
1

A Portable Toolkit for Providing
Straightforward Access to Medical

Image Data1

Robert J.T. Sadleir, BEng

Paul F. Whelan, PhD

Padraic MacMathuna, MD

Helen M. Fenlon, MB

This work was supported by the Irish Cancer Society, the Health Research Board (of
Ireland) and the Science Foundation Ireland.

Address correspondence to R.J.T.S.
Vision Systems Laboratory,
School of Electronic Engineering
Dublin City University
Dublin 9,
Ireland.
Tel: +353 1 7008592
Fax: +353 1 7005508
E-mail: Robert.Sadleir@dcu.ie

Exhibit Space Number: 9316

1 From the Vision Systems Group, School of Electronic Engineering, Dublin City
University, Ireland. (R.J.T.S., P.F.W.); the Gastrointestinal Unit, Mater Misercordiae
Hospital, Dublin 7, Ireland. (P.MacM); and the Department of Radiology, Mater
Misercordiae Hospital, Dublin 7, Ireland. (H.M.F.);

2

A Portable Toolkit for Providing
Straightforward Access to Medical

Image Data

3

Abstract

Computer aided medical image analysis is emerging as an important area in radiology

research. Analysis of medical images usually involves the development of custom

software applications that interpret, process and ultimately display medical image

data. The interpretation stage is generally the same for all such applications and

involves decoding image data and presenting it to the application developer for further

processing. This article introduces a toolkit created specifically for interpreting

medical image data and thus acting as a platform for medical imaging application

development. The toolkit, which will be referred to as NeatMed, is intended to reduce

development time by removing the need for the application developer to deal directly

with medical image data. NeatMed was implemented using Java, a programming

language with a range of attractive features including portability, ease of use and

extensive support material. NeatMed was developed specifically for use in a research

environment. It is straightforward to use, well documented and is intended as an

alternative to commercially available medical imaging toolkits. NeatMed currently

provides support for both the digital imaging and communications in medicine

(DICOM) and Analyze medical image file formats and its development is ongoing.

Support material including sample source code is available via the Internet and links

to related resources are also provided. Most importantly NeatMed is freely available

and its continuing development is motivated by requests and suggestions received

from end users.

4

One sentence summary: This article introduces a freely available and user friendly

Java toolkit that is intended to act as a platform for the development of custom

medical imaging applications.

5

Introduction

Custom medical imaging applications are becoming more common place. This is

primarily driven by the increasing role of computer aided image processing and

analysis in radiology research. An import and common stage in the development of

such applications is the interpretation of medical image data. This data is generally

stored in accordance with the Digital Imaging and Communications in Medicine

(DICOM) standard (1) (summarised by Mildenberger et al. (2)). Interpretation of

medical images involves decoding the relevant DICOM data and making it readily

available to the application developer for analysis and display. Our group has

developed a Java based medical imaging toolkit to facilitate the rapid development

and deployment of medical imaging applications in a research environment. Over the

past number of years this toolkit has been used internally as a platform for the

development of a number of research applications in the areas of CT colonography (3,

4), MRCP (5) and more recently functional MRI. In the course of this work the toolkit

has been exposed to a wide range of medical images obtained from various imaging

modalities.

This medical imaging toolkit, which will be referred to as the NeatMed application

developers interface (API), was developed using the Java programming language (Sun

Microsystems, Mountain View, Calif.). The use of Java has previously been

demonstrated in the development of custom medical imaging applications. Fernandez-

Bayo et al. describe a web based Java viewer developed for use with a custom web

server (6), Bernarding et al. describe a framework for the development of DICOM

server applications implemented using Java (7) and Mikolajczyk et al. describe a Java

environment for the analysis of positron emission tomography (PET) image data (8).

6

The choice of Java for implementing the NeatMed API was also influenced by a

number of its key features:

• Ease of use: Java is modern programming language that was designed with

simplicity in mind. Many of the complexities that are associated with other

programming languages have been omitted while much of the power and

flexibility has been retained. This makes Java very easy to learn and use

particularly in the case of novice programmers.

• Level of support: Although Java is a relatively new programming language,

there is a significant amount of support material available. Numerous texts

have been written dealing with all aspects of the language. In addition:

tutorials, sample source code, API documentation and freely available

integrated development environments (IDEs) can all be accessed via the

Internet.

• Portability: Java is a multi-platform programming language. This means that

a Java application developed on one operating system (e.g. Mac OS) can be

deployed on a number of other different operating systems (e.g. Windows,

Solaris and Linux). This is sometimes referred to as the “write once, run

anywhere” paradigm. In theory, the use of a multi-platform programming

language significantly increases the potential user base with little or no extra

development overhead.

• Core functionality: The core Java libraries encapsulate an extensive range of

functionality that can be easily reused to create reliable, diverse and powerful

applications. Some of the main capabilities supported by the core libraries

include: networking, file IO, image processing, database access and graphical

user interface development.

7

• Extension APIs & toolkits: There are a large number of extension APIs and

toolkits that can be used in conjunction with the core Java libraries. These

extensions usually deal with a particular speciality such as advanced image

processing, 3D graphics or speech recognition.

The concept of a Java based medical imaging toolkit is not entirely new. In fact there

are a number of commercial toolkits already available: the DICOM Image I/O Plugin

(Apteryx, Issy-les-Moulineaux, France), the LEADTOOLS Medical Imaging suite

(LEAD Technologies, Charlotte, N.C.) and the Java DICOM toolkit (Softlink, Halle

Zoersel, Belgium). NeatMed was developed as a freely available alternative to these

commercial toolkits. It is primarily intended for use in a research environment,

specifically for dealing with offline medical image data. A major benefit associated

with NeatMed is that it was designed with simplicity and ease of use in mind. This is

especially important as it makes NeatMed assessable to all those involved in medical

imaging research including radiologists, computer scientists and engineers. Other

freely available toolkits e.g. ImageJ (9) and jViewbox (10) facilitate the development

of applications that deal with DICOM images however they lack the low level

functionality required to create application that deal with all aspects of the DICOM

file format.

The NeatMed API was released prior to the 88th scientific assembly and annual

meeting of the Radiological Society of North America. This article is intended to

provide an introduction to the NeatMed API and deals with implementation issues,

toolkit structure, sample applications, support material and current API status. The

reader is encouraged to visit the official NeatMed website (9) for further information

8

about the NeatMed API and associated resources. The NeatMed API is distributed in

accordance with the terms and conditions laid out in the GNU Lesser General Public

License. This licence was select to insure that the NeatMed API is accessible to all

potential users.

API Implementation

NeatMed was developed using the Java programming language. Java was created by

Sun Microsystems in the early ‘90s. It was initially intended for the development of

software for use in the consumer electronics industry (e.g. set-top boxes).

Unfortunately the Java development team were unable to find a target market for their

new programming language. Forced to reconsider, it was decided to redeploy Java as

an Internet technology. Java programs known as Applets first appeared on the Internet

in 1994. These interactive Applets were embedded in standard hypertext mark-up

language (HTML) web pages and greatly enhanced the previously static Internet. The

Java programming language can also be used for the development standalone client

side applications which can run independently of a web browser and are not subjected

to the same security restrictions as Applets. The core Java libraries maintained by Sun

Microsystems are used as the foundation for the development of any Java application.

These libraries can be used in conjunction with extension an API in order to develop

specialised applications. See (11) for further information about the Java programming

language.

An extension API is a set of classes that can be instantiated by a programmer to create

a particular type of application, thus facilitating software reuse. NeatMed is an

9

example of an extension API that can be used for the development of applications that

deal with offline medical image data. A large number of Java APIs exist, these deal

with a broad range of applications ranging from communicating with the serial and

parallel ports to advanced image processing. The set of classes representing the API is

deployed in some type of library. Java provides a packaging tool that can be used to

package a set of class files and associated resources into a Java archive or JAR file. In

order to be useful an API must be well documented. Java provides a documentation

tool called Javadoc that allows an API developer to document software as it is being

written. The resulting documentation provides detailed information about each class,

method and variable that is defined in the associated API. The structure of Javadoc

documentation is more or less the same for every API. This makes it very easy for

programmers to familiarise themselves with a new API once they are comfortable

with the basic Javadoc documentation structure. The API documentation is generated

in HTML and can be viewed using any standard web browser.

Java has a wide range of benefits associated with it however there are also some

limitations. One example is performance: Java is a multiplatform programming

language, the byte code (i.e. binary form) that represents a java program is interpreted

and not executed directly. This reduces the performance of a Java program compared

to a natively executed program. Overall however, the benefits associated with Java

(listed previously) far outweigh the drawbacks hence its selection for the development

of NeatMed.

10

API Overview

The NeatMed API is a group of core and support classes that can be used to interpret,

represent and manipulate images and related data that are stored in DICOM compliant

files. The central class in the API is the DICOMImage class. A DICOMImage object

can be instantiated by specifying a reference to a suitable data source in the

constructor. The constructor will accept data from a number of sources (e.g. local file,

data stream and remote URL). Once constructed a DICOMImage object provides

direct access to all of the data elements stored within the specified DICOM source.

Other classes in the API are used to represent individual components within a DICOM

file such as DICOMTag: a data element tag (i.e. group number and element number

combination) or DICOMDataElement: a special wrapper class created for storing

data associated with a particular value representation. There is a subclass of

DICOMDataElement for each of the 26 value representations, examples include:

DICOMAgeString, DICOMPersonName and DICOMUniqueIdentifier The

API also provides utilities classes such as DICOMDataDictionary: a data

dictionary containing value representation definitions for all of the data elements

defined in the DICOM 3.0 standard (required when the value representation is not

specified explicitly). This section describes how the DICOMImage class operates and

how it interacts with other classes in the API to provide access to DICOM encoded

data.

Data Interpretation

When a DICOMImage object is constructed it reads and decodes all the data from the

specified source. The decoder automatically determines the type of data and the

transfer syntax to be used. If the value representation is not specified explicitly then

11

the required value representation for a particular data element is obtained from the

pre-programmed data dictionary (i.e. DICOMDataDictionary). Each data element

in the DICOM file is subsequently decoded and stored using the relevant wrapper

class. Data stored within a wrapper class can easily be accessed for further processing.

The image data (0x7fe0, 0x0010) is a special type of data element that can be

stored using one of two possible value representations: other byte string or other word

string. The image data is always packed and sometimes compressed using either joint

photographic experts group (JPEG) (13, 14) or run length encoding (RLE)

compression. Information required to unpack and decompress the image data is

usually stored within group 0x0028 data elements. The DICOM decoder

automatically unpacks and decodes the image data and stores it internally as a one

dimensional array of signed 32-bit integer primitives.

Data Management

Once decoded all data elements are stored internally using a modified hash table

structure. A hash table allows information to be stored as key/value pairs. In this case

the key is the data element tag which consists of a group number and an element

number and the value is the data element associated with the relevant tag. A tag is

represented by a DICOMTag class and all data elements are represented by dedicated

wrapper classes which are subclasses of DICOMDataElement. A specific data

element value can be retrieved from the hash table by specifying the relevant group

number and element number combination. The method employed for storing and

querying decoded data elements is illustrated in Figure 1.

Data Access/Manipulation

12

Data can be accessed at several levels. At the most basic level a data element can be

retrieved from the hash table using the getDataElement() method of the

DICOMImage class. There are two versions of the getDataElement() method.

The first version takes a single argument of type DICOMTag which encapsulates the

group number and element number of the desired data element and the second version

takes two integer arguments, one for the group number and the second for the element

number. In either case the getDataElement() method will return an object of

type DICOMDataElement representing the requested data element. This object

must be cast (i.e. converted) into the relevant subclass of DICOMDataElement

before the actual data element value can be accessed. An existing data element can be

modified or a new data element can be added to a DICOMImage object by calling the

setDataElement() method. This method takes arguments that represent a tag and

the new data element value to be associated with that tag. The basic level

representation does not provide direct access to the actual image data. This data is

packed and in some cases compressed and further decoding is required in order to

facilitate pixel level operations.

There are an extremely large number of data elements defined by the DICOM

standard. It is possible for any of these data elements to be present in a DICOM file.

Some data elements occur more frequently than other and have particular significance

to the application developer. In order to facilitate straightforward access to important

and frequently used data elements a number of special accessor methods are defined

by the DICOMImage class. This set of methods represents a higher level of access

than that provided by the getDataElement() and setDataElement()

methods and simplifies access to particular frequently used or important data

13

elements. Internally each accessor method calls the getDataElement() method

with the relevant DICOMKey argument and casts the returned data element value into

the relevant Java primitive (or object). Some examples of the accessor methods

provided by the DICOMImage class are as follows:

• String getPatientID() retrieves the data element value associated

with the key (0x0010, 0x0020) from the hash table. The

DICOMLongString object at this location is converted into a Java String

object which is then returned.

• int getSeriesNumber() retrieves the data element value associated

with the key (0x0020, 0x0011) from the hash table. The

DICOMIntegerString object at this location is converted into a signed

32-bit integer primitive and returned.

• int getBitsAllocated() retrieves the data element value associated

with the key (0x0028, 0x0100) from the hash table. The

DICOMUnsignedShort object at this location is converted into a signed

32-bit integer primitive and returned.

Accessor methods are also provided for adding new data element values or modifying

existing data element values. These methods take a single argument which represents

the new value of the relevant data element. Internally these methods call

setDataElement() with the relevant DICOMKey and new value arguments.

Examples include setPatientID(String ID), setSeriesNumber(int

seriesNumber) and setBitsAllocated(int bitsAllocated).

The final level of abstraction is used to provide direct access to image data. As

mentioned previously the image data is stored in data element (0x7fe0,

14

0x0010). After the initial decoding/interpretation stage this data is still packed and

sometimes compressed. The final stage of decoding performed by the DICOMImage

class automatically unpacks and decompresses the image data which is ultimately

stored within the DICOMImage class as a one dimensional array of signed integer

values. Individual pixel values can be accessed/modified using special accessor

methods: getSample() and setSample(). In either case the (x, y) coordinates

of the relevant pixel must be specified in the argument list of the accessor method. In

the case of multi-frame image data (i.e. where the number of frames is greater than

one) a time coordinate must also be specified and for multi-plane image data (e.g.

ARGB or CYMK) a colour plane index must also be specified. Some examples of the

pixel level accessor methods provided by the DICOMImage class are as follows:

• getSample(int x, int y) returns an integer primitive that represents

the pixel value at the specified (x, y) coordinates.

• getSample(int x, int y, int t) returns an integer primitive that

represents the pixel value at the specified (x, y, t) coordinates.

• setSample(int x, int y, int value) sets the value of the pixel

at the specified (x, y) coordinates to be the same as that indicated by the

value argument.

Data Storage

In many cases an application developer will only need to read from a DICOM file.

However, there are some cases where it may be useful to modify the contents of a

DICOM file. In order to facilitate this operation the DICOMImage class provides a

save() method. This method saves the current state of the associated DICOMImage

object and takes a single argument which represents the output stream where the data

15

will be written. The saving operation involves writing all of the data elements

represented by the DICOMImage object (including the packed pixel information) to

the specified output stream. The saved data will be stored according to the specified

transfer syntax, i.e. data element (0x0002, 0x0010). If this data element is not

present then the default transfer syntax will be used. The data storage feature

completes the range of functionality provided by the NeatMed API.

Sample Applications

The NeatMed API can be used to develop of a wide variety of medical imaging

applications. This section describes a number of sample applications that demonstrate

the power, flexibility and ease of use of the NeatMed API (see Figure 3). In some

cases NeatMed is used in conjunction with extension APIs and toolkits in order to

demonstrate its development potential. The source code and associated instructions

for the compilation and execution of each sample application can be downloaded

directly from the NeatMed website.

Simple DICOM viewer

A simple DICOM image viewer application can be created quite easily. The source

code for the application is extremely compact (see Figure 3). The application takes a

single argument which represents the name of the image to be displayed. This

filename is subsequently used to construct a DICOMImage object. A

BufferedImage object representation of the DICOMImage object is then

obtained. This BufferedImage object is ultimately displayed using Swing

graphical user interface (GUI) components (see DICOMViewer.java).

16

Sequence Viewer

The simple DICOM viewer application can be extended to deal with multi-frame

DICOM images. This extension is facilitated by adding two buttons to the application

GUI. These buttons allow the user to sequence backwards and forwards through the

available frames. Internally the buttons update the value of a counter, the backwards

button decrements the counter and the forwards button increments the counter. After

either button is pressed the frame with the index that corresponds to the counter value

displayed. This application demonstrates how user interaction is handled by Java. (see

SequenceViewer.java).

Volume Rendering

The NeatMed API can be used in conjunction with the visualisation toolkit (VTK)

(15) to provide three dimensional volume or surface renderings of medical image

data. NeatMed is used to read in axial slices from a volumetric dataset. The image

data from the slices is used to populate an array of scalar values that represents the

volumetric data. Two transfer functions (opacity and colour) are specified to indicate

how the volume should be displayed. The opacity transfer function indicates the

opacity values associated with particular voxel intensity. The colour transfer function

indicates the RGB colour value associated with a particular voxel intensity, this can

be used for pseudo colouring the volume data. The rendering of the volume is handled

by the VTK and the user can interact with the resulting model using the mouse.

Supported operations include rotate, zoom and translate. A sample volume rendering

using this application is illustrated in Figure 4 (see VolumeRendering.java).

Anonymising Data

17

A DICOM file usually contains a number of data elements that hold sensitive patient

information. It is important to be able to anonymise this information in certain cases

in order to protect the patient’s identity. The anonymisation process involves

constructing a DICOMImage object from a suitable source, overwriting all of the

sensitive data element values (e.g. patient’s name, patient’s birth date and patient’s

address) and saving the modified DICOMImage object to an output stream using the

save() method. The saved file represents the anonymized data. Each of the

sensitive data element values can be overwritten using the setDataElement()

method or special accessor methods (where available). Note that this application is a

command line only application there is no GUI (see Anonymise.java).

Image Processing

The NeatMed API can be used for the development of medical image analysis

applications. This can be achieved using any of the well documented image

processing operations that are described in the literature, see (11) for examples of

image processing algorithms in Java. The threshold operation is a simple example of a

point operation that is based on a raster scan of the input image. Thresholding

converts a grey scale image into a binary (black & white) image based on a user

defined threshold value. Any pixel that is greater than or equal to the threshold is set

to white while any pixel less than the threshold is set to black. The threshold operation

performs a rough segmentation of the image and demonstrates both looping and

conditional data processing. The threshold operation is illustrated in Figure 5 (see

Threshold.java).

18

As mentioned earlier, NeatMed has been used internally over the past number of years

as a platform for the development of a number of medical imaging research

applications. Examples of this research are illustrated in Figure 6.

Support Material

All support material for the NeatMed API is accessible through the official NeatMed

website. In addition to providing access to the latest version of the NeatMed API the

website also provides access to documentation, sample source code and contact

information for the NeatMed development team.

The NeatMed API documentation is generated using Javadoc. The NeatMed API

documentation (see Figure 7) can be browsed online or downloaded as a ZIP file for

subsequent offline access. In either case the documentation can be viewed using a

standard web browser. The documentation itself provides an overview of the entire

API. Each class and its associated methods and variables are described in detail. The

relationship between classes is indicated and hyperlinks are provided to facilitate easy

navigation through the documentation.

Fully commented source code for each of the sample applications described earlier in

this paper can be downloaded from the NeatMed website. These applications can be

compiled and executed using the Java 2 Software Developer Kit (J2SDK) from Sun

Microsystems. The latest version of the J2SDK (currently v1.4.2) can be downloaded

at no cost from official Java website (16). All sample applications require the

19

NeatMed API to be included in the Java class path and some applications also require

additional APIs or toolkits such as the VTK to be included. The NeatMed website

should be consulted for detailed information about compiling and executing the

sample applications. Links to sites providing DICOM images that can be used in

conjunction with the sample applications can also be accessed via the NeatMed

website.

Finally the NeatMed team can be contacted by email either for general queries or to

suggest additional functionality that may be useful to other NeatMed users. All

queries regarding the NeatMed API should be directed to neatmed@eeng.dcu.ie

Current Status

The NeatMed API is constantly evolving. Its ongoing development is driven by

internal requirements and external requests for additional features. NeatMed supports

data that conforms to version 3 of the DICOM standard as well as the older American

College of Radiology – National Electrical Manufacturers Association (ACR-NEMA)

standard. NeatMed currently supports all of the uncompressed DICOM transfer

syntaxes as well as the lossless RLE transfer syntax (1.2.840.10008.1.2.5). Support

for JPEG compressed image data is currently being incorporated into the API.

Dedicated wrapper classes are provided for storing each of the 26 possible data

element value representations defined in the DICOM standard. The pixel data decoder

is extremely flexible and supports any valid pixel encoding (packing) scheme, the

majority of commonly used photometric interpretations are also supported and the

20

recent addition of the basic data write feature completes the range of functionality

available for dealing with DICOM data.

NeatMed has recently been updated to support version 7.5 of the ANALYZE file

format. As with DICOM data, the ANALYZE file pair (image & header) is

automatically interpreted and all encoded information is made readily available to the

programmer. The ANALZE file format has a finite number of header fields and direct

access is provided to each of these. Individual image sample values can be obtained

by simply specifying the relevant 2D, 3D or 4D co-ordinates. The ANALYZE section

of the API can also be used in conjunction with other toolkits and APIs to create

powerful medical imaging applications.

The NeatMed API is intended for use by programmers interested in developing

medical imaging applications, particularly for computer aided analysis. There is no

reason why nonprogrammers should be excluded from developing such applications.

In order to facilitate nonprogrammers NeatMed has recently been incorporated into

the NeatVision visual programming environment (11, 17). NeatVision is a free, Java

based software development environment designed specifically for use in image

analysis applications. NeatVision is both user-friendly and powerful providing high-

level access to over 300 image manipulation, processing and analysis algorithms. A

visual program can be created by simply instantiating the required algorithms (blocks)

and creating data paths (interconnections) between the inputs and outputs to indicate

the data flow within the program. This combination NeatVision and NeatMed makes a

vast library of image processing operators easily accessible to the medical image

analysis community.

21

Summary

The interpretation of medical image data is an important and common stage in the

development of any medical imaging application. NeatMed removes the need to deal

directly with encoded medical image data, thus increasing productivity and allowing

the developer to concentrate on other aspects of application development. NeatMed is

written in Java, a multiplatform programming language with a large amount of freely

available support material that is straightforward to learn and use. These and other

features of Java make NeatMed accessible to a large group of potential users.

NeatMed is well supported with documentation and sample code available through the

NeatMed website. Most importantly, NeatMed is a freely available research tool

whose ongoing development is driven by the needs and requirements of its users.

Acknowledgements: The authors wish to thank members of the Department of

Radiology and the Gastrointestinal Unit at the Mater Misericordiae Hospital,

particularly Dr. John F. Bruzzi and Dr Alan C. Moss.

22

References

1. National Electrical Manufacturers Association. Digital Imaging and

Communications in Medicine (DICOM). Rosslyn, Va: National Electrical

Manufacturers Association, 2003; PS 3.1-2003–3.16-2003.

2. Mildenberger P, Eichelberg M, Martin E. Introduction to the DICOM

standard. Eur Radiol 2002; 12:920-927.

3. Sadleir RJT, Whelan PF. Colon centreline calculation for CT colonography

using optimised 3D topological thinning. In: Proceeding of the 1st

International Symposium on 3D Data Processing Visualisation and

Transmission, Padova, Italy, Jun 19 – 21, 2002; 800-803.

4. Sadleir RJT, Whelan PF, Bruzzi JF, Moss AC, Fenlon HM, MacMathuna P. A

novel technique for identifying the individual regions of the human colon at

CT colonography. In: Proceedings of the IEE seminar on Medical

Applications of Signal Processing, London, UK, Oct 7, 2002; 8/1-8/5.

5. Robinson K, Whelan PF, Stack J. Segmentation of the biliary tree in MRCP

data. In: Proceeding of OPTO-Ireland: SPIE's Regional Meeting on

Optoelectronics, Photonics and Imaging. Galway, Ireland. Sept 5 – 6, 2002;

192-200.

6. Fernandez-Bayo J, Barbero O, Rubies C, Sentis M, Donoso L. Distributing

medical images with internet technologies: a DICOM web server and a

DICOM java viewer. Radiographics 2000; 20:581-591.

7. Bernarding J, Thiel A, Decker I, Tolxdorff T. Implementation of a dynamic

platform-independent DICOM-server. Comput Methods Programs Biomed

2001; 65:71-78

23

8. Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C. A Java

environment for medical image data analysis: initial application for brain PET

quantitation. Med Inform 1998; 23:207-214.

9. ImageJ, Image Processing and Analysis in Java. Available at

http://rsb.info.nih.gov/ij/index.html. 2003; Accessed December 5.

10. JViewbox, Laboratory of Neuro Imaging, UCLA. Available at

http://www.loni.ucla.edu/Software/Software_Detail.jsp?software_id=1. 2003;

Accessed December 5.

11. Whelan P, Molloy D. Machine Vision Algorithms in Java: Techniques and

Implementations. 2nd ed. London: Springer-Verlag, 2001.

12. NeatMed Medical Imaging Application Programmers Interface. Available at

 http://www.eeng.dcu.ie/~vsl/DICOM/index.html. 2003; Accessed December 5.

13. Wallace GK. The JPEG still image compression standard. Commun ACM

1991; 34:30-44.

14. Pennebaker WB, Mitchell JL. JPEG still image data compression standard. 1st

ed. New York: Chapman & Hall, 1993.

15. Schroeder WJ, Avila LS, Hoffman W. Visualizing with VTK: A tutorial. IEEE

Comput Graph 2000; 20:20-27

16. Sun Microsystems Inc. J2SE Downloads. Available at

http://java.sun.com/j2se/downloads.html. 2003; Accessed December 5.

17. The NeatVision visual programming environment. Available at

http://www.neatvision.com/index.html. 2003; Accessed December 5.

24

Illustrations

(0x0002, 0x0000)

KEY VALUE

getDataElement()setDataElement()

Group Length (UL)

(0x0002, 0x0001) File Meta Information Version (OB)

(0x0002, 0x0002) Media Storage SOP Class UID (UI)

(0x0002, 0x0003) Media Storage SOP Instance UID (UI)

(0x0002, 0x0010) Transfer Syntax UID (UI)

(0x0002, 0x0012) Implementation Class UID (UI)

(0x0002, 0x0013) Implementation Version Name (SH)

(0x0008, 0x0008) Image Type (CS)

(0x0028, 0x1052) Rescale Intercept (DS)

(0x0028, 0x1053) Rescale Slope (DS)

(0x7FE0, 0x0010) Pixel Data (OW)

DICOMImage

Figure 1: A representation of how data is stored and queried at the most basic level of

the DICOMImage class.

25

DICOM Files

NeatMed

Custom Medical
Imaging Application

Java Advanced
Imaging (JAI)

Visualization
Toolkit

Swing or AWT
GUI Components

Extension APIs

NeatMed API

Core Java Application

Application
Layer

Interpretation
Layer

Data
Layer

Display

Processing
& Analysis

Figure 2: An overview of how the NeatMed API should be used in the development

of medical imaging applications.

26

 import java.awt.*;
 import javax.swing.*;
 import neatmed.DICOM.*;

 public class ImageViewer
 {
 public static void main(String[] args)
 {
 new ImageViewer(args);
 }

 public ImageViewer(String[] args)
 {
 try
 {
 // Create a new DICOMImage object...
 DICOMImage image = new DICOMImage(args[0]);

 // Create a GUI to display the image...
 JLabel label = new JLabel(new ImageIcon(image.getAsBufferedImage()));
 JFrame frame = new JFrame("DICOM Image Viewer");
 frame.getContentPane().setLayout(new BorderLayout());
 frame.getContentPane().add(label);
 frame.setVisible(true);
 frame.pack();
 }
 catch(Exception e)
 {
 System.out.println(e.toString());
 }
 }
 }

Figure 3: Sample Java source code for the DICOM image viewer application.

27

Figure 4: A volume rendering of the human colon generated from an abdominal

CTC dataset using a combination of the NeatMed API and the VTK.

28

(a)

(b)

Figure 5: The threshold image processing operation. A CT image (a) before and (b)

after application of the threshold.

29

(a)

(b)

Figure 6: Advanced image processing facilitated by NeatMed (a) Centreline

calculation at CT colonography. (b) Segmentation of the biliary tree from MRCP data.

30

Figure 7: The HTML Javadoc documentation for the NeatMed API.

