used to establish the 

optimum conditions for a siRNA transfection. The optimised conditions for the cell 

lines are shown in Table 2.5.  

 

Table 2.5 Optimised conditions for the siRNA transfection of 92.1 and MEL202 cell 

lines. 
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2.8.2 siRNA Functional Analysis of Targets of Interest 

Two pre-designed siRNAs were chosen for the protein/gene targets and transfected 

into cells. In some cases two siRNAs were sufficient, however multiple siRNA were 

usually tested.  

For each set of siRNA transfections carried out, control, non-transfected cells and a 

scrambled siRNA transfected negative control were used. Scrambled siRNA are 

sequences that do not have homology to any genomic sequence. The scrambled non-

targeting siRNA used in this study is commercially produced, and guarantees siRNA 

with a sequence that does not target any gene product. It has also been functionally 

proven to have no significant effects on cell proliferation, morphology and viability.  

For each set of experiments investigating the effect of siRNA, the cells transfected 

with target-specific siRNAs were compared to cells transfected with scrambled 

siRNA. This took account of any effects due to the siRNA transfection procedure, 

reagents, and also any random effects of the scrambled siRNA. Western blots were 

used to determine if siRNA had an efficient knock-down effect at a protein-level.  

All siRNA used in these experiments are shown in Table 2.6. 

 

 

Table 2.6 siRNA used in uveal melanoma cell line transfections 

 

2.9 Acid Phosphatase Assay 

Following an incubation period of 96 hours, media was removed from the plates.  

Each well on the plate was washed twice with 2 mL PBS.  This was then removed 

and 2 mL of freshly prepared phosphatase substrate (10 mM p-nitrophenol phosphate 
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(Sigma 104-0) in 0.1 M sodium acetate (Sigma, S8625), 0.1% triton X-100 (Sigma, 

X100), pH 5.5) was added to each well.  The plates were then incubated in the dark 

at 37 °C for 2 hours. Colour development was monitored during this time. The 

enzymatic reaction was stopped by the addition of 1 mL of 1 M NaOH.  The plate 

was read in a dual beam plate reader at 405 nm with a reference wavelength of 620 

nm. 

 

2.10 Proliferation assays on siRNA transfected cells 

As described, cells were seeded using 5.4 μL RNAiMAx Lipofectamine to transfect 

20 nM siRNA in a cell density of either 1X10
5
 or 7.5X10

4
 per well of a 6-well plate. 

After either 6 hours or overnight, the transfection medium was replaced with fresh 

media and cells were allowed to grow until they reached 80-90% confluency; a total 

of 96 hours. Cell viability was assessed using the acid phosphatase assay (section 

2.9). All experiments were carried out independently at least three times. 

 

2.11 Invasion assay 

2.11.1 Preparation of invasion chambers 

Invasion assays were carried out in Boyden chambers (8 μm pore size) (BD 

Biosciences, 35309) which were coated in 100 μL of matrigel (BD Biosciences, 734-

1100) diluted to 1 mg/mL in serum-free RPMI-1640 and incubated over-night at 4 

°C. Cell suspensions were prepared in serum-free basal media. 750 μL of complete 

media was added to the lower chamber of the insert in the 24-well plate. A volume of 

500 μL of the cell suspension was then added into the insert. The invasion assays 

were then incubated for 48 hours at 37 °C and 5% CO2. 

 

2.11.2 Staining of invasive cells 

After incubation, the non-invading cells were removed by wiping the inner side of 

the insert with a PBS-soaked cotton swab (Johnson and Johnson). The outer side of 

the insert was then stained with 0.25% crystal violet for 10 min. Excess stain was 

rinsed off the inserts with sterile water and allowed to dry. 
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2.11.3 Counting of invading cells 

To determine the total number of invading or migrating cells, the number of 

cells/field in 15 fields was counted at 200x magnification. The average number of 

cells per field was then multiplied by a conversion factor of 140 (growth area of 

membrane divided by field of viewed area at 200x magnification (calibrated using a 

microscope graticule)). All assays were subjected to statistical analysis using 

Student‟s t-tests (2-tailed, 2-sample unequal variance). 

 

2.12 Migration Assays 

Migration assays were carried out using an identical protocol to that of section 2.11 

except that uncoated 8 μm inserts were used. 

 

2.13 Apoptosis and FACS 

The effect of SELENBP1, EEF1G and KPNB1siRNA-mediated knockdown on 

apoptosis in the 92.1 uveal melanoma cell line was assessed by Annexin-V/7-AAD-

positive staining. Following detachment, cells were stained using PE Annexin V 

Apoptosis Detection Kit I (BD Pharmingen, 559763) according to manufacturer‟s 

instructions and analysed via flow cytometry (BD FACSAria, Ox, UK). 

Photomultiplier tube (PMT) voltages were set as described (Table 2.7) and a 

compensation matrix determined using single colour stained controls (Table 2.8). 

The percentage of early apoptotic (Annexin V positive only) and late apoptotic/dead 

(Annexin V and 7-AAD positive) cells were compared to those of the scramble 

control. 

 

 

Table 2.7 Flow cytometer settings for apoptosis Annexin-V/7AAD assay. Linear 

scales were used to collect forward and side scatter signals while logarithmetic 

scales were applied for detection of fluorescent PE and PerCP-Cy5.5 signals.  
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Table 2.8 Flow cytometer compensation matrix for apoptosis Annexin-V/7AAD 

assay. 

 

2.14 Analysis of Reactive Oxygen Species (ROS) 

92.1 cells were transfected with two independent SELENBP siRNA as described 

previously and set up at 1X10
5
 cells/well in a 24-well plate with at least two wells 

per condition.  After overnight incubation, the medium was removed and the cells 

were washed in PBS. Half of the wells were exposed to 5 μM DCFDA (Sigma, cat 

21884) in DMSO (Sigma, cat D2438) and diluted into HBSS (Invitrogen, cat 14025-

050), the remaining wells were exposed to HBSS (this allows for background 

fluorescence to be taken into account).  The cells were exposed to DCFDA for 15 

minutes and then washed twice with PBS to remove un-incorporated DCFDA.  The 

cells were fed with RPMI-1640 medium containing 1% FCS and incubated for 2 

hours at 37 ˚C after which time the cells were washed twice with PBS and read on a 

fluorescent plate reader with excitation of 485 nm and emission of 528 nm.  Sodium 

selenite was used as a pro-oxidant control and Trolox (Sigma, cat 238813) as an anti-

oxidant control. siRNA transfected cells and controls were exposed to 200 μM 

hydrogen peroxide (Sigma, cat H1009) during the 2 hour incubation in order to 

observe ROS.  The wells incubated with HBSS alone were used subtracted from the 

wells exposed to DCFDA for each condition.  

 

2.15 Zymography 

Serum-free conditioned media was collected from 1.5X10
5
 92.1 and 2X10

5 
MEL202 

cells which were transfected with siRNA against SELENBP, EEF1G, and KNPB1.  

Samples were mixed 1:1 with 2X Tris-Glycine SDS sample buffer (Serva, 42528.01) 

and were loaded onto the gel. A 5 μl aliquot of molecular weight marker (Thermo, 

26634) was also loaded onto the gel. The gelatin gels (Invitrogen, EC6175BOX) 

were run at 30 mA per gel in 1X Tris-Glycine SDS running buffer (Life 

Technologies, LC26755) until the dye front reached the bottom of the gel. After 
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electrophoresis, gels were soaked in renaturing buffer (Life Technologies, LC2670) 

at room temperature with gentle shaking for 30 min. The gels were then incubated in 

developing buffer (Life Technologies, LC2671) for 30 minutes after which time the 

buffer was decanted and fresh developing buffer was added. The gels were stored at 

37 °C overnight. The following day, the gels were stained with Coomassie as 

described in section 2.4.8. Gelatinase activity was illustrated as distinct, clear bands. 

 

2.16 Immunodepletion  

Immunodepletion of serum was performed using Multiple Affinity Removal Column 

Human-14 (Agilient, 5188-6560) according to the manufacturer‟s instructions. 

 

2.17 ProteoMiner 

2.17.1 Sequential Elution 

ProteoMiner sample enrichment was performed using a ProteoMiner sequential 

elution kit (Bio-Rad, 163-3010). The small capacity kit was used in which 200 µL of 

serum was added to the column. After following a standard protocol, four elution 

fractions were acquired per sample (each elution buffer is outlined in Table 2.9) and 

the protein from each was precipitated overnight using a 2-D clean-up kit (Bio-Rad, 

163-2130). The resulting protein pellets were resuspended in 6 M urea, 2 M thiourea, 

10 mM tris (pH 8) and stored at -80 °C until further analysis. 
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Table 2.9 ProteoMiner sequential elution buffers and their corresponding chemical 

properties. 

 

2.17.2 Modified ProteoMiner Protocol for Vitreous Fluid Treatment 

As the vitreous fluid specimens to be analysed were neither sufficiently concentrated 

nor plentiful, it was decided to modify the process of ProteoMiner treatment. This 

involved resuspending the resin in each column in 200 μL of wash buffer, and 

mixing each well by vortexing. 100 μL of resin was then immediately removed from 

each unit. This would reduce the volume of settled beads from 20 μL to 10 μL, This 

would also change the optimal sample volume to 100 μL, which provides the correct 

sample to beads ratio of 10:1. The adjusted protocol allowed for 300 μg of protein to 

be loaded onto the beads, which was present in the vitreous samples.  

Following this, the ProteoMiner protocol was adjusted to account for the lower bead 

volume although all of the reagents supplied with the kit (Bio-Rad, 163-3006) were 

utilised. Briefly, 100 μL of wash buffer was applied to the resin and incubated for 

five minutes while rotating. The buffer was then removed by centrifugation at 1000 g 

for 30 seconds following the removal of both caps. The bottom cap was reapplied 

and 100 μL of sample was added to the resin bed. The top cap was then replaced and 

the unit was allowed to rotate for a total of two hours incubation time at room 

temperature. Both caps were removed and unbound sample was discarded by 

centrifuging the tube at 1000 g for 30 seconds. 100 μL of wash buffer was applied to 

the resin and the tube caps were replaced prior to rotating the column for five 
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minutes. The buffer was then removed by centrifugation as before and the wash step 

was repeated. 100 μL of deionised water was added to the sealed tube and the 

column was rotated for one minute. The water was then removed by centrifugation as 

before and the column was resealed. 10 μL of rehydrated elution reagent was added 

to the column and the top cap was replaced prior to lightly vortexing the tube for five 

seconds. The elution buffer and resin were allowed to incubate for 15 minutes, 

during which time the tube was lightly vortexed several times. The elution fraction 

was collected into a clean eppindorf tube by centrifugation at 1000 g for 30 seconds. 

The elution step was repeated twice and all elutions were then pooled and stored at -

20 °C until use.  

 

2.18 Enzyme-Linked Immunosorbent Assay (ELISA) 

The majority of ELISAs performed for validation of cutaneous melanoma biomarker 

targets were sandwich ELISAs. These 96-well plates come with capture antibody 

precoated to the surface of the wells. Protein standards that come with the kit were 

prepared and along with serum samples at a kit specific dilution are added to the wells, 

with the standards in duplicate and a proportion of the serum samples in duplicate and 

triplicate. After incubation the plate was washed to remove any unbound antigen. An 

enzyme-linked detection antibody was added which binds specifically to the antigen. 

After another incubation period the plate was washed to remove any unbound detection 

antibody.  

A competitive ELISA involves the initial incubation of unlabelled primary antibody 

with serum. The samples, with the bound antibody/antigen complexes, were then added 

to an antigen coated well. The plate was washed so that unbound antibody is removed 

(the antibody/antigen complexes from initial incubation were removed). 

For both types of ELISA, a substrate was added that was converted by the enzyme into 

a colour or fluorescent signal. This colour or fluorescence was measured at a 

wavelength recommended in the ELISA manual to determine the presence and quantity 

of the antigen. From the standard curve produced from the standards of known 

concentrations, the concentration of antigen present in the serum sample was 

determined and comparisons were be made between the various types of samples. 
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Standard protocols were followed for each ELISA. An overview of all ELISA used is 

shown in Table 2.10. 

 

 

Table 2.10 Overview of conditions and details of ELISA used. 

 

2.19 Luminex Multiplex Bead-Based Assays 

A Luminex 12-plex cytokine/chemokine assay was performed according to Millipore 

Milliplex Map Kit protocol (Millipore). The assay quantified the levels of FGF2, 

IFNɣ, TNFα, TGFα, MIP1α, IL-10, IL-15, IL-1α, IL-2, IL-6, IL-8, and IP10. 

Initially, the 96-well filter bottom plate was pre-wet by adding 200 µL assay buffer. 

The microparticles of the panel were pooled together and 25 µL of the diluted 

microparticle solution and 25 µL of sample and standards and controls were also 

added to the necessary wells. 25 µL assay buffer was added to all wells. Next the 

plate was incubated overnight at 4 ºC and next day washed three times with wash 

buffer. Afterwards, 50 µL of diluted biotin antibody was added to each well and 

incubated for 1 hour. The plate was then washed as described above and 50 µL of 

diluted Streptavidin-PE was added to each well and incubated for 30 minutes. All 

incubations were performed at room temperature on an orbital shaker set at 15 g. 

Finally, the plate was washed again with 100 µL of Sheath Fluid. The median 

relative fluorescence units were measured using the Luminex 100 analyzer 

(Luminex, Austin, TX, USA).  
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2.20 SELDI-ToF MS 

2.20.1 Conditioned Media Preparation and Collection 

Cells (3X10
6
) were seeded in four biological replicates in T-175 cm

2
 flasks and 

allowed to grow until 50-60% confluent. The cell-containing flasks were then 

washed three times with 10 mL of serum-free (SF) basal media and incubated in 15 

mL of SF basal media for 60 minutes. After this time, cells were washed twice with 

SF basal media and 15 mL of fresh SF basal media was added to the cells and 

incubated for 72 hours. After such time, conditioned media was collected, 

centrifuged for 15 minutes at 250 g, and stored at –80 °C. At the time of analysis 

conditioned media was concentrated using 5,000 dalton (Da) molecular weight cut-

off concentrators (Millipore, UFC 900524). A volume of 15 mL was concentrated to 

500 µL by centrifuging at 1000 g at 4 °C. 

 

2.20.2 Preparation of IMAC30 Chip Surface 

IMAC30 array, 8-spot (Biorad, C730043) was activated by adding 5 μL of 100 mM 

CuSO4 (Sigma, 2091198) to each chip surface for a total of 30 minutes (2x15 minute 

applications), and then rinsed with high-performance liquid chromatography grade 

water (Sigma, 39295). The copper ions were charged by applying 50 μL of 100 mM 

sodium acetate (Sigma, S8625) for 5 minutes. The chip was placed in a bioprocessor 

(Biorad) and washed twice with 300 μL of 250 mM sodium chloride containing 0.1% 

Triton X-100 (Sigma Aldrich, T9284). The protein sample was diluted in 300 μL of 

250 mM sodium chloride containing 0.1% Triton X-100 and samples were applied to 

the spots of the array. The array was placed on a shaker and gently agitated for 90 

minutes to allow for interaction with the array surface. After removing the sample, 

the array was washed x2 with 300 μL of 250 mM sodium chloride for 5 minutes, 

followed by a brief high-performance liquid chromatography grade water wash. 5 mg 

of Sinapinic acid (Biorad, C730078) solution was prepared by dissolving in 200 μL 

of 50% LC-MS grade acetonitrile (Sigma, 34967) containing 0.5% LC-MS grade 

trifluoroacetic acid (Sigma, 302031). After removing the array from the 

bioprocessor, a 0.8 μL aliquot of saturated sinapinic acid was added to the spots, 

allowed to dry and repeated. 
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2.20.3 Analysis of Protein Chip Array in SELDI TOF Reader 

The IMAC-30 arrays were analyzed in a Ciphergen Series PBS-IIC ProteinChip® 

System, and time-of-flight (TOF) data was generated by averaging a total of 220 

laser shots collected at a laser intensity of 200, a detector sensitivity of 8 and 

molecular mass range from 5–20,000 Da for low molecular weight range and 20,000-

100,000 Da for high molecular weight range. 

 

2.20.4 Analysis of Differential Expression of Proteins/Peptides 

Molecular weights were calibrated externally using an all-in-1 protein standard 

(Biorad, N76006). All data was analyzed using Biomarker Wizards Software, version 

3.1 (Bio-Rad). After automatic baseline noise correction, all of the spectra were 

normalized together by the „„total ion content‟‟ method as described by the 

manufacturer, i.e. with an m/z between 5,000 and 100,000. The peaks with an m/z 

value <3000 were excluded, as these peaks were mainly ion noise from the matrix 

(sinapinic acid). Peak clusters were generated by automatically detecting qualified 

mass peaks with a signal to noise ratio (S/N) >5 in the first pass, completed with a 

second-pass peak selection of S/N >3, with a 0.3% mass error for 5000-20,000 Da, 

and the same for 20,000-100,000 Da. Statistically significant peaks were considered 

to be those with p <0.05.   

 

2.20.5 IMAC-Cu
2+

 Based Fractionation Using Imidazole 

The uncharged IMAC resin (Bio-Rad, 156-0123) was mixed in order to thoroughly 

resuspend the resin. 200 μL was then transferred into an eppindorf tube containing a 

spin column with a 0.22 μm filter (Sigma, CLS8161-100EA). The resin was 

centrifuged at 1000 g for 15 seconds in order to pack the resin and then washed with 

500 μL of distilled water. The centrifugation step was repeated. Following this, the 

resin was equilibrated with 500 μL of 50 mM sodium acetate, 0.3 M sodium 

chloride, pH4, and the column was centrifuged at 1000 g for 15 seconds. This step 

was repeated. 500 μL of a 0.2 M copper sulphate solution (of neutral to weakly 

acidic pH) was applied to the resin and removed by centrifugation. This step was 

repeated. The column was washed twice with 500 μL of 50 mM sodium acetate, 0.3 
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M sodium chloride, pH 4 prior to being washed twice with 500 μL of deionised 

water.  

To pre-equilibrate the resin before sample binding, 500 μL of binding buffer was 

applied (50 mM sodium phosphate, 300 mM sodium chloride, 5 mM imidazole 

(Sigma Aldrich I0125), pH 8) and removed by centrifugation. This step was 

repeated. 2 mg of protein in a volume of ≤500 μL was added to the resin and mixed 

by pipetting up and down five times. It was then incubated for up to 15 minutes and 

centrifuged at 1000 g for one minute. This step was repeated by reloading the flow-

through onto the resin bed. The unbound fraction was then collected. The spin 

column was placed into a new eppindorf and 500 μL of wash buffer (50 mM sodium 

phosphate, 300 mM sodium chloride, 20 mM imidazole, pH 8) was applied to the 

resin and mixed by pipetting up and down five times followed by centrifugation at 

1000 g for one minute. This wash step was then repeated after which the fraction was 

collected. The column was placed into a new collection vessel and an elution buffer 

(50 mM sodium phosphate, 300 mM sodium chloride, 50 mM imidazole, pH 8) was 

applied, the fraction was collected as before. Following this, any number of elutions 

can be collected by increasing the concentration of the imidazole in the elution buffer 

to a maximum of 500 mM.  

The protein present in the fractions was then precipitated by applying five volumes 

chilled acetone to each elution and storing at -20 °C overnight. The following day, 

the elution fractions were centrifuged at 14,000 rpm at 4 °C for 10 minutes and the 

acetone was removed from each sample. The resulting pellets were allowed to air dry 

for two minutes prior to being resuspended in 6 M Urea, 2 M Thiourea, 10 mM Tris, 

pH 8 and stored at -20 °C. 

 

2.20.6 On-Chip Elution of IMAC Cu
2+

 -Bound Proteins 

The SELDI chip surface was prepared and the appropriate specimen was allowed to 

bind, followed by a wash step as described in section 2.20.2. However, the matrix 

was not applied. Instead, an elution buffer (250 mM sodium chloride, 0.1% Triton X-

100, 10 mM imidazole) was applied to the chip, and gently agitated for ten minutes 

in order to remove bound proteins. The elution was removed and the process was 

repeated using elution buffers containing 50 mM and 100 mM imidazole. The three 
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fractions were then treated with PepClean C-18 Spin Columns (Thermo, 89870) 

according to the manufacturer‟s instructions, and further analysed. 

 

2.21 MALDI ToF Analysis 

All experiments were carried out on an AB Sciex 4800 Plus analyser equipped with 

TOF/TOF ion optics and a diode pumped Nd:YAG laser with 200 Hz repetition rate. 

The MS/MS capabilities of the instrument are facilitated through a timed ion 

selector, a deceleration lens, a collision cell, and a second ion source. All the MS/MS 

spectra resulted from accumulation of at least 1600 laser shots. Air was used as the 

collision gas such that nominally single collision conditions were achieved. A wide 

mass window was utilized so that all the precursor ions could pass the gate to enter 

the collision. Generally, the width of mass window is set to 100 Da for precursor 

masses between 5000 Da and 9000 Da. MS/MS data were acquired using the 

instrument default calibration, without applying internal or external calibration. The 

digitizer, voltage and calibration parameters used are shown in Table 2.11. 
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Table 2.11 Digitiser, laser intensity, and voltage settings for MALDI-TOF 

 

2.22 Statistical Analysis 

Patterns of differential protein abundance between disease and control groups were 

measured and, using statistical analysis, only the proteins which illustrated a 

significant difference between the groups were followed up. A two-tailed Student‟s t-

test was utilised to determine if the protein fold changes observed were statistically 

significant. Protein changes with a p-value of ≤0.05 were considered statistically 

significant. Any keratin identifications which were discovered in protein lists were 

considered to be of little interest as this may be indicative of contamination and may 

not accurately reflect the proteome in question. Any outliers present in ELISA 

readings were determined using Tukey‟s method which considers values at a distance 

of 1.5 times the interquartile range (IQR) below Q1 (quartile one) or at 1.5 times the 
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IQR above Q3 (quartile three) to be possible outliers (Tukey 1977). Identified 

outliers were subsequently removed from the analysis. 
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CHAPTER THREE 

Proteomic Analysis of Uveal Melanoma Tumour Tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 

 

3.1 Background 

To date, only a very limited number of proteomic studies have been carried out 

investigating the biology of the metastatic phenotype of uveal melanoma. In addition 

to this, the majority of these studies have used cell line models, as outlined in section 

1.2.4. It was hypothesised that patterns of differential protein expression would be 

observed between primary uveal melanoma tumour tissues of patients who 

subsequently developed metastasis versus those who did not. By examining 

differential protein expression patterns between these tumour tissue types, this may 

improve our understanding of the biology of uveal melanoma tumours. As few 

therapeutic targets currently exist for the treatment of metastatic disease, proteins 

which indicate prognosis may be developed as targeted therapies. In addition to this, 

protein biomarkers predicting metastatic uveal melanoma could (along with genetic 

analysis) improve interim monitoring of patients whose tumours are likely to 

metastasise.  

The purpose of this study was to identify differentially expressed proteins in uveal 

melanoma tissue specimens from patients with a minimum of seven years clinical 

follow-up comparing those who developed metastases to those who did not. Only 

primary tumours specimens were used in this analysis as secondary tumour tissue 

was not available. 

Nine subsequently metastasised and 16 non-metastasised primary tissue samples 

were compared using 2-D DIGE for the analysis of differential protein expression. 

This work was subsequently published with follow-up IHC analyses (Linge, 

Kennedy et al. 2012). In parallel, eight tumour tissue specimens from each group 

were compared using quantitative label-free LC-MS analysis. Identified proteins of 

interest from both studies were then followed up using functional analysis in cell 

line models.  

 

3.2 Clinical Specimens Included in the Analysis 

A total of 27 uveal melanoma primary tumour tissue specimens obtained by 

enucleation were included in a 2D-DIGE study carried out in collaboration with the 

Royal Victoria Eye and Ear Hospital, Dublin (RVEEH). These samples were 
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acquired from Prof. Susan Kennedy (RVEEH). The study was approved by the 

Research and Ethics Committee of the Royal Victoria Eye and Ear Hospital, Dublin 

and the research adhered to tenets of the Declaration of Helsinki. Ten of these 

specimens subsequently metastasised to regions such as the liver (six cases), lungs 

(two cases), kidney (one case) and both the liver and skin (one case). According to 

the Callender classification, of the tumours which metastasised, three were of the 

epithelioid cell type, four were of the spindle type and three were mixed.  

Chromosome three status was available for 14 of the non-metastatic patients which 

showed disomy in 12 and trisomy in two cases. In eight out of the ten patients who 

developed metastasis, loss of heterozygosity for chromosome three was observed 

which is in agreement with previous studies, detailed in section 1.2.2., which 

correlate loss of heterozygosity of chromosome 3 with poor outcome.  

25 of the samples were used in 2-D DIGE analysis while 16 were used in 

immunohistochemistry (IHC) analysis. This was due to the fact that this was 

intended to be a discovery-phase, pilot study and hence, eight samples from each 

group were chosen, see table 3.1 for details on the samples used.  
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3.3 Differential Protein Expression Analysis Between Non-Metastasised and 

Subsequently Metastasised Primary Tumour Tissue using 2-D DIGE 

In order to extract protein from the tumour specimens, a sample grinding kit with 

lysis buffer was used. Protein lysates of uveal melanoma primary tumour tissues 

were collected from both patient groups.  

A pool of two fluorescently labelled samples (from different groups) was mixed with 

the internal standard, which allows for normalisation between gels and for the 

comparison of protein abundances, and separated by isoelectric focusing (IEF). Each 

protein applied to the strip migrates toward its isoelectric point (pI); the point at 

which its net charge is zero. This represents the first dimension of two-dimensional 

(2-D) electrophoresis. The IPG strips were then overlaid onto a gel where the 

proteins were separated based on their size in the second dimension.  

Gels were scanned on a Typhoon 9400 Variable Mode Imager to generate images at 

the appropriate excitation and emission wavelengths. Progenesis Same Spots 

software statistically analysed these acquired images by comparing non-metastasised 

primary tumour tissue to that which metastasised in order to identify differentially 

regulated proteins. Proteins were defined as differentially expressed if the observed 

average ratio was ±1.2 with a t-test score <0.05 between sample groups.  

Fourteen protein spots were found to be differentially expressed between the two 

groups. These proteins were identified using MS. The list of identified differentially 

expressed proteins is outlined in Table 3.2. Their location on a representative 2D 

DIGE gel is shown in Figure 3.1. 

The following proteins were found to show increased expression in primary uveal 

melanomas that metastasised compared to non-metastasised uveal melanomas; 

protein disulphide-isomerase A3 precursor (PDIA3), selenium-binding protein 1 

(SELENBP1), alpha-enolase, F-actin capping protein subunit alpha-1 (CAPZA1), 

endoplasmic reticulum protein ERp29 precursor, triosephosphate isomerase (TPI1), 

protein DJ-1 (PARK7), and fatty acid-binding protein, heart-type (FABP3). Both 

CAPZA1 and FABP3 protein spots are shown in Figure 3.2. Protein identification of 

spot number 2 yielded two protein identifications, vimentin and beta-

hexosaminidase subunit alpha. Eukaryotic translation initiation factor 2 subunit 1, 
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proteasome subunit alpha type 3, 40S ribosomal protein SA, tubulin beta chain and 

tubulin alpha-1B chain were shown to have decreased expression in uveal melanoma 

tissues of patients who subsequently developed metastatic disease. 
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Figure 3.1 Representative 2D DIGE gel image of Cy2-labelled pool of protein 

lysates from primary uveal melanomas that were subsequently found to have 

metastasised (n=9) and the primary uveal melanomas that did not metastasise 

(n=16). Differentially expressed proteins that were successfully identified by 

LC/MS-MS are represented on the gel. Proteins are labelled numerically for clarity 

and are outlined in Table 3.2. 
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Figure 3.2 Two examples of differentially expressed protein spots as illustrated by 

Progenesis SameSpots software. Samples of non-metastasised specimens were 

compared to those which subsequently metastasised. (a) Spot number 6 was 

identified as F-actin capping protein subunit alpha-1 (CAPZA1), with an average 

ratio of 1.3 and p=0.028 between experimental groups. (b) Spot number 15 was 

found to be fatty acid-binding protein, heart type (FABP3), with an average ratio of 

2.2 and p=3.5x10
4
 between experimental groups.  
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3.4 Enrichment analysis within differentially expressed protein lists using 

DAVID 

In order to determine significant enrichment of biological processes, molecular 

functions, and cellular compartments involved within the differentially expressed 

protein lists, Database for Annotation, Visualization and Integrated Discovery 

(DAVID) and Gene Ontology (GO) analysis was used 

(http://david.abcc.ncifcrf.gov/). DAVID provides a comprehensive set of functional 

annotation tools in order to understand the biological meaning behind lists of 

differentially regulated proteins.  

Enrichment was considered to be significant when the Bonferroni p-value 

adjustment was ≤0.05. Differentially expressed proteins were divided into two 

groups; those which showed an increase in expression in subsequently metastasised 

primary uveal melanoma tumour tissue and those which showed a decrease in 

expression, and were analysed individually. 

This study identified the cytosol as being significantly involved in the list of 

upregulated features found in the metastasised tissue, as gene products of PARK7, 

TPI1, ENO1, FABP3, SELENBP1, and VIM were all found to be localised there 

(Table 3.3). In addition to this, intramolecular oxioreductase activity was identified 

as a molecular process involved in the overexpression of the following genes; TPI1, 

PDIA3, and ERP29 (Table 3.3).  
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Table 3.3 GO cellular compartment and molecular function enrichment for 

differentially expressed proteins which were upregulated in subsequently 

metastasised primary uveal melanoma tumour tissue (n=9). Enrichment was 

considered significant upon observation of a p-value ≤0.05 and a Bonferroni 

adjusted p-value ≤0.05. Count corresponds to the overlap between proteins on the 

list and a particular GO category. 
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3.5 Follow-Up of Selected 2-D DIGE Targets by Immunohistochemistry  

For follow-up of the 2D DIGE study, Dr. Annett Linge (a medical doctor with an 

interest in pathology in the lab) performed immunohistochemical analysis on eight 

non-metastasised uveal melanoma tissue specimens and eight uveal melanoma 

specimens of patients who did subsequently develop metastatic disease (see Table 

3.1 for clinical and histopathological features of the patients included in the study; 

note that two samples differ to the 2D DIGE study due to sample availability). Uveal 

melanoma tissue sections from the two patient groups were analysed for the 

expression of FABP3, TPI1, CAPZA1, PDIA3, SELENBP1 and PARK7. For semi-

quantitative immunohistochemical analysis, a combined score was obtained by 

multiplying the scores for the overall positivity and the intensity of stained tumour 

cells, giving a maximum score of 12.  

 

3.5.1 FABP3  

FABP3 showed positive cytoplasmic staining in fifteen of the sixteen of the uveal 

melanoma cases that were studied. Increased cytoplasmic positivity and 

membranous reactivity for FABP3 was observed in uveal melanomas that were 

found to have subsequently metastasised compared to those that did not (mean 

combined score, 8.5 versus 5) (Figure 3.3 (A)). 

 

3.5.2 TPI1  

TPI1 protein showed expression in the cytoplasm and the nucleus in the majority of 

the cases analysed (Figure 3.3 (B)). Increased positivity for TPI1 was observed in 

uveal melanomas that were found to have subsequently metastasised compared to 13 

those that did not (mean combined score, 8.75 versus 6.25). Two out of eight of the 

non-metastasised uveal melanomas were found to be completely negative for TPI1 

protein expression. 

 

3.5.3 CAPZA1  

CAPZA1 showed an overall reduced cytoplasmic expression pattern in the majority 

of the uveal melanoma tissues that were found to have subsequently metastasised 
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(mean combined score, 4) compared to those that did not (mean combined score, 10) 

(Figure 3.4 (A) and (B)). Parallel staining of sections for CAPZA1 and the 

histiocyte/monocyte/macrophage marker CD68 confirmed CAPZA1 positivity in 

both tumour cells and tumour-infiltrating macrophages, but not all of those 

macrophages stained positive for CAPZA1. 

 

3.5.4 PDIA3  

PDIA3 (Figure 3.5 (A)) showed decreased expression in uveal melanomas that were 

found to have subsequently metastasised compared to those that did not (mean 

combined score, 5.25 versus 7.5).  

 

3.5.5 SELENBP1   

SELENBP1 (Figure 3.5 (B)) showed only weak or no cytoplasmic expression in the 

majority of both non-metastasised and subsequently metastasised uveal melanoma 

groups (mean combined score, 2.875 versus 2.25). 

 

3.5.6 PARK7  

For PARK7 (Figure 3.5 (C)) positive, heterogeneous staining was observed in both 

non-metastasised and subsequently metastasised uveal melanoma groups (mean 

combined score, 5 versus 6.6).  
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Figure 3.3 Images representing immunohistochemical analysis of (a) FABP3 

(p=0.15) and (b) TPI1 (p=0.27) in primary uveal melanomas which subsequently 

metastasised (right, n=8) in comparison to those which did not (left, n=8). 

Magnification x400; scale bar = 100 μm. 
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Figure 3.4 Images representing immunohistochemical analysis of (a) CAPZA1 

expression in primary uveal melanomas which remained as non-metastasised (n=8) 

and of (b) CAPZA1 expression in primary uveal melanomas which subsequently 

metastasised (n=8). Magnification x400; scale bar = 100 μm; p=0.08. 
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Figure 3.5 Representative images of the immunohistochemical analysis of (a) 

PDIA3 (p=0.20), (b) SELENBP1 (p=0.69) and (c) PARK7 (p=0.39) in non-

metastasised (n=8) primary uveal melanoma tumour tissue. Magnification x400; 

scale bar = 100 μm. 
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From the immunohistochemical analysis of CAPZA1, PDIA3, FABP3, TPI1, 

SELENBP1, and PARK7, it was decided to follow up FABP3, TPI1, and 

SELENBP1 with functional analysis (Section 3.7).  

 

From the 2-D DIGE study, TPI1 was found to be significantly upregulated in 

subsequently metastasised uveal melanoma tissue. The immunohistochemical 

staining for this protein also indicated a trend for upregulation in uveal melanomas 

which did metastasise. Both results illustrate that the potential biomarker may be 

involved in the development of the metastatic phenotype in uveal melanoma. TPI1 is 

a glycolytic enzyme which catalyses the conversion of dihydroxyacetone phosphate 

to glyceraldehyde 3-phosphate; a high rate of glycolysis is required to support 

tumour growth (Albery and Knowles 1976, Bui and Thompson 2006). TPI1 has also 

previously been shown to be expressed in uveal melanoma primary cell cultures 

(Pardo, Garcia et al. 2005).  

 

FABP3 was found to be upregulated by 2.2-fold in primary uveal melanoma tissue 

which metastasised. This result correlated with the outcome of the FABP3 

immunohistochemistry study. However, the function of FABP3 is poorly 

understood. It has been shown to exhibit inhibitory activity of mammary epithelial 

cell proliferation and reduce the tumorgenicity of breast cancer cells in nude mice 

(Yang, Spitzer et al. 1994). Positive correlations of FABP3 expression with tumour 

cell invasion, lymph node metastasis and poor patient survival have been identified 

in gastric carcinomas (Hashimoto, Kusakabe et al. 2004). 

 

SELENBP1 was found to be significantly upregulated in subsequently metastasised 

primary tumour tissue in comparison to non-metastasised tissue. However, the 

immunohistochemical analysis was non-conclusive due to the weak/absence of 

staining in both the metastasised and non-metastasised tumour tissue. SELENBP1 

has previously been suggested as a tumour suppressor as its expression is lost in 

several epithelial cancers (Scortegagna, Martin et al. 2009). Unlike PDIA3 and 

PARK7, SELENBP1 had not previously been associated with ocular cancer and 

hence, was novel in this regard (Pardo, Garcia et al. 2005, Bande, Santiago et al. 
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2012). Therefore, it was decided to follow up SELENBP1 with functional analysis 

(Section 3.7).  

 

3.6 Differential Protein Expression Analysis Between Non-Metastasised and 

Subsequently Metastasised Primary Tumour Tissue using Quantitative Label-

Free LC-MS Analysis  

Dr. Pathma Ramasamy (a medical doctor) and Mr. Michael Henry (a mass 

spectrometry specialist in the lab) carried out a quantitative LC-MS proteomic 

analysis of eight non-metastasised tumour tissues and eight which subsequently 

metastasised, 14 of which were also used in the 2-D DIGE study. The sample details 

are illustrated in Table 3.4.  

From this analysis, 50 proteins with a minimum of three matched peptides were 

identified as being differentially expressed between both sample sets (Table 3.4). Of 

these proteins, five had previously been identified in the 2-D DIGE study. Vimentin, 

alpha-enolase, TPI1, beta-hexosaminidase subunit alpha, and FABP3 were all found 

to be upregulated in primary uveal melanoma tissue which had metastasised, which 

correlated with the 2-D DIGE findings, see Table 3.2. In addition to this, heat shock 

protein beta-1 (HSP-27) was found at a lower abundance in the subsequently 

metastasised tissue in comparison to non-metastasised primary tissue. This result 

agrees with a study previously carried out by Jmor et al. which demonstrated that 

HSP-27 was expressed at a lower level in monosomy three tumours (which are 

typically associated with metastasis) than in disomy three tumours (often linked with 

a non-metastatic outcome) (Jmor, Kalirai et al. 2012). 

Of the proteins identified by quantitative label-free LC-MS, cytosolic non-specific 

dipeptidase (CNDP2), thioredoxin-dependent peroxide reductase (PRDX3), importin 

subunit beta-1 (KPNB1), and elongation factor 1-gamma (EEF1G) were selected for 

functional analysis. Dr. Ramasamy carried out the follow-up of other targets, using 

immunohistochemistry, for his M.D. thesis. 

The four selected proteins were chosen as, although some of these had previously 

been linked with other cancer studies, they had not been associated with uveal 

melanoma. In addition to this, they illustrated some of the lowest ANOVA scores of 
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the analysis, deeming them as a number of the most significant potential targets from 

the generated list (Table 3.5).  
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3.7 Functional Effects of siRNA-Mediated Downregulation of Targets of 

Interest in Uveal Melanoma Cell Lines 

RNA interference (RNAi) is a naturally-occurring mechanism which can exploited 

for knockdown studies when understanding the role of potential biomarkers. small 

interfering RNA (siRNA) are RNA duplexes which becomes separated in the 

cytoplasm of the cell, with the antisense strand bound to the RNA-induced silencing 

complex (RISC). This RNA-RISC complex then locates mRNA in the cytoplasm 

with homologous sequences and induces cleavage of the mRNA, thus preventing 

translation of the protein.  

siRNA transfected cells can be monitored for changes in tumorigenicity or 

metastatic potential following transfection, which can in turn highlight the role of 

the targets of interest.  

In order to determine the roles of the proteins of interest, siRNA were used to 

downregulate, or “knockdown”, their production. Subsequent functional analysis 

would then be carried out, using the transfected cells.  

TPI1, FABP3, and SELENBP1 were selected from the 2-D DIGE results (Table 

3.2), while CNDP2, PRDX3, EEF1G, and KPNB1 were selected from the 

quantitative label-free LC-MS results (Table 3.5).   

In order to determine if it was possible to downregulate the proteins of interest, the 

levels of each protein in 92.1 and MEL202 uveal melanoma cell lines was first 

determined. This was carried out using Western blotting with antibodies specific to 

each protein (Figure 3.6). From this, it was clear that all proteins, except CNDP2 

which was not noticeably produced (Figure 3.6 (d)), were expressed at sufficient 

levels in 92.1 and MEL202 cells. This resulted in CNDP2 being excluded from the 

analysis. 

siRNA specific to TPI1, FABP3, SELENBP1, PRDX3, EEF1G, and KPNB1 were 

selected for the transfection of 92.1 and MEL202 uveal melanoma cell lines. Two 

independent siRNA molecules were chosen for each target. In some cases, this 

required multiple siRNA to be tested prior to selecting the molecule which most 

efficiently downregulated expression. For example, of three siRNAs tested, siRNA 

#1 and #3 were selected for SELENBP1 knockdown studies. 
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For all proteins, except PRDX3, significant knockdown of each protein was 

achieved. The attempted optimisation of transfection conditions for PRDX3 was 

carried out in both cell lines. However, the transfection heavily impacted on the 

proliferation of MEL202 cells at an siRNA concentration of 20 nM, resulting in total 

cell death. At this concentration, knockdown of the protein did not occur (Figure 3.7 

(a)); hence the effect on proliferation observed was not as a result of PRDX3 

knockdown. In the 92.1 cell line the transfection did not successfully downregulate 

PRDX3 at siRNA concentrations of 20 nM, 40 nM or 60 nM. These concentrations 

were tested using 4.5 μL, 6.5 μL and 7.5 μL of transfection reagent (lipofectamine 

RNAiMax). The transfection was also tested using 80 nM of siRNA, which appeared 

to marginally reduce the levels of PRDX3 when 6.5 μL and 7.5 μL of lipofectamine 

were used (Figure 3.7 (b)). However, at high concentrations, siRNA can cause off-

target effects which can generate false results. A lower concentration of siRNA was 

used by pooling of two PRDX3 siRNA. This method was attempted at two 

concentrations; 20 nM and 40 nM, however, the extent of knockdown was not strong 

enough at either concentration (Figure 3.7 (c)). It was decided to exclude PRDX3 

from the functional analysis as a result. 
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Figure 3.7 The downregulation of PRDX3 in 92.1 and MEL202 cell lines was 

unsuccessful. (a) In the MEL202 cell line, the transfection of 20 nM PRDX3 siRNA 

appeared to severely impact proliferation. However, western blotting illustrated that 

the knockdown of the protein was unsuccessful at this level. This indicates that the 

observed cell death did not occur as a consequence of the transfection. (b) 

Knockdown did not occur in the 92.1 cell line at siRNA levels as high as 80 nM, 

using a range of transfection reagent volumes. (c) Combining two independent 

siRNA at concentration of 20 nM and 40 nM did not successfully result in the 

knockdown of PRDX3 in 92.1 cells either. Control refers to healthy, untreated cells. 

Lipo refers to healthy cells treated with lipofectamine only. Scrambled represents 

negative control cells which were transfected with a nonsense sequence of siRNA.  
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3.7.1 TPI1 Downregulation in the 92.1 Uveal Melanoma Cell Line for the 

Determination of a Potential Role in Proliferation, Invasion and Migration 

To study the potential effect of TPI1 on the proliferation, invasion and motility of 

uveal melanoma cells, down-regulation experiments using siRNA molecules 

directed against the respective target gene were performed in the 92.1 primary uveal 

melanoma cell line. Two independent siRNA molecules were used to knockdown 

TPI1 and the subsequent reduction in protein levels was confirmed by Western blot 

analysis (Figure 3.8) 

 

3.7.1.1 Proliferation  

Proliferation assays were carried out following TPI1 siRNA transfection. No 

noteworthy effect on proliferation in 92.1 cells was observed when treated cells were 

compared with scrambled siRNA-treated cells (Figure 3.9 (A)). However, the 

downregulation of TPI1 notably decreased the rate of proliferation in the MEL202 

primary uveal melanoma cell line, with a significant effect observed in the replicate 

experiments (Figure 3.9 (B)). This could create complications by making it difficult 

to assess the impact of knockdown on properties such as invasion and migration. 

Hence, TPI1 knockdown studies were not carried out in this cell line. 

 

3.7.1.2 Invasion 

At 72 hours following siRNA transfection, invasion assays were carried out. The 

total number of 92.1 cells transfected with siRNA #2 invading through the 

membrane was significantly decreased while a strong effect on invasion was also 

observed for siRNA #1 transfected cells (Figure 3.10 (A)).  

 

3.7.1.3 Migration 

At 72 hours following siRNA transfection, migration assays were carried out. The 

reduction of TPI1 levels led to a significant decrease in the motility of 92.1 cells 

(Figure 3.10 (B)).  
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These results indicate that TPI1 is required for both invasion and migration in 92.1 

cells, and hence, may contribute to the metastatic process of uveal melanoma.  
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Figure 3.8 Western blot analysis showing the reduction of TPI1 following siRNA 

knockdown. Control cells (untreated), transfection reagent-treated cells (Lipo), 

scrambled siRNA treated cells, siRNA #1 and siRNA #2 specific for TPI1-treated 

cells were lysed 72 hours after transfection and subjected to Western blot analysis. 

GAPDH served as an internal loading control. 
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Figure 3.9 Proliferation assay results for (A) 92.1 and (B) MEL202 cells treated 

with siRNA specific for TPI1. When 92.1 siRNA transfected cells were compared to 

the scrambled siRNA (negative control), there was no effect on proliferation for 

either siRNA #1 (p=0.59) or siRNA #2 (p=0.71). However, the knockdown of TPI1 

in MEL202 cells strongly affects proliferation in both siRNA #1 (p=0.13) and 

siRNA #2 (p=0.38) when compared to the negative control (scrambled). The 

combined result and statistics of three independent experiments is shown. All p-

values were determined by comparing each siRNA to the scrambled control. n=3. 
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Figure 3.10 siRNA knockdown of TPI1 decreases invasion and motility. (a) 

Invasion assay of 92.1 cells following siRNA transfection. The total number of 92.1 

cells invading through membranes after siRNA transfection is shown. siRNA #1 

p=0.08; siRNA #2 p=0.03. (b) Motility assay of 92.1 cells following siRNA 

transfection. The total number of 92.1 cells migrating through uncoated membrane 

after siRNA transfection is shown. siRNA #1 p=0.008; siRNA #2 p=0.007. The 

combined result and statistics of two independent experiments is shown. *p<0.05, 

**p<0.01 when compared with scrambled siRNA-treated controls. n=2. 

A 
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3.7.2 FABP3 Downregulation in the 92.1 Uveal Melanoma Cell Line for the 

Determination of a Potential Role in Proliferation, Invasion and Migration 

To study the potential effect of FABP3 on the proliferation, invasion and migration 

of uveal melanoma cells, down-regulation experiments using siRNA molecules 

directed against FABP3 were performed in the 92.1 primary uveal melanoma cell 

line. Two independent siRNA molecules were used to knockdown TPI1 and the 

subsequent reduction in protein levels was confirmed by Western blot analysis 

(Figure 3.11). 

 

3.7.2.1 Proliferation  

Proliferation assays were carried out following siRNA transfection; no effect on the 

proliferation of 92.1 cells was observed when treated cells were compared with 

scrambled siRNA-treated cells (Figure 3.12 (A)). However, the downregulation of 

FABP3 notably decreased the rate of proliferation in the MEL202 primary uveal 

melanoma cell line, with a significant effect observed in the individual replicate 

experiments (Figure 3.12 (B)). This could create complications by making it difficult 

to assess the impact of knockdown on properties such as invasion and migration. 

Hence, knockdown studies of FABP3 were not carried out in this cell line. 

 

3.7.2.2 Invasion 

At 72 hours following siRNA transfection, invasion assays were carried out. The 

total number of 92.1 cells invading through the membrane was significantly 

decreased following transfection (Figure 3.13 (A)). This indicates that FABP3 may 

be required for invasion.  

 

3.7.2.3 Migration  

At 72 hours following siRNA transfection, migration assays were carried out. The 

knockdown of FABP3 led to a significant decrease in motility of 92.1 cells (Figure 

3.13 (B)).  
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These results indicate that FABP3 may be required for both invasion and migration 

in 92.1 cells, and hence, may contribute to the metastatic process of uveal 

melanoma.  
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Figure 3.11 Western blot analysis showing the reduction of FABP3 following 

siRNA knockdown. Control cells (untreated), transfection reagent-treated cells 

(Lipo), scrambled siRNA treated cells, siRNA #1 and siRNA #2 specific for TPI1-

treated cells were lysed 72 hours after transfection and subjected to Western blot 

analysis. GAPDH served as an internal loading control. 
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Figure 3.12 Proliferation assay results for (A) 92.1 and (B) MEL202 cells treated 

with siRNA specific for FABP3. When 92.1 cells were compared to the scrambled 

siRNA (negative control), the effect of the transfection was minimal on 92.1 cells; 

siRNA #1 p=0.97 and siRNA #2 p=0.84. The knockdown of FABP3 in MEL202 

cells strongly affects proliferation in both siRNA #1 (p=0.13) and siRNA #2 

(p=0.38). The combined result and statistics of three independent experiments is 

shown. All p-values were determined by comparing each siRNA to the scrambled 

control. n=3. 
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Figure 3.13 siRNA knockdown of FABP3 decreases invasion and motility. (A) 

Invasion assay of 92.1 cells following siRNA transfection. The total number of 92.1 

cells invading through membranes of invasion chambers after siRNA transfection is 

shown. siRNA #1 p=0.04; siRNA #2 p=0.02. (B) Motility assay of 92.1 cells 

following siRNA transfection. The total number of 92.1 cells migrating through 

uncoated membrane after siRNA transfection is shown. siRNA #1 p=0.002; siRNA 

#2 p=0.04. The combined result and statistics of two independent experiments is 

shown. *p<0.05, **p<0.01 when compared with scrambled siRNA-treated controls. 

n=2. 

B 
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3.7.3 SELENBP1 Downregulation in MEL202 and 92.1 Cell Lines for the 

Determination of a Potential Role in Proliferation, Invasion, Migration, and 

Oxidative Metabolism 

In order to determine the effect of downregulation of SELENBP1 on the invasion 

and migration properties of uveal melanoma cells, two siRNA molecules directed 

against respective target gene, siRNA #1 and #3, were transfected into the 92.1 and 

MEL202 primary uveal melanoma cell lines. The reduction in protein levels for both 

cell lines was confirmed by Western blot analysis (Figure 3.14 (A) and (B), i).  

 

3.7.3.1 Proliferation  

Proliferation assays were carried out following siRNA transfection which illustrated 

that there was no significant effect on proliferation in either 92.1 (Figure 3.15 (A)) 

or MEL202 (Figure 3.12 (B)) cells treated with SELENBP1 siRNA in comparison to 

scrambled siRNA treated cells Hence, it was decided to carry out the knockdown 

studies in both cell lines. 

 

3.7.3.2 Invasion  

Invasion assays were performed at 72 hours following the transfection of both cell 

lines. This illustrated that the total number of cells invading through the membrane 

was significantly decreased following transfection with siRNA molecules specific 

for SELENBP1 in the 92.1 cell line (Figure 3.13 (A), i). The same was observed in 

the MEL202 cell line for siRNA #1 but not for siRNA #3. 

 

3.7.3.3 Migration  

Migration assays were performed at 72 hours following the transfection for both cell 

lines. A significant reduction in the migration of 92.1 cells was observed following 

transfection with siRNA molecules specific for SELENBP1 (Figure 3.13 (A) and 

(B), ii). However, no significant effect on the migration of MEL202 cells was 

observed following transfection, although a clear trend in decreased cell number was 

observed. This may have been due to the nature of MEL202 cells as they aggregate 

quite easily, creating both dense and sparsely populated areas within the chamber, 
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hence producing a wide range of cell counts per experiment. This may have 

therefore affected the overall validity of the experiment. 

These results indicate that SELENBP may be required for both invasion and 

migration in 92.1 and MEL202 cells, and hence, may play a role the process of 

metastasis in uveal melanoma. 
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Figure 3.14 Western blot analysis showing the reduction of SELENBP following 

siRNA knockdown siRNA knockdown of SELENBP in (A) 92.1 and (B) MEL202 

uveal melanoma cell lines. Control cells (untreated), transfection reagent-treated 

cells (Lipo), scrambled siRNA treated cells, siRNA #1 and siRNA #3 specific for 

SELENBP treated cells were lysed 72 hours after transfection and subjected to 

Western blot analysis. GAPDH served as an internal loading control. 
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Figure 3.15 Proliferation assay results for (a) 92.1 cells treated with SELENBP1 

siRNA #1 (p=0.68) and siRNA #3 (p=0.55), and (b) MEL202 cells treated with 

SELENBP1 siRNA #1 (p=0.36) and siRNA #3 (p=0.78). No impact on proliferation 

was noted following siRNA transfection in either the 92-1 or the MEL202 cell line. 

The combined results and statistics of three independent experiments is shown. All 

p-values were determined by comparing each siRNA to the scrambled control. n=3. 
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Figure 3.16 siRNA knockdown of SELENBP in the (A) 92.1 and (B) MEL202 

uveal melanoma cell line decreases invasion and motility. (i) Invasion assays 

following siRNA transfection. The total number of cells invading through 

membranes after siRNA transfection is displayed. 92.1 siRNA #1 p=0.02; siRNA #3 

p=0.03. MEL202 siRNA #1 p=0.02; siRNA #3 p=0.03. (ii) Motility assays 

following siRNA transfection. The total number of cells migrating through uncoated 

chambers after siRNA transfection is illustrated. 92.1 siRNA #1 p=0.004; siRNA #3 

p=0.01. MEL202 siRNA #1 p=0.3; siRNA #3 p=0.4.  The combined result and 

statistics of three independent experiments is shown. *p<0.05, **p<0.01 when 

compared with scrambled siRNA-treated controls. n=3. 
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3.7.3.4 Determination of the Effect of SELENBP1 Knockdown on 

Oxidative Metabolism in 92.1 Uveal Melanoma Cells 

Reactive oxygen species (ROS) play an essential role in oxidative metabolism.  

However when an over-abundance is produced, for example during cell stress such 

as inflammation, ROS can disrupt the cell through the peroxidation of lipids and 

destruction of structural proteins, enzymes and nucleic acids. Selenium is an 

essential trace element which is involved in the function of antioxidant enzymes and 

proteins that protect the cell against ROS. SELENBP1, a member of the 

selenoprotein family, is known to bind selenium covalently in order to mediate the 

intracellular transport of selenium (Zhou, Zhang et al. 2009, Zeng, Yi et al. 2013). 

Hence, it was decided to examine the ability of 92.1 cells transfected with 

SELENBP1 siRNA to deactivate ROS, relative to the negative control. 

2‟,7‟-dichlorofluorescein-diacetate (DCFH-DA) was used to quantify intracellular 

produced H2O2. DCFH-DA is first transported across the cell membrane where it is 

deacetylated, becoming trapped within the cell. Through the action of peroxide, it is 

then converted to 2‟,7‟-dichlorofluorescein (DCF), a highly fluorescent compound, 

which can be used for measuring the quantity of ROS present. The greater the 

fluorescence intensity measured, the higher the ROS activity present in the cells. 

Overall, no significant difference in ROS activity was observed (Figure 3.14). 

However, from the Figure 3.14, there appeared to be a mild increase in the activity 

of ROS in cells transfected with SELENBP1 siRNA in comparison to the 

lipofectamine-treated controls (Lipo) and negative controls (scrambled). This would 

suggest that without SELENBP1, selenium cannot sufficiently exert antioxidant 

effects, hence, the cell cannot control the quantity of ROS produced.  

The increase in SELENBP expression does not appear to correlate with the initial 

establishing of the malignancy, as a significant fold increase was observed in the 

subsequently metastasised primary uveal melanoma tumour tissue in comparison to 

the non-metastasised specimens. This increase in abundance may be due to the more 

aggressive nature of a tumour which has the potential to spread, in comparison to 

that which does not.  
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Figure 3.14 Reactive oxygen species (ROS) activity of SELENBP1 siRNA-

transfected 92.1 uveal melanoma cells. Analysis was carried out in lipofectamine-

treated cells (Lipo), negative controls (scrambled), and cell transfected with two 

independent siRNA molecules. The ability of SELENBP1 knockdown to increase 

ROS is shown through increasing fluorescence relative to the negative control. The 

combined result of three independent experiments is shown. siRNA #1 p=0.14,  

siRNA #3 p=0.29 when compared to scrambled controls. n=3. 
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3.7.4 KPNB1 Downregulation in MEL202 and 92.1 Cell Lines for the 

Determination of a Potential Role in Invasion and Migration 

92.1 and MEL202 uveal melanoma cells were transfected with two independent 

siRNA, siRNA #2 and #3, in order to determine the effect of downregulation of 

KPNB1 on the invasive and migratory properties of uveal melanoma cells. Using 

western blotting, the reduction in protein levels of KPNB1 in both cell lines was 

confirmed (Figure 3.15 (A) and (B)).  

 

3.7.4.1 Proliferation  

Proliferation assays illustrated that there was no significant effect on proliferation in 

either 92.1 or MEL202 cells treated with both KPNB1 siRNA in comparison to 

scrambled siRNA treated cells (Figure 3.16 (A) and (B)).  

 

3.7.4.2 Invasion 

Invasion assays were carried out at 72 hours following transfection. From this, it was 

found that the total number of cells invading through the membrane was 

significantly decreased following transfection, in 92.1 cells and in MEL202 cells 

treated with siRNA #2 (Figure 3.17 (A) and (B), i).  

 

3.7.4.3 Migration 

Migration assays were carried out at 72 hours following transfection. From this, it 

was found that there was a significant reduction in the number of 92.1 cells 

migrating across the membrane (Figure 3.17 (A), ii). No significant effect on the 

migration of MEL202 cells was observed following transfection, although a clear 

trend in decreased cell number was observed. This again may have been due to the 

nature of MEL202 cells, as outlined in section 3.7.3.3. 

These results indicate that KPNB1 may be required for both invasion and migration 

in 92.1 and MEL202 cells, and hence, may play a role the process of metastasis in 

uveal melanoma. 
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Figure 3.15 Western blot analysis showing the reduction of KPNB1 in (A) 92.1 and 

(B) MEL202 cell lines following siRNA knockdown. Control cells (untreated), 

transfection reagent-treated cells (Lipo), scrambled siRNA treated cells, siRNA #1 

and siRNA #3 specific for KPNB1 treated cells were lysed 72 hours after 

transfection and subjected to Western blot analysis. GAPDH served as an internal 

loading control.  
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Figure 3.16 Proliferation assay results for (a) 92.1 cells treated with KPNB1 siRNA 

#2 (p=0.59) and siRNA #3 (p=0.41), and (b) MEL202 cells treated with KPNB1 

siRNA #2 (p=0.25) and siRNA #3 (p=0.38). No effect on proliferation was noticed 

following siRNA transfection in both the 92-1 and MEL202 cell lines. The 

combined results and statistics of three independent experiments is shown. All p-

values were determined by comparing each siRNA to the scrambled control. n=3. 
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Figure 3.17 siRNA knockdown of KPNB1 in (A) 92.1 and (B) MEL202 cell lines 

decreases invasion and motility. (i). Invasion assays of 92.1 cells following siRNA 

transfection. The total number of 92.1 cells invading through membranes of invasion 

chambers after siRNA transfection is shown. 92.1 siRNA #2 p=0.04; siRNA #3 

p=0.02. MEL202 siRNA #2 p=0.04; siRNA #3 p=0.07.  (ii) Motility assays of 92.1 

cells following siRNA transfection. The total number of 92.1 cells migrating through 

uncoated membrane after siRNA transfection is shown. 92.1 siRNA #2 p=0.003; 

siRNA #3 p=0.002. MEL202 siRNA #2 p=0.32; siRNA #3 p=0.35.  The combined 

result and statistics of three independent experiments is shown. *p<0.05, **p<0.01 

when compared with scrambled siRNA-treated controls. n=3. 
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3.7.5 EEF1G Downregulation in MEL202 and 92.1 Cell Lines for the 

Determination of a Potential Role in Invasion and Migration 

Two independent siRNA, siRNA #2 and #4, were transfected into 92.1 and MEL202 

uveal melanoma cells in order to downregulate the production of EEF1G. The 

knockdown cells would then be used to determine the role of the protein in processes 

of invasion and migration. Western blotting illustrated a reduction in EEF1G levels 

for both cell lines, thus confirming the transfection (Figure 3.18 (A) and (B), i).  

 

3.7.5.1 Proliferation  

Proliferation assays illustrated that there was no effect on proliferation in 92.1 and 

MEL202 cells treated with EEF1G siRNA in comparison to the negative control 

(Figure 3.19 (A) and (B)).  

 

3.7.5.2 Invasion 

Invasion assays were carried out at 72 hours following the transfection of both cell 

lines. From this, it was found that the total number of cells invading through the 

membrane was significantly decreased for both cell lines, as a result of the 

transfection (Figure 3.20 (A) and (B), i).  

 

3.7.5.3 Migration  

Migration assays were carried out 72 hours following the transfection of both cell 

lines. A significant reduction in the number of 92.1 cells migrating across the 

membrane was observed (Figure 3.20 (A), ii). No significant effect on the migration 

of MEL202 cells was observed following transfection, although a clear reduction of 

cell number was observed. This again may have been due to the nature of MEL202 

cells, as outlined in section 3.7.3.3. 

These results indicate that EEF1G may be required for invasion and migration in 

92.1 and MEL202 cells, and hence, may play a role in metastatic uveal melanoma. 
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Figure 3.18 Western blot analysis showing the reduction of EEF1G following 

siRNA knockdown. Control cells (untreated), transfection reagent-treated cells 

(Lipo), scrambled siRNA treated cells, siRNA #2 and siRNA #4 specific for EEF1G 

treated cells were lysed 72 hours after transfection and subjected to Western blot 

analysis. GAPDH served as an internal loading control. 
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Figure 3.17 Proliferation assay results for (A) 92.1 cells treated with EEF1G siRNA 

#2 (p=0.53) and siRNA #4 (p=0.77), and (B) MEL202 cells treated with EEF1G 

siRNA #4 (p=0.54) and siRNA #4 (p=0.82). No effect on proliferation was noticed 

following transfection in either cell line. The combined results and statistics of three 

independent experiments is shown. All p-values were determined by comparing each 

siRNA to the scrambled control. n=3. 
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Figure 3.18 siRNA knockdown of EEF1G decreases invasion and motility in (A) 

92.1 and (B) MEL202 cell lines. (i). Invasion assays of 92.1 cells following siRNA 

transfection. The total number of 92.1 cells invading through invasion chamber 

membranes after siRNA transfection is shown. 92.1 siRNA #2 p=0.02; siRNA #4 

p=0.02. MEL202 siRNA #2 p=0.07; siRNA #4 p=0.03. (ii) Motility assays of 92.1 

cells following siRNA transfection. The total number of 92.1 cells migrating through 

uncoated membrane after siRNA transfection is shown. 92.1 siRNA #2 p=0.001; 

siRNA #4 p=0.004. MEL202 siRNA #2 p=0.3; siRNA #4 p=0.4. The combined 

results of three independent experiments is shown. *p<0.05, **p<0.01 when 

compared with scrambled siRNA-treated controls. n=3. 
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3.7.6 Gelatin Zymography Analysis of Cells treated with SELENBP1, KPNB1 

and EEF1G siRNA   

Zymography can be used to detect and characterise proteases, such as matrix 

metalloproteases (MMPs), using either casein or gelatin as a substrate, depending on 

the species of enzyme to be detected. Initially, the proteins are separated under non-

reducing and denaturing, i.e. inactivating, conditions. The zymography gel consists 

of polyacrylamide which is co-polymerised with a substrate. Following 

electrophoresis, the gel is placed in a solution of Triton X-100 which renatures and 

reactivates the enzymes, allowing them to digest the substrate. Coomassie Blue is 

then used to stain the background of undegraded substrate, with MMPs remaining 

unstained and appearing as clear bands (Snoek-van Beurden and Von den Hoff 

2005).  

As SELENBP1, EEF1G, and KPNB1 were all found to play a role in invasion, it 

was hypothesised that MMP-9 and MMP-2 may be involved in this process. MMPs 

have long been associated with tumour progression and the invasion process, and are 

often upregulated in tumours and tumour cell lines. In particular, MMP-2 and MMP-

9 are often connected with melanoma disease progression (Coussens, Fingleton et al. 

2002, Schnaeker, Ossig et al. 2004, Nikkola, Vihinen et al. 2005). MMP-2 and -9 

have also previously been implicated in uveal melanoma metastasis (Lai, Conway et 

al. 2008, Jannie, Stipp et al. 2012). 

The 92.1 and MEL202 uveal melanoma cell lines were both transfected with siRNA 

specific to SELENBP1, KPNB1, and EEF1G. The knockdown cells were then 

grown for 24 hours before being incubated with serum-free media for a further 48 

hours. The media from the cells was then collected, and concentrated prior to 

zymography. In parallel, conditioned media was collected from large flasks of 

healthy cells. This analysis indicated that MMP-2 and MMP-9 were unaffected 

following transfection of either cell line with any of the siRNA (Figure 3.19). This 

would suggest that neither MMP-2 nor MMP-9 play a role in the invasion pathways 

affected by the knockdown of any of the three proteins. 
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Figure 3.19 Gelatin zymograms illustrating the effect of siRNA-mediated 

knockdown of SELENBP, EEF1G and KPNB1 on MMP-9 and MMP-2 activity. In 

both the (a) 92.1 and (b) MEL202 uveal melanoma cell lines, no effect on the 

abundance of either MMP-2 or -9 was observed following the downregulation of 

SELENBP1, EEF1G, or KPNB1. (c) When the expression of MMP-2 and MMP-9 

was examined in healthy 92.1 and MEL202 cells, MMP-9 was found to be expressed 

in both cell lines while MMP-2 was only identified in MEL202 cells. n=2. 
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3.7.7 Analysis of Early, Late, and Total Apoptosis in SELENBP1, EEF1G, and 

KPNB1 92.1 Knockdowns 

Apoptosis is defined as programmed cell death and is essential for tissue 

homeostasis. Its inhibition is often required for tumorigenesis; for example, the bcl-2 

gene encodes a cell death inhibitory protein which aids the development of cancer 

and can prevent apoptosis following treatment with an array of toxins or drugs. A 

high rate of apoptosis may also be observed in various cancers, which can often 

explain why a tumour, such as a basal cell carcinoma, is slow growing. Both pro- 

and anti-apoptotic features have been described in uveal melanoma. Tumour 

necrosis factor-related apoptosis inducing ligand (TRAIL) has been identified as a 

pro-apoptotic feature while Bcl-2 gene proteins have been shown to inhibit apoptosis 

in uveal melanoma (Wang, Boonman et al. 2003, Ren, Mayhew et al. 2004, Gill and 

Char 2012). 

In order to determine the potential roles of SELENBP1, EEF1G, and KPNB1 in the 

apoptotic pathways of uveal melanoma, 92.1 cells were transfected with siRNA 

specific to each protein and stained with fluorescent markers of apoptosis, followed 

by measurement of fluorescence using flow cytometry (Figure 3.20).  

Apoptosis was examined by labelling the cells with 7-aminactinomycin D (7-AAD) 

and Phycoerythrin (PE) annexin-V, and measuring the level of fluorescence with 

flow cytometry. Loss of plasma membrane integrity is one of the earliest features of 

apoptosis. This involves the translocation of phosphatidylserine (PS) from the inner 

to the outer leaflet of the membrane. Thus annexin V, which may be conjugated to a 

fluorochrome such as PE, can bind to the exposed PS and hence, can measure 

apoptosis at an early stage. PE annexin V is often used in conjunction with a vital 

dye such as 7-AAD; a fluorescent compound which specifically binds to GC regions 

of the DNA, to allowing for the identification of early apoptotic cells (e.g. 7-AAD 

negative, PE annexin V positive). Viable cells with intact membranes exclude 7-

AAD, while the membranes of dead and damaged cells are permeable to 7-AAD 

(Zembruski, Stache et al. 2012).  

No statistically significant results were generated from the analysis of early, 

apoptosis, late apoptosis/death, or total apoptosis across all knockdowns when 

compared to the negative control (Figure 3.21). This would suggest that none of the 
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three proteins of interest appear to play a role in apoptosis. Individual graphs for 

early apoptosis, late apoptosis/death, and total apoptosis are illustrated in Figures 

3.22, 3.23, and 3.24, respectively. 
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Figure 3.20 Dot plots illustrating the overall trend of healthy cells, and early, and 

late/death stage apoptosis across all knockdowns with two independent siRNA. No 

significant differences in the number of apoptosing cells were observed for either of 

the two independent siRNA used to downregulate the production of each of the three 

SELENBP 

EEF1G 

KPNB1 

Scrambled 
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proteins, when compared to the scrambled (negative) control.  One representative 

result of three independent experiments is shown. n=3. 
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Figure 3.21 Bar charts illustrating the overall trend of early, late/death, and total 

apoptosis across all knockdowns. No statistically significant differences in the 

number of cells undergoing apoptosis were observed for either of the two 

independent siRNA used to downregulate the production of each of the three 

proteins, in comparison to the scrambled (negative) control.  The results shown 

represent the average of three independent experiments. n=3. 
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Figure 3.22 Bar chart and box and whisker plot of early apoptosis across all three 

downregulated proteins of interest, with two independent siRNA each, in 92.1 cells. 

In comparison to the scrambled (negative) control, no statistically significant change 

in apoptosis was observed for both siRNA against any of the three proteins. There 

appeared to be a trend of decreased early apoptosis in EEF1G and KPNB1 

transfected cells, however, this was not deemed as significant. n=3. 



153 

 

 

Figure 3.23 Bar chart and box and whisker plot of late apoptosis/deaths across all 

three downregulated proteins of interest, with two independent siRNA each, in 92.1 

cells. In comparison to the scrambled (negative) control, no significant trend in 

apoptosis was observed for both siRNA against any of the three proteins. n=3. 
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Figure 3.24 Bar chart and box and whisker plot of total apoptosis across all three 

downregulated proteins of interest, with two independent siRNA each, in 92.1 cells. 

In comparison to the scrambled (negative) control, no significant trend in apoptosis 

was observed for both siRNA knockdowns against any of the three proteins. n=3. 
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CHAPTER FOUR 

Vitreous Fluid Sample Optimisation 
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4.1  Background 

Vitreous humour is a gel-like substance contained in the posterior chamber of the 

eye. As it is often in close proximity to sites of trauma within the eye, it may be a 

valuable specimen for clinical proteomic analyses.  

The fluid may be collected during surgery such as enucleation, hence it can be 

collected from uveal melanoma patients. However, a minimal number of proteomic 

studies, which are outlined in chapter one, have been carried out to date in uveal 

melanoma vitreous specimens. In addition to this, it can be a variable and sometimes 

difficult specimen to work with, often only providing information on highly 

abundant proteins (Shitama, Hayashi et al. 2008). Little information was available 

on the best methods for pre-processing and proteomic analysis of vitreous fluid, as 

most methods appeared to generate the same data.  

In this regard, it was decided that prior to examining the vitreous fluid, methods of 

sample pre-treatment and analysis would first have to be devised. A summary of all 

tested pre-treatment and analytical methods used in the work presented is shown at 

the end of this chapter (Figure 4.21). Following this it would be possible to perform 

a proteomic analysis of the vitreous extracted from uveal melanoma patients, with 

the intention of identifying potential biomarkers which may correlate with a poor 

outcome in uveal melanoma, thus improving our understanding of the metastatic 

disease and identifying potential therapeutic targets. 

 

4.2 1-D Gel Analysis of Vitreous Fluid  

21 vitreous fluid samples were acquired from the Royal Victoria Eye and Ear 

Hospital, Dublin. Initially, protein assays were performed in order to quantify the 

protein levels across all of the six control (collected from patients with macular hole 

degeneration) and 13 disease samples. The protein concentrations varied 

significantly between the samples with values ranging from 0.27 mg/mL to 34 

mg/mL.  

In order to get an overall view of the general content of the proteome, two control 

samples, which had been extracted from macular hole degeneration patients, were 

selected for preliminary analysis by separation on a 1-D gel (Figure 4.1). Following 
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staining, it was clear that there were significant levels of high abundant proteins 

present in the vitreous fluid which had smeared across other regions. This would 

create difficulties in identifying less abundant proteins as, once digested, high 

abundance proteins can produce elevated quantities of tryptic peptides thus creating 

proteolytic background and a bias for the identification of such proteins. Hence, a 

limited dynamic range is available which can only be improved through extra 

chromatographic fractionation (Fonslow, Stein et al. 2013).  

Despite this, eight regions were excised from the gel and digested using trypsin to 

generate peptides which were subsequently identified by LC-MS/MS. The table of 

identifications generated, Table 4.1, illustrates that many of proteins found in the 

samples were highly abundant and commonly found in clinical specimens such as 

serum or plasma. As the vitreous fluid proteome is only beginning to be mapped in 

its entirety, proteins which are known to be of high or medium abundance in the 

plasma proteome were used as a measure of potentially high or medium abundance 

proteins in the vitreous. In this way it would be possible to examine how well a pre-

treatment method worked. For each qualitative table of this chapter, proteins of high 

or medium abundance are noted. Serum albumin, transferrin, fibrinogen, alpha-2-

macroglobulin, alpha-1-antitrypsin, complement C3, haptoglobin, IgM, IgA, IgG, 

IgD and their components were all denoted as highly abundant, as 90% of plasma is 

known to be composed of these proteins. Apolipoprotein A1, apolipoprotein A2, 

apolipoprotein B, acid-1-glycoprotein, ceruloplasmin, complement C4, complement 

C1q, prealbumin, and plasminogen, which make up a further 9% of the plasma 

proteome, were all denoted as being of medium abundance. Only the remaining 1% 

of the plasma proteome is composed of low abundance proteins which may consist 

of more potential targets of interest (Anderson and Anderson 2002). It is important 

to note that although the levels of high abundant proteins were depleted initially, any 

patterns of differential regulation seen with such proteins later on were not ruled out. 

Table 4.1 indicated that vitreous fluid would have to be pre-processed by removing 

the majority of the high and medium abundant proteins present. This would allow 

for the identification of any low abundant proteins which may be masked by more 

highly abundant proteins. 

 



158 

 

 

Figure 4.1 1-D separation of control vitreous fluid samples (n=2) was used in order 

to examine the vitreous fluid proteome.  Proteins were separated through a 10% Bis-

Tris gel and stained with Coomassie Brilliant Blue. The regions of interest, indicated 

by an arrow and a corresponding letter, were then excised and the in-gel digestion of 

proteins to peptides was carried out using trypsin. The samples were analysed in the 

following order to ensure a minimum carry-over of high abundance proteins; F, H, 

G, E, D, B, A, C. 
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Table 4.1 Combined protein identifications of control #1 and control #2 from the 

regions of interest indicated in Figure 4.1. Abundance refers to the quantity of each 

protein typically found in clinical specimens, such as plasma. Many of the proteins 

identified were of high or medium abundance (Anderson and Anderson 2002).  

 

 

 



160 

 

As the gel contained a large band which smeared across the gel in the 60-70 kDa 

region, it was expected that the protein was serum albumin. This band covered the 

majority of the middle section of the gel and so it contaminated other protein bands. 

Hence, the vitreous was treated with a multiple affinity removal immunodepletion 

column which removes 14 of the most abundant proteins found in clinical samples; 

serum albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, fibrinogen, alpha2-

macroglobulin, alpha1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein 

AII, complement C3 and transthyretin.  

A western blot was used to compare the immunodepleted sample to the crude 

sample (Figure 4.2 (a)). This confirmed the high levels of serum albumin in the 

crude sample as it was smeared throughout the blot. However, this also illustrated 

that although the majority of the protein had been removed by immunodepletion, 

some still remained.  

It was decided to immunodeplete the same sample twice and to compare it to the 

crude sample. This resulted in no detectable serum albumin being identified in the 

treated sample, while the crude samples remained the same as before (Figure 4.2 

(b)). 
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Figure 4.2 Western blot illustrating the effect of immunodepletion on the serum 

albumin concentration in a control vitreous sample. (a) Following one 

immunodepletion, the quantity of serum albumin in the vitreous was significantly 

decreased; however, a second immunodepletion would be required to appropriately 

deplete the level of serum albumin present. (b) Following a second 

immunodepletion, the concentration of serum albumin was sufficiently reduced. 

 

 

 

 

 

(a) 

(b) 
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The twice-immunodepleted sample was then separated on a 1-D gel which provided 

a clearer, more balanced view of the proteome with greater number of protein bands 

being clearly visible (Figure 4.3).  

Again, regions of the gel were excised, enzymatically digested and identified by MS. 

The identifications consisted of a higher number of less abundant and potentially 

more interesting proteins, while high abundant proteins, such as serum albumin, 

were less prominent in the list (Table 4.2).  
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Figure 4.3 1-D gel of twice-immunodepleted vitreous fluid. Various regions of the 

gel, which are indicated in red, were excised and any proteins present were in-gel 

digested using trypsin and analysed using mass spectrometry in order to identify 

them. It was hoped that low abundant proteins would be more easily detected 

following the removal of highly abundant proteins such as serum albumin. 
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Table 4.2 Proteins identified from the outlined regions of the gel illustrated in figure 

4.3. A significant decrease in the presence of high abundance proteins was observed 

as well as the identification of a greater number of less common molecules. Proteins 

which are unique to this list in comparison to Table 4.1 are written in red.  
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4.3 2-D Proteomic Analysis of Vitreous Fluid 

As the twice-immunodepleted vitreous humour appeared to generate the most 

promising proteomic profile, this sample preparation method was used prior to 2-D 

DIGE gel analysis. This would allow for the comparison of uveal melanoma vitreous 

fluid and control vitreous fluid for the identification of differentially expressed 

proteins. 

Separation in the second dimension creates better resolution of the proteome in 

comparison to a one dimensional separation, which may improve the view of both 

high and low abundance proteins. A sample which was doubly immunodepleted was 

compared to its crude counterpart, following 2D separation, in order to test this. The 

2-D gels were stained using a colloidal silver stain.  

As expected, the high abundance proteins present in the crude sample created a 

smear across the upper section of the gel, with few well resolved spots visible 

(Figure 4.4 (a)). In contrast, the immunodepleted gel illustrated clear protein spots 

with very little background (Figure 4.4 (b)).  

A selection of corresponding spots, Figure 4.4 (b), was extracted from an 

immunodepleted control gel and an immunodepleted uveal melanoma gel for 

enzymatic digestion and identification of proteins by LC-MS/MS. This produced 

two purely qualitative lists of proteins. Proteins which were found only in the control 

vitreous specimen are shown in Table 4.3 while those which were only identified in 

the uveal melanoma sample are listed in Table 4.4. Although this was not a 

statistically relevant quantitative comparison between both conditions, it represents a 

number of proteins which are specific to each sample set and hence, potential 

biomarkers. It was found that many of the proteins detected in the immunodepleted 

disease vitreous sample were classed as highly abundant. 
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Figure 4.4 Separation of immunodepleted and non-immunodepleted proteins in two 

dimensions based on pI and size. (a) The non-immunodepleted gel showed areas of 

high streaking and poor spot resolution (b) The immunodepleted gel was much 

better resolved with clear spots and little streaking. The region which contained most 

of the high abundance proteins in the upper region of the gel was also much clearer 

following immunodepletion. Spots outlined in red were selected for digestion and 

subsequent identification by LC-MS/MS. 

3                                                  pI                                               11 

MW 

3                                                  pI                                               11 

MW 

(a) 
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Table 4.3 Proteins identified in control vitreous fluid which were not found in the 

uveal melanoma sample. This illustrates the effectiveness of immunodepletion as a 

vitreous fluid pre-treatment technique for identifying less abundant proteins. 
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Table 4.4 Proteins identified by mass spectrometry methods which were found 
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exclusively in uveal melanoma vitreous fluid in comparison to the control ocular 

fluid. Many of these proteins were highly abundant, despite immunodepletion. 
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4.4 2-D DIGE Analysis of Uveal Melanoma vs. Control Vitreous Fluid 

It was intended to utilise immunodepletion as a vitreous humour pre-treatment prior 

to 2-D DIGE analysis. Immunodepletion significantly depletes the quantity of 

protein in the ocular fluid because for the most part it is composed of high 

abundance proteins. This results in a more dilute sample. In addition to this, a very 

low volume of vitreous fluid is generally available for analysis. As the protein 

concentration of many of the vitreous fluid samples acquired was quite low and little 

sample was available, immunodepletion was not possible for the entire control and 

uveal melanoma sample sets.  

Due to the above issues, 2-D DIGE was carried out using 25 μg of crude uveal 

melanoma and control vitreous fluids. The 2-D DIGE method is outlined in more 

detail in section 3.3.  

The images generated from the 2-D DIGE analysis (Figure 4.5) illustrated that high 

abundance proteins which would have been removed by immunodepletion had 

streaked across the gel. The protein spots of the gels were also poorly resolved; 

hence, the Progenesis software could not identify protein spot differences between 

the gels of the two sample sets.  
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(a) 

 

(b) 

 

Figure 4.5 2-D DIGE images of 25 μg of non-immunodepleted vitreous fluid 

protein. As the concentration of protein and sample volume was too low in some of 

the vitreous fluid samples available, it was not possible to use immunodepletion as a 

pre-treatment. Streaking and poor protein spot resolution is evident in both images. 

(a) uveal melanoma vitreous fluid (b) vitreous fluid of a macular hole degeneration 

patient (control). 
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4.5 Quantitative Label-Free LC-MS Analysis of Control and Uveal 

Melanoma Vitreous Fluid 

Quantitative label-free proteomics involves the digestion of a fixed quantity of 

protein and the subsequent analysis of 1 μg of the sample by reverse-phase LC-

MS/MS. Acquired total ion chromatograms (TIC) are statistically analysed using 

Progenesis LC-MS software to generate quantitative information on differential 

protein expression patterns between the control and disease vitreous fluid. 

Progenesis LC-MS aligns all of the total ion chromatograms (TIC) generated by 

selecting a reference TIC to which all other runs are compared, thus correcting any 

minor drifts in retention times. MS/MS spectra are then exported to a protein 

identification programme.  

It was planned that label-free proteomics would be used to analyse the crude 

vitreous fluid of uveal melanoma patients in comparison to untreated controls for the 

detection of differentially expressed proteins. However when the samples were 

examined using the technique, it was found that the control and the melanoma 

groups were too different to compare (Figure 4.6). The controls showed similarities 

in their peak profiles and contained a wide variety of features. However, the disease 

samples generated very poor total ion chromatograms; the peaks were poor and were 

totally dissimilar to the control samples with virtually no common peaks detected 

between the sample sets.  This suggests that there were few detectable proteins 

which were mutual to both groups and hence no patterns of differential protein 

expression could be found. 

The lack of identified proteins in the uveal melanoma vitreous fluid may have been 

due to the high abundant proteins present; i.e. when the samples were all initially 

normalised to 10 μg of protein, this could have mainly consisted of background high 

abundance proteins in the disease sample set. This confirmed that a pre-processing 

method for the vitreous would be necessary prior to analysis.  
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4.6 ProteoMiner Pre-Treatment of Vitreous Fluid 

ProteoMiner is a bead-based technology used for the compression of the dynamic 

range of proteins present in complex biological samples through the equalisation of 

all protein abundances. This provides a representative view of the original proteome 

while enhancing the presence of proteins which may have been undetected 

otherwise. The technique is explained further in section 5.2. 

A ProteoMiner kit (Bio-Rad) was used in order to normalise the abundance of 

proteins within each vitreous sample, for both sample sets. It was hoped that this 

would enhance the concentration of the low abundance proteins which could 

potentially be of interest. However, the method requires a minimum protein 

concentration and sample volume higher than available in many of the vitreous 

samples available. Hence the analysis could not be performed as recommended by 

the manufacturer. 

Instead, an appropriate volume of beads was removed from each unit which ensured 

that the quantity of remaining beads was sufficient for a lower sample concentration 

and volume. One control and one uveal melanoma vitreous fluid sample was treated 

using the modified units and the resulting elution from each was separated via 1-D 

electrophoresis, along with the untreated samples (Figure 4.7). The resulting gel was 

stained with colloidal silver. A depletion of background proteins is visible between 

the crude and the treated sample, although an unknown interference diminished the 

resolution of the gels.  Each lane was cut into sections and digested using trypsin. 

Through LC-MS, the proteins present in each sample were identified (Table 4.5).   

This analysis showed that ten previously unseen proteins were identified in the 

disease vitreous fluid as a result of the ProteoMiner treatment. However, only 49 

identifications were found in the ProteoMiner-treated uveal melanoma specimen in 

comparison to 57 in its crude counterpart. In the control fluid, 36 proteins were 

identified in the raw sample while only ten were identified in the ProteoMiner-

treated sample. This indicates that the modified technique was unsatisfactory and 

another method should be utilised. 
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Crude Proteominer Crude Proteominer 

1266/96 1880/09 

Crude   ProteoMiner         Crude    ProteoMiner 
Crude Proteominer Crude Proteominer 

1266/96 1880/09 
                

 

Figure 4.7 15 μg of ProteoMiner-treated and crude vitreous fluid from a control and 

a uveal melanoma sample was separated by 1-D electrophoresis and stained with a 

silver nitrate stain. Although an unknown contaminant interfered with the resolution 

of the gel, it is clear that some of the high abundance proteins, including serum 

albumin, were depleted from the samples. The gel lanes were excised and digested 

with trypsin prior to mass spectrometry analysis for the identification of the proteins 

present. 
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4.7 Profiling of Vitreous Fluid using SELDI-TOF 

SELDI-TOF is a variation of MALDI, where an analyte is bound to a surface 

through a specific, modified target. A number of affinity technologies can be used 

for this purpose, including cation exchange (CM10) and immobilised metal affinity 

chromatography (IMAC). The method is further explained in section 6.1. 

In this case, copper-activated IMAC chips were used to bind uveal melanoma 

vitreous fluid, cutaneous melanoma serum and conditioned media collected from 

cutaneous melanoma cell lines and to compare the protein profiles from each.  

In each sample set, an unknown 8.9 kDa potential marker was identified in the 

disease sample or the media conditioned by a cancer cell line. This work is outlined 

in more detail in Chapter 6. However, the peak of interest was identified in both 

crude and immunodepleted uveal melanoma vitreous fluid and remained absent from 

the control specimen (Figure 4.8). As SELDI cannot identify the protein peaks 

which it detects, it was necessary to devise a method in order to isolate and identify 

this protein.  
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Figure 4.8 SELDI analysis of both crude and immunodepleted vitreous fluid 

illustrated an 8.9 kDa peptide or protein, as indicated by a red arrow, which 

consistently appeared in the uveal melanoma specimens but was absent from the 

control samples. This potential marker also repeatedly appeared in SELDI spectra of 

advanced cutaneous melanoma sera but remained absent from the corresponding 

control samples. 
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A copper-activated IMAC resin contained in spin columns was employed for 

binding proteins of interest. In this way the resin would mimic the original 

technology used for SELDI analysis and should bind the protein of interest. This 

would allow for the elution and possible identification of the protein.  

One control and one uveal melanoma vitreous fluid sample were incubated with the 

copper-activated resin for sample binding. An ascending gradient of the following 

imidazole concentrations; 25 mM, 50 mM, 100 mM, 200 mM, and 500 mM, was 

then applied to the column and subsequent elution fractions were collected. The 

fractions were separated in the first dimension using a 4-20% low molecular weight 

gel and stained with a colloidal silver stain (Figure 4.9). The lower portion of each 

lane, beneath the red line in Figure 4.9, was excised and in-gel digested with trypsin 

for the generation of peptides which were then analysed by LC-MS/MS, with the 

aim of identifying the 8.9 kDa protein of interest. 

The qualitative results of this analysis illustrated that although the technique failed to 

identify an 8.9 kDa potential biomarker in the vitreous humour, it succeeded in 

identifying a host of proteins which were not found in the previous attempts to 

analyse the ocular fluid proteome. Included in these identifications was a family of 

proteins known as crystallins which are associated with the structure of the eye and 

associated ocular diseases. Although some of the proteins identified in the low 

molecular weight region of the gel were shown to have high molecular weights, they 

may be cleavage products of the larger molecule and hence could migrate to the 

region in question.  

Although this gel-based method does not illustrate significant expression differences 

between both experimental conditions, the identifications shown in Table 4.6 

illustrated substantial differences in peptide numbers between the control and the 

disease sample.  
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                           (a) 

 

 

 

 

 

 

                           

                         (b) 

 

 

 

 

 

 

Figure 4.9 1-D gels illustrating protein fractions which were collected from a 

column containing IMAC resin by applying increasing concentrations of imidazole; 

25 mM, 50 mM, 100 mM, 200 mM and 500 mM. The fractions were separated on a 

low molecular weight gel in the first dimension and stained with a colloidal silver 

stain. The region below the red line containing proteins weighing 30 kDa or less was 

then excised from both the disease (a) and control (b) gels. Each fraction in the low 

molecular weight region of both gels was digested into peptides and analysed by 

mass spectrometry. FT = flowthrough, i.e. unbound proteins. 
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4.8 Qualititative Analysis of Vitreous Fluid Fractionated from IMAC Resin 

The flowthrough, 20 mM fraction, 50 mM fraction and the raw starting material of 

one uveal melanoma vitreous fluid sample were separated by 1-D electrophoresis in 

order to visually represent how well the technique worked (Figure 4.10). This gel 

illustrates the elevated levels of high abundance proteins, such as serum albumin, 

which dominate the starting material and flowthrough lanes to the point where they 

were found to leach into the gel. Although such proteins were still visible in the 20 

mM and 50 mM fractions, they were severely depleted.  

It was also noticeable that the presence of less abundant proteins had been enriched 

by the technique and in some cases bands were visible in the imidazole fractions 

which were previously undetectable.  

The fractions and starting material which correspond to the gel were qualitatively 

analysed by LC-MS/MS (Table 4.7). Overall, 27, 46, 58, and 59 proteins were 

identified in the starting material, the flowthrough, the 20 mM fraction, and the 50 

mM fraction, respectively.  

Of the flowthrough identifications, seven proteins were not found in either the 20 

mM or the 50 mM fraction. 25 and 29 proteins were found to be unique to the 20 

mM and 50 mM elutions, respectively, when compared to the flowthrough protein 

list.  

Of the starting material identifications, four were found to be unique as they were 

not identified in any of the other fractions. When compared to the starting material 

list, 31, 39, and 40 proteins were found to be enriched in the flowthrough, 20 mM 

and 50 mM fractions, respectively, following IMAC fractionation.  

A number of crystallins were only detected in the 20 mM and 50 mM fractions and 

not in the flowthrough or starting material. As crystallins are known to bind IMAC, 

this would suggest that the fractionation worked. 
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Figure 4.10 Uveal melanoma vitreous fluid fractionated from copper-activated 

IMAC resin. Although the starting material (SM) contained highly abundant proteins 

which dominated the lane, the IMAC fractionation method improved the resolution 

of less prominent bands while reducing the intensity of the more abundant proteins 

present. SM - Starting Material; FT - Flowthrough; 20 mM – 20 mM imidazole 

elution fraction; 50 mM - 50mM imidazole elution fraction 
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4.9 Quantitative LC-MS Analysis of Differentially Regulated, IMAC-Bound 

Vitreous Fluid Proteins 

In order to examine the efficiency of the IMAC-based fractionation technique with a 

larger sample set, 13 uveal melanoma vitreous humour specimens were selected for 

IMAC purification (Table 4.8). This would determine the reproducibility of the 

technique as a fractionation method and as an enhancer of the low abundance protein 

population. Six of the samples were collected from patients with monosomy of 

chromosome three; an indicator of poor prognosis in uveal melanoma, while the 

other seven were disomy of chromosome three. . It was postulated that proteins 

would be differentially expressed between specimens collected from patients with 

monosomy three (associated with poor prognosis) and disomy three (good 

prognosis) and that this analysis would highlight any potential differential protein 

expression patterns. 

Each specimen was bound to copper-activated IMAC resin as before and eluted in 

20 mM, 50 mM, 100 mM, 300 mM and 500 mM fractions. The unbound fraction 

was also collected. All samples were then quantified, however of the fractions, only 

enough protein to proceed with the analysis was present in the 20 mM and the 50 

mM elutions. The flowthrough and two fractions were in-solution digested with both 

lys-C and trypsin to produce peptides of which 1 μg was analysed by LC-MS/MS 

over the course of a one hour gradient. Technical replicates were performed for each 

sample. The resulting information was analysed with Progenesis LC-MS software. 

Identifications with ANOVA scores of <0.05 for peptides and proteins were 

accepted. Protein principal component analyses (PCA), which represents protein 

abundance variation between features, are shown for the flowthrough, 20 mM, and 

50 mM fractions in Figure 4.11. This illustrated good separation of protein 

abundances between the monosomy three and disomy three sample sets for each of 

the three fractions. 
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Table 4.8 Patient details for 13 vitreous humour specimens selected for IMAC 

fractionation. Seven disomy of chromosome three samples were compared with six 

monosomy of chromosome three specimens. All fluids were taken from patients 

with uveal melanoma.  
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Figure 4.11 Principal component analysis (PCA) for proteins in the flowthrough, 20 

mM and 50 mM fractions. Feature abundance levels across runs are plotted to 

determine the abundance variation between samples. This is useful in identifying run 

outliers. Each blue point corresponds to a monosomy of chromosome three sample 

(n=6) while each pink point corresponds to a disomy of chromosome three sample 

(n=7). 
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Eight proteins were found to be differentially expressed between monosomy three 

and disomy three specimens in the flowthrough (Table 4.9). One such identification, 

Ig heavy chain V-I region V35 (Figure 4.11), had not previously been reported in the 

literature as being expressed in the vitreous.  
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Figure 4.11 Normalised abundance profile for Ig heavy chain V-I region V35 in the 

flowthrough fraction of IMAC fractionated vitreous fluid. An 11.28 max fold 

increase was observed in the monosomy three vitreous specimens (n=6, analysed in 

duplicate) in comparison to those which were disomy three (n=7, analysed in 

duplicate), p=0.04 between experimental groups. Each spot in the profile 

corresponds to Ig heavy chain V-I region V35 abundance per sample.  
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37 proteins were detected as potential targets of interest in the 20 mM fraction, 

including ocular-related proteins such as retinol-binding protein 3 and alpha 

crystallin B chain (Table 4.10).  

Retinol-binding protein 3 was identified as being upregulated in monosomy of 

chromosome three specimens in both the flow through and the 20 mM fraction 

(Figure 4.12). As it functions as a transporter of retinoids between the 

photoreceptors and the retinal pigment epithelium, it is necessary for normal rod and 

cone cell function (den Hollander, McGee et al. 2009).  

Meckelin, which mediates primary ciliary function, was identified as being 

decreased in the monosomy three sample set by 2.03-fold, as illustrated in Figure 

4.13 (Dawe, Smith et al. 2007).  Meckelin, Ig heavy chain V-III region GAL, and Ig 

kappa chain V-I region Roy, all of which were found to be differentially regulated 

between the disomy of chromosome three and monosomy of chromosome three 

sample sets, were not previously identified in vitreous humour, according to the 

literature, including a recent study carried out by Aretz et al. Using different protein 

pre-fractionation strategies, such as liquid phase isoelectric focusing, 1-D gel 

electrophoresis and a combination of both, followed by UPLC-MS/MS analysis of 

generated peptides, Aretz et al. identified 1111 unique proteins from three separate 

vitreous specimens (Aretz, Krohne et al. 2013). This is the most comprehensive 

qualitative study of a control vitreous fluid proteome carried out to date. As some of 

the proteins identified in this study were not found by Aretz et al., this may suggest 

that these proteins may be differentially regulated exclusively in uveal melanoma, 

and may be novel in terms of vitreous fluid proteomics. 

Other proteins which were found to be differentially expressed in this study have 

previously been identified in the vitreous, including pigment epithelium-derived 

factor (PEDF). PEDF was found to be decreased in the monosomy three sample set 

by 1.44-fold (Figure 4.14). This secreted protein has been long associated with anti-

angiogenic and anti-tumorigenic properties as well as being essential for the health 

and survival of the retina (Subramanian, Locatelli-Hoops et al. 2013).  
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Figure 4.12 Retinol-binding protein 3 was identified as being upregulated by 2.82-

fold in the monosomy three specimens of the 20 mM fraction (p=0.03 between 

experimental groups). However, two technical replicates from one of the samples 

(circled) appear to have biased the observed fold change. Despite this, the result was 

still considered significant across all samples (a) Normalised abundance view of 

retinol-binding protein 3 expression in disomy three (n=7, analysed in duplicate) and 

monosomy three (n=6, analysed in duplicate) vitreous samples. Each point 

corresponds to a sample and illustrates the quantity of the protein of interest per 

specimen. (b) Normalised abundance of identified retinol-binding protein 3 peptides 

per sample. Each line represents a peptide while each point indicates the abundance 

of the peptide per sample.  
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Figure 4.13 Meckelin was identified as being downregulated by 2.03-fold in the 

monosomy three specimens (n=6, analysed in duplicate) of the 20 mM fraction in 

comparison to that of the disomy three (n=7, analysed in duplicate), p=9.59x10
-3

 

between sample sets. Only one peptide was matched to this sample which indicates 

that meckelin may be a weak candidate. (a) Normalised abundance view of meckelin 

expression in disomy three and monosomy three vitreous samples. Each point on the 

figure corresponds to a sample and indicates the quantity of the protein of interest 

per specimen. (b) Normalised abundance of identified meckelin peptides per sample. 

The line represents a peptide while each point indicates the abundance of peptide per 

sample.  
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Figure 4.14 Pigment epithelium-derived factor (PEDF) was identified as being 

downregulated by 1.44-fold in the monosomy three specimens (n=6, analysed in 

duplicate) of the 20 mM fraction in comparison to the disomy three samples (n=7, 

analysed in duplicate), p=0.04 between sample sets. Only one peptide was matched 

to this sample which indicates that PEDF may be a weak candidate. (a) Normalised 

abundance view of PEDF expression in disomy three and monosomy three vitreous 

samples. Each point on the figure corresponds to a sample and indicates the quantity 

of the protein of interest per specimen. (b) Normalised abundance of identified 

PEDF peptides per sample. The line represents a peptide while each point indicates 

the abundance of peptide per sample.  
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For the 50 mM fraction, 17 proteins were found to be differentially expressed 

between both groups (Table 4.11).  

Retbindin, a secreted protein, was identified in the 50 mM fraction as showing an 

decreased abundance in the monosomy of chromosome three sample set (Figure 

4.15). This is a relatively novel, secreted protein which is thought to function in 

flavonoid or carotenoid binding (Wistow, Bernstein et al. 2002). Again, retbindin 

was not previously identified in vitreous fluid by Aretz et al. or in the literature.  
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Figure 4.15 Retbindin was identified as being upregulated by a maximum fold value 

of 9.74 in monosomy three specimens (n=6, with two of the samples analysed in 

duplicate) in comparison to disomy three specimens (n=7, with six of the samples 

analysed in duplicate), in the 50 mM fraction, p=1.62x10
-4

 between sample sets. (a) 

Normalised abundance view of retbindin expression in disomy three and monosomy 

three vitreous samples. Each point on the figure corresponds to a sample and 

indicates the quantity of the protein of interest per specimen. (b) Normalised 

abundance of identified retbindin peptides per sample. The lines represent peptides 

while each point indicates the abundance of peptide per sample. 

  

 

 

 

 

(a) 

(b) 
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For the flowthrough, the 20 mM, and the 50 mM fractions, the TIC profiles were 

similar between the samples in each group with good alignments of features between 

samples. This would indicate that the method was reproducible between fractions 

and hence, successful.  

 

4.10 Enrichment Analysis Within Differentially Expressed Protein Lists Using 

DAVID  

In order to determine significant enrichment of biological processes, molecular 

functions, and cellular compartments involved within the differentially expressed 

protein lists, DAVID and (GO analysis was used. Enrichment was considered to be 

significant when the Bonferroni p-value adjustment was ≤0.05. The differentially 

regulated protein lists for the flowthrough, 20 mM and 50 mM fractions were 

merged, and proteins either up or downregulated in monosomy three specimens were 

analysed as two separate lists. 

For the list of proteins which were downregulated in monosomy of chromosome 

three specimens, many of the identifications related to biological processes such as 

response to trauma, e.g. inflammatory response, regulation of blood coagulation 

(Table 4.12). This may be due to the breakdown of the blood-retinal barrier which 

can occur during uveal melanoma. Cellular compartments which were related to the 

downregulation of proteins in the monosomy of chromosome three sample set were 

associated with extracellular regions and lipoprotein complexes (Table 4.13). The 

molecular processes identified by the analysis involved enzyme inhibiting and 

cholesterol-binding activities (Table 4.14). Overall, DAVID found that the collective 

decrease in expression of five the proteins identified; kininogen-1, plasma protease 

C1 inhibitor, antithrombin-III, complement factor B and coagulation factor XII, 

would impact on B cell receptor signalling pathway in the complement and 

coagulation cascade (Figure 4.16). 
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Table 4.12 GO biological process enrichment for differentially expressed proteins 

which were downregulated in monosomy of chromosome three vitreous fluid. 

Enrichment was considered significant upon observation of a p-value ≤0.05 and a 

Bonferroni adjusted p-value ≤0.05. Count corresponds to the overlap between 

proteins on the list and a particular GO category. 
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Table 4.13 GO cellular compartment enrichment for differentially expressed 

proteins which were downregulated in monosomy of chromosome three vitreous 

fluid. Enrichment was considered significant upon observation of a p-value ≤0.05 

and a Bonferroni adjusted p-value ≤0.05. Count corresponds to the overlap between 

proteins on the list and a particular GO category. 
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Table 4.14 GO molecular function enrichment for differentially expressed proteins 

which were downregulated in monosomy of chromosome three vitreous fluid. 

Enrichment was considered significant upon observation of a p-value ≤0.05 and a 

Bonferroni adjusted p-value ≤0.05. Count corresponds to the overlap between 

proteins on the list and a particular GO category. 
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Figure 4.16 DAVID analysis of proteins which were downregulated in monosomy 

of chromosome three uveal melanoma vitreous fluid specimens found that five 

identifications; kininogen-1, plasma protease C1 inhibitor, antithrombin-III, 

complement factor B and coagulation factor XII, were involved in complement and 

coagulation cascades. The genes which are involved are highlighted in yellow. This 

illustrated that the downregulation of these proteins would ultimately affect B cell 

receptor signalling. 
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Proteins which were upregulated in monosomy of chromosome three ocular fluid 

were shown to relate to extracellular compartments (Table 4.15). No statistically 

significant biological or molecular processes were identified for the protein list. Two 

genes which express proteins from the list; fibrinogen alpha chain and complement 

C3, were found to play a role in the complement and coagulation cascades (Figure 

4.17). 
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Table 4.15 GO cellular compartment enrichment for differentially expressed 

proteins which were upregulated in monosomy of chromosome three vitreous fluid. 

Enrichment was considered significant upon observation of a p-value ≤0.05 and a 

Bonferroni adjusted p-value ≤0.05. Count corresponds to the overlap between 

proteins on the list and a particular GO category. 
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Figure 4.17 DAVID analysis of proteins which were upregulated in monosomy of 

chromosome three uveal melanoma vitreous fluid specimens found that two 

identifications; fibrinogen alpha chain and complement C3, were involved in 

complement and coagulation cascades.  
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4.11 Analysis of Vitreous Fluid by Luminex Multiplex Assay 

The Luminex bioassay system uses xMAP technology which creates a multiplex 

approach to bioassaying. Through the combination of advanced fluidics, optics, and 

digital signal processing with a microsphere technology, it is possible to analyse up 

to 500 analytes per well. The microspheres used are tiny colour-coded polystyrene 

beads dyed with distinct proportions of red and near-infrared fluorophores. Each 

bead set can be coated with a reagent specific to a particular bioassay, allowing the 

capture and detection of specific analytes from a sample. Within the Luminex 

system, a light source excites the internal dyes which identify each microsphere 

particle and any reporter dye captured during the assay. Up to one hundred different 

detection reactions can be carried out simultaneously on the various bead 

populations in very small volumes. 

Results acquired from multiplex analysis can be further examined using MedCalc, a 

statistical software programme designed for biomedical science. This illustrates the 

sensitivity and specificity of a potential marker through ROC curve analysis. 

A Luminex 12-plex cytokine/chemokine assay was chosen for the analysis of 

vitreous humour from both uveal melanoma and control patients. The assay 

quantified the levels of FGF2, IFNɣ, TNFα, TGFα, MIP1α, IL-10, IL-15, IL-1α, IL-

2, IL-6, IL-8, and IP10 in eight uveal melanoma and six control vitreous samples. 

Within the disease sample set were seven patients who developed metastases and 

one who did not. The six control vitreous were obtained from macular hole 

degeneration patients. All samples used in the analysis are outlined in Table 4.16. 

This identified three potential chemokines of interest; basic fibroblast growth factor 

(FGF2), macrophage inhibitory protein 1 alpha (MIP1α) and interferon gamma 

(IFNɣ).  

In some cases t-test results were poor and ROC test results appeared implausibly 

high, which may have been due to the small sample set used and to variances 

between samples.  
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Table 4.16 Clinical data for control (from macular hole degeneration patients) and 

uveal melanoma vitreous fluid samples used in the Luminex 12-plex 

cytokine/chemokine assay.  
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4.11.1 FGF2 

As illustrated in Figure 4.18 (a), FGF2 was not shown to be significantly 

differentially expressed between the control and the uveal melanoma sample groups, 

although a trend appeared to indicate a higher abundance of the protein in the 

disease vitreous.  

The result was followed up using MedCalc (Figure 4.18 (b)) which presented a 

specificity of 100% and a sensitivity of 75%. This would indicate that FGF2 may be 

of interest as a potential biomarker; however analysis with a larger sample set would 

first be required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



215 

 

(a) 

 

 

(b) 

 

 

 

 

 

Figure 4.18 Basic fibroblast growth factor (FGF2) was identified in vitreous fluid 

by a Luminex multiplex bioassay. (a) No statistically significant difference in 

expression of FGF2 was seen between the control (n=6) and uveal melanoma 

vitreous samples (n=7). (b) ROC curve analysis indicated the strength of FGF2 as a 

potentially specific marker. p-value=0.09, area under the ROC curve (AUC)=0.823. 
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4.11.2 MIP-1α 

A significant increase in MIP-1α expression was seen in the vitreous of uveal 

melanoma patients when compared to the controls, with an ANOVA score of <0.01 

(Figure 4.19 (a)).  

ROC curve analysis confirmed this finding with high sensitivity and specificity 

values generated for the comparison of control and uveal melanoma vitreous. 
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

Figure 4.19 (a) Macrophage Inflammatory Protein 1 Alpha (MIP-1α) was found at 

statistically significantly higher levels in uveal melanoma vitreous (n=7) when 

compared to control vitreous (n=6) by Luminex multiplex assay. (b) Using ROC 

curve analysis, MIP-1α was found to be a potential biomarker. p-value=6.01x10
-3

, 

area under the ROC curve=0.958. ** p <0.01 

 

 

 

 

** 



218 

 

4.11.3 IFNɣ 

IFNɣ was found to be more abundant in uveal melanoma vitreous in comparison to 

the control vitreous. This was found to be a statistically significant increase in 

expression, with an ANOVA score of <0.01 (Figure 4.20 (a)).  

ROC curve analysis correlated with this finding, illustrating both 100% sensitivity 

and 100% specificity (Figure 4.20 (b)).  
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(a) 

 

(b) 

 

 

 

 

 

Figure 4.20 (a) Interferon Gamma (IFNɣ) was found to be significantly 

overexpressed in the uveal melanoma vitreous (n=7) in comparison to the control 

(n=6). (b) ROC curve analysis illustrated high sensitivity and specificity. p-

value=3.87x10
-3

, area under the ROC curve (AUC)=1.0. ** p <0.01 

 

 

 



220 

 

 

Figure 4.21 Summary table illustrating all methods which were tested in the pre-

treatment and analysis of vitreous fluid. 
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CHAPTER FIVE 

Proteomic Analysis of Cutaneous Melanoma Disease Progression 
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5.1 Background 

In order to fully comprehend the nature of disease and its progression, a better 

understanding at the proteomic level is often necessary. It was hypothesised that 

protein expression differences would be present throughout the process of melanoma 

disease progression. Such protein differences may in turn lead to the discovery of 

biomarkers which can then be used in diagnostic tests or as therapeutic targets. It 

was decided to undertake a complete analysis of the cutaneous melanoma proteome 

by comparing fractionated advanced cutaneous melanoma serum to fractionated 

control serum (collected from potentially diabetic patients) using quantitative label-

free LC-MS proteomics. Quantitative LC-MS is a highly sensitive, reproducible and 

accurate method of determining differential protein expression patterns between 

disease and test groups. Any differentially regulated proteins identified would then 

be followed up in benign and early stage melanoma serum, as well as in uveal 

melanoma serum.  

It was intended that this approach could improve our understanding of the cutaneous 

melanoma proteome throughout disease progression and to investigate possible 

correlations between both uveal and cutaneous melanomas. It could also identify 

potential biomarkers for metastatic uveal melanoma, in comparison to non-

metastatic uveal melanoma.  

 

5.2 Quantitative Label-Free LC-MS Analysis of ProteoMiner Fractionated 

Serum 

ProteoMiner is a bead-based technology used for the compression of the dynamic 

range of proteins present in complex biological samples. Through the use of a large, 

bead-based library of combinatorial peptide ligands, ProteoMiner attempts to 

equalise levels of all proteins throughout the sample. This provides a representative 

view of the original proteome while enhancing the presence of proteins which may 

have been undetected otherwise. 

A group of eight control sera versus eight stage IV cutaneous melanoma sera were 

chosen for the experiment (Table 5.1). The control and disease samples were all 

matched by sex.  
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A ProteoMiner sequential elution kit was used to treat all of the above samples. This 

kit combines ProteoMiner bead technology with multiple elution reagents of various 

chemical properties, as outlined in section 2.17.1, hence providing a protein 

fractionation based on the characteristics of the individual molecules. This gave four 

elution fractions per sample, thus resulting in a good overview of the proteome.  
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Table 5.1 Details of eight advanced cutaneous melanoma sera vs. eight control sera 

treated using a ProteoMiner Sequential Elution method and subsequently analysed 

by quantitative label-free LC-MS proteomics for the discovery of differentially 

expressed proteins between both conditions. 

 

 

 

 

 

 

 

 

 

 

  



225 

 

5.3 1-D Analysis of ProteoMiner-Fractionated Serum Samples 

All elution fractions were treated with a 2-D clean up kit which involves selective 

precipitation in order to remove ionic contaminants, that can interfere with 

downstream analysis, from protein samples. In addition to this, it enables 

concentration of proteins allowing for higher sample load. The elution fractions were 

then quantified and an equal concentration of protein from each sample of four 

elution fractions was separated on a 1-D gel. The gels were subsequently stained 

with Coomassie Brilliant Blue Colloidal stain in order to give a visual representation 

of each elution (Figure 5.1). From this, it was clear that elution fractions three and 

four were very similar in their protein profiles.                         

Following the visual comparison of all 4 elution fraction 1-D profiles, each lane was 

excised from gels (a) and (d) shown in Figure 5.1 and in-gel digested using trypsin. 

LC-MS analysis provided a list of identifications for each elution; 128, 143, 126 and 

135 proteins were identified for fractions one, two, three and four, respectively, of 

the melanoma sera and 138, 127, 113 and 125 were identified in the corresponding 

fractions of the control sera, respectively.  

It was clear, however, that the proteins discovered in elution fraction three were less 

exclusive and, for the most part, were easily detected in fractions one, two and four. 

Following a comparison of the melanoma serum identifications acquired, only two 

proteins were found to be unique to fraction three when compared to fractions one, 

two and four (Appendix A). Similarly, for the control serum results, only three 

identifications were noted as exclusive to elution fraction three (Appendix A). 

Hence, it was decided to exclude fraction three from quantitative label-free LC-MS 

analysis. 
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5.4 Quantitative Label-Free Proteomics Analysis of Fractionated Cutaneous 

Melanoma Serum 

Elution fractions one, two and four of all eight control and eight melanoma sera 

were processed using C18 reverse-phase resin in order to remove interfering 

contaminants which could cause a strong signal suppression. C18 technology should 

reduce these effects, thus improving signal-to-noise ratios and sequence coverage.  

Each fraction was analysed by reverse-phase LC-MS/MS and the acquired data were 

statistically analysed using Progenesis LC-MS software to generate quantitative 

information on differential protein expression patterns between cutaneous melanoma 

and control sera. MS/MS spectra with ANOVA values of ≤0.1, and with charge 

states from +1 to +3 were exported to MASCOT, and subsequent identifications 

were selected based on a protein ANOVA score of ≤0.05 between experimental 

groups. From this it was found that 29, 39, and 54 proteins in fractions one, two and 

four, respectively, were differentially regulated between the control and advanced 

melanoma groups. Protein identifications for each fraction are outlined in Tables 5.3, 

5.4 and 5.5.  

However, the protein list generated for elution fraction four illustrated a pattern of 

downregulation in the cutaneous melanoma proteome in comparison to the control 

proteome for all but three proteins. This pattern of differential regulation seemed 

unlikely as some of the proteins identified in elution four showed an opposite trend 

of expression in comparison to previous elution fractions. For example, Vitamin D-

binding protein was upregulated in the cutaneous melanoma proteome by 2.08- and 

2.44-fold in elution fractions one and two, respectively, although in elution fraction 

four it was identified at a level of 2.51-fold higher in the control proteome in 

comparison to that of the melanoma samples. This unusual trend may have been due 

to the fourth elution reagent simply stripping all remaining proteins from the 

ProteoMiner column as it is a stringent organic buffer. It was decided that this may 

provide a disproportionate view of the proteome and could skew the overall results; 

hence, elution fraction four was excluded from the analysis. 
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5.5 Analysis of Differential Regulation of Proteins in Recombined Fractions 

One and Two 

Initially, 16 biological samples were fractionated in order to increase protein 

coverage and to have the best overall view of the proteome. However, in order to 

investigate how the proteins behave across the whole experiment, fractions of the 

same sample may be recombined. Progenesis LC-MS software normalises between 

elution fractions of the same sample and combines protein measurements to provide 

statistical analyses of the experiment as a whole.   

Elution fractions one and two of the same sample were recombined and analysed 

together to identify differential regulation patterns between eight control sera and 

eight advanced cutaneous melanoma sera. This resulted in the identification of 57 

differentially expressed proteins, of which nine proteins were found in both elution 

fractions one and two (Table 5.6).  

 

5.6 Comparison of 1-D and Quantitative Label-Free LC-MS Protein Profiles 

for the Selection of Targets for Validation 

The qualitative protein profiles were generated from digesting each band of the gels 

shown in Figure 5.1 (a) and (d) with trypsin and analysing the peptides over the 

course of an hour gradient.  

Shown in Table 5.7 are qualitative statistically identified proteins which were found 

in both control samples, DS 118 and DS 114, and both disease samples, 036 and 

017. Each identification shown in Table 5.7 was found only in one group, i.e. control 

or disease. The full list of identifications for elution one and two of 017, 036, 

DS114, and DS118 can be found in Appendix B. 

The proteins listed in Table 5.7 were then compared with the label-free protein list 

created from recombined fractions one and two (Table 5.6). From this, 10 potential 

targets of interest were identified (Table 5.8).  
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5.7 Selection of Potential Targets for Further Validation 

Following the fractionation and subsequent analysis of the differential regulation 

data acquired, it was decided to follow-up some of the notable targets using ELISA, 

as this is the method of clinical biomarker detection primarily used in hospitals.  

From the quantitative LC-MS label-free analysis combining elution fractions one 

and two, azurocidin and lactotransferrin (Table 5.6) were selected for follow-up 

analysis as was serotransferrin, which was identified in both the quantitative label-

free LC-MS data and the qualitative 1-D data (Table 5.8). As mentioned, all three 

targets were found to be upregulated in the advanced cutaneous melanoma serum in 

comparison to the control during the Progenesis analysis. Plasma serine protease 

inhibitor (Table 5.4) was also chosen as it was found to be significantly under-

expressed in the disease sera in comparison to the controls. Analysis of all proteins 

of interest demonstrated p-values of <0.05 as well as strong Mascot scores and good 

peptide overlap between samples. 

In addition to the above, three targets were chosen from a microarray study carried 

out by Dr. Paul Dowling and Dr. Steven Madden using Gene Expression Omnibus 

(GEO). Beta-secretase 2 (BACE-2), Matrix metalloprotease (MMP-1), and Tissue 

inhibitor of metalloproteinase 1 (TIMP-1) were identified by the analysis of two 

publically available array data sets for control tissue, and primary and metastasised 

cutaneous melanoma tumour tissue (Riker, Enkemann et al. 2008, Raskin, Fullen et 

al. 2013). All three proteins were significantly upregulated in the metastasised and 

primary tissues in comparison to the control. This data is shown in Table 5.9. 

In addition to using benign, early-stage and advanced-stage cutaneous melanoma 

serum for the analysis of the seven proteins of interest, serum collected from uveal 

melanoma patients was also included to examine the expression patterns of the 

proteins of interest between patients with monosomy of chromosome three, which is 

a known chromosomal aberration correlated with a poor prognosis, and those 

patients with no evidence of monosomy three, i.e. disomy three.  By including serum 

of ocular melanoma patients, this would also allow for the direct comparison of 

specific protein expression between uveal and cutaneous melanomas. An overview 

of the samples used in the ELISA validation of the seven targets is shown in Table 

5.10. Cutaneous melanoma sera were collected and clinically characterised by Dr. 

Benvon Moran of St. James‟s Hospital.  
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Table 5.10 Control, cutaneous melanoma and uveal melanoma sera were all used in 

the further analysis, by ELISA, of the seven proteins of interest; azurocidin, 

lactotransferrin, serotransferrin, MMP-1, TIMP-1 and BACE-2. A more 

comprehensive list of samples used is shown in Appendix C.                                      

* The early stage consisted of the following sub-stages; twelve stage I and two stage 

II.                                                                                                                                         

# 
The advanced stage group consisted of the following sub-stages; four stage III and 

eight stage IV.  
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5.8 ELISA Analysis of Potential Biomarkers of Interest 

ELISA results are presented in both bar chart and box-and-whisker formats. In 

addition to the standard bar graphs, box-and-whisker plots were included as they 

show a more accurate distribution of results. From the box-and-whisker plots the 

minimum, maximum, and median can be determined as well as the 25
th

 and 75
th

 

percentile, giving a more accurate representation of where the overall results lie. 

Comparisons between experimental groups with T-test ≤0.05 are marked by a single 

asterisk (*) and ≤0.01 are marked by two asterisks (**). 

 

5.8.1 Lactotransferrin 

Lactotransferrin, a major iron-binding and multifunctional protein, was found to be 

4.17-fold upregulated in advanced-stage cutaneous melanoma serum, see Figure 5.2 

(a). As illustrated by Figure 5.2 (b), lactotransferrin was identified in both elution 

fractions one and two in the quantitative LC-MS analysis and showed high 

reproducibility between samples containing the same eight peptides against 

lactotransferrin.  

According to the ELISA data acquired (Figure 5.3) lactotransferrin was significantly 

less abundant in benign or early-stage cutaneous melanoma serum when compared 

to control serum. There was no significant difference between the levels in control 

and advance-stage cutaneous melanoma serum, however an increase in 

lactotransferrin was observed in advanced-stage samples when compared to those 

which were benign.  

The uveal melanoma sample set, which contained both monosomy of chromosome 

three sera and disomy of chromosome three sera, showed a significantly decreased 

level of lactotransferrin when compared with that of the control sample set, as 

illustrated in Figure 5.3. When the uveal melanoma serum specimens which were 

positive for monosomy of chromosome three were compared to those which did not 

have this anomaly, no significant difference was observed between the two (Figure 

5.4).  
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Figure 5.3 Lactotransferrin ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from a variety of melanoma conditions were used; 

benign cutaneous melanoma (n=18), early-stage cutaneous disease (n=14), 

advanced-stage cutaneous disease (n=12), and uveal melanoma (n=13), as well as 

control serum (n=13). t-test scores: control vs. benign cutaneous = 6.48x10
-5

; control 

vs. early cutaneous = 3.93x10
-4

; control vs. uveal = 3.46x10
-6

; benign cutaneous vs. 

advanced cutaneous = 1.78x10
-4

; * t-test score between experimental groups of 

≤0.05, ** t-test score between experimental groups of ≤0.01. 

 

 

 

 

 

 



243 

 

 

 
Figure 5.4 Lactotransferrin ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from two uveal melanoma conditions were used; 

monosomy of chromosome three (n=7) and no evidence of monosomy of 

chromosome three (n=6). t-test scores: control vs. no evidence of monosomy three = 

1.83x10
-2

; control vs. monosomy three = 5.53x10
-5

. * t-test score between 

experimental groups of ≤0.05, ** t-test score between experimental groups of ≤0.01. 
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5.8.2 Serotransferrin 

Serotransferrin was initially found to be over-expressed by 3.47-fold in advanced-

stage melanoma sera when compared to healthy sera using quantitative label-free 

proteomics analysis, Figure 5.5 (a). Three peptides with a p-value of ≤0.05 which 

matched the serotransferrin sequence were identified in elution fraction two only, as 

shown in Figure 5.5 (b). 

However, the ELISA results directly contradicted this quantitative LC-MS data with 

a statistically significant trend of decreased serotransferrin levels observed in either 

early or advanced-stage cutaneous disease when compared to the control serum 

(Figure 5.6). Overall, a trend of decreased serotransferrin abundance was observed 

across all melanoma samples; benign, early-stage, advanced-stage, in relation to 

control serum.  

A statistically significant decrease in serotransferrin abundance was observed in 

uveal melanoma serum when compared to control serum, (Figure 5.6), as is the case 

in monosomy three serum compared to control serum. No statistically significant 

difference in abundance was observed between monosomy three and disomy three 

uveal melanoma specimens, when they were compared with one another (Figure 

5.7).  
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Figure 5.6 Serotransferrin ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from a variety of melanoma conditions were used; 

benign cutaneous melanoma (n=18), early-stage cutaneous disease (n=14), 

advanced-stage cutaneous disease (n=12), and uveal melanoma (n=13), as well as 

control serum (n=13). t-test scores: control vs. early cutaneous = 6.48x10
-3

; control 

vs. advanced cutaneous = 4.16x10
-3

; control vs. uveal = 1.59x10
-2

 * t-test score 

between experimental groups of ≤0.05; ** t-test score between experimental groups 

of ≤0.01. 
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Figure 5.7 Serotransferrin ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from two uveal melanoma conditions were used; 

monosomy of chromosome three (n=7) and no evidence of monosomy of 

chromosome three (n=6). * t-test score between experimental groups of ≤0.05. 
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5.8.3 Azurocidin 

As illustrated in Figure 5.8 (a), azurocidin was over-expressed in late-stage 

cutaneous melanoma serum specimens according to quantitative label-free LC-MS 

analysis. One peptide for the protein was found in elution fraction one and in elution 

fraction two, over-expressed at a maximum observed fold change of 14.2, Figure 5.8 

(b).  

Although a slight increase in azurocidin abundance was observed in advanced 

cutaneous melanoma sera in comparison to healthy sera, no statistically significant 

relationship was identified.  
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Figure 5.9 Azurocidin ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from a variety of melanoma conditions were used; 

benign cutaneous melanoma (n=18), early-stage cutaneous disease (n=14), 

advanced-stage cutaneous disease (n=12), and uveal melanoma (n=13), as well as 

control serum (n=13). 
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Figure 5.10 Azurocidin ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from two uveal melanoma conditions were used; 

monosomy of chromosome three (n=7) and no evidence of monosomy of 

chromosome three (n=6).  
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5.8.4 Plasma Serine Protease Inhibitor 

Figure 5.11 (a) illustrates the downregulation of plasma serine protease inhibitor in 

advanced sera in comparison to normal melanoma sera, as detected by quantitative 

label-free LC-MS analysis. As shown in Figure 5.11 (b), three peptides were 

detected in elution fraction two, where an average fold change of 2.6 was observed.  

In contrast to the above results, a significant increase in the expression of plasma 

serine protease inhibitor in early stage cutaneous melanoma serum in comparison to 

that of either control or benign melanoma serum was noted (Figure 5.12). No 

significant or clear abundance difference of the protein was observed when control 

and advanced cutaneous melanoma serum were compared. Hence, the results of the 

ELISA do not validate those of the quantitative label-free LC-MS experiment.  

There was a statistically significant increase in the level of plasma serine protease 

inhibitor in uveal melanoma serum when compared to that of healthy patients 

(Figure 5.12). This increase in abundance was observed equally in both patients with 

monosomy of chromosome three and those with disomy of chromosome three, in 

relation to the level of plasma serine protease inhibitor produced in control serum, as 

shown in Figure 5.13.  
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Figure 5.12 Plasma serine protease inhibitor ELISA data represented by both bar 

chart and Box and Whisker Plot. Serum samples from a variety of melanoma 

conditions were used; benign cutaneous melanoma (n=18), early-stage cutaneous 

disease (n=14), advanced-stage cutaneous disease (n=12), and uveal melanoma 

(n=13), as well as control serum (n=13). t-test scores: control vs. early cutaneous = 

1.55x10
-3

; control vs. uveal = 6.32x10
-4

; benign vs. early cutaneous = 1.56x10
-3

. ** 

t-test score between experimental groups of ≤0.01 
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Figure 5.13 Plasma serine protease inhibitor ELISA data represented by both bar 

chart and Box and Whisker Plot. Serum samples from two uveal melanoma 

conditions were used; monosomy of chromosome three (n=7) and no evidence of 

monosomy of chromosome three (n=6). t-test scores: control vs. no evidence of 

monosomy three = 1.79x10
-3

; control vs. monosomy three = 0.037. * t-test score 

between experimental groups of ≤0.05. ** t-test score between experimental groups 

of ≤0.01 
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5.8.5 BACE-2 

As illustrated in Figure 5.14, BACE-2 was shown to be elevated in both early and 

late stage cutaneous melanoma in comparison to serum of patients with benign 

disease. In addition to this, BACE-2 was also shown to be highly abundant in late-

stage disease when compared to healthy sera. 

No statistically significant difference in BACE-2 production was observed between 

the uveal melanoma serum group and the control sera, see Figure 5.14; neither was 

any difference noted between patients with or without monosomy of chromosome 

three (Figure 5.15). 
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Figure 5.14 BACE-2 ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from a variety of melanoma conditions were used; 

benign cutaneous melanoma (n=18), early-stage cutaneous disease (n=14), 

advanced-stage cutaneous disease (n=12), and uveal melanoma (n=13), as well as 

control serum (n=13). t-test scores: benign cutaneous vs. early cutaneous = 1.52x10
-

2
; benign cutaneous vs. advanced cutaneous = 2.78x10

-2
. * t-test score between 

experimental groups of ≤0.05.  
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Figure 5.15 BACE-2 ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from two uveal melanoma conditions were used; 

monosomy of chromosome three (n=7) and no evidence of monosomy of 

chromosome three (n=6).  
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5.8.6 TIMP-1 

As shown in Figure 5.16, no significant difference in the abundance of TIMP-1 was 

observed between control or benign disease serum and early or late stage disease. In 

addition to this, no differential production of the protein was noted when serum of 

uveal melanoma patients was compared to healthy serum (Figure 5.16). When the 

uveal melanoma samples were divided into those with either monosomy of 

chromosome three or disomy of chromosome three and compared, no differential 

abundance of TIMP-1 was detected (Figure 5.17). 
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Figure 5.16 TIMP-1 ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from a variety of melanoma conditions were used; 

benign cutaneous melanoma (n=18), early-stage cutaneous disease (n=14), 

advanced-stage cutaneous disease (n=12), and uveal melanoma (n=13), as well as 

control serum (n=13).  
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Figure 5.17 TIMP-1 ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from two uveal melanoma conditions were used; 

monosomy of chromosome three (n=7) and no evidence of monosomy of 

chromosome three (n=6). 
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5.8.7 MMP-1 

As shown in Figure 5.18, a statistically significant decrease in the level of MMP-1 

was observed in the sera of advanced cutaneous melanoma patients, when compared 

to control specimens. This result directly contradicts the findings of the microarray 

study. 

Uveal melanoma serum was not found to contain significantly less MMP-1 than that 

of healthy serum (Figure 5.18), in addition to this there was no significant difference 

in its abundance between uveal melanoma serum of patients with either monosomy 

of chromosome three or disomy of chromosome three (Figure 5.19). 
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Figure 5.18 MMP-1 ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from a variety of melanoma conditions were used; 

benign cutaneous melanoma (n=18), early-stage cutaneous disease (n=14), 

advanced-stage cutaneous disease (n=12), and uveal melanoma (n=13), as well as 

control serum (n=13). t-test score: control vs. advanced cutaneous melanoma serum 

= 0.044. * t-test score between experimental groups of ≤0.05. 
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Figure 5.19 MMP-1 ELISA data represented by both bar chart and Box and 

Whisker Plot. Serum samples from two uveal melanoma conditions were used; 

monosomy of chromosome three (n=7) and no evidence of monosomy of 

chromosome three (n=6). 
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CHAPTER SIX 

Discovery of an 8.9 kDa Species by SELDI-ToF MS as a Potential 

Marker for Disease Progression in Melanoma 
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6.1 Background 

SELDI-TOF is used in biomarker discovery as it quickly and effectively analyses 

protein mixtures, such as urine, serum, and tissue lysates, in order to illustrate 

proteomic differences; such as those between control and disease specimens. 

Previously, Dr. Priyanka Maurya had used SELDI-TOF MS for the discovery of a 

7.6 kDa protein in the conditioned media of a paclitaxel-resistant superinvasive 

melanoma cell line variant (MDA-MB-435S-F/Taxol10p4pSI) (Dr. Pryanka 

Maurya, Ph.D. Thesis, 2009). MALDI-TOF/TOF MS subsequently identified the 

protein as a fragment of bovine transferrin (Dowling, Maurya et al. 2007). Following 

the profiling of conditioned media collected from a range of melanocytes and 

melanoma cell lines, it was discovered that the 7.6 kDa fragment was solely 

expressed in melanoma cell lines. In addition to this, a number of other proteins 

which were only identified in the melanoma cell lines were discovered, including an 

8.5 kDa ubiquitin-like marker, where they were found to be highly upregulated in 

comparison to normal melanocytes (Dr. Pryanka Maurya, Ph.D. Thesis, 2009).  

It was hypothesised that specific protein expression differences between a variety of 

sample sets could be highlighted using the SELDI TOF method. The aim of the 

study described here was to analyse the expression of the markers of interest in 

melanoma serum. Vitreous fluid collected from uveal melanoma patients would also 

be analysed in order to determine the presence of biomarkers of interest. 

 

6.2 SELDI-TOF MS Analysis  

SELDI-TOF MS is MALDI-based method which uses a target modified, e.g. nickel-

activated IMAC, to achieve biochemical affinity with the analyte in order to bind a 

specific subset of proteins. The sample is mixed with a matrix which co-crystallises 

with the analyte on a chip surface. A laser then strikes the mixture, causing 

ionisation of any bound proteins present. TOF is used to measure the m/z of each 

molecule which generates a spectrum where each peak corresponds to a protein.  

However, the technique does not provide any protein identifications, only the m/z 

ratio and the intensity of the peak. In order to identify the peaks, spin columns 

containing a resin which can mimic the SELDI surface can be employed.  
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6.3 Determination of the 7.6 kDa and 8.5 kDa Markers in Conditioned Media 

Cell lines secrete and shed proteins into the surrounding media. This media, without 

serum which can mask the secreted or shed proteins, is known as conditioned media.  

Serum-free RPMI-1640 media was conditioned by SK-MEL-5 cutaneous melanoma 

cells for 72 hours and the resulting media was analysed by SELDI-TOF using 

copper-activated IMAC as the target, which identified peaks corresponding to both 

the 7.6 kDa and 8.5 kDa markers (Figure 6.1 (a)). The conditioned media was also 

diluted in serum-free media at concentrations of 1:2, 1:10, 1:20 and 1:50 which 

illustrated that 1:10 and 1:20 were the most dilute levels at which the 7.6 kDa and 

8.5 kDa markers could be observed, respectively (Figure 6.1 (b), (c) and (d)).  
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Figure 6.1 Both targets of interest, the 7.6 kDa fragment and 8.5 kDa ubiquitin-like 

marker, as outlined in red, were found in (a) neat conditioned media of SK-MEL-5 

cutaneous melanoma cells, and at dilutions of (b) 1:2 and (c) 1:10 in serum-free 

media. (d) The 8.5 kDa marker was also found at a dilution of 1:20. One 

representative result of three is shown. 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

(d) 

m/z 

In
te

n
si

ty
 



269 

 

6.4 Detection of 7.6 kDa and 8.5 kDa Potential Markers in Serum-Diluted 

Conditioned Media 

In order to identify whether or not the markers of interest could be identified in a 

clinical sample, the SK-MEL-5 conditioned media was diluted in colorectal cancer 

serum and then analysed by SELDI using copper-activated IMAC 30 chips. This 

would prevent wasting valuable clinical specimens.  

The serum did not contain either biomarker. The markers were not clearly detectable 

at the 1:5 or the 1:10 dilution (Figure 6.2 (b) and (c)). This may have been due to the 

fact that the protein-rich serum easily masked the biomarkers in the resulting spectra 

and so it was difficult to identify the lowest level at which they were still detectable. 

However an unknown 8.9 kDa protein, or protein cleavage product, was found in all 

dilutions as well as in the neat conditioned media (Figure 6.2).  
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(C)  

 

Figure 6.2 SELDI-ToF spectra of (a) undiluted conditioned media, and (b) 1:5 and 

(c) 1:10 dilutions of SK-MEL-5 conditioned media in serum. The 7.6 kDa transferrin 

fragment and the 8.5 kDa fragment were potentially found in (b) and (c), albeit at 

minute levels. In all cases an 8.9 kDa protein, or protein cleavage product, was 

found. One representative result of three is shown in both cases.  
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6.5 Detection of an Approximate 8925 m/z Species in Cutaneous Melanoma 

Serum 

Immunodepleted stage IV melanoma sera were examined using SELDI-ToF MS and 

were compared to immunodepleted control sera (collected from potentially diabetic 

patients).  

The initial biomarkers of interest; a 7.6 kDa transferrin fragment and an 8.5 kDa 

ubiquitin-like marker, were not found. Despite this, an unknown 8.9 kDa protein was 

discovered which occurred in 10 of 12 disease samples, for at least one out of three 

replicates each (Figure 6.3).  

The 8.9 kDa protein was identified in three of 12 controls. When further examined, 

it was found that the levels of the marker were low in the controls in comparison to 

the levels in the samples (Figure 6.3).  
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Figure 6.3 SELDI spectra illustrating a protein, or cleavage product of a protein, 

with an approximate m/z value of 8925, circled in red which was identified in 

immunodepleted advanced-stage cutaneous melanoma serum (n=12) in comparison 

to healthy immunodepleted serum controls (n=12). The potential marker was found 

to occur in each disease sample at least once out of the three times the experiment 
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was performed. The 8.9 kDa protein was identified in 10 of 12 samples examined 

and at low levels in only three of 12 controls. One representative result is shown in 

each case.  
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6.6 Detection of an Approximate 8925 m/z Species in the Vitreous Fluid of a 

Patient with Metastatic Uveal Melanoma  

SELDI analysis was also performed on one metastatic uveal melanoma ocular fluid 

sample in order to determine whether or not the 7.6 kDa and 8.5 kDa markers of 

interest found in the cutaneous melanoma conditioned media, were also present in 

the vitreous fluid of uveal melanoma and hence, act as potential biomarkers for the 

disease.  

The 7.6 kDa transferrin fragment appeared to be present in both crude and 

immunodepleted samples. It was more abundant in the crude specimen than the 

immunodepleted fluid where it was detected at near-baseline levels. The 8.5 kDa 

ubiquitin-like protein was clearly detectable in the immunodepleted specimen, with 

only a small peak identified in one crude vitreous specimen (Figure 6.4).  

The 8.9 kDa unknown peak of interest was clearly visible in both crude and 

immunodepleted samples (Figure 6.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 



277 

 

 

Figure 6.4 SELDI spectra illustrating the presence of an 8.9 kDa species in the 

vitreous fluid of a uveal melanoma patient (n=1) which was not identified in a 

corresponding vitreous fluid control (n=1). Red arrows indicate the 8.9 kDa peak of 

interest while the 7.6 kDa and 8.5 kDa peaks are indicated by a red circle. 
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6.7 Attempted Purification of the 8.9 kDa Protein Using IMAC Resin 

Copper-activated IMAC SELDI chips were used in the discovery of the 8.9 kDa 

peak of interest. As SELDI cannot be used for the identification of proteins, it was 

decided to use copper-activated IMAC resin to isolate the subset of proteins which 

have an affinity for copper. This would allow for the separation of the protein of 

interest and subsequent attempts to identify it.  

IMAC spin columns contain an uncharged resin which is based on the same 

principle of affinity chromatography as the IMAC SELDI chips. The resin must be 

activated and charged with a metal ion such as cobalt or nickel, to which proteins 

with an affinity for these ions bind, often through a histidine residue or a 

phosphorylation site.  In order to elute bound proteins from the column, a pH change 

or a competitive molecule, such as imidazole, may be employed. In this case, a 

gradient of increasing imidazole concentration was used. Imidazole would compete 

with histidine residues of the protein for binding sites on the resin, therefore as the 

concentration of imidazole increased; more bound protein would be eluted from the 

column.  

Cutaneous melanoma serum samples 4, 5, and 6 shown in Figure 6.3, which 

contained a high level of the 8.9 m/z potential marker according to their 

corresponding SELDI spectrum, were selected for IMAC purification and a gradient 

of 10 mM to 500 mM imidazole was used to elute bound proteins. Normal phase 

(NP20) SELDI chips, which bind all protein, were used to validate the IMAC resin 

technique and visualise the protein profile presence of the collected fractions. It was 

hoped that this would pin-point the concentration of imidazole that most 

successfully eluted the 8.9 kDa m/z species. However this analysis yielded no peaks 

whatsoever.  

The elution fractions were assayed for protein content, which indicated that no 

protein was present in the fractions. The fractions were also separated on a 4-20% 

gradient gel, which should resolve low molecular weight proteins such as the 8.9 

kDa target, and stained with a colloidal silver protein stain. This visualised an 

apparent array of bands in each lane. One band, circled in red, appeared to be located 

at the approximate molecular weight of 8.9 kDa (Figure 6.5). However, following 

the in-gel digestion of any proteins in that region and subsequent analysis by LC-
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MS/MS, very poor results and few protein identifications were yielded from the 

analysis.  
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Figure 6.5 Silver-stained gel illustrating advanced-stage cutaneous melanoma serum 

which was eluted from a copper-activated IMAC spin column using an imidazole 

gradient. Collected fractions were then separated on a 4-20% Tris-Glycine gel which 

was subsequently silver stained. The potential band of interest is circled in red. (a) 

Immunodepleted melanoma serum, (b) 10 mM imidazole fraction, (c) 200 mM 

imidazole fraction; (d) 500 mM imidazole fraction. 
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It was hypothesised that staining the gel with colloidal silver may have caused this 

as it is known to affect the identification of proteins in mass spectrometry, despite 

using a mass spectrometry-compatible protocol. Hence, the experiment was repeated 

using a reverse, zinc-based stain which stains the non-proteinaceous regions of the 

gel, thus leaving any protein bands clear. In this way the stain does not bind to the 

regions of interest and may improve the number of identifications acquired. This did 

not seem to improve the quality of identifications acquired which confirmed that the 

mass spectrometry-compatible silver staining method was not responsible for the 

poor list of identifications. 

LTQ mass spectrometry was used for the identification of proteins in the above 

analysis. However, Orbitrap-based mass spectrometry has a higher mass accuracy. It 

was decided to repeat the experiment using the more accurate, Orbitrap-based 

method of analysis. Additional reduction and alkylation steps were also included in 

the new method.  

The binding of protein to and subsequent imidazole-based elution from copper-

activated IMAC resin was repeated. The following samples which had previously 

confirmed the presence or absence of the 8.9 m/z species were chosen for the 

experiment; cutaneous melanoma serum, control serum, control vitreous fluid, uveal 

melanoma vitreous fluid, and media conditioned by SK-MEL-5 cutaneous 

melanoma cell lines. Imidazole concentrations of 25 mM, 50 mM, 100 mM, 200 

mM, and 500 mM were used to fractionate protein from the resin. Collected 

fractions were separated in the first dimension on a 4-20% gel and silver stained 

(Figure 6.6). Regions below the red line in Figure 6.6, i.e. the low molecular region 

of the gel, were excised into bands and in-gel digested with trypsin to generate 

peptides which were separated over the course of an hour gradient and analysed 

using an Orbitrap mass spectrometer. The results of the qualitative analysis are 

shown in Table 6.1. Identifications generated from a single peptide were accepted 

due to the low molecular weight of the protein or cleavage product of interest. As the 

low molecular weight region of the gel was excised, many of the proteins identified 

were larger than expected. This suggested that the protein in question may be a 

cleavage product of a larger molecule.   
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In addition to separating the fractions by 1-D electrophoresis, an in-solution digest 

was also carried out on the elution fractions. However, the results from this mainly 

consisted of high abundance proteins and did not overlap with those acquired in 

Table 6.1. 
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Figure 6.6 Silver-stained 4-20% 1-D gel of (a) melanoma serum, (b) control serum, 

(c) uveal melanoma vitreous, (d) control vitreous, and (e) SK-MEL-5 conditioned 

media which were eluted from IMAC spin columns using an imidazole gradient. The 

low molecular weight region of the gel, the region below the red line, was cut and 

each lane was sliced and in-gel digested.  
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In order to determine an effective method of isolating the 8.9 m/z species, 3-20 kDa 

cut-off spin devices were used for concentrating the low molecular weight portion of 

SK-MEL-5 conditioned media of cutaneous melanoma cells following IMAC resin 

binding and imidazole elution.  

The proteins bound to the column were eluted in one fraction (500 mM imidazole) 

and either run on a 1-D gel and silver stained or acetone precipitated and in-solution 

digested. This, however, did not produce any proteins which overlapped with Table 

6.1. The experiment may have been compromised as the high imidazole 

concentration may have damaged the columns.  

 

6.8 MALDI-TOF Analysis of Proteins Eluted Directly from IMAC Chips 

As SELDI is a form of matrix-enhanced laser desorption ionisation (MALDI), 

MALDI was used in an attempt to detect the 8.9 kDa protein of interest in a peak 

profile and subsequently fragment it into peptides whose sequence may be 

determined, thus identifying the protein. 

It was decided to attempt to remove the protein of interest directly from the SELDI 

chip from which it was known to bind as this may have concentrated the marker 

more successfully than the resin. The control and disease sera used in the analysis 

were also immunodepleted in order to reduce any high abundance proteins present. 

This would minimise the effect of large peaks diminishing the significance of 

smaller ones.  

Cutaneous melanoma and healthy sera were incubated on copper-activated SELDI 

chips, as before, and one fraction of 500 mM imidazole was used to elute all bound 

proteins from the surface. The fractions were co-crystallised with a sinapinic acid 

(SPA) matrix and analysed by MALDI. However, too much interference was present 

thus masking any peaks. This was due to the low protein concentration and high 

imidazole levels present in the samples. Hence, it was necessary to increase the 

concentration of protein being loaded onto the SELDI chip while keeping the 

quantity of imidazole used to a minimum. 
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The experiment was repeated using 10 mM, 50 mM and 100 mM imidazole 

concentrations to sequentially elute bound melanoma and control proteins from 

copper-activated IMAC SELDI chips (Figure 6.7).  

An internal calibrant was used for the accurate determination of size and as an 

indicator of abundance (Figure 6.8). When the samples were mixed with this internal 

calibrant, peaks were still visible which would suggest that a notable level of protein 

was detectable in all samples (Figure 6.9). Despite this, a species in the region of an 

m/z 8925 was not identified.  

Using colorectal serum, the MALDI technique was optimised. The most effective 

matrix was selected; SPA was found to ionise more efficiently than α-Cyano-4-

hydroxycinnamic acid (CHCA), and the most effective method of mixing matrix and 

sample for best co-crystallisation was also chosen. The chosen method involved 

layering the sample between matrix. This optimisation also allowed for a high 

volume of test serum to be used each time, thus avoiding wasting valuable 

melanoma serum. However, it was found that although a reasonably clear spectrum 

of protein could be generated (Figure 6.10), successful fragmentation of proteins to 

peptides was not achieved.  
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Figure 6.8 MALDI-TOF spectra of a set of internal calibrants used for 

determination of protein mass and as an indicator of abundance. The following 

proteins circled in red were included due to their low molecular weights; insulin 

(5734 m/z), thioredoxin (11674 m/z), apomyoglobin (16952 m/z).  
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6.9 Quantitative Analysis of Proteins Eluted Directly From IMAC Chips 

As the IMAC analysis which originally identified the 8.9 kDa protein of interest was 

carried out using SELDI chips, it was decided to repeat this procedure by binding 

and subsequently eluting proteins from the chip. Quantitative LC-MS would then be 

used for the identification of differentially expressed proteins between control and 

disease sera which would hopefully identify potential 8.9 kDa candidates. 

Two cutaneous melanoma sera and two control sera were incubated on copper-

activated IMAC chips. Any bound proteins were subsequently eluted from the chips 

using 250 mM imidazole. The fractions were then in-solution digested with trypsin 

and Lys-C to generate peptides which were analysed by quantitative label-free LC-

MS/MS.  

Apolipoprotein AII was identified as being significantly upregulated in the 

cutaneous melanoma serum samples in comparison to the controls by 2.46-fold 

(Figure 6.11). Although the protein is known to have a molecular weight of 17.38 

kDa, it has been reported in the literature as having numerous isoforms, one of 

which occurs at 8.9 kDa and has been identified by SELDI-TOF at approximately 

8.9 km/z (Malik, Ward et al. 2005). This suggested that apolipoprotein AII may have 

been the 8.9 kDa marker of interest which had previously been observed in the 

SELDI data.  

 

 

 

 

 

 

 

 

 



292 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a
) 

(b
) 

F
ig

u
re

 6
.1

1
 Q

u
an

ti
ta

ti
v

e 
la

b
el

-f
re

e 
L

C
-M

S
 d

et
er

m
in

ed
 a

 s
ig

n
if

ic
an

t 
q
u

an
ti

ta
ti

v
e 

d
if

fe
re

n
ce

 (
p

-v
al

u
e=

1
.9

7
x
1
0

-3
) 

in
 a

p
o
li

p
o
p
ro

te
in

 A
II

 

ex
p
re

ss
io

n
 

b
et

w
ee

n
 

co
n

tr
o
l 

(n
=

2
) 

an
d
 

ad
v
an

ce
d
 

cu
ta

n
eo

u
s 

m
el

an
o
m

a 
(n

=
2
) 

se
ru

m
 

sa
m

p
le

s,
 

ea
ch

 
w

it
h
 

th
re

e 
te

ch
n
ic

al
 

re
p
li

ca
te

s.
 

A
p
o
li

p
o
p
ro

te
in

 A
II

 h
as

 b
ee

n
 r

ep
o

rt
ed

 a
s 

an
 8

.9
 k

D
a 

is
o
fo

rm
 i

n
 t

h
e 

li
te

ra
tu

re
 w

h
ic

h
 s

u
g
g
es

ts
 t

h
at

 i
t 

m
ig

h
t 

b
e 

th
e 

id
en

ti
ty

 o
f 

th
e 

u
n
k
n
o
w

n
 

S
E

L
D

I 
p

ea
k
 o

f 
in

te
re

st
 (

a)
 S

ta
n
d
ar

d
 e

x
p

re
ss

io
n
 p

ro
fi

le
 f

o
r 

ap
o
li

p
o
p
ro

te
in

 A
II

. 
(b

) 
T

h
e 

p
ep

ti
d
e 

m
ea

su
re

m
en

t 
v
ie

w
 i

ll
u
st

ra
te

s 
tw

o
 p

ep
ti

d
es

 

fo
r 

ap
o
li

p
o
p
ro

te
in

 A
II

, 
il

lu
st

ra
te

d
 b

y
 l

in
es

, 
an

d
 t

h
ei

r 
ab

u
n
d

an
ce

 a
cr

o
ss

 a
ll

 s
am

p
le

s,
 e

ac
h
 i

ll
u
st

ra
te

d
 b

y
 a

 p
o
in

t.
 T

h
e 

ac
co

m
p

an
y
in

g
 t

ab
le

 

sh
o
w

s 
a 

m
ax

im
u
m

 i
n
cr

ea
se

 i
n
 a

p
o
li

p
o
p
ro

te
in

 A
II

 e
x
p
re

ss
io

n
 o

f 
6
.6

6
-f

o
ld

, 
o

b
se

rv
ed

 i
n
 t

h
e 

d
is

ea
se

 s
am

p
le

 s
et

. 
 



293 

 

This result was further examined using ELISA and western blotting. The ELISA 

results are shown in Figure 6.12; however, this did not demonstrate an increase in 

apolipoprotein AII abundance in advanced cutaneous melanoma serum in 

comparison to the control serum. In addition to this, benign and early stage sera from 

cutaneous melanoma patients were included which did not illustrate significant 

differential expression of the protein when compared to the control experimental 

group. Also, no significant differences in abundance of apolipoprotein AII were 

noted between control serum and serum of uveal melanoma patients.  

A western blot of control and advanced cutaneous melanoma serum was also carried 

out; however, this was unsuccessful in producing information on the abundance of 

apolipoprotein AII. This may have been due to the difficult nature of carrying out 

western blots using serum. 
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Figure 6.12 Apolipoprotein AII ELISA represented by both bar chart and Box and 

Whisker Plot. Serum samples from a variety of melanoma conditions were used; 

benign cutaneous melanoma (n=14), early-stage cutaneous melanoma disease 

(n=11), advanced-stage cutaneous disease (n=11), and uveal melanoma (n=11), as 

well as control serum (n=15). No significant difference in expression of 

apolipoprotein AII was observed between the control and the experimental groups. 
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It was decided to repeat the quantitative LC-MS experiment using IMAC resin 

contained in spin columns to fractionate a larger sample set.  

One fraction of 250 mM imidazole was used to elute bound proteins and 

subsequently digest them using Lys-C and trypsin. Generated peptides were 

separated over the course of a three-hour gradient. The resulting data was analysed 

with Progenesis LC-MS to check for the presence and expression of apolipoprotein 

AII in a larger pool of samples.  

Although apolipoprotein AII was identified in the analysis, it was found to be 

overexpressed in the control specimens in comparison to the disease sera (Table 

6.2). This directly contradicts the previous result and dismisses the possibility of 

apolipoprotein AII as the identity of 8.9 kDa SELDI peak. 
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This analysis provided a list of 34 statistically significant proteins which were found 

to be differentially expressed between control and cutaneous melanoma serum 

samples. Of these, 16 proteins were found to be upregulated in the disease sample 

set while 18 showed a decreased abundance compared to controls. The 

chromatography of the samples was clear, with good overlap of total ion 

chromatograms (TIC) between samples. Protein principal component analysis (PCA) 

is shown in Figure 6.13. This illustrated good separation of protein abundances 

between the control and disease sample sets.  

Many of the proteins which were differentially expressed demonstrate potential as 

possible serum biomarkers for advanced cutaneous melanoma. For example, alpha 1 

antichymotrypsin was found to upregulated in cutaneous melanoma serum by 2.55-

fold (Figure 6.14). This has previously been associated with poor prognosis in 

malignant melanoma as well as in other cancers, such as prostate cancer, where it is 

complexed to prostate-specific antigen (PSA) (Martinez, Espana et al. 2002, Wang, 

Jiang et al. 2010). Immune- and inflammation-related proteins such as neutrophil 

defensin-1, scavenger receptor cysteine-rich type 1 protein M130 and complement 

component C9 (Figure 6.15) were also found to be significantly upregulated in 

cutaneous melanoma serum.  

A summary of all of the methods used in the attempted identification of the 8.9 kDa 

protein of interest are outlined in Figure 6.16. 
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Figure 6.13 Principal component analysis (PCA), generated by Progenesis LCMS, 

illustrating the separation of protein abundances between the control (n=13) and 

advanced cutaneous melanoma (n=13) sample sets. 
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Figure 6.14 Alpha 1 antichymotrypsin was found to upregulated in cutaneous 

melanoma serum (n=13) in comparison to control serum (n=13) by 2.55-fold, p-

value=8.69x10
-4

 (a) Normalised abundance view of alpha 1 antichymotrypsin 

expression in melanoma serum. Each point corresponds to a sample and illustrates 

the quantity of the protein of interest per specimen. (b) Normalised abundance of 

two identified alpha 1 antichymotrypsin peptides identified. Each line represents a 

peptide while each point indicates the abundance of the peptide per sample.  

 

 

 

 

 

(a) 

(b) 
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Figure 6.15 (a) Neutrophil defensin-1 (p-value=2.45x10
-4

), (b) scavenger receptor 

cysteine-rich type 1 protein M130 (p-value=1.95x10
-3

), and (c) complement 

component C9 (p-value=2.17x10
-3

) were all found to be upregulated in cutaneous 

melanoma serum (n=13) in comparison to control serum (n=13) by maximum fold 

values of 11.7, 2.55, and 2.48, respectively. Each line represents a peptide while 

each point indicates the abundance of the peptide per sample.  
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6.10 Enrichment Analysis of Differentially Regulated Protein Lists Using 

DAVID 

It was decided to use DAVID to determine significant enrichment of biological 

processes, molecular functions, and cellular compartments associated with the list of 

proteins identified as being differentially expressed between the control and disease 

sample sets. Enrichment was considered to be significant when the Bonferroni p-

value adjustment was ≤0.05. Lists of proteins upregulated in either the control or the 

melanoma specimens were analysed individually.  

For the list of proteins which were downregulated in the cutaneous melanoma 

sample set in comparison to the control, the identifications related to extracellular 

regions of the cell (Table 6.3 (a)), with molecular functions based on the inhibition 

of enzymatic activity (Table 6.3 (b)).  

Of the list of proteins upregulated in cutaneous melanoma specimens, enriched 

biological processes involved a response to trauma, such as inflammation and blood 

coagulation (Table 6.4 (a)). This may be due to the advanced stage of the tumour 

where it induces damage as a result of its aggressive, invasive behaviour. Cellular 

compartments associated with the protein list were all extracellular (Table 6.4 (b)). 

Molecular functions which were enriched primarily involved anti-enzyme activities. 

This inhibition may be an anti-tumour response as the inhibition of endopeptidases 

has been associated with suppressed growth of tumour cells (Suzuki, Sakaguchi et 

al. 2013). In addition to the above, it was found that the complement pathway was 

affected in by the upregulation of multiple proteins in the disease proteome; 

complement C1r subcomponent, complement component 9, fibrinogen gamma 

chain, von Willebrand factor, and alpha-1-antitrypsin (Figure 6.17).  

The 16 proteins upregulated in the disease samples may now be followed up as 

potential identifications for the 8.9 kDa protein of interest as it is possible that it may 

be a fragment or an isoform of one of these 16. All 34 differentially expressed 

proteins can also be further examined as possible biomarkers for advanced 

cutaneous melanoma.  
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Table 6.3 GO cellular compartment (a) and molecular function enrichment (b) for 

differentially expressed proteins which were downregulated in the cutaneous 

melanoma sample set in comparison to the control. Enrichment was considered 

significant upon observation of a p-value ≤0.05 and a Bonferroni adjusted p-value 

≤0.05. Count corresponds to the overlap between proteins on the list and a particular 

GO category. 
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Table 6.4 GO biological process (a), cellular compartment (b), and molecular 

function (c) enrichment for differentially expressed proteins which were upregulated 

in advanced cutaneous melanoma sera compared with control sera. Enrichment was 

considered significant upon observation of a p-value ≤0.05 and a Bonferroni 

adjusted p-value ≤0.05. Count corresponds to the overlap between proteins on the 

list and a particular GO category. 
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Figure 6.17 DAVID analysis of proteins which were upregulated in advanced 

cutaneous melanoma sera found that five identifications; complement C1r 

subcomponent, complement component 9, fibrinogen gamma chain, von Willebrand 

factor, and alpha-1-antitrypsin, were involved in complement and coagulation 

cascades. The genes which are involved are highlighted in yellow.  
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7.1 Introduction 

Although uveal melanoma is a rare malignancy of the uveal tract; the iris, the 

choroid, and the ciliary body, it is the most common intraocular malignancy in 

adults. The overall incidence of uveal melanoma is 5-7 cases per million per year 

with this number increasing to 20 per million per year after the age of 70. The 

majority of uveal melanomas develop in the choroid while the remainder (8%) arise 

in the iris and ciliary body. (Damato 2012, Ramasamy, Murphy et al. 2013).  

Substantial advances have been made in the diagnosis and local therapy of uveal 

melanoma over the past number of decades. The primary clinical diagnosis of uveal 

melanoma regularly initially involves reduced visual awareness, retinal detachment, 

and scotoma. Slit lamp biomicroscopy is also used to identify a tumour, while 

ultrasound investigation can be utilised to determine acoustic hollowness. With 

treatment, uveal melanoma has a five-year survival rate of 77-84%. Enucleation was 

the traditional method of treatment, however radioactive plaque brachytherapy, 

proton beam therapy, and local resection can also be used for the treatment of the 

primary tumour while maintaining the eyeball (Abildgaard and Vorum 2013).  

However, uveal remains classified as a high risk disease in the case of metastasis 

which occurs in up to 50% of patients. In the majority of cases, uveal melanoma 

spreads preferentially to the liver; a generally fatal metastasis within 15 months. 

Currently, metastasis is rarely detected at primary diagnosis, despite thorough 

investigations, and often develops in the subsequent months and years. Although the 

risk of metastasis may be predicted by chromosomal testing (monosomy of 

chromosome three and gain of chromosome eight are both indicative of poor 

prognosis), cell type (epithelioid tumours are more aggressive than those of spindle 

cell type), and molecular screening (BAP1 mutations occur late in the disease and 

signify a high likelihood of metastasis occurring) there is currently no effective 

treatment for metastatic uveal melanoma (Harbour 2012, Yonekawa and Kim 2012, 

Ramasamy, Murphy et al. 2013).  

Protein biomarkers indicative of prognosis could further our understanding of the 

biology of uveal melanoma, and could lead to the development of rational therapies 

which target differentially regulated proteins specific to the disease. Such 

biomarkers, together with complementary genetic information, may also potentially 
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aid in determining a prognosis in a clinical setting when monitoring patients who are 

at risk of metastasis.  

Cutaneous melanoma is a malignancy of skin melanocytes. Despite accounting for 

only 4% of all skin cancer cases, it is the form of skin cancer which has the highest 

death toll in the USA and Europe (Ugurel, Utikal et al. 2009). It is widely accepted 

that cutaneous melanoma risk is determined through genetic factors and exposure to 

sunlight; 80% of melanomas develop in areas which receive intermittent sun 

exposure or have a history of sunburn (Garbe and Leiter 2009).  

Primary cutaneous melanomas are characterised by horizontal growth within the 

epidermis only. When melanoma is detected and treated prior to the development of 

lymph node metastasis, the five-year survival rate is 99%. If the malignancy 

develops and becomes more aggressive, it can lead to rapid growth and invasion of 

the dermis. Later stages of the disease are associated with rapid invasion and 

metastasis of tissues other than the dermis; the five-year survival rate for distant 

stage melanoma patients is approximately 15% (Al-Ghoul, Bruck et al. 2008).  

Surgical removal of the tumour is the standard of care for primary cutaneous 

melanoma, often coupled with high-dose interferon therapy. Systemic metastatic 

melanoma was traditionally difficult to treat, with poor outcome, as therapies 

beyond surgery were very toxic. In addition to this, melanoma has been traditionally 

been recognised as difficult to treat, mainly due to the large number of patients who 

are resistance to immune therapy as well as chemotherapy (Mehnert and Kluger 

2012). New therapeutic strategies such as anti-PDI1 antibodies (such as 

ipilimumab), BRAF inhibitors (such as vemurafenib or dabrafenib), c-Kit inhibitors, 

and MEK inhibitors have illustrated significant anti-tumour effects, improving 

patient survival times and response rates.  

To date, few protein biomarkers have been identified as prognostic indicators of 

cutaneous melanoma and even less are used in the clinic as tools for diagnosis or 

prognosis. However, lactate dehydrogenase (LDH), melanoma inhibitory activity 

protein (MIA) and S-100 beta protein (S100B) are currently recognised as 

seriological markers for the disease.  
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Better prognostic and predictive markers in cutaneous melanoma are needed, but to 

date have been elusive. The experimental work detailed here was intended to further 

understand the cutaneous melanoma serum proteome over the course of disease 

progression. Therefore, this work could lead to the development of a prognostic test 

which could easily be used in a clinical setting and could also potentially lead to the 

discovery of a therapeutic target in cutaneous melanoma. 

Both cutaneous and uveal melanoma originate in melanocytes, albeit, their clinical 

behaviours and molecular mechanisms differ significantly. The differences between 

both melanomas are poorly understood, albeit, it was hoped that the proteomic 

analyses of the nature of melanoma as a disease would aid in understanding 

variations between both melanomas and further our understanding of metastasis. 

One aim of this thesis was to identify proteins which were differentially expressed 

between primary uveal melanoma tumour tissue which metastasised and that which 

did not. This work could improve our understanding of the biology of uveal 

melanoma tumours which subsequently metastasise through the identification of 

potential biomarkers. Such proteins could eventually be developed as targets for 

rationally designed therapies in the treatment of uveal melanoma, and could, along 

with genetic information, predict the outcome of the disease. It was also intended to 

study the vitreous fluid collected from uveal melanoma patients in order to identify 

unique proteins of interest for the same purposes. In the process of this, an ocular 

fluid sample preparation method could be developed. The study could also improve 

our overall understanding of the vitreous proteome. Finally, it was hoped to better 

understand the proteomic changes which occur throughout the course of cutaneous 

melanoma disease progression. It was anticipated that this may illustrate potential 

proteins biomarkers for disease progression in serum, a sample which is minimally 

invasive to collect and so, could easily be extracted for an assay in a clinical 

environment.  

Throughout this work, there were a number of shortcomings. For example, due to 

the rarity of uveal melanoma, few primary tumour tissue and vitreous specimens 

were available. Although cutaneous melanoma is not as rare, few samples were also 

available. Hence, this work was part of a discovery phase, pilot study. In addition to 

this, no metastasised uveal melanoma tumour tissue was available for analysis. 
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There were also a number of strengths of the studies carried out. The availability of 

rare clinical specimens with at least seven years of follow up was a clear advantage 

of this work. Also, the involvement of experienced pathologists was useful in 

determining clinical questions of interest. 

 

7.2 2-D DIGE and Quantitative Label-Free LC-MS Analysis of Uveal 

Melanoma Tumour Tissue 

Biological fluids are considered to be a good source of biomarkers as they are easily 

accessible and minimally invasive, are relatively cheap to obtain, and can be 

potentially used for the development of large-scale, prognostic/diagnostic tests 

(Good, Thongboonkerd et al. 2007).  

However, in order to detect tissue specific biomarkers, i.e. proteins directly 

produced by the tumour, in biological fluid, the target must first be secreted by the 

tissue. It must also be recognised as disease tissue-specific, which may be difficult 

as there are a variety of secreted proteins circulating at any one time (Shiwa, 

Nishimura et al. 2003).  

Hence, it may be more efficient to first identify a tumour-specific protein biomarker 

directly from the tissue and subsequently detect it in fluids such as serum.  

 

7.2.1 Identification of Differentially Expressed Proteins between Non-

Metastasised and Subsequently Metastasised Primary Tumour Tissue Using    

2-D DIGE  

It was decided to compare 16 non-metastasised uveal melanoma primary tumour 

tissues and nine primary tissues which subsequently metastasised in order to better 

our understanding of uveal melanoma metastasis through the identification of 

differentially expressed disease-specific biomarkers. In order to identify 

differentially regulated proteins, a 2-D DIGE analysis of primary uveal melanoma 

tumour tissue was carried out.  

From this analysis, 14 statistically significant differentially expressed proteins were 

identified, which agreed with the hypothesis that stated that patterns of differential 
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protein expression would be observed between both disease states. Protein 

disulphide-isomerase A3 precursor (PDIA3), selenium-binding protein 1 

(SELENBP1), alpha-enolase, F-actin capping protein subunit alpha-1 (CAPZA1), 

endoplasmic reticulum protein ERp29 precursor, triosephosphate isomerase (TPI1), 

protein DJ-1 (PARK7), and fatty acid-binding protein, heart-type (FABP3) were all 

found to be upregulated in subsequently metastasised primary tissue in comparison 

to non-metastasised tissue. Vimentin and beta-hexosaminidase subunit alpha were 

identified from the same protein spot which was identified as being more abundant 

in the metastatic proteome. Eukaryotic translation initiation factor 2 subunit 1, 

proteasome subunit alpha type 3, 40S ribosomal protein SA, tubulin beta chain and 

tubulin alpha-1B chain were shown to have decreased expression in uveal melanoma 

tissues of patients who subsequently developed metastatic disease.  

Of these proteins, four had previously been mentioned in the literature in relation to 

uveal melanoma at that time; vimentin, beta-hexosaminidase subunit alpha, alpha-

enolase, and 40S ribosomal protein SA.  

Alpha-enolase was previously identified as being downregulated in uveal melanoma 

cell lines derived from secondary tumours in comparison to a primary tumour cell 

line which was derived from the same patient (Zuidervaart, Hensbergen et al. 2006). 

Alpha enolase is a metalloenzyme which is required for catalysing the conversion of 

2-phospho-D-glycerate to phosphoenolpyruvate in glycolysis; a critical process in 

neoplastic cells (Capello, Ferri-Borgogno et al. 2011). Hence, it would be expected 

that an upregulation of glycolysis would be required for metastatic cells in 

comparison to the primary tumour cells they were derived from. Zuidervaart et al. 

explained that their observed result may be explained by the apparent higher growth 

rate of the primary tumour cell line in comparison to its metastatic counterpart. The 

result of our study is in agreement with previous tumour tissue studies which link an 

increase in alpha enolase production with metastasis through the Warburg effect; an 

increase in aerobic glycolysis (Altenberg and Greulich 2004, Yoshida, Okamoto et 

al. 2013). 

The expression of vimentin intermediate filaments acts a mesenchymal marker, and 

is typical of melanomas. Vimentin was identified by Hendrix et al. as contributing to 

the metastatic phenotype of uveal melanoma. They illustrated that uveal melanoma 
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cell lines which co-expressed keratin and vimentin intermediate filaments were six-

fold more invasive than those which expressed vimentin only and eight- to 13- fold 

more invasive than normal uveal melanocytes. These findings were confirmed with 

immunohistochemistry of tumour tissue specimens from which the uveal melanoma 

cell lines were derived (Hendrix, Seftor et al. 1998). Vimentin was also identified by 

Coupland et al. as being upregulated in uveal melanoma monosomy three tumour 

tissues in comparison to those which were disomy three (Coupland, Vorum et al. 

2010). In our study, vimentin was found to be upregulated in subsequently 

metastasised primary tissue in comparison to non-metastasised tumour specimens 

which corresponds with the above findings, thus linking vimentin expression to 

metastatic potential. 

Beta-hexosaminidase subunit beta is known to be required for cellular interaction 

with adhesion proteins, and hence play an important role in cellular motility. It was 

previously identified as being upregulated in uveal melanoma cell lines derived from 

secondary tumours in comparison to a primary tumour cell line which was derived 

from the same patient (Zuidervaart, Hensbergen et al. 2006). Although it was the 

alpha subunit which was discovered to be upregulated in the metastatic sample set in 

our study, beta-hexosaminidase subunit alpha has been linked with the development 

of metastases in cancers such as glioblastoma (He, Liu et al. 2011). This all concurs 

with our findings associating beta hexosamidase with metastasis.  

40S ribosomal protein SA functions as a laminin receptor; thus playing a role in cell 

adhesion, as well as being required for the full maturation of ribosomal subunits. As 

cancer cells can attach to laminin, this may aid the process of metastasis. Previously, 

gastric cancer cells were found to express 40S ribosomal protein SA on their surface 

which correlated with tumour aggressiveness (de Manzoni, Guglielmi et al. 1998). It 

has also been shown to be overexpressed in bile duct carcinoma, colorectal 

carcinoma, cervical cancer, and breast carcinoma (Kumazoe, Sugihara et al. 2013). 

The protein was identified as being associated with uveal melanoma primary cell 

cultures by Pardo et al (Pardo, Garcia et al. 2006). In our study, it was found to 

downregulated in metastatic specimens in comparison to the non-metastatic group 
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7.2.1.1 Immunohistochemical Validation of Six Proteins of Interest 

Identified by 2-D DIGE 

Following the identification of 16 differentially-regulated proteins between the 

metastasised and non-metastasised tissue sample sets, it was decided to follow up six 

proteins of interest by immunohistochemical staining of FFPE tissue; TPI1, FABP3, 

PDIA3, CAPZA1, PARK-7, and SELENBP1.  

For PDIA3, CAPZA1, and PARK-7, the trends in expression identified by the 2-D 

DIGE study were not observed in the immunohistochemical analysis. There are 

several possible reasons for this lack of correlation. Whole tumour homogenates 

were used for the 2-D DIGE study in order to study total than rather localised 

protein expression. Also, immunohistochemistry is examining formalin-fixed, 

paraffin-embedded tissue, whereas the proteins for 2-D DIGE were extracted from 

snap-frozen tissue, stored at -80 °C prior to use.  

In cases where the data from the two methods did not agree, it is not possible to 

determine, which result better reflects the protein expression in the tumour. 

However, the two very different approaches yielded concurrent results for FABP3 

and TPI1, which support the differential expression of both proteins. In the case of 

SELENBP, little or no staining was observed in either sample set; metastasised or 

non-metastasised.  

Protein disulfide isomerase (PDIA3) is a thiol oxidoreductase protein of the 

endoplasmic reticulum which is required for protein folding (Koivunen, Helaakoski 

et al. 1996, Garbi, Tanaka et al. 2006). In our study, it showed statistically 

significant differential expression in the 2-D DIGE study, with an abundance 

increase of 1.5-fold in the metastasised sample set in comparison to the non-

metastasised group.  PDIA3 has been known to play a role in oesophageal carcinoma 

(Qi, He et al. 2008). Its expression has been identified in the M14 melanoma cell 

line, and in other cancer cell lines, HeLa and Raji, where it was found to be bound to 

regulatory regions of the DNA, prompting the possibility of PDIA3 acting as a 

transcriptional regulator in non-endoplasmic reticulum regions (Aureli, Gaucci et al. 

2013). On this basis, it appeared to be a promising and novel potential target for 

uveal melanoma. Albeit, our immunohistochemistry results directly contradicted our 

2-D DIGE results, with a decreased expression observed in melanomas which 
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subsequently metastasised in comparison to those which did not, hence it was 

excluded from further analysis.  

F-actin capping protein subunit alpha-1 (CAPZA1) is a cytoskeletal protein. In our 

differential protein expression analysis, it was found to be upregulated by 1.3-fold in 

subsequently metastasised uveal tissue samples. Reports on CAPZA1 in cancer are 

rare; it has been reported to be increased ten-fold in HPV 18-positive oral squamous 

cell carcinoma patients in comparison to other HPV 18-positive cancers. CAPZA1 

was identified in the proteomic analysis of human gastric cancer clinical specimens, 

with its underexpression being associated with poor prognosis (Lee, Jeong et al. 

2013). It has also been identified to be differentially expressed in renal cell 

carcinoma compared to normal renal cells suggesting its possible involvement in 

tumorigenesis (Kellner, Lichtenfels et al. 2002). In the immunohistochemical 

analysis of uveal melanoma tumour tissue, CAPZA1 showed an overall reduced 

cytoplasmic expression pattern in the majority of primary specimens that were found 

to have metastasised compared to those that did not. Parallel staining of sections for 

CAPZA1 and the histiocyte/monocyte/macrophage marker CD68 confirmed 

CAPZA1 positivity in both tumour cells and tumour-infiltrating macrophages, but 

not all of those macrophages stained positive for CAPZA1. 

PARK-7, also known as DJ-1, is an oncogene which was originally cloned as a 

putative oncogene which could transform NIH-3T3 cells, with the cooperation of H-

ras. It has since been implicated in a number of processes, such as oxidative stress, 

and is thought to play a role in tumorigenesis; acting as a negative regulator of the 

tumour suppressor PTEN. Pardo et al. identified PARK-7 as being overexpressed in 

uveal melanoma cell lines in comparison to normal melanocytes. They also 

identified the protein as being secreted as it was detected in the serum of uveal 

melanoma patients. We identified PARK-7 as being upregulated in subsequently 

metastasised primary tumours by 1.2-fold in comparison to those which remained as 

non-metastasised. However, an upregulation of PARK7 during metastasis was not 

observed in the immunohistochemical analysis. 

SELENB1, TPI1, and FABP3 were selected for further analysis using in vitro 

functional studies. By using small interfering RNA (siRNA), the consequences of 

effectively knocking down or reducing expression of a protein of interest can be 
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examined in an assay of choice, hence illustrating the role of the aberrantly-

expressed protein. To understand the biology of a cancer, it is often necessary to 

study the deviant regulation of its cellular processes; this can be carried out using 

cell line models. Healthy cells, lipofectamine-treated cells, negative control cells, 

and cells transfected with two independent siRNA were included for each 

experiment, and the effects of the knockdown are measured by comparing the 

downregulated cells to the negative control. 

 

7.2.2 TPI1 

Triosephosphate isomerase (TPI1) was identified twice with an 1.6- and 1.7-fold 

upregulation in uveal melanoma samples of patients who subsequently developed 

metastatic disease, immunohistochemical analysis also showed a trend for 

upregulation of TPI1 in uveal melanomas which did metastasise. The double 

identification of TPI1 as an upregulated protein is very likely due its isoforms 

(Snapka, Sawyer et al. 1974, Kester and Gracy 1975).  

The glycolytic enzyme TPI1 catalyses the conversion of dihydroxyacetone 

phosphate to glyceraldehyde 3-phosphate (Albery and Knowles 1976), and a high 

rate of glycolysis is required to support tumour growth (Bui and Thompson 2006). 

TPI1 has previously been shown to be expressed in uveal melanoma primary cell 

cultures (Pardo, Garcia et al. 2005).  

As the 2-D DIGE and immunohistochemistry results both illustrated that TPI1 was 

upregulated in subsequently metastasised primary tumour tissue, our proteomics 

study provided evidence that TPI1 may have been involved in the development of 

the metastatic phenotype in uveal melanoma. Hence, it was decided to follow up 

TPI1 with functional analysis to further understand its role. 

Abnormal proliferation is required for tumorigenesis, as cancer involves the 

accumulation of clonal cells. The reduction in tumour cell number, or tumour 

burden, is often the goal of current cancer therapies. Hence, a better understanding 

of the key proteins behind abnormal cell proliferation in a cancer could aid the 

development of more effective targets for therapies (Andreeff 2000). Following the 

siRNA-mediated downregulation of TPI1 in the 92.1 uveal melanoma cell line, an 
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acid phosphatase assay was carried out which demonstrated that no extensive effect 

on proliferation was observed in vitro when the two independent siRNA 

transfections per target were compared against the negative control. However, when 

the MEL202 uveal melanoma cell line was transfected, a prominent significant 

decrease in proliferation was noted between the negative control and the transfected 

cells. The negative effect observed may have been due to the cell line rather than the 

knockdown of TPI1 as no comparable effect was seen in the 92.1 uveal melanoma 

cell line. Hence, any subsequent functional assays involving TPI1 were carried out 

only in the 92.1 cell line.  

Invasion and migration of cancer cells allow them to enter the blood or lymphatic 

system to grow at distant locations to the primary tumour in a process called 

metastasis. By 'knocking-down' expression, a role in migration and/or invasion of 

cancer cells can be elucidated. For the TPI1 siRNA-transfected 92.1 cells, a largely 

significant reduction of both invasion and migration was observed in vitro when 

compared with the negative control.  

As TPI1 was identified as being upregulated in subsequently metastasised uveal 

melanoma tumour tissue in comparison to that which did not metastasise, a result 

that was confirmed by immunohistochemistry, as well as apparently being involved 

in the invasiveness and motility of the uveal melanoma cells, it appears to be  

implicated in the aggressive nature of the metastasised disease. It may be possible to 

target TPI1 for the inhibition of glycolysis and inhibit the Warburg effect as a 

therapeutic strategy for uveal melanoma metastasis. The approach of using 

glycolytic inhibitors as anticancer drugs has been examined as a potential 

therapeutic strategy and has been experimentally applied to other cancers, such as 

colon cancer, leukaemia and lymphoma cell lines (Xu, Pelicano et al. 2005, 

Pelicano, Martin et al. 2006). 

 

7.2.3 FABP3 

2-D DIGE analysis revealed a 2.2-fold up-regulation of fatty acid-binding protein 

three (FABP3) in uveal melanomas which subsequently metastasised. This trend was 

confirmed by immunohistochemical studies.  
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FABP3 is a member of a multi-gene family including nine FABPs and the cellular 

retinoid binding proteins. Fatty acid-binding proteins show a broad tissue 

distribution, and tissues can contain more than one FABP (Storch and Corsico 2008, 

Storch and McDermott 2009). Though FABPs are known to be involved in 

intracellular transport of long-chain fatty acids, their in vivo functions are poorly 

understood (Ockner and Manning 1974). FABP3 was shown to inhibit cell 

proliferation in mammary epithelial cells and the ectopic expression of FABP3 in 

breast cancer cells led to reduced tumorigenicity in nude mice (Yang, Spitzer et al. 

1994). In contrast, positive correlations of FABP3 expression with tumour cell 

invasion, lymph node metastasis and poor patient survival have been found in gastric 

carcinomas (Hashimoto, Kusakabe et al. 2004).  

As the 2-D DIGE and immunohistochemistry results correlated with an upregulation 

of FABP3 in relation to metastasis, and the target appeared to be novel in uveal 

melanoma, FABP3 was chosen for follow-up functional studies in order to further 

understand its potential role in metastasis. 

Following the siRNA-mediated downregulation of FABP3 in the 92.1 uveal 

melanoma cell line, proliferation assays were carried out which demonstrated that no 

extensive effect was observed in vitro when the two independent siRNA 

transfections were compared against the negative control. However, when FABP3 

siRNA were used to transfect the MEL202 uveal melanoma cell line, a strongly 

significant decrease in proliferation was noted between the negative control and the 

transfected cells. The negative effect observed may, again, have been due to the 

MEL202 cells rather than the knockdown of FABP3 as no comparable effect was 

seen in the 92.1 uveal melanoma cell line. Hence, any subsequent functional assays 

involving FABP3 were carried out only in the 92.1 cell line.  

When the expression of FABP3 was reduced, a largely significant decrease in both 

invasion and migration was observed when compared to the negative control. This 

indicates that FABP3 appears to be involved in the processes of invasion and 

migration in uveal melanoma cells.  

Overall, it appears as though FABP3 may play a role in the spread of uveal 

melanoma as it was upregulated in subsequently metastasised tissue and its 
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downregulation affected invasion and migration in vitro, key processes in the 

aggressiveness of metastatic malignancies.  

 

7.2.4 SELENBP1 

Selenium-binding protein (SELENBP1), a member of the selenoprotein family, is 

known to bind selenium covalently in order to mediate the intracellular transport of 

selenium (Zhou, Zhang et al. 2009, Zeng, Yi et al. 2013).  

It has previously been suggested as a tumour suppressor as its expression is lost in 

several epithelial cancers (Scortegagna, Martin et al. 2009, Zeng, Yi et al. 2013). In 

addition to this, it has been identified as a potential marker for hepatocellular 

carcinoma by Di Statsio el al. They identified a decrease in SELENBP1 abundance 

in hepatocellular carcinoma liver tissue specimens. The gradual decrease in selenium 

levels correlated with an increased malignant grade, with the levels of selenium and 

of SELENBP1 directly correlating (M, Volpe et al. 2011).  

SELENBP1 had not previously been associated with ocular cancer and hence, was 

considered novel in this regard. In addition to this, SELENBP1 was not typically 

identified as being upregulated in cancer. Although the immunohistochemistry 

results did not correspond with the 2-D DIGE results, it was decided to further 

examine the role of SELENBP1 in uveal melanoma cell lines using functional 

analysis.  

After the downregulation of SELENBP1 in the 92.1 and MEL202 uveal melanoma 

cell lines, an acid phosphatase assay was carried out. This demonstrated that no 

extensive effect on proliferation was observed in vitro when the two independent 

siRNA transfections per target were compared against the negative control.  

Following the siRNA-mediated knockdown of SELENBP1, a significant reduction 

of both invasion and migration was observed, in compared to the negative control. 

This indicates that the protein appears to be involved in the invasiveness and 

motility of the 92.1 cell line, and possibly also in the MEL202 cell line. 

Specific invasion-related proteins, such as matrix metalloproteases (MMPs), may 

also be identified using zymography, an electrophoresis method by which proteases 
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present in a sample are detected through the digestion of a substrate-containing gel. 

92.1 and MEL202 uveal melanoma cell lines were transfected with siRNA specific 

to SELENBP1. Conditioned media was then collected from the cells as this 

contained the secreted MMPs. MMP-2 and -9 are typically implicated in melanoma 

disease progression and have been associated with uveal melanoma metastasis 

(Coussens, Fingleton et al. 2002, Lai, Conway et al. 2008). Hence, gelatin-based 

zymography was used as this is the substrate of choice for MMP-2 and -9. In spite of 

this, no difference was observed between the transfected cells and the negative 

controls, for either cell line. 

The inhibition of apoptosis is a key feature of many malignant cells as some 

oncogenic mutations allow for proliferating cancer cells to grow without hindrance 

by preventing apoptosis. Apoptosis is a tightly regulated mechanism which ensures 

homeostasis of all tissues and without it leading to tumour initiation, progression or 

metastasis. Also, mutations which suppress tumour development can affect 

treatment sensitivity, rendering it less effective (Andreeff 2000, Lowe and Lin 

2000). 7-AAV and PE-Annexin V were used to stain DNA and exposed 

phosphatidyserine, respectively. Fluorescence was subsequently measured using 

flow cytometry which quantified the degree of apoptosis. Apoptosis was measured 

in cells which were transfected with siRNA specific for SELENBP1; however, no 

significant effect on cell death was determined.  

Oxygen derived species are recognised as cytotoxic and have been implicated as 

carcinogens in the process of cancer. Such species may exert their effects through 

reactive oxygen species (ROS), which are generated during metabolism. Oxidative 

damage can occur in cellular DNA as a result, which can play a role in the 

development of various malignancies (Waris and Ahsan 2006). Selenium is an 

essential trace element which is involved in the function of antioxidant enzymes and 

proteins that protect the cell against ROS. SELENBP1 is known to bind selenium 

covalently in order to mediate the intracellular transport of selenium (Zhou, Zhang et 

al. 2009, Zeng, Yi et al. 2013). Hence, it was decided to downregulate SELENBP1 

production in order to determine its potential role in terms of protection from ROS. 

2‟,7‟-dichlorofluorescein-diacetate (DCFH-DA) was used to quantify intracellular 

produced H2O2; based on the activity of peroxide, DCFH-DA is converted to a 

fluorescent compound, 2‟,7‟-dichlorofluorescein (DCF), which indicates the quantity 
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of ROS present. Overall a visual trend of increased ROS activity was observed in the 

transfected cells when compared to their negative controls. However, this was not a 

statistically significant result. Although, the trend does illustrate what is expected, 

based on the literature. Zeng et al. demonstrated that the knockdown of SELENBP1 

induces human bronchial epithelial cell transformation and that it is an early event in 

in lung squamous cell cancer (Zeng, Yi et al. 2013). This indicates a potential 

increase in ROS activity as a result of the downregulation of SELENBP1 which may 

therefore play a role in protecting uveal melanoma cells from oxidative damage.  

Typically, SELENBP1 is reported as being downregulated in cancers such as in the 

case of colorectal cancer, ovarian cancer, lung cancer, and pleural mesothelioma 

(Pass, Liu et al. 2004, Huang, Park et al. 2006, Kim, Kang et al. 2006, Zeng, Yi et al. 

2013). Hence, its upregulation in uveal melanoma is potentially unique and may be a 

novel marker for metastasis as it was found to be significantly upregulated in 

subsequently metastasised primary tissue. It clearly plays a role in invasion and 

migration in vitro, but is not involved in proliferation and does not exert anti-

apoptotic effects. It is, however, possibly required for protection from oxidative 

damage. 

 

7.3 Identification of Differentially Expressed Proteins between Non-

Metastasised and Subsequently Metastasised Tissue Using Quantitative Label-

Free LC-MS  

2-D DIGE is a sensitive and high-throughput method for the identification of 

biomarkers from various sources. It is the most-widely used gel-based method for 

the detection of differentially regulated proteins. Mass spectrometry-based 

proteomic analysis has improved greatly since the last decade. The advent of label-

free quantitative LC-MS has allowed for the simultaneous and accurate 

identification of thousands of differentially regulated proteins, even from very 

minute quantities, thus potentially giving a more comprehensive view of the 

proteome in question. This advancement has helped enormously in the identification 

and delivery of candidate biomarkers for cancer diagnosis, prognosis and monitoring 

of treatment regimen (Paul, Kumar et al. 2013).  
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It was therefore decided to carry out a quantitative LC-MS proteomic analysis of 

eight non-metastasised tumour tissues and eight which subsequently metastasised. In 

total, 14 of these tissues had previously been used in the 2-D DIGE differential 

expression experiment.  

This approach also agreed with the hypothesis as 50 proteins with a minimum of 

three matched peptides were identified as being differentially expressed between 

both sample sets. Of these proteins, five were previously identified in the 2-D DIGE 

study. Vimentin, alpha-enolase, TPI1, beta-hexosaminidase subunit alpha, and 

FABP3 were all found to be upregulated in primary uveal melanoma tissue that had 

subsequently metastasised, which correlated with the 2-D DIGE findings.  

Heat shock protein beta-1 (HSP-27) was found at a lower level in primary tissue 

which subsequently metastasised in comparison to primary tissue which remained as 

non-metastasised. This result agrees with a study previously carried out by Coupland 

et al. which demonstrated that HSP-27 was expressed at a lower level in monosomy 

three tumour tissues than in disomy three tumour specimens. Monosomy three is 

indicative of poor prognosis while disomy three is often suggestive of a better 

outcome (Coupland, Vorum et al. 2010). This finding was subsequently followed-up 

by Jmor et al. who illustrated that in combination with basal tumour diameter, 

melanoma cytomorphology and mitotic rate, the level of HSP-27 enhanced the 

estimation of survival probability (Jmor, Kalirai et al. 2012). 

Vimentin, which was previously identified as being upregulated in the metastasised 

sample set in comparison to the non-metastasised group in the 2-D DIGE study, was 

again identified as being overexpressed in uveal melanoma monosomy three tumour 

tissues in comparison to those which were disomy three.  

Of the 50 proteins identified by label-free quantitative LC-MS, CNDP2, PRDX3, 

KPNB1, and EEF1G were selected for further studies through functional analysis. 

These were chosen as, although some of these had previously been linked with other 

cancer studies, they had not been associated with uveal melanoma. In addition to 

this, they illustrated some of the lowest ANOVA scores of the analysis, deeming 

them as a number of the most significant potential targets from the generated list. 

However, functional analysis could not be completed for two of these proteins; 

CNDP2 and PRDX3.  
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Cytosolic non-specific dipeptidase (CNDP2) is expressed in all human tissues. The 

loss of chromosome 18q, which encodes for the protein, results in carnosinemia, a 

rare autosomal recessive metabolic disorder. In addition to this, it may play a role 

tumour suppressor, as demonstrated in hepatocellular carcinoma cells (Zhang, Chan 

et al. 2006). Deletion of the CNDP2 gene has been identified in 27.2% cancer 

specimens from an aCGH study containing more than 3,000 cancer specimens, 

including many malignancies of the gastrointestinal tract (Lee, Giovannetti et al. 

2012). In our study, CNDP2 was found to be 1.75-fold more abundant in the non-

metastasised tissue in comparison to that which subsequently metastasised. This 

correlates with the above previous work which suggests that the downregulation of 

CNDP2 may be indicative of a poorer prognosis. However, as CNDP2 was not 

expressed in either of the chosen uveal melanoma cell lines; 92.1 and MEL202, it 

was excluded from the functional analysis.  

Peroxiredoxins are a family of peroxidases which catalyse the reduction of peroxides 

in the presence of thioredoxin (Wonsey, Zeller et al. 2002). They are present in all 

animals existing in multiple isoforms, with at least six isoforms in humans (Seo, 

Kang et al. 2000). They exhibit different expression patterns, with some providing 

defence against oxidative damage, and  participating in signalling by controlling 

H2O2 concentration, while others have been shown to play a role in apoptosis, and 

proliferation (Rhee, Kang et al. 2001, Wonsey, Zeller et al. 2002). Thioredoxin-

dependent peroxide reductase (PRDX3) has been found to be overexpressed in a 

number of endocrine tumours such as prostate cancer where it plays an essential role 

in regulating oxidation-induced apoptosis in anti-androgen resistant cells (Whitaker, 

Patel et al. 2013). The PRDX3 gene has also been identified as a target gene of the c-

Myc transcription factor. c-Myc functions to accelerate metabolic pathways such as 

glycolysis. As mitochondria are crucial for the execution of energy production and 

cell death, mitochondrial proteins such as PRDX3 may be involved in the regulation 

of proliferation and apoptosis. Hence, PRDX3, and other c-Myc target genes 

encoding mitochondrial proteins, could play an important role in tumorigenesis 

(Wonsey, Zeller et al. 2002). PRDX3 was found to be upregulated in subsequently 

metastasised tumour tissue by 1.58-fold when compared to the non-metastasised 

specimens. This correlates with the above previous work which suggests that the 

upregulation of PRDX3 may be indicative of a poorer prognosis. However, despite 
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many attempts, the optimisation of PRDX3 siRNA-mediated downregulation failed 

and hence, it was also excluded from the functional analysis. 

 

7.3.1 KPNB1 

Importin subunit beta-1 (KPNB1) is a major nuclear receptor protein which is 

required for the import of proteins, such as transcription factors, into the nuclear 

envelope and is plays a major role in maintaining normal cell homeostasis.  

In cancer cells, KPNB1 is often upregulated in order to maintain a high level of 

nuclear transport, thus it may be a potential biomarker (van der Watt, Stowell et al. 

2013). This pattern has been observed in cervical tumours, non-small cell lung 

cancer, and head and neck squamous cell carcinoma (van der Watt, Ngarande et al. 

2011, Martens-de Kemp, Nagel et al. 2013). 

KPNB1 was found to be upregulated by 1.47-fold in subsequently metastasised 

uveal melanoma tumour tissue in comparison to non-metastasised, which agrees 

with previous studies that may indicate a role of KPNB1 in tumour progression and 

ultimately metastasis. 

Following the siRNA-mediated downregulation of KPNB1 in the 92.1 and MEL202 

uveal melanoma cell lines, an acid phosphatase assay was carried out in vitro which 

demonstrated that no extensive effect on proliferation was observed for the two 

independent KPNB1 siRNA transfections in comparison to the negative control.  

A highly significant reduction of both invasion and migration was observed when 

the expression of KPNB1 was reduced, in comparison to the negative control, in 

92.1 cells. Hence, KPNB1 may play a role in the invasiveness and motility of uveal 

melanoma cells in vitro.  

92.1 and MEL202 uveal melanoma cell lines were transfected with siRNA specific 

to KPNB1. Conditioned media was then collected from the cells as this contained 

the secreted MMPs. However, using gelatin zymography, no difference in MMP 

expression was observed between the transfected cells and the negative controls, for 

either cell line. 
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Apoptosis was measured in cells which were transfected with siRNA specific for 

KPNB1; however, no significant effect on cell death was determined.  

KPNB1 appears to be necessary for the metastatic phenotype of uveal melanoma as 

it was found to be upregulated in subsequently metastasised tissue, and its 

downregulation decreases invasion and migration; however it does this 

independently of MMP-2 and -9. It also does not play anti-apoptotic role in uveal 

melanoma, which correlates with its lack of effect on proliferation. It is potentially a 

useful anticancer therapeutic target as it appears to be somewhat responsible for the 

increased rate of nuclear transport in cancer. However, the availability of drugs 

targeting such molecules is currently limited. One such drug which is available is 

Leptomycin, a small molecule inhibitor of CRM1, a major receptor for the export of 

nuclear proteins and a member of the karopherin family. Leptomycin has been 

shown to exhibit anticancer activity both in vivo and in vitro. Hence, it is very 

possible that KPNB1 may be affected in a similar manner, as it is also a member of 

the karyopherin family, and so, may be an effective target (Fornerod, Ohno et al. 

1997, van der Watt, Stowell et al. 2013) .  

 

7.3.2 EEF1G 

Elongation factor 1-gamma (EEF1G) is a GTP-binding protein involved in 

translation and protein biosynthesis by mediating the transport of aminoacyl-tRNA 

to 80S ribosome (Proud 1994, Negrutskii and El'skaya 1998).  

EEF1G has been associated with pancreatic cancer tumour tissues, where it was 

identified in seven out of nine specimens, relative to apparently normal adjacent 

tissue. It was also found to be overexpressed in 25 out of 29 colorectal carcinomas 

(Chi, Jones et al. 1992). The overexpression of EEF1G appears to be highly 

associated with cancers of the gastrointestinal tract and has also been identified in 

hepatic, ileocecel, duodenal, and colon carcinoma cell lines (Mimori, Mori et al. 

1995). It has also been associated with the co-upregulation of TNF receptor-

associated protein 1 (TRAP-1), a member of the heat shock protein (HSP) 90 protein 

family involved in protection from oxidative stress and apoptosis, in colon 

carcinoma cells (Matassa, Amoroso et al. 2013). 
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EEF1G was identified as being upregulated by 2.02-fold in uveal melanoma tumours 

which had subsequently produced metastases in comparison to non-metastasised 

tissues. It was chosen as it was potentially novel target for uveal melanoma as it 

appears to play a role in tumour progression.  

Following the siRNA-mediated downregulation of EEF1G in the 92.1 and MEL202 

uveal melanoma cell lines, a proliferation assay was carried out which demonstrated 

that the knock-down of the protein had no extensive effect on proliferation in vitro in 

either of the two independent KPNB1 siRNA transfections in comparison to the 

negative control.  

A highly significant reduction of both invasion and migration was observed when 

the expression of EEF1G was diminished, in comparison to the negative control, in 

92.1 cells. An effect was also observed in the MEL202 cell line. This indicates that 

EEF1G may play a role in the invasiveness and motility of the uveal melanoma cells 

in vitro.  

92.1 and MEL202 uveal melanoma cell lines were transfected with siRNA specific 

to EEF1G. Conditioned media was then collected from the cells as this contained the 

secreted MMPs. However, using gelatin zymography, no difference was observed 

between the EEF1G transfected cells and the negative controls, for either cell line. 

Apoptosis was measured in cells which were transfected with siRNA specific for 

EEF1G; however, no significant effect on cell death was determined. EEF1G 

appears to be necessary for the process of invasion and migration in uveal melanoma 

in vitro, albeit independently of MMP-2 and -9, and hence is required in metastasis. 

It does not play an anti-apoptotic role in uveal melanoma, which correlates with its 

lack of effect on proliferation.  

Previous studies have identified potent and selective inhibitors of other members of 

the elongation factor family, which could inhibit growth of the malignancy through 

downregulation of nutrient transporters and activation of autophagy. Arora et al. 

screened a series of imidazolium compounds for the inhibition of EEF2 (eukaryotic 

elongation factor 2) activity in several forms of malignancy. From this, they 

identified NH125 as a lead compound which decreased the viability of 10 cancer cell 

lines (Arora, Yang et al. 2003). Hait et al. described the combination of a growth 
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factor antagonist with an inhibitor of EEF-2 kinase in breast cancer in order to 

induce cell death (Hait, Wu et al. 2006). This illustrates the potential significance of 

EEF1G as a potential target for uveal melanoma treatment. 

 

7.4 Conclusion 

This proteomics study on primary uveal melanoma tissue samples led to the 

successful identification of proteins including FABP3, SELENBP1, EEF1G, 

KPNB1, and TPI1 that are possibly involved in the metastatic phenotype of uveal 

melanoma in vitro. These results correlated with the hypothesis that proteins are 

differentially expressed between disease states and that such proteins may be 

potential biomarkers. These proteins showed a strong differential expression and 

high statistical significance from either the 2-D DIGE or quantitative label-free LC-

MS analysis when compared to the non-metastasised group. Their siRNA-based 

knockdown significantly reduced invasion and migration of uveal melanoma cell 

lines, suggesting that they are functionally involved in the metastatic phenotype of 

uveal melanoma in vitro, and that they may be suitable candidates for targeted 

therapies in the treatment of aggressive uveal melanoma. This work has fulfilled the 

aim of identifying patterns of differential protein expression between subsequently 

metastasised and non-metastasised primary uveal melanoma tissue, which may 

further our understanding of the metastatic phenotype of uveal melanoma. 

 

7.5 Sample Preparation and Proteomic Analysis of Uveal Melanoma Vitreous 

Fluid 

The vitreous fluid is a hydrogel-like substance, located in the posterior segment of 

the eye. Physical and pathological conditions of nearby tissues, such as the retina, 

may be reflected in the vitreous humour (Angi, Kalirai et al. 2012).  

Proteomics of the vitreous fluid is a growing area as the specimen contains a variety 

of proteins. Soluble proteins are thought to filter from the plasma through 

fenestrated capillaries of the ciliary body stroma via the iris root. Proteins may also 

be secreted from posterior chamber tissues which may impact on the protein content 

of the fluid. Indeed, the vitreous should contain a complex mix of proteins as it 



328 

 

reacts to its environment when attempting to maintain homeostasis. In this regard, 

alterations in its proteome may be indicative of disease, or illustrate proteins which 

are actively involved in the pathogenic process (Chowdhury, Madden et al. 2010). 

Although we are still not close to fully understanding the biochemistry of the 

vitreous humour, a recent study was carried out which extensively detailed the entire 

vitreous proteome, listing a total of 1111 proteins (Aretz, Krohne et al. 2013). 

Therefore, progress is quickly being made in the field of vitreous fluid proteomics. 

In addition to this, a number of studies have been carried out which indicate its role 

in disease and in biomarker discovery, as well as in clinical diagnoses and 

prognoses. Autoimmune or autoinflammatory uveitis patients‟ vitreous has been 

used for the analysis of cytokine production. For example, an elevated level of TNF-

alpha has been identified in the vitreous of animal uveitis models (Damato, Angi et 

al. 2012). The specimen has also successfully been used in the differentiation of 

infectious, inflammatory, and malignant cases of uveitis (Lobo and Lightman 2003). 

A significant amount of research has been carried out in the vitreous of diabetic 

patients for the proteomic analysis of retinopathy. Fluid from patients undergoing 

vitreoretinal surgery is currently used to indirectly explore the synthesis of mediators 

of diabetic retinopathy produced by the retina as well as the infiltration of leukocytes 

(Yoshimura, Sonoda et al. 2009, Simo-Servat, Hernandez et al. 2012). A number of 

potential biomarkers have also been determined through this research. Orosomucoid 

was identified as being upregulated in the vitreous of proliferative vitreoretinopathy 

patients in comparison to that of proliferative diabetic retinopathy patients (Wu, 

Sauter et al. 2004). 

Due to the close proximity of the vitreous to many regions of the eye, high 

concentrations of proteins may be secreted into the fluid from various sites of 

disease, such as a tumour, thus illustrating pathophysiological events taking place. 

Hence, the vitreous humour qualifies as a suitable fluid for the clinical proteomic 

analysis of uveal melanoma, as it may contain significant numbers of secreted 

biomarkers.  

Little has been carried out in terms of uveal melanoma vitreous fluid proteomics. 

The majority of studies to date have consisted of multiplex bead arrays, such as 

those which are discussed in section 7.5.4.  



329 

 

Therefore, it was decided to examine the vitreous collected from uveal melanoma 

patients as it could be a specimen of interest in detecting potential prognostic 

markers.  

 

7.5.1 Vitreous Fluid Sample Preparation 

The analysis of vitreous fluid can be a challenging process due to the small sample 

volume and low protein concentration present. Improvements in mass spectrometry 

have improved the overall process with high sensitivity instruments now available 

which can provide both qualitative and quantitative information (Pollreisz, Funk et 

al. 2013). Despite this, the challenge still remains in efficiently mining the proteome 

to reach the concentration of low abundance proteins, which are often of most 

interest in terms of biomarker discovery. Hence it is necessary to fractionate the 

vitreous prior to experimentation in order to extract proteins of interest from the 

complex mixture (Angi, Kalirai et al. 2012). 

Following the separation of a control vitreous fluid sample, collected from a patient 

with macular hole degeneration, it was evident that the vitreous was rich in serum 

albumin and other proteins considered to be highly abundant such as; IgG, 

haptoglobin, complement C3. Following a double immunodepletion, the proteome 

appeared to be sufficiently “cleaned-up” as large regions of smeared protein were no 

longer present and less prominent bands were more visible. However, this impacted 

on the protein concentration, as high abundance proteins make up 80% of the 

vitreous fluid proteome. This resulted in insufficient quantities of protein being 

available for pre-fractionation methods, such as ProteoMiner treatment, and 

separation experiments, such as 2-D DIGE.  

A quantitative LC-MS label-free approach was adopted in order to identify potential 

differentially expressed proteins between the control and uveal melanoma sample 

sets. Highly sensitive mass spectrometry methods are capable of identifying 

quantitative differences between low abundance proteins, using the minimal quantity 

of sample to do so. Such approaches have been effectively used in the study of 

aqueous humour and tear fluid previously which would suggest that the same 

process could be successful in vitreous humour (de Souza, Godoy et al. 2006, 

Chowdhury, Madden et al. 2010). Nevertheless, the results of this analysis did not 



330 

 

produce differentially expressed proteins as spectra generated from the control group 

were entirely different to those from the disease group and could not be compared. 

This may have been as a result of the quantity of high abundance proteins which 

were present in uveal melanoma specimens in comparison to the controls. As all 

samples were normalised to 10 μg prior to analysis, the majority of this possibly 

consisted of a few abundant proteins in the uveal samples, hence creating an entirely 

different spectrum of peaks to the control sample set (which may have contained a 

variety of proteins).  

 

7.5.2 IMAC Fractionation of Uveal Melanoma Vitreous Fluid 

Little has been carried out in vitreous fluid using SELDI technology; hence, it was 

decided to compare a control and a uveal melanoma specimen as a pilot SELDI TOF 

MS study.  

This identified the presence of three protein peaks which were originally identified 

in cutaneous melanoma serum and the conditioned media of a cutaneous melanoma 

cell line. However, SELDI TOF MS does not provide identifications for peaks 

detected, only spectral profiles. As further explained in sections 7.7.3 and 7.7.4, it 

was decided to attempt to identify the protein peak at 8.9 kDa.  

Using an IMAC column, described in section 7.7.4.1, proteins with an affinity for 

copper were bound and subsequently eluted with an imidazole gradient from the 

resin in fractions. These elution fractions were separated in the first dimension using 

gel electrophoresis and stained. Following this, protein bands from the gel were 

digested and generated peptides were analysed using LC-MS/MS for their 

identification.  

This qualitative method succeeded in identifying a host of proteins which had not 

been found in our previous attempts to mine the uveal melanoma vitreous proteome. 

This fulfilled the aim of developing an effective method of vitreous fluid sample 

preparation. It was therefore decided to repeat the experiment and to analyse the 

imidazole fractions quantitatively. In this quantitative LC-MS analysis, six 

monosomy three uveal melanoma vitreous samples were compared to seven disomy 

three uveal melanoma vitreous specimens.  
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Previously, Coupland et al. had compared four primary uveal melanoma tumour 

tissue specimens from monosomy three patients to those of three disomy three 

patients, with the intention of identifying differentially regulated proteins between 

both groups. Monosomy three in uveal melanoma is regarded as an indicator of poor 

outcome; therefore, a biomarker providing prognostic relevance early on in the 

disease would be of great benefit. From this 2-D DIGE analysis, they discovered 

nine differentially expressed proteins, three of which were confirmed by western 

blotting; HSP-27, vimentin, pyruvate dehydrogenase beta. Immunohistochemistry 

further validated that low HSP-27 abundance correlated with monosomy three 

chromosomal status, and that HSP-27 appeared to be a promising prognostic marker 

(Coupland, Vorum et al. 2010).  

Therefore, other biomarkers indicating outcome in uveal melanoma could be 

detected in vitreous fluid by comparing monosomy three specimens to those of 

disomy three patients, as this has not been reported previously, using the IMAC 

quantitative method. It was hoped that this would improve our understanding of the 

metastatic disease, and potentially indicate any differentially regulated proteins 

which could act as therapeutic targets. 

 

7.5.3 Proteins of Interest Identified as a Result of IMAC Fractionation  

From the quantitative and qualitative analyses of the IMAC vitreous fluid samples a 

number of proteins of interest were discovered.  

From the 1-D gel-based qualitative study, a family of proteins known as crystallins 

were identified, which illustrated that the technique had uncovered a range of 

previously undiscovered proteins and hence, was a successful pre-treatment 

technique.  

From the quantitative LC-MS-based study, proteins such as retinol-binding protein 

three, meckelin, PEDF, retbindin, and alpha crystallin B were discovered to be 

differentially regulated between the monosomy three and disomy three sample sets. 

These may potentially be useful as novel prognostic markers, as some of these; 

retinol-binding protein 3, meckelin, and retbindin, have not previously been 

identified in relation to uveal melanoma. In addition to this, meckelin, and retbindin 
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have not been identified in the vitreous fluid. This work agreed with the hypothesis 

that proteins would be differentially expressed between monosomy 3 and disomy 3 

samples. It also satisfied the aim of identifying such proteins which could act as 

potential biomarkers or therapeutic targets. 

Enrichment analysis of the differentially expressed proteins identified in the 

qualitative study indicated that, overall, the complement and coagulation cascades 

would be upregulated as a result of the overexpression of proteins in the disomy 

three samples. This suggests that due to significant trauma caused by the 

malignancy, the immune system was triggered in an effort to regulate and repair the 

damage caused. This action may have activated an inflammatory response, as this 

response was detected following the enrichment of biological processes. This action 

could activate a cascade of cytokines in response which would potentially be 

detectable in vitreous fluid, and thus be identifiable using a Luminex multiplex 

method, such as that in section 7.5.4.  

 

7.5.3.1 Proteins of Interest Discovered in the Qualitative Analysis 

7.5.3.1.1 Crystallins  

Crystallins are water-soluble proteins of the lens which contribute to its transparency 

and refractive properties, with age-related post-translational modifications of the 

crystallins being associated with cataracts. These proteins were originally thought to 

merely be stable structural components, however, they have been shown to have 

further roles, such as molecular chaperones, and have been identified outside of the 

lens. Lens proteins are highly stable and do not age but do eventually undergo post-

translational modifications such as deamidation, and protein crosslinking, and can be 

oxidised by free radicals generated by UV light (Andley 2007).  

Beta-crystallin B1, beta-crystallin A4 and beta-crystallin A3, which were identified 

in our qualitative study, have been shown to be predominantly involved in cataract 

formation as they are both targets for crosslinking by tissue transglutaminasae (tTG). 

This crosslinking activity of tTG has also been implicated in many cell processes 

such as; motility, wound healing, extracellular matrix remodelling, differentiation, 

and apoptosis. Beta-crystallin B2, also discovered in the qualitative analysis, has 

been implicated as a potent glutamate substrate for tTG, but also as a target for 
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deamidation by tTG, which destabilises the protein. These processes of deamidation 

and crosslinking are thought to play a role, not only in cataractogenesis, but in aging 

and disintegration of the structural components of the eye (Andley 2007). Mutations 

of beta crystallin S have been associated with autosomal dominant congenital 

cataract formation (Sun, Ma et al. 2005).  

A mutation in gamma-crystallin D, P23T, is associated with a number of well-

known cataract phenotypes through the reduced solubility and subsequent 

condensation of the mutated protein without demonstrating any change in the protein 

structure (Pande, Annunziata et al. 2005). 

The alpha crystallins, chains A and B, were both discovered in uveal melanoma 

vitreous fluid following the qualitative analysis. Alpha-crystallin B is a small heat 

shock protein and has similar properties to those of a molecular chaperone. 

Increased levels of alpha-crystallin B have been associated with a variety of 

neurological diseases such as Alzheimer‟s disease, Parkinson‟s disease, and 

Creutzfeldt Jacob disease. However, it does not seem to be required for normal 

development of the refractive lens. Alpha-crystallin A has been shown to have a 

protective effect on other crystallins, and in particular gamma crystallin, however 

the mechanism by how this occurs is elusive (Horwitz 2003). Alpha-crystallin B 

appears to play an anti-tumorigenic role in nasopharyngeal carcinoma, as well as 

suppressing the progression of the cancer through its potent effect on invasion and 

adhesion (Huang, Cheng et al. 2012). The protein has also been linked with poor 

outcome and nodal status in a number of malignancies such as breast cancer, 

glioblastoma, renal cell carcinoma and head and neck squamous cell carcinoma 

(Aoyama, Steiger et al. 1993, Takashi, Katsuno et al. 1998, Moyano, Evans et al. 

2006, van de Schootbrugge, Bussink et al. 2013). 

Alpha-crystallin B has also been shown to be highly expressed in melanocytes and 

expressed at a lesser level in melanoma cells, where it is repressed as a result of 

upregulated BRAF-MEK signalling. It also contributes to the turnover of cyclin D1 

in both melanocytes and melanoma cells following DNA damage. Finally, although 

not discovered in this study, absent in melanoma 1 (AIM1) is an unusual member of 

the family of crystallins whose expression is known to suppress malignancy in 

melanoma (Aravind, Wistow et al. 2008). 
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As crystallins have been shown to bind to IMAC, this illustrates that the method was 

successful in binding proteins with an affinity for IMAC (Chiou, Huang et al. 2010, 

Huang, Wang et al. 2011).   

Due to using the IMAC fractionation method, it was possible to better observe the 

vitreous fluid proteome and to isolate a number of members of the crystallin family. 

These results may indicate the possible role of the crystallins in the vitreous fluid of 

uveal melanoma patients. In addition to this, this may improve our understanding of 

the vitreous fluid during malignancy of the uvea, and indeed, better our knowledge 

of the cancer itself. 

 

7.5.3.2 Differentially Regulated Proteins of Interest Discovered in the 

Quantitative Analysis 

Using quantitative LC-MS following IMAC fractionation, the protein content of 

monosomy of chromosome three and disomy of chromosome three uveal melanoma 

vitreous fluid sample sets were compared. This unearthed a total of 62 differentially 

expressed proteins which were identified from the flowthrough, 20 mM, and 50 mM 

fractions. From enrichment analysis of pathways involved, it was clear that the 

greatest effect was observed in downregulation of proteins in the monosomy 3 

specimens where complement and coagulation cascades were affected.    

A number of proteins which may be followed up are described in the following sub-

sections.  

 

7.5.3.2.1 Retinol-Binding Protein 3 

Retinol-binding protein 3 is a glycoprotein which functions as a transporter of 

retinoids between the photoreceptors and the retinal pigment epithelium, and is 

necessary for normal rod and cone cell function and development (Liou, Fei et al. 

1998, den Hollander, McGee et al. 2009). It has been associated with inducing 

uveoretinitis, and retinitis pigmentosa, a degenerative ocular disease (Eisenfeld, 

Bunt-Milam et al. 1987, Bianciotto, Shields et al. 2010). In addition to this, its 

expression has been linked with the development of retinoblastoma and pineocytoma 
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(Korf, Korf et al. 1992). However, it also may play a protective role as an anti-

oxidant (den Hollander, McGee et al. 2009). 

In our study, the protein was identified as being upregulated in monosomy of 

chromosome three specimens in both the flow through and the 20 mM fraction. This 

may indicate its role in tumour development and disease progression, as it was 

identified at a lower level in the disomy three sample set, which is less aggressive. It 

has previously been implicated in malignant cutaneous melanoma in a case where 

autoantibodies against the metastatic melanoma cross-reacted with retinol-binding 

protein three, i.e. a retinal autoantigen; this rare condition is referred to as 

melanoma-associated retinopathy (MAR). MAR is also known to occur in metastatic 

uveal melanoma, which raises the question if this would explain the observed 

increase in retinol-binding protein three expression in monosomy three samples, 

which are typically associated with metastasis, in comparison to the disomy three 

sample set (Bianciotto, Shields et al. 2010).  

However, it is also possible that retinol-binding protein three was upregulated in 

monosomy three vitreous samples as a result of extensive trauma to the eye due to 

the aggressive nature of the malignancy. An increase in the transport of retinoids to 

the retinal pigment epithelium for repair of the extensive damage caused by the 

tumour may have been necessary. 

Retinol-binding protein 3 has previously been discovered in the vitreous fluid 

(Aretz, Krohne et al. 2013), however, it has not yet been described in relation to 

uveal melanoma. Hence, it may a potential biomarker of interest for poor prognosis. 

 

7.5.3.2.2 Meckelin 

Meckelin is a transmembrane ciliary protein which mediates primary ciliary 

function. Little is known about the protein but it has been illustrated to be involved 

in intraflagellar transport and it appears to be critical for cilia function in organs such 

as the kidneys, liver, and retina (Tiwari, Hudson et al. 2013). Retinal rods and cones 

use cilia for the connection of the inner and outer segments of photoreceptors, and a 

disruption of this process may lead to retinal deterioration (Fliegauf, Benzing et al. 

2007). Mutations in the MKS3 gene, which encodes for meckelin, can result in eye 
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abnormalities, such as retinal degeneration (Dawe, Smith et al. 2007, Collin, Won et 

al. 2012).  

In our study, meckelin was identified as being decreased in the monosomy three 

sample set by 2.03-fold. The protein has not previously been identified in relation to 

the vitreous or uveal melanoma; hence, it may be an entirely novel protein in this 

regard.  Cellular component enrichment analysis illustrated that lipoprotein particles 

were involved in the proteins identified at a higher abundance in the disomy three 

specimens. This may implicate meckelin as it is a transmembrane protein which 

would therefore be embedded in the lipid bilayer.  

 

7.5.3.2.3 PEDF 

Pigment epithelium-derived factor (PEDF) has been long associated as being 

essential for the health and survival of the retina (Subramanian, Locatelli-Hoops et 

al. 2013). Its multiple functions include neurogenesis, neuroprotection, anti-

angiogenesis, and stem cell renewal, albeit, one of the more prominent features of 

the protein is its anti-cancer role. The protein appears to exhibit anti-angiogenic and 

antimetastatic activities, as well as inhibit tumour growth and prolong survival in 

animal models (Becerra and Notario 2013). PEDF-mediated antitumour activity is 

due to its action on the tumour microenvironment and on the tumour cells 

(Fernandez-Barral, Orgaz et al. 2012). A decrease in or loss of PEDF expression has 

been associated with an increased incidence of metastasis and with poor prognosis in 

cutaneous melanoma, prostate carcinoma, pancreatic carcinoma, neuroblastoma, and 

glioma (Yang and Grossniklaus 2010).  

PEDF was detected in the monosomy three sample set by a 1.44-fold lower 

abundance in comparison to the disomy three sample set, which correlates with 

previous findings of a lower expression of PEDF being associated with more 

aggressive phenotypes of malignancy.  

PEDF is highly expressed in melanocytes and less aggressive melanoma cells, but it 

is minimally expressed, if at all, in highly aggressive melanoma cells. It was first 

described as the most potent angiostatic factor of the eye, where it is produced by 

retinal pigment epithelial cells. PEDF elicits a highly potent inhibitory action on 
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melanoma cells, inducing apoptosis under stress conditions and annulling migration 

and invasion (Fernandez-Barral, Orgaz et al. 2012). The protein has been associated 

with uveal melanoma, where its overexpression has been shown to inhibit growth 

and hepatic micrometastasis in a mouse model. It has been previously been 

identified in the vitreous, however, it has not been identified in the uveal melanoma 

vitreous proteome (Aretz, Krohne et al. 2013).  

Therefore, our discovery of the differential expression of PEDF between monosomy 

three and disomy three vitreous fluid specimens may provide more information on 

the method of disease progression in uveal melanoma and may be a potential 

biomarker for prognosis. 

 

7.5.3.2.4 Retbindin 

Retbindin is a relatively novel, secreted protein which was originally identified in 

ocular tissue and is thought to be preferentially expressed in the retina. It is thought 

to function in flavonoid or carotenoid binding as it shares homology with riboflavin 

binding proteins (Wistow, Bernstein et al. 2002). Flavonoids have been shown in the 

past to inhibit multiple drug resistance efflux pump systems in mouse lymphoma and 

colon cancer cells (Gyemant, Tanaka et al. 2006). They have also illustrated anti-

angiogenesis, anti-metastasis, and pro-apoptosis effects on cancer cells. Li et al 

demonstrated the suppression of migration and invasion of breast cancer cell lines as 

a result of treatment with a flavonoid derivative (Li, Li et al. 2012). Carotenoids 

have also indicated anti-tumour effects (Tanaka, Shnimizu et al. 2012). 

The protein was identified in the 50 mM fraction as showing a decreased abundance 

in the monosomy of chromosome three sample set, in comparison to the disomy 

three sample set. Due to the potential carotenoid/flavonoid binding function of 

retbindin, an observed lower abundance in monosomy three vitreous samples in 

comparison to disomy three specimens would concur with previous anti-cancer 

findings associated with flavonoids and carotenoids. 

Retbindin was not previously identified in vitreous fluid nor does it appear to have 

been located in uveal melanoma or any other malignancy, which deems the protein 
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to potentially be entirely novel in cancer biomarker discovery. Hence it was decided 

that retbindin should be followed up in later studies. 

 

7.5.3.2.5 Alpha Crystallin B 

As illustrated above, a host of crystallins, including alpha crystallin B, were 

identified in the qualitative analysis of uveal melanoma vitreous fluid. Alpha 

crystallin B was also identified in the quantitative analysis as being highly 

upregulated in the monosomy three specimens.  

Alpha crystallin B functions as a stress-induced molecular chaperone which 

promotes cell survival. The ectopic expression of the protein may also protect an 

array of cell types against apoptotic signals including TNFα, and TRAIL, as well as 

conferring protection against oxidative stress. Previous studies have illustrated that 

by reducing the expression of the protein using RNA interference, cells may be 

sensitised to apoptosis, and by overexpressing it, the rates of invasion and migration 

are increased in vitro (Moyano, Evans et al. 2006). Alpha crystallin B has formerly 

been associated with poor outcome in a number of malignancies including; breast 

cancer, head and neck cancer, and laryngeal squamous cell carcinoma (Chin, Boyle 

et al. 2005, Moyano, Evans et al. 2006, Mao, Zhang et al. 2012) 

Zuidervaart et al. had previously discovered alpha-crystallin B as being 

overexpressed in two metastatic uveal melanoma cell lines, in comparison to the 

primary tumour from which they were derived (Zuidervaart, Hensbergen et al. 

2006). As it was overexpressed in the uveal melanoma vitreous fluid from patients 

with monosomy three and has been found to be upregulated in metastatic uveal 

melanoma cell lines, it appears that it may play a prognostic role. However, it has 

not yet been detected in uveal melanoma vitreous fluid and hence, may be a 

potential marker of interest which should be followed-up. 

 

7.5.4 Luminex Multiplex-Based Analysis of Control vs. Uveal Melanoma 

Vitreous Fluid 

Luminex xMAP technology is a highly sensitive bead-based array which allows for 

the multiplex analysis of proteins or nucleic acids. The microspheres have a capture 
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antibody covalently immobilized on a small surface area, thus requiring a low 

quantity of sample (Baker, Murphy et al. 2012).  

Vitreous fluid collected from uveal melanoma cases has been successfully studied 

using the Luminex system. Nagarkatti-Gude et al. studied the presence of 

inflammatory cytokines in uveal melanoma vitreous fluid in order to determine the 

relationship between the vitreal concentration of cytokines, and prognostic variables, 

such as tumour dimensions. Compared with control vitreous, a higher concentration 

of a variety of inflammatory mediators was identified in the disease fluid, which 

appeared to directly correlate with the size of the tumour and with the presence of 

immune cell infiltrate (Nagarkatti-Gude, Bronkhorst et al. 2012). Other such studies 

have also been carried out in vitreous in order to examine the link between 

inflammation and tumorigenesis in the uveal melanoma (Dunavoelgyi, Funk et al. 

2012). 

Prior to the publication of the above studies, it was decided to compare uveal 

melanoma vitreous samples, from both metastasised and non-metastasised cases, to 

control specimens using a Luminex 12-plex cytokine/chemokine assay as part of a 

pilot study. The assay quantified the levels of FGF2, IFNɣ, TNFα, TGFα, MIP1α, 

IL-10, IL-15, IL-1α, IL-2, IL-6, IL-8, and IP10. From this work, three cytokines of 

interest were identified; basic fibroblast growth factor (FGF2), macrophage 

inhibitory protein 1 alpha (MIP1α) and interferon gamma (IFNɣ). These were all 

validated for their sensitivity and specificity as potential biomarkers, however, a 

small sample set was used, and did not provide as comprehensive an analysis as 

other studies (Dunavoelgyi, Funk et al. 2012, Nagarkatti-Gude, Bronkhorst et al. 

2012). 

 

7.5.4.1 FGF2 

FGF2 is a member of fibroblast growth factor family which has more than 20 

structurally-related members. These proteins control a range of functions including; 

proliferation, motility, survival, and differentiation. FGF2 is known to play an 

important role in cancer development due to its role in angiogenesis (Polnaszek, 

Kwabi-Addo et al. 2003). 
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FGF2 has been described as being overexpressed in a variety of cancers including 

breast, prostate, melanoma, lung, and bladder (Polnaszek, Kwabi-Addo et al. 2003). 

In uveal melanoma, it was discovered that FGF2 is highly expressed in primary 

tumours. When the production of the protein was decreased in uveal melanoma cell 

lines, this severely impacted on cell proliferation and survival (Lefevre, Babchia et 

al. 2009). In addition to this, an FGF2-binding peptide has been shown to inhibit 

proliferation and angiogenesis in uveal melanoma (Yu, Gao et al. 2012). 

FGF2 was not shown to be significantly differentially expressed between the control 

and the uveal melanoma sample groups. The result was followed up using MedCalc 

which presented a specificity of 100% and a sensitivity of 75%.  

 

7.5.4.2 MIP1α 

MIP1α is a member of the C-C subfamily of chemokines which functions as an 

activator of monocytes and plays a role in host defence (Konishi, Okabe et al. 1996).  

It has previously been associated with lung cancer when it was found that lung 

cancer cells expressed MIP1α, suggesting that these cells can participate in 

inflammatory cell recruitment through the production of MIP1α (Konishi, Okabe et 

al. 1996). MIP1α overexpression has also been identified as being upregulated in 

breast cancer (Wolf, Clark-Lewis et al. 2003, Martinez-Outschoorn, Whitaker-

Menezes et al. 2011) 

MIP1α has previously been associated with uveal melanoma vitreous humour where 

it positively correlated with tumour prominence (Nagarkatti-Gude, Bronkhorst et al. 

2012). Our study agreed with this finding, illustrating a significant increase in MIP-

1α expression in the vitreous of uveal melanoma patients when compared to the 

controls, with an ANOVA score of <0.01. ROC curve analysis confirmed this 

finding with high sensitivity and specificity values.  
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7.5.4.3 IFNɣ 

IFNɣ is a cytokine known for protecting against malignancies as it inhibits 

proliferation, sensitises tumour cells to apoptosis, modulates cell differentiation and 

stimulates anti-tumour immune activity (Garcia-Tunon, Ricote et al. 2007, Wang, 

Xu et al. 2013).  

IFNɣ has been shown to inhibit the growth of multiple cell lines such as breast 

cancer cell lines and has been demonstrated to trigger the regression of skin 

metastases (Garcia-Tunon, Ricote et al. 2007). Reduced levels of IFNɣ in lung 

cancer have been associated with a shorter survival in lung cancer (Wang, Xu et al. 

2013). 

IFNɣ has previously identified in uveal melanoma vitreous humour where it directly 

correlated with tumour size (Nagarkatti-Gude, Bronkhorst et al. 2012). The same 

results were observed in our study where the cytokine was found to be significantly 

more abundant in uveal melanoma vitreous in comparison to the control vitreous. 

ROC curve analysis correlated with this finding, illustrating both 100% sensitivity 

and 100% specificity. This result differs to what is typically found in the literature, 

i.e. a decrease in IFNɣ as the disease progresses.  

 

7.5.5 Conclusion 

Although vitreous fluid is a reasonably difficult specimen to work with, the IMAC 

resin fractionation method appears to generate an interesting subset of proteins 

which may be analysed by gel-based qualitative methods or by LC-MS-based 

quantitative methods. The label-free quantitative analysis generated a total of 62 

differentially-expressed proteins, of which alpha crystallin B, retbindin, retinol-

binding protein three, and meckelin can now be followed up.  

The Luminex multiplex assay identified three cytokines of interest; FGF2, IFNɣ, and 

MIP1α. However, it should be noted that these results may be skewed by the small 

sample sizes used, and a larger study would have to be carried out to follow up these 

results. 

Overall, this work may further our understanding of the process of uveal melanoma 

metastasis which could lead to the development of potential therapeutic targets. 
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7.6 ProteoMiner Fractionation and Quantitative Label-Free LC-MS Analysis 

of Advanced Cutaneous Melanoma Serum 

As proteins are continuously varying in their expression, in accordance with the 

stage of disease or the treatment regimen, their levels can provide key information 

on a disease at the molecular level. Biomarkers may be secreted into the bloodstream 

either directly by the tumour, or indirectly through the destruction of cells. The 

blood is a potentially rich source of biomarkers, while being an easily accessible 

specimen. (Bougnoux and Solassol 2013).  

Many proteomic studies have been carried out where potential biomarkers have been 

detected in cutaneous melanoma serum specimens, across all stages. However, only 

LDH is used as a prognostic biomarker in stage IV melanoma, where the survival 

rate is less than 5%.  Hence, new methods for the detection of metastasis at an earlier 

stage are required (Bougnoux and Solassol 2013). 

The majority of cutaneous melanoma profiling experiments have been carried out 

using SELDI-TOF MS or MALDI-TOF MS, both of which have been effective 

methods. Caron et al. used SELDI-TOF MS as part of a serum proteome 

fingerprinting approach to determine if a protein profile could discriminate between 

healthy individuals and melanoma patients. From this, they identified a peak 

signature with 98.1% diagnostic accuracy (Caron, Mange et al. 2009). To compare 

the proteomic profile of serum from those with early stage melanoma to those who 

had relapsed, Wilson et al. used SELDI-TOF MS. This identified three peaks which 

appeared to correlate with recurrence following the curative resection of the primary 

melanoma tumour (Wilson, Tran et al. 2004). MALDI TOF was used in the 

discovery of serum amyloid A as a differentially regulated protein between early and 

advanced melanoma, and as a potential marker of prognosis (Findeisen, Zapatka et 

al. 2009). Newer methods are now coming on-stream, such as hydrogel core shell 

nanoparticles which are being used for the detection of biomarkers in clinical 

specimens. This method was used by Mian et al. to detect and compare biomarkers 

indicative of early or late stage melanoma in serum. This identified a pro-apoptotic 

protein named Bak the expression of which appeared to correlate with disease 

progression (Longo, Gambara et al. 2011). 
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It was decided to use LC-MS, a method which has not been widely used in 

cutaneous melanoma proteomics, to compare control serum and advanced cutaneous 

melanoma serum for the identification of potential biomarkers of interest. Any 

proteins identified would then be followed up over the course of disease progression; 

benign, early, and advanced stages. 

 

7.6.1 ProteoMiner Fractionation of Control and Advanced Cutaneous 

Melanoma Serum 

Although serum and plasma are highly interesting and potentially information-rich 

specimens in terms of novel biomarker analysis, 99% of the overall protein content 

is represented by a few high abundance proteins. Through signal suppression, these 

proteins can mask the presence of less abundant and potentially more interesting 

proteins during mass spectrometry analysis (Hartwig, Czibere et al. 2009).  

Therefore, it is often necessary to pre-treat serum prior to proteomic analysis. 

ProteoMiner is a method which enhances the sample proteome through equalisation, 

using a combinatorial library of hexapeptide ligands bound to beads. High 

abundance proteins will saturate their beads quickly, with any excess simply being 

washed away while lower abundance proteins will continue to bind to their 

appropriate ligands. The total quantity of bound proteins may then be eluted from 

the column. This results in a depletion of high abundance proteins, while 

concentrating those of lower abundance (Liang, Tan et al. 2012).  

Previous studies have been performed demonstrating the ability of ProteoMiner as a 

pre-fractionation technique for the analysis of low abundant proteins in the serum 

proteome. Hartwig at el. demonstrated the effectiveness of the ProteoMiner 

treatment of serum when combined with 2-D DIGE (Hartwig, Czibere et al. 2009). 

In addition to this, Frӧbel et al. illustrated a significant increase in the resolution of 

the serum proteome in SELDI-TOF MS profiling following ProteoMiner pre-

processing (Frobel, Hartwig et al. 2010). The quantitative LC-MS analysis of the 

cerebrospinal fluid proteome has been carried out utilising the ProteoMiner system 

as a pre-treatment method, resulting in the detection of over 1000 proteins from a 

pooled sample set (Mouton-Barbosa, Roux-Dalvai et al. 2010). The analysis of 

ProteoMiner-treated serum by quantitative LC-MS has not previously been carried 
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out according to the literature, however it was decided to utilise this method in order 

to detect differentially regulated proteins between control and advanced melanoma 

sera. 

Eight control and eight advanced melanoma disease sera were all treated with 

ProteoMiner in order to improve the likelihood of identifying novel proteins of 

interest. However, given that there are thousands of proteins present in serum, the 

fractionation of serum following pre-treatment can simplify the proteome for the 

most efficient identification of potential biomarkers. Therefore, a ProteoMiner 

sequential elution kit was used, which allows for bound proteins to be eluted in four 

separate fractions, with each containing proteins of different properties.  

 

7.6.2 Differential Expression Analysis of Control and Advanced Cutaneous 

Melanoma Serum Using LC-MS and Progenesis LC-MS 

The four fractions per sample were analysed using 1-D gel electrophoresis initially, 

in order to get a visual overview of how the fractionation worked. Following the in-

gel digestion of all protein bands in each lane and subsequent LC-MS/MS analysis, 

it was determined that elution fraction three did not produce as extensive a list of 

unique proteins in comparison to the other three fractions, for all samples. Hence, it 

was excluded from the analysis. 

Following quantitative label-free LC-MS analysis of fractions one, two, and four, a 

pattern of consistent protein upregulation in the control sample set was observed for 

fraction four. This appeared unlikely as some of the expression trends directly 

contradicted previously observed results from fractions one and two. It was possible 

that the fourth elution buffer was simply stripping any remaining proteins from the 

column. Therefore, fraction four was also excluded. 

29 and 39 differentially regulated proteins were identified in elution fraction one and 

two, respectively, for all samples. Following this, fractions one and two were 

recombined in order to identify the trends of protein expression across the whole 

experiment. This identified nine differentially regulated potential targets which were 

expressed in both fractions, of which two targets were selected for follow-up 

analysis; lactotransferrin and azurocidin. These were selected as both markers were 
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somewhat novel in terms of cutaneous melanoma. Lactotransferrin has previously 

been associated with anti-tumoural activity but has not been identified as a potential 

serum biomarker for cutaneous melanoma, despite being linked with choroidal 

melanoma, while azurocidin has not been associated with melanoma at all 

(Dikovskaya, Trunov et al. 2013). Identifications from the 1-D electrophoresis 

analysis were also taken into account, overlapping them with data acquired from the 

recombined analysis, thus identifying 10 mutual proteins, from which serotransferrin 

was chosen for further analysis. Although serotransferrin has previously been linked 

with melanoma, it has not been studied in relation to the progression of disease and 

so, it was decided to follow-up the protein in this regard (Richardson and Baker 

1990). Plasma serine protease inhibitor was also selected for follow-up validation as 

it was found to be significantly upregulated in disease sera in comparison to control 

sera. As it was not previously associated with cutaneous melanoma, it was decided 

to follow up plasma serine protease inhibitor also. 

Beta-secretase 2 (BACE-2), Matrix metalloprotease (MMP-1), and Tissue inhibitor 

of metalloproteinase 1 (TIMP-1) were previously identified by the analysis of two 

publically available array data sets for control tissue, and primary and metastasised 

cutaneous melanoma tumour tissue (Riker, Enkemann et al. 2008, Raskin, Fullen et 

al. 2013). All three were significantly upregulated in the metastasised and primary 

tissues in comparison to the control. BACE-2 had not previously been identified as a 

potential marker for cutaneous melanoma, and so, it was decided to further examine 

the protein. Both TIMP-1 and MMP-1 had, however, been identified in malignant 

melanoma as promoters of tumorigenicity, hence, it was decided to further examine 

their expression over the course of disease (Hoashi, Kadono et al. 2001, Iida and 

McCarthy 2007, Toricelli, Melo et al. 2013) 

All seven proteins; serotransferrin, lactotransferrin, azurocidin, plasma serine 

protease inhibitor, BACE-2, MMP-1, TIMP-1, were selected for further validation 

throughout the course of cutaneous melanoma disease progression.  
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7.6.3 Validation of Targets as Potential Biomarkers for Cutaneous Melanoma 

Disease Progression 

ELISA-based validation was selected for the follow-up of all seven proteins of 

interest. It was decided to examine the abundance of each across the course of 

disease, using serum which was collected from patients with benign, early stage, or 

advanced stage disease. In addition to this uveal melanoma serum collected from 

patients was also included. As chromosome status information was available, it was 

possible to examine the protein levels in both disomy of chromosome three and 

monosomy of chromosome three. Control sera were also included.  

 

7.6.3.1 Serotransferrin 

Serotransferrin is a glycopeptide which is produced by hepatocytes and is involved 

in cellular iron transport. It has been implicated in breast cancer where it was found 

to be upregulated in BRCA1 mutation carriers, a marker of poor prognosis 

(Custodio, Lopez-Farre et al. 2012). In a 2-D electrophoresis-based differential 

expression study, serotransferrin was identified as being overexpressed in 

endometrial adenocarcinoma (Byrjalsen, Mose Larsen et al. 1999). In addition to this 

serotransferrin has been linked with pancreatic carcinoma as it was found to be 

upregulated in serum in comparison serum collected from to other pancreatic disease 

patients, gastric carcinoma patients and healthy individuals (Sun, Zhu et al. 2007).  

Using quantitative label-free LC-MS analysis, serotransferrin was initially found to 

be over-expressed by 3.47-fold in advanced-stage melanoma sera when compared to 

control sera. Hence, this result agreed with studies which link an increase in 

serotransferrin levels and disease progression.  

However, the ELISA results directly contradicted this illustrating a significant 

decrease in serotransferrin levels in either early or advanced-stage cutaneous disease 

when compared to the control serum. A statistically significant decrease in 

serotransferrin levels was observed when uveal melanoma serum was compared with 

control serum. This was also the case when monosomy three uveal melanoma sera 

were compared with control sera. 
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7.6.3.2 Azurocidin 

Azurocidin is a mediator of inflammation and functions in host defence, and is a 

member of the serprocidin family of serine protease homologs (Brandt, Lundell et al. 

2011).  

It was previously considered to be inactive as a protease homologue, however, 

azurocidin was identified in the urine of multiple myeloma patients as specifically 

cleaving insulin-like growth factor-binding protein 1 (IGFBP-1) (Wang, Shafqat et 

al. 2006). Insulin-like growth factor (IGF-1) is known to foster cellular proliferation 

and inhibit apoptosis (Terry, Tworoger et al. 2009). IGF-1 and IGFBP-1 are both 

present in the circulation where they are acted upon by proteases, where IGF is 

cleaved and is available for biological actions (Khandwala, McCutcheon et al. 

2000). Azurocidin was found to cleave IGFBP-1, causing a lower affinity but a 

higher binding capacity for IGF-1, thus increasing rate of association and 

dissociation between the molecules. This in turn increased the turnover and IGF 

availability. It also induced a decreased inhibition of IGF-2-stimulated proliferation 

and glucose uptake (Wang, Shafqat et al. 2006).  

Azurocidin was over-expressed in late-stage cutaneous melanoma serum specimens 

by a maximum observed fold change of 14.2 according to quantitative label-free LC-

MS analysis. IGF-1 has also been shown to be a stimulator of cell growth in 

metastatic melanoma cell lines, therefore, it may be possible that an upregulation of 

azurocidin contributes to this phenotype (Khandwala, McCutcheon et al. 2000). 

Overall, there appeared to be a non-significant increase in azurocidin levels as the 

disease progressed from benign to late-stage. This may indicate that a larger sample 

set would provide a more comprehensive result. No difference in expression was 

noted between control sera and uveal melanoma sera.  

 

7.6.3.3 Lactotransferrin 

Lactotransferrin is a major iron-binding glycoprotein produced by mucosal epithelial 

cells. It is involved in a variety of activities such as iron homeostasis, and has 

bacteriostatic and immunomodulatory effects. In addition to this, it elicits anti-

tumour behaviour, mediated by mechanisms such anti-growth effects, immune 
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activation, and enhancement of apoptosis. Indeed, lactotransferrin has been shown 

on numerous occasions to protect against chemically-induced carcinogenesis in 

organs such as the liver, tongue, oesophagus, colon and bladder, and to reduce 

tumour growth and metastasis both in vitro and in vivo (Ward, Paz et al. 2005, 

Roseanu, Florian et al. 2010, Deng, Ye et al. 2013).  

Typically, lactotransferrin is reported to be downregulated in cancer as the loss of its 

protective effects increases the likelihood of tumorigenesis and subsequent disease 

progression (Shaheduzzaman, Vishwanath et al. 2007, Zhou, Zeng et al. 2008, Deng, 

Ye et al. 2013). However, the protein was found to be 4.17-fold upregulated in 

advanced-stage cutaneous melanoma serum, in both elution fractions one and two, 

according to the quantitative LC-MS analysis where it showed high reproducibility 

between samples.  

According to the ELISA data, lactotransferrin was significantly less abundant in 

benign or early-stage cutaneous melanoma serum when compared to control serum. 

There was no significant difference between the levels in control and advance-stage 

cutaneous melanoma serum, however an increase in lactotransferrin was observed in 

advanced-stage samples when compared to those which were benign. The uveal 

melanoma sample set, which contained both monosomy of chromosome 3 sera and 

disomy of chromosome 3 sera, showed a significantly decreased level of 

lactotransferrin when compared with that of the control sample set. When the uveal 

melanoma serum specimens which were positive for monosomy of chromosome 3 

were compared to those which did not have this anomaly, no significant difference 

was observed between the two. 

The downregulation of lactotransferrin in benign and early-stage melanoma may 

suggest that knock-down of the protein is required for establishing tumorigenesis. 

The decrease of lactotransferrin abundance in uveal melanoma serum agrees with 

this hypothesis.  

 

7.6.3.4 Plasma Serine Protease Inhibitor 

Plasma serine protease inhibitor regulates numerous serine proteases, such as 

thrombin and activated protein C, in the process of coagulation. It has been shown 
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inactivate cathepsin L, a lysosomal cysteine protease that has been implicated in the 

destruction of components of the extracellular matrix and can induce diseases such 

as cancer and atherosclerosis when upregulated. Plasma serine protease inhibitor has 

been illustrated as regulating breast tumour cell migration through the inhibition of 

cathepsin L (Fortenberry, Brandal et al. 2010). The protein has been shown to have 

the same role in renal cell carcinoma where it inhibits urinary plasminogen inhibitor 

(uPA), a protease which mediates metastasis and invasion (Wakita, Hayashi et al. 

2004). Other protein kinases have previously been associated with uveal melanoma, 

where they exerted anti-tumour behaviour (Wu, Li et al. 2012, Wu, Zhu et al. 2012) 

Plasma serine protease inhibitor was identified as being 2.6-fold downregulated in 

advanced cutaneous melanoma sera in comparison to control sera, as detected by 

quantitative label-free LC-MS analysis, which agrees with the previous findings 

from other groups. This may indicate that if the protein is downregulated, there is a 

higher possibility of tumorigenesis and metastasis. 

In contrast to the above results, a significant increase of plasma serine protease 

inhibitor abundance was observed in early stage cutaneous melanoma serum in 

comparison to that of either control or benign melanoma serum. No difference in 

protein levels was observed when control and advanced cutaneous melanoma serum 

were compared. Hence, the results of the ELISA do not validate those of the 

quantitative label-free LC-MS experiment.  

There was a statistically significant increase in the level of plasma serine protease 

inhibitor in uveal melanoma serum when compared to that of healthy patients. This 

increase in abundance was observed equally in both patients with monosomy of 

chromosome three and those with disomy of chromosome three, in relation to the 

level of plasma serine protease inhibitor produced in control serum. 

 

7.6.3.5 MMP-1 

Matrix metalloproteases (MMPs) are a family of zinc-dependent endopeptidases 

which hydrolyse extracellular matrix components. These enzymes are required for 

processes such as wound healing and angiogenesis. They have also been associated 

with cancer invasiveness and the development of metastases in numerous 
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malignancies such as colorectal cancer, breast cancer, and pancreatic cancer (Liu, 

Kato et al. 2012). MMP-1 has been suggested to play a role in malignant melanoma 

by enhancing processes of proliferation, invasion and anchorage-independent growth 

(Iida and McCarthy 2007).  

MMP-1 was shown to be significantly overexpressed in primary and metastasised 

tissue in comparison to control tissue according to the results of the microarray, 

which would correlate with studies observed in the literature.  

However, the ELISA illustrated a statistically significant decrease in the levels of 

MMP-1 in advanced cutaneous melanoma serum when compared with control 

serum. For the uveal melanoma serum, the ELISA did not indicate a pattern of 

differential expression of MMP-1 between healthy and uveal melanoma serum. 

 

7.6.3.6 TIMP-1 

Tissue inhibitor of metalloprotease-1 (TIMP-1) is an inhibitor of MMPs. Although it 

might therefore be assumed that the upregulation of TIMP-1 would hence inhibit 

tumour progression, this is not necessarily true. Several studies have shown that high 

levels of TIMP-1 are observed in the most aggressive tumours. This may be due to 

MMP-independent functions, such as inhibition of apoptosis through stimulation of 

the Akt pathway, that TIMP-1 possibly provides which may enhance the progression 

of cancer (Grunnet, Mau-Sorensen et al. 2013). TIMP-1 has been demonstrated as a 

potential prognostic and predictive factor in many cancers such as gastric cancer, 

breast cancer, and oesophageal cancer (Neri, Megha et al. 2012, Grunnet, Mau-

Sorensen et al. 2013, Kozlowski, Laudanski et al. 2013). Using cell culture-based 

studies, it has also been reported as being involved in stimulating the growth of both 

primary and metastatic melanoma cell lines (Hoashi, Kadono et al. 2001, Toricelli, 

Melo et al. 2013). 

A significant overexpression of TIMP-1 in primary and metastasised tissue in 

comparison to control tissue was observed in the microarray results. A higher fold 

change was noted when comparing the metastasised and control tissue than when 

comparing the primary and control tissue. This would agree with previous studies 
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which demonstrated that the level of TIMP-1 correlates with the degree of cancer 

aggressiveness. 

According to the ELISA results, no significant difference in the abundance of TIMP-

1 was observed between control or benign disease serum and early or late stage 

disease. In addition to this, no differential production of the protein was noted when 

serum of uveal melanoma patients was compared with healthy serum.  

 

7.6.3.7 BACE-2 

Beta secretase-2 (BACE-2) is a member of a family of membrane-bound aspartyl 

proteases (Fluhrer, Capell et al. 2002). Xin et al. previously associated BACE-2 with 

growth and metastasis in a highly tumorigenic and metastatic breast cancer cell line, 

MDA-MB-435, and correlated it with breast and colon tumour tissues, as well as 

liver metastases removed from the colon cancer patient (Xin, Stephans et al. 2000). 

However, the role of the protein appears to be linked to cell proliferation as it was 

discovered to be involved in controlling pancreatic beta-cell growth, and hence, it 

has been viewed as a potential target for diabetes (Southan 2013).  

BACE-2 was shown to be significantly upregulated in primary and metastasised 

cutaneous melanoma tissue in comparison to control tissue according to the results 

of the microarray.  

According to the ELISA results, the protein of interest was shown to be elevated in 

both early and late stage cutaneous melanoma in comparison to serum of patients 

with benign disease.  

No statistically significant difference in BACE-2 production was observed between 

the uveal melanoma serum group and the control sera; neither was any difference 

noted between patients with or without monosomy of chromosome three.  

 

This suggests that BACE-2 is potentially involved in cutaneous melanoma disease 

progression as it appears to be overexpressed in early and advanced disease sera 

when compared to controls. In addition to this, the protein was not significantly 

differentially expressed in the uveal melanoma sample set when compared to the 
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control which may indicate a disparity between the molecular mechanisms of uveal 

and cutaneous melanoma. 

 

7.6.4 Conclusion 

Overall, it was found that the ProteoMiner sequential elution technique was a less 

successful fractionation method than anticipated. For some of the identifications, 

there was an overlap between elution fractions which is not indicative of a good 

technique. 

This may be due to multiple binding mechanisms which a protein can have; some 

could strongly bind to a ligand, however, others could bind weakly, but multiple 

weak interactions create a somewhat stronger bond.  When bead-bound proteins are 

sequentially eluted using an increasing gradient of stringency, proteins may be found 

in more than one fraction. It is possible that this is as a result of both weak and 

strong binding interactions occurring between one protein type and multiple ligands 

on various beads (Boschetti and Righetti 2008).  

This may explain why inconsistencies were so often observed between the results of 

the quantitative LC-MS analysis and the results of the ELISA carried out. 

Considering this, it appears that the technology may not be entirely ready for the 

deconvolution of an entire proteome and may require further optimisation of affinity 

interactions.  

However, our method of ProteoMiner Sequential elution coupled with quantitative 

label-free LC-MS was effective as it illustrated differential protein expression 

patterns which agreed with previous findings in cutaneous melanoma proteomics 

studies in the literature. For example, a decrease in peroxiredoxin-2 has previously 

been associated with metastasis in cutaneous melanoma (Lee, Kang et al. 2013). Our 

study associated with this finding as we identified peroxiredoxin-2 to be expressed at 

a higher level in control sera in comparison to that of advanced cutaneous melanoma 

patients. We also identified insulin-like growth factor binding protein 3 (IGFBP-3) 

to be more abundant in control serum in comparison to that of advanced cutaneous 

melanoma patients. The reduction in IGFBP3 levels has been associated in with 

cutaneous melanoma progression, which matches our results (Panasiti, Naspi et al. 

2011). This work has fulfilled the aim of identifying differentially expressed proteins 
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between control and advanced stage cutaneous melanoma serum which were 

subsequently validated using ELISA. Although, the results did not agree with the 

hypothesis that protein expression changes would be observed across all stages of 

disease progression, as in some cases a significant difference was only seen between 

control or benign and advanced stage disease.  As stated above, this may have been 

affected by the disappointing and somewhat failed method of fractionation. 

Some of the targets followed-up in our analysis appear to be promising, such as 

BACE-2 and lactotransferrin, and may now be further examined as potential markers 

of melanoma disease progression in larger cohorts of patient samples. 

 

7.7 SELDI-TOF MS Analysis for the Identification of Potential Markers of 

Uveal and Cutaneous Melanoma  

SELDI-TOF can be useful for the discovery of biomarkers as it is high throughput 

and can demonstrate clear patterns of a proteome, hence illustrating variances 

between disease and control proteomes across large sample sets. The technique has 

previously been used for the identification of low molecular weight proteins, i.e. 

below 40 kDa, as potential biomarkers in clinical specimens (Srinivasan, Daniels et 

al. 2006). In other proteomic methods, such as 2-D DIGE, this can be difficult and 

many low molecular weight biomarkers could be missed. A variety of clinical 

specimens may be used and in the past, analysed body fluids have included; serum, 

plasma, amniotic fluid, urine, saliva, cerebrospinal liquid, bronchoalveolar wash out, 

tears, and nipple aspirate fluid. In addition to this, very little sample preparation, and 

low sample volumes are required (Liu 2011).  

Previously, Dr. Priyanka Maurya  used SELDI-TOF MS for the discovery of a 7.6 

kDa protein in the conditioned media of a paclitaxel-resistant superinvasive cell line 

variant (MDA-MB-435S-F/Taxol10p4pSI). This was subsequently identified as a 

fragment of bovine transferrin (Dowling, Maurya et al. 2007). Following the 

profiling of conditioned media collected from a range of melanocytes and melanoma 

cell lines, it was discovered that the 7.6 kDa fragment was solely expressed in 

melanoma cell lines. In addition to this, a number of other proteins which were only 

identified in the melanoma cell lines were discovered, including an 8.5 kDa 

ubiquitin-like marker (Dr. Pryanka Maurya, Ph.D. Thesis, 2009). 
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It was therefore decided to use IMAC SELDI-TOF MS to attempt to locate the 7.6 

kDa transferrin fragment and the 8.5 kDa ubiquitin-like marker in cutaneous 

melanoma serum and uveal melanoma vitreous fluid. This would indicate the 

possibility of either protein as a potential marker for melanoma. In addition to this, it 

was decided to profile the serum of advanced cutaneous melanoma patients in 

comparison to the serum of healthy individuals. A pilot IMAC SELDI-TOF MS 

analysis of vitreous fluid collected from uveal melanoma patients compared to a 

control vitreous specimen was also carried out.  

 

7.7.1 SELDI-TOF MS Analysis of Clinical Specimens for the Identification of 

Potential Biomarkers 

The main disadvantage of SELDI is that the identity of a peak of interest is not 

determined by the technique; it is only possible to acquire the m/z value, and the 

intensity of the peak. This creates challenges in discovering the identity of a 

potential biomarker, and hence, in developing commercial assays for use in a clinical 

environment.  

Despite this, SELDI-TOF MS has been used in a variety of clinical studies for the 

discovery of biomarkers which distinguish between test and control samples. For 

example, Li et al. utilised nickel-activated IMAC-based SELDI TOF MS technology 

for the discovery of three biomarkers in 169 sera specimens collected from breast 

cancer patients. These biomarkers were identified as spectrum peaks at 4.3, 8.1, and 

8.92 kDa, respectively. The combined analysis of the three proteins illustrated a 

sensitivity of 93% for  cancer patients and a specificity of 91% for  controls (Li, 

Zhang et al. 2002). Another study identified a number of potential markers, 

including PC1, PC2, and PC3, which distinguished between prostate cancer and 

benign prostate disease. They also found that the identified biomarkers illustrated a 

higher specificity than prostate-specific antigen (PSA) (Li, White et al. 2004).  

It should be noted that using a panel of biomarkers could greatly increase the 

specificity and sensitivity of cancer diagnosis. This is possible using SELDI 

technology as a panel of peaks may be detected at a time. This was previously 

carried out in hepatocellular carcinoma (HCC) serum samples, where an 11-protein 

signature was identified as being overexpressed (Zinkin, Grall et al. 2008). 
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7.7.2 SELDI-TOF MS Analysis of Cutaneous Melanoma Serum 

SELDI-TOF MS analyses of cutaneous melanoma specimens have been carried out, 

many with the intention of identifying prognostic outcomes. Mian et al. used serum 

samples collected from 101 early-stage patients which were compared to 104 

advanced melanoma sera for the profiling of cutaneous melanoma progression using 

SELDI technology. They identified signature proteomic profiles which were 

indicative for different stages of the disease (Mian, Ugurel et al. 2005). Another 

study used SELDI-TOF MS for the identification of melanoma-associated protein 

biomarkers of disease recurrence. Multiple protein peaks were identified in the 

region of 3.3-30 kDa which appeared to discriminate between those who developed 

recurrence in comparison to those who did not, with high sensitivity and specificity 

(Wilson, Tran et al. 2004).  

In our study, both the 7.6 kDa and the 8.5 kDa proteins of interest were identified as 

prominent peaks in the conditioned media collected from the SK-MEL5 cutaneous 

melanoma cell line, which is of low invasive potential. However, when examined for 

their presence in serum, they were not identified. This would suggest that both 

proteins are not secreted at a detectable level, or may not be expressed by the 

tumour, and that they may only be produced in melanoma cell lines. As the serum 

was immunodepleted, little to no interference from highly abundant proteins was 

present.  

Despite this, another protein, an unknown 8.9 kDa protein, was identified in the 

conditioned media of SK-MEL 5 cells, even when diluted to levels as low as 1:10. 

When 12 advanced cutaneous melanoma sera were examined, 10 samples were 

shown to express the protein of interest, where the potential marker was identified at 

least once in three replicates. It was also detected in three of 12 controls; however, it 

was present at a low level in these when compared to melanoma serum samples and 

hence was still deemed to be of interest.  

 

7.7.3 Pilot SELDI-TOF MS Analysis of Uveal Melanoma Vitreous Fluid 

Very little has been reported in the literature as regards the SELDI-TOF MS-based 

analysis of ocular fluids and nothing has been reported in relation to the vitreous 

humour of uveal melanoma patients. Using aqueous humour, Ayuso et al. 
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successfully identified transthyretin as a potential biomarker for juvenile idiopathic 

arthritis (JIA)-associated uveitis and silent chronic anterior uveitis (AU), 

inflammatory conditions of the eye (Kalinina Ayuso, de Boer et al. 2013). This 

illustrates the potential effectiveness of SELDI-TOF MS in determining potential 

biomarkers in samples which are of low volume or are of a precious nature.  

Hence, it was decided to examine vitreous fluid collected from metastatic uveal 

melanoma patients and control vitreous fluid collected from idopathic macular hole 

degeneration patients in order to determine the presence of differentially expressed 

proteins of interest.  

From this analysis, the 7.6 kDa transferrin fragment was identified in crude vitreous 

fluid. However, the 8.5 kDa ubiquitin-like marker was only found in the 

immunodepleted specimens. This suggests that the potential marker may be easily 

overshadowed by interference created by high abundance proteins. In the control 

specimen, this interference was very prominent and hence, no protein peaks were 

detected. This may have been caused as a result of the notable levels of high 

abundance proteins, such as serum albumin and immunoglobulin, present in the 

vitreous which account for over 80% of the whole vitreous fluid proteome (Angi, 

Kalirai et al. 2012). The 8.9 kDa unknown marker of interest was detected in both 

the crude and immunodepleted vitreous fluid at high levels.  

This suggested that the unknown 8.9 kDa peak could be of great interest as it was 

identified in SK-MEL 5 conditioned media, advanced cutaneous melanoma serum 

and metastatic uveal melanoma vitreous fluid, while being absent from either control 

group. It was therefore decided to attempt to isolate and identify the potential 

marker. 

 

7.7.4 Attempted Identification of the 8.9 kDa Protein of Interest 

As mentioned, the main disadvantage of SELDI-TOF MS is its lack of ability to 

identify the peaks generated. To overcome this problem, other groups had used spin 

columns containing a resin which mimicked the surface of the SELDI chip.  By 

allowing the protein to bind to the activated resin using the same chemistry as with a 

chip, the same protein species may be isolated. Proteins of interest can then be eluted 
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from the beads using either a competitor ligand, such as imidazole, reduction of the 

pH, or stripping of the immobilised metal.  

 

7.7.4.1 IMAC-Resin and Imidazole Elution 

Following the initial discovery of a peak of interest in rat plasma, Bouchal et al. 

successfully identified it as retinol-binding 4. As they used IMAC SELDI chips in 

the initial discovery of the peak, they used IMAC resin to subsequently mimic the 

chips conditions. Following this it was possible to elute the protein using imidazole, 

and separate the resulting fraction in the first dimension using an SDS gel. Resulting 

protein bands were stained and digested into peptides, prior to being identified by 

MALDI TOF (Bouchal, Jarkovsky et al. 2011).   

It was decided to follow this process using conditioned media, vitreous fluid (both 

control and uveal melanoma), and serum (both control and cutaneous melanoma). 

Each sample was eluted in fractions, separated in the first dimension and stained. 

However, the 8.9 kDa protein in question was not identified as no appropriate low 

molecular weight protein was found in each disease sample which was not present in 

the controls. It is possible, however, that the 8.9 kDa protein of interest was in fact a 

fragment of a larger protein. Some of the identifications from this analysis were 

clearly larger than the expected low molecular weight proteins which indicate that 

they may have been fragments of larger proteins. This may also have been true for 

the 8.9 kDa peak of interest. 

 

7.7.4.2 MALDI-TOF 

MALDI-TOF can also be used to generate a spectrum of proteins, but, it can also 

fragment specific peaks and analyse the resulting fragments in TOF/TOF mode in 

order to identify them (Cazares, Diaz et al. 2008). However, using MALDI-TOF to 

fragment the proteins present in each elution for the discovery of their 

identifications, was unsuccessful in this case. 
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7.7.4.3 On-Chip Elution 

It has previously been illustrated that it is possible to identify peaks of interest from 

a SELDI experiment using an on-chip elution method. Nilsen et al. tested this by 

binding and subsequently eluting four known proteins directly from a SELDI chip 

using a change in pH. Subsequently digested peptides were then analysed with LC-

MS/MS for the detection of bound proteins (Maeland Nilsen, Uleberg et al. 2011). 

It was decided to use an on-chip elution method, using imidazole, for the attempted 

identification of the 8.9 kDa potential marker. The peptides generated from this 

analysis were examined using quantitative label-free LC-MS. This identified one 

main protein of interest; apolipoprotein AII (ApoAII). This protein was found to be 

significantly upregulated in cutaneous melanoma sera in comparison to control sera. 

Although ApoAII is reported to have a molecular weight of 11.175 kDa, an 8.9 kDa 

isoform has been identified. Using LC-MS/MS and immunoassays, Malik et al. 

identified ApoAII as being upregulated in prostate cancer serum, a finding which 

correlated with immunohistochemistry results. They also found that the marker 

appeared to be more specific than PSA, as ApoAII was overexpressed in prostate 

disease when PSA was not (Malik, Ward et al. 2005).  

ApoAII has also been linked with pancreatic adenocarcinoma, where it was shown 

to be downregulated. However, its exact function in cancer is unclear. In healthy 

cells, it is required for the transport of lipids, hence, it may be that lipid metabolism 

is required for malignancies to thrive, such as prostate tumours, and apoAII is 

necessary for directing the lipid to the cancer. There is significant evidence that 

cancer cells can specifically alter different aspects of lipid metabolism which may 

have a knock-on effect on many cellular processes, including cell growth, 

proliferation, differentiation and motility (Xue, Scarlett et al. 2010, Santos and 

Schulze 2012). 

An ELISA was carried out which indicated that apoAII was not upregulated in 

advanced cutaneous melanoma sera in comparison to the control, and that it was 

unchanged across the clinical stages of the disease as well as in uveal melanoma 

serum. This may be due to the assay detecting other isoforms, as well as the 8.9 kDa 

potential marker, hence illustrating the abundance of all apoAII isoforms.  
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A quantitative label-free LC-MS experiment was repeated as before but with a larger 

cohort of samples. This also indicated that apoAII was not increased in the advanced 

disease sera. This, in combination with the ELISA results, would suggest that the 

apoAII isoform may not be the identity of the 8.9 kDa of interest.  

All of the above techniques have been shown to be successful in terms of identifying 

unknown SELDI peaks of interest, however they were not successful in this case, 

and thus, the identity of the 8.9 kDa potential biomarker remains elusive. 

However, the final differential expression analysis of the larger cohort of samples 

provided a list of 16 proteins which were upregulated in the disease sample set 

which can now be followed up. It is possible that the 8.9 kDa potential marker may 

be a fragment of one of these.  

 

7.7.5 34 Differentially Expressed Proteins were Identified Between Control and 

Advanced Cutaneous Melanoma Sera Using IMAC Purification  

From the quantitative label-free LC-MS analysis, 34 statistically significant proteins 

were found to be differentially regulated between advanced cutaneous melanoma 

and control sera. These proteins may include potential serum biomarkers for 

cutaneous melanoma and can now be followed up throughout the progression of 

melanoma, using serum collected from various stages of the disease. 

DAVID analysis indicated that, from the list of proteins upregulated in the cutaneous 

melanoma sample set, biological processes relating to inflammation and blood 

coagulation were involved which suggests that such events occurred in response to 

trauma. This could indicate the damage induced by the aggressive nature of the 

tumour. Molecular functions which were enriched primarily involved anti-enzyme 

activities. This inhibition may be an anti-tumour response as the inhibition of 

endopeptidases has been associated with suppressed growth of tumour cells (Suzuki, 

Sakaguchi et al. 2013). 

Many of the 34 proteins discovered have previously been reported in the literature in 

relation to cancer. For example, lumican, an anti-tumour proteoglycan, was found by 

Pietraszek et al. to be involved in the downregulation of melanoma growth and 

migration (Pietraszek, Brezillon et al. 2013). This result correlates with our study 
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where we identified it to be downregulated in cutaneous melanoma sera, in 

comparison to control sera. In addition to this, von Willebrand factor, which we 

identified as being differentially regulated between control and advanced melanoma 

sera, has been linked with melanoma-associated thrombin activity (Kerk, Strozyk et 

al. 2010). From our enrichment analysis, von Willebrand factor was also found to be 

associated with the upregulation of the complement pathway in advanced cutaneous 

melanoma. Insulin-like growth factor-binding protein 4 (IGFBP-4), which we 

identified as being upregulated in the advanced disease serum, has also been 

associated with the progression from primary to metastatic melanoma (Yu, Warycha 

et al. 2008). 

However, not all have been discussed in terms of melanoma. Below is a selection of 

some of the identified proteins which may be followed up in cutaneous melanoma 

serum as part of a future study.  

 

7.7.5.1 Alpha 1-Antitrypsin 

Alpha 1-antitrypsin is a circulating protease inhibitor which is known to perform an 

anti-apoptotic role (Topic, Ljujic et al. 2011). In addition to this, it has been shown 

to have anti-oxidant and anti-inflammatory activity (Jamnongkan, Techasen et al. 

2013).  

In our study, it was found to be upregulated in advanced cutaneous melanoma serum 

by 8.6-fold, in comparison to control serum. Using DAVID analysis, it was noted 

that anti-enzyme activities such as peptide inhibition, which alpha 1-antitrypsin was 

involved in, were recognised as statistically significant enriched molecular functions 

in the list of proteins upregulated in the melanoma group. In addition to this, its 

overexpression in the advanced disease was found to be associated with the 

upregulation of the complement pathway. 

Alpha 1-antitrypsin has previously been associated with colorectal cancer where it 

was found to be upregulated in the serum of cancer patients in comparison to 

controls. In addition to this, it was found to discriminate between early and advanced 

stages of disease. It has also been linked with gastric cancer where high levels of 

expression of alpha 1-antitrypsin were found to be produced in the gastric juice 
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(Bujanda, Sarasqueta et al. 2013). It has been associated with an array of other 

malignancies such as lung cancer, cholangiocarcinogenesis, and breast cancer 

(Topic, Ljujic et al. 2011, Lopez-Arias, Aguilar-Lemarroy et al. 2012, Jamnongkan, 

Techasen et al. 2013).  

However, alpha 1-antitrypsin has not previously been identified as a potential 

serological marker for cutaneous melanoma. Hence, it may of interest to follow its 

expression over the course of disease. 

 

7.7.5.2 Selenoprotein P 

Selenoprotein P is the main transporter of selenium as it can carry up to ten 

selenocysteine residues, the form of selenium which is incorporated into growing 

proteins. It has been shown to display anti-oxidant properties, protecting cells such 

as astrocytes, and endothelial cells from oxidative damage (Gonzalez-Moreno, 

Boque et al. 2011).  

In our study, selenoprotein P was found to be of lower abundance in disease serum 

in comparison to the control specimens by 2.09-fold, which may indicate that its 

downregulation is required for tumour progression. 

In the literature, selenoprotein has been associated with a number of malignancies 

including prostate cancer, lung cancer, and colon cancer, in all of which its 

expression was reduced (Gonzalez-Moreno, Boque et al. 2011).  

However, it is not well characterised in cutaneous melanoma and so, it may be an 

interesting protein to follow up. 

 

7.7.5.3 Alpha 1-Antichymotrypsin 

Alpha 1-antichymotrypsin is a serine protease inhibitor which was found to 

upregulated in our study in cutaneous melanoma sera by 2.55-fold. DAVID analysis 

indicated that anti-enzymatic molecular functions were found to be enriched in the 

disease sera, which alpha 1-antichymotrypsin was involved in.  
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This has previously been associated with poor prognosis in malignant melanoma as 

well as in other cancers, such as prostate cancer, where it is complexed to prostate-

specific antigen (PSA) (Martinez, Espana et al. 2002, Wang, Jiang et al. 2010). In 

addition this, it has been identified in pancreatic cancer as a possible biomarker for 

advanced stage pancreatic carcinoma (Roberts, Campa et al. 2012). It was also found 

to be upregulated in breast cancer and lung adenocarcinoma; in both cases it was 

thought to play a role in tumorigenesis (Higashiyama, Doi et al. 1995).  

As alpha 1-antichymotrypsin has not been linked with cutaneous melanoma serum 

previously, it may be an interesting protein to further examine. 

 

7.7.6 Conclusion 

SELDI-TOF MS is a suitable method for determining the individual protein profiles 

of sample sets, and for quickly discovering potential variances and potential peaks of 

interest between them in a high throughput fashion. However, as the identity of a 

protein may not be determined directly through SELDI-TOF MS, it can be 

problematic when subsequently identifying potential biomarkers.  

Using SELDI TOF MS, the 7.6 kDa transferrin fragment and 8.5 kDa ubiquitin-like 

marker have been identified in vitreous fluid, however, they were not detected in 

advanced cutaneous melanoma serum.  

Despite not identifying the 8.9 kDa protein/fragment of interest, a number of new 

potential candidates have been discovered. In addition to this, these proteins may 

also provide further information on the progression of cutaneous melanoma disease.  

Overall, this work fulfilled the aim of using SELDI TOF MS to compare the 

proteomic profiles of cutaneous melanoma serum, uveal melanoma vitreous fluid, 

and cutaneous melanoma conditioned media to relevant controls. It also agreed with 

the hypothesis described as this method highlighted the presence of a potential 

biomarker present in the disease samples and mostly absent from the control sample 

sets. 
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7.8 Comparing the Proteomic Basis of Uveal and Cutaneous Melanoma 

The work presented in this thesis illustrates patterns of differential protein 

expression between stages of disease progression in both uveal and cutaneous 

melanomas. Both melanomas are of a similar embryonic origin and, as described in 

section 1.5, some similarities do occur between the two diseases. However, the work 

illustrated here demonstrates that both melanomas are significantly different in terms 

of their mechanisms of disease progression.  

Although different specimens were examined in both studies; tissue and vitreous 

fluid in the uveal melanoma work and serum in the cutaneous melanoma work, no 

common proteins of interest were identified between the two studies. However, this 

may be due to the differing sample types used and/or the different experimental 

approaches used.  

Uveal melanoma serum was incorporated into the ELISA validation of cutaneous 

melanoma targets of interest, see section 5.8. This did not identify any patterns of 

expression which were mutually observed between both melanomas. Again, the lack 

of correlation observed may be due to the methods by which both melanomas 

disseminate; uveal melanoma spreads primarily through blood as the eye lacks any 

lymphatic drainage, while cutaneous melanoma may spread by either system.  

From this work, it can be said that both melanomas are entirely different on a 

proteomic level. However, the lack of correlation between both diseases may be 

enhanced by the difference in experimental design and the nature of the samples 

used in both studies.  
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CONCLUSIONS 

 

1. SELENBP1, FABP3, TPI1, EEF1G and KPNB1 all have potential as 

biomarkers for uveal melanoma metastasis in primary tumour tissue, however more 

follow-up work is now required.  

 All five proteins were identified as being upregulated in subsequently 

metastasised primary tumour tissue in comparison to that which did not 

metastasise.  

 Each protein was found to be involved in the processes of invasion 

(independent of MMP-2 and MMP-9) and migration in uveal melanoma cells.  

 SELENBP1 may also induce anti-oxidant effects in uveal melanoma cells.  

 However, none of the proteins were found to be implicated in either 

proliferation or apoptosis in uveal melanoma cell lines.  

 This work may have improved our understanding of uveal melanoma 

metastasis, identifying five proteins which may be indicative of poor outcome 

and may be developed as therapeutic targets in the treatment of metastatic 

uveal melanoma.  

 

2. Vitreous fluid is a complex sample in terms of its proteomic nature. 

 It requires significant pre-processing prior to experimental analysis in order to 

allow for the identification of a wide variety of both high and, in particular, 

low abundance proteins. For this purpose, a combination of IMAC 

chromatography and imidazole fractionation can be used for the successful 

identification of both low abundant proteins and specific protein subsets in 

vitreous fluid. 

 

3. Retbindin, retinol-binding protein 3, meckelin, alpha crystallin B, and PEDF 

were all found to be differentially regulated between the vitreous fluid of monosomy 

three uveal melanoma patients and that of disomy three uveal melanoma patients. Of 

these, retbindin, retinol-binding protein three, and meckelin have not previously 

been identified in uveal melanoma vitreous fluid. All five proteins may be suitable 

prognostic biomarkers for poor outcome in uveal melanoma, and may act as 
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therapeutic targets in the treatment of the disease, however, further studies are now 

required to test this. 

 

4. FGF2, MIP1α and IFNɣ may be useful as potential indicators of uveal 

melanoma in vitreous fluid, in comparison to control specimens and will now be 

followed up in a larger sample set.  

 

5. Serotransferrin, lactotransferrin, azurocidin, plasma serine protease inhibitor, 

MMP-1, TIMP-1 and BACE-2 may be potential biomarkers for cutaneous 

melanoma and will now be further examined in a larger study. 

 Using quantitative LC-MS, serotransferrin, lactotransferrin, and azurocidin 

were all identified as being upregulated in advanced cutaneous melanoma sera 

in comparison to control sera from healthy patients, while plasma serine 

protease inhibitor was found to be overexpressed in the control sample set. 

 MMP-1, TIMP-1, and BACE-2 mRNA levels were identified by Dr. Stephen 

Madden and Dr. Paul Dowling as being significantly upregulated in 

metastasised cutaneous melanoma tissue and primary melanoma tumour tissue 

in comparison to the healthy, control tissue. 

 Using ELISA, lactotransferrin was found to be significantly overexpressed in 

advanced cutaneous melanoma sera when compared to the benign disease 

sample set. 

 Using ELISA, BACE-2 was also identified as being significantly 

overexpressed in advanced cutaneous melanoma sera, when compared to 

either healthy, control or benign disease sera. 

 

6. SELDI-TOF is a suitable method for quickly and easily determining the individual 

protein profiles of sample sets, and for quickly discovering differentially expressed 

potential peaks of interest between them in a high throughput fashion; however, it 

may be difficult to subsequently determine the identity of these proteins. 

 A 7.6 kDa transferrin fragment and an 8.5 kDa ubiquitin-like marker were 

identified in uveal melanoma vitreous fluid and media conditioned by 

cutaneous melanoma cells, while being undetectable in control vitreous fluid 
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collected from a benign disease (macular hole degeneration). However, neither 

was detected in advanced cutaneous melanoma serum. 

 An unknown 8.9 kDa protein was discovered in uveal melanoma vitreous 

fluid, media conditioned by cutaneous melanoma cells, and in advanced 

cutaneous melanoma serum, while it was absent from control vitreous fluid, 

collected from a benign disease, and control serum.  

 Following an attempted IMAC purification and subsequent MALDI TOF or 

quantitative label-free LC-MS analysis of the fractions, the identification of 

the protein could not be determined. 

 Further evaluation discovered a number of proteins which were differentially 

expressed between control and advanced disease sera which may be 

candidates for the identity of the 8.9 kDa peak of interest. This protein list may 

also provide a number of potential biomarkers for advanced cutaneous 

melanoma. 
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FUTURE WORK 

 

1. Prior to further analysis, larger sample sets would be used in order to validate 

the results acquired from the work presented in this thesis. From these discovery 

phase data, power analysis would be used in order to calculate appropriate sample 

sizes.  

 

2. As CNDP2 was found to be downregulated in primary tumour tissue which 

subsequently metastasised in comparison to that which did not, the protein could be 

overexpressed in 92.1 and MEL202 uveal melanoma cells using a cDNA-based 

method.  

 CNDP2 may play a role as a tumour suppressor, as described in section 7.3, 

hence, it would be of interest to carry out invasion and migration assays with 

the transfected cells in order to determine the potential role of CNDP2 in uveal 

melanoma disease progression and the impact of its upregulation in the 

metastatic potential of the cells. 

 It would also be of relevance to examine the role of CNDP2 in proliferation, 

using the cDNA transfected uveal melanoma cells. 

 In addition to this, anoikis (anchorage-dependent cell death) and apoptosis 

(programmed cell death) assays could be performed for the analysis of the role 

of CNDP2 in cell death as part of uveal melanoma disease progression.  

 

3. It may be of interest to further examine the role of TPI1, FABP3, SELENBP1, 

KPNB1, and EEF1G in uveal melanoma disease progression. 

 A uveal melanoma cell line derived from a secondary tumour, such as 

OMM2.5, could be transfected with siRNA against the respective targets in 

order to decrease their expression. The transfected cells could then be assessed 

for changes in their proliferative, invasive and migratory potentials, as this 

would further indicate the role of the potential targets in metastasis.  

 In addition to this, anoikis assays may further determine a function of the five 

proteins in resistance to anchorage dependent cell death which is a commonly 

gained feature of cancer cells. 
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 Proteins of interest may assessed in cell culture as potential therapeutic targets 

through the application of targeted agents, such as glycolytic inhibitors and 

nuclear transport inhibitors in the case of TPI1, and KPNB1, respectively. The 

effects of these agents on cellular processes, such as proliferation, and their 

levels of toxicity may then be determined. 

 

4. For the vitreous fluid sample preparation, it may be interesting to use 

alternative methods of protein fractionation. 

 This may involve using another resin, such as cation exchange, as this may 

isolate another subtype of proteins. Hence, this may illustrate a new aspect of 

the uveal melanoma vitreous proteome and, using differential expression 

analysis between disease states, may allow for the identification of other 

proteins which are indicative of diagnosis or prognosis in uveal melanoma.  

 It may also be of interest to incorporate an immunodepletion step prior to 

IMAC-fractionation of the vitreous fluid. This would reduce the level of the 

most abundant proteins present in the vitreous, thus allowing for the most 

efficient mining of the low abundance proteome. 

 

5. Potential targets of interest identified as being differentially regulated 

throughout the progression of cutaneous melanoma, and between monosomy three 

and disomy three uveal melanoma vitreous fluids, could be further followed up. 

 Using ELISA validation, a larger cohort of samples could be used for the 

further validation of targets identified in the preliminary ELISA analysis, such 

as BACE-2 and lactotransferrin, as potential biomarkers of disease 

progression.  

 It may also be of interest to follow up panels of potential targets in larger 

sample sets using logistic regression and ROC curve analysis, as this may lead 

to the development of predictive models for various disease states, e.g. early 

stage cutaneous melanoma or monosomy three uveal melanoma, by providing 

stronger specificity and sensitivity values than the proteins on their own.  

 Cutaneous melanoma markers of interest could be examined in cutaneous 

melanoma cell lines, such as SK-MEL 5 and SK-MEL 28, to discover their 
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potential functional roles as secreted proteins. Using siRNA transfection, 

knockdown studies could be carried out in order to understand the potential 

roles of notable proteins, such as BACE-2 and lactotransferrin, in processes 

such as proliferation, invasion, and migration. 

 

6. The three targets identified in the preliminary Luminex multiplex assays; 

IFNɣ, MIP1α, and FGF2, could be validated in a larger sample set of vitreous fluid 

samples consisting of control, uveal melanoma monosomy three, and uveal 

melanoma disomy three specimens. This could indicate their potential roles in uveal 

melanoma metastasis, and as prognostic biomarkers for uveal melanoma. 

 

7. Proteins discovered as being differentially expressed between the control and 

advanced cutaneous melanoma serum samples could be followed up in relation to 

the elusive 8.9 kDa peak of interest. It is possible that the potential marker of interest 

is a fragment of one of these proteins. 

 Potential targets of interest which were identified in the quantitative LC-MS 

study as being differentially expressed between control and advanced 

cutaneous melanoma serum could also be followed up as potential biomarkers 

for advanced cutaneous melanoma. Using siRNA transfection and functional 

studies, such as invasion and migration assays, the roles of proteins such as 

alpha 1-antichymotrypsin and alpha 1-antitrypsin could be further examined in 

cutaneous melanoma and its progression. This could be carried out using both 

cell lines of high and low invasive potential, e.g. SK-MEL 5 and SK-MEL 28. 

 It may also be of interest to further examine the role of selenoprotein P in 

oxidative metabolism as it has previously been associated with anti-oxidant 

properties and was identified in my work as being less abundant in advanced 

cutaneous melanoma serum in comparison to control serum. This would 

require over-expression studies in cutaneous melanoma cell lines using cDNA 

specific to the target, and performing a ROS assay, for the analysis of its role 

as an anti-oxidant.  
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Table 1 Fractionated cutaneous melanoma sera which were separated by 1-D electrophoresis were sliced up into thin gel sections and 

digested prior to analysis by LC-MS. The results of this qualitative analysis are shown in the table above. Identifications which were 

unique to an elution are written in red. 
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Table 2. Fractionated control sera which were separated by 1-D electrophoresis were sliced up into thin gel sections and digested prior to 

analysis by LC-MS. The results of this qualitative analysis are shown in the table above. Identifications which were unique to an elution are 

written in red. 
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Appendix B 

 
Table 1. Complete list of qualitative identifications from elution one and two of 

cutaneous melanoma sample 017. 
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 Table 2. Complete list of qualitative identifications from elution one and two of 

cutaneous melanoma sample 036. 
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Table 3. Complete list of qualitative identifications from elution one and two of 

cutaneous melanoma sample DS114. 
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Table 4. Complete list of qualitative identifications from elution one and two of 

cutaneous melanoma sample DS118. 
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Appendix C 

Sample Type Sex Age Stage of Malignancy Identifier 

Control Serum M 30 - DS179 

Control Serum F 47 - DS27 

Control Serum F 55 - DS38 

Control Serum F 62 - DS43 

Control Serum F 47 - DS156 

Control Serum F 33 - DS22 

Control Serum M 37 - DS58 

Control Serum M 40 - DS46 

Control Serum F 52 - DS34 

Control Serum M 36 - DS57 

Control Serum M 32 - DS171 

Control Serum M 48 - DS56 

Control Serum F 54 - DS44 

Cutaneous Melanoma 
Serum 

F 32 Benign S1016505 

Cutaneous Melanoma 
Serum 

F 24 Benign S1027507 

Cutaneous Melanoma 
Serum 

F 52 Benign S1000545 

Cutaneous Melanoma 
Serum 

M 65 Benign S1045409 

Cutaneous Melanoma 
Serum 

F 39 Benign S1028513 

Cutaneous Melanoma 
Serum 

M 70 Benign S1012400 

Cutaneous Melanoma 
Serum 

F 39 Benign S1035502 

Cutaneous Melanoma 
Serum 

F 23 Benign S1046506 

Cutaneous Melanoma 
Serum 

M 42 Benign S1054471 
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Cutaneous Melanoma 
Serum 

F 30 Benign S1080541 

Cutaneous Melanoma 
Serum 

F 23 Benign S1065568 

Cutaneous Melanoma 
Serum 

M 27 Benign S1019429 

Cutaneous Melanoma 
Serum 

F 60 Benign S1021464 

Cutaneous Melanoma 
Serum 

F 44 Benign S1034536 

Cutaneous Melanoma 
Serum 

M 55 Benign S1017480 

Cutaneous Melanoma 
Serum 

F 47 Benign S1055557 

Cutaneous Melanoma 
Serum 

M 81 Benign S1008454 

Cutaneous Melanoma 
Serum 

F 19 Benign S1058570 

Cutaneous Melanoma 
Serum 

M 34 Stage IB S1096307 

Cutaneous Melanoma 
Serum 

F 50 Stage IA S1009509 

Cutaneous Melanoma 
Serum 

M 73 Stage IA S1089408 

Cutaneous Melanoma 
Serum 

M 72 Stage IA S1087466 

Cutaneous Melanoma 
Serum 

M 89 Stage IA S1059414 

Cutaneous Melanoma 
Serum 

F 44 Stage IA S1022577 

Cutaneous Melanoma 
Serum 

M 77  Stage IA S1093451 

Cutaneous Melanoma 
Serum 

M 52 Stage IA S1026478 

Cutaneous Melanoma 
Serum 

M 65 Stage IIB S1006438 
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Cutaneous Melanoma 
Serum 

M 44 Stage IB S1007447 

Cutaneous Melanoma 
Serum 

M 46 Stage IB S1037454 

Cutaneous Melanoma 
Serum 

M 39 Stage IB S1057451 

Cutaneous Melanoma 
Serum 

M 36 Stage IIA S1088486 

Cutaneous Melanoma 
Serum 

- 73 Stage IA S1062509 

Cutaneous Melanoma 
Serum 

F 28 Stage IV 023 

Cutaneous Melanoma 
Serum 

M 48 Stage IV BH-M-001 

Cutaneous Melanoma 
Serum 

M 45 Stage IV 019 

Cutaneous Melanoma 
Serum 

M 84 Stage III 034 

Cutaneous Melanoma 
Serum 

F 72 Stage IV 031 

Cutaneous Melanoma 
Serum 

F 73 Stage IV 017 

Cutaneous Melanoma 
Serum 

F 40 Stage III 039 

Cutaneous Melanoma 
Serum 

M 29 Stage III 029 

Cutaneous Melanoma 
Serum 

M 67 Stage IV 036 

Cutaneous Melanoma 
Serum 

M 36 Stage IV 010 

Cutaneous Melanoma 
Serum 

M 82 Stage IV 
SVUH-M-

006 

Cutaneous Melanoma 
Serum 

M 74 Stage III 014 

Uveal Melanoma 
Serum 

F 72 Monosomy 3 613325 
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Uveal Melanoma 
Serum 

M 53 
No evidence of 
Monosomy 3 

612963 

Uveal Melanoma 
Serum 

M 68 
No evidence of 
Monosomy 3 

614618 

Uveal Melanoma 
Serum 

M 54 
No evidence of 
Monosomy 3 

624972 

Uveal Melanoma 
Serum 

M 71 Monosomy 3 608420 

Uveal Melanoma 
Serum 

F 72 Monosomy 3 607486 

Uveal Melanoma 
Serum 

M 79 
No evidence of 
Monosomy 3 

606968 

Uveal Melanoma 
Serum 

M 80 
Monosomy 3 

Loss of Heterozygosity 3 
590077 

Uveal Melanoma 
Serum 

F 85 Monosomy 3 575817 

Uveal Melanoma 
Serum 

- - 
No evidence of 
Monosomy 3 

533028 

Uveal Melanoma 
Serum 

- - 
No evidence of 
Monosomy 3 

615989 

Uveal Melanoma 
Serum 

M 61 Monosomy 3 619357 

 

Table 1. Comprehensive list of samples used in ELISA analysis in Chapter Five. 
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Appendix D 

 

Presentations, Posters, and Publications Resulting From This Work: 

 

Presentations: 

 Proteomic Analysis of Both Uveal and Cutaneous Melanomas for the 

Identification of Novel Targets  

Irish Mass Spectrometry Society Annual General Meeting. May 2012 

 

 Functional Validation of Novel Targets in Uveal Melanoma  

Biotechnology in Action: Stem Cells & Tissue Engineering, Biopharmaceutical 

Production and Cancer Biomarkers. September 2012 

 

 Proteomic Analysis of Cutaneous Melanoma Metastasis using ProteoMiner 

Fractionation with Reverse Phase Chromatography and LC-MS/MS 
7

th
 Annual Conference on Analytical Sciences Ireland (CASi). July 2013 

 

Posters: 

 Triosephosphate Isomerase and Fatty Acid Binding Protein, Heart Type as  

Potential Protein Biomarkers of Metastatic Uveal Melanoma 

2
nd

 Annual Irish Melanoma Forum. November 2012 

 

Publications: 

 Differential expression of fourteen proteins between uveal melanoma from 

patients who subsequently developed distant metastases versus those who did not. 
Annett Linge

1
, Susan Kennedy

1
, Deirdre O‟Flynn, Stephen Beatty, Paul Moriarty, 

Michael Henry, Martin Clynes, Annemarie Larkin
2
 and Paula Meleady

2
.  

Investigative Ophthalmology & Visual Science (IOVS) May 2012 
 

 

 

 


